
Modeling User Interfaces to Workflow Information Systems

Josefina Guerrero1, Jean Vanderdonckt1, Juan M. Gonzalez1, Marco Winckler1,2
1Université catholique de Louvain, Louvain School of Management

Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)
2LIIHS-IRIT, Université Paul Sabatier, 118 route de Narbonne, Toulouse F-31062 (France)

{guerrero, jean.vanderdonckt@uclouvain.be, gonzalez, winckler}@isys.ucl.ac.be

Abstract
This paper addresses the need for designing user in-

terfaces (UIs) to workflow information systems by
adopting a model-centric approach. We introduce a
conceptual workflow model to determine system func-
tionalities of workflow. The model is exploited in order
to systematically derive UIs to access these functional-
ities. The workflow model is recursively decomposed
into processes which are in turn decomposed into
tasks. Each task gives rise to a task model whose struc-
ture, ordering, and connection with the domain model
allows the automated generation of their correspond-
ing UIs, using a transformational approach. Each UI
is specified in a User Interface Description Language,
workflow, process, and task models are specified in the
same specification language. The language is exploited
to generate multiple source codes, depending on how
their corresponding tasks are structured in the process
model; and by a workflow execution engine to produce
running workflow systems. A real-world case is out-
lined to exemplify the process.

1. Introduction
 The introduction of Workflow Management Sys-
tems (WfMS) in organizations has emerged as a major
advantage to plan, control, and manage organization’s
business processes. Implemented properly, workflow
applications enable companies to reengineer and
streamline business processes; for this reason, the in-
terest in workflow systems has grown dramatically
over the last years. Recently, the Web had become a
privileged platform for implementing workflow sys-
tems. The Web provides ubiquitous access to informa-
tion; supports inherent distribution of business process,
and consist of platform-independent user interfaces
(UIs). However, workflow-based Web applications are
far more complex than traditional Web applications;
currently available methods do not provide compre-
hensive support to integrate business process analysis
and advanced techniques for Web application design,
which open this topic for improvements [2]. This paper
presents a conceptual framework for the development
of workflow-based Web application from the UI point

of view. This framework considers business process,
user tasks and UIs as independent layers that can be
conjointly used to build the application. Section 2 pre-
sents the underlying conceptual model of the frame-
work. Section 3 provides a description of the method to
generate the UI of a workflow model. Section 4 pro-
vides a real life case study illustrating the method, a
workflow-based Web applications for reviewing
documents. Section 5 presents the related work. Fi-
nally, section 6 presents the conclusion of this work.

2. Conceptual Modeling of Workflow
The underlying conceptual model [7] is composed

of workflow, process, task and organizational models,
see Figure 1. The workflow model is recursively de-
composed into processes which are in turn decomposed
into tasks. The definition of a process model indicates
the ordering of processes in time, space, and resources.
Each process gives rise to a process model structured
and ordered with process operators. Process operators
determine whether the flow of work is sequential, par-
allel split, exclusive choice or multi choice; with the
corresponding merger operators, synchronization and
simple merge. A task model represents a decomposi-
tion of tasks into sub-tasks linked with task relation-
ships. The model was adapted from the ConcurTask-
Trees (CTT) [11] in order to take into account a couple
of missing task relationships: inclusive choice and dis-
abling with information passing. The organizational
model is composed of organizational units, jobs, and
resources with their correspondent agenda.

2.1 Conceptual Mapping Model
Transformations are applied in cascade though the

workflow layers using a mapping model. In order to
support the mapping between the layers, predefined re-
lationships provided by UsiXML (USer Interface eX-
tensible Markup Language – http://www.usixml.org)
[10] were used. UsiXML is a User Interface Descrip-
tion Language (UIDL) that is independent from code.

Fourth International Conference on Autonomic and Autonomous Systems

0-7695-3093-1/08 $25.00 © 2008 IEEE
DOI 10.1109/ICAS.2008.27

55

Figure 1 Overview of Conceptual Model

The workflow model consists of three layers: proc-
ess, task, and UI (see Figure 2). The process layer de-
fines the business process; each process can be consid-
ered as an independent building block connected to the
workflow. User tasks are covered by task models. This
layer focuses on user activities rather than processes.
By exploiting task models description, different solu-
tion scenarios can be modeled. Each scenario repre-
sents a particular sequence of actions to be performed.
Task models do not impose any particular implementa-
tion so that user tasks can be better analyzed without
implementation constraints; it is, even possible to ana-
lyze user activities. The third layer, the UI derived
from scenarios extracted from task models using a
transformational approach.

