
Flippable User Interfaces for Internationalization
Iyad Khaddam and Jean Vanderdonckt

Université catholique de Louvain, Louvain School of Management
Louvain Interaction Laboratory, Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)

{iyad.khaddam, jean.vanderdonckt}@uclouvain.be – Phone: +32 10 478525

ABSTRACT
The language reading direction is probably one of the most
determinant factors influencing the successful internation-
alization of graphical user interfaces, beyond their mere
translation. Western languages are read from left to right
and top to bottom, while Arabic languages and Hebrew are
read from right to left and top to bottom, and Oriental lan-
guages are read from top to bottom. In order to address this
challenge, we introduce flippable user interfaces that enable
the end user to change the reading direction of a graphical
user interface by flipping it into the desired reading direc-
tion by direct manipulation. This operation automatically
and dynamically changes the user interface layout based on
a generalized concept of reading direction and translates it
according to the end user’s preferences.

Author Keywords
Adaptation, cultural background, internationalization, read-
ing direction, user interface layout.

General Terms
Design, Experimentation, Human Factors, Verification.

ACM Classification Keywords
D2.2 [Software Engineering]: Design Tools and Tech-
niques – user interfaces. D2.m [Software Engineering]:
Miscellaneous – Rapid Prototyping; reusable software.
H.5.1 [Information interfaces and presentation]: Multi-
media Information Systems – Animations. H5.2 [Informa-
tion interfaces and presentation]: User Interfaces –
Graphical User Interfaces (GUI); User-centered design,
Windowing Systems.

INTRODUCTION
Localization usually refers to the process of designing and
developing a Graphical User Interface (GUI) that is adapted
to a particular culture [6,13], continent [4], country [14] or
region [18], or a set of them (based on [4]). The opposite
process, called globalization, usually refers to the process
of designing and developing a GUI that accommodates the
common ground of the largest possible audience from dif-
ferent cultures, continents, countries, and regions (based on
[4,18,21]. Making a UI global [21] therefore results into

one single GUI, while making a UI local results into many
different variations of the same initial GUI, but adapted to
the different cultural backgrounds. These different varia-
tions are subject to a series of challenges: their design
should be coordinated [4], culturally-aware [13], main-
tained simultaneously [18], and applicability of a change
request depending on local settings. A single change request
may indeed affect one or several variations of the same
GUI. Many different factors could positively influence a
successful localization [4,6,10,11,13,14,15,16,18,21]: color,
format, metaphor, screen, layout, language, images, struc-
ture, density, ordering of information,….

Instead of producing several variations of the same initial
GUI for the different localizations, it might be interesting to
concentrate the adaptation logic into a single GUI that han-
dles these variations depending on setting of the end user. A
single GUI could be produced with adaptation, thus ad-
dressing the challenge of coordination and simultaneous
maintenance, but leaving the challenges of culture aware-
ness and dependability open in the adaptation logic.

One of the main critical factors of success is the adaptation
of the GUI to the end user’s language, which includes trans-
lation (e.g., by automated translation of all contents and re-
sources [15]) and layout adaptation to the language reading
direction [8]: this adaptation largely fosters the UI accep-
tance [8], other aspects, such as color, font, and size, are
mostly lexical factors, and less critical, while high-level as-
pects, such as metaphors and organization are hard to pre-
dict in a systematic way [18] and their impact depends on
many cultural parameters that are hard to reproduce [14].

This paper introduces the interaction technique of flippable
user interfaces in order to support the adaptation to the end
users’ language, which subsumes translation, transforma-
tion of the layout to support a correct reading direction,
mixing different directions, improving the visual properties
of the layout (such as balance and symmetry [22]).

