

 1

Transparent Migration
and Adaptation in a

Graphical User Inter-
face Toolkit

Donatien Grolaux

Thesis submitted in partial fulfillment of the requirements for
the Degree of Doctor in Applied Sciences

September 2007

Faculté des Sciences Appliquées
Département d'Ingénierie Informatique

Université catholique de Louvain
Louvain-la-Neuve

Belgium

Examination committee:
Peter Van Roy (Advisor) UCL/INGI, Belgium
Jean Vanderdonckt (Advisor) UCL/ISYS, Belgium
Marc Lobelle UCL/INGI, Belgium
Joëlle Coutaz Univ. Joseph Fourier, France
Seif Haridi Royal Institute of Technology, Sweden
Yves Deville (Chair) UCL/INGI, Belgium

 2

Transparent Migration and Adaptation in a
Graphical User Interface Toolkit
by Donatien Grolaux

© Donatien Grolaux, 2007
Computing Science and Engineering Department
Université catholique de Louvain
Place Sainte-Barbe, 2
1348 Louvain-la-Neuve
Belgium

 3

Acknowledgements

I would like to express my thanks to:

− My advisors, Jean Vanderdonckt and Professor Peter Van Roy, for their constant

support and enthusiasm regarding my work.

− Professors Joëlle Coutaz, Marc Lobelle, and Seif Haridi for accepting to participate to
the jury of this thesis.

− My colleagues from the Information Systems Unit (ISYS) from Louvain School of
Management (LSM) and the Dept. of Computing Sciences (INGI) of Université ca-
tholique de Louvain (UCL).

− My family and friends.

This thesis was realized thanks to the support of:

− The PIRATES research project (Methods and Tools for Dependable Transparent

Distributed Programming), Walloon Region of Belgium, Convention 9713540.

− The SELFMAN research project (Self Management for Large-Scale Distributed Sys-

tems based on Structured Overlay Networks and Components), European Sixth
Framework Programme, Priority 2, Information Society Technologies.

− The DESTINE research project (Design & Evaluation Studio For Intent-Based Er-
gonomic Web Sites), «WIST» Wallonie Information Science & Technology research
program (Walloon Region), under Convention n°315577.

− The SIMILAR network of excellence, the European research task force creating hu-
man-machine interfaces similar to human-human communication, supported by the
6th Framework Program of the European Commission, under contract FP6-IST1-
2003-507609 (www.similar.cc).

− The UsiXML Consortium, for User Interface eXtensible Markup Language
(www.usixml.org).

 4

Table of Contents
TABLE OF CONTENTS...4

TABLE OF FIGURES ..8

CHAPTER 1 INTRODUCTION & CONTRIBUTIONS10

1.1 Motivation: the challenge of developing user interfaces for ubiquitous
computing ...10

1.1.1 First dimension: variety of computing platforms..10
1.1.2 Second dimension: variety of locations ..11

1.2 Thesis...12
1.2.1 Thesis goal...12
1.2.2 The Mozart Programming System ..13
1.2.3 EBL..14
1.2.4 EBL/Tk example ...15
1.2.5 Implementation of the thesis statement ...18
1.2.6 Scope and limitations ..19

1.3 Road map...21

CHAPTER 2 STATE OF THE ART..23

2.1 Dynamic migration of running user interfaces .. 23
2.1.1 History of the migration of running user interfaces ...23
2.1.2 Current issues for DUIs..24

2.2 Dynamic adaptation of running user interfaces... 25
2.2.1 Challenges of context-sensitive user interfaces ...26
2.2.2 State of the art ..27
2.2.3 A general design space ..28
2.2.4 Representative examples of context - sensitivity...30

2.3 Definition of the design space...31
2.3.1 Number of devices in use ...31
2.3.2 Number of renderings per component...31

2.4 Previous personal work related to this thesis ..31
2.4.1 The Mozart Programming System ..32

CHAPTER 3 EBL GENERAL TOOLKIT DESIGN.....................................34

3.1 Hybrid declarative and imperative approach... 34

 5

3.1.1 Oz data structures ..35
3.1.2 Declarative semantics ..36

3.2 Geometry management .. 36
3.2.1 Absolute coordinate geometry ...38
3.2.2 Free rectangular splitting...38
3.2.3 Hierarchical containers..40

