

 Int. J. Web Engineering and Technology, Vol. 4, No. 2, 2008 163

 Copyright © 2008 Inderscience Enterprises Ltd.

FlowiXML: a step towards designing workflow
management systems

Josefina Guerrero García*,
Jean Vanderdonckt and
Juan Manuel González Calleros
Belgian Laboratory of Computer–Human Interaction (BCHI)
Université catholique de Louvain
Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium
Fax: +32 (010) 478324
E-mail: guerrero@isys.ucl.ac.be
E-mail: vanderdonckt@isys.ucl.ac.be
E-mail: gonzalez@isys.ucl.ac.be
*Corresponding author

Abstract: This paper addresses the need for supporting the design of
user interfaces for workflow management systems. Based on the already
existing task and domain models, an approach is proposed to design a
workflow model that explicitly articulates its new concepts with respect to
the concepts belonging to the task and the domain, but with some extensions.
The specifications of the workflow user interface are then stored in a model
repository where all user interface aspects are expressed in a uniform
XML-compliant user interface description language. From these specifications,
the user interface of the workflow could be generated in HTML based on
identified design patterns, along with the dialogue expressed in SCXML, a
W3C standard for expressing state charts. This process is integrated in
ATOMS, a content management software which integrates the generated
interfaces with the final contents. In addition, the system automatically
generates a personal ‘to do’ list and a workflow list to locate the progress of
each workflow instance. A real-world case study is presented to exemplify
this process.

Keywords: process model; task model; workflow model.

Reference to this paper should be made as follows: Guerrero García, J.,
Vanderdonckt, J. and González Calleros, J.M. (2008) ‘FlowiXML: a step
towards designing workflow management systems’, Int. J. Web Engineering
and Technology, Vol. 4, No. 2, pp.163–182.

Biographical notes: Josefina Guerrero García is pursuing her Master in
Philosophy in Economic and Management Sciences, in the research area of
information systems. She received her Master’s Degree in Management at the
Institute of University Studies in 2001. Her research interests include workflow
models, business process management and information systems design. She is a
member of the Belgian Laboratory of Computer–Human Interaction (BCHI)
and the UsiXML Consortium.

Jean Vanderdonckt is a Professor of Information Systems Unit (ISYS), School
of Management (IAG) at the Université catholique de Louvain (UCL).
He received his PhD degree in Computer Science at Facultés Universitaires

 164 J. Guerrero García, J. Vanderdonckt and J.M.González Calleros

Notre-Dame de la Paix, in 1997. He is the Head of the Belgian Laboratory
of Computer–Human Interaction (BCHI), and a Partner and Coordinator of
UsiXML Consortium.

Juan Manuel González Calleros is pursuing his Master in Philosophy in
Economic and Management Sciences, in the research area of information
systems. He received his Master’s Degree in Computer Sciences at the National
Institute of Astrophysics, Electronics and Optics in 2003. His research interests
include workflow models, business process management, information systems
design, model-based development, and three-dimensional development. He is a
member of the Belgian Laboratory of Computer–Human Interaction (BCHI)
and the UsiXML Consortium.

1 Introduction

The development of workflow systems progressively represents major new challenges
today for several important reasons:

• Often, individual users in organisations already have their own software to use to
carry out the interactive tasks that they have been assigned. This is not problematic.
But when the time comes to communicate the results of their tasks to their hierarchy
or to their colleagues, apart from using traditional e-mail, they do not rely on
dedicated software for supporting the communication.

• Small-scale and large-scale organisations usually experience some problems not in
defining and assigning the tasks to the individual workers, but in integrating them
into a complete workflow, which could be reinforced by a system. Indeed, if a
workflow is implemented manually, it is more complicated with respect to the
constraints imposed by this workflow as the workers could feel free to respect or
not to respect the rules.

• It is often heard that people in organisations are forced to change their organisational
structure and work process because of the setup of a new workflow system, as
opposed to the tailoring of such system to the already existing workflow. Of course,
installing a new computer-based workflow inevitably changes the procedures; this,
however, should be limited.

• When the organisational structure changes, but the workflow does not change, it
becomes complicated to reassign the tasks if a logical workflow has not been defined
independently of the organisational structure.

• It is important to cite Mandviwalla and Olfman’s criteria for support group
interactions, such as the following ones we selected:

a ‘Support carrying out group tasks’ from the individual level continuously
throughout the global level: individual, within groups, for the group as a whole,
among groups, within organisations, and among organisations.

b ‘Support multiple ways to support a group task’: in principle, there should not be
one unique way to carry out a single group task, but several mechanisms should
be offered for this purpose. If a mechanism is no longer available, another one
should be selected.

 FlowiXML: a step towards designing workflow management systems 165

c ‘Support the group evolution over time’: when the group evolves over time, the
workflow definition should be easily maintained and reflected in the system.

From a user interface standpoint, there exists today a gap between the development life
cycle of user interfaces of individual tasks as they are supported by isolated application
and the development life cycle of the complete workflow. In particular, would it be
possible to generate the workflow user interface from the workflow definition and from
the different constructs that link the tasks and the users together? This paper addresses
this need from a fundamental point of view by reviewing some selected work (Section 2),
introducing the modelling concepts supporting this (Section 3), defining an extension of a
User Interface Description Language to express these concepts in an integrated way
(Section 4) and transferring them into ATOMS, a software that supports defining the
workflow and generates the corresponding code (Section 5). A case study is presented in
Section 5. Section 6 concludes the paper.

