

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 157 – 170, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Visual Design of User Interfaces by (De)composition

Sophie Lepreux1,2, Jean Vanderdonckt1, and Benjamin Michotte1

1 IAG/ISYS, Université catholique de Louvain, Place des Doyens 1,
B−1348 Louvain-la-Neuve (Belgium)

2 LAMIH – UMR CNRS 8530, Université de Valenciennes et du Hainaut-Cambrésis,
Le Mont-Houy, F-59313 Valenciennes Cedex 9 (France)

{lepreux, vanderdonckt, michotte}@isys.ucl.ac.be,
sophie.lepreux@univ-valenciennes.fr

Abstract. Most existing graphical user interfaces are usually designed for a
fixed context of use, thus making them rather difficult to modify for other
contexts of use, such as for other users, other platforms, and other
environments. This paper addresses this problem by introducing a new visual
design method for graphical users interfaces referred to as “visual design by
(de)composition”. In this method, any individual or composite component of a
graphical user interface is submitted to a series of operations for composing a
new interface from existing components and for decomposing an existing one
into smaller pieces that can be used in turn for another interface. For this
purpose, any component of a user interface is described by specifications that
are consistently written in a user interface description language that remains
hidden to the designers’ eyes. We first define the composition and
decomposition operations and individually exemplify them on some small
examples. We then demonstrate how they can be used to visually design new
interfaces for a real-world case study where variations of the context of use
induce frequent recomposition of user interfaces. Finally, we describe how the
operations are implemented in a dedicated interface builder supporting
the aforementioned method.

1 Introduction

In most commercial interface builders (e.g., Macromedia DreamWeaver, Microsoft
Visual Studio) and research interface editors (e.g., Glade, TrollTech), the predominant
method for visually building a Graphical User Interface (GUI) consists of dragging
widgets from a palette, dropping them on a working area, and editing their properties
until the results are satisfactory. This method makes sense since the GUI is visual by
nature and direct manipulation of constituting widgets remains natural, flexible, and
modifiable [1,2]. However, when it comes to reusing parts or whole of an existing
GUI to design another one, most interface builders force the designer to produce an
incessant sequence of “copy/paste” operations, if supported, with little or no support
for recomposing a new GUI from these elements. In particular, the designer should
copy widgets one by one and perform relayouting operations (e.g., resizing,
realignment, rearrangement) individually. This situation frequently occurs when an

158 S. Lepreux, J. Vanderdonckt, and B. Michotte

existing GUI needs to be adapted for a new context of use, which the GUI was not
designed or thought for. If the context of use is considered as the combination of a
user (or a user stereotype) working on a given computing platform in a specific
environment [3], any variation of one or many of these aspects may lead to a GUI
redesign. In the case of multi-platform GUIs [4,5,6], it is impossible to copy/paste
GUI elements from one interface builder to another one, unless the interface builder is
itself multi-platform. Even in that case, little or no support is provided for reforming a
new GUI from fragments coming from existing GUIs. In the case of multi-language
GUIs, existing tools prevent designers from just translating the resources in one
language and obtain a new GUI for another language.

On the method side, reusability of existing GUIs is often promoted as a desirable
method for ensuring consistency, reducing development effort, fitting a particular
GUI to the purpose of a given task. In particular, users frequently report that they
need to constantly switch from one application to another to fulfill a given task when
it was not possible to re-assemble existing components of existing GUIs to form a
new one. Again, little or no methodological guidance exists in current development
methods to help designers reusing parts or whole of their design to initiate a new
development process.

This paper addresses the lack of support for reusing existing developments of GUIs
by introducing a visual design method based on three concepts: decomposition
disassembles an existing GUIs into individual or composite elements that can be
further reused for other designs; composition assembles individual and composite
elements to form a new GUI that fits the purpose of a given task; recomposition
performs a suite of decompositions and compositions to support re-design of existing
GUIs for new contexts of use.

