
 - 163 -

Adapting UsiXML User Interfaces to Cultural Background
 Iyad Khaddam Jean Vanderdonckt
 Consulting Company for Computers Louvain School of Management, UCL
 & Communications (4C) - Consultant Place des Doyens, 1
 Damascus, Syria B-1348 Louvain- la-Neuve (Belgium)
 +963 944 266 475 +32 10 478525
 iyadkh@gmail.com jean.vanderdonckt@uclouvain.be

ABSTRACT
Adapting a user interface to the end user's cultural back-
ground today remains an open challenge since many under-
lying issues are not yet solved. This paper addresses this
challenge by reporting on a selected series of these issues,
by structuring them according to Nielsen's linguistic model
of interaction, and by discussing how each issue can be
supported by incorporating its solution into a User Inter-
face Description Language, such as User Interface eXten-
sible Markup Language (UsiXML), at the level of a Con-
crete User Interface (CUI). In particular, the problem of
right-to-left (RTL) versus left-to-right languages (LTR)
languages is discussed through a series of adaptations of
algorithms and techniques that support the automated gen-
eration of Arabain graphical user interfaces based on
UsiXML.

Categories and Subject Descriptors
H.1.2 [Information Systems]: Models and Principles –
User/Machine Systems. H5.2 [Information interfaces and
presentation]: User Interfaces – Prototyping; user-
centered design; user interface management systems
(UIMS).

General Terms
Design.

Author Keywords
Arabization, Cultural background, Globalisation, Localisa-
tion, LTR, RTL, UsiXML.

INTRODUCTION
Right To Left (RTL) languages are languages that are writ-
ten from Right to Left, like: Arabic, Farsi, Urdu and He-
brew. They use a different set of letters than Latin Coun-
terparts. Similarly, some languages are read from bottom to
top, as opposed to Latin languages that are read from top to
bottom. We hereby define a RTL UI as a Graphical User
Interface that accommodates the requirements posed by
languages that are read from right to left. A RTL UI is the
UI that meets the RTL language demands. RTL UI is an
underestimated concept in the HCI community. At first
glance, it may look like support for another set of lan-
guages, and sometimes it may be assumed as a localization
of the product UI. Designing a RTL UI cannot be assimi-
lated to designing a LTR UI and mirroring it by symmetry
in order to obtain a corresponding RTL UI. Indeed, reading
paths are different, location of widgets cannot be simply

mirrored because of labels lengths, explanation and charac-
ter sets. Existing algorithms for UI automated layout do not
consider these aspects at all.

RTL UI has two aspects that should be treated together: the
localization and the orientation (mirroring). If we fail to
address one of them, the resulting UI will not be acceptable
to users who are RTL language speakers. UI localization is
addressed in multiple works, like in [20]. RTL is a common
property among a set of written languages. This implies
that each of these languages needs to be localized separate-
ly. Another less common property among the RTL lan-
guages is that most of them use the Arabic alphabet but add
some extended letters (Hebrew has its own alphabet). Ara-
bic can represent all the RTL languages as it has many fea-
tures which do not exist in the rest of the RTL languages.
Therefore, support for Arabic will enable support for the
rest of the RTL languages that are similar in principle.

Figure 1 shows the characteristics of RTL UI versus LTR
UI. We can easily notice the mirroring effect. The form
header is mirrored, and components order is reversed The
Close, Maximize, Minimize, Caption and Icon controls are
all rearranged from right to left. The same effect applies to
the menu and the tabs. Inside the tab, we can see that the
table also is mirrored. The first column (that contains the
labels: Name, Last name …) is positioned to the right. Ta-
ble columns now flow from right to left which is the mirror
of the LTR table layout. The vertical scroll is on the right,
“Save” and “Revert” buttons positions are mirrored.

RTL affects controls too. We note the change of writing di-
rection inside the text boxes. The combo box rendering is
also mirrored (the “Gender”), the drop down image is posi-
tioned to the right of the combo box in the RTL version.
The check box caption is also mirrored. Menus are also af-
fected. In Figure 2, we show the effect of RTL on menus
and sub menus, they expand to the right in the RTL ver-
sion. The triangle image before the menu item “Trans-
form…” is mirrored, and also is the arrow after.

An interesting difference to note is the horizontal bar. Alt-
hough a horizontal bar is horizontally symmetrical, but the
scroll bar starts from the left in LTR UI and from the right
in the RTL UI. This is important to note in case we shrink a
RTL window; the right view (controls on right) should al-
ways be visible and no need to scroll to the right.

