
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’10, June 19–23, 2010, Berlin, Germany.
Copyright 2010 ACM 978-1-4503-0083-4/10/06...$10.00.

User Interface Design by Sketching:
A Complexity Analysis of Widget Representations

Suzanne Kieffer, Adrien Coyette, Jean Vanderdonckt
Université catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium)

{suzanne.kieffer, adrien.coyette, jean.vanderdonckt}@uclouvain.be
ABSTRACT
User interface design by sketching, as well as other sketch-
ing activities, typically involves sketching objects through
representations that should combine meaningfulness for the
end users and easiness for the recognition engines. To in-
vestigate this relationship, a multi-platform user interface
design tool has been developed that enables designers to
sketch design ideas in multiple levels of fidelity with multi-
stroke gestures supporting widget representations and
commands. A usability analysis of these activities, as they
are submitted to a recognition engine, suggests that the lev-
el of fidelity, the amount of constraints imposed on the rep-
resentations, and the visual difference of representations
positively impact the sketching activity as a whole. Implica-
tions for further sketch representations in user interface de-
sign and beyond are provided based on usability guidelines.

Author Keywords
Level of fidelity, shape recognition, sketching, user inter-
face design, user interface prototyping.

General Terms
Design, Human Factors, Languages.

ACM Classification Keywords
D.2.2 [Software Engineering]: Design Tools and Tech-
niques – User interfaces. H.5.2 [Information Interfaces
and Presentation]: User Interfaces – Graphical user inter-
faces. I.3.6 [Computer Graphics]: Methodology and
Techniques – Interaction techniques.

INTRODUCTION
Sketching is universally recognized for its natural [9], un-
constrained [25], and informal [6] virtues in multiple areas
of human activity, such as graphic design [1], layout design
[11], visualization [26], and user interface (UI) design
[7,19,22]. As long as the sketching is not submitted to a
recognition engine, the end user does not perceive any
shortcoming apart from little or no reusability of the
sketches for future steps in the design process. When it
comes to recognize what the end user has sketched, e.g. for
beautification [1] or interpretation [3,8], the end user may
feel again constrained as she knows that every gesture
should be performed correctly to be properly recognized,

thus diminishing the virtue of naturalness. Recognition en-
gines thus face a dilemma when defining the representation
of objects to be recognized: either the representations are
close to the real world but hard to recognize or they are
simplified to be recognized, but not meaningful for the user.

More specifically, UI design by sketching has already dem-
onstrated several advantages: UI sketching is preferred over
traditional interface builders, especially by end users [9,18]
and could be performed at different levels of fidelity with-
out loosing advantages [20,25]: the amount of usability
problems discovered with a sketched design is not inferior
to those corresponding to a genuine UI [24], the expressive
power of a sketched UI remains the same [25], a sketched
UI provides quantitative and qualitative results that are
comparable to traditional UI prototypes except that the cost
is reduced [21], UI sketching encourages exploratory design
and fosters communication between stakeholders more than
any other prototypes [23], flexibility is superior to UI build-
ers [25], authoring tools [2], and paper prototypes [25].

There are a number of problems with traditional sketching
methods of UI design that make these methods challenging
for novice users and inefficient for expert users. The first
problem is related to the meaningfulness of representations:
what is the best object representation? Should multiple rep-
resentations of the same object be offered? How should it
be sketched? Should it be sketched in one stroke or several
strokes? If a representation is not meaningful enough for an
end user, the representation will be forgotten or badly
drawn. The second problem is that the result of the chosen
representation is often far from what is expected by the
novice user and difficult to reproduce [15]. The third prob-
lem with traditional recognition engines is that the represen-
tations should be different enough [13] and sketched pre-
cisely enough to be efficiently recognized [1,3,11].

To address these problems, we developed a UI sketching
tool that provides original functionalities with respect to
state-of-the-art software, as described in the following sec-
tion. These functionalities are detailed in the next section.
The Representation Experiment section reports on the re-
sults obtained from a first experiment to identify the repre-
sentations preferred by designers and end users. The Com-
plexity Experiment section describes the experiment used to
test how these representations are sketched in the UI
sketching tool, includes results and discussion. A summary
of the main contributions of this paper and a description of
the planned follow-up work conclude the paper.

57

RELATED WORK
During the UI development life cycle, the design step is of-
ten characterized as a process that is intrinsically open (new
designs may appear at any time that require further explora-
tion), iterative (several cycles are performed to reach a solu-
tion), and incomplete (not all information is available at de-
sign time) [10,12]. The area of UI design by sketching has
been extensively researched to identify appropriate tech-
niques such as paper sketching, prototypes, mock-ups, dia-
grams [6,9,11,13,16]. Several software for UI design by
sketching emerged from this research: DENIM [11], DEMAIS
[2], EtchaPad [15], FreeForms [18], InkKit [5], JavaS-
ketchIt [3], Satin [7], Silk [9,10], SketchiXML [4], and
SketchRead [1], to name the most representative ones.

Since the needs of rapid UI prototyping vary depending on
the project and allocated resources, it makes sense to rely on
the level of fidelity. The level of fidelity expresses the simi-
larity between the final UI and the prototyped UI. The UI
prototype fidelity is said to be high if the prototype represen-
tation is the closest possible to the final UI, or almost in the
same representation. This means that the prototype should be
of high-fidelity in terms of presentation (what layout, what
are the UI elements used), of global navigation and dialog
(how to navigate between information spaces), of local navi-
gation (how to navigate within an information space). More
precisely, McCurdy et al. [14] identified five independent
dimensions along which the level of fidelity could be more
rigorously defined: the level of visual refinement, the breadth
of functionality, the depth of functionality, the richness of in-
teractivity, and the richness of the data model. In the remain-
der of this paper, the four first dimensions will be considered,
the last one requiring a connection to a data model containing
data samples.

