
 - 141 -

User Interface Composition with UsiXML
Sophie Lepreux1,2,3, Jean Vanderdonckt4, Christophe Kolski1,2,3

1Univ Lille Nord de France, F-59000 Lille,
 2UVHC, LAMIH, F-59313 Valenciennes,
3CNRS, FRE 3304, F-59313 Valenciennes,

France - +33 327 511 465
{sophie.lepreux, christophe.kolski}

@univ-valenciennes.fr

4Université catholique de Louvain
Louvain School of Management,

 Place des Doyens, 1
B-1348 Louvain-la-Neuve (Belgium)

+ 32(0)10/47.85.25
jean.vanderdonckt@uclouvain.be

ABSTRACT
This paper presents novel ongoing works on user interfaces
composition. These works have emerged with the problem-
atic of component software composition transposed to the
Human-Computer Interaction domain. Some software ar-
chitectures indeed allow components assembling at the fi-
nal design step. Our work, based on UsiXML, aims at pro-
posing a composition/decomposition of user interfaces.
These works begin with the concrete level of UsiXML ded-
icated to the graphical modality and continue with higher
abstraction levels. This article provides a positioning of the
proposal related to composition compared to the seven di-
mensions related to the "μ7" concept of UsiXML project.

Author Keywords
Composition, decomposition, interactive component, user
interface adaptation, user interface extensible markup lan-
guage, "μ7" concept.

General Terms
Design, Human Factors, Languages.

ACM Classification Keywords
D.2.2 [Software Engineering]: Design Tools and Tech-
niques – User interfaces. H.5.2 [Information Interfaces
and Presentation]: User Interfaces – Graphical user inter-
faces.

INTRODUCTION
The issue of software component reuse has given a new is-
sue in Human-Computer Interaction (HCI) on the User In-
terface (UI) Composition [2,6,10,11,18]. If we take as hy-
pothesis that a software component can be associated with
interactive(s) component, then the composition of user in-
terface components emerges. Many different terms have
been used to refer to this problem, such as fusion [2],
transparent composition [10], composable UIs [22], com-
ponent-based adaptation [11], or pattern-based merging [7].
It is also interesting to note that UI compositions has been
addressed at different levels of abstraction, ranging from
code level [22], components [6,11], concrete UI [20], ab-
stract UI [23], and task [1,3]. Different UI types have also
been considered such as: web UI [1], cross-platform appli-
cations [2], web services [5,8,9], context-aware systems
[13], tangible UIs [16,17], decision-support systems [18],
and multimodal UIs [19]. Many different techniques have
been used [7,8,32,33].

This article aims at presenting works ongoing on UI com-
position, in particular with respect to UsiXML [27]. The
UsiXML language is XML-compliant language so the UI
elements can be structured according to tree structure. The
first section of introduction presents the tree algebra which
is used to handle the model. The second section aims at
giving the major principles of UsiXML which are useful to
understand the paper. Then, the first part introduces the
composition operators and algorithms which had proposed
to compose user interfaces. These operators were initially
proposed to be used on graphical user interfaces [20], mod-
eled with UsiXML. Nevertheless, we can see in second part
they can be used relatively to higher abstraction levels, i.e.
abstract user interface and task level. Algorithms proposed
specifically to the concrete graphical user interface are
generalizable to the set of models proposed by UsiXML
[27], but could be also applied to equivalent User Interface
Description Languages (UIDLs) [12]. The last section
shows how composition operators support UI adaptation
according the 7 dimensions introduced in the UsiXML.

Tree-algebra based UI Composition
Since the UI is represented in UsiXML terms and since it is
a XML-compliant language, operations could be defined
thanks to tree algebra. The composition operations could be
logically defined on the XML tree and directly performed.
Jagadish et al. define a data model [15]. A data tree is a
rooted, ordered tree, such that each node carries data (its
label) in the form of a set of attribute-value pairs. Each
node has a special, single valued attribute called tag whose
value indicates the type of element. A node may have a
content attribute representing its atomic value. Each node
has a virtual attribute called pedigree drawn from an or-
dered domain. The pedigree carries the history of “where it
came from”. Pedigree plays a central role in grouping, sort-
ing and duplicate elimination. They define a pattern tree as
a pair P = (T, F), where T = (V,E) is a node-labelled and
edge-labelled tree such that:

 Each node in V has a distinct integer as its label ($i).

 Each edge is either labelled pc (for parent-child) or ad
(for ancestor-descendant).

 F is a formula, i.e. a Boolean combination of predicates
applicable to nodes.

