
An Approach to Structured Display Design - 
Coping with Conceptual Complexity 

Morten Borup Harning 

Informatics and Management Accounting, Copenhagen Business School, How-
itzvej 60, DK-2000 Frederiksberg, Denmark 

Phone: +45-3815-2431 – Fax: +45-3815-2401 
E-mail: harning@cbs.dk 

WWW: http://www.econ.cbs.dk/people/harning/ 

Abstract 

The methods that provide a structured approach to user interface design, often 
more or less ignores the aspects of display design. The structured display design 
approaches that exist, seems to have problems coping with conceptually complex 
interfaces. Building on the relationship between the system data model and the dis-
play design, this article proposes a structured approach to display design. The de-
sign is divided into three steps: conceptual design, logical window design and 
physical window design. This structure seems to be a way of coping with the de-
sign of conceptually complex user interfaces. 

Keywords 

Display design, conceptual design, conceptual prototypes, user data model, visual 
data dictionary, logical window design, structured design method, user interface de-
sign. 

Introduction 

We know from software engineering that some sort of structured design method 
(e.g., Modern Structured Analysis [Yourdon89], OMT [Rumbaugh91] or OOSE 
[Jacobson92]) is needed in order to manage the design process involved in devel-
oping large and complex computer systems. The structured design methods make 
design and development of such systems manageable by dividing the process into 
smaller and more focused design tasks. The result is that the design team can focus 
on a smaller sets of design issues, one set of issues at the time. This is necessary to 
maintain a general view of the design, as well as to produce time plans and cost es-
timates. 

Most software engineering methods do not deal with the user interface aspects of 
the design process. Those that do include such aspects treat them very superficially, 
e.g., Multiview [Avison90], Sommerville [Sommerville95]. There exists a number of 



122 Computer-Aided Design of User Interfaces 

structured methods for designing user interfaces, e.g., Foley et. al. [Foley90], MUSE 
[Lim92, Lim94], Sutcliffe [Sutcliffe95]. These methods usually describe only the 
functional design, often with a focus on task analysis, whereas they only present a 
set of ideas to how the display design should be conducted, e.g. use of metaphors. 

There has been presented a huge amount of guidelines concerned with display de-
sign (Nielsen [Nielsen94] lists 100 common usability heuristics, and tries to identify 
the most important ones). The general problem of using guidelines or usability 
heuristics as Nielsen calls them is that they do not help the designer structure the 
design process. This means that the guidelines are of little help, when the problem 
is coping with the design of large and complex systems. This is not to say that 
guidelines and design guides are useless, these are just not enough. 

A few recent structured user interface design methods, such as EFDD [Lauesen-
93], DIANE+ [Tarby94, Tarby96], TRIDENT [Bodart95a], OMT++ [Jaaksi95], ad-
dresses display design. EFDD and OMT++ have their offspring in software engi-
neering, whereas DIANE+ and TRIDENT have evolved from the HCI tradition. 
However there still remain several problems. The most serious problem is that only 
EFDD addresses the issue of early usability testing. The other approaches do not fa-
cilitate usability testing until a prototype has been built. This is a major problem, 
because usability testing has turned out to be the most efficient way of identifying 
usability problems [Desurvire92]. Another major problem is that the methods do 
not seem to address the problems of designing displays for interfacing with large 
amounts of conceptually complex information. 

In systems that need to support complex problem solving it is important that the 
users’ mental model of the system matches the actual conceptual model of the sys-
tem [Staggers93]. Norman [Norman86] suggests that users infer mental models of 
the device they work with. Interfaces that need to support this kind of complex 
problem solving, hence should help the user to infer an appropriate mental model. 

Looking at user interfaces, the information modelled by the systems data model 
dominates the visual appearance of an application (e.g. as values shown in entry 
fields, tables or graphs), whereas task information such as procedures and opera-
tions only appear indirectly (e.g. through window transitions and greying of com-
mand buttons). Green and Benyon [Green92] among others describe how display 
designs can be interpreted as data models. Based on these observations the best 
way of supporting the inference of an appropriate mental model seems to be to fo-
cus on how the user interface reflects the structure and contents of the data model, 
because this is the most apparent part of the conceptual model in the interface. 

This article describes an approach to display design that helps coping with concep-
tually complex interfaces. The design is based firmly on the data model to ensure a 
conceptually clear design, while task efficiency is ensured by taking in to account 
the information required to perform the tasks the system should support. 

The complexity of existing user interfaces can be measured by constructing an En-
tity Relationship Model of the Information Artefacts (ERMIA) [Green92]. A con-



 An Approach to Structured Display Design - Coping with Conceptual Complexity 123 

ceptually complex user interface is, in this article, a user interface that gives access 
to a data model with 10-20 entities or more, and where the user needs to see/work 
with information from several entities or several instances of entities simultane-
ously. The complexity of a user interface is, however, also influenced by a several 
other factors, e.g. the number of relationships in the data model. 

1 Method 

The display design method described in this article was developed as part of a full 
user interface design method. The full method called Entity Flow Dialogue Design 
(EFDD) was described in an early version by Lauesen and Harning [Lauesen93].  

The revision of the method presented here is based on several sources of experi-
ence. One source of experience has been a series of professional design courses 
and tutorials based on EFDD offered to professional system designers. Three mas-
ter level courses, where the participants spend five weeks in groups developing a 
user interface using EFDD, has been another important source of experience. 

However, the primary source of experience stems from the design and implemen-
tation of a Classroom Scheduling System (CSS). The design and development time 
involved in this project was in the proximity of two man years. The system is today 
operational and is in daily use for scheduling and administrating the 150 classrooms 
at Copenhagen Business School. The design involved designing a graphical user in-
terface according to the CUA'91 guidelines [CUA91]. 