2 Related work

2.1 Organisational structure

The user interfaces model of an organisational workflow system, must be based
on how organisations works and which elements composed them. The organisational
theory studies alternative structures for (business) organisations. The structure of an
organisation defines the jobs, resources, their responsibilities, tasks and goals. Mintzberg
(1982) proposes an organisational typology based on five components of the
organisation (strategic apex, middle line, technostructure, support staff and operating
core); five ways of affecting coordination (direct supervision, standardisation of work,
standardisation of skill, standardisation of output and mutual adjustment); and five types
of organisational decentralisation (centralisation, limited horizontal decentralisation,
horizontal and vertical decentralisation, limited vertical decentralisation and selective
decentralisation) resulting in five organisational configurations called Simple Structure,
Machine Bureaucracy, Professional Bureaucracy, Divisionalised Form and Adhocracy.
Independently of the configuration of an organisation, within it, there are works to do and
resources that develop these works; these two elements could be controlled by
information systems, the so-called workflow management systems.

2.2 Workflow models

Organisations are forced to increasingly integrate and automate their business process
using the workflow, a common term used when processes are automated and controlled.
There are several workflow definitions: zur Muehlen (2002) defines workflow as a
specific representation of a process, which is designed in such a way that the formal
coordination mechanisms between activities, applications, and process participants can be
controlled by an information system, the so-called workflow management system; WfMC
(1999) defines workflow as the automation of a business process (set of one or more
linked procedures or activities which collectively realise a business objective or policy
goal, normally within the context of an organisational structure defining functional roles
and relationships), in whole or part, during which documents, information or tasks are
passed from one participant to another for action, accordingly to a set of procedural rules.

 166 J. Guerrero García, J. Vanderdonckt and J.M.González Calleros

Workflow technology facilitates modelling, redesigning and administration of process
in an organisation (Eichholz et al., 2004). Models workflows have been proposed for the
design and specifications of it. In addition, workflow patterns called workflow resources
patterns, have been identified for resources (Russell et al., 2005), and workflow patterns
for routing constructs (van der Aalst et al., 2003).

Several workflow management systems have been developed to manage the
workflow, such as the Progression Model (Stavness and Schneider, 2004), Action Port
Model (Carlsen, 1997), State Chart XML (SCXML) (W3C, 2005), Flexo (Denali),1 and
ATOMS® (Defimedia).2

2.3 Task models

According to Limbourg (2004), a task model describes the various tasks to be carried out
by a user in interaction with an interactive system.

There are several different approaches to task models, such as ConcuTaskTrees
(CTT) (Paternò et al., 1997); Goals, Operators, Methods, and Selection rules (GOMS) by
(Card et al., 1983); and Hierarchical Task Analysis (HTA) (Annett and Duncan, 1967).

Limbourg and Vanderdonckt (2003) made a comparative analysis of significant task
models, their methods and supporting tools. In their review they identified that CTT
supports engineering approaches to task modelling with five concepts: task, objects,
actions, operators and roles. GOMS is an engineering model for human performance to
enable quantitative predictions. Methods are a central concept in GOMS to describe how
tasks are actually carried out; methods are a sequence of operators that describe task
performance. Tasks are triggered by goals and can be further decomposed in subtasks
corresponding to intermediary goals. When several methods compete for the same goal, a
selection rule is used to choose the proper one. While GOMS models are useful only for
tasks that involve substantial amounts of routine procedure execution, they can often
enable interface designers to start evaluating usability and making design iterations
before the investment in prototype development (Kieras, 1994). HTA describes tasks in
terms of three main concepts: tasks; tasks hierarchy; and plans on the basis of interviews,
user observation, and analysis of existing documents.

2.4 Notations

Nowadays, state chart diagrams, state machine notations such as SCXML (W3C, 2005),
and the Petri Nets Notations (van der Aalst and van Hee, 2002) are used to model
workflow. On the other hand, task models use the CTT, GOMS, or UAN notations. UAN
provides a notation to describe the dynamic behaviour of graphical user interfaces, where
the tasks are represented asynchronously with operators that denote the temporal
relationships (Stavness and Schneider, 2004).

3 Conceptual modelling of workflow

3.1 FlowiXML to model workflow

FlowiXML workflow components are cases, resources and triggers, all related to a
particular process, as defined by van der Aalst and van Hee (2002). Each process consists
of a number of tasks and a set of conditions that determine the order of the tasks.

 FlowiXML: a step towards designing workflow management systems 167

FlowiXML workflow models are used to represent the flow of the work inside and
between organisations. Workflow models are used to model the flow of work and task
models are used to describe the way humans perform tasks to accomplish a goal. To
ensure that FlowiXML is developed according to organisations’ requirements, we
propose to have both representations and allow some flexibility to model the work with
different levels of detail, as is necessary for each organisation. In fact, using tasks models
to describe workflow adds the possibility of adaptation and flexibility (Eichholz et al.,
2004; Traetteberg, 1999).

