
Interface Design through Knowledge-Based Systems: An
Approach Centered on Explanations from Problem-Solving

Models

Andréia Libório, Elizabeth Furtado, Ismael Rocha, Vasco Furtado
Master’s Program in Applied Information Sciences

University of Fortaleza - UNIFOR
Av. Washington Soares, 1321, Edson Queiroz CEP 60.811.905 Fortaleza-Ceará-Brazil

 (55) (85) 3273-3382
Andreia_Liborio@yahoo.com.br , Elizabet@unifor.br, Ismael_Rocha@yahoo.com, Vasco@unifor.br

ABSTRACT
The process of generating user interfaces is complex and
demands a great deal of effort from the specialist, because
there are several possible combinations and uncertainties
regarding any one option. We believe that the modeling of
HCI concepts and of the knowledge of all parties involved
is of great importance, as well as the reuse of this modeling
to automate and optimize such process. Therefore, we are
proposing a KBS (Knowledge-Based System) that
represents the knowledge of the interface designers. This
System possesses the feature of interactivity, so that the
user can have an explanation of the results produced, thus
improving the understanding and acceptance of the
proposed interface. Furthermore, the system allows for its
knowledge base to be modified. We applied the proposed
method to generate an abstract user interface for a system
of email control and for a system of simulation of criminal
activity.

Keywords
Interface Generation, Abstract Interface, Knowledge-
Based System, Problem-Solving Method

INTRODUCTION
The design and implementation of a Human/Computer
Interface (HCI), in addition to being of fundamental
importance to the quality of the software, is one of the most
time-consuming stages in the development process.
Designers have attempted to streamline these stages with
the creation of automatic interface generators. The aim is
basically to define programs that perform a mapping
between models that represent tasks carried out by a user in
a model of interfaces. In several works [1], [16], [8],
interface generation goes through an intermediate stage of
generating an abstract interface, which is the description of
the components that will make up the final interface—
without its characterization in terms of interactive objects
such as buttons and windows, and without being concerned
about the features of the device whereon the interface will
be shown. The abstract interface aims at facilitating the
dialogue between the interface designer and the domain
user during the process of system analysis that is being

developed. It allows for the schematic viewing of what
components will be shown on the software interface and, in
a generic way, how this will be done.
The process of mapping out the tasks model and the data
model on an interface (whether abstract or not) is not trivial
[8], [3]. These initiatives have been shown to be
insufficient, since the main component involved in this
mapping, i.e. the designer’s knowledge, is improperly
addressed. Our argument is that it is necessary to create an
explicit structure of acquisition and representation of the
knowledge of one (or several) specialist(s) in designing
interfaces to compose a Knowledge-Based System (KBS).
Moreover, we consider that the process of interface
generation is cyclical, and a revision of the entry models
and primarily of the designer’s knowledge can be carried
out constantly. One cannot believe that it is possible to
feed, only once, a model mapping system that will generate
a complete and ready-to-use interface. Even if the KBS has
rules of unquestionable quality, a cyclical process of
validation is necessary, since the HCI models (tasks model
and data model), which are the basic inputs of the
generation process, often require constant revalidations.
Under this perspective, we consider that the KBS must
provide a capacity for interaction with the designer and
with the user of the system, aiming to facilitate the
understanding of the process of automatic generation and
allowing for the revalidation of the inputs in this process.
In order to attain these objectives, the KBS must provide
explanations of why a certain interface was proposed for
the entry models. This explanation must make transparent
not only the basic domain rules, but also the strategy of
reasoning used by the interface specialist. What is really
desired is that the KBS, by providing structured
explanations of the process of interface generation,
facilitate the validation of the tasks model, of the domain
model, and ultimately of the very rules used in the KBS.
The current state of the art in interface generation reveals
deficiencies for it to be used in the way that we specify.
One of the first problems comes from the fact that the
existing works consider that the specialist’s knowledge is
represented exclusively by the “if-then” type of production