When it was decided to decentralise part of the classroom administration, the sys-
tem was redesigned and later implemented using Oracle SQL*Forms. The user in-
terface in the final system was character based, because the system needed to run 
on the existing VT-220 terminal-based hardware platform, and had to comply with 
the interface style of the existing administrative applications used at the business 
school. 

The CSS project made it possible to develop and mature the method in settings 
similar to the ones found in industry. The project has provided insight in the appli-
cability of the method in large development projects. The high conceptual com-
plexity of the system combined with the need for both simple form-based windows 
and windows visualising the large amounts of information made the project ideal 
for the development of a display design method. 

2 The Full EFDD Method 

The approach to display design presented here is, as stated earlier, part of a com-
plete interface design method, called EFDD. The method divides the design proc-
ess into the following four phases: 

1. Compiling a task list and designing a user data model. 
2. Designing logical windows and user functions. 



124 Computer-Aided Design of User Interfaces 

3. Initial design of physical windows and dialogue state-transition diagrams. 
4. Detailed physical design. 

Iteration between the phases is assumed, as in any other structured design method, 
but the phases help define where the focus of attention should be in different 
stages of the design. The part of the method presented in this article is the design 
of a user data model (part of phase 1) and of the logical windows (part of phase 2), 
but also briefly the design of physical windows (part of phase 3 and 4). The issues 
discussed in this article have been added since the method was first described 
[Lauesen93, Lauesen94].  

3 Coping with Complexity and Large Amounts of Information 

There seems to be two main types of approaches to display design. The first type 
of approach is to derive the display design from task analysis, based on the infor-
mation needed to perform the tasks, e.g., AUI [Kuo88], DIANE+ [Tarby94], MUSE 
[Lim94], TRIDENT [Bodart95a] and [Sutcliffe95]. Designing the displays to be in-
cluded in the user interface involves identifying, for each step in the design proce-
dure, which of the attributes in the data model needs to be accessed, e.g. by using 
Activity Chaining Graph (ACG) as proposed by [Bodart93]. As the number of 
tasks and the size of the data model grows, this becomes a very cumbersome proc-
ess. Ensuring task efficiency using these approaches seems to be fairly straightfor-
ward, however maintaining a conceptually clear design becomes almost impossible.  

The second type of approach is to use the data model or object model as the basis 
for the display design. Examples of this type of approach are GENIUS [Janssen93], 
Semantic Database Prototypes (SDP) [Baskerville93] and User data modelling 
[Lauesen93]. A conceptually clear design can easily be achieved using these ap-
proaches, even for large data models. Whereas it is more difficult to ensure task ef-
ficiency. If a task needs information from several entities, the user will have to 
jump between the corresponding windows to collect the information. One of the 
important advantages of this type of approach is that it is possible to design a pro-
totype very quickly, and before the functional design has been done. This makes it 
possible to submit the design to usability testing, and hereby eliminating possible 
conceptual errors [Baskerville93, Lauesen93].  

Jaaksi [Jaaksi95] presents in OMT++ an approach that try to balance the two de-
sign goals: (1) designing a conceptually clear display design; (2) ensuring task effi-
ciency. But this approach deliberately tries to minimise the use of usability testing, 
and appears to have problems coping with conceptually complex interfaces, similar 
to the task driven approaches. The various works done on visualisation is a good 
example of how interface design can cope with high conceptual complexity. These 
visualisation techniques make it possible to work with amounts of data that would 
otherwise have been unmanageable. Tweedie [Tweedie95] describes a number of 
visualisations (Interactive Visualisation Artefacts), and shows how these can be in-



 An Approach to Structured Display Design - Coping with Conceptual Complexity 125 

terpreted as depiction of a complex data model, showing otherwise "hidden" as-
pects of the data.  

User data modelling as described in EFDD [Lauesen93] was designed to cope with 
the window design that was reasonably close to the data model. However, in the 
design of the classroom scheduling system the design had to include window de-
signs like the visualisations described by Tweedie [Tweedie95]. This meant that the 
design had two parallel design goals: (1) designing a set of windows that could 
serve as the conceptual model of the application and (2) designing a set of windows 
tailored to the information demands of the tasks.  

In an attempt to balance these design goals, five heuristics were introduced [Laue-
sen94]. However, these often contradictory goals resulted in a more unstructured 
design, because the designer had to focus on a set of contradictory design issues. 
This made it difficult to determine, when the design of the user data model was 
complete. In the design of the CSS the new heuristics resulted in frustration rather 
than creativity.  

The solution was to divide the initial display design into two design steps: a step fo-
cusing on the conceptual design and a step focusing on the design of logical windows. The first 
step ensured that the design of the conceptual model was clear. The second step 
ensured task efficiency, and this step made it natural to consider the need for visu-
alisation techniques, like the ones discussed by Tweedie. By letting the design of 
logical windows build on the conceptual design, it was possible to ensure that the 
interface remained conceptually clear. The following sections describe these two 
steps in detail, using a system for monitoring development activities in a software 
company, as the general example. 

4 Conceptual Design 

Data modelling, e.g. as described by Chen [Chen76], has within software engineer-
ing proven its worth as a tool for conceptual design. Data models following the 
Chen or similar notations (e.g., object-oriented notations), will in the following be 
referred to as technical data models. Figure 1 shows an example of a technical data 
model following the Chen-notation. The data model describes the concepts of a 
system for monitoring development activities. 