Similarly to the above definition, the level of fidelity is said
to be low if the prototype representation only partially evokes
the final UI without representing it in full details. Between
high-fidelity (Hi-Fi) and low-fidelity (Lo-Fi) [20] exists me-
dium-fidelity (Me-Fi) [4]. We usually observe that a UI pro-
totype only involves one representation type, i.e. one fidelity
level. But due to the variety of stakeholders’ input, several
levels of fidelities could be combined together, thus leading
to the concept of mixed-fidelity, where several different fi-
delities are mixed in the same UI design [14]. Beyond mixed-
fidelity, multi-fidelity [4] is reached when a prototype simul-
taneously involves objects belonging to different levels of fi-
delity, but only one level of fidelity is acted upon at a time,
thus assuming that a transition is always possible for an ob-
ject from one level of fidelity to another.

THE SKETCHING TOOL USED IN THE EXPERIMENTS
In this section, we describe the UI sketching tool that will be
the subject of the two next experiments by showing how it is
different from state-of-the-art software. This sketching tool
today consists of about 112,000 lines of Java 1.5 code and
can be freely downloaded from www.anonymous.org, both
the executable software and its full source code. This tool en-
ables UI designers to sketch a UI as easily as on paper, while

combining advantages of computer-based design [25]. At any
time, the designer may ask the tool to recognize the UI being
sketched and generate a running UI from these sketches. At
any time, it also offers the following facilities that are de-
tailed in the following sub-sections:

Object recognition. An object recognition engine recognizes
and interprets 32 different types of widgets (ranging from
check boxes and spin button to search buttons, progress bar,
calendar, and video input), 8 basic predefined shapes (i.e.,
triangle, rectangle, cross, line, wavy line, arrow, ellipse, and
circle), and 6 basic commands (i.e., undo, redo, copy, paste,
cut, new window). This amount of recognized objects is su-
perior to what can be found in other software equipped with a
recognition engine in the same domain [3,4,9,19,18].

Each object is rigorously defined in terms of constituent
shapes (any of the 8 aforementioned basic shapes) and con-
straints between them. Each constraint should belong to the
set of the 31 constraints supported today:

areParallel, cross, hasInside, hasInsideInLowerRightCorner,
hasInsideInTheCenter, hasInsideInTop, hasInside-
InUpperRightCorner, hasInsideOnTheLeft, hasInsideOnThe-
Right, hasPositiveSlope, intersect, isCrossedBy, isHorizontal,
isInside, isInsideInBottom, isInsideInLowerRightCorner, is-
InsideInTheCenter, isInsideInTop, isInsideInUpperRight-
Corner, isInsideOnTheLeft, isInsideOnTheRight, isOnT-
heLeftOf, isOnTheRightOf, isOnUpperLeftCorner, isSmall,
isSquare, isThin, isUnder, isVertical.

Any object representation is expressed in a XML format
stored in a graphical grammar [1,3] that is parsed and inter-
preted at run-time [8]. In this way, any custom object could
be easily added by adding a new representation in the gram-
mar. Each UI element can be sketched and recognized or not
depending on its shape and the wish for the user to see it rec-
ognized or not. The object recognition is only on-demand.
Those shapes which are not recognized are simply added and
maintained throughout the process. Fig. 1 shows a UI design
session where some UI objects have been sketched in Lo-Fi
mode. In this mode, objects that are correctly recognized are
beautified and the name is added. If an object is not recog-
nized, it is simply maintained as it is, but could be annotated
for further handling in the future.

Figure 1. A typical UI design session with sketched objects.

58

Multiple object representations. Existing software incor-
porating an object recognition engine typically support only
one single representation per object, most frequently
through a mono-directional single-stroke gesture [3,15,18].
Our tool accommodates several representations for a single
object, without affecting significantly the system response
time. Fig. 2 reproduces an excerpt of the radio button repre-
sentation. In addition, thanks to this logical definition, each
representation could be sketched in a multi-stroke manner
that is independent of the direction. In this way, left-handed
or right-handed persons are equally supported.

Figure 2. A representation for the radio button.

Multi-fidelity representation. Thanks to the object recogni-
tion process, the designer can input any UI object in any
level of fidelity and see the result in any other level as the
interpretation is immediate. In the same way, any custom
object could be drawn in Lo-Fi and a predefined widget
could be added in Me-Fi or Hi-Fi. Therefore, four fidelity
levels are supported as recommended by [14]: none (only
the drawing is displayed), Lo-Fi (the drawing is displayed
with recognized portions), Me-Fi (the drawing is beautified
where portions are recognized, including for basic shapes),
and Hi-Fi (a genuine UI is produced with widgets for those
recognized portions). Fig. 3 exemplifies multi-fidelity rep-
resentations for a subset of the 27 widgets supported. To
our knowledge, no existing software today supports so
many widgets in different levels of fidelity as we have here.

Figure 3. A set of widgets with the representations corresponding
to the four levels of fidelities (i.e., none, low, medium, and high).

