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Abstract. In software engineering, transformational development is aimed at devel-

oping computer systems by transforming a coarse-grained specification of a system to

its final code through a series of transformation steps. Transformational development

is known to bring benefits such as: correctness by construction, explicit mappings be-

tween development steps, and reversibility of transformations. No comparable piece

exists in the literature that provides a formal system applying transformational devel-

opment in the area of user interface engineering. This chapter defines such a system.

For this purpose, a mathematical system for expressing specifications and transforma-

tion rules is introduced. This system is based on graph transformations. The problem

of managing the transformation rules is detailed, e.g., how to enable a developer to

access, define, extend, restrict or relax, test, verify, and apply appropriate transforma-

tions. A tool supporting this development paradigm is also described and exemplified.

Transformational development, applied to the development of user interfaces of inter-
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active systems, allows reusability of design knowledge used to develop user interfaces

and fosters incremental development of user interfaces by applying alternative trans-

formations.

6.1 INTRODUCTION

A recent survey of the area of Human-Computer Interaction (HCI) compared to the

area of Software Engineering (SE) would find the former to be mainly empirical,

experience-based, and relying on implicit knowledge and the latter to be notoriously

and deliberately structured, principle-based, and relying on explicit knowledge. The

development lifecycle of highly-interactive systems in general and of their User Inter-

face (UI) in particular form the cornerstones of HCI, which has been observed to suffer

from several shortcomings that are intrinsic either to the type of interactive systems

being developed or to the existing practices used. Among these shortcomings are the

following observations:

Lack of rigorousness: on the one hand, the development lifecycle of interactive

systems cannot be based on the same rigorous models that are typically used in

SE (Brown 1997). On the other hand, HCI lifecycle is submitted to a high order

of complexity that is neither reflected nor well supported in existing models and

methods (Wegner 1997).

Lack of systematicity: as SE aimed for a well-structured method for developing

highly complex systems, so did HCI for developing interactive systems. How-

ever, the systematicity and the reproducibility found in SE methods cannot be

transferred straightforwardly to HCI: the development lifecycle remains intrin-

sically open, ill-defined, and highly iterative (Sumner et al. 1997) as opposed to

the domain of SE where it is structured, well-defined, and progressive (D’Souza

and Wills, 1999).

Lack of a principle-based approach: where SE proceeds in the development

from one step to another according to well-established principles, in contrast

HCI usually advances in a more opportunistic way when the current result is

usable enough to proceed to the next step (Bodart et al., 1995; Puerta, 1997).

Lack of explicitness: not only the knowledge required to properly conduct the

development lifecycle of interactive systems is not as principled as in SE, but

also it is implicitly maintained in the mind of experienced designers. This

knowledge is therefore harder to communicate from one person to another,

although initiatives exist that make this knowledge more explicit through de-

sign patterns, usability guidelines. Even more, when this knowledge is made

more explicit, nothing can guarantee that it is applied uniformly and consistently

within a same development project or across various development projects.

The aforementioned comparison holds as long as significant efforts toward structured,

principle-based, and explicitly based process devoted in SE remain unparalleled with

the area of HCI. This chapter seeks to contribute to reestablish a balance between HCI
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and SE regarding this aspect by providing an effort in the direction of a true develop-

ment process for UI engineering with the same quality factors that are usually found in

SE. For this purpose, it is expected that a model-driven approach of UI development

could represent an engineering effort attempting to systematize UI development. It

does so by constructing high-level requirements and, progressively, transforms them

to obtain specifications that are detailed and precise enough to be rendered or trans-

formed into code. This type of approach is referred to in the SE literature as the

transformational approach. More recently, along with the Model Driven Architecture

(OMG, 2006) proposal (Miller and Mukerij, 2003), model processing and transforma-

tion has gained a particular importance in the software engineering literature (Rensik,

2003; Kuske et al., 2002; Gerber et al., 2002).

Several ingredients are lacking in existing HCI methods to fully achieve a transfor-

mational approach in the development of UI. Conceptually, there is no systematic un-

derstanding of the relationships among all development artifacts (i.e., models) needed

to build a UI. Furthermore, the design knowledge required to feed these models and to

make them smoothly evolve over time from one development step to another is often

implicitly maintained in the minds of developers and designers and/or hard-coded in

supporting software. When such design knowledge exists, it is not always systemati-

cally, consistently, and correctly applied throughout the project or across projects.

Sumner et al. (1997) explain that the development process, as usually conducted in

HCI, is a process that is eminently open (several development steps can be conducted

or considered simultaneously), ill-defined (the initial requirements are usually largely

incomplete, if not inconsistent), and mostly iterative (it seems impossible to conduct a

development step in such a way that its outputs are definitive).

Nanard and Nanard (1995) report that the development lifecycle of an interac-

tive application consists of a sophisticated Echternach process that does not always

proceed linearly in a predefined way. It is rather an interwoven set of development

steps, which alternate bottom-up and top-down paths, with selecting, backtracking,

and switching among several actions. Thus any method and development tool is ex-

pected to effectively and efficiently support a flexible development lifecycle, which

does not stiffen the mental process of expert designers in a fixed procedural schema.

On the other end, when we consider the needs of moderately experienced designers,

the method and its supporting tool should enforce a minimum number of priority con-

straints. These constraints should define which development artifacts must be specified

before others, suggesting for example how and when to proceed from one development

step to another.

The variety of the approaches adopted in organizations and the rigidity of exist-

ing solutions provide ample motivations for a UI development paradigm that is flex-

ible enough to accommodate multiple development paths and design situations while

staying precise enough to manipulate information required for UI development. To

alleviate these problems, a development paradigm of multipath UI development is

introduced that is characterized by the following principles:

Expressiveness of UI: any UI is expressed depending on the context of use via

a suite of models that are analyzable, editable, and manipulable by software

(Puerta, 1997).
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Central storage of models: each model is stored in a model repository where

all UI models are expressed according to the same UI Description Language

(UIDL).