The remainder of this paper is structured as follows: the
next section reports on some related work. Then, the design
principles that underlie flippable user interfaces (i.e., based
on a concept of generalized direction) are introduced, moti-
vated, and exemplified. The software architecture support-
ing the implementation of flippable user interfaces as an ad-
aptation interaction technique for addressing internationali-
zation is discussed. Finally, a conclusion delivers the main
points of this research and presents some future avenues,
especially for the end user’s acceptation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’11, June 13–16, 2011, Pisa, Italy.
Copyright 2011 ACM 978-1-4503-0670-6/11/06...$10.00.

223

RELATED WORK
This paper is aimed at developing an interaction technique
(i.e., flippable user interface) as a support for internationali-
zation (i.e., adaptation to end user’s language) of GUIs with
transition (i.e., animated transition between UI before and
after adaptation). The following state of the art is structured
with respect to these three main fields of research.

Adaptation to Cultural background
Three kinds of GUI adaptation are usually performed in or-
der to localize a GUI: technical adaptations [18] that ad-
dress the needs for making the GUI workable and display-
able in the localized context of use (e.g., by use of appro-
priate alphabet, character set), national adaptations that ad-
dress the needs of particularizing the information and their
associated actions to a particular country (e.g., by adding
information relevant to a country only, by removing unnec-
essary menu items for a particular task that does not require
it in a specific country), and cultural adaptations that ad-
dress the needs of cultural habitudes, conventions, and
meanings [13,14]. While most of the adaptation operations
are well documented in the literature, they are applied most-
ly on a case by case way. They are rarely applied systemati-
cally or encapsulated in an adaptation engine.

The main goals for adaptation towards localization are [8,
14,18]: communicate in the country's native language; sup-
port the natural writing symbols, punctuation, and so on;
support native date, currency, weight scales, numbers and
addresses; support natural work habits and the work envi-
ronment, and communicate in an inoffensive manner.
Again, while these principles are largely recognized and
widely adopted, they are seldom translated into rules that
automatically transform GUIs for a localized purpose.

In the market, we can find well-Arabized products and most
of them are built on Microsoft Windows Operating System,
as it was the pioneer in providing support for right-to-left
(RTL) languages or on the web. ERP products were forced
to provide RTL support due to market pressure.

Portenari & Amara explain the Arabic language characteris-
tics and explain the challenges of the language in the con-
text of providing OS support for Arabic. They discuss the
issues related to encoding, character shaping and the “cur-
sive” or “handwritten” style of writing in Arabic, vowels,
numbers shapes and the mirroring effect on visual screens.

Rejmer et al. [18] discussed the internationalization of a
web site that performs automated evaluation of W3C acces-
sibility guidelines based on a set of design guidelines for
supporting internationalization/localization. These guide-
lines only address Western languages (Latin alphabet), thus
ignoring other reading directions, but identifying important
GUI properties that are affected by internationalization.

XUL supports RTL UI [16] by providing the “dir” property
at the UI element which is the base of all elements. The
“dir” property can have one of two values: normal, reverse.
The “normal” means: “position elements in the container

according to their order in the xml file”. The “reverse” val-
ue means: “position elements in the container according to
their reverse order in the xml file”. XUL does not directly
address the RTL concept, but their concept of “reverse” fix-
es the orientation issue. On the other side, it does not ad-
dress the control localization nor provide support to it.
When the “dir” property is “reverse”, this doesn’t imply
that the final control to be used is a control that supports
RTL. XUL depends on the rendering framework to deter-
mine the final control (localized version). Therefore, it pro-
vides a localized version of Firefox for each language. The
problem we note with XUL approach is that each localized
version of the product will have a localized version of the
design (the XUL file is copied for each language). This im-
poses a maintenance/update problem.

Quiroz et al. [16] implemented a genetic algorithm for au-
tomated generation of GUI layouts based on user fatigue
based on the XUL language. By applying this algorithm,
they demonstrate which layout causes the less fatigue, but
again, the layout if only LTR since XUL itself is like
that.XAML (www.xaml.net/) is a markup system that un-
derlies user interface components of Microsoft's .NET
Framework 3.0 and above. XAML supports RTL by adding
a “FlowDirection” property to the containers and UI ele-
ments that takes one of the values: “LeftToRight”, “Right-
ToLeft”. This causes the expected effect of RTL to be ap-
plied on the container and/or the element. Figure 4 gives an
example.