There are a number of shortcomings in the technical data model if it is to form the 
basis for a structured design of the visual parts of the user interface. First of all the 
notation was not meant to and does not facilitate involvement of the users and 
hence any kind of usability testing of the conceptual design [Baskerville93]. This is 
a major problem, as mentioned in the introduction. However using design rules 
such as those used in GENIUS [Janssen93], Semantic database prototypes [Basker-
ville93] or TRIDENT [Bodart95c] it is possible to generate the first version of a user 
data model. This makes it possible to submit the conceptual design to usability test-
ing. 



126 Computer-Aided Design of User Interfaces 

To ensure a conceptually clear design, the user data model is designed according to 
following three heuristics: 

1. Eliminate technical details. 
2. Identify the information the user associates with a concept. 
3. Identify the appropriate level of detail. 

m

n 1

n

1 n

m

n 1

n

n

m

1n

Project

interested in

leader of

interested in

responsible
for

spent time on

C
on

si
st

of

Employee

Activity
Weekly
estimatehas a

projnum, projname

actnum, actname, actbud

eyear, eweek, estimate

tyear, tweek, tday, hours

empinit,
empname

 
Figure 1. A data model describing the concepts of a system for monitoring development activities in 

a software company, using the Chen notation [Chen76] 

4.1 Generating the First Version of the User Data Model 

The general idea of producing a user data model is to transform the technical data 
model into a simple display design, by applying a simple set of design rules. The 
goal of the user data model is to form and evaluate the conceptual design, to be in-
cluded in the user interface. Semantic database prototypes as proposed by Basker-
ville [Baskerville93] were introduced exactly for this purpose. A semantic database 
prototype was according to Baskerville [Baskerville93] an effective way of enabling 
a user driven evaluation of the conceptual design. 

The semantic database prototypes are built from the information in the technical 
data model. Figure 2 shows two windows from the semantic database prototype 
corresponding to the technical data model shown in figure 1. The transformation is 
based on a set of simple design rules, guiding how the different parts of the data 
model should be represented in the prototype. A very simplistic description of the 
process is that all attributes in the data model are included in the prototype as data 
entry fields. The relationships (1:1) between entities are represented by including 
the identifying attribute (key field) of the related entity in the display design. The 



 An Approach to Structured Display Design - Coping with Conceptual Complexity 127 

key fields in figure 2 are marked by a button on the right side of the data entry 
field, this button made the prototype jump to the related entity. Other rules specify 
that 1:n relationships are represented in the display design as tables. A similar set of 
design rules can be found in GENIUS [Janssen93] and TRIDENT [Bodart95a]. 

This way of presenting the data model made it possible for users without prior 
knowledge of data modelling to relate the structure of the data model, and the way 
it models the domain concepts. 

EMPLOYEE

EMPINIT EMPNAME

ACTNUM ACTNAME

ACTIVITY

PROJNUM

JPH J. Pries-Heje

1 Req. spec.9511

PROJECT

ACTNUM ACTNAME

ACTIVITY

PROJMAN JPH

PROJNAME DXP version B

PROJNUM 9511

3 Comm. module

2 User interface

1 Req. spec.

Attributes of the employee entity

Keyfield
(eg. initials of the
projectleader)

Button used to
navigate to a
related entity

 
Figure 2. A semantic database prototype [Baskerville93] for the entities ‘employee’ 

and ‘project’ in figure 1 

The user data model is built according to the same rules used in the semantic data-
base prototype, but goes a step beyond that by applying the three heuristics men-
tioned above. The notation is a bit more relaxed, meaning that any information ar-
tefact [Green92] that reflects the attributes and relationships in the technical data 
model can be used. The only requirement is that the ERMIA of the display design 
should match the technical data model. This means that graphical representations 
can be used instead of tables when appropriate. In a drawing application the user 
data model would usually be purely graphical. The more relaxed notation used in 
the user data models facilitate including aspects that lack in order to make the con-
ceptual design useful in the later, more windows oriented, part of the display de-
sign. The following subsections will describe how the heuristics mentioned in the 
beginning of this section can be applied to the conceptual design.  



128 Computer-Aided Design of User Interfaces 

4.2 Heuristic 1: Eliminate Technical Details 

The first problem is that the technical data model usually contains a number of 
technical details that are of no concern to the user, but are necessary in order to 
implement the technical algorithms. If the technical data model is to be used in the 
display design, it is important to identify the parts of the data model that concern 
the user. This is done in order to avoid including unnecessary technical details in 
the user interface design, that would only increase the possibility of misunderstand-
ings. 

An example of technical details, that should be avoided in the display, are internal 
record number used to implement the relationship between records in a relational 
database. Such record numbers are often used in the user interface, because enter-
ing these numbers makes the lookup of records easier. However using query lan-
guages like SQL there is no reason to burden the user with such information. 

The user data model lets the designer determine through usability testing which 
parts of the technical data model that should be excluded from the user interface. 
The remaining part of the display design can then be focused on the relevant in-
formation, because the user data model serves as a visual data dictionary in the de-
sign of the logical and physical windows. 

4.3 Heuristic 2: Identify the Information the User Associates with a 
Concept 

The second problem is to find the appropriate level of normalisation. The technical 
data model will typically have been normalised to avoid technical problems like re-
dundancy. But when used as a conceptual model, the normalised data model will 
seem unnatural to the user. The reason for this is, that when used for user interface 
design purposes, any redundancy in the conceptual model will indicate a relation-
ship between the involved concepts. 

E.g., when the name of an employee happens to be the same as the name of the 
project leader, the user assumes that this employee is in fact the project leader. This 
is a very simple example, but the principle seems to apply to other kinds of redun-
dancy as well. This perception of relationships, based on the redundant informa-
tion, is what make the semantic database prototype described above readable to the 
user. This may seem like a trivial aspect of the design. 

However, in practise many systems exclude information, that is not directly used 
when performing a task. By excluding such information it becomes harder to un-
derstand the relationship between the information used in different tasks, hence 
making it difficult for the user to infer an appropriate mental model. 