Transformational approach: each model stored in the model repository may be

subject to one or many transformations supporting various development steps

(Eisenstein et al. 2001).

Multiple development paths: development steps can be combined together to

form development paths that are compatible with the organization’s constraints,

conventions, and context of use. For example, a series of transformations may

derive a presentation from a task model.

Flexible development approaches: development approaches are supported by

following alternate development paths (Nanard and Nanard, 1995) and enable

designers to freely shift between these paths depending on the changes imposed

by the context of use (Calvary et al., 2003).

To address the above requirements, this chapter presents a method for expressing mod-

els that are relevant to HCI, but expressed in an SE way so that HCI development

paths can be supported with a level of flexibility that is desired in HCI, while keep-

ing the rigorousness brought by SE. For this purpose, the present chapter is structured

as follows: Section 6.2 presents existing work that is related to the issue of struc-

turing the HCI development process via the model-based approach similarly to what

MDA is doing in SE. Section 6.3 introduces and motivates the choice of graph gram-

mars and graph transformations to ensure a transformational approach guaranteeing

expressiveness and flexibility. The methodology introduced in this chapter supports

model transformation based on these concepts. Section 6.4 analyzes how traditional

development approaches found in SE can be addressed in a parallel way in HCI by

identifying a series of levels of abstractions between which transformations can be

applied. Throughout this section, ample examples of design knowledge manipulated

at each level are provided. Section 6.5 summarizes the main benefits brought by our

methodology and perceived shortcomings.

6.2 RELATED WORK

Model-Based Approach of User Interface (MBAUI) has been around for many years,

basing its power on models in order to develop interactive systems. MBAUI can be

assimilated to a larger trend in software engineering called the transformational devel-

opment paradigm. Its modus operandi resides in the performance of model-to-model

transformations to support model engineering activities of UI development. To pro-

vide relevant concepts and a stepwise development cycle is essential in the definition

of a development lifecycle. Support for a developer in accomplishing development

steps is also highly desirable. In the context of MBAUI, the nature of the support pro-

vided to a developer can consist for multiple elements (Puerta, 1997): a simple syntax

editor, a graphical model editor, a well-furbished and exemplified documentation sys-

tem, a structured knowledge base, a model derivation module, a model analyzer, and
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a code generator. Such a methodology combining all these advantages does not exist

today.

Historically, MBAUI has exploited models of various types and for various uses.

MECANO (Puerta, 1996) automatically generates presentation and dialog models as

intermediary steps toward a NeXT GUI from a domain model expressed in an object-

oriented language. JANUS (Balzert et al. 1996) exploits relationships such as inher-

itance, aggregation and generalization of a domain model to deduce a UI structure.

GENIUS (Janssen et al. 1993) derives UI code from an extended entity-relationship

model and, so called, dialog nets based on Petri nets. MOBI-D (Puerta, 1997) uses as

input scenarios, a task model and a domain model to automatically generate a GUI.

MOBI-D is equipped with a module called TIMM learning from a designer’s choices

to sharpen a widget selection process.

TEALLACH (Griffiths et al., 2001) allows designing database UIs while allowing

co-evolutionary design of a user’s task model design is the first tool to integrate ex-

plicitly in the design process the concept of model mapping. More recently tools like

ARTSTUDIO (Thevenin, 2001) or TERESA (Mori et al. , 2004) exploited the infor-

mation contained in a user’s task model, to derive context-specific presentation of a

UI.

All of the above-cited tools and methods perform some model mapping and trans-

formation, somehow. None of them provides an explicit mechanism to represent and

manipulate heuristics (or patterns) governing the model transformation process. Some

tools do involve some transformational mechanism, but it is built-in so that their mod-

ifiability is impossible.

MBAUI is suffering from a bottleneck in the consolidation and dissemination of the

knowledge used to realize model transformation. From this statement we may define

two requirements to fill our research agenda:

Core requirement 1: an easy-to-understand and uniform description of models

subject to transformation. This description would cover various viewpoints on

a UI system.

Core requirement 2: an explicit formalism to specify and perform UI model

transformations.

6.3 EXPRESSING THE UI DEVELOPMENT CYCLE WITH GRAPH

TRANSFORMATIONS

Developing a UI according to an MBAUI philosophy can be seen as an activity of

transforming a high-level specification into a more concrete specification (or code).

Unfortunately, no generic solution has been proposed to address the problem of defin-

ing a computational framework for expressing, manipulating, and executing model

transformation involved in engineering approaches to UI construction. To achieve this

goal, several requirements have been identified (Limbourg and Vanderdonckt, 2004a,

2004b):

A definition of each manipulated artifact capturing different viewpoints neces-

sary to UI development.
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A definition of relationships between different viewpoints. These relationships

are essential in order to obtain an integrated view of a specification.

A representation of the knowledge needed to perform model-to-model transfor-

mations.

A mechanism to manipulate the knowledge to perform a derivation. UI model

derivation is heuristic by nature. A satisfactory solution implies at least a possi-

bility, for a developer, to choose between different derivation heuristics. Ideally,

a developer should be able to alter or redefine these heuristics.

A mechanism to check desirable properties on derived models. These properties

might be consistency, correctness, or usability.

6.3.1 Approaches for Model Transformation

In the next paragraphs we survey a number of existing techniques and evaluate their

relevance to our goal. Imperative languages provide a means to perform model trans-

formation:

Text-processing languages like Perl or Awk are popular for performing small

text transformation. These tools cannot be considered to specify complex trans-

formation systems as they force the programmer to focus on very low-level syn-

tactic details.

