
U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 62

 ∗ * **

Today’s organization increasingly prompted to integrate their business processes and to automate the largest
portion possible of them. A common term used to reflect the automation of these processes and to ensure the
control over them is workflow. The Workflow Management Coalition [22] defines workflow as "the automation
of a business process, in whole or part, during which documents, information or tasks are passed from one
participant to another for action, according to a set of procedural rules". A possible automation of the business
process is the introduction of Information Systems (IS) to perform, control and define business process.

The challenges to have a method to support the development of an IS from
a workflow specification are considerable. Considering just the specification
of the required User Interfaces (UIs) for a workflow system UIs are needed, at
least, for:

1. . This UI allows the performance of the business
process, for instance, on an ecommerce system buy a book.

2. . This UI allows the specification of how resources
will be assigned to the different tasks they have to perform, either during
the design of the workflow system or in run-time, while the workflow is
executed.

*

**

Vol. 22 (NE-1), ENC Marzo 2012 63

U n i v e r s i d a d d e G u a n a j u a t o

3. . Managers can be benefit
to have a global overview on how the work is ex-
ecuted, for that purpose; they need a UI showing
how is the evolution of the workflow.

4. . This UI is assigned to each
resource in the organization indicating the list
of task they have to perform.

5. . Managers may want to know what
the current status of a process is, for that pur-
pose they need a UI showing the worklist of the
complete system.

Due to the large amount of existing workflow prod-
ucts, especially all the commercial software that are
equipped today with many different capabilities in-
cluding resources handling, we came to a point where
it is very difficult to compare these capabilities on a
common scheme. Fortunately, a collection of workflow
patterns has been identified that provide the basis
for an in-depth comparison of commercially available
workflow systems.Control-flow patterns [21] indicate
basic routing constructs of the process in a workflow,
such as: sequence, parallel split, synchronization and
exclusive choice. From a data perspective, there is a
series of characteristics that occur repeatedly in dif-
ferent workflow modeling paradigms. Workflow data
patterns [15] are aimed at capturing the various ways
in which data is represented and used in workflows.
Finally, Workflow resource patterns [16] correspond to
the manner in which tasks are allocated to resources,
that is any entity that is capable of achieving some
work unit. As we focus on resource allocation, work-
flow resource patterns present a relevant theoretical
foundation on how UIs can be implemented.

The goal of this paper is to associate a default UI
to the resources patterns each pattern [16] that will
result in a set of UI patterns for resource handling
in a workflow information system. The paper is or-
ganized as follows: next section reports related work,
the following section describes the methodology that
we used for creating workflow UI patterns (WUIP) that
are the cornerstone of this contribution. After that, we
explain how these WUIP could be then interpreted in
terms of a workflow information system. The section
afterwards exemplifies how to apply these WUIP on a
real-world case study with software developed for this
purpose. Finally, we present a conclusion of this work
and some future avenues.

When resources are modeled in workflow information
systems we can separate them in two categories: 1)
for simulation, i.e., resources are just numbers and
parameters for equations that will evaluate resources
performance [14]; 2) for execution, task execution is
simulated and resources are allocated to task from a
database [20]. However, from the workflow specified
on such a system and the way resources are assigned
there is no knowledge about how to implement an
information system for that workflow. Particularly,
what kind of User Interfaces (UI) needed to handle
those patterns.

The rationale for identifying these patterns
was the need to master the many ways accord-
ing which work can be distributed [16]. The
patterns are grouped into seven categories: cre-
ation patterns, push patterns, pull patterns, de-
tour patterns, auto-start patterns, visibility patterns,
and multiple resource patterns. The researchers
have developed a web site (http://www. work-
flowpatterns.com/patterns/resource/) that contains
descriptions and examples of these patterns, along
with supporting tool, papers and evaluations of how
workflow products support the patterns. However,
existing methods just described theoretically patterns
but they do not provide any knowledge or guidance
on how such patterns could be implemented in an
Information System (IS). For that purpose, we explore
a systematic manner to develop UIs for each workflow
resource pattern following its current definition [16],
then, we identify the interaction needed to manipulate
such pattern and express it into a task model. Relying
on UsiXML [[10]] method to derive UIs from task mod-
els a set of UIs patterns is obtained for the workflow
patterns. Even that several works have addressed
the specific need for modeling UI specifically for work-
flows, all of them adopting a model-based approach:
a workflow model [3], a progression model [18], and
an adapted model-driven engineering method based
on agile development [19]. The present work largely
contrasts with these approaches in that the essence
of what needs to be modeled in such systems is al-
ready captured in appropriate WUIP and in that the
resulting patterns, unlike PLML, are augmented by
the corresponding models.