rules, which is not appropriate for representing the
specialist’s reasoning strategy. Additionally, the need for
interaction between the designer and the system, which is
characterized as essential in this context, it is not explored.
Aiming to solve the deficiencies identified, we describe in
this article a solution based on the representation of the
reasoning of an interface designer starting with the
assumption that he/she performs a design activity following
a propose-and-revise type of solution method. We will
describe how the solution was designed and implemented
through the UPML framework and by using the concept of
Interactive Knowledge-Based System— KBSi [10]. In this
implementation, we used the components for explanation
defined in this work, which permits an explanation of all
the steps of reasoning of the KBS at different levels of
abstraction, thus facilitating an understanding of how the
interface was designed. A user-friendly interface provides
explanations on the process of interface generation and
allows revalidations of the task model, the domain model,
and the knowledge base.
This article is structured in the following way: first we will
present the state of the art in Knowledge Engineering
regarding the construction of KBSs, and then we will relate
some of the existing efforts in the field of HCI that
approach this issue of user interface generation.
Afterwards, we will describe the proposed method and the
stages of development of the KBS. We will show how our
focus was validated with a description of its application for
the generation of different abstract interfaces in two real
domains: a system of email control and a tutorial system
based on simulations for the realm of public safety.

STATE OF THE ART
Below we will describe important concepts and referenced
works in the disciplines of Artificial Intelligence and HCI
in relation to the use of KBSs to generate user interfaces.

Development of Knowledge-Based Systems
KBSs are systems with characteristics that we associate
with human intelligence and are developed to help people
solve problems that involve an intensive use of knowledge,
such as: control, planning, assessment, diagnostics, design,
and decision-making, among others. Therefore, KBSs
constitute an important tool for acquiring, retaining, and
disseminating knowledge, since they represent—in a
knowledge base—a model of the reasoning used by
humans as well as domain concepts and relationships.
Knowledge engineering aims at studying methods and
techniques for the development of KBSs. Work in this field
has evolved such that the process of knowledge acquisition
becomes a process of instantiation of reasoning models.
This is being done through the concept of the Problem-
Solving Method (PSM) whereby the steps of reasoning and
the type of knowledge necessary to perform a task are
represented. The function of the PSM is to make the
reasoning process explicit in a KBS.

Some PSM libraries do exist; they seek to define and to
structure the problem-solving models, whereby the
construction of KBSs is facilitated. PSM libraries are
described in [12] and [9]. An approach to model a PSM
generically is the Unified Problem-Solving Method
Description Language (UPML) [2], which describes the
different software components of a KBS integrating two
important lines of research in Knowledge Engineering:
reusability of components and ontologies. The UPML
framework supports the modeling of KBSs starting from
reusable components, adapters, development guidelines,
description language and tools. UPML architecture
describes the different components of a KBS: (i) Task
defines the problem to be solved by the KBS; (ii) PSM
(problem-solving method) defines the KBS’s process of
reasoning; (iii) Domain Model describes the domain of
knowledge involved in the KBS; (iv) Ontologies describes
the terminology used in the other elements; (v) Bridge
models the relationship between two UPML components;
(vi) Refiner can be used to specialize a component.

Explanations in KBS
The knowledge base of a KBS is constructed according to
the specialist’s static vision of knowledge, which often
diverges from the knowledge of the user, making it
difficult to understand the system’s reasoning strategies
and functionalities. The difficulties that come up when
KBSs are being utilized are prejudicial to the user’s
acceptance of the proposed solutions. Therefore, a KBS’s
capacity for explanation is considered fundamental to
improving the user’s acceptance. A KBS must have the
capacity to explain “how” and “why” it arrived at a
particular solution.
In a KBS, explanation allows the user to interact with the
system by requesting and receiving explanations on the
system’s reasoning and actions. The explanations provide
perception within the system’s knowledge and facilitate an
understanding of its functioning.
Most KBSs that have come on the scene have been
designed to provide explanations in the form of “rules
tracking.” However, this approach to explanation is more
useful for the developer to discover problems in the
system’s functioning (“bugs”), than to the “novice” users,
since the explanations presented are overloaded with
detailed information in the KBS’s development language.