Several environments provide APIs to manipulate and transform models and, of-

ten, their corresponding to specific metamodels: Jamda (Boocock, 2003), UM-

LAUT (Ho et al., 1999), dMof (Queensland University, 2002).

Relational approaches (Akehurst et al., 2003; Gerber et al., 2002) rely on the specifi-

cation of mappings between source and target element types along with the conditions

in which a mapping must be instantiated. Mapping rules can be purely declarative,

and non executable, or executable thanks to a definition of an execution semantic.

Relational approaches are generally implemented using a logic-based programming

language and require a clear separation of the source and target model.

XSLT transformations are a good candidate as models have, generally, a syntac-

tical representation in an XML-compliant format. The way XSLT proceeds is very

appealing as it (1) searches for matches in a source XML document (2) executes a set

of procedural instructions, when a match is found, to progressively construct a target

XML file. Unfortunately, some experiences (Gerber et al., 2002) showed that XSLT

transformations are not convenient to compute model transformation for two main rea-

sons (1) their verbosity has been identified as a major problem to manage complex sets

of transformation rules (2) their lack of abstraction: progressively constructing a target

XML file entails an inclusion, in transformation rules, of syntactic details relative to

the target file.

Common Warehouse Metamodel (CWM) Specification (Object Management

Group, 2003) provides a set of concepts to describe model transformation.

Transformations can be specified using a black box or a white box metaphor.
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Transformations are grouped in transformation tasks (some meaningful set of

transformations), which are in turn themselves grouped in transformation activities.

A control flow of transformation can be defined between transformation tasks at this

level (with the concept of transformation step). Even if transformations allow a

fine-grained mapping between source and target element, CWM does not provide a

predefined language to specify the way these elements are transformed one to another.

Graph grammars and graph transformations have been used for many years to rep-

resent complex transformation systems. It has been used notably in the software en-

gineering field for representing, for instance: software refactoring (Mens et al., 2001),

software evolution (Heckel et al., 2002), multiagent system modeling (Depke et al.,

2002), modeling language formalization (Varro et al., 2002). Graph grammars have

been proved an ‘efficient in time’ formalism for specifying and computing any model-

to-model transformation (Agrawal et al., 2003). As main advantages to our approach,

graph transformation specification: (1) are rather declarative (they are based on graph

patterns expression) (2) provide an appealing graphical syntax which does not exclude

the use of a textual one (3) are executable thanks to an grounded execution seman-

tic based on push-out theory (4) offer modularity by allowing the fragmentation of

complex transformation heuristics into small, independent chunks. In the context of

UI development with graph transformations, two pioneering work can be mentioned

(Freund et al., 1992; Sucrow, 1998). Both approaches make an interesting use of graph

transformations but have a too narrow conceptual coverage to address a fully defined

UI development cycle.

6.3.2 Our Methodology

Our methodology proposes a framework (Figure 6.1) coping with the development

of UIs for single and multiple contexts of use. To achieve this goal, this methodology

relies on a set of models structured in four levels of abstraction: (1) an implementation

level contains UI code. The UI code is generated from models contained at the model

level (2) a model level contains models developed for an actual system. A model

at model level is an instance of a meta-model at meta-model level (3) a meta-model

level contains a definition of all concepts needed to build UI models (4) a meta-meta

model level contains the basic structure definition used to define the meta-model (and

transitively, the model level), i.e., a directed, attributed, labeled graph structure.

In a model-based approach of UI development, a designer’s task consists mainly in

defining models and producing UI code according to these previously defined models.

At each phase of the development cycle, specific artifacts are defined; these artifacts

correspond to, so called, viewpoints on the system. We propose four viewpoints on UI

systems:

1. Computation-independent viewpoint contains elements enabling the description

of a UI system independently of any computer-related considerations. This

viewpoint is composed of a task model and domain model. A task model is

a hierarchical decomposition of the tasks to be carried out by a user to achieve

her goal. After a comparison of a dozen task modeling techniques (Limbourg

and Vanderdonckt, 2003), an altered version of ConcurTaskTree (CTT) (Mori
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Figure 6.1 Overall framework of our methodology

et al., 2004) has been chosen to represent user’s tasks and their logical and tem-

poral ordering. CTT has been altered in the sense that a task taxonomy has been

introduced to better describe the nature of a basic task, leaf of a task decomposi-

tion. This taxonomy facilitates a mapping between tasks and interaction objects

supposed to support this task. A domain model contains domain-oriented con-

cepts as they are required by the tasks described in a task model. A domain

model describes the real-world concepts and their interactions as understood by

users (D’Souza and Wills, 1999). Our domain model is a UML class diagram

populated with classes, attributes, methods, objects (Larman, 2001). Concepts

contained in a domain model are at a certain point manipulated by systems users.

By manipulated, it is meant that domain concepts are at a certain point subject

of an exchange (an input or/and an output) between the user and the system.

Consequently, domain concepts can be mapped onto elements describing a UI

structure and behavior (e.g., abstract UI, concrete UI).

2. Modality-independent viewpoint contains elements that are independent of the

modality (e.g., graphical interaction, vocal interaction, speech synthesis and

recognition, video-based interaction, virtual, augmented, or mixed reality) in

which the UI they describe will be rendered. This viewpoint contains an Ab-
stract UI (AUI) specification. An AUI defines abstract containers by group-

ing subtasks according to various criteria (e.g., task model structural patterns,

cognitive load analysis, and semantic relationships identification), a navigation
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scheme between the Abstract Containers (AC) and selects one or several Ab-
stract Individual Component (AIC) for each basic user’s task. Each “abstract

individual component” is attached to one or several facets describing its func-

tion in a UI. We identify four types of facets: input, output, navigation, and

control. Abstract interaction objects can be mapped onto: (i) a task or a set of

tasks they support, (ii) a domain class or a set of attributes they represent, (iii) a

concrete interaction object.