3.2 Organisational components

Typically, only resources and their roles within organisations are modelled in most
workflow models. In Russell et al. (2005) the workflow resource patterns are proposed to
manage the task assignment, although they just focus on human resources. We adapted
these patterns to represent the assignment and delegation of tasks to resources, whether
they are human or not. Some other organisational components that we considered are
organisational units, material and immaterial resources (not human resources), the agenda
(to do list) and the tasks.

3.3 Process model

In the context of this methodology, a process is a set of tasks that is necessary to carry
out. The definition of a process indicates which tasks must be performed and in what
order. Similarly with WfMC (1999) we defined a process as a formalised view of a
business process, represented as a coordinated set of process activities that are connected
in order to achieve a common goal. Our model organises tasks in a higher level and
determines the order of execution; this ensemble we called the process model. Notice that
tasks themselves could be decomposed into subtasks.

3.4 FlowiXML task model

An extended version of CTT has been selected to represent tasks with their logical and
temporal order. Task models are therefore composed of tasks and task relationships.
Tasks are described with a name and a type. Task type may be: user’s, interactive, system
or abstract. A user task refers to a cognitive action such as taking a decision, or acquiring
information. An interactive task involves an active interaction of the user with the system
(e.g., selecting a value, browsing a collection of items). A system task is an action that is
performed by the system (e.g., checking a credit card number, displaying a banner). An
abstract task is an intermediary construct allowing a grouping of tasks of different types.
Task relationships are of two main types: decomposition and temporal. Decomposition
enables the representation of the hierarchical structure of a task tree. Temporal allows
specifying a temporal relationship between sibling tasks of a task tree. LOTOS (Paternò
et al., 1997) operators are used here. Also, we used Limbourg (2004) relationship groups:

• Binary relationships – enabling, disabling, suspend/resume, order independence,
concurrency with information passing, independent concurrency, enabling with
information passing, deterministic choice and undeterministic choice.

 168 J. Guerrero García, J. Vanderdonckt and J.M.González Calleros

• Unary relationships – optional, iteration and finite iteration.

Additionally, we introduce three more operators: disabling with information passing,
inclusive choice and cooperation.

In order to have an appropriate representation of organisational requirements, it is
important to consider:

• that a task could be defined by the user

• a task could be grafted on another one

• the way in which tasks are advertised, assigned and delegated to specific users
for execution.

The term ‘grafted on’ (Petitjean, 1994) refers to a task (Tj) that has been started and that
needs a complementary task (Ti) for its realisation. Ti is completely autonomous to Tj. In
reference to the way in which the task is assigned to a user, we consider the workflow
resource patterns proposed by Russell et al. (2005). However, the delegation pattern is
reinforced with the work of Petitjean (1994) who implements the negotiation type. These
last relationships will be defined in an intermodel relationship (i.e., mapping model) (see
Section 4.2.5).

4 User interface eXtended markup language extension to workflow

4.1 UsiXML

Multipath User Interface (UI) development (Limbourg, 2004) is based on the Cameleon
Reference Framework (Calvary et al., 2003), which defines UI development steps for
multicontext interactive applications.

We used the User Interface Description Language (UIDL) User Interface eXtensible
Markup Language (UsiXML)3 throughout the development life cycle. This UIDL is
characterised by the following principles:

• Expressiveness of UI – any UI is expressed depending on the context of use,
thanks to a suite of models that are analysable, editable and manipulable by a
software agent.

• Central storage of models – each model is stored in a model repository where all UI
models are expressed similarly.

• Transformational approach – each model stored in the model repository may be
subject to one or many transformations supporting various development steps. Each
transformation is itself specified thanks to UsiXML.

Contrarily to other frequently used UIDLs, e.g., UIML4 and XISL (Katsurada et al.,
2003) for multiplatform, multimodal UIs, UsiXML enables the specification of all
models and the transformations between until a final UI is obtained. UsiXML is able to
specify various UIs with the five modalities of interaction defined in Section 1. For this
purpose, UsiXML is structured according to four basic levels of abstractions defined by
the Cameleon reference framework. The actual specification is composed of:

 FlowiXML: a step towards designing workflow management systems 169

• Task model

Extension of CTT has been selected to represent user’s tasks along with their logical
and temporal ordering.

• Domain model

The domain model is generally developed by software engineers and gives ‘as is’
(often under the form of an Application Programming Interface (API)) to UI
designers. The rest of the job consists of connecting the UI to the functional core API
while respecting some architectural principles. Domain model concepts are classes,
attributes, methods, objects and domain relationships.

• Abstract user interface model

An AUI is a user interface model that represents a canonical expression of the
rendering and manipulation of the domain concepts and functions in a way that is as
independent as possible from modalities and computing platform specificities. An
Abstract User Interface (AUI) is populated by Abstract Interaction Objects (AIO)
and abstract user interface relationships. These concepts constitute a vocabulary
that is independent of the modality and the computing resources for which a system
is targeted.

