
231

Chapter 19

TOWARDS A SUPPORT OF USER INTERFACE
DESIGN BY COMPOSITION RULES

Sophie Lepreux1,2 and Jean Vanderdonckt2
1Université de Valenciennes, LAMIH – RAIHM UMR CNRS 8530,
Campus du Mont-Houy – F- 59313 Valenciennes Cedex 9(France)
E-mail: sophie.lepreux@univ-valenciennes.fr
2School of Management, Université catholique de Louvain,
Place des Doyens 1 – B-1348 Louvain-La-Neuve (Belgium)
E-mail: {lepreux, vanderdonckt}@isys.ucl.ac.be
URL : http://www.isys.ucl.ac.be/bchi/members/{sle,jva}
Tel.: +32 10 47 85 25 – Fax : +32 10 47 83 24

Abstract The design of user interfaces is a step which takes a long time. The automatic
generation of these interfaces induces shorter durations. With this automatic
generation, the UIDLs have appeared. They allow specifying an interface us-
ing a Description Language. A step which also takes a long time is the redes-
igning of the user interface to take into accounts users remarks. We propose to
use the operators of the tree algebra with a UIDL as UsiXML which is struc-
tured as a tree to improve this step of design. These operators help the designer
to modify the interfaces and to reuse parts of interfaces. We have estimated the
saving of time in two case studies.

Keywords: Tree algebra, User interfaces engineering, User interface extensible mark-up
language.

1. INTRODUCTION

In general, the User Interface (UI) design step takes a long time. Once the
specifications have been validated, the designer creates the UI mock-up and
the prototype. Later, the validation step is again challenged by the users of
the UI. Sometimes, it must be remade; often, it must be improved. Many de-
sign processes are iterative so this part is realized at several times [8]. Often
the users request simple modifications as “move this part of the interface in
another screen” or “add a field here with this information” and so on. These
requests, which are simple in theory, are expensive to implement if the envi-

232 Lepreux and Vanderdonckt

ronment is not adapted to these needs [11]. We attempt to enrich the design
environment by operators to simplify the redesign of the user interfaces.
These operators are able to adjust the user interface after the deletion or the
addition of an item. Consequently, they should bring a saving of time. The
action analysis brings us a mean to estimate this saving of time [7]. More-
over, these operators allow the reuse of existing user interfaces. The opera-
tors are combined with an UIDL (User Interfaces Descriptor Language) to
reuse parts or the whole of existing user interfaces. The proposed operators
are used in this paper at the design time; however they can be used at the run
time. For example, the Rainbow project [4] attempts to apply some operators
as fusion by union or intersection at the run time in order to obtain a context-
adapted user interface. They use the language SUNML which is a simple
language, adapted to structural assembling of abstract widgets and so of HCI
components. As far as we are concerned, we hope to use the operators at the
runtime, i.e., UIDL files interpretation should contain the results section is-
sue of operator, as well as at the design time within the editor. This article is
focused on the design time. Indeed, another problem emerges at the run time
about the data contained in the widgets.

The second part presents the UIDL which is used in this research, named
UsiXML. The third part introduces the operators used to design and redesign
UI and which are implemented in the editor associated to UsiXML named
GrafiXML. The operators are evaluated with the GOMS method upon two
case studies. The first one aims at illustrating the help brought by the opera-
tors to designing a UI and the second one aims at validating the operators to
the redesign of UI. The paper ends with a conclusion and future work.

2. DESIGNING USER INTERFACES WITH USIXML

To allow high-level design operations on any GUI, we should rely on a
high level description of the initial user interface. This description will be
expressed in the UsiXML (User Interface eXtensible Markup Language –
http://www.usixml.org [9]) UIDL. The principles set out below are, how-
ever, generally applicable to any UIDL such as UIML [1] or XIML [5].
UsiXML is structured according to the four abstraction levels of the CAME-
LEON reference framework [2] for multi-target UIs (Fig. 1). A Final User In-
terface (FUI) refers to an actual UI rendered either by interpretation (e.g.,
HTML) or by code compilation (e.g., Java). A Concrete User Interface
(CUI) abstracts a FUI into a description independent of any programming or
markup language in terms of Concrete Interaction Objects (CIO), layout,
navigation, and behavior. An Abstract User Interface (AUI) abstracts a CUI
into a definition that is independent of any interaction modality [9].