3. Platform-independent viewpoint contains a viewpoint that is (1) independent of

the computing platform for which the system will be implemented and (2) de-

pendent of a particular modality. This viewpoint contains a Concrete UI speci-

fication. A CUI concretizes an abstract UI for a given context of use. A CUI is

populated with Concrete Interaction Objects (CIOs) (Vanderdonckt and Bodart,

1993).

4. An implementation viewpoint is a viewpoint containing a coded UI i.e., any

UI running on a particular platform either by interpretation (e.g., through a

browser) or by execution (e.g., after compilation of code).

Three other models are defined in our framework: (1) an inter-model relationship

model, (2) a context model, and (3) a transformation model. These models do not

define any particular viewpoint but rather are needed in a UI development process at

every phase: (1) contains a set of mapping declarations linking elements belonging

to different viewpoints, (2) contains a description of all the context considered during

the development process, and (3) contains a set of rules enabling the transformation of

one viewpoint into another or to adapt a viewpoint for a new context of use.

Our viewpoint structuring can be compared (Figure 6.2) with respect to the Model-

Driven Architecture (MDA) proposal provided by the Object Management Group

(Miller and Mukerij, 2003). MDA proposes a set of concepts and methodological

recommendations to address the development of systems in a context characterized by

a diversity of evolving computing platforms. MDA viewpoints are: (1) a Computation-

Independent Model (CIM), sometimes called business model, shows a system in a way

that is totally independent of technology (typically a business class diagram in OO

methods). (2) A Platform-Independent Model (PIM) provides a view of the system

independently of any details of the possible platform for which a system is supposed

to be built. (3) A Platform-Specific Model (PSM) provides a view of a system that is

dependent on a specific platform type for which a system is supposed to be built. (4)

An implementation is a specification providing all details necessary to put a system

into operation.

6.3.3 Transformation Is the Name of the Game

Our methodology enables expressing and executing model transformation based on

UI viewpoints. Figure 6.3 illustrates the different kinds of transformation steps in our

framework:

Reification is a transformation of a high-level requirement into a form that is

appropriate for low-level analysis or design.



116 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Table 6.1 A comparison of terms used in MDA and our methodology

Model-Driven
Architecture

Our methodology

Computing-

Independent

Model

Computation-independent viewpoint: task and domain models

Platform-

Independent

Model

(1) Modality-Independent viewpoint: Abstract UI model;

(2) platform independent viewpoint: Concrete UI

Platform-Specific

Model

Implementation viewpoint: UI Code

Platform Model Context Model

Abstraction is an extraction of a high-level requirement from a set of low-level

requirement artifacts or from code.

Translation is a transformation a UI in consequence of a context of use change.

The context of use is, here, defined as a triple of the form (E, P, U) where E
is an possible or actual environments considered for a software system, P is a

target platform, U is a user category.

Reflection is a transformation of the artifacts of any level onto artifacts of the

same level of abstraction, but different constructs or various contents (Calvary

et al., 2003).

Code generation is a process of transforming a concrete UI model into a com-

pilable or interpretable code.

Code reverse engineering is the inverse process of code generation.

The different transformation types are instantiated by development steps (each occur-

rence of a numbered arrow in Figure 6.3). These development steps may be combined

to form development paths. Development paths are detailed in Section 6.4. The con-

tent of Section 6.4 is detailed right of Figure 6.3).

While code generation and code reverse engineering are supported by specific tech-

niques (not covered in this chapter), we use graph transformations to perform model-

to-model transformations i.e., reifications, abstractions and translations.

The models have been designed with an underlying graph structure. Consequently

any graph transformation rule can be applied to any UI specification. Graph transfor-

mations have been shown convenient formalism (Limbourg and Vanderdonckt, 2004a,

2004b). The main reasons are (1) an attractive graphical syntax, (2) a clear execution

semantic, and (3) an inherent declarativeness of this formalism. Development steps
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Figure 6.2 Transformations between viewpoints

are realized with transformation systems. A transformation system is a set of (indi-

vidual) transformation rules. A transformation rule is a graph rewriting rule equipped

with negative application conditions and attribute conditions (Rozenberg, 1997).

Figure 6.3 illustrates how a transformation system applies to a specification: let

G be a specification, when (1) a Left-Hand Side (LHS) matches into G and (2) a

Negative Application Condition (NAC) does not matche into G (note that several NAC

may be associated with a rule), and (3) the LHS is replaced by a Right-Hand Side

(RHS). G is resultantly transformed into G’, a resultant specification. All elements

of G not covered by the match are considered as unchanged. All elements contained

in the LHS and not contained in the RHS are considered as deleted (i.e., rules have

destructive power). To add to the expressive power of transformation rules, variables

may be associated to attributes within an LHS. Theses variables are initialized in the

LHS; their value can be used to assign an attribute in the expression of the RHS (e.g.,

LHS : button.name:=x, RHS : task.name:=x). An expression may also be defined to

compare a variable declared in the LHS with a constant or with another variable. This

mechanism is called attribute condition.