Fidelity transition. A slider allows the designer to easily
switch between the four levels of fidelity (Fig. 3). Fig. 2-3
shows the representation after the designer moved from Lo-
Fi to Lo-Fi, a mode in which only a rough, yet identifiable,
object representation is produced that is often referred to as
a wireframe representation. This representation is platform
agnostic: it does not produce any representation that would
suggest any particular window manager or UI builder. If the
designer wants to obtain a Hi-Fi representation, then the
slider may be switched to the last position (Fig. 2-4): Hi-Fi
mode without the labels indicating the object types is dis-
played. In this case, the representation is made up of genu-
ine widgets belonging to the widget set of the currently be-
ing used platform, here a Java platform. Different widget
sets and look & feel could be used alternatively that mimic
a Hi-Fi representation in other window managers and oper-
ating systems like Linux, Open Look, and MacOS X. If a
UI element has not been recognized, it is simply kept as it
is. For instance, if a histogram would have been sketched, it
would not be altered so as to respect the naturalness of the
design process as recommended in [14,16].

Figure 3. Slide to switch between levels of fidelity.

Gesture recognition. Sketching tool users sometimes
complained that they are forced to learn a graphical repre-
sentation [11,12] for every widget, shape or command. In
order to support this user flexibility, each such object could
of course give rise to a new representation in the graphical
grammar. Some user studies revealed the need for the user
to interactively define her own representations [6,11]. For
this purpose, a gesture recognition system has been imple-
mented based on hand gesture decomposition in order to
customize the representation of all widgets, shapes, and
commands according to each user’s preferences (Fig. 4).
One or several occurrences of a new gesture could be
graphical defined that will then serve as a redundant input
technique for every widget, shape, or command.

Figure 4. A graphical editor for a new object representation (a)
and a gesture recognition system (b) where new gestures replace
predefined objects (here, a gesture is drawn, added, and activated

to represent a toggle button in a custom way).

- <widget type="RadioButton">
- <representation id="0">

<constraint id="0" shape1="Line_1"
shape2="Circle_0" condition="isOnTheRightOf"
/>
<constraint id="1" shape1="Line_1" shape2="-"
condition="isHorizontal" />

 <shape id="Circle_0" type="Circle" />
 <shape id="Line_1" type="Line" />

</representation>
…

</widget>

59

Multiple output formats. At any time, the tool produces UI
specifications in terms of a User Interface Description Lan-
guage (UIDL) instead of UI code, which is the prevalent
approach of most tools [3,9,11,18], but not all [5]. As op-
posed to many tools where little or no portions of the sketch
could be reused, our tool always maintains up-to-date UI
specifications, including the description of custom objects.
It is also possible to define the navigation between these ob-
jects in the same way to address the second and third di-
mensions of McCurdy [14] (Fig. 5) as in [2,11].

Figure 5. Definition of the navigation between UI objects.

Multi-platform UIs. By specifying project properties, the
sketching tool enables designers to sketch UIs for a particu-
lar computing platform at a time or for several platforms in
a coordinated way. It exports UI specifications in UIML
(www.uiml.org), which is able to automatically generate
code for HTML, Java, VoiceXML, and WML. As opposed
to some tools which are dedicated to a particular environ-
ment (e.g., Visual Basic in FreeForms [18], Java in JavaS-
ketchIt [3]), this tool is shipped with predefined profiles
covering a wide range of different computing platforms.
Each profile not only expresses constraints imposed by a
particular platform (e.g., the screen resolution, a restricted
widget set), but could also have a particular gesture data
base for sketching those UI elements which are peculiar to
this platform (e.g., a gesture associated to a histogram).

THE REPRESENTATION EXPERIMENT
The first experiment presented in this paper investigates
which representation is mostly preferred and drawn depend-
ing on the user type (designer vs. end user).

Participants
Two groups of 30 subjects were randomly selected from a
list of volunteer candidates: the first group was composed
of people with relevant experience in computer science and
UI design, while the second was composed of end users
without any prior knowledge in UI design or computer sci-
ence. The second group was also considered because the
tool goal is to involve as much as possible the end user in
the early prototyping process in order to bridge the gap be-
tween what they say and what the designer understands.

Methodology
A two phase analysis was carried out on both groups. The
scope of the first part was to determine how members of
each group would intuitively and freely sketch the widgets
to be handled by the tool. From a cross-platform compari-
son of widgets, a widget catalogue was identified compris-
ing the following 32 widgets: text, text field, text area, push
button, search field, login, logout, reset form, validate, radio
button, check box, combo box, image, multimedia area,
layer, group box, table, separator, frame, hyperlink, anchor,
list box, tabbed dialog box, menu, color picker, file picker,
date picker, hour picker, toggle button, slider, progress bar,
and spin button. Each widget was documented with its
unique name, a screen shot and a small textual description
(Table 1). Subjects were asked if they had ever seen each
widget before and to provide a sketching representation.

Widget Graphical presen-
tation Textual description

Search
Field

This widget is com-
posed of a text field
and a button. It allows
the users to submit a
search.

Tabbed
Dialog
Box

This widget allows the
user to switch from
one pane to another
thanks to the tab.

Table 1. Some objects submitted to the participants.

Then, from the widget representations provided during the
first phase, we tried in a second phase, to extract the most
common object representations. We grouped all these rep-
resentations in categories with strong similarities as in [13].
Participants were then asked to rank the different represen-
tations according to their representativeness and preferences
as a five-point Likert scale. On basis of these results we de-
fined all the representations to be handled by the sketching
tool. For instance, table 2 illustrates some representations.

Represen-
tation

1

Represen-
tation

2

Represen-
tation

3

Representa-
tion

4

Represen-
tation

5

Table 2. List box representations submitted to the participants for
the second part of the survey.