Interface Generation
Interface Generators allow the developer to have available
and to organize the diverse elements of a graphical user
interface. Some approaches include code generators that
produce skeletons so that the developers can write the code
that will be integrated into the interface. Some works are
based on models. One of them is the interface-generating
framework called “Cameleon Reference Framework” [1],
which defines steps to develop user interfaces for context-
sensitive interactive applications. A context is made up of:
environments, platform and user. Four steps are identified

during the process of interface generation: (i) Task and
Concepts: describes several tasks to be executed and
domain concepts; furthermore, represents how such
concepts are required by the tasks; (ii) Abstract User
Interface: a standard expression that generates domain
concepts and functions such that its representation is
independent of the available interactions on the target
interface. The elements used in the logical Interface are
abstractions of existing concrete objects.; (iii) Concrete
User Interface: materializes an Abstract Interface into
Objects of Interaction independent of the representation of
the final interface; this defines both the layout of the
objects as well as the navigation among screens; (iv) Final
Interface: it is typically the concrete interface codified in
some language, interpreted or compiled.
Also—and still following the line of interfaces generation
based on models—another interesting proposal is the tool
known as TERESA (Transformation Environment for
Interactive Systems Representations) [16], which it is a
semi-automatic environment for construction of interfaces
based on transformations of models, useful for designers to
construct and analyze their designs on different levels of
abstraction and consequently to generate the concrete
interface for specific types of platform. The method
considered for this environment consists of the following
steps: (i) modeling of high-level tasks of a multiplatform
application; (ii) development of the system’s tasks model
for the different platforms considered;, (iii) translation of
the system’s tasks model to an abstract user interface; and
(iv) generation of the final user interface. TERESA adopts
the XML standard to represent the models and interfaces.
In [8] the TransformiXML environment was defined,
which carries out mappings by means of the relationships
between mathematical expressions and allows for the
definition and application of transformation rules. These
rules represent association between models to generate the
user interface. This environment is divided in two
components: (i) an Application to program the interface
(TransformiXML API) that can be used by any system to
apply rules of transformation in a non-interactive “batch”
manner; (ii) a graphical user interface which serves as API
data entry (TransformiXML GUI) in an interactive way.
This environment adopts the UsiXML standard [7] for the
HCI models and the rules that map out such models.
Also using the Interface Generation strategy based on the
notion in the concept of the abstract interface and using
guidelines proposed in [15] and [3]. TRIDENT [15] is a set
of interactive tools that automatically generate a user
interface for applications geared toward highly interactive
businesses. It combines the use of tasks model with
interface design guidelines. These guidelines are
encapsulated using a decision tree technique. In [3] a new
methodology of adaptive automatic interface construction
is presented, which integrates human factors in the process
of software development, thus creating a bridge between