• Concrete user interface model

The CUI is a UI model allowing a specification of an appearance and behaviour of a
UI with elements that can be perceived by users. By definition, a Concrete User
Interface (CUI) is modality-dependent as any CUI instance refers to the interaction
modalities that have been selected for this UI. This reference can be unique in case
of a ‘mono-modal’ CUI or multiple in case of a multimodal CUI. A CUI model is
composed of Concrete Interaction Objects (CIO) and concrete relationships.
Concrete interaction objects and relationships are further refined into graphical
objects and relationships and auditory objects and relationships. Other types might
complement these two categories as more modalities could be taken into account.

• Context model

A context model is a model describing the three aspects of a context of use in which
an end user carries out an interactive task with a specific computing platform in a
given surrounding environment. Consequently, a context is hereby defined as a triple
of the form <e, p, u> where e is an element of the environments set considered for
the interactive system, p is an element of the platforms set considered for the
interactive system and u is an element of the users set for the interactive system.

• Intermodel relationships (i.e., mapping model)

Model integration is a well-known issue in the transformation-driven development of
UI. Rather than proposing a collection of unrelated models and model elements, this
proposal provides a designer with a set of predefined relationships allowing a
mapping of elements from heterogeneous models and viewpoints. This can be useful,
for instance, for enabling the derivation of the system architecture (mappings
between domain and CUI/AUI models), for traceability in the development cycle
(reification, abstraction and translation), for addressing context-sensitive issues (has
context), for dialogue control issues and for improving the preciseness of model
derivation heuristics.

 170 J. Guerrero García, J. Vanderdonckt and J.M.González Calleros

4.2 UsiXML extension to workflow

Extending the ontology of UsiXML to other types of model and concepts is one of the
purposes of the language. Actually, one of the most desirable model extensions is to
consider UML workflow models; as workflow models represent many advantages with
respect to task models and offer an appropriate notation for collaborative applications. In
order to transform the actual specification of the task model and incorporate the
workflow model, it is necessary to consider other components, such as the processes,
organisational units, the resources and the jobs.

4.2.1 Workflow

The workflow model consists of a number of processes and tasks that are interconnected
through operators and relationships (Figure 1). Workflows are described with a name.
Also, each process and task is represented inside a model. In addition, we propose to have
a representation of some organisational components that are involved with the execution
of work.

Figure 1 Conceptual view of the workflow model

workflow
id : String
name : String

1

1..n

process
id : String
name : String
frequency : Integer
importance : Integer
category : Integer

1..n

2..n

task
id : string
name : string
type : string
frequency : integer
importance : integer
structurationLevel : integer
complexityLevel : integer
criticity : integer
centrality : integer
terminationValue : string
userAction : string
taskItem : string
preCondition : String
postCondition : String

 FlowiXML: a step towards designing workflow management systems 171

4.2.2 Process model

Simple processes belong to the process model, which represents the relationships
between the different processes that are involved in a workflow.

Figure 2 Conceptual view of the process model

The process model (see Figure 2) is composed of:

• targetProces – Designates one or several target(s) of a relationship which it is
part of.

• sourceProces – Designates one or several source(s) of a relationship which is part of
a processOperator.

• workList – A workList manages the flow of work among the taskResources.

• workItem – Is the representation of the task to be processed. It could contain the
identification of the workflow and the identification of the process to which it
belongs; the identification of the task resource that develops the task and the
identification of the organisational unit where the task is performed; the actual status
of the task (for instance: not started, in progress, in progress with delay, in progress
with due date close, suspend, cancel, finished); the date when the task begins, the
deadline (i.e., date due), the date when the task could be assigned or delegated, and
the date when the task was completed.

• processOperator which are operators that indicate the different ways in which the
processes could be executed. We define them as follows:

process
id : String
name : String
frequency : Integer
importance : Integer
category : Integer

1

processModel

1

0..n 1
processOperator
id : String
name : String

1
1..n

1..n

targetProcess
targetProcessId : String

sourceProcess
sourceProcessId : String

multiChoicesimpleMergeexclusiveChoiceparallelSplitsynchronizationsequential

1

0..n

workItem
idWorkflow : string
idProcess : string
idTask : string
idTaskResource : string
idOrganizationalUnit : string
status : string
dateBegan : date
dateDue : date
dateAllocation : date
dateDelegation : date
dateFinished : date

0..n 1

workList
id : string
name : string

1..n

 172 J. Guerrero García, J. Vanderdonckt and J.M.González Calleros

a sequential indicates that a number of processes are performed one after the other

b synchronisation is used when multiple parallel processes converge into one
single thread of control

c parallelSplit indicates that two or more process can be executed in parallel, thus
allowing processes to be executed simultaneously or in any order

d exclusiveChoice indicates that one of several branches is chosen

e simpleMerge indicates that two or more alternatives branches come together
without synchronisation

f multiChoice is used when any of two processes is chosen. However, it is also
possible that both need to be executed.

4.2.3 Task model

As we mentioned above, a task model is composed of tasks and task relationships
(Figure 3). The following definitions describe the elements of the task model and
their relations.

• taskModel – Task models describe end users’ view of interactive task while
interacting with the system. A task model represents a decomposition of tasks into
subtasks linked with task relationships. Therefore, the decomposition relationship is
the privileged relationship to express this hierarchy; child temporal relationships
express the temporal constraints between subtasks of the same parent task.

• target – Target relationships designate one or several target(s) of a relationship.