 As in a model-based approach all the components
are models [14], transformations between models and
relationships are described in terms of a meta-model.
Several relationships have been defined to explicit the
relationships between the domain model and the UI
model. The current UsiXML mappings were extended
by adding the mappings: Is Grafted On (when a task is
grafted on another one, even at run-time), Is Defined
By (when a task is defined by a userStereotype), and Is
Allocated To (when a task is allocated to some re-
source, that is assigned to a taskResource) [7]. Each
mapping model is also stored as mapping instances in
UsiXML.

Figure 2 Overview of Conceptual Mapping Model

2.2 Conception Criteria
Fulfilling a form and sending it for evaluation are

activities that can easily be consider either two inde-
pendent processes or one process composed of two
tasks, depending on the designer. When combining
workflow and task models the boundaries of each
model must be specified in order to avoid design mis-
takes. Designers should consider the following guide-
lines composed of a set of parameters to identify the

56

different layers of the model. In addition, we introduce
the life cycle of each component, important aspect to
provide a feedback, for instance, the process is not
started due to a lack of workers.

A workflow model is associated to the operational
and/or administrative objectives of organizations. It is
defined inside the same organization; the work is car-
rying out and is associated to the automation of a busi-
ness process. A process refers to the use of the same
group of resources in a continuous period of time, with
a specific ordering of tasks. The work is developed
within groups, among groups or by a group as a whole.
In addition, a process can be: primary (production),
secondary (support), or tertiary (managerial). Finally, a
task is performed in same place, by the same type of
resource, in the same period of time.

The Starting Criteria of each model represents the
event that triggers the execution of each component.
The workflow requires an initial analysis which identi-
fies the various processes, rules and associated control
data, defining an initial phase, specific ordering of
tasks. The process starts when an input (time, human
or message) triggers the execution of the process. Once
the task is defined, it could be initialized. To the Stop-
ping Criteria, i.e., when the component is assumed like
finished; a final evaluation is analyzed from a perspec-
tive based on the executions protocols/rules. The work-
flow arrives to a terminate phase or abort phase. When
the process is completed, aborted or terminated an out-
put can be sent indicating that the process terminates
its execution. Finally, the task is finished in a horizon-
tal form when the status is finish, cancel or fail; and in
a vertical form the action is considered as the atomic
leaf of the task model and cannot be further decom-
posed.

3. A Method to Generate the User Inter-

face of a Workflow Model

A framework not just to generate UIs automatically
but also to specify workflows and task models, inte-
grating the concepts that we propose in previous sec-
tion, is composed on the following steps: 1) define the
organizational units, 2) define the workflow, which in-
cludes process model, 3) define the task models, 4)
mapping model from task models to UIs.

The method proposed expands the current descrip-
tion of the User Interface Description Language
(UIDL) UsiXML [10] and introduces a higher level of
description, the workflow model. UsiXML is based on
the Cameleon Reference Framework [3], which defines
UI development steps for multi-context interactive ap-
plications.

The current steps are: Tasks & Concepts level de-
scribes the interactive system specifications in terms of
the user tasks to be carried out and the domain objects
of these tasks. An Abstract User Interface (AUI) ab-
stracts a Concrete User Interface (CUI) into a defini-
tion that is independent of any interaction modality
(such as graphical, vocal or tactile). A CUI abstracts a
Final User Interface (FUI) into a description inde-
pendent of any programming or mark-up language in
terms of Concrete Interaction Objects, layout, naviga-
tion, and behavior. A FUI refers to an actual UI ren-
dered either by interpretation (e.g., HTML) or by code
compilation (e.g., Java).

In order to pass from one step to another, some
transformational rules [9] are applied. The method pro-
posed here (see Figure 3) starts from the specification
of a workflow model, based in workflow patterns [15].
The result of such specification has two related results,
on the one hand the UI required to handle the work-
flow, i.e. the agenda, tasks operations, such as delega-
tion, jobs assignation. On the other hand the UIs of
each workflow task can be described using the ex-
tended version of the task model and then it can be
transformed into its correspondent UI, using the
UsiXML current approach. The main purpose of this
work is to develop a method for designing the UIs for a
workflow information system; for this reason is impor-
tant to consider usability guidelines [12] at design time
for the building or the evaluation of UIs in order to re-
spect cognitive and sensory-motor capabilities of users.
However, this is out of the scope of this paper.