Towards a Support of User Interface Design by Composition Rules 233

Environment T

Final user
Interface T

Concrete user
Interface T

Task and
Domain T

Abstract user
Interface T

T=Target context of use

Concrete user
Interface S

Final user
Interface S

Task and
Domain S

Abstract user
Interface S

S=Source context of use

Reification

Abstraction

Reflexion

Translation

http://www.plasticity.org

UsiXML
unsupported

model

UsiXML
supported

model

User S Platform S Environment S Platform TUser T Environment TEnvironment T

Final user
Interface T

Concrete user
Interface T

Task and
Domain T

Abstract user
Interface T

T=Target context of use

Concrete user
Interface S

Final user
Interface S

Task and
Domain S

Abstract user
Interface S

S=Source context of use

ReificationReification

AbstractionAbstraction

ReflexionReflexion

TranslationTranslation

http://www.plasticity.org

UsiXML
unsupported

model

UsiXML
supported

model

User S Platform SPlatform S Environment SEnvironment S Platform TPlatform TUser T

Figure 1. The four abstraction levels used in the framework.

The Tasks & Concepts level describes the interactive system specifica-
tions in terms of the user tasks to be carried out and the domain objects of
these tasks. As the operators used to compose the user interface will be de-
fined, in the first time, to be specific to one modality (e.g., graphical, vocal),
the CUI level is the best candidate for a formal definition.

3. USING OF THE OPERATORS FOR THE USER
INTERFACES COMPOSITION

To improve the development step of user interfaces corresponding at the
time where the user asks the designer to modify the user interface, we pro-
pose to use a set of operations such as the union, the intersection, the selec-
tion, which is developed in the next part. These operators can also be used to
reuse existing user interfaces. In general, the same information can be found
in several user interfaces within the same application or the same domain.

3.1 Defining of the Operators

The operators are first defined, based on the UsiXML concepts of a Con-
crete User Interface. Then, the implementation of the operators in an existing
editor is described. For the most important operators, we provide a complete
formal definition which is defined thanks to a tree algebra for XML [6].

234 Lepreux and Vanderdonckt

3.1.1 XML Document as a Tree Structure

Jagadish et al. define a data model [6]. A data tree is a rooted, ordered
tree, such that each node carries data (its label) in the form of a set of attrib-
ute-value pairs. Each node has a special, single valued attribute called tag
whose value indicates the type of element. A node may have a content at-
tribute representing its atomic value. Each node has a virtual attribute called
pedigree drawn from an ordered domain. The pedigree carries the history of
“where it came from”. Pedigree plays a central role in grouping, sorting and
duplicate elimination. They define a pattern tree as a pair P = (T, F), where T
= (V,E) is a node-labeled and edge-labeled tree such that:

• Each node in V has a distinct integer as its label ($i);
• Each edge is either labeled pc (for parent-child) or ad (for ancestor-

descendant);
• F is a formula, i.e. a Boolean combination of predicates applicable to

nodes.

This pattern is used to define a database and to define the predicate used
in the operations. This notation is specific to the database. So we propose a
variant which is adapted to documents specific to interface. Indeed, in the
HCI case, the most important is the structure and not the content. For exam-
ple, it is more important to know that the window has a box as sub-element
than that the window have a height=300. So the attributes are stored with the
tag. A node is a tag with these attributes and their content. The pattern tree
keeps coherent with the variant definition. Another point specific to the da-
tabase is that the data are in several data trees so the operators use a collec-
tion of data trees in input and output. In the HCI case, the input is one (for
the unary operators) or two (for the binary operators) XML documents so
one or two data trees. With this notation, the Selection, the Normal union
and the Difference operators are formal defined here.