Various simplified forms of decomposition and composition already exist
as reported in Section 2 devoted to the state of the art, but we are not aware of any
integrated method that is intended to support reusability at a high level of design that
does not force people to constantly apply physical and lexical operations. Section 3
presents a reference framework that will be extensively used in the rest of the paper:
any GUI will be described in the terms defined by this framework to maintain editable
specifications of the GUI of interest. Section 4 defines a series of operators for
decomposition and composition: each operator is logically defined, explained,
motivated and exemplified with a simple example. Section 5 validates the method by
applying these operators on a real-world case study in an interface builder
implemented for this purpose. Section 6 concludes the paper by reporting on the
main advantages and shortcomings of the work and suggesting some avenues for
future work.

2 Related Work

Due to the nature of our problem, the following state of the art is decomposed into
two categories: decomposition and composition.

Decomposition. The Covigo library (http://www.covigo.com) supports a simple form
of decomposition called pagination, where a web page is decomposed into smaller

 Visual Design of User Interfaces by (De)composition 159

pieces to be used on a smaller screen: special tags are inserted in a HTML web page
at run-time to decompose it into smaller pieces. Simple heuristics such as breaking
every fifth <tr> or breaking by size are used. Here, the pagination is fully automated,
with the attendant risk that it does not break the UI logically. On the other hand,
RIML [7] supports manual pagination, thus leaving the decomposition quality under
the designer’s control and responsibility: it defines additional mark-up for specifying
the layout and pagination capabilities of web pages that are then rendered through a
dedicated Web adaptation engine. Watters and Zhang [8] segment HTML forms into a
sequence of smaller forms, using partition indicators such as horizontal lines, nested
lists and tables. Complex layout relationships (e.g., use of tables for layout purpose)
probably constitute a bottleneck for such approaches.

To overcome the language restriction, another group of approaches relies on a
generic GUI description in a User Interface Description Language (UIDL) that is at a
higher level than the markup and programming languages. Major UIDLs such as
UIML [4], SunML [9], XIML [10] support decomposition as their UI description can
be split into logically related chunks. Again, the designer is responsible for this
operation without any support. Göbel et al. [6] describe web-based dialogs in a
device-independent way through “DLL dialog”, which is a composition of containers
and elements. Containers whose elements must appear together are called atomic.
Elements are assigned weights indicating their resource requirements in terms of
memory and screen size. Fragments with similar weights are generated, while
respecting the integrity of atomic containers. Navigation elements are added to permit
navigation between dialog fragments. No indication is given on how weights should
be assigned to leaf elements, which is a difficult task, especially for multiplatform
rendering. Ye & Herbert [11] apply similar heuristics for decomposing a XUL UI
description by relying on the hierarchy of widgets and containers, while respecting the
value of a ‘breakable‘ attribute attached to each component, which has to be explicitly
provided by the designer. PIMA [12] also relies on a UIDL, which is converted into
multiple device-specific representations, including a decomposition process. Like
other approaches, PIMA’s algorithm uses grouping constraints as well as information
on size constraints. MORALE [13] is a suite of tools for assembling GUIs with their
associated definitions, but all (de)composition operations are restricted to cut/-
copy/paste primitives.

While the aforementioned decomposition methods mostly work on a hierarchy of
GUI widgets, ROAM [5] consider a tree structure combining a task hierarchy and a
layout structure. The tree nodes are annotated as splittable or unsplittable depending
on the decomposition possibilities. ROAM’s does not really decomposes an existing
GUI as it merely moves the extra widgets that do not fit onto a new GUI. Graceful
degradation [14] addresses the decomposition problem, but only for the purpose of
obtaining GUIs for more constrained platforms, one dimension of the context of use,
but not the only one. AUIT [15] automatically generate code generation for JSP and
servlet implementations depending on parameters from any platform/user/task
combination. A set of XSLT transformation scripts convert the XML-encoded logical
screen design into several GUIs.