In Faure, D., Vanderdonckt, J., (Eds.), Proc. of 1st Int. Workshop on User Interface Extensible Markup Language UsiXML’2010 (Ber-
lin, 20 June 2010), Thales Research and Technology France, Paris, 2010. ISBN 978-2-9536757-0-2

 - 142 -

This pattern is used to define a database and to define the
predicate used in the operations. As the initial notation is
specific to the database, we had proposed a variant which is
adapted to documents specific to interface. Indeed, in the
HCI case, the most important is the structure and not the
content. For example, it is more important to know that the
window has a box as subitem than that the window has a
height equal to 300. So the attributes are stored with the
tag. A node is a tag with these attributes and their content.
The pattern tree keeps coherent with the variant definition.
Another point specific to the database is that the data are in
several data trees so the operators use a collection of data
trees in input and output. In the HCI case, the input is one
(for the unary operators) or two (for the binary operators)
XML documents so one or two data trees.

Window (id=window, name=window, width=« 500 » height=« 350 »)

Box
(type=« vertical »)

Button
(DefaultContent = Save)

Button
(DefaultContent=Close)

Output
(DefaultContent
=« Fiche Client »)

Box
(type = horizontal)

Box
(type = horizontal)

Output
(…)

Input
(…)

Box
(type = horizontal)

Output
(…)

Input
(…)

tag content

<cuiModel id="Client_registration-cui_31" name="Client_registration-cui">
<window id="window_component_0" name="window_component_0"

defaultContent=« Nouveau client"
width="500" height="350">

<box id="box_0" name="box_0" type="vertical">
<outputText id="output_text_component_2"

name="output_text_component_2"
defaultContent=« Fiche Client"

isVisible="true" isEnabled="true"
isBold="true" textColor="#000000"/>

<box id="box_1" name="box_1" type="horizontal">
<outputText id="output_text_component_2"

name="output_text_component_2«
defaultContent=« Fiche Client"

isVisible="true" isEnabled="true"
isBold="true" textColor="#000000"/>

…
</window>

</cuiModel>

Figure 1. Corresponding between

GUI-UsiXML/CUI – tree.

UsiXML framework
UsiXML is structured according to the four abstraction
levels of the ‘CAMELEON reference framework’ [4] for
multi-target UIs (Fig. 2). A Final User Interface (FUI) re-
fers to an actual UI rendered either by interpretation (e.g.,
HTML) or by code compilation (e.g., Java). A Concrete
User Interface (CUI) abstracts a FUI into a description in-
dependent of any programming or markup language in
terms of Concrete Interaction Objects, layout, navigation
[28], and behavior [29,30]. An Abstract User Interface
(AUI) abstracts a CUI into a definition that is independent
of any interaction modality (such as graphical, vocal or tac-
tile). An AUI is populated by abstract components and ab-
stract containers. Abstract components are composed of
facets describing the type of interactive tasks they are able
to support (i.e., input, output, control, navigation). The
Tasks & Concepts level describes the interactive system
specifications in terms of the user tasks to be carried out
and the domain objects.

COMPOSITION/DECOMPOSITION OPERATORS

Several operators have been proposed [20]. They are dis-
tributed in two parts, the unitary operators which act on a
single interface and the binary operators which take as ar-

guments two interfaces. A global view of these operators is
presented in Fig. 3. The operators are presented in this part
as well as several algorithms. They are illustrated with ex-
amples in the following part and according "μ7" concept of
UsiXML project in the last part.

Figure 2. The four abstraction levels used in the

Cameleon Reference Framework (CRF) [4].

Cut(T1,)

T1 T2
Unary operators Binary operators

Similarity

Equivalence

Left difference

Right difference

Intersection

Unique union

Normal union

Fusion ∩
Complementary(T1,)

Projection(T1,)

Selection(T1,)

T1

Figure 3. The set of composition operators.

Unary operators

In this part, all the operators are unary. The inputs are a
tree T1 and an item or a set of items defined by a pattern
tree. The output is a tree.

Selection operator ((T1, P))
The selection operation applies on a tree and on a set of
items defined by a pattern tree. The output tree contains the
set of items corresponding to the pattern tree in input which
exist in the tree T1. The items are individual components,
as leaf nodes. The output tree has the same structure (lay-
out) as the input tree T1. The algorithm is provided in [20].

Complementary operator
The Complementary operation applies on a tree and on a
set of items defined by a pattern tree. The output tree is the
input tree minus the set of items corresponding to the pat-
tern tree. The algorithm for CUI model is presented in Fig-
ure 4.

 - 143 -

Cut operator
The Cut operation applies on a tree and on an item. The
output tree is the input tree minus the item (I). If the item
(I) is not a leaf, all the items of the sub tree (I) are deleted.

Projection operator ((T1, P))
The Projection operation applies on a tree and on an item.
The output is the sub-tree defined from the item. The ob-
jective of this operator is not to provide an interface but ra-
ther to select a logical set of items. Thus, this operator can
be used to capitalize a pattern from an existing interface.

Figure 4. Complementary algorithm proposed to tree

algebra for UI.