Selection. The selection is a unary operator. It takes a tree in input with a
pattern tree and gives a tree in output. The definition brought by Jagadish et
al. can be adapted. The output σ(T, P) of the selection operator is a tree. The
output is defined as follow. A node u in the input tree T belongs to the output
iff u matches some pattern node in P, or u is a descendant of a node v in T
which matches some pattern node w. Whenever nodes u, v belong to the out-
put such that among the nodes retained in the output, u is the closest ancestor
of v in the input, the output contains the edge (u,v). The relative order among
nodes in the input is preserved in the output, i.e. for any two nodes u,v in the
output, whenever u precedes v in the tree T, u precedes v in the tree of the
output. For example, the selection operator applied with the pattern pre-
sented in Fig. 2b to the tree presented in Fig. 2a and is illustrated in Fig. 3.

Towards a Support of User Interface Design by Composition Rules 235

Figure 2. (a) A one-tree XML interface ; (b) a pattern tree.

Figure 3. Selection of output in a user interface.

Normal Union. The Union operator takes a pair of trees T1 and T2 as in-
put and produces an output tree as follows.

Firstly, the root of the output tree T3 is created:
If (T1.$1.tag == T2.$1.tag ==window) then T3.$1.tag = window with

If (horizontal Union) then content.width = T1.$1.content.width +
T2.$1.content..width then (vertical) content width = max (T1.$1.width,
T2.$1.width) and

If (vertical Union) then content.height = T1.$1.content.height +
T2.$1.content.height else (horizontal Union) content.height =
max(T1.$1.content.heiht, T2.$1.content.height)

If (T1.$1.tag == window && T2.$1.tag == box) then T3.$1 = T1.$1.
If (T1.$1.tag == box && T2.$1.tag == window) then T3.$1=T2.$1.

Then
To obtain a vertical Union: The child of the new root is added with

tag = Box and type = “vertical”. Their left child(s) are the children of the
root of T1 and their right child(s) are the children of the root of T2.

To obtain a horizontal Union: The child of the new root is added with
tag = Box and type = “horizontal”. Their left child(s) are the children of
the root of T1 and their right child(s) are the children of the root of T2
(Fig. 4).

Else T3.$1.tag = box with content.type = “horizontal” or “vertical” ac-

236 Lepreux and Vanderdonckt

cording to type of the Union. Their left child(s) are the children of the
root of T1 and their right child(s) are the children of the root of T2.

For each node in the left and right subtrees of the new root node, all
attribute values are the same as the input trees.

The duplicates must be deleted (this part is not detailed here).

Figure 4. A Union Result.

Figure 5. Union of two user interfaces.

Difference. The difference operation takes a pair of trees T1 and T2 as
input and produces an output tree. The tree T2 is presented as pattern tree to
identify the nodes of the second input which are in the first input tree. Then
the identified nodes can be deleted. This operator corresponds to the node
Deletion defined by Jagadish et al. [6] and adapted to the HCI domain. The
delete operator takes a Tree as input and a pattern tree P and a delete specifi-
cation (DS) is a sequence of expressions of the form $i or $i*, where $i is
one of the node labels appearing in P. It generates a tree as output, as fol-
lows. Every node in T that matches some pattern node labeled $i in P, under
some embedding, is marked i. The output tree is a copy of the marked input
tree. Whenever a node u in the output corresponds to an input node marked i
and the pattern node labeled $i in P, then

• If DS contains the expression $i*, the node u is deleted with all its de-
scendants.

• If DS contains the expression $i, then node u is deleted, and each of its
children is made a direct child of u’s parent. These children retain their
relative order, and are inserted in the same position with respect to node
u’s siblings as node u used to be.

Towards a Support of User Interface Design by Composition Rules 237

Figure 6. Difference between two interfaces.

T1 T2
Unitary operators Binary operators

Set T1

Set T2

Similarity
T1 ~ T2

Equivalence
T1 ≈ T2

Left difference
T1 / (T1∩T2)
(Complementary of T2)
Right difference
T2 / (T1∩T2)
(Complementary of T1)

Selec-
tion(,T1)

Intersection
T1∩T2

Unique union
(T1 T2)/(T1∩T2)

∩

Normal union
T1 T2

∩

Fusion T1+T2=
(T1 T2) (T1∩T2)

∩ ∩ ∩

Comple-
mentary(,T1)

Cut(,T1)