3.3 Combining object-oriented and model-based approaches........................ 43
3.3.1 Imperative object-oriented approach..44
3.3.2 Declarative approach...44
3.3.3 Hybrid approach ..45
3.3.4 Relation between the hybrid approach and adaptation ..46
3.3.5 Relation between the hybrid approach and MVC...48
3.3.6 Relation between the hybrid approach and Arch/Slinky.....................................49

CHAPTER 4 EBL DISTRIBUTED TOOLKIT DESIGN52

4.1 Migration and adaptation properties.. 52
4.1.1 Granularity of migration & adaptation ...52
4.1.2 Orthogonal migration & adaptation..53

4.2 Overview of the distributed structure of a widget...................................... 55
4.2.1 Fault tolerance ..56

4.3 EBL store.. 57
4.3.1 Simple multi-user functionality ..60
4.3.2 Event bindings ...61
4.3.3 Causality management of events..62
4.3.4 Functional core of the widget ..63

4.4 The receiving end of a migration ... 65
4.4.1 Container composition..65
4.4.2 Toplevel widgets ..66
4.4.3 Migration trigger...68

4.5 Adaptation .. 69

4.6 Low level network implementation independence71

4.7 Security issues..71

CHAPTER 5 IMPLEMENTATION..74

5.1 Distribution overview ... 74

5.2 Runtime architecture.. 75

5.3 Migration capabilities... 75

 6

5.3.1 Trajectory of a universal reference ..76
5.3.2 Discovery service ...77

5.4 Distributed widget architecture ... 78

5.5 Display site architecture overview.. 79

5.6 Low level network component ..81

5.7 Protocols ..81
5.7.1 Migration protocol...82
5.7.2 Adaptation protocol ..84
5.7.3 Single user and simple multi-user variations ..85
5.7.4 User event management..85
5.7.5 Stores ...86
5.7.6 Delegation protocols ...87

5.8 EBL toolkit binding recipes ... 88
5.8.1 Simple widget..88
5.8.2 Windowing information..92
5.8.3 Compound widget ...93
5.8.4 An item container widget..93
5.8.5 Container widget ..93
5.8.6 Toplevel widget ..94
5.8.7 Simple multi-user functionality ..94
5.8.8 Global resource ..95

CHAPTER 6 CASE STUDIES AND EVALUATION...................................97

6.1 Case study #1: A migratable clock ... 97
6.1.1 The clock as a stand-alone application ...98
6.1.2 The clock as a widget, v1 ..99
6.1.3 The clock as a widget, v2 ... 100
6.1.4 The clock as a widget, v3 ... 101
6.1.5 The clock as a widget, v4 ... 103

6.2 Case study #2: An adaptable clock ... 104
6.2.1 Adaptation example #1.. 105
6.2.2 Adaptation example #2.. 106
6.2.3 More adaptation examples... 109

6.3 Case study #3: An adaptable application.. 109

6.4 Case study #4: A multi-user application ... 112

6.5 Flexible & transparent migration: UniversalReceiver 115

6.6 Software engineering issues .. 119

 7

6.7 Performance... 120
6.7.1 Toolkit speed analysis... 120
6.7.2 Development cost of EBL/Tk ... 126
6.7.3 Development cost of applications using EBL/Tk... 127

6.8 Comparative analysis... 128
6.8.1 Places .. 128
6.8.2 Dynamicity of the distribution.. 128
6.8.3 Control.. 128
6.8.4 Reproduction ... 128
6.8.5 Users ... 129
6.8.6 Adaptation.. 129
6.8.7 Granularity level .. 129
6.8.8 Relation of the criteria with migration, adaptation, and multi-user functionality
 129
6.8.9 Comparison charts.. 129

CHAPTER 7 CONCLUSION..133

7.1 Summary of results .. 133
7.1.1 Contributions... 133

7.2 Future work.. 133
7.2.1 Hybrid approach ... 133
7.2.2 Tool extensions ... 134
7.2.3 Future exploration areas .. 135

7.3 Concluding remarks .. 135

REFERENCES ..136

ANNEX A: EBL REFERENCE ..143

ANNEX B: MOBICTIONARY SOURCE CODE ...155

 8

Table of Figures

Figure 1-1 Evolution of amount of computers in Ubiquitous Computing (source:

Gartner) ..10
Figure 1-2 Constraints of some current computing platforms (from [Pier04])11
Figure 1-3 Example of an adaptable application ...16
Figure 1-4 Example of a migrated UI ...17
Figure 1-5 Example of a migrated UI ...18
Figure 2-1. Adaptability of a widget presenting the user with a bounded value.................27
Figure 2-2. A design space for context awareness...29
Figure 2-3. Multiple presentation styles for a single user interface......................................30
Figure 2-4. A plastic user interface for network load (inspired from [Eise01]).30
Figure 2-5. Design space. ..31
Figure 3-1. Hello World example. ...34
Figure 3-2 Toolbars are movable entities ...37
Figure 3-3 Splitting the window into rectangular areas ..38
Figure 3-4 Non contiguous widgets ..39
Figure 3-5 Arbitrary shape ..39
Figure 3-6 Rectangular shape ...40
Figure 3-7 Nested tables ...40
Figure 3-8 Widgets inside cells ...41
Figure 3-9 Widgets border ..41
Figure 3-10 EBL geometry management example..42
Figure 3-11 EBL geometry management with grid structure example.43
Figure 3-12. A sample ETk application using object orientation. ..44
Figure 3-13. A sample ETk application using the hybrid approach.45
Figure 3-14. Arch/Slinky. ...50
Figure 4-1 Distributed architecture example..56
Figure 4-2 Extended design space ...61
Figure 4-3 Composition of UI by successive migrations ...66
Figure 4-4 Toplevel widget ...67
Figure 4-5 Adaptable widget definition example...69
Figure 4-6 Runtime adaptation example...70
Figure 5-1 General running architecture ..75
Figure 5-2 Universal reference trajectory ...76
Figure 5-3 Complex trajectory ...77
Figure 5-4 Widget architecture...78
Figure 5-5 Runtime environment architecture...80
Figure 5-6 Runtime environment architecture...81
Figure 5-7 Migration protocol..82
Figure 5-8 Adaptation protocol ...84
Figure 5-9 Events ordering...86
Figure 6-1 xclock..97
Figure 6-2 EBL clock ..98

 9

Figure 6-3 EBL clock ..99
Figure 6-4 Adaptable clock with calendar ... 109
Figure 6-5 Mobictionary scenario ... 112
Figure 6-6 The Mobictionary application .. 115

Chapter 1 Introduction & Contributions

 10

Chapter 1 Introduction & Con-
tributions

1.1 Motivation: the challenge of developing user interfaces
for ubiquitous computing

1.1.1 First dimension: variety of computing platforms

In Marc Weiser’s vision for ubiquitous computing [Weis91,93], the paradigms of one
computer for many users and of one personal computer per user will give way to the
paradigm of one user exposed to multiple computing platforms simultaneously. In this
paradigm, the trend is that the number of computing platforms is dramatically increasing
(Figure 1-1). So is the variety of these computing platforms that we define as “any com-
bination of hardware and software components on which the user interface will run”:
watch, mobile phone, smartphone, Personal Digital Assistant (PDA), PocketPC, Black-
berry, handbag PC, Internet Screenphone, tablet PC, laptop, desktop, wall screen,...

Unit Sales (per thousand)

0
100.000
200.000
300.000
400.000
500.000
600.000
700.000
800.000
900.000

1.000.000

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

Mobile Terminals
PC units

Figure 1-1 Evolution of amount of computers in Ubiquitous Computing (source: Gartner)

These computing platforms may differ in a large amount of factors such as, but not lim-
ited to [Chu04]: screen size (probably the most determining factor [Chae04]), screen reso-
lution, color palette, network bandwidth, battery, Central Processing Unit (CPU) power,
available memory, interaction devices (e.g., keypad, keyboard, mouse, stylus, trackball, la-
ser pointer), and interaction styles (e.g., form fill-in, direct manipulation [Shn83]). At a

Chapter 1 Introduction & Contributions

 11

given time, the capabilities of such computing platforms could be determined and from
there be taken into account in the User Interface (UI) development life cycle. Since fu-
ture computing platforms are unknown, it is impossible to predict their capabilities and
therefore to take them all into account. Even existing platforms continuously evolve over
time with more expanded capabilities: today, highly portable platforms (e.g., mobile
phones) suffer from more constrained capabilities as opposed to poorly portable plat-
forms (e.g., stationary desktops) which benefit from high-end capabilities. The current
trend [Pier04] reveals that the ratio between portability and capabilities is improving: ca-
pabilities of luggable platform will benefit from more powerful capabilities in the near fu-
ture (Figure 1-2).