The design rules used to produce the user data model has been extended compared 
to the rules described in the design of a semantic database prototype. This is done 
in order to identify which parts of the data model the users associate with a con-



 An Approach to Structured Display Design - Coping with Conceptual Complexity 129 

cept in the conceptual model. The design rules are basically the same, but are used 
recursively. 

Activities

Name

Project leader Jan Pries-Heje (JPH)

Name

Number

Comm. module

9511-2 User interface

Req. spec.9511-1

9511-3

JPH

SL

NCJ

Resp.
100

250

75

Budget
20

10

33

Time spent
80

200

50

Estimate

By the end of week

7/96

Number

DXP version B

9511

Project

Emp. Proj.

Act. Est.

Time

1

2

3

4

1

2 3 4

 
Figure 3. The project form in the user data model, as it might look 

in the activity monitoring system 

Figure 3 show the project form in the user data model as it might look in the sys-
tem for monitoring development activities. The form includes all of the informa-
tion found in the semantic database prototype, as shown in figure 2. The identifica-
tion of the project leader has been extended, to include the full name of the project 
leader, because the users perceived this as an attribute of the project. Secondly sev-
eral columns have been added to the activity table. 

The first new column is the person responsible for the activity. This information 
can be found by following the relationship between a project and one of the asso-
ciated activities, and then the relationship from this activity to the employee re-
sponsible for the activity (this is shown by the dashed arrow in the ERD in figure 
3). Using a similar process columns "Time spent" and "Estimate" was added.  

However, because the activity can be related to several time records the column in-
cludes the sum of all related records. Instead of a sum, all of the individual values 
could have been shown graphically, because the ERMIA of this design would still 
match the technical data model. 

Looking at the technical data model, it might seem unnatural to include, in the 
form describing the project, status information like “Time spent” and “Estimate” 
related to an activity (as shown in figure 3). However, from the user's point of 
view, such status information is a natural part of the project description. The status 



130 Computer-Aided Design of User Interfaces 

information is used to assess the overall progress of the project. To the user it 
would be unnatural to have to look at each of the activity forms to get this kind of 
information. Using the design shown in figure 3, the user would not look at the ac-
tivity form unless the status information indicated some kind of problem. 

Redundant information is a natural part of the user data model, but should be 
avoided in the technical data model to ease the technical implementation and main-
tenance of the information stored by the system. The redundancy can easily be 
simulated using query languages like SQL. 

4.4 Heuristic 3: Identify the Appropriate Level of Detail 

The technical data model is a very detailed model of the domain. The high level of 
detail is maintained in order to make it easy to use different aspects of the informa-
tion in the technical algorithms, such as searching. One example of this high level 
of detail is the way you see a set of intervals represented in the data model (see fig-
ure 4 and discussion below). The technical data model does not have an explicit 
representation for a set of intervals, so the way intervals tend to be modelled is as 
pairs of start points and end points, even though the user thinks of the whole set 
of intervals as one single attribute. 

Another example of the high level of detail in the technical data model is the im-
plementation of multivalued attributes. This can be modelled either by defining a 
maximum number of values or by introducing a new entity, where the entity with 
the multivalued attribute is related to multiple instances of the new attribute entity.  

An address is an example of a multivalued attribute and hence could be modelled 
either by defining a maximum number of address lines (the model might then con-
tain e.g. two attributes called ADR1 and ADR2) or by defining an ‘address line' en-
tity related to the original entity. Which of the two alternatives is the most appro-
priate depends on the technical requirements. The user will however, no matter 
what alternative is selected, perceive the address as one concept - an address, and it 
would be unnatural if the user interface made references to the concept address 
line. 

1

5

9

From

2

5

15

To

Reserved weeks

 
Figure 4. A form that reflect the typical way of modelling intervals in data models. 
A single entry field using a syntax like ‘1-2,5,9-15’ might be more appropriate 

It can be an advantage, when identifying the appropriate level of detail to be used 
in the user interface, to think of the user data model form as a paper form. Look-
ing at the interval example mentioned above, it would be unnatural to the user, if 



 An Approach to Structured Display Design - Coping with Conceptual Complexity 131 

the design of a paper form included a series of fields corresponding to the way the 
intervals are modelled in the data model (figure 4 uses this design). 

It would be more natural to have one field, where all the intervals could be written 
as one entry, e.g., ‘1-2, 5, 9-15'. A notation like that would be just as natural in a 
user interface, but is seldom considered because the generally available user inter-
face tools lack a standard interaction technique that handles this kind of custom-
made syntax. This should however not be an obstacle, because such an interaction 
technique easily can be implemented. 

Time Entries
Day

Tuesday

Wednesday

Week Year

0-1

9502-4

Hours

Tuesday

Monday MBH Morten B

MBH

MBH

MBH

Morten B

Morten B

Morten B

Req. spec

Req. spec

Lunch

Req. spec

96

96

96

96

6

6

6

6

2,5

3,0

0,5

4,0

9502-4

9502-4

Init. Name Act.no. Act.name

Weekly report
MBH Morten Borup Ha 966

2,5 3,0

Act.no. Act.name

0-1 Lunch

Req. spec9502-4

0,5

4,0

Mo Tu We Th Fr Sa Su

Employee Week/Year

1

2

3

Day

Time Entry

Monday

7

1995

2,5

Week

Year

Hours used

 
Figure 5. The transition from a single form presenting a single time entry to a weekly report pre-

senting the same information in a way close to what the user is used to 

Another problem of the high degree of normalisation is that a number of concepts 
used by the user are not included in the data model. Looking at the data model of 
the activity monitoring system in figure 1, the information bearing relation called 
‘spent time on' between the entities ‘employee' and ‘activity' lacks a reference to the 
meta concept the user uses to refer to this group of data - a weekly report. The 
technical data model is hence too detailed with respect to the tasks the user needs 
to perform. The user does not have any tasks that need to refer to the number of 
hours spent by a specific employee on a given activity at a given date. 