Figure 1. A sample LTR and the localized RTL version

(in Arabic language).

Interaction techniques
Various interaction techniques have been investigated in
Human-Computer Interaction (HCI) that are related to the
metaphor of flipping a page of a book. This metaphor has
been extensively used in hypermedia and hypertext applica-
tions since a long time (e.g., in HyperCard) and is still used
today in multimedia presentations for the following reasons:
(i) the flipping gesture is familiar with the activity of
browsing a book, an album (e.g., FlipAlbum [7]), or a stack
of pages or documents since a simple flip distinguishes
forward from backward movement, (ii) the flipping gesture
is natural and straightforward to produce, (iii) flip, drop,
and turn, are basic operations of geometric symmetry [22]
that respectively reflect an image around the y-axis, the x-
axis, perform a 90° rotation to the right, and (iv) flipping a
window could reveal additional information related to the
window (e.g., as in Sun’s Looking Glass 3D desktop). In
other words, the flipping gesture indicates a direction,
which is appropriate to denote the direction of reading. The

224

flipping metaphor has however different interpretation: for
Western countries where the page is flipped from right to
left in order to support the reading direction from left to
right and top to bottom. ‘Fold and Drop’ [5] is an interac-
tion technique enabling end users to drag an icon from a
stack of overlapping windows and drop it onto a possibly
hidden window by applying gestures on the windows, thus
releasing the user to constantly switch from one window to
another. Orimado [9] is a variant of this interaction tech-
nique for Oriental languages. While Fold & Drop and Ori-
mado also rely on the metaphor of flipping, they are applied
to window and maintain the direction from right to left
without affecting the UI contents since this is not their goal.

The idea of rotated and peeling the windows (Figure 2), and
snapped and zipped windows has already being introduced
as an interaction technique recommended for manipulating
multiple windows more efficiently [1]. Preliminary investi-
gations [1,23] show that this interaction technique generates
a high subjective satisfaction rate, not just because it is
graphical or easy to use, but mainly for its metaphor that is
pretty close to the real world.

Figure 2. Example of the rotated and peeled-back metaphors.

Flip zooming [3] is an interaction technique that consists of
splitting a screen into a sequence of objects (e.g., images,
fragments of texts, or combinations of both types), putting
the focus on of these objects, and letting the end user to flip
through the sequence of objects from left to right, top to
bottom to preserve the context. Zooming in/out is then used
on any object of interest. The main drawback of this tech-
nique is a constant ‘touch-and-go’ between flipping (to nav-
igate) and zooming in/out (to see the details).

Flying [12] is an interaction technique used for quickly
browsing a large hypertext in order to gain some insight to
features such as organization, size, depth, level of detail,
and layout based on flipping. This technique is not intended
to support reading the contents, but to provide a first idea of
how it is structured, even in a non-linear order.

As we can see from existing work, it seems interesting to
consider the concept of flippable UI that mimics paper-
based operations in order to improve the end user’s subjec-
tive satisfaction and naturalness of interaction. While dif-
ferent operations that mimic page flipping have been intro-
duced, none of them really reproduce the flipping of a page
in any direction. that results into an adaptation to the new
state. This is why animated transitions are made for: convey
the change of display.

Animated Transitions
It is well established [2,7,21,23] that it is generally consid-
ered easier for users to maintain a mental model of the data
across smooth transitions and less time is spent compre-
hending the new data presentation. In other words, an ani-
mated transition between two states is appreciated because
it supports a progressive transition from the initial state to
the final state without any disruption between. Several vis-
ual techniques exist that could be applied to GUI design,
whether it is for one localization [23] or for globalization of
these GUIs [4,22], the two main dimensions of internation-
alization. Usability guidelines (e.g., [4,13,14,18]) also exist
that reply on animated transition to change the state of a
GUI depending on its culture [11].