So far, we have introduced a specification language
[3] to support a method [4][6] for the development of
UIs from workflow specifications. Another tool have
been developed to generate UIs for: agendas, work-
lists and workflow control, have been introduced in
[4][5][6][9]. However, resource allocation is still an
open issue, not just for us but also we are not aware
of a related work on this topic.

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 64

In order to structure the development life cycle of
a workflow UI, we are relying on FlowiXML [3], a
structured method for developing UIs of a workflow
information system that advocates the automation of
business processes according to a model-driven en-
gineering approach based on the requirements and
processes of the organization. The methodology is ap-
plicable in order: i) to integrate human and machines
based activities, in par-ticular those involving inter-
action with information technology applications and
tools; and ii) to identify how tasks are structured, who
perform them, what their relative order is, how they
are offered or assigned, how tasks are tracked.

In this section, only an overview of this method
is provided in order to pave the way for WUIPs in
the next section. For the complete definition of the
semantics and the syntax, we refer to [3] and to
www.usixml.org/index.php?mod=pages&id=40. The
un-derlying method is composed of four models: work-
flow, process, task, and organization. The workflow
model is recursively decomposed into processes which
are in turn decomposed into tasks. A process model
indicates the or-dering of business processes in time,
space, and resources. Each process gives rise to a
process model structured and ordered with process
operators. Process operators determine whether the
flow of work is sequential, parallel split, exclusive
choice or multiple choices, with the corresponding
merger operators, synchronization and simple merge.
A task model represents a decomposition of tasks into
sub-tasks linked with task relationships.

By exploiting task models description, different so-
lution scenarios can be modeled. Each scenario rep-
resents a particular sequence of actions to be per-
formed. Task models do not impose any particular
implementation so that user tasks can be better ana-
lyzed without implementation constraints; it is, even
possible to analyze user activities. Transformations
are applied in cascade through the workflow layers
using a mapping model. In order to support the
mapping between the layers, predefined relationships
were used: reification, decomposition, isExecutedIn,
etc. (for more details, see www.usixml.org). As in
any model-driven engineering approach, all the com-
ponents are models, transformations between mod-
els and relationships that are described in terms of
a meta-model, here a UML class diagram. When com-
bining workflow and task models, the boundaries of
each model must be specified with concept criteria in
order to avoid de-sign mistakes. Finally, UIs are de-
rived from scenarios extracted from task models using

a transformational approach. FlowiXML is compliant
with the Cameleon Reference Framework [1] for devel-
oping multi-target UIs, which is decomposed into four
steps:

1. (Computing Inde-
pendent Model in MDA): a model is provided for
the end user’s task, the domain of activity and,
if needed, the context of use (user, computing
platform, and environment).

2. (Platform
Independent Model in MDA): this level describes
UIs independently of any interaction modality
and any implementation.

3. (Platform
Specific Model in MDA): this level describes a po-
tential UI after a particular interaction modality
has been selected (e.g., graphical, vocal, multi-
modal). This step is supported by several tools
helping designers and developers to edit, build,
or sketch a user interface.

4. : this level is reached when
the UI code is produced by interpretation (e.g.,
by rendering) or compiled (e.g., by static code
generation).

After having defined the methodological context in the
previous section, this section will introduce, define,
and explore the original concept of Workflow User In-
terface Pattern (WUIP). Since the concept of patterns
has been introduced by Christopher Alexander, who
defined them in the architectural context, many at-
tempts have been made to document patterns thanks
to a pattern language and to gather them in a library.
The discipline of Human-Computer Interaction (HCI)
does not escape from this initiative. A pattern is re-
ferred to as ”the abstraction from a concrete form
which keeps recurring in specific non-arbitrary con-
texts" [13]. A design pattern systematically names,
motivates, and explains a general design that ad-
dresses a recurring design problem in object-oriented
systems [2]. A UI design pattern is a particular instan-
tiation of the pattern concepts in HCI. According to the
Pattern Language Markup Language (PLML), aimed at
defining a common format for UI patterns. A pattern is
typically characterized by: an identifier, a meaningful
short name, an alternate name (alias), a general de-
scription of the problem (synopsis), the solution, and
its consequences (strengths, weakness, opportunities,
and threads). It also gives implementation hints and
examples. Many interesting works have been achieved
that resulted into UI

Vol. 22 (NE-1), ENC Marzo 2012 65

U n i v e r s i d a d d e G u a n a j u a t o

pattern collections, most of
them expressed in PLML
(www.cs.kent.ac.uk/people/staff/saf/-
patterns/plml.html). In HCI, UIs have
been subject to the pattern-based
approach [17], but also other aspects
such as domain, task, dialog, and
abstract UI patterns have been con-
sidered successfully [12],[17].