Another interesting difference can be seen by looking at the
“Notes” text box control. This control allows multiple

In Faure, D., Vanderdonckt, J., (Eds.), Proc. of 1st Int. Workshop on User Interface Extensible Markup Language UsiXML’2010 (Ber-
lin, 20 June 2010), Thales Research and Technology France, Paris, 2010. ISBN 978-2-9536757-0-2

 - 164 -

lines, Pressing “Enter” key takes the cursor to the begin-
ning of new line (\n + \r). While “beginning a new line”
means in LTR “the left of the line”, RTL redefines this
meaning as “the right of the line”. Writing direction switch-
ing may occur in a RTL text. The “Notes” field (in the RTL
version) provides an example. The direction is switched us-
ing a combination of keyboard keys. In this example, the
user wrote in Arabic, switched direction to LTR then back
forth to RTL to continue his phrase. This can occur many
times, and should not affect the readability of text.

Figure 1. a sample English UI and the localized

RTL version (in Arabic Language)

Figure 2. A sample LTR and the localized RTL version

(in Arabic language).

“Tab” behavior is also affected with RTL (Tab to move fo-
cus to next enabled element). In the LTR version, pressing

“tab” moves focus between controls in sequence: “Name”,
“Last name”, “E-mail”, “Age”, “Gender” then “Notes”.
The same behavior is expected in the RTL version. If the
“Tab” key behavior is related to element positioning, it
won’t work in the RTL version (unless positioning consid-
ers RTL). The last thing to notice is the shortcuts. As RTL
languages use non-Latin alphabet, keyboard shortcuts will
be different in both versions. The RTL version will use
keyboard shortcuts from its own language alphabet. This
problem is related to Localization more than to RTL.

From the above example, we summarize RTL effect on UI
in 2 ways:

- The orientation (the mirroring)

- The localization

The TRL localization has special characteristics that don’t
exist in Latin-alphabet languages, which makes the locali-
zation a challenge. We identify from the examples before
the following characteristics for RTL localization:

- Text localization

o Text localization: language encoding and
character set (alphabet).

o Direction switching: direction of text
writing.

- Graphics localization

o RTL sensitive graphics (non-horizontally
symmetrical)

o Images with text inside

o Other localizable images (country flag…)

- Control localization

o Control rendering: ex: label control
should support writing from right to left.

o Control behavior: controls should be
aware of special behavior for special
keys (like pressing “enter” key in a text
area)

In the following sections, we discuss the support provided
by the current version of UsiXML and explain our contri-
bution to provide a full support for RTL.

RELATED WORK
As we mentioned before, the RTL issue is underestimated
in the CHI research area. While localization is discussed in
many works, rare effort was spent on RTL languages local-
ization.

In the market, we can find well-arabized products and most
of them are built on Microsoft Windows Operating System
(As it was the pioneer in providing support for RTL lan-
guages) or on the web. ERP products were forced to pro-
vide RTL support due to market pressure. Hau in [7] shows
the awareness of the RTL issue in the ERP industry.

 - 165 -

Writers [5] explain the Arabic language characteristics and
explain the challenges of the language in the context of
providing OS support for Arabic. They discuss the issues
related to encoding, character shaping and the “cursive” or
“handwritten” style of writing in Arabic, vowels, numbers
shapes and the mirroring effect on visual screens.

Rejmer et al. [20] discussed internationalization for a prod-
uct as a case study. They came up with a set of guidelines
to help internationalization/localization of a product. Their
work handled the case of western languages (Latin alpha-
bet) and didn’t discuss the case of RTL nor non-Latin al-
phabet languages. Their guidelines need reviewing to be
adapted for RTL languages.

Other UI languages address the RTL in different ways.
XUL [27] (XML User Interface Language) is the UI lan-
guage used by Mozilla to create feature-rich cross platform
applications. Firefox UI is built using this language.

XUL supports RTL UI by providing the “dir” property at
the UI element which is the base of all elements. The “dir”
property can have one of two values: normal, reverse. The
“normal” means: “position elements in the container ac-
cording to their order in the xml file”. The “reverse” value
means: “position elements in the container according to
their reverse order in the xml file”. Figure 3 shows the dif-
ference. XUL does not directly address the RTL concept,
but their concept of “reverse” fixes the orientation issue.
On the other side, it doesn’t address the control localization
nor provide support to it. When the dir property is “re-
verse”, this doesn’t imply that the final control to be used is
a control that supports RTL. XUL depends on the render-
ing framework to determine the final control (localized ver-
sion). Thus it provides a localized version of Firefox for
each language. The problem we note with XUL approach is
that each localized version of the product will have a local-
ized version of the design (the XUL file is copied for each
language). This imposes a maintenance/update problem.

XAML is a markup system that underlies user interface
components of Microsoft's .NET Framework 3.0 and above
[26]. XAML supports RTL by adding a “FlowDirection”
property to the containers and UI elements that takes one of
the values: “LeftToRight”, “RightToLeft”. This causes the
expected effect of RTL to be applied on the container
and/or the element. Figure 4 gives an example.