Composition. Several environments attempt to compose a new GUI by assembling
fragments coming from the same or different GUIs. They only differ by the level

160 S. Lepreux, J. Vanderdonckt, and B. Michotte

where the composition is performed. Scalable Fabric [16] is a smart environment
where documents associated with interactive applications are grouped depending on
their semantic relationships in the user’s task. Haystack [17] is a platform for
personalizing information spaces and applications for a particular user depending on
her tasks. WinCuts [18] recompose GUIs by duplicating parts or whole of a GUI into
a new one that corresponds to the users’ task. Similarly, Composable UIs [19] define
viewports on GUIs to form a new UI by putting the viewports side by side. A
detachable UI [20] is a GUI portion that can migrate from one computing platform to
another one with re-assembling on the target.

In summary, we observed that major approaches for (de)composition are often
language- or platform-dependent to some extend, do not identify independent high-
level design primitives for recomposition, are usually supported at the physical level
(e.g., as in [18,19,20]) or the application level without any flexibility, are typically
considering decomposition merely for screen constraints or multi-platform support.
Little or no methodological guidance is provided for this purpose, although it is
identified as a major design activity [1,2]. We are not aware of any research that
provides a systematic set of (de)composition primitives applicable to any GUI.

3 Reference Framework

To allow high-level design operations on any GUI, we should rely on a high level
description of the initial user interface. This description will be expressed in the
UsiXML (User Interface eXtensible Markup Language – http://www.usixml.org [21])
UIDL. The principles set out below are, however, generally applicable to any UIDL
such as UIML [4], SunML [9] or XIML [10]. UsiXML is structured according to the
four abstraction levels of the ‘CAMELEON reference framework’ [3] for multi-target
UIs (Fig. 1).

Environment T

Final user
Interface T

Concrete user
Interface T

Task and
Domain T

Abstract user
Interface T

T=Target context of use

Concrete user
Interface S

Final user
Interface S

Task and
Domain S

Abstract user
Interface S

S=Source context of use

Reification

Abstraction

Reflexion

Translation

http://www.plasticity.org

UsiXML
unsupported

model

UsiXML
supported

model

User S Platform S Environment S Platform TUser T Environment TEnvironment T

Final user
Interface T

Concrete user
Interface T

Task and
Domain T

Abstract user
Interface T

T=Target context of use

Concrete user
Interface S

Final user
Interface S

Task and
Domain S

Abstract user
Interface S

S=Source context of use

ReificationReification

AbstractionAbstraction

ReflexionReflexion

TranslationTranslation

http://www.plasticity.org

UsiXML
unsupported

model

UsiXML
supported

model

User S Platform SPlatform S Environment SEnvironment S Platform TPlatform TUser T

Fig. 1. The four abstraction levels used in the framework

 Visual Design of User Interfaces by (De)composition 161

A Final User Interface (FUI) refers to an actual UI rendered either by
interpretation (e.g., HTML) or by code compilation (e.g., Java). A Concrete User
Interface (CUI) abstracts a FUI into a description independent of any programming or
markup language in terms of Concrete Interaction Objects, layout, navigation, and
behavior. An Abstract User Interface (AUI) abstracts a CUI into a definition that is
independent of any interaction modality (such as graphical, vocal or tactile). An AUI
is populated by abstract components and abstract containers. Abstract components
are composed of facets describing the type of interactive tasks they are able to support
(i.e., input, output, control, navigation). The Tasks & Concepts level describes the
interactive system specifications in terms of the user tasks to be carried out and the
domain objects of these tasks. As (de)composition operations will be defined
independently of any context of use (including the computing platform), the CUI level
is the best candidate for a formal definition. Therefore, this level is more detailed in
the subsequent paragraphs.