the two sciences—Software Engineering and Cognitive
Sciences. Human factors relative to the behavior of the user
and ergonomic recommendations are considered in such a
way as to automatically deduce aspects relative to the
human/computer interaction, such as to define a
mechanism for adapting the interfaces constructed.
None of the aforementioned model the knowledge of the
specialist for the activity of interface generation. [16], [3]
and [8] consider part of this knowledge through the use of
rules. In [13], the author considers the use of knowledge
management in the process of interface conception and
defends that the valorization and the efficient exploration
of the knowledge involved in the process of interface
conception depend essentially on the definition and
adoption of methods that allow for the effective
classification, representation, integration, and usage this
knowledge. Therefore, to facilitate the interface designer’s
preparation for an adequate practice of Knowledge
Management in the process of interface conception, and
consequently to minimize the work load and cognitive
effort in the performance of their activities, the author
defined a methodology for the preparation of the actors in
an interface design environment in order to classify,
represent, integrate, and use the relevant knowledge of this
context. However, was not constructed a system for
automatic generate interface.
After assessing various works on HCI, we saw that
interface generation is complex and demands a great deal
of effort from the specialist. Therefore the modeling of the
specialist’s knowledge would be of extreme relevance to
assist in such a process. We also observed that very few
works addressing this issue utilize the resources of
knowledge engineering. The ones that modeled knowledge
had done so in a less-than-satisfactory way: firstly because
they only modeled the interface design guidelines without
taking the designer’s experience into account, and secondly
because of the fact that the representation was in the form
of rules, thus excluding the representation of the
specialist’s reasoning. Therefore, we consider the
construction of an interactive KBS, called a KBSHCI, to
automate the process of user interface construction, which
will represent the knowledge of an interface designer,
including his/her implied knowledge.
The KBSHCI will be described below, showing its
architecture, features, advantages, and technologies
utilized.

KBSHCI: AN INTERACTIVE KBS FOR INTERFACE
CONSTRUCTION
For the construction of the KBSHCI, we based our efforts on
the UPKi methodology [10] that defines who does “what,”
“when,” and “how” in a process of producing a high-
quality KBS that meets the user’s needs. The description of
the KBSHCI will be made by following the phases that make
up this methodology.

Conception Phase
In order to initiate the construction of the KBS that we are
proposing, in the first phase we delimited the scope,
surveyed the requirements, and performed a feasibility
analysis for the KBS.
The basic requirements elicited in the conception phase
indicated two relevant aspects: (i) we saw that the process
of generating interfaces must be an iterative process,
passing through diverse stages so that the designer may
assess the several proposals that may be made until finding
the most appropriate interface. This brought to us the idea
that the KBSHCI should allow forms of interaction, such
as—for example—explanation and cooperation; (ii) we
identified that interface generation is based on HCI models
that describe the activities performed by a person in the
development of his/her work duties as well as concepts of
the domain of the application to be constructed. Based on
the activities and concepts represented in these models, we
can identify which objects will make up the interface; (iii)
we observed that the interface generated must fulfill the
requirements of designers, which reflect interface design
construction guidelines as well as the designers’
experience.
We then defined the objective of the KBSHCI: to design the
user interface based on HCI models and on requirements
demanded by designers.

Elaboration Phase
In this phase we identified technical and functional aspects,
elaborated the architecture of the KBSHCI, and
accomplished knowledge acquisition and modeling.
In the first place, we sought to identify which type of task
characterized the activity of constructing an interface. We
verified that this dealt with a design task where a developer
performs an activity of solution proposal considering a set
of preferences and constraints until the interface is
generated.
In order to fulfill the requirement of interactivity: (i) in the
implementation of the KBSHCI, we used standards for
explanation considered in [10], which allow us to explain
all of the steps of reasoning of the KBS at different levels
of abstraction, thus facilitating the understanding of how
the interface was designed and improving acceptance by
user; (ii) we provided resources for the design to modify
the KBS knowledge base.
Figure 1 illustrates the architecture of the KBSHCI with the
components and agents involved.

Figure 1. Architecture of the KBSHCI.

The KBSHCI receives the HCI models (Tasks and Data) as
input constructed by a user familiar with the application
domain. The KBSHCI possesses the knowledge of how to
produce an interface; it is composed of the reasoning
strategy (PSM) and the Domain rules. The output produced
is the designed Interface and a module of explanation that
will show “how” and “why” the design was conceived.
This result is presented to the KBSHCI user.
After defining the architecture, we carried out the KBSHCI
knowledge acquisition, which lead us to define a PSM in
UPML that implements a strategy of propose-and-revise.
We adopted the method defined in [12]. Figure 2
graphically represents the knowledge of the KBSHCI with
the following elements: (i) the “Design” task that
represents the problem to be involved; (ii) the Propose-and-
Revise PSM, which is composed of the subtasks Specify,
Propose, Verify, Critique, Select, and Modify; (iii) the
domain model that is composed of the HCI base
knowledge; (iv) the ontologies Design, Propose and Revise
HCI correspond to the ontologies of the task, the PSM, and
the domain. It is important to verify that both the “Propose
and Revise” method and the “Design” task can be reused in
other domains, being necessary only to map out the
concepts used in the PSM and the task with the domain
concepts. In this case, the ontology of the task is composed
of the concepts of components, specifications, preferences,
constraints, and fixes, and in the domain ontology there is
the tasks model, the data model, and the interface design
guidelines. The task-domain bridge is responsible for
establishing this mapping.