A design close to the data model would be something like the design shown in fig-
ure 5 (1). This is just a simple form with room for a date, an activity, an employee 
and the number of hours spent on the activity. Using this design the user would, by 
the end of the week, have collected a large pile of these small and unrelated notes. 
The design in figure 5 (2) is slightly better, but the table will when filled include a 
lot of repetitions, e.g. the day. Imagining a possible paper form design matching 



132 Computer-Aided Design of User Interfaces 

the tasks the user needs to perform, a design like the one in figure 5 (3) would be 
more natural. This design eliminates these repetitions, by using the qualities of the 
data shown. This is how the concept lacking in the technical data model would ap-
pear. 

4.5 Using the User Data Model as a Visual Data Dictionary 

The user data model should include all the necessary information needed to pre-
sent information in the conceptual model consistently during the design of the 
logical and physical windows. Such information includes naming of the individual 
attributes, because the technical data model often only includes names like PRO-
JNAME, where "Project name" might be more appropriate to the user. It should 
also include the natural grouping of attributes and layout of the information used 
when referring to a concept, e.g. name and initials when referring to an employee 
(used in figure 3). 

If possible most of such design decisions should be made during the conceptual 
design, because these decisions will make it easier to present a consistent view of 
the concepts in the window design. The idea of collecting this kind of information 
is very similar to the idea of a data dictionary, and the user data model might hence 
be thought of as a visual data dictionary. 

Thinking of the user data model as a visual data dictionary, it is important to in-
clude information on how to present the contents of the attributes. Should a nu-
merical attribute be presented as a number and if so with how many decimals? 
Should it be encoded as a colour and if so, what values should correspond to 
which colour. De Baar et al. [de Baar92] and Bodart and Vanderdonckt [Vander-
donckt93, Bodart94c] provides an idea of how to make this kind of decision ac-
cording to precision, scale and other parameters. 

It is important to include examples of typical ways of filling out a user data model 
form. The examples should include messages shown in status fields, because such 
messages are not included in the technical data model. If included, the data model 
will typically model messages using a numerical code, or as an enumeration type as 
known from languages like Pascal. One of the reasons why including examples in 
the user data model are important, is that it helps determine the dimension of ta-
bles and field width etc. Another reason is that it makes it easier for both designers 
and users to understand and relate to the content and structure of the model. 

If the user data model is used to supplement the technical data model with the 
kinds of information mentioned above, it is the experience from the design of the 
classroom scheduling system and from several case studies, that the user data 
model can be used as a visual data dictionary guiding the design of logical and 
physical windows. 

GENIUS [Janssen93] includes information on grouping in the data model, TRI-
DENT [Bodart95a] includes some of this information in the specification of ab-



 An Approach to Structured Display Design - Coping with Conceptual Complexity 133 

stract interaction object. However, how the information is specified is of less im-
portance, than using the information in the design of logical and physical windows. 

5 Designing Logical Windows - Tailoring the Display to the 
Information Needs of each Task 

The user data model is designed to model the information needed to perform each 
of the tasks the system must support, and hence fulfils the information needs of 
each task. However, the user data model only presents the information in a way 
that makes it easy to understand the content and structure of the conceptual 
model, and this may not be the most efficient way of grouping the information, 
when it comes to performing a specific task [Lauesen94]. 

It is often the case, that a task requires access to information from several forms in 
the user data model, both several instances of the same form and several different 
forms. In these cases it would be more efficient to gather all of the necessary in-
formation in one window. 

Windows tailored to the information needs of a specific task becomes more impor-
tant, as the amount of information needed to perform a task grows. If there is not 
a window that combines the necessary information, the user will have to go 
through several windows to collect the information, increasing the likelihood of er-
rors and misunderstandings. 

The reason for designing logical windows are to ensure the task efficiency of the 
display design, while using the user data model as a visual data dictionary to ensure 
that the design remains conceptually clear.  

Sutcliffe [Sutcliffe95] and Bodart et al. [Bodart95b] design the Logical Windows 
(only Bodart et al. uses this term) by selecting the attributes a task needs from the 
technical data model. However, this increases the design task significantly com-
pared to the approach presented here, especially in the design of conceptually 
complex interfaces. At the same time selecting individual attributes, makes it harder 
to maintain the conceptual clarity of the user data model. 

5.1 Analysis of Information Needs of each Task 

The instances of the user data model forms that a task requires access to are speci-
fied for each of the tasks identified in the task analysis. An example of such a list is 
shown in table 1. The design of logical windows are then based on this list. When 
designing the logical windows, one of the goals is to keep the number of windows 
to a minimum, so if the information needs of two tasks are very similar, designing 
only one window should be considered, if such a window would fulfil the informa-
tion needs of both tasks. 



134 Computer-Aided Design of User Interfaces 

 Task Information need 
1.  Check the progress of all the projects and 

activities you are interested in 
Employee (status of the project), 
historical activity reports 
(development in ‘number of hours used’ and in ‘number 
of hours used’+’estimate’) 
 

2.  You are asked to check the progress of a 
specific project, e.g. “9511 DXP version B” 
(not one of the projects you are normally 
watching 

Project (sum of all activities), 
historical activity reports 
(development in ‘number of hours used’ and in ‘number 
of hours used’+’estimate’) 
 

3. A specific project, e.g. “9511 DXP version 
B” is out of control - find the reason.  
3.1. Identify activities, that are having 

problems 
Project (all activities line by line), 
historical activity reports 
(development in ‘number of hours used’ and in ‘number 
of hours used’+’estimate’) 
 

3.2. Find the people, that have been 
working on the activity. 

Activity report, 
Weekly activity report (3-4 weeks back) 
 

3.3. Check what the person responsible 
for the activity have been doing apart 
from working on the activity in ques-
tion. 