As shown in Figure 6.4, transformation rules have a common meta-model with our

models. Furthermore, to preserve the consistency of transformed artifact, resultant

UI models are checked upon their meta-model. Transformation rules resulting in a

non-consistent resulting graph are just not applied.
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Figure 6.3 A transformation system in our methodology

Figure 6.4 Framework for model transformations

6.4 DEVELOPMENT PATHS

Transformation types have been introduced in Section 6.3.3. These transformation

types are instantiated into development steps. These development steps may be com-

posed to form development paths. Several types of development paths are identified:

Forward engineering (or requirement derivation) is a composition of reifica-
tions and code generation enabling a transformation of a high-level viewpoint

into a lower-level viewpoint.

Reverse engineering is a composition of abstractions and code reverse engi-
neering enabling a transformation of a low-level viewpoint into a higher level

viewpoint.

Context of use adaptation is a composition of a translation with another type

of transformation enabling a viewpoint to be adapted in order to reflect a change

in the context of use of a UI.
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Figure 6.5 Transformation paths, step and substep

As show in Figure 6.5, development paths are composed of development steps. De-

velopment steps are instances of transformation types described in Section 6.3.3. De-

velopment steps are decomposed into development substeps. A development substep

realizes a basic goal assumed by the developer while constructing a system. Some

basic goals have been identified by Luo (1995). It may consist, for instance, of se-

lecting concrete interaction objects, defining navigation, etc. Development steps and

development substeps may be realized by transform system. In the remainder of this

section, subsections 6.4.1, 6.4.2, and 6.4.3 respectively illustrate main development

paths (forward, reverse engineering, and context of use adaptation). An example for

each development step and substep is provided. All examples use the graphical for-

malism of the tool AGG (Ehrig et al., 1999).

6.4.1 Forward Engineering

As shown in Figure 6.6, the starting point of UI forward engineering is the construction

of a task specification and a domain model. This initial representation is then trans-

formed into an abstract UI which is then transformed into a concrete UI model. The

concrete UI model is then used to generate UI code. A forward engineering process is

fully illustrated hereafter.

From Task & Domain to Abstract User Interface. Step T1 (Figure 6.6)

concerns the derivation of an AUI from models at the computation-independent view-

point (e.g., a task, a domain, or task and domain model). This development step may

involve the following development substeps:
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Figure 6.6 Forward transformational development of UIs

Identification of Abstract UI structure consists of the definition of groups of

abstract interaction. Each group corresponds to a group of tasks tightly coupled

together. The meaning of “task coupling” may vary from one method to an-

other. It goes from very simple heuristics like “for each group of task child of

a same task generate an interaction space” to sophisticated heuristics exploiting

temporal ordering and decomposition structure between tasks (e.g., enable task

sets method followed by Mori et al. ,2004) or information flow between tasks

e.g., TRIDENT method proposed by Vanderdonckt and Bodart (1993).

Example 1 is a transformation system composed of two rules enabling the creation of a
simple hierarchical structure containing abstract individual components and abstract
containers.

Rule 1 (Figure 6.7): For each leaf task of a task tree, create an Abstract Indi-

vidual Element. For each task, parent of a leaf task, create an Abstract. Link

the abstract container and the Abstract Individual Element by a containment

relationship.

– Rule 2 (Figure 6.8): create an Abstract Container structure similar to the

task decomposition structure.

Selection of abstract individual component consists of finding the best ab-

stract individual component type to support one or several user’s tasks. Task

type, attribute types and domain of value of domain concepts, structure of the

domain model are notably important information to perform an adequate AIC

selection.

Example 2 is composed of rule 3. It exploits information on task action types to attach
appropriate facets to corresponding abstract individual components.

Rule 3 (Figure 6.9): for each abstract individual element mapped onto a task

the nature of which consists in the activation of an operation and this task is
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Figure 6.7 Creation of abstract individual components derived from task model leaves

Figure 6.8 Creation of abstract containers derived from task model structure

mapped onto a class, assign to the abstract individual component an action facet

that activates the mapped method.

Figure 6.9 Creation of a facet for an abstract individual component derived from task

action type

Identification of spatiotemporal arrangement of abstract individual com-
ponents and abstract containers. The structure of a task model is exploited

to derive spatiotemporal arrangement of elements contained in an AUI. This,

temporal relationships defined between tasks can be respected in the abstract

specification. This is an essential guarantee of usability of the UI to be created.

Spatiotemporal relationships between abstract elements are done using Allen
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temporal relationships generalized for 2D and specialized for describing any ar-

rangement of a pair of widgets (Trevisan et al. 2002). Limbourg et al. (2005) de-

tail this mechanism more thoroughly. Two levels of arrangement are identified:

(1) intra-container level (example 3) concerns the arrangement of abstract indi-

vidual components within the same abstract container (2) inter-container level

(example 4) concerns the definition of a navigational structure among abstract

containers.

Example 3 is composed of rule 4. It places abstract individual components in prece-
dence relationship (“isBefore”) based on the fact that the tasks they represent are
sequential (“�”). To perform a complete arrangement every type of task temporal
relationship should be covered by a rule.

Rule 4 (Figure 6.10): for every couple of AIC belonging to a same abstract

container and these AIC are mapped onto sister tasks that are sequential “�”,

create a relationship of type “isBefore” between these AIOs.

Figure 6.10 A sequentialization of abstract individual component derived from task tem-

poral relationships

Example 4 is composed of rule 5. It defines spatiotemporal arrangement between
abstract containers. It uses the same principle as example 3

Rule 5 (Figure 6.11): For an abstract container (ac1) mapped onto a task

(taskX). TaskX is related to a task (taskY) that is mapped onto an AIO (aio2)

belonging to an abstract container (ac2) different than ac1, then create an “is

simultaneous” spatiotemporal relationship between them.