Workflow Model Process
Model

Resource
Model

Task
Model

User
Stereotypes

Organizational
Unit

Jobs

Agenda

Transformation Engine

Agenda
UI

Task
UI

Resource
UI

Process
UI

Users
UI

Figure 3 Method building blocks.

4. Case Study: Workflow for Equipment
Management

In order to exemplify the above concepts (in par-
ticular the decomposition of a workflow into processes
which are, in turn, decomposed into tasks that are at-
tached to their UIs), a real-world case study is summa-

57

rized in this section. This case study has been fully im-
plemented with the model editors, all of them have be-
ing developed in Java 1.5 with Swing widget set. This
set has been selected because it offers more capabilities
to automatically generate UI code (here, Java code)
from internal representations (here a UsiXML file).
Case study. A funding agency provides organizations
with funds for buying laboratory equipment (e.g., elec-
tronic microscopes), hardware (e.g., graphic tablets)
and software (e.g., dedicated scientific applications) or
a combination of them (e.g., a special microscope with
dedicated software). The workflow goals are threefold:
(i) allow any organization manager to register to the
system and apply for equipment funding; (ii) insert any
equipment description and usage modalities once an
equipment has been funded and acquired; and (iii)
share the usage of acquired material by renting them.

Figure 4 Screenshot of the Workflow editor.

Step 1 – Building the workflow model. Figure 4 re-
produce the workflow editor where the workflow is
progressively decomposed into processes to end up
with tasks. Each workflow is hierarchically defined in
embedded rectangles, which could be expanded or re-
duced as the modeling process is progressing. Each last
level rectangle is then filled with a particular process,
which is decomposed into tasks (represented by
rounded rectangle with a label inside) connected by
arcs (represented by arrows). Starting states (repre-
sented by filled circles) and ending states (represented
by double circles) are added to complete each process.
Then arcs are augmented with the conditions imposed
to ensure a transition in the workflow. The first step is
to register to the system, after, is possible to request
new equipment. Once a document is filled, it is sent to
“waiting validation” state where an e-mail is automati-

cally sent to the workflow manager to check. Then,
each document could be validated (then accepted in the
workflow) or not (then rejected in the workflow or re-
turned to the initial state).

Step 2 – Building the task model. For each rounded
rectangle in Figure 4, a task model is designed for each
user to decompose her task into sub-tasks, to end up
with actions. For instance, Figure 5 reproduces the task
model associated to the task “Register a manager”,
which is particular instance of the rounded rectangle
for validation process. Temporal operators specify the
temporal constraints governing how information is
manipulated in the task. In Figure 5, registering a man-
ager consists in filling the form and in sending this
form for validation. Filling the form consists in provid-
ing all individual data in a concurrent manner (hence,
the ‘|||’ concurrency operator). The address is itself de-
composed in street and number, filled in any order.

Figure 5 Screenshot of the registration UI generated in

HTML.

Step 3 – Deriving the UI model and generating the
UI code. Once the task model is provided for each
task, a UI model is systematically derived by model-to-
model transformation as described in [10]. The expla-
nation of this transformation is beyond the scope of
this paper. In short, the decomposition of a task in sub-
tasks, their properties and the temporal operators are
exploited to generate a UI model. This is submitted in
turn to a model-to-code transformation. For instance,
Figure 6 reproduces the UI corresponding to the task
model of Figure 5 the first time a manager will register.
In this case, a Java/Swing UI is automatically gener-
ated. When this document is submitted for validation
through an extranet, a HTML version is generated in-
stead from the same model, except that the user name
and the password are not visible to the validation per-
son. The Java/Swing version is used for on-line regis-
tration while the HTML version is used for validation
through the extranet. When the person who is respon-
sible for validation connects to the extranet, the web

58

ble for validation connects to the extranet, the web
form is produced instead.

Figure 6 Screenshot of the registration UI generated in

Java/ Swing.