Subsumption
T1 ⊂ T2

Join
T1⊗T2

T1 T2
Unitary operators Binary operators

Set T1

Set T2

Similarity
T1 ~ T2

Equivalence
T1 ≈ T2

Left difference
T1 / (T1∩T2)
(Complementary of T2)
Right difference
T2 / (T1∩T2)
(Complementary of T1)

Selec-
tion(,T1)
Selec-
tion(,T1)

Intersection
T1∩T2

Unique union
(T1 T2)/(T1∩T2)

∩Unique union
(T1 T2)/(T1∩T2)

∩

Normal union
T1 T2

∩Normal union
T1 T2

∩

Fusion T1+T2=
(T1 T2) (T1∩T2)

∩ ∩Fusion T1+T2=
(T1 T2) (T1∩T2)

∩Fusion T1+T2=
(T1 T2) (T1∩T2)

∩ ∩ ∩

Comple-
mentary(,T1)
Comple-
mentary(,T1)

Cut(,T1)

Subsumption
T1 ⊂ T2

Join
T1⊗T2

Figure 7. Illustration of composition/decomposition operators.

Due to space limitations, the definition of the remaining operators will be
limited in natural language as they can be obtained by analogy to the previ-
ous ones. The set of operators is presented in Fig. 7. Each UI is shown as a
set. The operators are unitary as: Set: The input of the set operator is one

238 Lepreux and Vanderdonckt

XML tree. The output is the input tree. Selection: The input of the Selection
operator is one XML tree and an expression. The output is a new XML
document. The output tree is a set of elements which correspond to the ex-
pression. Complementary: The input of the complementary operator is one
XML tree and an expression. The output tree is a new XML document corre-
sponding to the input tree without the elements which correspond to the ex-
pression. Cut: The input of the cut operator is one XML tree and a parameter
as a Node. The new output tree corresponds to the input tree without the
elements which correspond to the parameter. Projection: The input of the
projection operator is one XML tree and parameter as Node (N). The output
tree corresponds to the search node and its child.

Among the binary operators (the input is two XML trees) are some op-
erators aimed at comparing two UIs. They have a Boolean result: Similarity
is used to compare the structure and not the data. Equivalence is used to
compare the structure and the data. Subsumption is used to verify that one
is a subset of the other.

The other binary operators allow the extracting of parts of the input trees:
Left or Right Difference is used to extract the common part of two trees
from one (right or left). Fusion is used to assembly the two trees with the
repetition of the common part. Normal Union is used to assembly the two
trees without repetition. Unique Union is used to assembly the two trees
without the common part. Intersection is used to select only the common
part of the two trees. Join is used to concatenate the set of nodes of the two
input trees in function of the common nodes.

3.1.2 Implementation

Some of the above operations have been implemented in GrafiXML, a
graphical interface builder that automatically generates UsiXML specifica-
tions as opposed to final code for other builders. GrafiXML has been imple-
mented in Java 5.0 and today consists of more than 100,000 lines of Java
code. It can be freely downloaded from http://www.usixml.org as it is an
open source project regulated by Apache 2.0 open licence and available on
SourceForge. GrafiXML is able to automatically generate code of a UI
specified in UsiXML into (X)HTML or Java. For the purpose of the exam-
ples below, we will rely on the Java automated code generation.

3.2 Evaluation of the Benefits brought by the Operators

In this part, two case studies of UI design are presented. The first case
study, in the insurance domain, aims at showing how the operators can be
used to reuse the parts of one or more user interfaces. The second case study

Towards a Support of User Interface Design by Composition Rules 239

aims at presenting how to use the operators to modify an existing user inter-
face according to user’s suggestions. The GOMS (Goals, Operations, Meth-
ods and Selection rules) model is used to evaluate the saving in time (Table
1 [3,10]). For example, to modify a title of a window, the user right click on
the window which costs 0.3s, to move hand to point device, 0.075s to exe-
cute a mental step, 1.5s to use a mouse and 0.075 to execute a mental step.
Then, the user hits the title which costs 0.28s by letter, 0.075 to execute the
mental step. To finish the user clicks on “validate”. It costs 1.5s to use
mouse and 0.075 for the mental step. The using of an operator costs 1.5 to
use the mouse, 0.075 to execute the mental step, 1.2 to choose among meth-
ods and 0.075 to execute the mental step, the result cost is 2.85s.