The FlowDirection property is inherited by all the elements
in the objects hierarchy; all the elements in a container in-
herit its container’s property. Thus, we only need to set this
property on the window level and all the inside elements
will inherit it. Note the effect on the combo box, it becomes
RTL in response to the window FlowDirection property
value.

Figure 3. XUL property dir and effect of the 2 different

values: normal and reverse.

Figure 4. XAML property FlowDirection and effect of
the 2 different values: LeftToRight and RightToLeft.

The FlowDirection property can be overridden on the ele-
ment’s level, this enables the designer to give a certain el-
ement a different direction than the container. This can be
helpful in UI where a mixed content of LTR and RTL lan-
guages are used.

The problem XAML faces is that when we have a set of
RTL interfaces (windows), then each must be set individu-
ally. This is because each file defines a window only. The
other problem is that we need to copy the design (the
XAML file) to obtain the two UIs (RTL and LTR) as the
FlowDirection property value is static.

 - 166 -

CURRENT RTL SUPPORT IN UsiXML

Architectural overview
UsiXML is MDA-compliant. The UsiXML development
process [23] aligns the UsiXML models with the MDA
models as follows:

MDA UsiXML model

Computing Independent
Model (PIM)

Task, Domain

Platform-Independent
Model (PIM)

Abstract User Interface
(AUI)

Platform-Specific Model
(PSM)

Concrete User Interface
(CUI)

Code Final User Interface
(FUI)

Table 1. UsiXML compliance to MDA.

RTL is a platform-specific issue. This implies that support-
ing RTL in UsiXML should be considered in the CUI
model. RTL should not affect the Task, Domain or AUI
models to keep UsiXML MDA-compliant.

The orientation
Current version of UsiXML doesn’t make any difference
between LTR and RTL, and is assumed to be LTR.
UsiXML supports element positioning and alignment
(Right, Left and Center). Positioning is supported by the
employment of 2dGraphicalContainer objects. Positioning
is different from orientation. Figure 5 shows this difference
on a table.

Figure 5. The difference between positioning and

orientation.

RTL Localization in UsiXML
Localization is supported in UsiXML using the resource
model, which provides limited support for RTL languages
localization. The problems with current implementation of
localization in UsiXML are as follows:

Text Translation
UsiXML supports text localization. The same technique is
applicable for RTL languages. Anyway, the issue in RTL
text translation is in the storage of local text inside the xml
file. The encoding used to save the xml file needs to sup-
port the RTL language. Using Unicode can be a solution
for this issue.

Direction switching
UsiXML does not sense the change of writing direction in
a text. It relies on the input/output FUI objects to do the
rendering. This is a concern in case the target platform
doesn’t support RTL, or if output FUI objects don’t support
RTL. Enabling writing direction-change sensing would
provide information to transformers (from CUI to FUI) to

enhance the generated UI in case FUI controls don’t sup-
port RTL (for example: a transformer may render the RTL
language text as an image instead of text).

Graphics Localization:
All the issues we mentioned before regarding graphics lo-
calization can be solved using the current UsiXML locali-
zation support. If we have an English UI resource file with
n images, the localized UI resource for another LTR lan-
guage (say French) will contain n images also but with m
(m<=n) localised images (ex. flag images and images with
text). In the case of localization for an RTL language, the
number of localized images may be larger than m. This is
due to the non-horizontally symmetrical images that may
exist in the original design (ex. Horizontal arrows need to
be RTL localized). We will address this issue in the next
section.

Control Localization:
UsiXML does not support any kind of control RTL locali-
zation. All CUI controls are direction insensitive. This is
also left for the FUI objects. The problems with leaving
them to the FUI are:

1- The control’s direction property is hidden in the trans-
former. Reverse engineering to CUI will fail to indenti-
fy the control’s direction.

2- No transformer can generate a UI that contains both
LTR and RTL FUI controls (Figure 1 gives an example:
the e-mail text box must be LTR in both versions).

In the next section, we will provide enhancements to
UsiXML to overcome the shortage in the current version.

UPDATING UsiXML DESIGN TO SUPPORT RTL UI
UsiXML has a unique characteristic over other UI models,
which is the employment of multiple models in one.
UsiXML designers design the UI of a concept, while in
other UI models, they focus on the design of a single inter-
face (window). One of the important models in our case is
the context model.