Figure 6.11 A placement of abstract container derived from task temporal relationships
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From Abstract User Interface to Concrete User Interface . Step T2

consists of generating a concrete UI from an abstract UI. This development step may

involve the following development substeps:

Reification of abstract containers into concrete containers. An abstract con-

tainer may be reified in different types of concrete containers. Factors influenc-

ing this transformation are: modality, context of use, interaction style, designer’s

preference. A major difficulty of this step resides in the problem of choosing

an appropriate level to group abstract containers into a concrete container (typi-

cally a window for a graphical modality). A minimal choice would be to create

a concrete container (e.g., a window) for each group of sibling leaf tasks. A

maximal solution would be to group all abstract individual components and all

abstract containers into a single concrete container (e.g., one window).

Example 5 is a transformation system composed of rules 6 and 7. This system trans-
forms into window, abstract containers at a certain depth in the abstract container
hierarchy. All abstract containers content is reified and embedded into the newly cre-
ated window.

Rule 6 (Figure 6.12): Each abstract container at level “leaf-l” is transformed

into a window. Note that an abstract container is always reified into a, so called,

box at the concrete level. This box is then embedded into a window.

Figure 6.12 A creation of windows derived from containment relationships at the abstract

level

Rule 7 (Figure 6.13): Each abstract container contained into an abstract con-

tainer that was reified into a window is transformed into a horizontal box and

embedded into the window.

Selection of concrete individual components. Functionalities of abstract in-

dividual component are identified with their facet. Selection of concrete indi-

vidual components consists of choosing the appropriate concrete element that

will support whole or a part of the facets associated with an abstract individual

component.
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Figure 6.13 A generation of window structure derived from containment relationship at

the abstract level

Example 6 is composed of rule 8. It creates an editable text component (i.e., a text
box) to reify an AIO with an input facet.

Figure 6.14 Creation of an editable text component (i.e., an input field) derived from

facets type of abstract components

Rule 8 (Figure 6.14): Each input facet of an abstract individual component is

reified by a graphical individual component (a type of concrete individual com-

ponent) of type “editable text component” (i.e., a text box).

– Arrangement of concrete individual component. Allen relationships

used to specify spatiotemporal relationships among abstract interaction

objects are interpreted in order to provide information on the relative

placement of a concrete individual component with respect to other

elements of this type.

Example 7 is composed of rule 9. This example transforms an AUI into a concrete
model for the graphical modality. It chains concrete individual components according
to abstract individual component ordering.

Rule 9 (Figure 6.15): For each couple of abstract individual components related

by a “isBefore” relationship and reified into concrete individual components,

generate a “isAdjacent” relationship between the concrete individual compo-

nents.
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Figure 6.15 A placement of graphical individual components derived from spatiotemporal

relationships at the abstract level

– Definition of navigation. Container transition relationships are trans-

formed into navigation relationships. Ad hoc navigation objects may be

created for this purpose (e.g., a menu, a tabbed dialog box bar may be

created).

Example 8 is composed of rule 10. It generates a button to enable navigating between
two windows.

Figure 6.16 A window navigation definition derived from spatiotemporal relationships at

the abstract level

Rule 10 (Figure 6.16): For each container related to another container belong-

ing to different windows and their respective abstract container related by a “is

before relationship”, generate a navigation button in source container pointing

to the window of target container.

From Concrete User Interface to Code. Step T3 consists of code gener-

ation from a CUI. Code generation techniques for UI have been surveyed in various

domains such as generative programming and model to code approach in Visitor-based

approach and template based approach (Czarnecki and Eisenecker, 2000).
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6.4.2 Reverse Engineering

As shown in Figure 6.17, the starting point of UI reverse engineering is the UI code.

This code is analyzed and transformed into a higher level representation i.e., a concrete

UI. From this CUI model, an AUI and, finally, a task and domain model are retrieved.

Figure 6.17 Reverse transformational development of UIs

From Code to Concrete User Interface . A state of the art in reverse engi-

neering of UIs can be found in Bouillon et al., (2004) expressed according to the IEEE

Terminology (Chikofsky and Cross, 1990). Transition T1 is notably supported by Re-

versiXML (Bouillon, Vanderdonckt, and Chieu, 2004), an on-line tool functioning as

a module of an Apache server which performs reverse engineering into UsiXML. It

takes as input a static HTML page, a configuration file containing a set of user-defined

options, and produces a concrete and/or abstract UI.

From Concrete User Interface to Abstract User Interface. Transition

T2 consists of deriving a more abstract UI specification from a concrete one. This

derivation is trivial because the source model holds more information than the target

model. Nevertheless, several development substeps may be identified: abstraction of

CIO into AIO, abstraction of arrangement relationships, abstraction of navigation, etc.

Example 9 is composed of rule 11. It consists of obtaining an abstract individual
component equipped with an input facet.

Rule 11 (Figure 6.18): For each editable graphical individual component create

an abstract individual component equipped with an input facet.

From Abstract User Interface To Task & Domain. Transition T3 is the

derivation of a task and concept specification. This transition has been considered

very extensively in the area of reverse engineering where several techniques exist that

contribute to recover a design model from existing information such as code. Indeed,

the conceptual gap between AUI level and task and domain level is so important that

little information may be extracted from an AUI model to retrieve a task or domain

specification. Static analysis of Web pages examines the code of a Web page without
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Figure 6.18 Creation of a facet at the abstract level derived from a type analysis of

graphical individual components

interpreting or executing it in order to understand aspects of the website. Since static

analysis has been successfully used in software testing and compiler optimization, it

has been extensively used for analyzing the HTML code of Web pages. However,

this technique leaves untreated all non-HTML parts of the Web page. Therefore other

techniques need to be investigated such as the following methods. Pattern matching
parses the code of a Web page to build a manipulable representation of it. Then slicing

techniques are used to extract interface fragments from this representation, and a pat-

tern matcher identifies syntactic patterns in the fragments. Using the code fragments

as a basis, details about modes of interaction and conditions of activation are identified

with control flow analysis. Syntactic Analysis and Grouping relies on a recognition al-

gorithm that identifies input/output statements and attempts to incorporate them into

groups. The grouping information is then used to define screens from the original

user interface. This is particularly appropriate for scripting languages. Cliché and
Plan recognition automatically identify occurrences of clichés, stereotyped code frag-

ments for algorithms and data structures. The cliché recognition system translates the

original code into a plan calculus, which is then encoded into a flow graph, produc-

ing a language-independent representation of the interpretation’s flow that neutralizes

syntactic variations in the code.