Figure 2. Model of the KBSHCI Knowledge according to
UPML architecture.

Construction Phase
Below we detail the implementation of the KBSHCI. We
will describe the main screen and we will outline the
technologies and tools utilized in this phase.
The main screen of the KBSHCI is illustrated in Figure 3. It
allows the execution of its functioning to be shown step-
by-step. It is divided into two parts: the left side is the
graphic space for viewing the interface being generated,
and the right side is for viewing the explanation of the
reasoning implemented. The Explanation section shows

why a specific object was inserted on the interface, and is
divided into two frames: The first one presents the overall
level of the explanation in the form of sentences showing
the entire process of reasoning, and the second one details
the explanation of the sentence’s existing questionings.
Another option offered is that of modifying the knowledge
base of the KBSHCI through the options Specifications,
Preferences, Constraints, and Fixes.
There are also the “Start,” “Stop,” “<<,” and “>>” buttons,
which control the functioning of the execution and allow
one to run the KBS step by step, graphically showing the
objects being inserted on the screen.

Figure 3. KBS Interface
The explanation module is one of the outputs of the
KBSHCI. It is a set of Java classes that allows the generation
of the explanation of the functioning through the proof tree,
which is the structure that stores the KBS’s reasoning
steps. This tree is generated during the execution of the
PSM through the use of the “ProofGeneration” class which
implements the explanation standard.
Several technologies were used to support the construction
of the KBS: (i) Protégé was the ontologies editor used to
edit domain concepts (tasks model, specifications,
preferences, constraints, and fixes); (ii) CTTE was the tool
used to draw the tasks model; (iii) we adopted the UsiXML
standard defined in [8]—which is a description language
that represents the user interface—to represent the tasks
model and some HCI concepts; (iv) we adopted UPML
architecture to represent the knowledge, since it structures
knowledge in such a way as to allow the reuse of some
portions and facilitates the explanation of the KBSHCI’s
functioning.

APPLICATION / CASE STUDY
Below we will demonstrate how the KBSHCI was used. We
used the KBS to generate the abstract interface for two

systems: the first one is a system of email control and the
second one is a tutorial system that simulates criminal
activity in a particular region. We describe the features of
the interfaces that we wished to design with the use of the
KBSHCI, we report on how the models were instanced, and
we show the designed interfaces. In the first example, we
outline how the explanation of the KBS’s functioning
works, showing an example of a component that violated a
constraint and the repair that was performed. Secondly, we
show a situation in which there is a need to refine the tasks
model during the validation of the abstract interface
constructed.

Generation of an Abstract Interface for Email Control
System
Description of the Interface to be Designed
We selected a system of sending/receiving and
manipulation of email. One of the characteristics of this
application is the necessity of being accessed from several
different types of devices, that is, the user can
operationalize his/her mailbox from a desktop computer, a
palmtop, a cell phone, etc. To contemplate this necessity,
some of the works consulted [1, 8, 16, 15] use the concept
of abstract interface that is a representation of the interface
elements (abstract spaces and objects) and of the navigation
between the abstract spaces, independent of the mode of
interaction (e.g.: graphical, vocal, video, etc.) and of the
device. It is constructed during a stage prior to the concrete
interface. An abstract interface is composed of abstract
objects of the following facets: object of input, object of
output, object of control, and object of navigation. Such
components represent a typology of concrete objects
(buttons, text boxes, lists, etc.). The objective is for the
interface to be adapted to the different user types,
executing the same tasks, using specific devices in various
physical environments. Therefore, we wished to design the
abstract interface of the system of email control, starting
from the tasks model and data model previously defined by
the designer.