Binary Operators

In this part, all the operators are binary. They apply on a
pair of trees T1 and T2. The Similarity and Equivalence
operators provide a Boolean whereas the other operators
provide a tree T3.
Similarity operator (T1 ~ T2)
The Similarity operation allows checking whether the two
input trees are similar. A distance criterion is computed us-
ing the Levenshtein distance from the contents of the two

trees (not the structure) [20]. This distance informs about
the similarity between two strings through an evaluation of
the minimal number of char operations (deletion, insertion
or replacement) to transform a string into another one. In
this evaluation - as in the detection of common parts - we
suppose the semantic alignment of the user interfaces.

Equivalence operator (T1 ≈ T2)
The Equivalence operation allows knowing whether two
trees are equivalent. Two interfaces are said to be equiva-
lent if they are 100% similar.

Left (resp. right) difference operator (T1 / (T1∩T2)
The output tree of the Left (resp. right) operation is com-
posed of the content of T1 (resp. T2) minus the redundant
items between T1 and T2.

Fusion operator (T1+T2= (T1 U T2) U (T1∩T2))
The output tree of the Fusion operation is composed of the
contents of both T1 and T2; the redundant items are placed
twice. At the CUI level, particularly with the graphical mo-
dality, the order of the input argument is essential as the
operation is not commutative. Furthermore, it is possible to
precise whether the fusion (resp. Normal Union and
Unique union) has to be horizontal or vertical. Such a pa-
rameter allows structuring the T3 output [20].

Normal union operator (T1 U T2)
The output tree of the Normal Union operation is com-
posed of all contents of T1 and T2 but, contrarily to the Fu-
sion operator, the redundant items are placed only once. An
illustration of this operator with a horizontal parameter is
shown in Fig. 5 and its tree representation in Fig. 6.

Unique union operator ((T1 U T2)/(T1∩T2))
The output tree of the Unique Union operation is composed
of contents of T1 and T2. In this union, the redundant items
are deleted.
Intersection operator (T1∩T2)
The output tree of the Intersection operation is composed
of the items contained in both T1 and T2; the non-
redundant items are deleted. The algorithm proposed to the
CUI level is presented in Fig. 7.

U
horizontal

=

Figure 5. Normal Union operator applied on two UIs.

 - 144 -

Window (id=window, name=window, width= « 600 » height=« 200 »)

Box (type=« vertical »)

Button
(DefaultContent=Close)

Output
(Default value =
« commercial

form »)

Button
(DefaultContent = Save)

Box (type = horizontal)

Box (type = horizontal)

Output
(…)

Input
(…)

Box
(type = horizontal)

Output
(…)

Input
(…)

Box (type=« vertical »)

Output
(Default value =
« commercial
form »)

Box (type = horizontal)

Output
(…)

Input
(…)

Box (type = horizontal)

Output
(…)

Input
(…)

Box (type=« horizontal »)

Button
(DefaultContent = Save)

Button
(DefaultContent=

Close)

Box (type = horizontal)

Figure 6. Normal Union operator – representation of
result by tree.

Figure 7. Intersection on a tree algebra for CUI.

OPERATORS APPLIED ON USIXML LAYERS
This part is composed of three sections corresponding to
the CUI layer, the AUI layer and the Task model layer. In
each section, an illustration of some operators use is given.

Illustrations of operators use on a concrete UI
The above operators have been directly implemented in
ComposiXML [20], a plug-in of GrafiXML, a graphical in-
terface builder that automatically generates UsiXML speci-
fications (Fig. 8) as opposed to final code for other build-
ers. As they are an open source project regulated by
Apache 2.0 open licence and available on SourceForge,
they can be downloaded from http://www.usixml.org.
GrafiXML is able to automatically generate code of a UI
specified in UsiXML into (X)HTML or Java. For the pur-
pose of the examples below, we will rely on the Java auto-
mated code generation.

Figure 8. User Interface of ComposiXML.

This part presents some illustrations of operators used at
design time with ComposiXML. For example, they can be
used by designers to create UIs which are developed for
one or several applications within the same company, with
the constraint of a corporate style guide. The designers can
reuse some of the elements of the user interfaces thanks to

operators. The second use case is at run time. It is integrat-
ed in the reuse issue which has introduced the component
idea. The first issue in this domain is the composition of the
components. If we consider the business component as a
component with UIs, one issue in the domain of HCI is to
compose the user interfaces of several business compo-
nents. If we consider that the user interfaces are specified
with UsiXML, the Union operator is particularly interesting
for such composition of business components. Illustrations
of operators are given for example in the domain of tour-
ism. In this domain, it frequently happens that some parts
of the same information should be reproduced in different
UI for different events (e.g., hotel information, tourist trip
including hotel booking, booking a hotel, etc.).

Fig. 9 (a) reproduces a screenshot of the preview in Java
(obtained by Java automated code generation) of a Con-
crete User Interface created with the GraphiXML editor.
Fig. 9 (b) reproduces another UI for an event management
application. The two UIs only differ from a few fields, here
the event dates (Fig. 9-T1) and the comment (Fig. 9-T2).