DESIGN PRINCIPLES OF A FLIPPABLE USER INTER-
FACE FOR INTERNATIONALIZATION
In this section, we motivate, define, and discuss the design
principles that led us to rely on flipping, an interaction
technique augmented by an animated transition, as a way to
support the change of cultural background (here, mainly
Western vs. Eastern cultures, with various ways of reading).

Principle #1. Provide handles for direct flipping
In order to adhere to the principles of the direct manipula-
tion, it is expected that the flipping interaction technique
should be supported by handles (Figure 3) that indicate the
direction where to flip: left to right (LTR), right to left
(RTL), top to bottom (TTB) or bottom to top (BTT). Each
flipping direction then indicates the reading order of the
GUI, thus provoking its adaptation to the corresponding
cultural background. In direct manipulation the objects
should have a graphical representation, preferably one that
is close to the real world if any, with an incremental interac-
tion that is fast and reversible. For this purpose, horizontal
handles (represented in red in Figure 3) control transforma-
tions along the X axis, while the vertical handles (repre-
sented in blue in Figure 3) control transformations along the
Y axis. An arrow-shaped handle may convey a translation, a
square-shaped handle may convey a change of scale, and a
circle-shaped handle (represented in green in Figure 3) may
convey a rotation. Similarly for a 3D object in space, these
three handles could support respectively nutation (along X
axis), precession (along the Y axis), and rotation (along the
Z axis). For instance, The Card Stack had markers on front
side and back side, so the user was able to flip it backward,
and saw the backside of the 3D model. The central button,
represented in grey in Figure 3, restores the transformation
to its initial stage or identity. The ellipse and the lines de-
pict the current status of transformation.

Figure 3. Handles for direct flipping.

225

Horizon-
tal vs ver-
tical di-
rection

Right-to-Left Left-to-Right

Top-to-
Bottom

RTL and TTB

LTR and TTB

Bottom-
to-top

RTL and BTT

LTR and BTT

Figure 4. The four possible layouts depending on the generalized direction.

Principle #2. Perform adaptation according to flipping
From the aforementioned literature, we summarize the UI
adaptation in basically two ways:
- The orientation (the mirroring): this consists of chang-

ing the reading direction of the contents depending on
the end user’s native language. Some languages are read
LTR while some others are read RTL. In order to gener-
alize this attribute, we also introduce the vertical dimen-
sion since some languages are read TTB or BTT. There-
fore, each native language is assigned to a reading direc-
tion according to the horizontal dimension (LTR vs
TRL) and the vertical dimension (TTB vs BTT), thus
covering the four possible cases (Figure 4). The com-
mon direction in Western countries, e.g., LTR and TTB,
is reproduced in the top right position of Figure 4. If the
GUI is flipped to the left, it reverses the order from LTR
to RTL; if the GUI is flipped to the bottom, it reverses
the order from TTB to BTT. Figure 4 keeps the same
contents and language in order to remain understand-
able. Automatic translation of the language [15] is a ser-
vice that could be used for translating the labels, instruc-
tions, messages from one language to another, even at
run-time. After changing the layout, several operations
are required by the language change.

- The localization. The TRL localization has special char-
acteristics that do not exist in Latin-alphabet languages,
which makes the localization a challenge. We identify
from the examples before the following characteristics
for RTL localization:
- Text localization:

 Text localization: language encoding and charac-
ter set (alphabet).

 Direction switching: direction of text writing.
- Graphics localization:

 RTL sensitive graphics (non-horizontally sym-

metrical)
 Images with text inside
 Other localizable images (country flag…)

- Control localization:
 Control rendering: for instance, a label control

should support writing from right to left.
 Control behaviour: controls should be aware of

special behaviour for special keys, like pressing
“enter” key in a text area.