Step 4 – Running the workflow. Once the workflow
model and the task model have been produced with the
corresponding UIs, the workflow could be executed
thanks to a workflow execution engine. It interprets the
workflow specification written in UsiXML V1.8 in or-
der to produce workflow agenda for any actor having a
job in the workflow. For instance, Figure 7 reproduces a
list of pending tasks which have been automatically
generated from the workflow model: each time a task
has been carried out, a task instance is added in the
agenda of the person who is responsible for validation.

Step 5 – Running the workflow. Once the workflow
model and the task model have been produced with the
corresponding UIs, the workflow could be executed
thanks to a workflow execution engine. It interprets the
workflow specification written in UsiXML V1.8 in or-
der to produce workflow agenda for any actor having a
job in the workflow. For instance, Figure 7 reproduces a
list of pending tasks which have been automatically
generated from the workflow model: each time a task
has been carried out, a task instance is added in the
agenda of the person who is responsible for validation.
Each time one of these task instances is selected
(thanks to a highlighting bar in Figure 7), a particular
task could be triggered and completed, thus proceeding
the workflow to the next step for each instance. For in-
stance, each task will result in an acceptation or a re-
jection. Since the workflow defined the automated
sending of an e-mail, this represents an automatic task
which is ensured by the workflow engine, but not by
any other person. It is possible, though, to keep an ex-
plicit control over automated task by allowing them to
be confirmed or differed by the workflow manager.
This completes the full process.

Figure 7 Screenshot of the workflow being executed.

5. Related Work

 The control of workflow in organizations has been
addressed using several formalisms and notations such
as Petri Nets [17], Statecharts Diagrams [18,21] and
UML Activity Diagrams [5]. Currently, several models
and design methods [16,19,20] support the develop-
ment of complex workflow-based applications provid-
ing notations for describing rich business process in-
cluding tool support for designing. Testing and execut-
ing processes are also available [6,8] but only a few
have been addressed to the development of workflow-
based applications over the Web [2]. Similarly, not
many investigations are concerned with the automatic
derivation of UIs from workflow specifications [7].

All these approaches describe the use, in some way,
of tasks/goals to specify a process. However, none de-
fines the identification criteria to recognize the bounda-
ries between process and user task, which is essential
to the development of usable UIs. The lack of appro-
priate analysis of user tasks quite often leads to the im-
plementation of poor user interfaces [1,4]. Then, when
UI generation problem is addressed another model
should be considered; user’s task model. Task models
play an important role in UI design because they sup-
port the systematic representation of the user activity
as opposed to the system activity. Task models indicate
the logical activities that an application should sup-
ports to reach user’s goals [13].

6. Conclusion

 This paper has addressed the need for developing a
UI corresponding to a workflow model that is explic-
itly based on the organization business logics. So far,
the focus has been put mostly on the system function-
alities as opposed to the UI for accessing these func-
tionalities, which is the main contribution of this paper.
For this purpose, a conceptual modeling approach inte-
grates the following concept defined through a meta-
model: workflow, process, task, domain, job definition,
organizational structure, and resources. These concepts

59

along with their attributes have been integrated in
UsiXML V1.8, the last version available of UsiXML
today. A transformational approach has been followed
to progressively decompose the workflow model into
processes which are in turn decomposed into tasks.
These three models adhere to the principle of separa-
tion of concerns: any modification of a process (e.g., in
its structure or its temporal ordering while keeping the
same tasks) do not influence the task model. The rea-
soning also holds between the workflow and its under-
lying processes. In this way, it is possible to optimize
the workflow by modifying the underlying process, but
without affecting the involved tasks. A real-world case
study has been reported and summarized to demon-
strate the feasibility of this approach in an industrial
context.

Acknowledgments. We gratefully thank the support
from the SIMILAR network of excellence, supported
by the 6th Framework Program of the European Com-
mission, under contract FP6-IST1-2003-507609 (http://
www.similar.cc), the Alban program (www.program
alban.org) supported by European Commission, and
the CONACYT (www.conacyt.mx) program supported
by the Mexican government. All information regarding
UsiXML is accessible through http://www.usixml.org.
We thank the company DefiMedia
(www.defimedia.be) for the development of the editors
and the case study exemplified in this paper and for al-
lowing us to use them in the context of this research.