The Selection is used on the tourist application UI with a
set of elements as input to give a UI subset (Fig. 9(a)).

Likewise, the Projection operator is used to extract a set of
items according to their type (i.e., structure). Given as an
example, the Fig. 9 (b) shows the result of the Projection
operator on the tourist application with two parameters:
outputText and button. The preview is in French.

Therefore, if we want to identify the common part of these
two UIs, the Intersection operator performs the operation as
defined previously to identify common parts of both trees
and then rebuilds a new tree with the identified elements.
This operator re-generates new UsiXML specifications.
This intersection is reproduced in Fig. 9(c).

Note in Fig. 9 (c) that the designer did not have anything to
do: all common elements were identified, a new layout was
produced so as to mimic the initial one and all objects have
been laid out and aligned to preserve the initial constraints.

Illustrations of operators use on abstract user interface
The AUI level allows specifying user interfaces without to
know neither the modality nor the platform. It can be de-
veloped with a tool provided by UsiXML project named
IdealXML. A representation of the task “order a pizza” is
given in Fig. 10 (a) and its corresponding UsiXML in Fig.
10 (b). We notice that abstractIndividualComponent as
“Choose quantity” is placed in an abstractContainer corre-
sponding by “Choose a pizza”. The structure of user inter-
face composed by container, component and relation be-
tween elements is here again respected by this model.
Therefore, the operators, as at the CUI level, can be applied
using tree algebra. The tree corresponding to the specifica-
tion view of Fig. 10 (a,b) is in Fig. 10 (c) [18]. An example
of operators using at this level is shown in the following
part, in the section dealing with the multi-modality [19].

 - 145 -

Illustrations of operators used on task tree
The operators applying on task level are similar to other
levels because the UsiXML language provides a XML
structure and the structure of UI follows also the set theory.
However, the operators have to be adapted to take into ac-
count the relationship between tasks in the cases of fusion
and Unions. Given as an example, Fig. 10 provides an il-
lustration of the Union operator use on task trees.

Conclusion on the (de)composition operators
In this part, illustrations of operators used were given at
each abstraction level according to the adaptation needs.
Some works are not again completely and must be extend-
ed in the future but the illustrations give an idea of the in-
terests to use operators to adapt and the possibility of using
them at each abstraction level. The illustrations are given to
describe the use of one or several operators on each level.
In the following part, the adaptation needs and the use of
associated operators are illustrated according to the 7 di-
mensions referred by UsiXML.

COMPOSE TO SUPPORT THE 7 DIMENSIONS
This part aims at illustrating the use of (de)composition op-
erators to adapt the user interfaces according to the 7 di-
mensions: Multi-device Usage, Multi-User interface, Multi-
linguality, Multi- organization, Multi-context usage, Multi-
Modality usage, Multi-platform Usage.

Multi-device Usage
The simultaneous use of several devices sharing a same us-
er interface implies the need to create FUI for each device.

They are noted FUI’1 to n in Figure 11. The devices can
possibly be distributed. In order to transform the initial user
interface (i.e. source) into several UI parts, duplication or a
new composition of UI parts are necessary. In order to de-
compose UI or to extract several components to be reused
on other devices, the unary operators such as Selection or
Projection are well suited. These operators can be applied
at the CUI level (Figure 11). The decomposition may be
use the task model in order to choose the part to ex-
tract/duplicate etc. At the end of this first step, le CUI’ 1 to
n are defined following each device. If the interface of one
device must integrate elements provided by several ser-
vices, then the Fusion or Union operators will be appropri-
ated. For instance, Figure 11 illustrates the examples of a
user who may control a music player running on a media
center using a remote control on a handheld device, per-
haps coupled with a Wii for volume control. This example
is composed of three tasks: the Music controller task, the
Sound player task and the volume controller task and Three
devices: the media center which is used to realize the Mu-
sic controller task and the Sound player task. The handheld
device to make a remote control (sound controller and Mu-
sic controller) and the Wii for the volume control. The
source CUI is an existing UI dedicated to the Music Player
task. Elements are extracted are distributed to the several
devices described. We have used the CUI level to use oper-
ators because it is sufficient to this dimension but they
could be also applied at the AUI level or at the task level if
the UI repartition corresponds to the task(s).

T1 = touristic application UI T2 = event management application UI

(a) Selection (T1,
set of elements)

(b) Projection (T1,
{outputText, Button})

(c) Intersection (T1, T2)

Figure 9. Illustrations of operators on CUI models.

 - 146 -

(a) Graphical representation developed with IdealXML

(b) UsiXML specification given by IdealXML

(c) Representation of the AUI model by tree

Figure 10. Three representations of the AUI model, de-
veloped with IdealXML, concerning a pizza order.