Activity report, 
Weekly activity report (3-4 weeks back), 
Employee report 

Table 1. Analysis of information needs for all tasks in the scenario ‘Activity surveillance’ 

The names in the column called ‘Information need’ in table 1 refers to forms in the 
user data model. The note in brackets describes what instances of the form are 
needed or if only a small part of the form is needed, what part of the form that 
needs to be available. ‘Development in "number of hours used"’ and ‘number of 
hours used’+‘estimate’, ‘3-4 weeks back’ are examples of such notes. 

If the forms in the user data model fulfil the information needs, they should be 
used as logical windows. If a frequently performed task needs access to informa-
tion scattered over several windows, one or more logical windows should be de-
signed, that fulfils these information needs in a manner, that suits the user. 

This is also the case if a task requires an overview of large amounts of data, in such 
cases some kind of visualisation technique should be applied. Examples of visuali-
sations that might be included in the design of logical windows can be found in 
Tweedie [Tweedie95] and Ahlberg [Ahlberg95]. 

However, in most cases only a simple visualisation is needed. For example to fulfil 
the information needs of the tasks 1, 2 and 3.1 in table 1, the designer could in-
clude a graphical presentation like the one shown in figure 6. The graphical presen-
tation supplies the user with a number of progress indicators that would be diffi-
cult to obtain just from looking at the numbers shown in the forms. 



 An Approach to Structured Display Design - Coping with Conceptual Complexity 135 

Estimate of
time remaining

Activity is out
of control

No work is
being done

Week

Hours

Time spent

 
Figure 6. Development in ‘number of hours used’ and ‘number of hours used’+ 

’estimate’ showed in a graphical manner. 

The design of logical windows does not necessarily mean radical changes from the 
design found in the user data model, more often only a number of minor modifica-
tions are needed. Figure 7 shows an example of how the employee form can be 
changed to meet the task requirements. The only changes needed are the order of 
two columns and a redefinition of the meaning of the estimate column. 

Finally a column has been added that show the portion of the budget that has al-
ready been used. The ‘percent done' field provides the user with valuable insight on 
the state of the project, e.g., if the work has just begun. This kind of information is 
important when assessing the importance of problem indicators. 

By letting the design of the logical windows take its origin in the user data model, it 
is possible to maintain the conceptually clear design while obtaining a higher degree 
of task efficiency. In order to maintain the conceptually clear design, it is important 
to let the design reflect the conceptual model and that the relationship between the 
concepts included in a window is accentuated. This can be achieved by keeping the 
grouping and layout established by the user data model. It is also important to use 
the names found in the user data model consistently. 

6 Designing Physical Windows - Compliance with User Inter-
face Standards 

Having designed the logical windows only the design of the physical windows re-
main in order to complete the display design. The design of the logical windows 
aims at ensuring task efficiency, whereas the compliance with user interface stan-
dard has been deliberately postponed to the design of the physical windows. 



136 Computer-Aided Design of User Interfaces 

Status of project

Name

Name

Initials

"Tiger"

9511 DXP Version B

XYZ model A9456

9515

JPH

SL

NCJ

Resp.
100

580

120

Budget
20

103

33

Used
80

437

67

Estimate

By the end of week

7/96

Number

Morten Borup Harning

MBH

Name

"Tiger"

9511 DXP Version B

XYZ model A9456

9515

JPH

SL

NCJ

Resp.Number
100

540

100

Estimate
100

580

120

Budget
20

103

33

Used
20%

19%

33%

Percent
done

Added
(calculated as Used/Estimate)

Employee

 
Figure 7. Tailoring the logical windows showing the user entity ‘employee’ to fit the information 

needed to perform task 1 in table 1. 

The transition from the logical display design to the physical display design will 
usually be straight forward, because a major part of the design has already been 
done during the design of the logical windows and the user data model, such as 
layout of information and design of the necessary graphical presentations. The de-
sign of the physical windows is hence primarily a question of finding the best way 
to implement the logical design, in a given user interface tool or the user interface 
standard the interface design has to comply with. 

The physical design will include finding a way to organise the windows, this in-
cludes adapting the layout in the logical windows to possible physical limitations 
like screen size or a CUI. 

To complete the physical design the functional design and the design of dialogue 
state transitions have to be done. The design of these aspects of the user interface 
are included in the full EFDD method outlined in section 2. 

The identified user functions needs to be implemented as buttons, menu items or 
drag-and-drop operations as suggested by the user interface standard. Finally the 
design must include a way of visualising the current state of the dialogue, e.g. 
through enabling/disabling of fields and buttons, cursor changes. 

The design of user functions and dialogue state-transition diagrams are described 
in Lauesen and Harning [Lauesen93]. 



 An Approach to Structured Display Design - Coping with Conceptual Complexity 137 

7 Utilising the Human Ability of Perceptual Organisation 

To reinforce the users perception of the relationship between the information pre-
sented in the logical windows (and in the user data model form for that matter) it 
might help to cast an eye over knowledge available from the gestalt psychology 
(e.g., [Palmer94]). Some of the well known observations found in gestalt psychol-
ogy are that things presented close to each other or things within a frame are per-
ceived as belonging together (they form a gestalt). 

The gestalt psychology also proposes a number of other rules that appear to guide 
the human perceptual organisation. These rules can be of great use when applied to 
the display design. The opposite is of course also true, that if the design violates 
some of these rules (e.g. misuse of frames and a random layout of fields), it results 
in errors and misunderstandings. 