Results and Discussion
Based on the result distribution for each representation, we
established the best representation with the following me-
thod. Firstly, we assessed whether any dependence exists be-
tween the participants. If this first step’s results established a
significant dependence, we then proceeded to the second
phase and we computed the aggregate preference of both
groups and the global preference. For each widget, the Kend-

60

all coefficient of concordance W test was computed. This co-
efficient expresses the degree of association among n vari-
ables, that is, the association between n sets of rankings. The
degree of agreement among the 60 people who evaluated the
representations is reflected by the degree of variation among
the 6 sums of ranks. The comparison of the value obtained
from this computation to the critical value shows that the null
hypothesis (independence between participants) has to be re-
jected.

We can thus proceed to the second phase of the analysis and
establish a ranking among all representations using the Borda
Count method. The principle of the Borda Count Method is
that, each candidate gets 1 point for each last-place vote re-
ceived, 2 points for every next-to-last-place vote, etc., all the
way up to N points for each first-place vote where N is the
number of candidates. On the basis of this analysis we ob-
served that both groups had almost the same preferences
among the representations. Most of the time, the set of well
considered representations is the same even if small changes
in the sequence occur. Out of this results set, we considered
the preferred representations with respect to their intrinsic
complexity as explained earlier. For instance, list box 4 in
Table 2 obtained a good score compared to the other repre-
sentations, but its intrinsic complexity is very high as it re-
quires hand writing recognition, which was not supported at
the moment. Representations 4 and 5 in Table 2 were thus
discarded from the final selection. Often, the set of represen-
tations selected for the list box is composed of the three first
representations depicted in the corresponding set of represen-
tations.

The resulting catalogue of objects obtained from this study
has then been submitted to the second experiment within the
UI sketching tool. It is accessible at www.anonym.org.

THE COMPLEXITY EXPERIMENT
The second experiment presented in this paper investigates
the effect of widget representation in the specific context of
UI design by sketching. It investigates the potential influence
of the level of fidelity as well, in order to strengthen the fol-
lowing result: users do not change their sketching strategy
whatever the fidelity level is (see hypothesis A). Indeed, the
usability study presented in [4] showed no significant impact
of the “fidelity level” parameter on the user performances

The usability evaluation purpose is the quantitative analysis
of user performance while they are in the interactive situation
of sketching widget representations in the different levels of
fidelity available in the sketching tool. Consequently, the
evaluation criteria chosen to elicit the impact of both widget
representation and level of fidelity on user performance are
speed and accuracy. On the one hand, speed is representative
of users’ efficiency. On the other hand, accuracy is represen-
tative of users’ effectiveness. The goal of the usability
evaluation presented here is the validation of two hypotheses
A and B:

Hypothesis A: user performance depends on the level of fi-
delity in which users sketch shapes. In other words, differ-
ences on users’ speed (efficiency) and accuracy (effective-
ness) should appear between the levels of fidelity, amongst
none, low, medium, and high.

Hypothesis B: user performance depends on widget repre-
sentation complexity. In other words, differences on users’
speed (efficiency) and accuracy (effectiveness) should ap-
pear, these differences being function of widget representa-
tion properties, such as number, orientation, inclusion, inter-
section, juxtaposition, and sequence of atomic components.

Complexity characterization of representations
Prior to conducting the experiment, it is important to char-
acterize the complexity of the widget representations to be
used. In the tool studied, widget sketching equals: construc-
tion of basic shapes among circle, line, rectangle, and trian-
gle, with respect to binary properties or constraints such as
orientation, inclusion, or sequence of components. One spe-
cific combination of shapes and binary properties describes
the gesture representation of a widget.

Gesture representation

Number of components

Specific orientation

Simple inclusion

Complex inclusion

Juxtaposition

Intersection

Sequence

Button 2 X
Checkbox 2 X X
Combobox 2 X

Label 1 X
List box 5 X X X
Picture 2 X

Progress bar 3 X X X
Radio button 2 X X

Slider 2 X X
Text area 3 X X X
Text field 2 X X

Toggle button 3 X X
Table 3. Complexity characterization of widget representations.

Table 3 presents some well-known widgets and, for each
widget, a characterization of its gesture representation or vis-
ual code (first column). The characterization of a widget in-
cludes the number of shapes (from 1 for the label to 5 for the
list box) and a combination of binary properties such as: spe-
cific orientation (vertical vs. horizontal), simple or complex
inclusion, juxtaposition, intersection and sequence of compo-
nents. This characterization of widgets is built upon Ware’s
visual grammar of diagram elements (node-link diagrams)
[26].

Widgets in Table 3 are sorted according to the alphabetical
order: no complexity order was introduced into the charac-
terization at this step of the research. But it appears obvious
that the complexity of the widget sketching task relies on the
complexity associated to the visual code of the shape to
sketch. From this observation, sketching a label, represented
as a line, would be easier than sketching a combo box. Not
only, the number of shapes and constraints vary between the

61

label and the combo box, but the kind of constraints to be
used in a combo box (complex inclusion) is harder to satisfy
than in a label (horizontal orientation).

Overall Experimental Design

Participants
Eleven volunteers participated to this experimental study, 5
females and 6 males. This group of participants was com-
posed of experienced computer users, aged between 22 to 28
years. Moreover, all the participants were considered as ex-
pert pen users, as they had significant past experience with
pen-based interaction.

Apparatus and experimental task environment
The computer system used in this study was a PC Dell Lati-
tude D820 equipped with an Intel Core 2 Duo T7200 (2.0
GHz, 4 Mo cache level 2 memory) processor and 2 Gb of
RAM memory. Participants were seated in front of a 21-inch
Wacom Cintiq 21UX touch screen flat panel (Fig. 6) con-
nected to this computer running the sketching tool described
in the third section. This platform has been selected because
it offers the best compromise between stylus precision and
interaction surface. Screen resolution was set to 1,600 x
1,200 pixels, with a 32-bit color palette. The keyboard was
not required to complete the task since the participants were
supposed to use a stylus for sketching.