Figure 1-2 Constraints of some current computing platforms (from [Pier04])

1.1.2 Second dimension: variety of locations

As electronic devices with interactive capability are getting pervasive in all aspects of our
modern life, we, the users, are getting more mobile. We still expect these devices to help
us achieve complex tasks, but the relations between the devices and the tasks they help
achieve are blurred. For example, email services used to be reserved to networked com-
puters only, while nowadays one could use his computer at home, his mobile phone on
the move, a handheld using a Wifi connection at an airport, or a WebTV at a friend’s
place. All these devices have different user interface capabilities: size of the display, pres-
ence of a mouse, a keyboard, voice synthesizes, voice recognition, and multi-modality in
general. So it’s quite natural to have different interaction mechanisms between these dif-
ferent devices. However as the task is the same, one would expect some help managing
these aspects so that we can use a single application for all devices instead of a different
one per device. The developer should focus on the functionality of the application, and
the tools deal with the dynamic aspect of taking a user interface away from a device and
put it onto another one: we call this the migration of the user interface. Also the tools
should deal with changing the user interface to better fit the change of context (charac-
terized by the device running the UI, the environment of the user, the user preferences...)
while keeping some level of usability: we call this the adaptation of the user interface.
Current technologies like Java and the Web offer very unsatisfactory solutions for this
problem. The email example is well known, because it is already part of our life. But one
could imagine that any computer application should also be able to follow the user when

Chapter 1 Introduction & Contributions

 12

he is moving from devices to devices, each time adapting itself to the underlying user in-
teraction capabilities. Basically we want to shift applications from a device centric
view, to a mobile user view. The application should be able to follow a user through
his mobility, offering him an adapted user interface on each device he is accessing. This
shift also introduces a new interesting way of collaboration where several users bring to-
gether their respective tasks into a single place (the screen of a single device), so as to
make global decisions. Also if the application is able to run its user interface on several
devices at the same time, which in turn are used by several users, then we also have a
multi-user collaboration mechanism.

There exist several technologies for displaying user interfaces to remote locations. [Vnc]
allows to remotely display and control the display of a computer. [X11] allows executing
an application on a computer and the GUI on another one. These mechanisms are inde-
pendent of the application which has no knowledge or effect on them. As a result, this
shortcoming prevents the application from adapting the user interface to the device it is
on. Also the application cannot react by itself to a change of environment, for example
to benefit from a device providing a new screen to display more information, or to re-
cover from the failure of the device currently displaying its GUI.

1.2 Thesis

1.2.1 Thesis goal

We argue that developing an application (in the sense of computer software that employs
the capabilities of a computer directly to a task that the user wishes to perform) with a
consistent, usable and adapted user interfaces for multiple platforms simultaneously is a
task that would benefit from:

G1. Application control. The control of the distribution of the user interface should be
given directly to the application in opposition to no control as is generally the
case with an external tool.

G2. Application feedback. Along with the control, the application should also be notified

of the distribution events, so as to take further action if necessary, like adaptation
of the UI. This feedback should be implemented by an event driven interface,
like all other UI events.

G3. Platform independence. The GUI should be implemented using an abstraction that is

constant for all platforms/environments. It is not the role of the developer of the
application to manage the specifics of each platforms, it is the role of the tools.
For example the tools should be able to render the same GUI differently accord-
ing to the interaction resources available, while maintaining a constant abstraction
at the application level. Working at this level of abstraction is very close to work-
ing with stationary non adaptable single user interfaces.

G4. Transparent migration. The tools dynamically manage the distributed aspect of run-

ning the user interface on several devices. In particular, a runtime migration is

Chapter 1 Introduction & Contributions

 13

managed by the tools while letting the application run concurrently uninter-
rupted. We call this property transparent migration. Note that the application is
stationary and stays at the place it was initially started; the migration is limited to
the UI.