A CUI may be obtained by forward engineering from the T&C level, the AUI level
or directly. A CUI is assumed to be described without any reference to any particular
computing platform or toolkit of that platform [21]. For this purpose, a CUI model
consists of a hierarchical decomposition of CIOs. A Concrete Interaction Object
(CIO) is defined as any UI entity that users can perceive such as text, image,
animation and/or manipulate such as a push button, a list box, or a check box. A CIO
is characterized by attributes such as, but not limited to [21]: id, name, icon, content,
defaultContent, defaultValue.

4 (De)composition Operations

In this section, (de)composition operations are first defined based on the UsiXML
concepts of a Concrete User Interface. Since the UI is represented in UsiXML terms
and since it is a XML-compliant language, operations could be defined thanks to tree
algebra, with which operations could be logically defined on the XML tree and
directly performed. El-bekaï et al. defined a set of operators to comparison (similarity,
equivalence and subsumption) and others operators adapted to database [22]. We
adapt their notation presented in the next part to decomposition and composition goal
in the second part. Then, an implementation is described of a tool that supports a
method based on these operations.

4.1 Relation Between UsiXML, XML and Tree Algebra

Since each GUI is described in UsiXML terms as a Concrete User Interface as
indicated in the previous section, each GUI is internally represented as a tree of XML
elements.

Thus, the correspondence proposed by [22] gives that the basic elements of a
UsiXML UI, i.e. a XML tree, could be defined logically:

• XML document Tree (T)
• Element Root node (R), parent (P), child (C) node
• Leaf child (C) node, atomic (A) values

162 S. Lepreux, J. Vanderdonckt, and B. Michotte

Fig. 2 shows the relationships between a GUI (top left), its UsiXML specifi-
cations (top right) and its internal structure as a XML tree in order to perform the
operations.

Window

Box

Button

<cuiModel id="AVI2006-cui_2" name="AVI2006-cui">
<window id="window_component_0"

name="window_component_0"
width="400" height="350">
<box id="box_1" name="box_1" type="vertical">

<button id="button_component_2"
name="button_component_2"
defaultContent="1" isVisible="true" isEnabled="true“

textColor="#000000"/>
</box>

</window>
</cuiModel>CUI

name width height

w1 400 350

name type

Box_1 vertical

id name Default_content

Button_1 Button_1 1

Root (R)

Parent (P)

Child (C)

Atomic values (A)

id

W_component_0

name

AVI06-CUI

id

AVI06-CUI_2

Fig. 2. An UI, its UsiXML and its tree representation

4.2 Presentation of the Operators

A first part presents a few operators associated to the decomposition, whereas a
second part presents a few operators linked with the composition.

4.2.1 Operators Supporting Decomposition
This part defines two basic operators working on the internal structure of the UsiXML
specifications. Other operators such as Cut, Projection, and Complementary are
defined with the same principle but are not presented here.

Selection

TET →))((σ

Pre : let T a tree and E an Expression

Post :
21))((TET =σ

trueCECTCT

truePEPTPT

trueRERTRT

==

==

==

)()()(

)()()(

)()()(

12

12

12

(1)

The Selection operator which works upon tree and an expression is defined in (1).
This operator aims at keeping the node which corresponds to the expression. For
example, Fig. 3 apply the expression E={output} to an UI and its result. The resulting
UI is the same as in the input UI with only the “output” elements.

 Visual Design of User Interfaces by (De)composition 163

Fig. 3. Example of the selection operator

Intersection

TTT →∩

Pre : let treesTT 21 ,

Post :
321 TTT =∩

))((2)()()(

))((2)()()(

)()(

21213

21213

13

CTTCTCTCT

PTTPTPTPT

RTRT

−+=
−+=

=

(2)

The intersection operator is defined in (2). It is a binary operator; it takes two trees
as input. The output is new XML data containing elements, root node, parent nodes
and child nodes which are in one of two trees data model. The intersection operator
applied on two similar interfaces will give the interface shown in Fig. 4.

In this algorithm, the different elements are compared. We have stated that two
elements are identical or similar if they have the same type (i.e. button), the same
name in one language (i.e. save) and all the required attributes. As the size and the
color are optional arguments, we consider that they can be different. In this case the
resulting button keeps only the options which are identical in the two tested button.