Example 10 is composed of rule 12. This example derives information on task action
type from the abstract UI level.

Rule 12 (Figure 6.19): For each abstract individual component equipped with

a navigation facet create a task of action type “start/go” on an item of type

“element”.

6.4.3 Context of Use Adaptation

Context adaptation (illustrated in Figure 6.20) covers model transformations adapting

a viewpoint to another context of use. This adaptation may be done at different levels.
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Figure 6.19 Definition of task action types derived from an analysis of facets at the

abstract level

Figure 6.20 Context adaptation at different levels of our framework

From Task & Domain to Task & Domain. We propose one development

substep type to exemplify adaptation at T1 level (Figure 6.20): Transformation of a

task model.

Transformation of a task model: Transformation of a task model may be use-

ful to adapt a task specification to different categories of users, to different envi-

ronments. For instance, an expert user needs less structuring in the accomplish-

ment of a task than a novice user. This has an influence on the relationships be-

tween tasks. Another example is the management of user’s permissions. Some

users may not be allowed to perform certain tasks (e.g.,., editing a document),

transformation rules may be defined to adapt a task specification to these con-

straints.
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Example 11 is a transformation system composed of rule 13 and rule 14. A task
hierarchy is “flattened” to allow an (expert) user to perform all tasks at the same time
(i.e., concurrently).

Figure 6.21 Flattening of a task tree structure

Rule 13 (Figure 6.21): This rule (1) erases each intermediary task (i.e., non-leaf

and non-root tasks) and (2) attaches every leaf task to the root.

Rule 14 (Figure 6.22): For each sister tasks change their temporal relationship

into concurrent.

Figure 6.22 Transforming all temporal relationship to concurrent

From Abstract User Interface to Abstract User Interface Adaptation
at this level. Adaptation at the abstract level concerns abstract container reshuf-

fling and abstract individual component modification (e.g., facet modification, facet

splitting, facet merging). We propose an example of abstract individual component

modification.

Abstract individual component facet modification: A modification of an ab-

stract individual component affects its facets in their specification (e.g., an input

facet is mapped onto a different domain concept) or their structuring (e.g., a

facet is transferred onto another abstract component, a facet is erased).

Example 12 is a transformation system containing rules 15 and 16. It merges the facets
of two abstract individual components mapped onto concurrent tasks. This example is
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based on the assumption that the tasks of a system must be concentrated into a lesser
number of abstract components. This means that concrete components resulting from
the abstract specification will have to assume more ‘functionalities’ than in the source
version of the specification.

Figure 6.23 A merging of facets of abstract individual components

Rule 15 (Figure 6.23): For each pair of abstract individual components mapped

onto concurrent tasks. Transfer all facets of the abstract individual component

that is mapped onto the task that is target of the concurrency relationship, to the

other abstract individual component.

Rule 16 (Figure 6.24): Erase all abstract individual components that have no

facets left.

Figure 6.24 Erasing abstract individual components with no facets left

From Concrete User Interface to Concrete User Interface. Adapta-

tion at the concrete level consist of several development substeps like container type

modification (called concrete container reformation), modification of the types of con-

crete individual components (called concrete individual components reselection), lay-

out modification (layout reshuffling), or navigation redefinition. We provide hereafter

examples for these first three adaptation types.

Concrete container reformation: Concrete container reformation may cover

situations like container type transformation (e.g., a window is transformed into
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a tabbed dialog box) or container system modification (e.g., a system of win-

dows are merged into a single window).

Example 13 is a transformation system composed of rules 17, 18 and 19. This trans-
formation adapts a window into a tabbed dialog box and transfers window content
into several “tabbed items”.

Figure 6.25 Initializing of the adaptation process by creating graphical component to

adapt into

Rule 17 (Figure 6.25): Each window is selected and mapped onto a newly cre-

ated tabbed dialog box.

Rule 18 (Figure 6.26): Transfers every first level box of the window to adapt

into tabbed item composing a tabbed dialog box.

Rule 19 (Figure 6.27): Cleans up the specification of remaining empty main

boxes.

Figure 6.26 Creation of tabbed item and transfer of the content of the adapted window

Concrete individual component reselection: Reselection transformations

adapt individual component into other individual components. This covers

individual component merging or slitting, or replacement.
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Figure 6.27 Deletion of unnecessary containers

Example 14 is composed of rule 20. It merges a non-editable text component (i.e.,
a label) and its adjacent editable text component into one editable text component.
The content of the non-editable text component is transferred into the editable text
component

Figure 6.28 Merging of a non-editable text component (e.g., a label) and an editable text

component (e.g., an input field) into one single editable text component

Rule 20 (Figure 6.28): For each couple of adjacent editable text component and

non-editable text component. Erase the editable text component and transfer its

content into the non-editable text component (unless some contents have already

been transferred).

Rule 21(Figure 6.29): Each box is transformed into a vertical box and every

individual component is glued to left.