Instantiation of the Models
The interface designer constructed the tasks model in the
CTTE graphical tool (Figure 4). Afterwards, the tasks
model and data model were instanced on the ontology
corresponding to the UsiXML standard [7] in the Protégé
tool [4.]. Immediately thereafter, we generated Java objects
from the classes of the KBS domain based on the Protégé
ontology.

Figure 4. Tasks Model in the CTTE tool.

The first sentence “A component of the Control facet was
specified (Why?)” represents the Specify subtask that
specified the necessity of having an object with the Control
facet in the interface. There is also the “Why?” link,
whereby it is possible to view the response to the question
generated by the Specify subtask and to discover why a
control component was specified. The second sentence
“The SelectMessage (Why?) component was proposed
which violated a NavigationFacetRequired constraint
(What?)” represents the subtasks propose and verify. In
this example, the “what?” link was expanded. Its detail is
shown in the figure below, where the violated constraint is
described. The constraint states: if the task has a control
facet, and if the task is of an action list and if the task
possesses a binary relationship with the previous task and if
the previous task closed the container, then the object to be
generated by this task must have a Navigation facet.

Designed Interface
Figure 5 presents the interface designed for the system of
email control. It is made up of 13 components (Mailbox,
List of Messages, Sender, Subject, Date, Select Message,
View Selected Message, Header, Body, Navigation
Forward, Navigation Backward, Delete Message, Reply to
Message). These components are called abstract objects
and may have the characteristics of a “container,” i.e., it is
a space that groups other objects.

Figure 6. ExpertCop Tasks Model.

In the example, the main container—“mailbox”—contains
all of the other interface objects within itself. The “List of
Messages” object groups the components Sender, Subject,
and Date. Each object may have more than one facet, for
example: “Select Message” has the Navigation and Control
facets.
In figure 5, we show an example of a component that was
inserted onto the interface and at that moment violated a
constraint. We will relate how this happened and how the
system made the repair.

Example of a Constraint Violated
After the interface had been designed, the “View Select
Msg” component was chosen to obtain the explanation of
how and why it was inserted onto the interface. The upper
frame of Figure 5 shows the abstract level of the
explanation in the form of sentences.

Abstract Interface Generation for Crime Simulation
Tutorial System
We applied the KBSHCI to generate the interface of a
module from the ExpertCop system. This is a geosimulator
which aims to support education through the simulation of
an urban region, where various crimes occur during a
interval of time. It allows the user to perform a dynamic
allocation of police resources that will be used to prevent
the crimes from occurring. We selected the module
responsible for allocating the teams of police officers in a
certain area of the map.

Instantiation of the Models
The Interface Specialist elaborated the tasks model as
shown in Figure 6.

Figure 5. Designed interface with example of violated
constraint

Afterwards, this tasks model was instanced on the ontology
of the USIXML standard [7] through the Protégé tool [4]
so that the KBS’s Java objects, referring to the domain,
could be generated.
In this model, the user chooses a team of police officers to
be allocated to a specific area to be defined. Upon defining
this area, the user selects the street corners on the map with
the possibility of undoing the lines or canceling the
operation before confirming. If the process of defining the

area is confirmed, it informs the period and confirms the
allocation.

Designed Interface
After the execution of the KBS, the abstract interface
illustrated in Figure 7 was generated. It is made up of 19
abstract objects, as follows: Team Allocation, Input Team,
Select Team, Select Day, Select Time, Team Allocation,
Define Area, View Msg, View Corner, Undo, Link Corner,
Confirm Area, Cancel Area, Input Interval, Begin Time,
End Time, Confirm, Confirm, Cancel.