The tasks trees in the illustrations are created with the
CTTE tool (http://giove.isti.cnr.it/tools/ctte/) [26]. Inci-
dentally, they proposed to use CTT in order to adapt the UI
following the device in [26]. Note that [7] propose compo-
sition-oriented user interface design patterns (CUIDP) with
the same goal to reuse the UI knowledge. This work is also
based on model-driven architecture and is based on UMLi
to specify the UI.

Figure 11. Definition of operators for Multi-device

Usage.

Multi-User interface
Following this dimension, two adaptation propositions are
possible. If the shared interface is co-localized, the users
can simultaneously interact on one interface (for example a
tactile multi-touch interface or tangible objects used [16]).
In this case, it seems not necessary to adapt the interface by
composition even if it should be adapted to the user (pro-
files, preferences, etc.). But, the problem is different if a
user arrives in the collective work situation (or leaves it):
the user needs a work space, with personal data and/or
functions, and in a case of an interactive table for instance,
the multi-user interface has to be adapted again, using
composition/decomposition operators [17]. If the shared in-
terface is distant, each user has a duplicate of this interface.
In this case, duplication has to be carried out. The duplica-
tion operator is not proposed in this article (it can be
viewed in [20] with application on a complete UI tree) but
the Projection operator with the root node item as input al-
lows to duplicate the whole arborescence. If a part only of
UI must be duplicated, the input item of the Projection op-
erator will be the item of the output root node. In parallel,
the problem of the user rights or roles has also to be care-
fully considered. For instance in a brainwriting [14] session
at a distance, the UI of the brainwriting moderator will be
composed differently as the UI of the other participants.

Multi-linguality
Language is defined here as spoken language (not pro-
gramming language). Several languages should not be used
simultaneously within a same interface. Thus in many cases
it seems not necessary to compose several parts of user in-
terfaces. Nevertheless, if two similar interfaces are modeled
at the CUI level (or higher) with specifications given for
one (or more) language and another interface modeled with
others languages, it can be possible to compose these inter-
faces to obtain one interface modeled for all these lan-
guages. Then, the UsiXML structure allows generating the
final user interface in the selected language. But is it also
important to consider translation considerations leading to
necessities about composition/decomposition due to socio-
cultural aspects (i.e. problems of designing UI for interna-
tional use [20]): from a UI using a source language which

 - 147 -

is read from left to right (and downwards; for instance,
English), the problem is not trivial if the target UI has to
use a language which is read from right to left (and down-
wards; for instance, Arabic), or upwards (for instance, Chi-
nese). Indeed in several cases the different zones of the UI
have to be composed differently.

Multi-organization
According to this dimension, the organization and task no-
tions are essential. A task may be common to several or-
ganizations. The shared task must be associated to one in-
terface. The Intersection operator allows detecting the
common tasks whereas the Normal Union operator allows
merging the two tasks without repetition of common parts
(Fig. 12). These operators may be used at the task level of
the UsiXML architecture [22]. We can note that Bihler et
al. [2] implemented cross-application dynamic UI fusion in
order to realize a task on a platform with a restricted graph-
ical space. It is also important to recall that several organi-
zation models exist and are described in the literature (for
instance in social sciences or multi-agent system domain)
and lead to very different work methods. If several types of
organizations are concerned, the composition/decompo-
sition process may have to follow adapted rules or princi-
ples. An important research work has to be done on this
subject.

Figure 12.Normal Union operator for Multi-organization.

Multi-context usage
This dimension is integrated to UsiXML architecture since
the structure with 4 levels and the transformation following
the context change allow adapting user interfaces, whatever
the abstraction level (Figure). A development methodolo-
gy based on patterns, business component and learning,
proposed in [13], is complementary to this architecture to
generate and adapt the user interfaces according to the con-
text evolution [13]. Another work focuses on the integra-
tion of the task model in the business component in order
to compose complete application and to facilitate the co-
evolution of the system [3]. A context modification can

generate evolutions at each abstraction level. For example,
a lighting change acts on the luminosity of the device (FUI)
whereas the background noise change acts (or not) on the
choice of the vocal modality. A modification of the user
work brings modification of tasks and/or on the tasks plan-
ning.

Multi-Modality usage
The AUI layer allows specifying the UI independently of
the modality (i.e., vocal, graphical, multimodal). According
to needs brought by context change, a UI composition at
this level (or at a higher level) allows merging interfaces
which will be concretized by different modality in the low-
er level. For example, a food order can be realized with
several modalities. Some tasks can be vocal in the case of
phoning order or graphical in the case of an Internet con-
nected device (ubiquitous or not) [19]. In this example, the
Normal Union operator is used merging two applications
existing partly. On one hand, in the application « order a
pizza » which is illustrated above Fig. 10, the sub-task
“Choose a pizza” is multimodal (see CUI model and FUI
(XHTML+VoiceXML) in Fig. 13). On the other hand, the
“Chinese food order” application is only graphically devel-
oped. The normal Union of these two applications gives a
result which can be multimodal. The Normal Union avoids
to repeat the sub-task “delivering address” which is com-
mon to the two applications (Fig. 14).