Table 1. Average times for computer interface actions.

Physical Movements
Enter one key-
stroke on a stan-
dard keyboard

.28 second Ranges from .07 second for highly skilled typists doing
transcription, to .2 second for an average 60-wpm typist, to
over 1 second for a bad typist. Random sequences, formu-
las, and commands take longer than plain text.

Use mouse to
point at object on
screen

1.5 second May be slightly lower – but still at least 1 second – for a
small screen and a menu. Increases with larger screen,
smaller objects.

Move hand to
pointing device or
function key

.3 second Ranges from .21 second for cursor keys to .36 second for a
mouse.

Mental actions
Retrieve a simple
item from a long-
term memory

1.2 second A typical item might be a command abbreviation (“dir”).
Time is roughly halved if the same item needs to be re-
trieved again immediately.

Execute a mental
“step”

.075 sec-
ond

Ranges from .05 to .1 second, depending on what kind of
mental step is being performed.

Choose among
methods

1.2 second Ranges from .06 to at least 1.8 seconds, depending on
complexity of factors influencing the decision.

3.2.1 First Case Study: Operators for Reusing User Interface Parts

We consider an information system in which the same information can be
found in several interfaces, as for the insurance application. The needs of in-
surance companies is to manage the relation with customers (registration,
movements, terminate), to manage damages (report, negotiate with another
company, compensate the client) and so on. To design the user interfaces of
such an application, the designer begins by specifying the items to place,
places the items which compose the interface, and finishes positioning and
putting them together. The designer makes the two first initial user interfaces
corresponding to the Client registration and the Vehicle registration (Fig. 6).
From these first interfaces, others interfaces can be partly designed using the

240 Lepreux and Vanderdonckt

operators. The forms “Client Modifying” and “Vehicle Modifying” (Fig. 7)
made with operators induce a cost of 35.025 seconds and 76.17 seconds,
while those made without operators induce a cost of 37.875 seconds and
101.82 seconds (Table 2). The use of operators leads a benefit about 6% and
25% for the two considered forms. The using of the operators is still signifi-
cant with the design of the bill UI (Fig. 8). The benefit equals 92.72 % (Ta-
ble 3).

Figure 8. Initial User Interfaces for Client Registration and Vehicle Registration.

Figure 9. Client Modifying and Vehicle Modifying UI Derived from the initial UI.

Table 2. Time evaluation to design UI.

Goal Action without operators Time with opera-
tors

Time

Create the
Client
Modifying

Modifying of
the title

Right Click on the
window
Tape the new title

1.5+0.075+
0.3+0.075+
0.28*9+0.075+1

Right Click
on the win-
dow

1.5+0.075+
0.3+0.075+
0.28*9+0.075

Towards a Support of User Interface Design by Composition Rules 241

Goal Action without operators Time with opera-

tors
Time

UI from the
Client Reg-
istration UI

Modifying of 3
items from input
to output

Validate

Point the input
Right Click with the
mouse to delete
Select output
Place the Output
Click
Tape
Validate

.5+0.075
=6.12

3*(1.5+0.075+1
.2+0.075+

1.5+0.075+
1.5+0.075+
1.5+0.075+0.3+
0.28*10+0.075+
0.3+1.5+0.075)
=37.875

Tape the
new title
Validate

Selection
Difference
Select output
Place the
Output
Click
Tape
Validate

+1.5+0.075
=6.12

1.5+0.075+
1.2+0.075+
1.5+0.075+
1.2+0.075+
1.5+0.075+
3*(1.5+0.075+
1.5+0.075+
1.5+0.075+0.3
+0.28*10+0.0
75+0.3+1.5+0.
075)=35.025

Create the
Vehicle
Modifying
UI from the
Vehicle
Registration
UI

Modifying of
the title
Modifying of 6
items from input
to output

Delete of 7
items

Same as client

The same as Client
with 6 in place of 3

Point the input
Right Click with the
mouse to delete

6.12

75.75

7*(1.5+0.075+
1.2+0.075)
=19.95
=101.82

Same as Cli-
ent

Selection
Replace 3 by
6.
Selection
and Differ-
ence

6.12

64.35

5.7

=76.17

Table 3. Time evaluation to design UIs.