Figure 6. A participant performing the sketching tasks.

Task and procedure
Each participant received a detailed explanation of the re-
search study. Following the short introduction to the test
procedure and test purpose, they performed some training
with the tool. Following the training session, participants
performed the series of widget sketches with a constant ro-
tation between the widget to be sketched and the fidelity
level to be used. Simultaneously, all the relevant data were
stored in log file so as to be used for statistical analysis.

Measures
The dependent variables used to assess the participant task
performances were the widget sketching time (i.e., time in

milliseconds until the widget sketching is effective), and the
accuracy (i.e., number of delete operations until the widget
sketching is effective).

Setup
The survey was based on a 4x12x2 factorial design; 4 fidel-
ity levels were evaluated (none, low, medium and high), 12
frequently used widgets selected from the complete set re-
sulting from the previous experiment (Table 3) and each
widget was repeated twice for each level of fidelity. So, all
participants received exactly the same 96 triplets (fidelity,
widget, iteration) to sketch. However, the presentation se-
quence of these 96 triplets was randomized so as to neutral-
ize potential task learning effects. The main directive for
the participants was to sketch each triplet <widget, fidelity
level, iteration>, as fast and precisely as they could. Partici-
pants were asked by a dialog box to sketch a given widget
at a time. The fidelity level was automatically set and could
not be changed by the user. Once the user considered the
widget to be sketched, he had to click on one of the lateral
buttons of the tablet PC to move to the next widget. If the
widget to draw was present on the drawing surface, then the
surface was cleared and a new widget was proposed to the
participant. Otherwise, the participant was asked to finish
the current component.

Results and discussion
The eleven participants completed the 96 timed trials each,
for a total of 1056 trials. Hypothesis A is not validated by
the experimental results whereas hypothesis B is strongly
supported by the results of the experiment. The quantitative
evaluation presented below relies on the statistical analysis
of two measures: the widget sketching time (ST) in milli-
seconds and the number of delete operations (DEL).

Outliers removal
The data for 3 subjects (288 trials out of the 1056 trials),
were removed as outliers, sketching time (ST) being greater
than four standard deviations from the sketching time mean
trial completion time. These outliers were not correlated
with any of the participants. In addition, the data for the la-
bel (64 trials out of the 768 remaining) were also removed
as outliers, the label being correlated with any of the other
widgets in terms of sketching time (ST) distribution. Thus,
the remainder of the analysis was performed using 703 tri-
als, one data missing because of a technical problem.

One-Way ANOVA Procedure
The results of the One-Way ANOVA Procedure are pre-
sented in Table 4. Factors are fidelity level and widget rep-
resentation. Responses are the widget sketching time in mil-
liseconds (ST) and the number of delete operations (DEL).
Significant influences are underlined. Results presented in
Table 4 show that the level of fidelity is not a significant
factor: neither on ST (F=1.6813, p=0.1697), nor on DEL
(F=1.9900, p=0.1141). This result suggests that the level of
fidelity selected to perform widget sketching tasks has no
significant effect on users performance and, consequently,
invalidates hypothesis A. Moreover, this can be interpreted
as follows: users do not change their sketching strategy

62

whatever the fidelity level is, which strengthens the results
presented in [4].

Factor DF ST (ms) DEL
Fidelity level 3 F=1.6813

p=0.1697
F=1.9900
p=0.1141

Widget representation 7 F=7.4317
p<0.0001

F=2.9151
p=0.0014

Table 4. One-way ANOVA Procedure. Factors: fidelity level and
widget representation. Variables: sketching times (ST) and delete

operations (DEL).

On the other hand, results presented in Table 4 show that
widget type is a significant factor: both on ST (F=7.4317,
p<0.0001) and DEL (F=2.9151, p=0.0014). This result
shows that widget representation has a significant effect –in
the case of ST, one observes a highly significant effect of
widget representation (p<0.0001)– on users performances
and, consequently, validates hypothesis B. To summarize,
in the specific context of widget sketching, users’ efficiency
and effectiveness in a context do not depend of the level of
fidelity but depend on the widget representation. Next sub-
section will investigate further the influence of the widget
representation, classifying the widgets according to both ST
and DEL.

Widget classification
Regarding the results from the One-Way ANOVA Procedure
above, we have computed complementary analysis on data
by taking into account ST, first, and DEL, secondly. Indeed,
widget representation has a highly significant impact on us-
ers speed, but “only” a significant impact on users’ accu-
racy. So, the complementary analysis is built upon:

• First, a recursive partitioning (RP) of widget representa-
tion by ST in order to get groups of widgets (Fig. 7).

• Secondly, a sort within each group of widgets according
to the widget recognition rate (Table 5). Recognition
rates have been computed as error rates.

Recursive partitioning (RP) was applied to the dataset with-
out outliers (703 trials) in order to elucidate statistically
significant sub-groupings within the data by relating sub-
jects’ speed (ST) to the widget representation factor. The
result of this process provides the decision tree presented
figure 6 and it shows that widgets can be divided into 3
groups of widgets G1, G2 and G3:

• (G1) Text field, checkbox, radio button, picture;
• (G2) Slider, combo box, text area, button;
• (G3) Progressbar, listbox and togglebutton.