Figure 7. Abstract interface designed for the ExpertCop
System.

Revising the Interface Generated
After the generation of the interface in this last example,
presented in Figure 7, the designer asked “why?” regarding
the insertion of the abstract object “Cancel Area” that is
found within the object “Define Area” and what purpose
this object serves. The KBS provided the following
explanations: (i) the first question was identified by the
KBS through the execution of a specification rule that
allowed for the identification of the task associated with
this object of why it was proposed. It clarified that there
was a specification rule stating: If the task is “Interactive”
and has the action of “Modifying” an element, then create
an abstract object with an “Enter” facet. In this system’s
tasks model, the task “Cancel Area” met these conditions
of the specification, therefore the creation of the “Cancel
Area” object was proposed; (ii) What is this object for?
“Cancel Area” serves to undo a set of selected corners, the
explanation corresponds to the objective of the “Cancel
Area” task associated with the abstract object. This
objective is described in the tasks model. Therefore, it was
observed that the “Cancel Area” task would be equivalent
the repetitive execution of the task “Undo Selection”.
Another problem identified in this interface was the
existence of objects with similar meanings (Confirm Area,

Cancel Area, Confirm, and Cancel), since the non-necessity
of the object “Cancel Area” was perceived started to reflect
on the necessity of the object “Confirm Area”, it was
confusing for the user. In this way, the designer decided to
modify the tasks model by removing the tasks “Confirm
Area” and “Cancel Area”. This directly influenced the
abstract interface by diminishing two abstract objects:
“Confirm Area” and “Cancel Area.”
The designer resolved this situation by modifying the tasks
model, but he/she could have opted to modify some rule of
the knowledge base. For this purpose, the KBSHCI offers
options through the buttons Specifications, Preferences,
Constraints and Fixes.

DISCUSSION
Some works that approach interface generation follow the
line of thought that the user must participate in the process
together with the designer. Our proposal allows this idea to
be implemented and facilitates the user’s understanding of
how interface was generated, because the KBSHCI has the
resource of explaining what was designed. The possibility
of modifying the knowledge base can also be useful for
adjustments to be made according to the user’s needs.
We expect the specialist’s knowledge built into the system
(knowledge base) to be increasingly perfected; as the
system continues being utilized, the designer keeps
adjusting the knowledge in a way such that the KBSHCI will
reflect the knowledge of an experienced designer.
We believe that the KBS’s interactivity resource could be
quite useful for the process of educating the interface
designer’s, that is, the KBSHCI will be able to function as a
tutorial to assist beginner designers.
We verified that the proposal presented in this article is
particularly useful in situations where the context of
interactive software use that is being developed is not very
well defined. Web systems are a good example of this.
Another example where this occurs is in the development
of software in the environment of academic research. We
were able to conduct an experiment on this, since we lived
the exploratory characteristics of this context during the
process of generating the ExpertCop interface. The
problem of allocation of police officers and simulation of
criminal activity was innovative and was not very well
defined. Consequently, one could not have a very accurate
idea of how the user’s tasks would be. In this way, the first
interfaces generated by the KBSHCI proved to fall well short
of what was desired. This served as a subsidy to the
designer so that he/she could revise the task model and data
model and then generate new interfaces based on the
redefined models. This process was repeated several times
and evidenced the cyclical character of the design and
primarily the importance of the KBSHCI’s being explicative.
The explanations were geared toward the revalidations of
the models.

CONCLUSION
In this article, we apply resources of Artificial Intelligence
in order to automate and optimize the process of user
interface generation. Therefore, we propose the
construction of a KBS that represents the interface
specialist’s knowledge, so that the user can have an
explanation of the result produced. For this, we represent
knowledge according to UPML architecture and reutilize
the patterns of interaction. We adopt the USIXML standard
to represent the HCI models and adopt the Cameleon
Framework [1] for generating the interface, which defines
stages for the development of interfaces, one of which
being the concept of the abstract interface. We apply the
KBS to generate the abstract user interface for a system of
email control and for a tutorial system that simulates
criminal activity. We intend to apply the KBS to generate
the concrete interface of these systems.