Fig. 4. Example of the intersection operator

4.2.2 Operators Supporting Composition
This part defines two basic operators on the internal structure of the UsiXML
specifications. Other operators, such as “Difference” operator are defined with the
same principle but are not presented here. This difference operator takes two trees as
input and gives a tree as output. The output tree is the very first input tree without the
elements which are included in the two input trees.

164 S. Lepreux, J. Vanderdonckt, and B. Michotte

Fusion

TTT →+

Pre : let treesTT 21 ,

Post : 321 TTT =+

)()()(

)()()(

)()(

213

213

13

CTCTCT

PTPTPT

RTRT

+=
+=

=

(3)

The fusion operator is defined in (3). It is a binary operator; it takes two trees as
input. The output is new XML data containing elements, root node, parent nodes and
child nodes which are in the two trees data model. The fusion operator applied on two
interfaces, following the algorithm 1, will give the interface shown in Fig. 5.

%algorithm1: The two trees T1 and T2 are merge at the %level
R+1 to form the T3 window.

IF (direction = vertical)
Then Add box (vertical B’)
 %Modify the window size:
 T3.height = T1.height + T2.height
 T3.width = T1.width

IF (direction = horizontal)
Then Add box (horizontal B’).
 %Modify the window size:
 T3.height = T1.height
 T3.width = T1.width + T2.width

Add T1(R+1) in box B’, Add T2(R+1) in box B’.

Fig. 5. Example of the fusion operator

Union

TTT →∪

Pre : let treesTT 21 ,

Post :
321 TTT =∪

))(()()()(

))(()()()(

)()(

21213

21213

13

CTTCTCTCT

PTTPTPTPT

RTRT

−+=
−+=

=

(4)

The output of the union operator consists of new XML data containing elements,
root node, parent nodes and child nodes in the two input trees data model without the
duplication of any elements such root nodes, parent nodes and child nodes. The union
is disjoint: duplicates are purged. This operator is defined in (4). To illustrate this
operator, one example of result is shown in Fig. 6. However, if the two “name”

 Visual Design of User Interfaces by (De)composition 165

elements are considered as identical then the result could be different. Since the
duplicates are purged, the Area text associated to the name which is present in the
same structure and content in the two input interfaces will be purged in the output
user interface. The result is presented Fig. 7(a). The Union operator does not take into
account the place of the element in the interfaces so the result can be as shown in Fig.
7(b). In this case, we could consider some of the operators as ‘presentation-
independent’, that is they are not sensible to physical aspects of the GUI such as
position, size, arrangement, colors, fonts, style. However, if such a need arises, it is
still possible to incorporate these constraints as conditions.

Fig. 6. An example of expected user interfaces from union of the two user interfaces

 (a) (b)

Fig. 7. The other results expected from the Union operator

4.3 Implementation

Some of the above operations have been directly implemented in GrafiXML,
a graphical interface builder that automatically generates UsiXML specifications as
opposed to final code for other builders. GrafiXML has been implemented in Java 5.0
and today consists of more than 90,000 lines of Java code. It can be freely downloaded
from http://www.usixml.org as it is an open source project regulated by Apache 2.0
open licence and available on SourceForge. GrafiXML is able to automatically
generate code of a UI specified in UsiXML into (X)HTML or Java. For the purpose
of the examples below, we will rely on the Java automated code generation.

5 Case Studies

The operators defined here above can be used in two cases. At the design time, they
can be used by the designers to create the user interfaces. For example, the user

166 S. Lepreux, J. Vanderdonckt, and B. Michotte

interfaces which are built to one application or to a set of applications of the firm have
to respect a graphic charter. With the operator, the designer can reuse some of the
elements of the user interfaces. This is already illustrated by the examples associated
to the operators. This case is not presented here but is presented in [23]. The second
case of use is at run time. It is integrated in the reuse issue which has introduced the
component idea. The first issue in this domain is the composition of the components.
If we consider the business component as a component with user interfaces, one issue
in the domain of HCI is to compose the user interfaces of the business components.
The using of business components and of their user interfaces brings to the user
interfaces composition issue. If we consider that the user interfaces are specified with
UsiXML, the union operator is particularly interesting for the composition.