 - 148 -

Figure 14. Normal Union (AUI (order a pizza), AUI (Order Chinese food))

Figure 13. A Multimodal CUI and FUI corresponding

to the “Choose a pizza” sub-task.

Multi-platform Usage
The multi-device usage dimension often integrates the mul-
ti-platform dimension. So this part focuses on the adapta-
tion of user interfaces centered on the platform only (not on
the device). An example of multi-platform language is the
java language. It can be executed on several platforms
without changing model or implements. This dimension
aims at doing the same from the user interfaces point of
view. The UsiXML project allows for example to generate
code from CUI model to FUI model. For example,
GraphiXML (a graphical editor) allows generating java or
XHTML code. In this case, we can say that the graphical
user interface which is modeled with GraphiXML is multi-
platform. This principle has to be generalized. According
to this analysis, the composition operators are not needed
into this process.

Conclusion on the support of the 7 dimensions of
UsiXML
In the part here above, the adaptation of user interfaces fol-
lowing each of the dimensions has been explored using
(de-)composition operators. Some dimensions do not re-
quire the use of (de-)composition operators whereas others
have interest to use them. The analysis is realized for each
dimension separately even if the 7 dimensions are comple-
mentary. Adaptations to criterion (dimension) can be done

 - 149 -

to the detriment of the others. As a result, the adaptation
must be global i.e. the adaptation has to take into account
all the criteria simultaneously and not considered one by
one. To go deeper, it is possible to do an analogy with
McCall and his colleagues in 1977 [24] in software quality
domain, considering that compromises between quality cri-
teria are necessary from an application domain to another
(for instance: efficiency is not always compatible with test-
ability and portability). So we think that according to an
application domain with its characteristics (real time or not,
centralized or distributed, connectivity aspects, screen size,
characteristics of the users well known or not (application
for the general public), use frequency, …), compromises
have to be made between the seven dimensions for insuring
the best quality as possible of the final UI. More, research
questions are open concerning (1) the one by one or simul-
taneous consideration of these dimensions, (2) the order in
taking them into consideration.

CONCLUSION
On one hand, the article has presented operators which had
been developed initially to compose at design time and at
the CUI level. Afterwards, these operators have been used
to each abstraction level of user interfaces. Likewise, some
examples have shown that the operators could be used at
the runtime. These operators are a support to the user in-
terface adaptation and their use was illustrated specifically
for each dimension; several research ways have been also
suggested. As another perspective to this work, we propose
an adaptation engine which takes into account several crite-
ria simultaneously in order to perform this adaptation.

ACKNOWLEDGMENTS
We gratefully acknowledge the support of the ITEA2 Call
3 UsiXML project under reference 20080026 supported by
the European Commission and Région Wallonne. This cur-
rent research work has been partially supported by CISIT,
the Nord-Pas-de-Calais Region, the European Community,
the Regional Delegation for Research and Technology, the
Ministry of Higher Education and Research, and the Na-
tional Center for Scientific Research. The authors grateful-
ly acknowledge the support of these institutions.

REFERENCES
1. Betermieux, S. and Bomsdorf, B. Task-Driven Compo-

sition of Web User Interfaces. In Proc. of 6th Int. Conf.
of Computer-Aided Design of User Interfaces CA-
DUI’2006 (Bucharest, June 6-8, 2006). Information
Systems Series, Springer-Verlag, Berlin (2007), pp.
233–244.

2. Bihler, P. and Kniesel, G. Seamless Cross-Application
Workflow Support by User Interface Fusion. In Multi-
ple and Ubiquitous Interaction, S. Boedker, C.
Brodersen, C.N. Klokmose (eds.). DAIMI PB-581,
University of Aarhus, 2007.

3. Bourguin, G., Lewandowski, A., and Tarby J.C. Defin-
ing Task Oriented Components. In Proc. of the 6th Int.
workshop on TAsk MOdels and DIAgrams TAMO-

DIA’2007 (Toulouse, November 7-9, 2007). Lecture
Notes in Computer Science, Vol. 4849. Springer-
Verlag, Berlin (2007), pp. 170–183.

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., and Vanderdonckt, J. A Unifying Refer-
ence Framework for Multi-Target User Interfaces. In-
teracting with Computers 15(3), 2003, pp. 289–308.

5. Caramel, B., Joffroy, C., and Laguerre, M. De la com-
position de services à la composition d'interfaces
homme-machine. In Proc. of the 21st Int. Conf. on As-
sociation Francophone d'Interaction Homme-Machine
IHM'2009 (Grenoble, October 13-16, 2009). ACM Int.
Conf. Proc. Series, ACM Press, New York (2009), pp.
65–74.