Updating UsiXML class design
RTL is a platform property, and the context model de-
scribes the platform. This direct mapping gives an intuitive
solution to the problem: extend the Platform class to con-
tain a new property: “dir”. The “dir” is an optional property
that can have one of two values: “LTR” (the default) or
“RTL”. The other update to the design is adding a new
property to the CUI class: 2DgraphicalCio. This will sup-
port RTL in all graphical user interface elements (contain-
ers or individual components). The “dir” property for the
2DgraphicCIO is inherited from the containing container.
Root container (the window) inherits from the platform
“dir” property.

Using the “dir” property
From a designer perspective:
The designer creates a new context for the RTL UI, where
he can localize the messages and other resources. He also

 - 167 -

sets the “dir” property of the platform to the value “RTL”.
There is no need to set the “dir” property for containers and
elements as the default value for them will be that in the
context. Wherever there is an exception (i.e: the GUI is
orientation-independent), a fixed value needs to be set for
that gui element’s “dir” property. In Figure 1, we can see
an example: the text box of the e-mail; e-mails are always
written in English, so the text box should always be LTR.

From a transformer perspective
The transformer checks the “dir” property for each
2dgraphicalCIO. As we discussed before, the “dir” proper-
ty is either context-dependent or static value. In both cases,
it is resolved according to current employed context. Trans-
formers have the choice now to render FUI correctly and to
use the correct individual controls that support the CIO ori-
entation.

Optional design modifications
In the section before, we mentioned the issue of non-
horizontally symmetrical images. Although this issue
doesn’t affect support for RTL in UsiXML (as support is
provided using resource files), but an enhancement to re-
duce the number of images in the RTL UI localized re-
source may save designer’s time. Image rotation can be
achieved programmatically. Transformers can produce the
RTL version of these images when applied. All we need to
do is to denote the images that are not horizontally sym-
metrical. We suggest adding a new property to the im-
ageComponent clas; the “ImageDir” property. This proper-
ty accepts one of the values: “RTL”, “LTR”, “empty”. If
the physical image is for the LTR UI, then the value is LTR
and vice versa. The transformer decision to rotate the im-
age is explained in Table 2.

 ImageDir

LTR RTL empty

dir LTR Rotate

RTL Rotate

Table 2. The decision table used by transformers to ro-
tate the image is based on the two properties of the Im-

age.

The rotated version of the image can be saved and handled
by the transformer internally and the transformation pro-
cess is re-entrant. Direction switching can be handled by
adding a direction tag separator when a switching occurs.
We can use two tags: <LTR> and <RTL>. A string like:

Can be rewritten to represent direction switching as fol-
lows:

<RTL>تقابلنا في</RTL><LTR>Paris</LTR><RTL> السنة
 <RTL/>الماضية

This way, a transformer can have a choice to handle cases
where an FUI control doesn’t support RTL to be rendered
correctly. A valid approach to render the above text appro-
priately is to generate 3 labels in that the left-most will con-
tain the 3rd part of the string and so on. In the case where
the OS doesn’t support the alphabet, a transformer can pro-
duce an image of the above text. If RTL is well supported
in a platform, the transformer can ignore the direction tags.

RTL AND USABILITY
Many resources can be found regarding usability tips and
practices. In this paper, we present some of them and show
the effect of RTL on known usability (RTL usability) tops
and practices. We do not intend to provide a full guide, but
just to give a sense of the differences. Some useful usabil-
ity tips exist : http://www.ambysoft.com/essays/user-
InterfaceDesign.html. We excerpt two of them to discuss.

Tip 1: Align fields effectively: When a screen has more than one
editing field, you want to organize the fields in a way that is both
visually appealing and efficient. I have always found the best way
to do so is to left-justify edit fields: in other words, make the left-
hand side of each edit field line up in a straight line, one over the
other. The corresponding labels should be right-justified and
placed immediately beside the field. This is a clean and efficient
way to organize the fields on a screen.

Our comment: This is an LTR thinking. To make this tip
applicable in RTL UI, we need to replace the left words
with right and vice versa.
Tips 2: Justify data appropriately: For columns of data, common
practice is to right-justify integers, decimal align floating-point
numbers, and to left-justify strings.

Our comment: this is a cultural preference. In Arabic, the
more preferred way is to center-align numbers and right-
justify strings.

TOWARDS CULTURALLY-AWARE UsiXML UIs
The last examples suggest that transforming UsiXML-
based UIs for Arabic languages and culture is certainly a
matter of revisiting existing techniques for selecting and
placing widgets in a GUI. In this section, we briefly con-
sider two techniques used for automating the production of
GUIs: one technique that automatically select widgets de-
pending on domain parameters and one technique for au-
tomated layout of these widgets.

