

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 96–101, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards a Library of Workflow User Interface Patterns

Josefina Guerrero García1, Jean Vanderdonckt1, Juan Manuel González Calleros1,
and Marco Winckler1,2

1Université catholique de Louvain, Belgian Laboratory of Computer-Human Interaction,
Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium

2 IHCS-IRIT, Université Paul Sabatier, 118 route de Narbonne, Toulouse F-31062, France
{josefina.guerrero, juan.gonzalez}@student.uclouvain.be,

jean.vanderdonckt@uclouvain.be, winckler@irit.fr

Abstract. A collection of user interface design patterns for workflow informa-
tion systems is presented. Each Workflow User Interface Pattern (WUIP) is
characterized by properties expressed in the PLML markup language for ex-
pressing patterns and augmented by additional attributes and models attached to
the pattern: the abstract user interface and the corresponding task model. These
models are specified in a User Interface Description Language. All WUIPs are
stored in a library and can be retrieved within a workflow editor that links each
workflow pattern to its corresponding WUIP, thus giving rise to a user interface
for each workflow pattern. The software then gathers these UIs and the ones
corresponding to workflow tasks into a user interface flow, a new concept in-
troduced for specifying the intertwining of interfaces used by workers and the
workflow manager in a single workflow.

Keywords: design pattern, user interface description language, user interface
flow, workflow information system, workflow model editor, WUIP.

1 Introduction

Workflow is defined as the automation of business process. It allows better alignment
of Information Technology (IT) with business because organization applications can
be expressed in a way that makes sense to business users. Business users are the or-
ganization’s resources who are performing work, accomplishing business goals. As-
signing tasks to resources is complicated due to the different levels of skills they have,
for instance: experience or availability to do the task. To address the allocation prob-
lem, a collection of workflow resource patterns [9] has been identified that provide
the manner in which tasks are allocated or offered to resources. Generally a resource
needs an agenda to handle their tasks, and a manager needs to control the way tasks
are assigned and their progress. A Workflow Information System (WfIS) is a system
that defines, creates and manages the execution of workflows through the use of soft-
ware; the users of a WfIS interact with it through its user interfaces (UIs).

Developing UIs for WfIS represents new challenges today, not only for its diversity
but also because user interaction takes place in two different logical levels synchro-
nously. Interaction at the higher level means the manager specifying and designing the
system, for that purpose UIs for workflow resource patterns are needed; in addition,

 Towards a Library of Workflow User Interface Patterns 97

managers needs a UI monitoring workflow execution. Interaction at the lower level,
resources are carrying out (UIs are needed for the actual execution of tasks) their allo-
cated tasks (UIs with users agendas) whose current status is then communicated to the
manager.

This paper aims to define a library of UI patterns for WfIS addressing the afore-
mentioned challenges; the library is intended to represent the largest collection as
possible of UI design patterns that are applicable to workflow resources patterns in a
WfIS. The paper is organized as follows: Section 2 reports the state of the art, Section
3 describes the methodology for creating workflow UI patterns (WUIP), Section 4
explains how these WUIP could be then interpreted in terms of a WfIS. Section 5
presents how to link the UIs generated. Section 6 presents a conclusion of this work
and some future avenues.

2 State of the Art

A pattern is referred to as “the abstraction from a concrete form which keeps recur-
ring in specific non-arbitrary contexts” [8]. A design pattern systematically names,
motivates, and explains a general design that addresses a recurring design problem in
object-oriented systems [2]. A UI design pattern is a particular instantiation of the pat-
tern concepts in Human-Computer Interaction (HCI). According to the Pattern Lan-
guage Markup Language (PLML) that resulted from two ACM CHI workshops aimed
at defining a common format for UI patterns, a pattern is typically characterized by: a
meaningful short name, an alternate name (alias), a general description of the prob-
lem, and the solution. It also gives implementation hints and examples. Many interest-
ing works have been achieved that resulted in UI pattern collections
(www.cs.kent.ac.uk/people/staff/saf/patterns/plml.html). In HCI, UIs have been sub-
ject to the pattern-based approach [10], but also other aspects such as domain, task,
dialog, and abstract UI patterns have been considered successfully [7,10,14].

Workflow patterns refer specifically to recurrent problems and proven solutions re-
lated to the development of WfIS in particular, and more broadly, of process-oriented
applications. On the one hand, several languages have been proposed for designing,
specifying, and verifying workflow processes and patterns, and on the other hand,
there are many commercial workflow management systems where control-flow and
data-flow are well addressed. Workflow resource patterns have been identified that
capture the different manners in which resources are presented and used in workflows
[9]. The rationale for identifying these patterns was the need to master the many ways
according which work can be distributed. The researchers have developed a web site
(http://www. workflowpatterns.com/patterns/resource/) that contains descriptions and
examples of theses patterns, along with supporting tool (YAWL), papers and evalua-
tions of how workflow products support the patterns. However, not all considers
mechanisms for resource handling and they all lack from UI generation from work-
flow specifications.