6. Dery-Pinna, A.-M., Fierstone, J., and Picard, E. Com-
ponent Model and Programming: a First Step to Man-
age Human-Computer Interaction Adaptation. In Proc.
of 5th Int. Symposium on Human-Computer Interaction
with Mobile Devices and Services MobileHCI’2003
(Udine, September 8-11, 2003). Lecture Notes in Com-
puter Science, Vol. 2795. Springer-Verlag, Berlin
(2003), pp. 456–460.

7. Feng, S. and Wan, J. Multi-device User Interface De-
velopment with Composition-oriented User Interface
Design Patterns. In Proc. of the 8th ACIS Int. Conf. on
Software Engineering, Artificial intelligence, Network-
ing, and Parallel/Distributed Computing SNPD'2007
(July 30 - August 1, 2007). Volume 3. IEEE Computer
Society, Washington (2007), pp. 605–610.

8. Gabillon, Y., Calvary, G., and Fiorino, H. Composing
interactive systems by planning. In Proc. of the 4th
French-speaking Conference on Mobility and ubiquity
computing UbiMob'2008(Saint-Malo, May 28-30,
2008). ACM International Conference Proceeding Se-
ries, Vol. 277. ACM Press, New York (2008), pp. 37–
40.

9. Gabillon, Y., Calvary, G., Mandran, N., and Fiorino, H.
Composition dynamique d'interfaces homme-machine:
besoin utilisateur ou défi de chercheur? In Proc. of the
21st Int. Conf. on Association Francophone d'Interac-
tion Homme-Machine IHM'2009 (Grenoble, October
13-16, 2009). ACM Int. Conf. Proc. Series, ACM Press,
New York (2009), pp. 61–64.

10. Ginzburg, J., Rossi, G., Urbieta, M., and Distante, D.
Transparent Interface Composition in Web Applica-
tions. In Proc. of Int. Conf on Web Engineering IC-
WE'2007 (Como, July 16-20, 2000). Lecture Notes in
Computer Science, Vol. 4607, Springer-Verlag, Berlin
(2007), pp. 152–166.

11. Grundy, J.C. and Hosking, J.G. Developing Adaptable
User Interfaces for Component-based Systems. Inter-
acting with Computers 14(3), 2002, pp. 175–194.

 - 150 -

12. Guerrero García, J., González Calleros, J.M., Vander-
donckt, J., and Muñoz Arteaga, J. A Theoretical Survey
of User Interface Description Languages: Preliminary
Results. In Proc. of Joint 4th Latin American Confer-
ence on Human-Computer Interaction-7th Latin Ameri-
can Web Congress LA-Web/CLIHC'2009 (Merida, No-
vember 9-11, 2009), E. Chavez, E. Furtado, A. Moran
(eds.). IEEE Computer Society Press, Los Alamitos
(2009), pp. 36–43.

13. Hariri, M-A., Tabary, D., Lepreux, S., and Kolski C.
Context aware Business adaptation toward User Inter-
face adaptation. Communications of SIWN 3, 2008, pp.
46–52.

14. Heslin, P.A. Better than brainstorming? Potential con-
textual boundary conditions to brainwriting for idea
generation in organizations. Journal of Occupational
and Organizational Psychology 82(1), March 2009,
pp. 129–145.

15. Jagadish, H.V., Lakshmanan, L.V.S., Srivastava, D.,
and Thompson, K. TAX : A Tree Algebra for XML. In
Proc. of 8th Int. Workshop on Database Programming
Language DBPL’2001 (Frascati, September 8-10,
2001), G. Ghelli, G Grahne (eds.). Lecture Notes in
Computer Science, Vol. 2397, Springer-Verlag, Berlin
(2001), pp. 149–164.

16. Kubicki, S., Lepreux, S., Lebrun, Y., Dos Santos, P.,
Kolski, C., and Caelen, J. New Human-Computer Inter-
actions Using Tangible Objects: Application on a Digi-
tal Tabletop with RFID Technology. In Proc. of the 13th
Int. Conf. on Human-Computer Interaction HCI'Inter-
national'2009 (San Diego, 19-24 July 2009), J.A. Jacko
(ed.), Part III. Lecture Notes in Computer Science, Vol.
5612. Springer-Verlag, Berlin (2009), pp. 446–455.

17. Kubicki, S., Lepreux, S., Kolski, C., and Caelen, J. To-
wards New Human-Machine Systems in contexts in-
volving interactive table and tangible objects. In Proc.
of 11th IFAC/IFIP/IFORS/IEA Symposium on Analysis,
Design, and Evaluation of Human-Machine Systems
(Valenciennes, August 31 - September 3, 2010).