• source – Source relationships designate one or several source(s) of a relationship.

• task – Task is the basic structure that composes the task model. Tasks are activities
that have to be performed to reach a goal, (Paternò et al., 1997).

• taskRelationship – Task relationships are relationships involving several occurrences
of different (or the same in some cases) tasks. Task relationships may be of two
types: decomposition or temporal relationship.

• decomposition – Decomposition relationships enable the representation of the
hierarchical structure of the task tree, such as adjacency for
graphicalIndividualComponents. Decomposition relationships are implicit within the
XML syntax of the language, as represented by the simple embedding of elements.

• temporal – Temporal relationships represent a specification of temporal relationships
between tasks.

1 binaryRelationship – Binary relationships are a type of temporal relationships
that connect several instances of two different tasks.

a enabling – Enabling relationships specify that a target task cannot begin
until source task is finished.

b disabling – Disabling relationships refer to a source task that is completely
interrupted by a target task.

 FlowiXML: a step towards designing workflow management systems 173

c suspendResume – Suspend resume relationships refer to source task that can
be partially interrupted by a target task and after the target task is
completed, the source task will be concluded.

d orderIndependence – Order independence relationships are when two tasks
are independent of the order of execution.

e concurrencyWithInformationPassing – Concurrency with Information
Passing relationships are a type of temporal relationships where two tasks
are in concurrency execution and passing information between them.

f independentConcurrency – Independent concurrency relationships
are a type of temporal relationships where two tasks are executed
concurrently but are independent from each other and there is no
information interchange.

g enablingWithInformationPassing – Enabling with information passing
relationships specifies that a target task cannot be performed until the
source task is performed, and that information produced by the source task
is used as an input for the target task.

h cooperation – A cooperation relationship specifies the relationship of
cooperation between two or more tasks.

i inclusiveChoice – An inclusive choice relationship specifies that both of
two tasks or just one of them, or neither of them could be executed.

j deterministicChoice – Deterministic choice relationships refer to two source
tasks that could be executed but once one task is initiated, the other cannot
be accomplished anymore.

k undeterministicChoice – Undeterministic choice relationships define the
relation between two source tasks in which both tasks could be started but
once one task is finished, the other cannot be accomplished anymore.

l disablingWithInformationPassing – Disabling with pass information
relationships occurs if one task is completely interrupted by another task;
and the information produced in the first task is used as an input for the
second task.

2 unaryRelationship – Unary relationships are temporal relationships that connect
several instances of the same task.

a optional – Option relationships refer to source tasks that are optional.

b iteration – Iteration relationships indicate source tasks that may be iterated.

c finiteIteration – Finite iteration tasks indicate tasks that may be iterated
n times.

 174 J. Guerrero García, J. Vanderdonckt and J.M.González Calleros

Figure 3 Conceptual view of the task model

4.2.4 Organisational components

We propose an organisation framework (Figure 4) that is composed of:

• Organisational unit – An organisational unit is a formal group of people working
together with one or more shared goals or objectives. It could be composed of other
organisational units.

• Task resources – A taskResource is an entity that is directly or indirectly involved in
carrying out the work. We identify three task resources:

1 User stereotype represents the set of users sharing the same values. Each
stereotype may in turn be decomposed into substereotypes.

2 Means materials is a type or resource that is physically tangible and is a
non-human resource.

3 Immaterial is a type of resource that is physically intangible; it does not have a
material form or substance.

• LogEntry – LogEntry describes specific characteristics that resources may possess.
Each resource may have a logEntry associated with them.

• Job – Jobs are the total collection of tasks, duties and responsibilities assigned to one
or more positions that require work of the same nature and level.

task
id : string
name : string
type : string
frequency : integer
importance : integer
structurationLevel : integer
complexityLevel : integer
criticity : integer
centrality : integer
terminationValue : string
userAction : string
taskItem : string
preCondition : String
postCondition : String

1..n1..n
11 taskModel

1

0..n0..n

1 target
targetId : string

1..n1..n

11taskRelationship
id : string
name : string 1 1..n1..n1 source

sourceId : string

temporal
precondition : event

decomposition

binaryRelationship unaryRelationship

optional iteration finiteIteration
iterationNumber : integer

enablingWithInformationPassing

disablingWithInformationPassing

orderIndependence

undeterministicChoice

independentConcurrency

deterministicChoice

concurrencyWithInformationPassing

suspendResume

inclusiveChoicecooperation

enabling disabling

 FlowiXML: a step towards designing workflow management systems 175

• Task – Already defined above, is a task that belongs to the task model but needs
resources to be carried out.

• AgendaItem – Agenda items are the tasks that a userStereotype has to perform.

• Agenda – The agenda is a list of agendaItems that are assigned to userStereotypes. A
userStereotype has one and only one agenda and an agenda belongs to one and only
one userStereotype.