Then, a sorting according to the recognition rate (RR) of
each widget was applied to each of the three groups. For in-
stance, in the group 1, widgets are sorted by decreasing rec-
ognition rate: text field (98%), picture (97%), check box
(95%), and finally radio button (94%). The same procedure
was applied to each widget group. Recognition rates were
computed as an error rate per widget. Results are presented
in Table 5.

Figure 7. Recursive Partitioning on widget representation by

sketching time.

Group

Widget

Number of components

Gesture representation

Recognition rate

Specific orientation

Simple inclusion

Complex inclusion

Juxtaposition

Intersection

Sequence

Label 1 0,97 X
1 Text field 2 0,98 X X

1 Picture 2 0,97 X

1 Checkbox 2 0,95 X X
1 Radio button 2 0,94 X X
2 Button 2 0,95 X
2 Text area 3 0,94 X X X
2 Slider 2 0,92 X X
2 Combobox 2 0,86 X

3 List box 5 0,91 X X X

3 Progress bar 3 0,84 X X X
3 Toggle button 3 0,8 X X X

Table 5. Widget classification.

What is interesting in Table 5 is the homogeneousness of
characteristics one can observe in groups 1 and 3 mainly.
The group 1 includes the text field which is the most basic
widget after the label, the picture, and the couple check box
and radio button, both constructed from the combination of
specific (horizontal) orientation and juxtaposition. The
group 3 includes list box, progress bar and toggle button.
Results for this group are homogenous in the sense that cha-
racteristics for each widget are exactly the same: specific
orientation, complex inclusion and sequence. Moreover, the
number of shapes is 3 (progress bar and toggle button) or 5
(list box).

These characteristics may explain the difference between
users’ performance: (ST=7430 ms, RR=0.85) for the group
3, compared to (ST=3108 ms, RR=0.9175) for the group 2
and (ST=1765 ms, RR=0.96) for the group 1.

Table 5 supports these observations, the last four elements
(i.e., combo box, list box, progress bar and toggle button),
are the widgets that required the more time with the highest
error rate. We can observe that all of the four widgets are
built using complex inclusion in addition to more simple
graphical codes. Moreover, the ranking of the widget illus-
trate that a larger set of constraints tend to increase the rec-
ognition rate and the time required. The next section will

63

investigate the potential influence of such characteristics on
user performance, by introducing in the statistical analysis
the number of shapes as well as the binary properties of the
widgets (Table 3) as factors. It is expected that these vari-
ables will have some significant influence on the sketching
performance of the participants.

Widget characteristics
In order to deeply investigate the relative influence of each
widget characteristic on user performances in a context of
UI sketch, a One-Way ANOVA was applied to the data. The
ANOVA procedure was computed on 703 trials (Table 6).

Characteristic ST (ms) DEL
Specific orientation F=4.3378;

p=0.0376
F=1.0632;
p=0.3028

Simple inclusion F=5.0825;
p=0.0245

F=7.2306;
p=0.0073

Complex inclusion F=50.3739;
p<.0001

F=24.3516;
p<.0001

Juxtaposition F=11.9572;
p=0.0006

F=2.7937;
p=0.0951

Intersection F=6.4777;
p=0.0111

F=1.6839;
p=0.1948

Sequence F=16.1455;
p<.0001

F=2.5448;
p=0.1111

Number of shapes F=25.8457;
p<.0001

F=7.1275;
p=0.0009

Table 6. One-Way ANOVA Procedure. Factors: widgets character-
istics. Variables: sketching times (ST) and delete operations

(DEL). Highly significant results are in bold face.

Considering both ST and DEL, most relevant characteristics
are complex inclusion, sequence and number of shapes
(Table 6, cyan rows). Indeed, complex inclusion, sequence
and number of shapes are highly significant factors. All fac-
tors have an impact on sketching times (Table 6, column
ST: all factors are significant for sketching times), but only
simple and complex inclusion and number of shapes do
have a significant influence on delete operations (Table 6.
column DEL: specific orientation, juxtaposition and inter-
section do not have a significant influence on delete opera-
tions). These statistical results suggest that complex widgets
in terms of inclusion, sequence and number of shapes are
slower and more difficult to sketch by users. Such charac-
teristics –or “constraints”, regarding widget representations
implementation within sketch-based UI design tools–
should be used carefully by programmers.

Label, text field, and picture are basic widget: between one
and two shapes, high recognition rate (>0.97). The check
box and the radio button can be considered as basic widgets
as well, the only difference being the juxtaposition prop-
erty. The other widgets seem to be more complex to sketch.
Surprisingly, the intersection-based slider is “stuck” be-
tween inclusion-based widgets, all being sketched from a
rectangle. This result may be explained by the small size of
the triangle intersection the line in the slider. In addition,
we were surprised from the toggle button bad results.

Why a toggle button is so hard compared to a push button?
The answer may rest in the addition of the constraint of ori-
entation of the (vertical) line inside the two rectangles of
the toggle button. The same interpretation can be made
about the combo box and the list box. The more constraints
and shapes are added, the more complex the representation
becomes to sketch.

Learning effects
To investigate the effects of task learning, we have com-
puted mean and standard deviation by quartile on both ST
and DEL. Results are presented in Table 7.

Quar-
tile

Avg. ST
(ms)

Std dev
ST

Avg
DEL

Std dev
DEL

1 5055.92 8624.8 0.285714 0.863414
2 3768.70 10171.1 0.179775 0.896469
3 3245.88 4646.1 0.189655 0.740026
4 3136.02 5164.2 0.164773 0.821920

Table 7. Learning effects.