Principle #3. Ensure smooth transition for adaptation
To avoid startling and confusing users, we employ smooth
slow-in and slow-out transitions [21,23] for every visual
change occurred after the adaptation has been performed.
This animated transition has the advantage to preserve most
of the visual aspects of GUI widgets horizontally or verti-
cally. Other animated transitions could be investigated de-
pending on the adaptation operation that has been executed,
thus opening a door for many different ways to ensure a
smooth transition between the GUI before and after adapta-
tion to a cultural background (here, localization). Animated
transitions however suffer from the “lag” problem [21] that
may cause end user frustration if the animated transition is
too fast or too slow. Here, a flippable user interface does
not suffer too much from the “lag” problem because the an-
imated transition is performed at run-time while the end us-
er is flipping the GUI. In the next section, we describe how
this engineering technique has been implemented. Flipping
at run-time is the target because a user may speak different
languages and may want to switch from one language to
another, because the “by default” language is not always
right, even in an option menu, because a UI may contain
various data simultaneously in different formats and lan-
guages and because manually developing different layouts
for different languages requires extensive development ef-
forts that are not required by our approach.

226

IMPLEMENTATION
This section describes how the three aforementioned design
principles have been implemented together in order to make
the concept of flippable user interface operational. The
software architecture is structured as follows (Figure 5):
1. The Widget Selector: This component is responsible of

mapping the nodes of a GUI specified in a User Inter-
face Description Language (UIDL) to output compo-
nents. It needs the mapping XML file. Each specific
output type (swing, html) needs a specific map.xml, but
the Widget Selector is the same for all maps. In our
case, UsiXML (www.usixml.org) was used for testing,
but other similar UIDLs could be used in the same way.
A XML map is structured as follows: the root is usiMap-
Model. This contains sub elements "<cuiMap>" that de-
termine how we will map UsiXML tags in the CuiModel
section of the xml file. Element selection algorithms are
simply saying: a set of conditions that determine the el-
ement selection. The control structure in the usiMap-
Model is the "<option>" tag. This tag has 2 sections: con-
dition and action. The condition is a simple Boolean ex-
pression that can be written in groovy (a java like syn-
tax, www.groovy.com) which is modeled with a "<condi-
tion>" tag in usiMapModel file. The actions are a set of
commands that create the suitable widget and fine tune
its properties. They are modeled using the "<maps>" tag.
This tag contains an init attribute, and that is where we
usually create the appropriate widget. The child node
"<map>" is a statement to map a property from a Usi
node to the mapped widget property.

2. The CUI Tree Traversal: This is simply a tree tra-
versal algorithm. Currently, we implemented a Depth-
First traversal algorithm for parsing the Concrete User
Interface (CUI). If some type of rendering needs to con-
sider Width-First traversal, then the Width-First class
needs to be implemented and passed to the engine in-
stead of the default traversal (Depth-First).

3. The Merge Algorithm: this is simply a component that
merges the tree of components in a custom way suitable
to the final output. In the case of Swing, the components
are all of type java.awt.Component, and the merge algo-
rithm will simply add Components to the Container (a sub
class of Component) but calling the method add.

4. The CuiRendering Engine: The engine that orches-
trates the messages among the above components. The
engine calls the traversal to start traversing the UiModel,
which will parse the UiModel tree looking for UsiXml
nodes. For each node, it will notify the engine who will
call the Widget Selector to resolve this node. If the
map.xml file contains a mapping for this node, it will
create the mapped component and return it to the en-
gine, who in turn will store it a special storage called:
UsiRuntime. The UsiRuntime contains a tree of rendered
objects. The UsiRuntime allows us to retrieve the ren-
dered component by using the "id" of the relative
UsiXml element. This allows 2-ways mapping between
original UsiXml element and the rendered element.

When finished, the engine will call the Merge Algo-
rithm to merge the resulting tree of components and re-
turns the UsiRuntime object to the caller. The UsiRuntime
now contains the roots components (if the UsiXml file
contains 2 Window elements, UsiRuntime will contains 2
roots, and so on). The caller uses these roots for any
purpose, e.g., display on screen, save.