7. References

1. Bodart, F., Vanderdonckt, J. (1994). On the Problem of

Selecting Interaction Objects. Proc. of BCS Conf.
HCI’94 "People and Computers IX" (Glasgow, 23-26
August 1994), G. Cockton, S.W. Draper, G.R.S. Weir
(eds.). Cambridge University Press, Cambridge, pp.
163-178.

2. Brambilla, M., Ceri, S., Fraternali, P. Process Modeling
in Web Applications. ACM Transactions of Software
Engineering and Methodology, vol. 5, no. 4, 360-409,
2006.

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., and Vanderdonckt, J. (2003). A Unifying
Reference Framework for Multi-Target User Interfaces.
Interacting with Computers, vol. 15, no. 3, 289–308,
2003.

4. Dix, A., Finlay, J., Abowd, G., Beale, R. Human-
Computer Interaction. Prentice Hall; 3Rev Ed edition.
832 p.

5. Dumas, M. and ter Hofstede, A.: UML Activity Dia-
grams as a Workflow Specification Language. In M.
Gogolla and C. Kobryn, editors, Fourth International
Conference on the Unified Modeling Language (UML
2001), pp. 76-90, Toronto, Canada, 2001.

6. Esposito, D. Getting Started with Microsoft Windows
Workflow Foundation: A Developer Walkthrough. Sep-

tember 2005.
http://msdn.microsoft.com/winfx/reference/workflow

7. Guerrero, J., Vanderdonckt, J.Gonzalez, J.M.,
FlowiXML: a Step towards Designing Workflow Man-
agement Systems, Journal of Web Engineering, vol. 4,
no. 2, 2008, to appear.

8. IBM Lotus Workflow. http://www-306.ibm.com/ soft-
ware/lotus/

9. Limbourg, Q. (2004) Multi-Path Development of User
Interfaces. PhD-Thesis, Université catholique de Lou-
vain, Belgium.

10. Limbourg, Q., Vanderdonckt, J., UsiXML: A User Inter-
face Description Language Supporting Multiple Levels
of Independence, in Matera, M., Comai, S. (Eds.), «En-
gineering Advanced Web Applications», Rinton Press,
Paramus, 2004, pp. 325-338.

11. Mori, G., Paternò, F. and Santoro, C. CTTE: Support for
Developing and Analyzing Task Models for Interactive
Systems Design. IEEE Transactions on Software Engi-
neering, September 2002.

12. Palanque, P., Farenc, Ch., & Bastide, R. Embedding
Ergonomic Rules as Generic Requirements in a Formal
Development Process of Interactive Software. In Pro-
ceedings of IFIP TC 13 Conference on Human-
Computer Interaction INTERACT’99 (Edinburg, Scot-
land, 1-4 September 1999.

13. Paternò,F. Model-based design and evaluation of inter-
active applications. Applied Computing, Springer.
1999.

14. Puerta, A.R. A Model-Based Interface Development
Environment. IEEE Software 14, 4 (1997), pp. 41-47.

15. Russell, N., van der Aalst, W.M.P., ter Hofstede,
A.H.M. and Edmond, D. Workflow Resource Patterns.
In the 17th Conference on Advanced Information Sys-
tems Engineering (CAISE’05). Porto, Portugal. 13-17
June.

16. Stavness, N. and Schneider, K.: Supporting Flexible
Business Processes with a Progression Model. Work-
shop: Making Model-based UI Design Practical: Usable
and Open Methods and Tool, 2004.

17. van de Aalst, W.M.P.: The Application of Petri Nets to
Workflow Management. Journal of Circuits, Systems,
and Computers. Vol. 8, No. 1, February 1998, pp. 21-
66.

18. W3C: State Chart XML (SCXML): State Machine No-
tation for Control Abstraction 1.0. W3C Working Draft
5 July 2005. http://www.w3.org

19. White, S. Business processing modeling notation
(BPMN), version 1.0, http:// http://www.bpmn.org/

20. WfMC 2006. Workflow Management Coalition.
http://www.wfmc.org/

21. Wodtke, D., Weikum, G. A Formal Foundation for Dis-
tributed Workflow Execution Based on State Charts. In
Proc. of the 6th International Conference on Database
Theory (ICDT '97), Springer-Verlag, LNCS Series, p.
230-246, 1997.

60