Design without operators Time with operators Time
Create the Bill UI from the
Vehicle Modifying UI and
Client Modifying UI

Modifying of the title
Copy of 14 items from
Client UI
Copy of 14 items from
Vehicle UI
Copy of 14 items from
Vehicle UI
Place all the items

4.72
32.4

32.4

32.4

119.7
=221.62

Modifying of the title
Select
Select
Union
Union

4.72
2.85+
2.85+
2.85+
2.85+
= 16.12

3.2.2 Second Case Study: Operators for Helping the Designer dur-
ing the User Interface Design Process

This case study attempts to show the benefit in term of time induced by
the using of the operators. Three cases are considered:
1. The user thinks that the user interface contains too much information.

One solution is to place a set of information in a new interface. To illus-
trate with the insurance UIs, the user decides that the bank information

242 Lepreux and Vanderdonckt

should be in another (a new) window. In this new window, the name of
the client must appear.

2. It is the same case as the previous one, but the proposition is to place the
information in another existing interface.

3. The UI of two interfaces are light so they could be gathered. For example,
the “client registration” and the “vehicle registration” can be gathered in a
new interface. The difference of time for each of the three cases is shown
in Table 4. The times obtained without using operators are approximate
because they depend on the number of items. In this case, the number of
items is arbitrary fixed at 8 and the time to reorganize is fixed at 100s.

Figure 5. The design of the Bill UI with Union operator applied to mediate UIs.

Table 4. Time evaluation to modify the UIs.

Design without operators Time with operators Time
Case 1 Select and cut the items to ex-

tract
Create a new project
Paste the items in the new
project
Select and copy the items to
duplicate
Paste the items
Reorganize the first interface

18.51s
1.275s
1.575s
1.275s

18.51s

1.275
100s (arb)

Select items to extract (with Se-
lection operator)
Difference
Select items to duplicate (with
Selection operator)
Union

2.85s

2.85s
2.85s

2.85s
=11.4s

Towards a Support of User Interface Design by Composition Rules 243

Design without operators Time with operators Time

Reorganize the new interface 100s (arb)
= 242.42s

Case 2 Select and Cut
Paste in another UI
Reorganize the first one
Reorganize the second one

18.51s
1.275s
100s(arb)
100s(arb)
=219.785

Select items to extract
Difference
Union

2.85s
2.85s
2.85s
=8.55s

Case 3 Select all the items of one UI
Paste in the other
Reorganize the final UI

18.51s
1.275s
100 (arb)
=119.785

Union 2.85s

4. CONCLUSION

This paper presented some composition operators coming from tree alge-
bra which are interesting for the visual design of user interfaces. Moreover,
at the design time, the work granularity is not only at the individual object
level but also at a upper level of a coherent set of elements. These sets of
elements correspond to tasks or sub-tasks, and often a leaf of the task tree.
These operators have been coupled to the UIDL named UsiXML for two
reasons: (1) UsiXML is a language adapted to the specification of user inter-
faces and (2) the operators are adapted to a tree structure which fits well the
purpose of a XML-compliant language like UsiXML. The tree algebra is an
advantage as it allows manipulating user interfaces structured as a set of ele-
ments. However we think that the operators could be divided into two
groups. The first one is based on the set theory; the operators of this group
manipulate the elements taken individually in interfaces. The second group
is based on the tree algebra; the operators of this second group manipulate
sets of elements and modify both the structure and the node of trees. Two
case studies have presented the using of the operators for a simplified insur-
ance application and the benefit of time has been evaluated with the GOMS
method. The interest of the using of operators has been proved even if an
evaluation with real designer in a real case is still to be done.

ACKNOWLEDGEMENTS
We gratefully thank the support from the SIMILAR network of excel-

lence (The European research taskforce creating human-machine interfaces
SIMILAR to human-human communication), supported by the 6th Frame-
work Program of the European Commission, under contract FP6-IST1-2003-
507609 (http://www.similar.cc). The authors thank also the Nord-Pas de
Calais regional authority (Projects MIAOU and EUCUE) and the FEDER

244 Lepreux and Vanderdonckt

(Fonds Européen de Développement Régional, European Fund for Regional
Development) for supporting a part of this work.