G5. Transparent adaptation. The tools allows dynamically switching between alternate

renderings and/or interaction mechanisms for (parts of) the GUI. For example
the GUI is adapted to use interaction techniques well suited to the available inter-
action resources of the device it is migrated into. This is also executed while let-
ting the application run concurrently uninterrupted. We call this property trans-
parent adaptation.

G6. Adaptation repository. The tools can be further configured to support more plat-

forms/environments/adaptations. The tools act as repositories for new adapta-
tions of already existing UI. This property allows the reusability of the adapta-
tions.

Therefore, we will defend the following thesis:

The design and development of distributed user interfaces benefit from an ap-
proach that abstracts the migration and adaptation aspects away from the devel-
opment of the UI (1). This approach is supported by a tool that executes the dis-
tributed UI orthogonally to the concurrent execution of the application. In particu-
lar the UI is migratable and adaptable while the application is executed concur-
rently uninterrupted (2). We call the conjunction of (1) and (2) transparent migration
and adaptation. The application pilots the tool as needed for a migration or an ad-
aptation, and receives the feedback in an event driven fashion.

The contributions of this work are:

 Introducing the migration and adaptation at the graphical toolkit level as a bind-
ing between a programming language and an existing graphical toolkit.

 Creation of a dedicated construct that reduces the development cost of this bind-
ing.

 Using a capability based approach for the migration.
 Allowing the dynamic migration of the UI transparently from the execution of

the application.
 Using a configuration approach for the adaptation.
 Allowing the dynamic adaptation of the UI transparently from the execution of

the application.
 As a side effect, this work also introduces some multi-user aspects.

Section 2.4 details the published papers related to this work.

1.2.2 The Mozart Programming System

This thesis involves the development of a tool for supporting the distributed aspects of
the UIs. We used the Mozart Programming System [Moza] [Vanr04] for several reasons:

Chapter 1 Introduction & Contributions

 14

 For distribution, Mozart provides a true network transparent implementation

with support for network awareness, openness, and fault tolerance.

 Mozart is based on the Oz language, which supports declarative programming,

object-oriented programming, constraint programming, and concurrency as
part of a coherent whole.

This text is full of examples written for Mozart. Unfamiliar readers are advised to read
the Tutorial of Oz available at http://www.mozart-
oz.org/home/doc/tutorial/index.html. Note that examples are often directly executable
inside the programming interface of Mozart.

1.2.3 EBL

The tool developed to support this thesis is called Enhanced Binding Layer (EBL). EBL
is a middleware that must be interfaced to one (or more) actual graphical toolkit(s), and
results in a graphical toolkit for Mozart with support for migration and adaptation. In
particular a Tcl/Tk [Oust94] version has been created, named EBL/Tk (also known as
ETk), and is provided for Mozart [ETk]. This module is available for download at
http://gforge.info.ucl.ac.be/frs/?group_id=24.

• EBL/Tk presents itself as a Mozart binding for the Tcl/Tk toolkit. EBL/Tk re-
lies on the concept of widgets (an interface element that a computer user inter-
acts with) and supports those of Tcl/Tk. As Mozart and Tcl/Tk support many
different platforms (Windows, Linux, Max OS X, UNIX ...), their combination is
also multi-platform. This point implements G3.

• All widgets of EBL/Tk can be dynamically migrated from one place to another,
which can be on an entirely different device. Applications use the widgets inde-
pendently of their migration status, be they local, migrated, or currently migrat-
ing. In particular a runtime migration is managed by EBL/Tk independently of
the concurrent execution of the application. Also the distributed architecture of
the widgets is directly implemented by the site offering the widget and the site
displaying it, there is no dependency on an external infrastructure like a server.
This point implements G1 and G4.

• All widgets of EBL/Tk support alternate representations (or renderings). The
application can switch at any time between these representations. Applications
use the widgets independently of their representation state, even during a switch

EBL

Tcl/Tk

EBL/Tk
Mozart Application

Chapter 1 Introduction & Contributions

 15

between states. In particular a runtime adaptation is managed by EBL/Tk inde-
pendently of the concurrent execution of the application. This point implements
G1, G5, and G6.

• EBL/Tk is open to new widget definitions and/or alternate representations. This
point implements G6.

• EBL/Tk provides feedback using an event based mechanism. The feedback in-
cludes typical graphical toolkit events (mouse clicks, key typing) as well as events
related to the migration/adaptation of the UI. This point implements G2.