A workflow pattern is another instan-
tiation of a general design pattern.
Workflow patterns refer specifically
to recurrent problems and proven
solutions related to the development
of workflow information systems
in particular, and more broadly, of
process-oriented applications. On
the one hand, several languages have
been proposed for designing, specify-
ing, and verifying workflow processes
and patterns, and on the other hand,
there are many commercial workflow
management systems where control-
flow and data-flow are well addressed,
but they all suffer from a lack in the
resource consideration and from a
whole regarding the UI aspects.

In any organization, resources are
brought and consumed in order to
achieve the tasks that are the orga-
nization’s responsibility. These re-
sources can be: human (e.g., person-
nel), material (e.g., hardware, printer)
or immaterial (e.g., network band-
width). A human resource has a spe-
cific position and privileges. In terms
of the organizational hierarchy, each
resource may have a number of spe-
cific relationships with the other re-
sources. Material or immaterial re-
sources may be durable or consum-
able in nature. Of a particular inter-
est from a resource perspective is the
manner in which tasks are advertised
to specific resources for execution. For
this purpose, it is necessary to con-
sider the task life cycle, which refers
to a series of states that a task goes
through and related transitions. The
task life cycle (Fig. 1) structures work-
flow patterns [15][16] into seven cate-
gories:

1. Represent all possible ways used for defin-
ing a task (define in Fig. 1) in a process. Defining a task consists
in specifying its goals, pre-condition, post-conditions, required
skills, and required resources. Once a task has been properly
defined, it can be effectively executed.

2. Represent all possible ways for making a task
ready to start (offer, allocate in Fig. 1). A task is said to be
started when the resource to which the task has been allocated
has initiated its execution. A task may be allocated to such a
resource, but starts later on. If this allocation is not straightfor-
ward, the task can be offered to a single resource or to multiple
resources. Once allocated, a task could be delegated to another
resource (e.g., due to unavailability). If the resource which dele-
gated the task wants to receive the results in return, the task is
then returned. Otherwise, it can start directly.

3. Represent all possible ways for starting a task
(start in Fig. 1) and finishing it (run, redo, finish, review, undo,
repeat in Fig. 1).

4. Represent all possible digressions from the
normal execution path. This may include the case when a task
is suspended and resumed, when a task is cancelled, or fails.
This may also include de-allocation (return to task created, task
offered or task allocated states).

5. Represent all possible ways to start the
task automatically after creation. This is particularly the case
for automated processes (e.g., batch files).

6. Represent all possible ways for configur-
ing the visibility of allocated task in a process. For instance, a
particular resource is responsible for execution a task, but its
progress should be made visible to others.

7. Represent all possible ways to
involve additional resources than the one initially allocated
(e.g., in case of overload).

 .

Model-based UI design [1],[11] is intended to assist designers in ob-
taining UIs with a formal method, preferably one that is computer-
supported; model-based tools have been investigated since the late

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 66

1980’s. The goal of these tools is to allow the designer
to specify the UI at a level of abstraction that is in-
dependent from any implementation. The specifica-
tion is usually shared between a set of components,
called models, each model representing a facet of the
interface characteristics. The number and type of the-
ses models is different from one approach to another.
The following methodology [5] for defining the WUIPs
is adopted:

1. From
each workflow resource pattern belonging to the
seven aforementioned categories, a WUIP is cre-
ated and consistently described through PLML
attributes. In addition to those attributes, we
also introduced the following fields that we be-
lieved that were missing from the version 1.1
of PLML: strengths, weaknesses, opportunities,
and threads (according to a SWOT analysis
that is missing because PLML only incorporates
forces), a category, an evidence scale (from 0=no
evidence supports the pattern to 5=two or more
experiments support the pattern), a taxonomy of
links between patterns (e.g., X uses Y in its solu-
tion, X is a variant of Pattern Y, X has a similar
problem as Y, X is related in the related patterns
section to Y, X specializes Y, X connects to Y),
bibliographic reference, domains of human ac-
tivity.

2.
 For each initial pattern definition
resulting from the previous step, a task model
has been specified using CTT notation [11] in
order to depict the pattern at design-time or at
run-time. For this purpose, new concepts have
been introduced in the semantics: new relation-
ships between tasks (e.g., a task is grafted on
another one means that a task is dynamically
added in the task model at a certain node), new
concepts (e.g., resource, process, and workflow),
and inter-model relationship to propagate modi-
fications between these concepts.

3. From the two task models result-
ing from the previous steps, abstract UIs and,
consequently, concrete UIs have been defined in
terms of the UIDL (here, UsiXML) so as to form
corresponding abstract and concrete UI models.
These two pairs of models have then been at-
tached to the current pattern definition to fi-
nally obtain a complete WUIP. Each aspect of
the abstract or concrete UI that tackles some
concept incorporated in the model-driven engi-
neering method can now be expressed in terms
of the UIDL.