Figure 6 shows how the control panel could be displayed
for finely governing the layout of the GUI. By moving the
handles according to the Principle #1, the end user is able to
manipulate the geometry of the GUI in order to reverse its
reading order, but also in order to accommodate constraints
imposed by the screen resolution. This engineering tech-
nique therefore supports the concept of variable geometry
layouts that could accommodate different physical con-
straints imposed by the target computing platform. A user
interface with variable geometry is hereby defined as a GUI
exhibiting the capability of altering its layout geometry by
direct manipulation depending on the context of use, thus
making it plastic to some extent.

U
siXm

l
File

UiModel

M
ap.xm

l

Widget
Selector

CuiRende
ringEngine

CuiTreeTr
aversal

Merge
Algorithm

Figure 5. The software architecture of the flippable UI.

Figure 6. The control panel of the flippable UI.

227

When the end user does not want to finely manipulate the
layout geometry, she could only flip the GUI in the desired
direction, thus obtaining only the four possibilities depicted
in Fig. 4, along with adaptation techniques executed as in
Principle #2. Principle #3 preserves the continuity between
the GUI before flipping and after flipping.

CONCLUSION
This paper presented the concept of flippable user interface
as an interaction technique for supporting internationaliza-
tion of graphical user interfaces. Traditionally, internation-
alization of a GUI is achieved by providing different sets of
translated resources that are then incorporated in the execu-
table code of the interactive application that is then respon-
sible for switching to one layout to another. This method is
largely static (all resources should be provided in resource
files, translated and compiled) and physically defined (all
layouts are done manually and embedded in the code). In-
stead, a flippable user interface introduces an engineering
technique where the GUI definition is dynamically parsed,
interpreted, and computed depending the default language
and country settings of the end user. Switching from one
cultural background to another, e.g., switching from English
to Arabic is done performed dynamically by flipping the
window by the end user in the desired reading order at run-
time. Such a flippable UI could be flipped in any direction,
vertical or horizontal. All other operations that are subse-
quent to a change of cultural background are then dynami-
cally performed for all widgets, like localization of controls,
text, messages, labels, etc. This approach is much more
flexible both for the end user since there is no need to select
parameters from a menu and for a designer/developer since
all the variations are made flexible in the interpretation
mechanism.

ACKNOWLEDGMENTS
The authors would like to acknowledge the support of the ITEA2-
Call3-2008026 USIXML (User Interface extensible Markup Lan-
guage) European project and its support by Région Wallonne
DGO6 as well as the FP7-ICT5-258030 SERENOA project sup-
ported by the European Commission.

REFERENCES
1. Beaudouin-Lafon, M. Novel Interaction Techniques for Over-

lapping Windows. In Proc. of UIST’2001. ACM Press, New
York (2001), pp. 153–154.

2. Bederson, B.B. and Boltman, A. Does Animation Help Users
Build Mental Maps of Spatial Information? In Proc. of IEEE
Symposium on Information Visualization InfoVis’99. IEEE
Computer Society Press, Los Alamitos (1999), pp. 28–35.

3. Björk, S., Holmquist, L.E., Redström, J., Bretan, I., Daniels-
son, R., Karlgren, J., and Franzén, K. WEST: A Web Browser
for Small Terminals. In Proc. of UIST’99 (Asheville, Nov. 7-
10, 1999). ACM Press (1999), pp. 187–196.

4. DelGaldo, E.M. and Nielsen, J. International User Interfaces.
John Wiley & Sons, New York (1996).

5. Dragicevic, P. Combining Crossing-Based and Paper-Based
Interaction Paradigms for Dragging and Dropping Between
Overlapping Windows. In Proc. of UIST’2004 (Santa Fe, Oc-
tober 24-27, 2004). ACM Press, New York, pp. 193–196.

6. Evers, V. and Day, D. The role of culture in interface accep-
tance. In Proc. of INTERACT’97 (Sydney, July 14-18, 1997).
Chapman & Hall, London (1997), pp. 260–267.