As a bonus, EBL/Tk also provides further interesting functionality not directly related to
the thesis statement above:

• EBL/Tk can be used in a purely imperative way using object-orientation, or by a
mixed declarative/imperative approach that simplifies the creation of windows.
The declarative approach relies heavily on the record data structure of Oz, which
has a tree-like symbolic structure.

• And lastly, EBL/Tk allows the migration of a component into more than one
device simultaneously, providing what we call a simple multi-user functionality.

The support for migration, adaptation, extensibility of widget definitions and/or repre-
sentations, mixed declarative/imperative approach, and multi-user functionality is pro-
vided by the EBL middleware and not by the external toolkit. EBL could be used with a
different toolkit than Tcl/Tk, and the resulting toolkit would also support this function-
ality:

 EBL is toolkit agnostic, there is no reference to an external toolkit like Tcl/Tk.
 EBL assumes very basic functionality of the low level toolkit it will be bound to:

creation and removal of widgets.
 Further support is provided by EBL if the low level toolkit also supports a grid

geometry manager.

Although we have not a proper implementation to support this claim, an EBL/Ajax im-
plementation has been envisioned by mixing the techniques El-Ansary and I developed
for QHTML [Elan04] along with EBL.

1.2.4 EBL/Tk example

To further fix the ideas, this section presents a simple example of a Mozart application
that uses EBL/Tk to create an application that is migratable and adaptable. This exam-
ple is a first illustration of what is possible thanks to the work developed in this
thesis.

Chapter 1 Introduction & Contributions

 16

Figure 1-3 Example of an adaptable application

The UI is composed of a widget that allows selecting between a radiobutton representa-
tion, a listbox representation or a dropdown menu representation. Each time the user se-
lects one of these items, the widget is adapted correspondingly.

UI={Build
 window(name:window
 selector(name:selector
 items:["Radiobuttons" "Listbox" "Menu"]
 curselection:1
 text:"Selector"
 action:proc{$}
 R={UI.selector get(curselection:$)}
 in
 {UI.selector
setContext((default#listbox#menu).R)}
 end))}
{UI.window show}

The code of this example is trivial: an Oz record defines the UI, and is given to the build
function of ETk. This function creates the whole UI, and returns an object for further
controlling its components. In this example, the Oz record is composed of a window in
which there is a single selector widget that allows selecting between three items. The fea-
tures of the window and the selector define different aspects of these widgets:

 Their name for future referencing as features of the object returned by the Build
function.

 The initial state of their parameters. For the selector widget, the items feature de-
fines the list of items to choose from, the curselection feature defines the item
currently selected, and the text feature defines the text displayed on top of the
widget.

 The code to execute in reaction to a user interaction. The action feature of the
selector widget is executed each time the user selects an item. This code gets the
index of the item currently selected, and adapts the widget correspondingly. This
is achieved by calling the setContext method with a value that is accepted by the
widget. In the case of a selector widget, the acceptable values are default for the
default radiobutton representation, listbox for the listbox representation, and
menu for the menu representation.

Finally windows are created hidden by default; a call to the show method of the window
is required to make it visible.

Independently of this adaptation functionality, any widget of the UI can be migrated to
another process possibly on a remote device.

Chapter 1 Introduction & Contributions

 17

Figure 1-4 Example of a migrated UI

In this example, the UI is migrated into another process on the same computer. To mi-
grate from the process on the left to the process on the right, they need to exchange a mi-
gration capability. A migration capability is a value that grants the right to pull the widget
into display, hence triggering its migration. Basically, the migration capability is a univer-
sal reference to the widget that allows contacting it over the Internet in order to trigger
its migration. In this example both sites run on the same computer so they can use the
local file system to share the capability by using a shared file (in general the capabilities
are exchanged through distributed discovery services). The left site saves the capability of
the selector to a file by using the Pickle.save procedure of Mozart:

{Pickle.save {UI.selector getRef($)} "selector.cap"}

The right site that receives the widget must 1) create a window in which to display the
widget, and 2) get the capability by using Pickle.load, and 3) pass it to the window:

UI2={Build window(name:window)}
{UI2.window show}
{UI2.window display({Pickle.load "selector.cap"})}

Figure 1-4 is the result of the execution of this code. The window on the left side is now
empty as its content has migrated away.