In order to structure the development cycle of a workflow UI, we are relying on
FlowiXML [4], a structured method for developing UIs of a WfIS that advocates the
automation of business processes according to a model-driven engineering approach
based on the requirements and processes of the organization. Model-driven UI design
[1, 5, 6] is intended to assist designers to obtain UIs with a formal method, preferably

98 J. Guerrero García et al.

one that is computer-supported. Several works have addressed the specific need for
modeling UI for workflows [11, 12], all of them adopting a model-based approach but
none of them generating UIs.

3 Developing User Interfaces for Workflow Information Systems

The methodology is applicable: i) to integrate human and machines based activities,
in particular those involving interaction with IT applications and tools; and ii) to iden-
tify how tasks are structured, who perform them, what their relative order is, how they
are offered or assigned, how tasks are tracked.

In this section, only an overview of this method is provided, for the complete defi-
nition of the semantics and the syntax, we refer to [4, 13]. The underlying conceptual
model is composed of four models: workflow, process, task, and organization. The
workflow model is recursively decomposed into processes which are in turn decom-
posed into tasks. A process model indicates the ordering of processes in time, space,
and resources. Each process gives rise to a process model structured and ordered with
process operators. Process operators determine whether the flow of work is sequen-
tial, parallel split, exclusive choice or multiple choices, with the corresponding
merger operators, synchronization and simple merge. A task model represents a de-
composition of tasks into sub-tasks linked with task relationships. Transformations
are applied in cascade through the workflow layers using a mapping model. In order
to support the mapping between the layers, predefined relationships were used: reifi-
cation, decomposition, isExecutedIn, etc. [13].

By exploiting task models description, different solution scenarios can be modeled
[4]. Each scenario represents a particular sequence of actions to be performed. Task
models do not impose any particular implementation so that user tasks can be better
analyzed without implementation constraints; it is, even possible to analyze user ac-
tivities. Finally, the UI is derived from scenarios extracted from task models using a
transformational approach [3]. FlowiXML is compliant with the Cameleon Reference
Framework [1] for developing multi-target UIs.

4 Workflow User Interface Patterns

After having defined the methodological context in the previous section, this section
will introduce, define, and explore the original concept of Workflow User Interface
Pattern (WUIP).

We adopted the following methodology for defining the WUIPs:

1. Augmented UI pattern definition: from each workflow resource pattern a WUIP is
created and consistently described through PLML attributes. In addition to those
attributes, we also introduced the following fields that we believed that were miss-
ing from the version 1.1 of PLML: strengths, weaknesses, opportunities, and
threads (according to a SWOT analysis that is missing because PLML only incor-
porates forces), a category, an evidence scale (from 0=no evidence supports the
pattern to 5=two or more experiments support the pattern), a taxonomy of links be-
tween patterns (e.g., X uses Y in its solution, X is a variant of Pattern Y, X has a
similar problem as Y, X is related in the related patterns section to Y, X special-
izes Y, X connects to Y), bibliographic reference, domains of human activity.

 Towards a Library of Workflow User Interface Patterns 99

2. Incorporation in the model-driven engineering method: for each initial pattern
definition resulting from the previous step, a task model has been specified using
CTT notation [6]. This task model may serve as task patterns for WfIS like they
serve in related work [7, 14].

3. Final WUIPs: from the task model resulting from the previous steps, an abstract
UI and, consequently, a concrete UI have been defined in terms of the User Inter-
face Description Language (here, UsiXML) so as to form corresponding abstract
and concrete UI models. These two pairs of models have then been attached to the
current pattern definition to finally obtain a complete WUIP. Each aspect of the
abstract or concrete UI that tackles some concept incorporated in the model-driven
engineering method can now be expressed in terms of the expanded UIDL.

Applying the above methodology resulted in 43 WUIPs [3]. We give below only a
snapshot of some of these patterns for facilitating the understanding and for illustra-
tion purpose. Also, to support the application of the 43 WUIPs, a special module has
been developed in Java and incorporated in our workflow model editor, see Fig. 1.
This module B) enables the designer, while modeling the general workflow, to re-
trieve any WUIP from the library, to configure it, and to automatically incorporate it
in the current model. Therefore, instead of redefining the complete pattern in terms of
model elements found in the model editor (the workflow is defined by Petri nets), the
application of a WUIP automatically includes the corresponding definition in the
model and generates the corresponding UsiXML files for the UI that has been prede-
fined for each WUIP and for defining the workflow (being itself entirely described in
UsiXML).
Deferred allocation pattern – The ability to defer specifying the identity of the re-
source that will execute a task until runtime. Fig. 1 B reproduces how the pattern is
retrieved from the library at design-time and precisely defined in the workflow editor
(Fig, 1 A).