Results presented in Table 7 show that there is a learning
effect of the task. First, both the sketching times (ST) and
the number of delete operations (DEL) decrease with the
time during the test (see Avg ST and Avg DEL from quar-
tile 1 to quartile 4). Secondly, the standard deviation for
both ST and DEL are, on the one hand, high during the first
half of the test in comparison with the second half and, on
the other hand, combined with high “finished” as well.
These two observations typically indicate an effect of task
learning. A One-way ANOVA Procedure was also combined
with the computations above. It has revealed only a ten-
dency about the eventual impact of the “quartile factor” on
sketching times (F=2.3927, p=0.0674). Quartile is not a
significant factor for number of delete operations
(F=0.7587, p=0.5175). This result may be due to the fact
that participants were all considered as designers, at least
expert pen users.

CONCLUSION AND FUTURE WORK
Regarding to the UI sketching tool, we demonstrated that it
is possible to come up with a tool combining the following
facilities: multi-stroke bi-directional sketching of represen-
tations, object recognition based on a logical and extensible
graphical grammar, ability to recognize multiple representa-
tions for a same object (either in a predefined way through
the object recognizer or in a user-defined way through the
gesture recognizer), multiple levels of fidelity and easy
transition between them. This combination of facilities
makes the UI sketching tool described in this paper unique.
This tool has then been subject to two experiments: one for
determining the most preferred representations for each ob-
ject (other tools may benefit from this) and one for deter-
mining the influence of the level of fidelity. This lead us to
several empirical conclusions.

Firstly, we have observed that the level of fidelity did not
have any impact on the sketching of any individual widget.
This is the most important conclusion because it is already

64

known that several levels of fidelity should be supported
[14,20], but not that these various levels do not denaturize
the essence of sketching. Naturally, such observation does
not imply that a prototyping tool can choose to use indiffer-
ently any level of fidelity in isolation. The various levels of
fidelity should be supported. Indeed, the level of fidelity is
likely to influence the creation of a complete UI, as some
representation may give an impression of almost finished
results, as an example. Here, we only demonstrate that the
time needed to build a given widget is not dependant of the
level of fidelity to be used. Therefore, a UI design by
sketching could be estimated equally good in performance
independently from its level of fidelity.

Secondly, and unsurprisingly, we have also demonstrated
that the quality of the recognition was significantly depend-
ant of the type of widget representation. This observation is
promising and rich as it provides valuable information for
the development of any new graphical grammar, and for the
improvement of some part of the application. We observed
strong differences between the widget representations.

This lead to us to the following conclusion as a guideline:
when defining a widget representation to be sketched, a
minimal amount of constraints should be involved, espe-
cially when ambiguities between the representations are un-
likely. For instance, the text field representation requires the
enclosed line to be horizontal, but the line could be drawn
with many other orientations for the same results as there
are not any other representation composed of a single rec-
tangle and line. This guideline could be generalized into the
following one: any representation of an object to be
sketched should minimize the amount of constraints whose
types have been defined in Tables 3 and 5.

This conclusion also complements the results provided by
the study reported in [13]: not only the visual difference
should be well established between the representations to be
sketched, but also they should minimize the amount of con-
straints required to sketch the object. Therefore, it is not on-
ly a matter of visual difference, but also a matter of sketch-
ing simplicity. The example of toggle button is revealing
for this purpose.

The last significant observation made during this survey is
related to the learning effect: we observed for all the par-
ticipants that their overall performance was significantly
higher at the end of the survey. They drew the widget more
precisely, as the recognition rate is higher, in less time. Ob-
viously, these two observations are related; the lower time
at the beginning of the test can be partially attributed to the
numerous delete operations.

Therefore, any UI design tool by sketching should address
simultaneously the following requirements by decreasing
order of importance:

• Naturalness: it is necessary that the UI objects being
sketched are as natural as possible first. Then, the visual
similarity should be considered to easily differentiate the

various representations. And finally, the drawing con-
straints must be minimized in order to limit the exploring
capability of the user. The results of such a UI prototyp-
ing process may be not immediately similar to a final in-
terface, but the easy transition from one level of fidelity
to another one is greatly appreciated. In the sketching tool
described in this paper, the two input methods supported
are the handwriting and the sketching by object recogni-
tion and gesture recognition. These two expressions
means are well known for supporting highly creative de-
sign process [18,22].

• Non-obtrusion: it is necessary for the system supporting
the sketching to be the less obtrusive as possible so as to
avoid disturbing the designer during the prototyping
phase. The low fidelity representation should not intro-
duce new tasks or actions that are external to the original
nature of the activity of prototyping.

• Continuity: the system supporting the sketching should
support the drawing continuously whatever the nature of
the object prototyped (e.g., an interaction object, a text, a
drawing, or multimedia contents). The user should not
have to change the mode of drawing if an object of dif-
ferent nature must be represented.

• Recovery: the effort provided for the sketch should be re-
used in the next step in the UI development life cycle of
the interactive application. In theory, to minimize the
costs, the effort supplied during this prototyping, what-
ever the level of fidelity is, should be recovered as much
as possible in the continuation.

The above requirements could be turned into guidelines for
a sketching tool, but may require further investigation in
any particular domain where the object representation
should first satisfy the conventions of the domain. The next
experiment we will conduct is to see how these representa-
tions affect end users in the same way in the context of ges-
ture annotation of medical images.

ACKNOWLEDGMENTS
The authors would like to warmly thank the anonymous re-
viewers for their constructive comments on an earlier ver-
sion of this manuscript. In particular, we are very thankful
for the English native speaker who made a tremendous job
in reviewing the contents, but also the spelling and gram-
mar. We gratefully acknowledge the support of the projects
FP7 Human, FP7 Serenoa, and ITEA2 UsiXML (funded by
European Commission and Région Wallonne).