As the left side still has an access to the migration capability of the selector it can use it to
bring the widget back into place:

{UI.window display({UI.selector getRef($)})}

Figure 1-5 is the result of the execution of this code.

Chapter 1 Introduction & Contributions

 18

Figure 1-5 Example of a migrated UI

Note that the window on the right still exists: its content migrated away but the window
itself did not budge. To make this window disappear automatically in such situation, we
have to program it in an event driven fashion:

{UI2.window bind(event:lostWidget
 action:proc{$} {UI2.window destroy} end)}

The lostWidget event is triggered each time a container widget loses one of its displayed
widget. Here the configured action destroys the whole window in reaction to this event.

1.2.5 Implementation of the thesis statement

The example from 1.2.4 gives insight on how we implement a tool that covers the thesis
statement:

G1. Application control. The migration is based on a capability system. It is the respon-
sibility of the applications to exchange the capabilities for migration. The receiv-
ing end of a migration requires only the capability to trigger a migration. It does
not require sharing further knowledge with the host application. The adaptation
is based on a special configuration mechanism that changes the complete repre-
sentation of the widget. This mechanism is triggered by the application itself.

G2. Application feedback. Applications can be made aware of the migrations of the wid-

gets, using an event driven approach, like the lostWidget event of the example.
Also typical user events (mouse click, key down...) are relayed transparently to the
application. In particular the sites displaying remote widgets will not be made
aware of their user events.

G3. Platform independence. EBL/Tk is compatible with all platforms supported by Mo-

zart. It presents itself as a platform agnostic toolkit.

G4. Transparent migration. The migration process is orthogonal to the concurrent exe-

cution of the functional core of the application. In the example, there is no spe-
cial precaution taken by the application regarding the fact that the widget may be
local, migrated or in the process of migrating between two sites.

G5. Transparent adaptation. The adaptation process is orthogonal to the concurrent

execution of the functional core of the application. In the example, there is no
special precaution related to the current representation of the widget. Alternate

Chapter 1 Introduction & Contributions

 19

representations for a widget are independent of its application programming in-
terface; a single interface controls them all.

G6. Adaptation repository. The selector widget supports 3 representations for now; if

new ones become available it is trivial to extend the code of the example to sup-
port them. EBL/Tk act as a repository for these alternate representations. This
repository aspect is also found with the Comets [Calv05] however EBL does not
have all the introspection capability the Comets have.

1.2.5.a Benefits of this approach

This approach has several advantages:

(1) Advantages in terms of methodology: the approach is close enough to the classical

stationary/not adaptable one that the same methodology can often apply. In par-
ticular this approach supports an incremental methodology where the UI of an ap-
plication is first created as a classical single-user, single-device, non adaptative one,
and then migration and adaptation are introduced where the needs appear.

(2) Advantages in terms of reusability: once a new component or a new renderer has
been created, it can be reused.

(3) Advantages in terms of consistency: in a multiplatform context, it also guarantees a
minimal consistency between the UI generated for different target platforms. This
is not always possible when using traditional techniques where the development of
each version of the UI is likely to be performed separately.

(4) Advantages in terms of extensions: components are defined independently of the
applications, and in particular more renderers for the same component can be
added later. It is possible to program the applications so that they can use any
available renderer for its components: in that situation the application are able to
use the new renderers automatically.

(5) Advantages in terms of control: the application has the complete control over the
migration of its components, it can allow/disallow it as it sees fit. Also, the actual
decision of what renderer should be used at a specific time is let to the application.
The tool supports all the inner mechanism of adapting the component, but it is the
application that takes the decision.

1.2.6 Scope and limitations

 The scope of this work is limited to Graphical User Interfaces (hereafter GUI) of
the WIMP type (Window, Icon, Menu, Pointing device). These are the standard
interface to most information systems, are familiar to the majority of users, and
are available on almost every platform. Hence, we do not consider non visual,
multimodal or 3D user interfaces. Note that the approach is probably reasonably
adaptable to multimodality, but we did no research to confirm or infirm this as-
sertion.

Chapter 1 Introduction & Contributions

 20

 The target audience of this thesis is, on the one hand, the HCI research commu-
nity and, on the other hand, the distributed computing community.