Fig. 8. Initial UI for a tourist application

Fig. 9. Initial UI for an event management application

Let us now consider another case study taken in the domain of tourism. In this
domain, it happens frequently that some parts of the same information should be
reproduced in different UI for different events (e.g., hotel information, tourist trip

 Visual Design of User Interfaces by (De)composition 167

including hotel booking, booking a hotel, etc.). Fig. 8 reproduces a screenshot of a
Concrete User Interface edited in the editor and its preview in Java (obtained by Java
automated code generation). This view is particularly appreciated by designers and
developers (and even end users) as it combines the design view and the final view,
which is pretty close to the UI as the end user will see. In order to define a precise
layout, a matrix of lines and guides could be defined to align objects in lines and
columns.

Fig. 9 reproduces another UI for an event management application, also taken in
the same domain. The two UIs only differ from a few fields, here the dates of the
events in Fig. 8 and the comment in Fig. 9. Therefore, if we want to identify the
common part of these two UIs, the intersection operator performs the operation, as
defined previously, to identify common parts of both trees and then rebuilds a
new tree with the identified elements. This operator re-generates new UsiXML
specifications. This intersection is reproduced in Fig. 10. Note in Fig. 10 that the
designer did not need to do anything: all common elements were identified, a new
layout was produced so as to mimic the initial one and all objects have been laid out
and aligned to preserve the initial constraints. Therefore, there was no need to re-
position, re-align, or re-arrange the widgets.

Fig. 10. Intersection of UIs found in Fig. 10 and 11

Fig. 11. Difference between Fig. 10 and 11

Similarly, Fig. 11 illustrates the application of the difference operator, in this case
Fig. 8 – Fig. 9. Therefore, Fig. 11 only contains those widgets of Fig. 8 that are not

168 S. Lepreux, J. Vanderdonckt, and B. Michotte

present in Fig. 9. Again, these widgets are identified and re-laid out so as to form an
entirely new UI that is ready to test with the end user. Note that it is even possible to
define new operators or composition of individual operators. As soon as this
intersection is identified, it is possible to submit again this intersection to any other
operation (here, a sequence of global copy/paste) so as to define a new operator by
composition. The composition of UI operators is inspired from the macro-commands
from the domain of command languages where several individual commands applied
to some objects could be grouped together into a macro-command. In this way, the
designer is able to define her/his own combination of operators and repetitions on
demand. At any time, each operator works on the underlying UI model expressed in
UsiXML. Without this characteristic, it would have been almost impossible to
program these operators in a classical interface builder where all widgets are
physically defined. Instead, they are here logically defined, thus allowing logical
operations. At any time, the code of the final UI can be produced.

The last example showed Fig. 12 concerns the (vertical) union operator. This
operator allows composing two interfaces without repetition. In this case, two parts of
information are repeated, the designation and the piece of information. These common
parts are viewed in the Fig. 10 which presents the intersection. So these elements
are not duplicated by the union operator. All the elements are placed with the respect
of the initials UIs. In this case, if the fusion operator is used, then all the elements of
each interface are laid-out. The common elements will be presented twice.

Fig. 12. Union of Fig. 8 and 9

6 Conclusion and Future Work

We have described logical operators with which it is possible to manipulate UI
portions or whole at a large grain than simply with the widget level that is the most
common technique found in classical interface builders. Therefore, instead of
manipulating one widget at time for designing a UI (an activity that is time
consuming and tedious), it is possible to manipulate UI fragments as such. Then, and
only then, cut/copy/paste operations could be applied. The main difference is that
these operations are logically applied as opposed to a physical application where all
individual widgets need to be re-positioned, re-sized, and re-arranged. Re-positioning,

 Visual Design of User Interfaces by (De)composition 169

re-sizing, and re-arrangement are the most frequently executed operations in interface
builders, consequently to redesigning a UI or reusing a previously designed UI. This
situation also often occurs when UI templates are used.