Automatic selection of widgets
[14] provides a decision-tree based technique in order to
automatically select widgets (e.g., check boxes, radio but-
tons, list boxes, combination boxes) based on parameters
coming from the domain model (e.g., data type, number of
possible values, number of values to choose). While the
cognitive principles and usability guidelines that have been
considered in order to build this technique remain universal
in principle, there are still some adjustments that are not
considered for Arabian languages because the technique
assumes that the GUI is based on Western properties that
are not necessarily applicable or valid for non-Western
countries and cultures. For instance, Table 3 depicts some

 - 168 -

adjustments that have been introduced in order to take into
account RTL languages: the rightmost columns indicates
the Concrete Interaction Object (CIO) to be selected de-
pending on the following parameters from the domain
model: for a simple choice in a known domain, number of
secundary values (Nsv), expandable domain (Exp), Con-
tinuous domain (Cont), Number of possible values (Npo),
precision, and orientation. Most of the time, the CIOs re-
main the same, but their right alignment is preferred and
the combination of widgets is arranged so that the reading
order is correct.

Automatic laying out of widgets
[15] describes an algorithm that automatically positions se-
lected widgets resulting from the previous step in a con-
tainer according to a technique called "Right-Bottom". This
dynamic strategy is explained to be more flexible than a
static strategy [16]. Let Si denotes the CIO placed at time i.
Si+1 is the next CIO to be placed. The idea of the
right/bottom strategy consists of following the visual conti-
nuity principle by either placing Si+1 on the right of Si or
beneath Si. The idea is to perpetuate this layout technique
until all selected widgets have been placed. The placement
strategy is defined as the following:

if the total length does not exceed the limit
then
 place Si+1 with horizontal sequencing
 three cases are to be considered
 1. height (Si) = height (Si+1)
 apply proportional uniformity
 2. height (Si) > height (Si+1)
 if Si+1 = edit box
 then
 if Si = list box or edit box
 then apply bottom justification
 else apply upper justification
 3. height (Si) < height (Si+1)
 if available space is sufficient
 then apply bottom justification
 else maximize upper justification
else
 place Si+1 with vertical sequencing.

Nsv Exp Cont Npo Precision Orientation CIO
> 0 list box with right aligned items
= 0 yes combination box with right

aligned edit field
 no no [2,3] radio-button with Npo items
 [4,7] radio-button with Npo items +

group box
 [8,Tm] list box with right aligned items
 [Tm+1,2Tm] scrolling list box with right

aligned items
 > 2Tm scrolling drop-down list box with

right aligned boxes
 yes [1,10] low vertical scroll bar
 horizontal Scale
 circular pie diagram in counterclockwise

presentation
 undefined scale
 high vertical vertical thermometer
 horizontal horizontal thermometer
 circular dial with Arabian presentation
 undefined horizontal thermometer
 [11,Tm] high spin button
 low scale
 > Tm high spin button
 low vertical scroll bar
 horizontal scale
 circular dial with Arabian presentation
 undefined scale
Table 3. Rules for selecting Concrete Interaction Objects (Adapted from [14]).

 - 169 -

If we want to adapt this technique, we must revert most of
mathematical relationships that are logically defined. This
then becomes the Left-Bottom strategy:

if the total length does not exceed the limit
then
 place Si+1 with horizontal sequencing from left to right
 three cases are to be considered
 1. height (Si) = height (Si+1)
 apply proportional uniformity
 2. height (Si) > height (Si+1)
 if Si+1 = edit box

 then
 if Si = list box or edit box
 then apply upper justification
 else apply bottom justification
 3. height (Si) < height (Si+1)
 if available space is sufficient
 then apply upper justification
 else maximize bottom justification
else
 place Si+1 with vertical sequencing.

 PDI IDV MAS UAI LTO

 rank score rank score rank score rank score rank score

Arab Countries 7 80 26/27 38 23 53 27 68

Argentina 35/36 49 22/23 46 20/21 56 10/15 86

Australia 41 36 2 90 16 61 37 51 15 31

Austria 53 11 18 55 2 79 24/25 70

Bangladesh 11 40

Belgium 20 65 8 75 22 54 5/6 94

Table 4. Some values of the Five Cultural Dimensions as estimated in [10].

At first glance, at are these little adjustments may appear
sufficient. But at second glance, updating a GUI for Ara-
bian languages is more than a simple matter of reposition-
ing widgets. Indeed, culture has been identified [7,8,9,13]
has a very important aspects that is often forgotten in the
design of globalized user interfaces and localized user in-
terfaces, thus clearly affecting the identity of the web site
in the country [12]. Marcus [10,11] classified 53 coun-
tries according to Hofstede [8] five cultural dimensions:
PDI: Power distance index, IDV: Individualism index,
MAS: Masculinity index, UAI: Uncertainty avoidance in-
dex, and LTO: Long-term orientation index. For instance,
Table 4 reproduces some lines of this work (Source:
http://www.amanda.com/resources/hfweb2000/hfweb00.
marcus.html).