Conclusion 

The proposed approach to structured display design have by now been used in 
several design cases and in a large development project. The conclusion is that the 
approach helps structure the display design. The result of this seems to be a con-
ceptually clear display design with good task efficiency. The approach also shows 
how the existing structured interface design methods, with a focus on task analysis, 
can be combined with a structured display design. 

Both the user data model, the logical windows and the physical windows facilitate 
usability testing, which helps eliminating usability problems very early in the design 
process.  

The proposed way of designing the user data model increases the creativity by 
dragging the designer/user through all possible views of the data modelled by the 
system. At the same time the two step design process makes it more obvious to 
consider appropriate kinds of visualisation techniques. This seems to be helpful, 
both when designing user interfaces with high conceptual complexity as well as de-
signing rather simple interfaces. 

By using the proposed approach it is possible to do a structured display design as a 
natural part of large development projects, and hence increase the focus on user in-
terface design. User interface design in such large development projects is other-
wise a problem because it is difficult to apply the traditional HCI approaches like 
guidelines, prototyping and usability testing, while maintaining control of cost and 
development time. 

Acknowledgements 

I would like to acknowledge that the initial idea of a user data model was devel-
oped together with Søren Lauesen at Copenhagen Business School. Søren was also 



138 Computer-Aided Design of User Interfaces 

the person that coined the phrase. I would like to thank Jan Pries-Heje for his con-
structive criticism reading the first drafts of this article, and the CADUI’96 referees 
that provided huge amounts of constructive criticism. This project has been 
funded by a grant from the Danish Technical Research Council. 

References 

[Ahlberg95] Ahlberg, C., Truvé, S., Tight Coupling: Guiding User Actions in a Direct 
Manipulation Retrieval System, in [Proceedings of British Conference on Human-
Computer Interaction HCI’95 « People and Computers X » (Huddersfield, 1995), 
M.A.R Kirby, A.J. Dix, J.E. Finlay (Eds.), Cambridge University Press, Cambridge, 
1995, pp. 305-322. 

[Avison90] Avison, D.E., Wood-Harper, A.T., Multiview: An Exploration in Informa-
tion Systems Development, McGraw-Hill, 1990. 

[Baskerville93] Baskerville, R., Semantic database prototypes, Journal of Information 
Systems, Vol. 3, 1993, pp. 119-144. 

[Bodart93] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Sacré, I., Vander-
donckt, J., Architecture Elements for Highly-Interactive Business-Oriented Applications, in 
Proceedings of the East-West International Conference on Human-Computer In-
teraction EWHCI’93 (Moscow, 1993), L. Bass, J. Gornostaev and C. Unger (Eds.), 
Lecture Notes in Computer Science, Vol. 753, Springer-Verlag, Berlin, 1993, pp. 
83-104. 

[Bodart94c] Bodart, F., Vanderdonckt, J., On the Problem of Selecting Interaction Objects, 
in Proceedings of British Conference on Human-Computer Interaction HCI’94 
« People and Computers IX » (Glasgow, 23-26 August 1994), G. Cockton, S.W. 
Draper, G.R.S. Weir (Eds.), Cambridge University Press, Cambridge, 1994, pp. 
163-178. http://www.info.fundp.ac.be/cgi-bin/pub-spec-paper? RP-94-018 

[Bodart95a] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Provot, I., Sacré, B.,  
Vanderdonckt, J., Towards a Systematic Building of Software Architectures: the TRIDENT 
Methodological Guide, in Proceedings of 2nd Eurographics Workshop on Design, 
Specification, Verification of Interactive Systems DSV-IS’95 (Château de Bonas, 7-
9 June 1995), R. Bastide and Ph. Palanque (Eds.), Eurographics Series, Springer-
Verlag, Vienna, 1995, pp. 262-278. http://www.info.fundp.ac.be/cgi-bin/pub-
spec-paper?RP-95-019 

[Bodart95b] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Vanderdonckt, J., 
Computer-Aided Window Identification in TRIDENT, in Proceedings of the 5th IFIP 
TC13 Conference on Human-Computer Interaction INTERACT’95, Lillehammer, 
25-29 June 1995, K. Nordbyn, P.H. Helmersen, D.J. Gilmore and S.A. Arnesen 
(Eds.), Chapman & Hall, London, 1995, pp. 331-336. http: 
//www.info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-95-021 



 An Approach to Structured Display Design - Coping with Conceptual Complexity 139 

[Bodart95c] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Provot, I., Zucchi-
netti, G., Vanderdonckt, J., Key Activities for a Development Methodology of Interactive Ap-
plications, in « Critical Issues in User Interface Systems Engineering », D. Benyon, 
Ph. Palanque (Eds.), Springer-Verlag, Berlin, 1995, pp. 109-134. http:// 
www.info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-96-025 

[Chen76] Chen, P., The Entity-Relationship Model - Toward a Unified View of Data, 
ACM Transactions on Database Systems, Vol. 1, No. 1, 1976, pp. 9-36. 

[CUA91] CUA Systems Application Architecture: Common User Access Advanced Interface 
Design Reference, SC34-4290-00, IBM, October 1991. 

[de Baar92] de Baar, D.J.M.J., Foley, J., Mullet, K.E., Coupling Application Design and 
User Interface Design, in Proceedings of the Conference on Human Factors in Com-
puting Systems CHI’92 « Striking a balance » (Monterey, 3-7 May 1992), P. Bauers-
feld, J. Bennett, G. Lynch (Eds.), ACM Press, New York, 1992, pp. 259-266. 
ftp://ftp.gvu.gatech.edu/pub/gvu/ tech-reports/91-10.ps.Z. 