Applying the above methodology resulted in 43
WUIPs. We give below only a snapshot of some of these
patterns for facilitating the understanding and for il-
lustration purpose.

Name: Direct allocation
Identifier: R-DA
Synopsis: The ability to specify at design

time the identity of the resource
that will execute a task.

Strengths: To prevent the problem of non-
suitable allocation.

Weakness: No opportunity to change the re-
source if he is not available to
perform the task.

Opportunities: To ensure task is routed to spe-
cific resource.

Problem: This pattern effectively defines a
static binding of tasks to a single
resource.

Solution: Probably the use of deadline and
escalation mechanisms when
the resource becomes overload
and cannot deal with his as-
signed workload in a reasonable
timeframe.

Example: "Ask reviewers preferences" task
must only be undertaken by
"Joshua Brown".

In figure 2 the task model for such slection and its
corresponding UI is presented.

 .

Vol. 22 (NE-1), ENC Marzo 2012 67

U n i v e r s i d a d d e G u a n a j u a t o

In order to support the application of
WUIPs, a special module has been de-
veloped in Java and incorporated in our
workflow model editor. This module enables
the designer, while modeling the general
workflow, to retrieve any WUIP from the
library, to configure it, and to automatically
incorporate it in the current model. There-
fore, instead of redefining the complete
pattern in terms of model elements found
in the model editor (the workflow is defined
by Petri nets), the application of a WUIP
automatically includes the corresponding
definition in the model and generates the
corresponding UsiXML files for the UI that
has been predefined for each WUIP and for
defining the workflow (being itself entirely
described in UsiXML).

The case study analyzes how people orga-
nize the program of small conferences by
using a review tool. To organize a conference
it is necessary identify the tasks, the jobs
and resources which are involved. These
tasks were assigned to each job taking into
account the role that each of them plays
in the workflow. The next table resume
the principal tasks and the job in charge of
develop them. Also, it is necessary specify
the resources that are available for doing
the work and where they are working, i.e.
the organizational unit. Author resources
are named as A-1, A-2, and A-3 because
we do not know who will be interested in
submit a paper.

Within the workflow editor, we can represent
with rectangles each organizational unit, i.e.
UL, Reviewer’s university, and Author’s uni-
versity. After, we can add the different jobs
and resources (workers) involve in the or-
ganizational conference. Also, we can have
other attributes for the resource (worker) as
the level of experience, hierarchy level. Also
we have a representation (small rectangles)
of each job assigned to each organizational
unit, at the same time, is possible to have
the number of resources (small dots with
a number) available for develop tasks. Af-
ter the identification of tasks, jobs, and re-
sources, it is possible to assign tasks to
resources applying the workflow resources
patterns.

This assignation was elaborated after the analysis of the char-
acteristics (qualifications, skills, abilities, experience, and hier-
archy level) of each resource and considering the requirements
of each task. For instance, Install conference tool task was as-
signed to Ellen Martin because she is engineering.

 .

 Job

1 Find the program committee. X
2 Prepare the call for paper. X
3 Distribute the call for paper. X
4 Install conference tool. X
5 Configure conference tool. X

This representation is also possible in the workflow editor. First,
we select the job and the type of workflow resource pattern, after
we select the resource (worker) that will develop the task.

 .

Task Job Resource Pattern
Find the program
committee

Organizer Chloé Lambin Direct allocation

Prepare the call
for paper

Organizer Jacques Khelil Capability based

Distribute the
call for paper

Organizer Jacques Khelil Retain familiar

Install confer-
ence tool

Organizer Ellen Martin Capability based

Configure con-
ference tool

Organizer Ellen Martin Retain familiar

In this case study, we show the workflow resource patterns that
can be used during the design phase of the workflow. As you
can see in the appendix there are some other workflow resource
patterns that apply only in the execution phase. Figure 3 shows
as small part of the workflow modeled with Petri net when the
pattern has been selected.

 .

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 68

This paper introduced a library of user interface de-
sign patterns that are particularly applicable to user
interfaces of workflow information systems. We have
proposed an approach where FlowiXML, a model-
based approach to develop user interface, is used
in the context of workflow systems to develop WUIPs.

We rely on a proved method to generate User Inter-
faces, UsiXML, passing from task model and abstract
user interface. We do not provide anything regarding
the workflow resource patterns. However, the exist-
ing literature guided us to define its corresponding UI
patterns. Each pattern can be selected in a workflow
model editor so as to automatically generate the spec-
ifications for both the workflow model (in this way, it
is no longer needed to redraw the definition of the pat-
tern in terms of places and transitions as it is needed
using Petri nets for modeling workflows) and the user
interface model (in this way, it is no longer needed to
specify again the UI supporting the workflow pattern).

We Acknowledge the Faculty of Computer Sciences of
the University of Puebla to support this research.