While some of the indexes are mainly indicative and not
necessarily true in every circumstance, they suggest as-
pects to be considered in culturally-aware UIs. For in-
stance, figure 6 depicts the same web site but with com-
plete redrawing while keeping the same contents. While
consistency across languages may certainly be desirable,
other aspects could be considered as well. For instance,

Marcus suggests that the following countries have very
different masculinity index: 95 Japan, 79 Austria, 63
South Africa, 62 USA, 53 Arab countries, 47 Israel, 43
France, 39 South Korea, 05 Sweden. This is not at all re-
flected in the GUI design.

 - 170 -

Figure 6. The same web site in English (LTR) and in

Arabic (RTL).

A CLASSIFICATION OF ISSUES FOR ARABIAN UIS
In order to classify a manual operation and, therefore, a
subsequent beautification operation, Nielsen’s linguistic
model of interaction [14] was selected for these reasons:
it decomposes a human-computer interaction in terms of
seven inter-related, but independent, levels with a com-
munication protocol between them; it has already been
successfully used to classify usability guidelines accord-
ing to their level of importance; and it allows identifica-
tion criteria to univocally locate each modification to one
and only one level. Table decomposes a simple goal (i.e.,
delete a paragraph in a letter) into subsequent units of in-
teraction for each level:
 Level 1 (Goal): expresses a user’s mental goal, such as

“search for a particular customer having a water meter
in a specific region”.

 Level 2 (Pragmatic): translates this mental goal into a
task to be carried out in the system according to the
system concepts, such as “search for a subscriber hav-
ing at least one water meter in zone x”.

 Level 3 (Semantic): translates the real-world objects
into system objects and functions, such as “search for a
subscriber with a code region filled in”.

 Level 4 (Syntactic): structures the semantic into an
ordered sequence of operations in time and space, such
as “select a zone code from the list and launch a que-
ry”.

 Level 5 (Lexical): decomposes each operation into the
smallest possible pieces of information, such as “a
zone code”.

 Level 6 (Alphabetic): specifies the unit of information
(e.g., a lexeme, a metric) for each information item,
such as “an integer for representing the zone code”.

 Level 7 (Physical): specifies the physically-coded in-
formation in terms of light, sound, color, etc., such as
“display the integer in black on white for input”.

L
ev
el

Title Units Definition Example W
o
rl
d

1 Goal Concepts
of real
world

Mentalization of a
goal, a wish in the us-
er’s head

Delete a par-
agraph from
my letter

C
onceptual

2 Prag-
matic

Concepts
of system

Translation of a goal
into system concepts

Delete 6
lines of the
current para-
graph in the
edited text

3 Seman-
tic

Detailed
functions

Real world objects
translated into system
objects manipulated
by functions

Delete a cer-
tain amount
of lines

4 Syntac-
tic

System
sentences

Time & space se-
quencing of infor-
mation units

DELETE 6

P
erceptual

5 Lexical Infor-
mation
units

Smallest elements
transporting signifi-
cant information:
word, figure, screen
coordinates, icon

[DELETE]
command,
[6] number

6 Alpha-
betic

Lexems Primitive symbols: let-
ter, numbers, columns,
lines, dots, phonems,
...

D, E, L, E,
T, E, 6

P
hysical 7 Physical Physically

coded in-
formation

Light, sound, physical
moving

Pressing
[CTRL]+[D]
followed by
[6]

Table 5. Definition of the seven levels of Nielsen’s lin-

guistic model of interaction [14].

According to Nielsen's linguistic model, we can classify
the problems discussed in this paper as follows:

Text Localization is the replacement of strings with the
Arabic opponents; it replaces primitive symbols, so it fits
at level 6 (alphabet). Writing direction switching involves
syntactical handing of the text, so it fits at level 4.

Image Localization is just like Text Localization if we see
localized images as the path to the image (the unit of in-
formation is the image path). If we look at images as the
unit of information (like when generating images dynam-
ically), then Image Localization is considered at level 5
(Lexical).

Control Localization fits at level 5 (lexical) or at level 4
(Syntactic) according to the way we implement it. We can
use "RTLLabel" and "LTRLabel" instead of "Label" to
implement localized controls, then we are adding new
lexemes and localization fits at level 5. If no new lexemes
are introduced, we can still support localization by intro-
ducing a new syntax: Label rtl, "any Arabic string" and
the Control localization fits at level 4. We believe that
UsiXML should implement control localization at level 4.