7. FlipAlbum, http://www.flipalbum.com.
8. Halawani, S.M. The effect of language reading direction on

user interface design. PhD thesis, 1996.
9. Inaba, K., Orimado (2010). http://www.kmonos.net/lib/ori-

mado.en.html. Visited on: December 5th, 2010.
10. Ishida, R. Creating HTML Pages in Arabic, Hebrew and Other

Right-to-left Scripts. W3 Consortium, Geneva (2002).
http://www.w3.org/International/tutorials/bidi-xhtml/. Visited
on December 5th, 2010.

11. Khaddam, I. and Vanderdonckt, J. Adapting UsiXML User In-
terfaces to Cultural Background. In Proc. of 1st Int. Workshop
on User Interface eXtensible Markup Language UsiXML'2010
(Berlin, 20 June 2010). Thales Research and Technology
France, Paris (2010), pp. 163–170.

12. Lai, P. and Manber, U. Flying Through Hypertext. In Proc. of
3rd ACM Conf. on Hypertext Hypertext'91 (San Antonio, Dec.
15-18, 1991). ACM Press, New York (1991), pp. 123–132.

13. Mahemoff, M. and Johnston, L. "Culturally-aware" require-
ments for internationalized software. In: Proc. of 3rd Austra-
lian Conf. on Requirements Engineering ACRE‘98 (Geelong,
October 26-27, 1998). D. Fowler, L. Dawson (eds.), Deakin
University, Geelong (1998), pp. 83–90.

14. Marcus, A. and West Gould, E. Cultural Dimensions and
Global Web User-Interface Design. Interactions 7, 4 (July
2000), pp. 32–46.

15. Pérez-Quiñones, M.A., Padilla-Falto, O.I., and McDevitt, K.
Automatic language translation for user interfaces. In: Proc. of
the Int. Conf. on Diversity in computing TAPIA'2005 (Albu-
querque, October 19-22, 2005). ACM Press, pp. 60–63.

16. Portaneri, F. and Amara, F. Arabization of Graphical User In-
terfaces. In [2], pp. 127–150.

17. Quiroz, J.C., Louis, S.J., and Dascalu, S.M. Interactive evolu-
tion of XUL User Interfaces. In Proc. of the 9th Annual Conf.
on Genetic and evolutionary computation GECCO’2007.
ACM Press, New York (2007), pp. 2151-2158.

18. Rejmer, P., Cooper, M., and Vanderdonckt, J. Lessons
Learned From Internationalizing a Web Site Accessibility
Evaluator. In Proc. of 3rd Int. Workshop on Internationalisa-
tion of Products and Systems IWIPS'2001 "Designing for
global markets 3" (Milton Keynes, July 11-14, 2001). Digital
Printing Services, Milton Keynes (2001), pp. 61–79.

19. Sears, A. Layout Appropriateness: A Metric for Evaluating
User Interface Widget Layout, IEEE Transactions on Software
Engineering 19, 7 (July 1993), 707 - 719

20. Schlienger, C., Conversy, S., Chatty, S., Anquetil, M., and
Mertz, Ch. Improving Users’ Comprehension of Changes with
Animation and Sound: An Empirical Assessment. In Proc. of
Interact’2007. LNCS, Vol. 4662, Springer, pp. 207–220.

21. Stasko, J. Animation in User Interfaces: Principles and Tech-
niques. In Proc. of User Interface Software ‘93, pp. 81–101.

22. Taylor, D. Global software: Developing applications for the
international market. Springer-Verlag, Berlin (1992).

23. Vanderdonckt, J. and Gillo, X. Visual Techniques for Tradi-
tional and Multimedia Layouts. In: Proc. of 2nd ACM Work-
shop on Advanced Visual Interfaces AVI'94 (Bari, 1-4 June
1994), ACM Press, New York (1994), pp. 95–104.

228