– Layout reshuffling: A layout at the concrete level is specified with hor-

izontal and vertical boxes. An element contained in a box may be glued

to an edge of this box. Any transformation modifying this structuring is

categorized as layout reshuffling transformation.

Example 15 is composed of rule 21. It squeezes all boxes of a UI.

1. Alternate and Composed development paths

Other development paths could be equally expressed depending on their entry and exit

points. Some of them are partially supported by various tools based on the UsiXML

language (Vanderdonckt, 2005).
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Figure 6.29 Squeezing of a layout structure to display vertically

Retargeting: This transition is useful in processes where an existing system

should be retargeted, that is, migrated from one source computing platform to

another target computing platform that poses different constraints. Retarget-

ing is a composition of reverse engineering, context adaptation, and forward

engineering. In other words a UI code is abstracted away into a CUI (or an

AUI). This CUI (or AUI) is reshuffled according to specific adaptation heuris-

tics. From this reshuffled CUI (or AUI) a new interface code is created along a

forward engineering process.

Middle-out development: This term coined by Luo (1995) refers to a situation

where a developer starts a development by a specification of the UI (no task or

concept specification is priorly built). Several contributions have shown that, in

reality, a development cycle is rarely sequential and even rarely begins by a task

and domain specification. Literature in rapid prototyping converges with similar

observations. Middle-out development shows a development path starting in the

middle of the development cycle e.g., by the creation of a CUI or AUI model.

After several iterations at this level (more likely until customer’s satisfaction

is reached) a specification is reverse engineered. From this specification the

forward engineering path is followed.

Widespread development (Hartson and Hix, 1989): In this development path,

the designer may start wherever she wants (e.g., at any level of the development

process), perform the rules that are relevant at this level, evaluate the results

provided by these rules and proceed to other development steps as appropriate.

This is a somewhat extreme position where everything is open and flexible,

perhaps somewhat too much.

Round-trip engineering (Demeyer et al. 1999): This development path is

unique in the sense that it is a genuine path, but not directly for development. It

results from applying manual modifications to code which has been generated

automatically, after a model-to-code transformation. If a manual change has

been operated on some piece of code generated automatically, then this change

will be lost the next time a model-to-code transformation is applied. In order

not to lose this effort, it is desirable to propagate the manual change into an

abstraction which is relevant to the CUI.
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6.5 CONCLUSION

In this chapter, a method has been introduced and defined that supports multiple paths

in the domain of development of UIs. These paths are basically expressed on three

types of transformation (i.e., abstraction, reification, and translation) so that any de-

velopment path, consisting of development steps, can be supported by a transforma-

tional approach by combining transformations of the three types. To uniformly and

consistently apply the transformations in a rigorous framework, graph grammars and

graph transformations have been exploited. Correctness of transformations is an issue

that may emerge when talking about model transformation. Two types of correctness

may be considered.

Syntactic (structural) correctness stipulates that for any well-formed source model,

and transformation rule enabled to provide a well-formed target model. While seman-

tic correctness is hard to prove, syntactic correctness is easily guaranteed within our

framework by two essential elements: Model type checking and consistency checks

mechanism. Graph type checking ensures that a given transformation will not be ap-

plied if the resulting model it produces violates the meta-model it is supposed to con-

form to. Deriving a model to another may endanger consistency between different

representations. For this purpose some basic consistency rules can be expressed with

the technique of graph consistence rules. A graph of types may also be accompanied

with the expression of specific consistency constraints inexpressible within the graph

of types. OCL is used for this purpose in Agrawal et al. (2003), pre and post-condition

with graph patterns (Akehurst et al., 2003).

Semantic correctness stipulates a semantic adequacy between a source and a target

model. In our context, semantic correctness proving is hard to consider as by definition

the domain of discourse of source model and target model are different.

Other important properties of interest that denote the powerfulness and the limita-

tions of our method can be discussed equally.

Incompleteness of the method. There are few criteria to judge the quality of the

method. It is also impossible to prove that a general solution is optimal. We can only

prove sometimes formally, sometimes informally that a solution meets several quality

criterias.

Seamlessness. This is a quality attribute attached to certain methodologies in the field

of software engineering. It qualifies a small gap between concepts used at the analysis

level and concepts relevant to implementation. Graph grammars, as used in this work,

contribute to reach seamlessness of our method as manipulated structures from the

requirements analysis to the design are graphs. Furthermore, the knowledge used to

perform development steps are graphs.

Traceability. The identification and documentation of derivation paths (upward) and

allocation or flow down paths (downward) of work products in the work product hi-

erarchy. Important kinds of traceability include: To or from external sources to or

from system requirements; to or from system requirements to or from lowest level

requirements; to or from requirements to or from design; to or from design to or from

implementation; to or from implementation to test; and to or from requirements to test

(IEEE, 1998).



MULTIPATH TRANSFORMATIONAL DEVELOPMENT 135

Consistency The degree of uniformity, standardization, and freedom from contradic-

tion among the documents or parts of a system or component (IEEE, 1998).

Iterative development cycle. Iteration is well supported as graph productions sup-

porting transitions in the development cycle may be undone to retrieve the source

artifact as it was before transformation. This artifact may be modified by a developer

and reused as source of a new derivation.

Last, and although empirical studies have already proven the advantages of using

an MDA-driven approach for the development of software applications (Bettin, 2002),

specific metrics should be precisely defined and applied to determine the effort and

quality of the models and code obtained by using on the one hand any UI methodology

on its own and on the other hand such methodologies like the one introduced in this

chapter. A comparative analysis of several projects conducted through a traditional

development method and through an MDA-driven method like the one presented here

represents a huge amount of work, but would certainly be very interesting to establish.
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