REFERENCES

[1] Ali M.F., Pérez-Quiñones, M.A., and Abrams, M., Building Multi-Platform User Inter-
faces with UIML, in A. Seffah & H. Javahery (eds.), “Multiple User Interfaces: Engi-
neering and Application Framework”, John Wiley, Chichester, 2004, pp. 95-118.

[2] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vanderdonckt, J.,
A Unifying Reference Framework for Multi-Target User Interfaces, Interacting with
Computers, Vol. 15, No. 3, June 2003, pp. 289-308.

[3] Lewis, C. and Rieman, J., Task-Centered User Interface Design, a Practical Introduc-
tion, 1993, accessible at http://hcibib.org/tcuid/.

[4] Dery-Pinna, A.-M. and Fierstone, J., Construction d'interfaces utilisateurs par fusion de
composants d'IHM : un atout pour la mobilité, in Proc. of Mobilité & Ubiquité'2004
(Nice, 1-3 June 2004), ACM Press, New York, 2004, pp. 60-65.

[5] Eisenstein, J., Vanderdonckt, J., and Puerta, A., Model-Based User-Interface Develop-
ment Techniques for Mobile Computing, in Proc. of 5th ACM Int. Conf. on Intelligent
User Interfaces IUI’2001 (Santa Fe, January 14-17, 2001), ACM Press, New York, 2001,
pp. 69-76.

[6] Jagadish, H.V., Lakshmanan, L.V.S., Srivastava, D., and Thompson, K., TAX : A Tree
Algebra for XML, in G. Ghelli, G Grahne (eds.), Proc. of 8th Int. Workshop on Database
Programming Language DBPL’2001 (Frascati, 8-10 September 2001), Lecture Notes in
Computer Science, Vol. ?, Springer-Verlag, Berlin, 2001, pp. 149-164.

[7] Kieras, D.E., Towards a Practical GOMS Model Methodology for User Interface De-
sign, in M. Helander (ed.), “Handbook of Human-Computer Interaction”, Elsevier Sci-
ence, Amsterdam, 1988.

[8] Lepreux, S., Abed, M., and Kolski, C., A Human-Centred Methodology Applied to Deci-
sion Support System Design and Evaluation in a Railway Network Context, Cognition
Technology and Work, Vol. 5, 2003, pp. 248-271.

[9] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and Lopez, V., UsiXML: a
Language Supporting Multi-Path Development of User Interfaces, in Proc. of 9th IFIP
Working Conf. on Engineering for Human-Computer Interaction jointly with 11th Int.
Workshop on Design, Specification, and Verification of Interactive Systems EHCI-DSV-
IS’2004 (Hamburg, 11-13 July 2004), Lecture Notes in Computer Science, Vol. 3425,
Springer-Verlag, Berlin, 2005, pp. 200-220.

[10] Olson, J.R. and Olson, G.M., The Growth of Cognitive Modelling In Human-Computer
Interaction Since GOMS, Human-Computer Interaction, Vol. 5, 1990, pp. 221-265.

[11] Vanderdonckt, J., Visual Design Methods in interactive Applications, Chapter 7, in M.
Albers, B. Mazur (eds), “Content and Complexity: Information Design in Technical
Communication”, Lawrence Erlbaum Associates, Mahwah, 2003, pp. 187-203.

[12] Vanderdonckt, J. and Bodart, F., Encapsulating Knowledge for Intelligent Automatic In-
teraction Objects Selection, in Proc. of the ACM Conf. on Human Factors in Computing
Systems INTERCHI'93 (Amsterdam, 24-29 April 1993), ACM Press, New York, 1993,
pp. 424-429.

[13] Vanderdonckt, J., A MDA-Compliant Environment for Developing User Interfaces of In-
formation Systems, in O. Pastor & J. Falcão e Cunha (eds.), Proc. of 17th Conf. on Ad-
vanced Information Systems Engineering CAiSE'05 (Porto, 13-17 June 2005), Lecture
Notes in Computer Science, Vol. 3520, Springer-Verlag, Berlin, 2005, pp. 16-31.