REFERENCES
1. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,

Bouillon, L. and Vanderdonckt, J. A Unifying
Reference Framework for Multi-Target User Interfaces.
Interacting with Computers 15,3 (2003), 289-308.

2. Fensel, D. et al., The Unified Problem-Solving Method
Development Language UPML. Knowledge and
Information Systems, An International Journal, 5, 83-
127, 2003.

3. Furtado E., Mise en Oeuvre d’une Méthode de
Conception d’Interfaces Adaptatives pour des Systèmes
de Supervision à partir des Specifications
Conceptuelles, Doctorate in Information Science,
Université d'Aix-Marseille III, France, 1997.

4. Gennari, J.H. et all, The Evolution of Protégé: An
Environment for Knowledge-Based Systems
Development. SMI Report Number: SMI-2002-0943,
Stanford, 2002.

5. Irandoust, H., Attitudes for Achieving User
Acceptance: Explaining, Arguing, Critiquing. Defence
Research and Development, Valcartier, Canada, 2001.

6. Kay, J. User Modeling for Adaptation. User Interfaces
for All – Concepts, Methods and Tools, LEA
Publishers. London. 271-294, 2001.

7. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon,
L., Florins, M. and Trevisan, D. USIXML: A User
Interface Description Language for Context-Sensitive
User Interfaces. Proc. of the AVI’2004 Gallipoli, 2004.

8. Limbourg, Q., Vanderdonckt, J. Addressing the
Mapping Problem in User Interface Designs with
UsiXML. Proc. TAMODIA, Prague, 2004.

9. Motta, E. Reusable Components for Knowledge
Modeling, Ph.D. Thesis, Knowledge Media Institute,
The Open University, UK, 1997.

10. Pinheiro, V. et all, A Unified Architecture to Develop
Interactive Knowledge Based Systems. In Proceedings
of 17th Brazilian Symposium of Artificial Intelligence
(SBIA 2004), São Luís, MA, Brazil, October 2004.

11. Savidis, A., Akoumianakis, D., Stephanidis, C., The
Unified User Interface Design Method. User Interfaces
for All – Concepts, Methods and Tools, LEA
Publishers. London. 417-440, 2001.

12. Schreiber et al., Knowledge Engineering and
Management: The CommonKADS Methodology. The
MIT Press. Cambridge, MA, 2000.

13. Suárez, P. Gestão do Conhecimento no Processo de
Concepção de IHC e uma Nova Abordagem para a
Obtenção de uma Especificação Conceitual da
Interação, Master’s Thesis. UFCG, 2004.

14. Thevenin, D., Coutaz, J. and Calvary, G. A Reference
Framework for the Development of Plastic User
Interfaces. Cap.3 de Multiple User Interfaces (2004),
29-51.

15. Vanderdonckt, J. Encapsulating Knowledge for
Intelligent Automatic Interaction Objects Selection,
1993.

16. http://giove.cnuce.cnr.it/teresa.html

	ABSTRACT
	Keywords

	INTRODUCTION
	STATE OF THE ART
	Development of Knowledge-Based Systems
	Explanations in KBS
	Interface Generation

	KBSHCI: AN INTERACTIVE KBS FOR INTERFACE CONSTRUCTION
	Conception Phase
	Elaboration Phase
	Construction Phase

	APPLICATION / CASE STUDY
	Generation of an Abstract Interface for Email Control System
	Description of the Interface to be Designed
	Instantiation of the Models
	Designed Interface
	Example of a Constraint Violated
	Abstract Interface Generation for Crime Simulation Tutorial
	Instantiation of the Models
	Designed Interface
	Revising the Interface Generated

	DISCUSSION
	CONCLUSION
	REFERENCES