 - 171 -

The Orientation (RTL layout) is at level 4 since it is relat-
ed to spatial aspects, but it can be seen at level 3 (seman-
tic). At level 4, the UI will be described as:

Add Window RTL

Add Label RTL, "An Arabic string"

Add TextBox RTL

…

Add Label LTR, "E-Mail"

Add TextBox LTR

While at level 3, we can describe the same UI above as:

UIContext RTL

Add Window

Add Label "An Arabic string"

Add TextBox

…

Add Label LTR, "E-Mail"

Add TextBox LTR

In this example, the page direction is defined globally and
controls inherit the orientation property. The direction can
be still set manually for a specific control if different than
the global setting. The algorithms we discussed before af-
fect widget selection and layout, thus they fit at level 4.
We note also that a little semantic is used which is related
to the orientation problem.

The cultural differences and effect on Arabian UI (the
Hofstede's cultural dimensions) are at level 2 (Pragmatic)
since taking into account cultural aspects is very much
based on high-level considerations.

CONCLUSION
In this paper, we explained the challenges imposed by
RTL languages. We provided a solution in UsiXML to
handle all the challenges we mentioned. The proposed so-
lution provides better support for designers than other UI
models thanks to unique characteristics of UsiXML. The
“dir” property of the platform is used to handle the orien-
tation problem and the “dir” property of the ui elements
provides support for localized controls. Direction switch-
ing can be fixed using the direction tag separators. Image
localization for non-horizontally symmetrical ones is also
handled. On top of all that, the designer maintains only
one copy of the design thanks to the context model in
UsiXML.

FUTURE WORK
The Orientation problem can be generalized to address
Top To Bottom UI and Bottom To Top UI. Studying the
effect of RTL on 3DUI can be another interesting area to
evaluate. In the context of cultural differences effect on
UI, more work should be spent on Arabian UI to come up
with concrete results that may help to enhance Arabian
usability guidelines.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the FP7 Serenoa
project funded by the European Commission and the
UsiXML project (ITEA2 Call3) under reference 2008026.

REFERENCES
1. Bodart, F., Hennebert, A.-M., Leheureux, J.-M., and

Vanderdonckt, J. Towards a Dynamic Strategy for
Computer-Aided Visual Placement. In Proc. of 2nd
ACM Workshop on Advanced Visual Interfaces
AVI'94 (Bari, 1-4 June 1994). T. Catarci, M.F. Costa-
bile, S. Levialdi, G. Santucci (eds.), ACM Press, New
York, 1994, pp. 78-87.

2. Bodart, F., Vanderdonckt, J. On the Problem of Se-
lecting Interaction Objects. In Proc. of BCS Conf.
HCI’94 "People and Computers IX" (Glasgow, 23-26
August 1994), Cambridge University Press, Cam-
bridge, 1994, pp. 163-178.

3. Coyette, A. and Vanderdonckt, J. A Sketching Tool
for Designing Anyuser, Anyplatform, Anywhere User
Interfaces. In Proc. of 10th IFIP TC 13 Int. Conf. on
Human-Computer Interaction INTERACT’2005
(Rome, 12-16 September 2005). Lecture Notes in
Computer Science, Vol. 3585, Springer-Verlag, Ber-
lin, 2005, pp. 550-564.

4. Cyr, D., Head, M., and Larios, H. Colour appeal in
website design within and across cultures: A multi-
method evaluation. International Journal of Human-
Computer Studies, Vol. 68, No. 1-2, January 2010,
pp.1-21.

5. DelGaldo, E.M. and Nielsen, J. International User In-
terfaces. John Wiley & Sons, New York, 1996.

6. Evers, V. and Day, D. The role of culture in interface
acceptance. In Proc. of the IFIP TC13 Int. Conf. on
Human-Computer Interaction INTERACT’97 (Syd-
ney, 14- 18 July 1997), Chapman & Hall, London,
1997, pp. 260-267.

7. Hau, E. and Aparicio, M. Software Internationaliza-
tion and Localization in Web Based ERP. In Proc. of
the 26th Annual ACM Int. Conf. on Design of commu-
nication SIGDOC'2008 (Lisbon, 22–24 September
2008). ACM Press, New York, 2008, pp. 175-180.

8. Hertzum , M., Clemmensen, T., Hornbæk, K., Kumar,
J., Shi, Q., and Yammiyavar, P. Usability constructs: a
cross-cultural study of how users and developers ex-
perience their use of information systems. In Proc. of
the 2nd Int. Conf. on Usability and Internationalization
(Beijing, 22-27 July 2007). Lecture Notes in Comput-
er Science, Springer-Verlag, Berlin, 2007, pp. 317-
326.

9. Hofstede, G. Culture and organisation: Software of
the Mind. McGraw Hill, New York, 1997.

10. Hofstede, G. Culture's Consequences: International
Differences in Work-Related Values. Sage Publica-
tions, Beverly Hills, 1980.