Figure 4 Conceptual view of the organisation components

0..n

0..n

organizationalUnit
id : String
name : String
organizationObjectives : String
groupType : String
phisicalLocation : String
hierarchyLevel : String
relationship : String
organizationRules : String

1..n 1..n

job
id : String
name : String
jobSpecifications : String
jobFamily : String
jobGrade : String
jobPrivileges : String

1..n

logEntry
id : String
name : String
timeStamp : Date
description : String
logType : String

0..n 0..n

1..n

1..n

task
id : string
name : string
type : string
frequency : integer
importance : integer
structurationLevel : integer
complexityLevel : integer
criticity : integer
centrality : integer
terminationValue : string
userAction : string
taskItem : string
preCondition : String
postCondition : String

1..n

1..n

taskResource
id : String
name : String
capability : String
features : String
cost : String
taskload : String

1..n

0..1

0..n

userStereotype
id : string
stereotypeName : string
taskExperience : string
systemExperience : string
deviceExperience : string
taskMotivation : string

1

meansMaterials immaterial

1

0..nagendaItem
idWorkflow : string
idProcess : string
idTask : string
idUserStereotype : string
idOrganizationalUnit : string
status : string
dateBegan : date
dateDue : date
dateDelegation : date
dateFinished : date
reminder : date
completed : integer
delegation : string
dateAllocation : date

0..n

1

agenda
id : string
name : string

1

servicessoftwarehardwareMmachine

 176 J. Guerrero García, J. Vanderdonckt and J.M.González Calleros

4.2.5 Mapping model extension

Based on the set of predefined relationships of UsiXML, Limbourg (2004), allows a
mapping of elements from heterogeneous models and viewpoints (Figure 5). Several
relationships can be defined to show the relationships between the domain model and the
UI models (both abstract and concrete (see Section 4.1 for more details)):

• Observes is a mapping defined between an interaction object and a domain model
concept (either an attribute, or an output parameter of a method).

• Updates is a mapping defined between an interaction object and a domain model
concept (specifically, an attribute). ‘Updates’ describe the situation where the
attribute of an object in the domain model must be synchronised with the content
of a UI object.

• Triggers is a mapping defined between an interaction object and a domain model
concept (specifically, an operation). This mapping describes that a UI object is able
to trigger a method from the domain model. The mapping ensures the traceability of
the development cycle.

• Is Executed In maps a task to an interaction object (a container or an individual
component) allowing its execution. This relationship is notably useful for deriving a
dialogue control component, for ensuring that all tasks are supported appropriately
by the system.

• Is Reified By indicates that a concrete object is the reification of an abstract one
through a reification transformation. Is Abstracted Into indicates that an abstract
object is the reification of a concrete one through an abstraction transformation.

• Is Translated Into enables tracing of the adaptation of one component in another. It
can be used while defining a transformation called translation.

• Manipulates maps a task to a domain concept. It may be an attribute, a set of
attributes, a class (or an object), or a set of classes (or a set of objects). This
relationship is useful when it comes to finding the most appropriate interaction
object to support a specific task.

• Has Context maps any model element to one or several contexts of use.

Figure 5 Conceptual view of the mapping model

isTranslatedInto manipulatesisExecutedInisReifiedBy isAbstractedInto

mapping
Model

source
sourceId : string

target
targetId : string

interModelRelati
onship

id : string
name : string

1..n1..n

1..n

1

1..n

1

1..n1 1..n1

uiModel
creationDate : string
schemaVersion : string

hasContexttriggers observes updates isGraftedOn
nodeName : String

isDefinedBy isAllocatedTo
assignment : String
distribution : String
allocationPrinciples : String
managing : String
deviation : String
autoStart : String
visibility : String
multipleResource : String

isDelegatedTo
delegationType : String
isNegotiableOnDeadline : Boolean
isNegotiableByContract : Boolean
dateOnDealline : Date
delegationComments : String

 FlowiXML: a step towards designing workflow management systems 177

We extend these mapping by adding the following:

• Is Grated On grates a task on another one. This relationship is useful when a task
(Tj) is being executed, and a complementary task (Ti) is defined to realise the first
task. Ti is completely autonomous to Tj.

• Is Defined By refers to a task defined by a userStereotype.

• Is Allocated To, in this case we adapt the proposal of Russell et al. (2005). A task
is assigned to a taskResource. We define several allocation relationships for
this assignment:

a Assignment – Is the manner in which tasks are advertised to specific resources
for execution.

b Distribution – Is the manner in which newly created tasks are proactively
offered or allocated to resources by the workflow system.

c Allocation principles – Is the manner in which tasks are allocated to resources
by the workflow system.

d Managing – Is the manner in which the tasks are initiated by
individual resources.

e Deviation – Is when the normal sequence of state transitions for a task is varied.

f Auto-start – Are situations where execution of task is triggered by specific
events in the life cycle of the task or the related process definition.

g Visibility – Are the scopes in which task availability and commitment can be
viewed by taskResources.

h Multiple resources – Situations where there is often many-to-many
correspondence between the taskResources and work tasks in a given allocation
or execution.

• Is Delegated to – A userStereotype who is assigned to a task allocates it to another
userStereotype. We define several delegation relationships for this assignment:

a Delegation type – Describes the type of delegation; it could be by negotiation,
by assignment or by tender.

b Is Negotiable On Deadline – Indicates if the task is negotiable on the time limit
for its execution.

c Is Negotiable By Contract – Indicates if in the negotiation there is a contract in
which some conditions for executing a task exist.

d Date – Is the date in which the delegation was done.

e Delegation Comments – In delegationComments it is possible to add extra
information; for instance, some observation about the task to be delegated.