The operators which have been introduced are logically defined based on the tree
algebra and adapted to the domain of user interfaces. These operators were described
with an example and more developed in the case study. Using of the operators from
the tree algebra is appropriate because the user interfaces are specified in UsiXML
and because the XML documents can be processed like trees.

Acknowledgments

We gratefully thank the support from the SIMILAR network of excellence (The
European research taskforce creating human-machine interfaces SIMILAR to human-
human communication), supported by the 6th Framework Program of the European
Commission, under contract FP6-IST1-2003-507609 (http://www.similar.cc). The
authors thank also the Nord-Pas de Calais regional authority (Projects MIAOU and
EUCUE) and the FEDER (Fonds Européen de Développement Régional, European
Fund for Regional Development) for supporting a part of this work.

References

1. Brown, J.: Exploring Human-Computer Interaction and Software Engineering
Methodologies for Creation of Interactive Software. SIGCHI Bulletin 29, 1 (1997) 32–35

2. Morch, A.: Tailoring tools for system development. Journal of End User Computing 10, 2
(1998) 22–29

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with
Computer 15, 3 (2003) 289–308

4. Ali M.F., Pérez-Quiñones M.A., Abrams M.: Building Multi-Platform User Interfaces with
UIML. In: Seffah, A., Javahery, H. (eds.): Multiple User Interfaces: Engineering and
Application Framework. John Wiley, Chichester (2004) 95–118

5. Chu, H., Song, H., Wong, C., Kurakake, S., Katagiri, M.: Roam, a Seamless Application
Framework. Journal of System and Software 69, 3 (2004) 209–226

6. Göbel, S., Buchholz, S., Ziegert, T., Schill, A.: Device Independent Representation of
Web-based Dialogs and Contents. In Proc. of IEEE Youth Forum in Computer Science and
Engineering YUFORIC´01 (Valencia, November 2001). IEEE Computer Society Press,
Los Alamitos (2001)

7. Spriestersbach, A., Ziegert, T., Grassel, G., Wasmund, M., Dermler, G.: Flexible
Pagination and Layouting for Device Independent Authoring. In Proc. of WWW’2003
Workshop on Emerging Applications for Wireless and Mobile Access (2003)

8. Watters, C., Zhang, R.: PDA Access to Internet Content: Focus on Forms. In Proc. of the
36th Annual Hawaii Int. Conf. on System Sciences HICSS'03 (Big Island, January 2003).
IEEE Computer Society Press, Los Alamitos (2003) 105–113

9. Dery-Pinna, A.-M., Fierstone, J., Picard, E.: Component Model and Programming: a First
Step to Manage Human-Computer Interaction Adaptation. In Proc. of 5th Int. Symposium
on Human-Computer Interaction with Mobile Devices and Services MobileHCI’2003
(Udine, September 8-11, 2003). Lecture Notes in Computer Science, Vol. 2795. Springer-
Verlag, Berlin (2003) 456–460

170 S. Lepreux, J. Vanderdonckt, and B. Michotte

10. Eisenstein, J., Vanderdonckt, J., Puerta, A.: Model-Based User-Interface Development
Techniques for Mobile Computing. In Lester J. (ed.): Proc. of 5th ACM Int. Conf. on
Intelligent User Interfaces IUI’2001 (Santa Fe, January 14-17, 2001). ACM Press, New
York (2001) 69–76

11. Ye, J., Herbert, J.: User Interface Tailoring for Mobile Computing Devices. In Proc. of 8th
ERCIM Workshop « User Interfaces for All » UI4All’04 (Vienna, June 28-29, 2004).
Lecture Notes in Computer Science, Vol. 3196, Springer-Verlag, Berlin (2004) 175–184