 - 172 -

11. Mahemoff, M. and Johnston, L. "Culturally-aware"
requirements for internationalized software. In Proc.
of 3rd Australian Conf. on Requirements Engineering
ACRE‘98 (Geelong, Australia, 26-27 October 1998),
D. Fowler, L. Dawson (eds.), Deakin University, Gee-
long 1998, pp. 83-90. Accessible at http://mahemoff.-
com/ paper/reqsi18n//

12. Marcus, A. and West Gould, E. Cultural Dimensions
and Global Web User-Interface Design. Interactions,
Vol. 7, No. 4, July 2000, pp. 32-46.

13. Marcus, A., Armitage, J., Frank, V., and Guttman, E.
Globalization of User-Interface Design for the web. In
Proc. of 5th Int. Conf. on Human Factors and the Web
HFWeb'99 (Gaithersburg, 3 July 1999), 1999. Acces-
sible at http://www.amanda.com/resources/HFWEB-
99/HFWEB99.Marcus.html.

14. Nielsen, J. A Virtual Protocol Model for Computer-
Human Interaction. International Journal of Man-
Machine Studies, Vol. 24, No. 3, 1986, pp. 301–312.

15. Nomura, S., Ishida, T., Masaki, S., Yokozawa, M.,
and Shinohara, T. International Comparative Study of
Identity as Presented on the Internet. In Proc. of 6th
Conf. on Human Factors and the Web HFWeb’2000
(Austin, 19 June 2000), Ph. Kortum, E. Kudzinger
(eds.), University of Texas, Austin, 2000.

16. Patrick Rau, P.-L., Gao, Q., and Max Liang, S.-F.
Good computing systems for everyone-how on earth?
Cultural aspects. Behaviour & Information Technolo-
gy, Vol. 27, No.4, July 2008, pp. 287-292.

17. Pérez-Quiñones, M.A., Padilla-Falto, O.I., and
McDevitt, K. Automatic language translation for user
interfaces. In Proc. of the Int. Conf. on Diversity in
computing TAPIA'2005 (Albuquerque, 19-22 October
2005). ACM Press, New York, 2005, pp. 60-63.

18. Portaneri, F. and Amara, F. Arabization of Graphical
User Interfaces. In "International User Interfaces", E.
Del Galdo, J. Nielsen (eds.), John Wiley & Sons, New
York, 1996. http://www.langbox.com/staff/arastub.-
html.

19. Rehm, M., Bee, N., Endrass, B., Wissner, M., and
André, E. Too close for comfort?: adapting to the us-

er's cultural background. In Proc. of the Int. Workshop
on Human-centered multimedia HCP'07 (Augsburg,
28-28 Sept. 2007). ACM Press, New York, 2007, pp.
85-94.

20. Rejmer, P., Cooper, M., and Vanderdonckt, J. Lessons
Learned From Internationalizing a Web Site Accessi-
bility Evaluator. In Proc. of 3rd Int. Workshop on In-
ternationalisation of Products and Systems
IWIPS'2001 " Designing for global markets 3 " (Mil-
ton Keynes, 11-14 July 2001), D.L Day & L.M.
Dunckley (eds.). Digital Printing Services, The Open
University, Milton Keynes, 2001, pp. 61-79.

21. Taylor, D. Global software: Developing applications
for the international market. Springer-Verlag, Berlin,
1992.

22. Trompenaars, F. and Hampden-Turner, Ch. Riding the
waves of culture, McGraw-Hill, New York, 1998.

23. UsiXML User Interface eXtensible Markup Language
:http://www.w3.org/2005/Incubator/model-based-ui/
wiki/UsiXML

24. Vanderdonckt, J. Knowledge-Based Systems for Au-
tomated User Interface Generation: the Trident Expe-
rience. In Proc. of CHI'95 Workshop on Knowledge-
Based Support for the User Interface Design Process
(Denver, 7-8 May 1995). ACM Press, New York,
1995, pp. 21-33.

25. Vanderdonckt, J., Ouedraogo, M., and Yguietengar,
B. A Comparison of Placement Strategies for Effec-
tive Visual Design. In Proc. of BCS Conf. HCI’94
"People and Computers IX" (Glasgow, 23-26 August
1994). G. Cockton, S.W. Draper, G.R.S. Weir (eds.),
Cambridge University Press, Cambridge, 1994, pp.
125-143.

26. Wikipedia, List of User interface Markup languages.
2010. Accessible at http://en.wikipedia.org/wiki/List_
of_user_interface_markup_languages

27. XUL,accessible https://developer.mozilla.org/En/XUL

28. Zahir, S., Dobin, B., and Gordon Hunter, M. Analysis
of the cross-cultural dimensions of national web por-
tals, Managing globally with information technology.
Idea Group Publishing, Hershey, 2003