REFERENCES
1. Alvarado, C. and Randall, D. SketchRead: a Multi-

Domain Sketch Recognition Engine. In Proc. of UIST’04.
ACM Press, New York (2004) pp. 23-32.

2. Bailey, B.P. and Konstan, J.A. Are informal tools better?
Comparing DEMAIS, pencil and paper, and Authorware
for early multimedia design. In Proc. of CHI’03. ACM
Press, New York (2003), pp. 313-320.

65

3. Caetano, A., Goulart, N., Fonseca, M., and Jorge, J. Ja-
vaSketchIt: Issues in Sketching the Look of User Inter-
faces. In Proc. of AAAI’02 Spring Symp. on Sketch Un-
derstanding. AAAI Press, Menlo Park, pp. 9-14.

4. Coyette, A., Kieffer, S., and Vanderdonckt, J. Multi-
Fidelity Prototyping of User Interfaces. In Proc. of Inter-
act’07, Springer-Verlag (2007), pp. 149-162.

5. Chung, R., Mirica, P., and Plimmer, B. InkKit: a Generic
Design Tool for the Tablet PC. In Proc. of CHINZ’05.
ACM Press, New York (2005), pp. 29-30.

6. Hong, J.I., Li, F.C., Lin, J., and Landay, J.A. End-user
Perceptions of Formal and Informal Representations of
Web Sites. In Extended Proc. of CHI’00, pp. 385-386.

7. Hong, J.I. and Landay, J.A. Satin: a toolkit for informal
ink-based applications. In Proc. of UIST’00, pp. 63-72.

8. Kara, L.B. and Stahovich, T.F. Hierarchical parsing and
recognition of handsketched diagrams. In Proc. of
UIST’04. ACM Press, New York (2004), pp. 13-22.

9. Landay, J.A. and Myers, B.A. Interactive Sketching for
the Early Stages of User Interface Design. In Proc. of
CHI’95. ACM Press, New York (1995), pp. 43-50.

10. Landay, J.A. and Myers, B.A. Sketching interfaces: to-
ward more human interface design. IEEE Computer
34(3), 56-64.

11. Lin, J., Thomsen, M., and Landay, J.A. A visual language
for sketching large and complex interactive designs. In
Proc. of CHI’02, ACM Press, pp. 307-314.

12. Long, A.C., Landay, J.A., and Rowe, L.A. Implications
for a gesture design tool. In Proc. of CHI’99, pp. 40-47.

13. Long, A.C., Landay, J.A., Rowe, L.A., and Michiels, J.
Visual similarity of pen gestures. In Proc. of CHI’00.
ACM Press, New York (2000), pp. 360-367.

14. McCurdy, M., Connors, C., Pyrzak, G., Kanefsky, B., and
Vera, A. Breaking the Fidelity Barrier: An Examination
of our Current Characterization of Prototypes and an Ex-
ample of a Mixed-Fidelity Success. In Proc. of CHI’06.
ACM Press, New York (2006), pp. 1233-1242.

15. Meyer, J. EtchaPad – Disposable Sketch Based Inter-
faces. In Proc. of CHI’96, ACM Press, pp. 195-198.

16. Newman, M.W. and Landay, J.A. Sitemaps, Storyboards,
and Specifications: a Sketch of Web Site Design Practice.
In Proc. of DIS’00. ACM Press, pp. 263-274.

17. Pajares, M., Ayala, P., Fajardo, I., Vicente, D., and Grana,
M. Usability analysis of a pointing gesture interface. In
Proc. of IEEE Conf. on systems, man and cybernetics.
IEEE Computer Soc. Press, pp. 2652-2657.

18. Plimmer, B.E. and Apperley, M. Interacting with
Sketched Interface Designs: an Evaluation Study. In Ex-
tended Proc. of CHI’04. ACM Press, pp. 1337-1340.

19. Rettig, M. Prototyping for tiny fingers. Communications
of the ACM 37(4), 1994, pp. 21-27.

20. Rudd, J., Stern, K., and Isensee, S. Low vs. high-fidelity
prototyping debate. Interactions 3(1), 1996, pp. 76-85.

21. Sefelin, R., Tscheligi, M., and Giller, V. Paper Prototyp-
ing – What is it Good for? A Comparison of Paper-and
Computer-based Prototyping. In Proc. of CHI’03. ACM
Press, New York (2003), pp. 778-779.

22. Snyder, C. Paper Prototyping: The Fast and Easy Way to
Design and Refine User Interfaces. Series in Interactive
Technologies, Morgan Kaufmann, 2002.

23. Tohidi, M., Buxton, W., Baecker, R., and Sellen, A. User
Sketches: a Quick, Inexpensive, and Effective Way to
Elicit more Reflective User Feedback. In Proc. of Nordi-
CHI’06. ACM Press, New York, pp. 105-114.

24. Virzi, R.A., Sokolov, J.L., and Karis, D. Usability prob-
lem identification using both low- and high-fidelity proto-
types. In Proc. of CHI’96. ACM Press, pp. 236-243.

25. Walker, M., Takayama, L., and Landay, J. High-fidelity
or Low-fidelity, Paper or Computer medium? In Proc. of
HFES’02. HFES, Santa Monica (2002), pp. 661-665.

26. Ware, C. Information visualization: perception for design.
Morgan Kauffman, San Francisco, CA, 1994.

66

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