12. Banavar, G., Bergman, L.D., Gaeremynck, Y., Soroker, D., Sussman, J.: Tooling and
System Support for Authoring Multi-device applications. Journal of Systems and Software
69, 3 (2004) 227–242

13. Rugaber, S.: A Tool Suite for Evolving Legacy Software. In Proc. of IEEE Int. Conf. on
Software Maintenance ICSM'99 (Oxford, 30 August-3 Sep. 1999). IEEE Comp. Society
Press, Los Alamitos (1999) 33–39

14. Florins, M., Vanderdonckt, J.: Graceful Degradation of User Interfaces as a Design
Method for Multiplatform Systems. In Proc. of Int. Conf. on Intelligent User Interfaces
IUI’04 (Funchal, January 13-16, 2004). ACM Press, New York (2004) 140–147

15. Grundy, J.C., Hosking, J.G.: Developing Adaptable User Interfaces for Component-based
Systems. Interacting with Computers 14, 3 (2001) 175–194

16. Robertson, G., Horvitz, E., Czerwinski, M., Baudisch, P., Hutchings, D., Meyers, B.,
Robbins, D., Smith, G.: Scalable Fabric: Flexible Task Management. In Proc. of ACM
Conf. on Advanced Visual Interfaces AVI’2004 (Gallipoli, May 25-28, 2004). ACM Press,
New York, (2004) 85–89

17. Quan, D., Huynh, D., Karger, D.R.: Haystack: A Platform for Authoring End User
Semantic Web Applications. In Proc. of International Semantic Web Conference (2003)

18. Tan, D.S., Meyers, B., Czerwinski, M.: WinCuts: Manipulating Arbitrary Window
Regions for more Effective Use of Screen Space. In Proc. of ACM Conf. on Human
Aspects in Computing Systems CHI’2004 (Vienna, April 2004). ACM Press, New York
(2004) 1525-1528

19. Leventhal, E., Grubis, A.: Composable User Interfaces. The MITRE Corporation, Bedford
USA (2004)

20. Grolaux, D., Vanderdonckt, J., Van Roy, P.: Attach me, Detach me, Assemble me like You
Work. In Costabile, M.-F., Paternò, F. (eds.): Proc. of 10th IFIP TC 13 Int. Conf. on
Human-Computer Interaction INTERACT’2005 (Rome, September 12-16, 2005), Lecture
Notes in Computer Science, Vol. 3585, Springer-Verlag, Berlin (2005) 198–212

21. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez, V.: USIXML: a
Language Supporting Multi-Path Development of User Interfaces. In Proc. of 9th IFIP
Working Conf. on Engineering for Human-Computer Interaction jointly with 11th Int.
Workshop on Design, Specification, and Verification of Interactive Systems EHCI-DSV-
IS’2004 (Hamburg, July 11-13, 2004). Lecture Notes in Computer Science, Vol. 3425.
Springer-Verlag, Berlin (2005) 200–220

22. El Bekai, A., Nick Rossiter, B.: A Tree Based Algebra Framework for XML Data Systems.
In Proc. of the 7th Int. Conf. on Enterprise Information Systems ICEIS’2005 (Miami, May
25-28, 2005) (2005) 305–312

23. Lepreux, S., Vanderdonckt, J.: Toward a support of the user interfaces design using
composition rules. In Calvary, G., Pribeanu, C., Santucci, G., Vanderdonckt, J. (eds): Proc.
of the 6th International Conference on Computer-Aided Design of User Interfaces
(CADUI'2006). (Bucharest, Romania, June 5-8, 2006) Chapter 19, Springer-Verlag,
Berlin, (2006)

	Introduction
	Related Work
	Reference Framework
	(De)composition Operations
	Relation Between UsiXML, XML and Tree Algebra
	Presentation of the Operators
	Implementation

	Case Studies
	Conclusion and Future Work
	References