18. Lepreux, S., Kolski, C., and Abed, M. IHM et SIAD :
vers une composition d'outils interactifs pour l'aide à la
décision. In Proc. of 16th Conf. on Association Franco-
phone d'Interaction Homme-Machine IHM'2004 (Na-
mur, August 30-September 3, 2004). ACM Int. Conf.
Proc. Series, ACM Press, New York (2004), pp. 227–
230.

19. Lepreux, S., Hariri, A., Rouillard, J., Tabary, D., Tarby,
J.-C., and Kolski, Ch. Towards Multimodal User Inter-
faces Composition based on UsiXML and MBD princi-
ples. In Proc. of 12th Int. Conf. on Human-Computer In-
teraction HCI International'2007 (Beijing, July 22-27,
2007), J.A Jacko (ed.), Part III. Lecture Notes in Com-
puter Science, Vol. 4552. Springer-verlag, Berlin
(2007), pp. 134–143.

20. Lepreux, S., Vanderdonckt, J., and Michotte, B. Visual
Design of User Interfaces by (De)composition. In Proc.
of 13th Int. Workshop on Design, Specification, and
Verification of Interactive Systems DSV-IS'2006 (Dub-
lin, July 26-28, 2006), G. Doherty, A. Blandford (eds.).
Lecture Notes in Computer Science, Vol. 4323. Spring-
er-Verlag, Berlin (2006), pp. 157–170.

21. Levenshtein, V., Efficient reconstruction of sequences
from their subsequences or supersequences. Journal of
Combin. Theory, Ser. A, 93(2), 2001, pp. 310–332.

22. Leventhal, E., and Grubis, Al. Composable User Inter-
faces. The MITRE Corporation, Bedford, 2004.

23. Lewandowski, A., Lepreux, S., and Bourguin G. Tasks
models merging for high-level component composition.
In Proc. of 12th Int. Conf. on Human-Computer Inter-
action HCI International'2007 (Beijing, July 22-27,
2007). lecture Notes in Computer Science, Vol. 4550.
Springer-Verlag, Berlin (2007), pp. 1129–1138.

24. McCall, J.A., Richards, P.K., and Walters J.F. Factors
in Software Quality, 3 volumes. RADC-TR-77-369,
1977.

25. Nielsen, J. Designing User Interfaces for International
Use. Elsevier Science Publishers, 1990.

26. Paternò, F., Mancini, C., and Meniconi, S. Concur-
TaskTrees: A Diagrammatic Notation for Specifying
Task Models. In Proc. of the IFIP TC13 Int. Conf. on
Human-Computer interaction Interact'97 (Sydney, July
14-18, 1997). S. Howard, J. Hammond, G. Lindgaard
(eds.). IFIP Conference Proceedings, vol. 96. Chapman
& Hall Ltd., London (1997), pp. 362–369.

27. Vanderdonckt, J. Model-Driven Engineering of User
Interfaces: Promises, Successes, and Failures. In Proc.
of 5th Annual Romanian Conf. on Human-Computer In-
teraction ROCHI’2008 (Iasi, September 18-19, 2008),
S. Buraga, I. Juvina (eds.). Matrix ROM, Bucarest,
2008, pp. 1–10.

28. Vanderdonckt, J., Limbourg, Q., Florins, M. Deriving
the Navigational Structure of a User Interface. In Proc.
of 9th IFIP TC 13 Int. Conf. on Human-Computer In-
teraction INTERACT’2003 (Zurich, 1-5 September
2003). IOS Press, Amsterdam, 2003, pp. 455-462.

29. Vanderdonckt, J. Model-Driven Engineering of User
Interfaces: Promises, Successes, and Failures. Romani-
an Journal of Human-Computer Interaction (Revista
Romana de Interactiune Om-Calculator), Vol. 1, 2008,
pp. 1–10.

30. Vanderdonckt, J., Coyette, A. Modèles, méthodes et
outils de support au prototypage multi-fidélité des inter-
faces graphiques. Revue d’Interaction Homme-Machine
8, 1 (2007), pp. 91-123.

31. Vanderdonckt, J., Coutaz, J., Calvary, G., and Stanci-
ulescu, A. Multimodality for Plastic User Interfaces:
Models, Methods, and Principles. Chapter 4, in “Mul-

 - 151 -

timodal user interfaces: signals and communication
technology”, D. Tzovaras (ed.), Lecture Notes in Elec-
trical Engineering, Springer-Verlag, Berlin, 2007, pp.
61-84.

32. Vanderdonckt, J., Furtado, E., Furtado, V., Limbourg,
Q., Silva, W., Rodrigues, D., Taddeo, L.. Multi-model

and Multi-level Development of User Interfaces. Chap-
ter 10, in Seffah, A. & Javahery, H. (Eds.), “Multiple
User Interfaces - Cross-Platform Applications and Con-
text-Aware Interfaces”, John Wiley & Sons, New York,
November 2003, pp. 193-216.