 178 J. Guerrero García, J. Vanderdonckt and J.M.González Calleros

5 The ATOMS system: supporting the description of a workflow system

5.1 ATOMS®

ATOMS® (Defimedia) is an information system that supports the progressive deployment
of a communication systems integrated in the organisation. ATOMS is an environment of
web applications deployment that allows integration in services, applications and data. It
has a workflow editor (Figure 6) that allows the automation of a series of tasks which
could be carried out following a predefined set of actions (add a document, arrival of a
document on a certain date, etc.). The actual specification of the workflow module
integrated in the tool is established on UML state chart diagrams. With this module it is
possible to establish the logic of the flow that could be sequential, parallel, multistep,
mode in which actions can be triggered by the computer (e.g., date from planned
publication) or by a human operator.

Figure 6 Workflow editor of ATOMS

The workflow elements could be linked to elements of the UI. The configurations of the
workflow are stored in a documented file XML, editable manually or via our UML
editor. As this workflow editor is based on state chart diagrams, our proposal is to extend
the tool using the concepts of FlowiXML in order to represent the workflow in more
detail, considering other organisational components, making work ‘controllable’ and
flexible, encouraging communication between employees. State charts are useful when
the exact sequence of events is not known in advance; we only know about the current
state and what can be done next.

 FlowiXML: a step towards designing workflow management systems 179

5.2 Case study

To prove the feasibility of FlowiXML, we present the Authorisation Application case
study. This problem concerns the formation application made by a trainer to the
administration committee. In summary this task concerns the authorisation applied
to teach a training course. The request could be made in different places, all of them
with access to the online system that handles the training’s information among other
information. The trainer fills out a form that is sent to the person responsible for the
training courses, the Formation Responsible (FR) at the IFPM department, via e-mail.
This event triggers the generateTask event, generating a message in the user interface of
the FR that a new training course request has been submitted. The FR validates the
information received and once validated, the training information is published and can be
accessed online by the public in general. In particular, a set of known organisations will
be notified by e-mail about the training course offered, also adding a new message to
their UI. To be registered, the organisations must complete a form indicating participant’s
personal information as well as the payment method. Several administrative actions are
followed such as: printing the forms; the organisation manager validates and signs the
course registration; the forms are sent to the IFPM department to signify their agreement
to teach the training course. A third actor, inspector Agoria, is notified about this
negotiation and condenses both signed agreements and gives his approval. Then the
IFPM department receives the notification that could be accepted or rejected or requires
more information. If accepted, the administration committee of the training centre
decides whether to approve the course or not. If so, the FR notifies the trainer who makes
the application to teach the course.

To handle this workflow we have identified 48 tasks that could be used with
several courses at the same time. Different organisations are involved in the workflow, as
well as different actors, resources and tasks. For simplicity and space reasons we will just
identify a few components of some of them in FlowiXML (Table 1) and represented Petri
Nets (Figures 7–10).

Table 1 Components of tasks

 Task

Component
Request
authorisation Validate request

Receive
notification

Notify
deliberation

Organisational unit Trainer unit IFPM Agoria IFPM

Job Trainer Formation
responsible

Inspector Responsible

taskResource userStereotype userStereotype userStereotype userStereotype

isAllocatedTo Resource
initiated
allocation

Direct assignment Direct
assignment

Direct
assignment

 180 J. Guerrero García, J. Vanderdonckt and J.M.González Calleros

Figure 7 Request authorisation

Figure 8 Validate request

Figure 9 Receive notification

Figure 10 Notify deliberation

End

OF

Show formAdd session
number

A

Fill out
phase1

Fill out
phase2

Fill out
phase3

Fill out
phase4

Fill out
phase5

Fill out
phase6

Fill out
phase7 Validate

Start

Put on web
site

End

Open Atoms’
interfaz

Access to
task

R-IFPM

Subscribe
next date

Make some
modification

Validate

Cancel

Send E -mail
to

organization
and operator

Update
task list

Print

Start

EndReceive file

R-
AGO
RA

Access to
task

Validate
delivery

Send E-mail
to IFPM

Send E-mail
to operator

Start

Start Receive
notification EndType

information

R-IFPM

 FlowiXML: a step towards designing workflow management systems 181

6 Conclusion

This paper has addressed the need for developing also the workflow user interface by
integrating it into the user interface design of individual applications. For this purpose, a
conceptual modelling approach has been adopted that integrates the following notions
(old and new): task, domain, process, workflow, job definition, organisational structure,
‘to do’ list workflow list and resources. These concepts along with their attributes have
been integrated in the syntax of UsiXML, a User Interface Description Language
(although it could be integrated as well in other languages such as UIML or XIML). An
extension to the ATOMS software has been developed in Java to support these concepts
and to express the dynamic linking between these concepts in a workflow based on a
state chart, which is itself specified in SCXML, a W3C standard for expressing this kind
of model. A real-world case study has been reported and summarised (the complete one
is available on request in an internal report). The mostly significant advantage of that
system (as observed during its usage) is that the designer is not forced to design the
workflow user interface separately, but that a predefined one could be automatically
produced based on some design patterns. For instance, if a delegation mechanism is
defined, then an abstract user interface is directly attached to this delegation, which
results in a concrete user interface for which the HTML code is generated. Therefore,
there is a continuity between the definition of high-level concepts (here, a delegation of
tasks between users in a workflow) and its support via a final user interface (here, a
graphical interface for letting the source user delegate his/her task to a target user).