Fig. 1. Workflow resource pattern in design phase of workflow

B

A

100 J. Guerrero García et al.

5 Linking All User Interfaces

After having defined the UIs corresponding to the workflow patterns through the
WUIP mechanism, we still need to produce UIs corresponding to tasks found in the
process. These UIs can be produced by any appropriate method, such as [5, 6]. After
that, we need now to link all the UIs: the ones for the workflow management and the
ones for the workflow tasks. This will be achieved thanks to a new concept introduced
in this paper; the user Interface flow. During the execution of work, information
passes from one resource to another as tasks are finished or delegated; in our method
we use an agenda assigned to each resource to manage the tasks that are allo-
cated/offered to her/him, and a work list that allows to workflow manager views and
manages the tasks that are assigned to resources. By linking UIs we expect to solve
the problem of synchronizing the communication among them.

A User Interface Flow is defined as an octuple UIF (A, Σ, U, T, δ, ω, ai, ao) where
(Fig. 2 depicts it graphically):

 A is a nonnegative finite set of Abstract Containers (AC).
 Σ is a set of input events [set of events occurring in AC].

 U is a nonnegative set of user stereotypes, such that ∀ a ∈A: ∃ ! u ∈U † is

used by (a,u) [unique] or ∃ u1, u2… un ∈U † is used by {a, u1, u2… un} [a is
shared among u1, u2… un].

 T is a set of output transitions [output transitions means a navigation from start-
ing AC to a final one, we do not want to commit ourselves to a particular type or
representation].

 δ is a transition function, δ : A x Σ → A [a transition is AC + abstract event oc-
curring in one AC]

 ω is an output function, ω : A → T
 ai is the initial AC [ai ∈ A], ao is the final AC [ao ∈ A, ao ≠ ai]

Fig. 2. User interface flow

6 Conclusion

This paper introduced a library of user interface design patterns that are particularly ap-
plicable to user interfaces of workflow information systems. Each pattern is compatible

ao
ai

 Towards a Library of Workflow User Interface Patterns 101

with the literature and has been integrated in a workflow model editor. Designers are able
now to specificity resource allocation patterns using UIs that fits: both at design-time
(when everything is clear) and at run-time (when design decisions were postponed and
manager must decide how to allocate the task), considering constraints imposed by mu-
tually excluded patterns (for instance, once a task has been directed allocated it can not be
defined as deferred). Of course, these specifications can be edited before producing the
system code. The results of the modeling phase with respect to the UI viewpoint intro-
duces a the concept of user interface flow we have formally defined and illustrated
including how various users involved in the workflow will collaborate and their corre-
sponding user interface. Finally, from our previous work, we are benefit from its capabil-
ity to automatically generate UIs from specifications for both the workflow model (in this
way, it is no longer needed to redraw the definition of the pattern in terms of places and
transitions) and the user interface model (in this way, it is no longer needed to specify
again the UI supporting the workflow pattern).

References

1. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with Com-
puters 15(3), 289–308 (2003)

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1994)

3. Guerrero, J., Vanderdonckt, J.: Workflow user interfaces patterns. Working Paper IAG
08/08, Université catholique de Louvain, Louvain-la-Neuve (2008)

4. Guerrero, J., Vanderdonckt, J.: FlowiXML: a Step towards Designing Workflow Man-
agement Systems. Journal of Web Engineering 4(2) (2008)

5. Kristiansen, R., Trætteberg, H.: Model-Based User Interface Design in the Context of
Workflow Models. In: Proc. of Tamodia 2007, pp. 227–239. Springer, Berlin (2007)

6. Paternò, F.: Model-based design and evaluation of interactive applications. Applied Com-
puting. Springer, Berlin (1999)

7. Radeke, F., Forbrig, P., Seffah, A., Sinnig, D.: PIM Tool: Support for Pattern-Driven and
Model-Based UI Development. In: Proc. of Tamodia 2006, pp. 82–96. Springer, Heidel-
berg (2006)

8. Riehle, D., Züllighoven, H.: Understanding and Using Patterns in Software Development.
Theory and Practice of Object Systems 2(1), 3–13 (1996)

9. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow Re-
source Patterns: Identification, Representation and Tool Support. In: Pastor, Ó., Falcão e
Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Berlin (2005)

10. Seffah, A., Gaffar, A.: Model-based user interface engineering with design patterns. Jour-
nal of Systems and Software 80(8), 1408–1422 (2007)

11. Stavness, N., Schneider, K.A.: Supporting Flexible Business Processes with a Progression
Model. In: Proc. of MBUI 2004. CEUR Workshop, January 13, 2004, vol. 103 (2004)

12. Stolze, M.: Riand, Ph., Wallace, M., Heath, T.: Agile Development of Workflow Applica-
tions with Interpreted Task Models. In: Proc. of Tamodia 2007, pp. 2–14. Springer, Hei-
delberg (2007)

13. UsiXML, http://www.usixml.org
14. Wurdel, M., Forbrig, P., Radhakrishnan, T., Sinnig, D.: Patterns for Task- and Dialog-

Modeling. In: Proc. of HCI International 2007, vol. 1, pp. 1226–1235 (2007)

	Towards a Library of Workflow User Interface Patterns
	Introduction
	State of the Art
	Developing User Interfaces for Workflow Information Systems
	Workflow User Interface Patterns
	Linking All User Interfaces
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