[Desurvire92] Desurvire, H.W., Kondziela, J.M., Atwood, M.E., What is Gained and 
Lost when using Evaluation Methods other than Emperical Testing, in Proceedings of Brit-
ish Conference on Human-Computer Interaction HCI’92 « People and Computers 
VII », A. Monk, D. Diaper, M.D. Harrison (Eds.), Cambridge University Press, 
Cambridge, 1992, pp. 89-102. 

[Foley90] Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F., Computer Graphics: 
Principles and Practice, Addison-Wesley, Reading, 1990. 

[Green92] Green, T.R.G., Benyon, D., Displays as Data Structures: Entity-Relationship 
Models of Information Artefacts, Technical Report no. 92/22, The Open University 
Computing Department, Milton Keynes, 1992. 

[Jaaksi95] Jaaksi, A., Object-oriented Specification of User Interfaces, IEEE Software - 
Practice and Experience, Vol. 25, No. 11, 1995, pp. 1203-1221. 

[Jacobson92] Jacobson, I., Object-oriented Software Engineering, A Use Case Driven Ap-
proach, ACM Press-Addison-Wesley, New York, 1992. 

[Janssen93] Janssen, C., Weisbecker, A., Ziegler, J. , Generating User Interfaces from 
Data Models and Dialogue Net Specifications, in Proceedings of the Conference on 
Human Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds » 
(Amsterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollna-
gel, T. White (Eds.), ACM Press, New York, 1993., pp. 418-423. 

[Kuo88] Kuo, F.-Y., Karimi, J., User Interface Design From a Real Time Perspective, 
Communications of the ACM, Vol. 31, No. 12, December 1988, pp. 1456-1466. 

[Lauesen93] Lauesen, S., Harning, M.B., Dialogue Design Through Modified Dataflow 
and Data Modelling, in Proceedings of Vienna Conference on Human-Computer In-
teraction VCHCI’93 (Vienna, September 1993), Lecture Notes in Computer Sci-
ence Vol. , Springer-Verlag, Berlin, pp. 172-183. 



140 Computer-Aided Design of User Interfaces 

[Lauesen94] Lauesen, S., Harning, M.B., Grønning, C., Screen Design for Task Effi-
ciency and System Understanding, in Proceedings of OZCHI'94, S. Howard, Y.K. Le-
ung (Eds.), Melbourne, 1994, pp. 271-276. 

[Lim92] Lim, K.Y., Long, J.B., Silcock, N., Integrating Human Factors with The Jackson 
System Development Method: An Illustrated Overview, Ergonomics, Vol. 35, No. 10, 
1992, pp. 1135-1161. 

[Lim94] Lim, K.Y., Long, J., The MUSE Method for Usability Engineering, Cambridge 
University Press, Cambridge, 1994. 

[Nielsen94] Nielsen, J., Enhancing the Explanatory Power of Usability Heuristics, in 
[CHI94], pp. 101-107. 

[Norman86] Norman, D.A., Cognitive Engineering, in « User Centered System De-
sign », D.A. Norman, S.W. Draper, Lawrence Erlbaum Associates, Hillsdale, 1986. 

[Palmer94] Palmer, S., Rock, I., Rethinking perceptual organization: The role of uniform 
connectedness, Psychonomic Bulletin & Review, Vol. 1, No. 1, 1994, pp. 29-55. 

[Rumbaugh91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., 
Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, 1991. 

[Sommerville95] Sommerville, I., Software Engineering, Addison-Wesley, Reading, 
1995. 

[Staggers93] Staggers, N., Norcio, A.F, Mental Models: Concepts for Human-Computer 
Interaction Research, International Journal of Man-Machine Studies, Vol. 38, No. 
1993, pp. 587-605. 

[Sutcliffe95] Sutcliffe, A.G., Human-Computer Interface Design, Macmillan Press, Lon-
don, 1995. 

[Tarby94] Tarby, J.-C., The Automatic Management Of Human-Computer Dialogue And 
Contextual Help, in [EWHCI94]. ftp://trg03.univ-lille1.fr/FTP/pub/Publis/JC. 
TARBY/ewchi.ps.gz 

[Tarby96] Tarby, J.-C., Barthet, M.-F., The DIANE+ Method, in this volume, pp. 95-
119. 

[Tweedie95] Tweedie, L., Interactive Visualisation Artifacts: How can Abstractions Inform 
Design?, in [HCI95], pp. 247-265. http://www.ee.ic.ac.uk/research/information/ 
www/LisaDir/DIVA/DIVA.html 

[Vanderdonckt93] Vanderdonckt, J., Bodart, F., Encapsulating Knowledge for Intelligent 
Automatic Interaction Objects Selection, in [InterCHI93], pp. 424-429. http://www. 
info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-93-005 

[Yourdon89] Yourdon, E., Modern Structured Analysis, Prentice Hall, Englewood 
Cliffs, 1989. 


	Abstract
	Keywords
	Introduction
	1 Method
	2 The Full EFDD Method
	3 Coping with Complexity and Large Amounts of Information
	4 Conceptual Design
	4.1 Generating the First Version of the User Data Model
	4.2 Heuristic 1: Eliminate Technical Details
	4.3 Heuristic 2: Identify the Information the User Associate
	4.4 Heuristic 3: Identify the Appropriate Level of Detail
	4.5 Using the User Data Model as a Visual Data Dictionary

	5 Designing Logical Windows - Tailoring the Display to the I
	5.1 Analysis of Information Needs of each Task

	6 Designing Physical Windows - Compliance with User Interfac
	7 Utilising the Human Ability of Perceptual Organisation
	Conclusion
	Acknowledgements
	References