In the future, we are expecting to enlarge this set of design patterns so that several
levels of details could be offered for supporting the same task, as recommended by
Mandviwalla and Olfman (1994).

Acknowledgement

We greatly thank the DefiMedia company for the development of this paper.

References

Annett, J. and Duncan, K. (1967) ‘Task analysis and training design’, Occupational Psychology,
Vol. 41, pp.211–227.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L. and Vanderdonckt, J. (2003)
‘A unifying reference framework for multi-target user interfaces’, Interacting with Computers,
Vol. 15, No. 3, pp.289–308.

Card, S.K., Moran, T.P. and Newell, A. (1983) The Psychology of Human–Computer Interaction,
Lawrence Erlbaum Associates.

Carlsen, S. (1997) ‘Conceptual modeling and composition of flexible workflow models’,
PhD thesis, Norway: Norwegian University of Science and Technology.

Eichholz, C., Dittmar, A. and Forbrig, P. (2004) ‘Using task modelling concepts for achieving
adaptative workflows’, Proceedings of DSV-IS-EHCI’94, Berlin: Springer-Verlag, LNCS,
Vol. 3425.

Katsurada, K., Nakamura, Y., Yamada, H. and Nitta, T. (2003) ‘XISL: a language for describing
multimodal interaction scenarios’, Proc. of 5th Int. Conf. on Multimodal Interfaces
ICMI’2003, Vancouver, 5–7 November, New York: ACM Press, pp.281–284.

 182 J. Guerrero García, J. Vanderdonckt and J.M.González Calleros

Kieras, D. (1994) ‘A guide to GOMS task analysis’, Technical report, University of Michigan,
http://www.sahs.uth.tmc.edu/TRJohnson/HI%205354/guide.pdf.

Limbourg, Q. (2004) ‘Multi-path development of user interfaces’, PhD thesis, Belgique: Universite
catholique de Louvain.

Limbourg, Q. and Vanderdonckt, J. (2003) ‘Comparing task model for user interface design’, in
D. Diaper and N. Stanton (Eds.) The Handbook of Task Analysis for Human–Computer
Interaction, Mahwah: Lawrence Erlbaum Associates, pp.135–154.

Mandviwalla, M. and Olfman, L. (1994) ‘What do groups need? A proposed set of generic
groupware requirements’, ACM Transactions on Computer–Human Interaction, Vol. 1, No. 3,
pp.245–268.

Mintzberg, H. (1982) Structure & Dynamique des Organisations, Paris, France: Les Editions
d’Organisation.

Paternò, F., Mancini, C. and Meniconi, S. (1997) ‘ConcurTaskTrees: a diagrammatic notation for
specifying task models’, Proceedings Interact’97, Chapman&Hall, pp.362–369.

Petitjean, T. (1994) ‘Contribution a la specification de situations de cooperation ad hoc et a leur
prise en compte dans les systèmes de Workflow’, PhD thesis, Namur, Belgium: Facultés
Universitaires Notre-Dame de la Paix.

Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M. and Edmond, D. (2005) ‘Workflow
resource patterns’, 17th Conference on Advanced Information Systems Engineering
(CAISE’05), Porto, Portugal, 13–17 June.

Stavness, N. and Schneider, K. (2004) ‘Supporting flexible business processes with a progression
model’, in H. Trætteberg, P.J. Molina and N.J. Nunes (Eds.) ‘Making model-based user
interface design practical: usable and open methods and tools’, Proceedings of the First
International Workshop on Making Model-based User Interface Design Practical: Usable and
Open Methods and Tools MBUI 2004, CEUR Workshop Proceedings, Funchal, 13 January,
Vol. 103, http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-103/.

Traetteberg, H. (1999) ‘Modeling work: workflow and task modeling’, in J. Vanderdonckt and
A.R. Puerta (Eds.) Proc. of 3rd Int. Conf. on Computer-Aided Design of User Interface,
CADUI’99, Louvain-la-Neuve, 21–23 October.

Van der Aalst, W. and van Hee, K. (2002) Workflow Management. Models, Methods, and Systems,
Library of Congress Cataloging-in-Publication Data.

Van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B. and Barros, A.P. (2003)
‘Workflow patterns’, Distributed and Parallel Databases, Vol. 14, No. 1, pp.5–51.

W3C (2005) ‘Working draft’, World Wide Web Consortium, 5 July, http://www.w3.org.

WfMC (1999) ‘Terminology & glossary’, Workflow Management Coalition, Document Number
WFMC-TC-1011, Document Status, No. 3.0, February.

Zur Muehlen, M. (2002) ‘Workflow-based process controlling’, Foundation, Design, and
Application of Workflow-driven Process Information Systems, Berlin: Logos Verlag.

Notes

1 Denali, www.denali.be.

2 Defimedia, www.defimedia.be.

3 http://www.usixml.org

4 http://www.uiml.org