 The question of how to produce usable distributed interfaces represents an im-
portant research question which is beyond the scope of this thesis.

 There exist different levels of abstraction for the programming of a GUI;

o Low level direct access to the hardware (keyboard, mouse, GPU...). This
level is strongly tied to a particular piece of hardware, and not portable to
another one. Also there is no notion of WIMP interfaces.

o Driver level: at this level the low level communication with the hardware
is abstracted in a driver with a standardized application programming in-
terface (API). This level is strongly tied to a particular API typically de-
fined by the underlying operating system (OS)/window manager pair, and
typically not portable to another OS. Also there is still no notion of
WIMP interfaces.

o Imperative toolkit level: this level introduces the notion of WIMP inter-
faces as imperative commands. The toolkit introduces its own API which
is not directly tied to an OS/window manager pair; some toolkits run on
multiple OS.

o Model based approach (MBA): this level introduces the notion of models
that grasp separate aspects of the user interaction: the dialog model (how
users can interact with the objects presentation (as push buttons, com-
mands, etc), with interaction media (as voice input, touch screen, etc) and
the reactions that the user interface communicates via these objects), the
task model (describes the tasks the end user performs), the navigation
model (defines how the objects that a user view could be navigated
through the UI), the user model (represents the different characteristics
of the end user), the platform model (describes the physical devices that
host the application) and so on. These models are typically expressed us-
ing XML. Most of the time, models are purely declarative data structures,
however they can also be Turing complete. Runnable MBA UIs require a
runtime tool that dynamically interprets the different models into a physi-
cal UI, by using an imperative toolkit.

Several other works in this field of research (Comets [Dâas03, Calv04, Calv05,
Deme06a, Deme06b], UsiXML [Limb04a, Moli05]) implements adaptation by using
a model based approach to have a high-level specification of the UI at runtime
whose interpretation vary according to the platform it is running on. However in
this work we decided to introduce the migration and adaptation at the toolkit
level instead. We argue that these approaches are complementary. Any tool pro-
viding migration and/or adaptation will need some code running at the display
platform to render the actual components of the user interface. When a model
based approach provides an executable runtime environment, these lines of code
still have to exist. This thesis provides a repository specially designed for conven-
iently storing them. A model based approach can greatly benefit from this work

Chapter 1 Introduction & Contributions

 21

by having all the complex and technical aspects of actually migrating/adapting
components already solved, and only focus on the general problem of interpret-
ing the models.

 In our approach, the control of the adaptation is let to the application, there is no
external meta-UI provided for this task. The idea is that the application should
implement a small oracle that decides what renderer to use according to con-
straints relevant to the application. Note that it is also possible to create a com-
ponent that embeds its own oracle so that it adapts itself automatically without
further instruction from the application.

The oracle can take several parameters into consideration:
 Decrease of the screen resolution and size: this parameter has a strong influence on

the structure and presentation of the user interface. Sometimes, even with a
similar screen size, the available screen area may be more constrained when a
part of the display is used for other purposes (e.g. virtual keyboard).

 Increase of the minimal size of graphical objects and the minimal spacing between them: on
some platforms, the objects included in the interface are to be larger or more
distant (e.g; touch screen interfaces).

 Decrease of the number of available widgets: not all toolkits are available on every
platform. Furthermore, some platforms have reduced versions of the toolkit
or simplified versions of the mark-up language.

 Decrease of the usability of available widgets: the usability of a given widget may
vary from one platform to another, for example because of the absence of a
keyboard on some platforms.

Other parameters such as the network capacity, the support of frames, images or
colors, the presence and the type of pointing devices and keyboard, the storage
capacity or the CPU speed can also be taken into account.

1.3 Road map

Following this introductory chapter, chapter two provides the state-of-the-art pertinent
to this thesis.

Chapter 3 addresses the requirements of the problem from a graphical user interface
toolkit perspective. EBL advocates the approach formerly introduced by QTk [Grol01a]
to use a hybrid declarative/imperative approach to GUI programming. First we intro-
duce this approach and the Oz data structure we rely on (3.1). Next is a justification of
the geometry management in the context of migratable UI (3.2). Lastly, we discuss how
we can mix object-orientation and model-based programming together thanks to EBL
(3.3).

Chapter 4 addresses the requirements of the problem from a distributed graphical user
interface toolkit perspective. First we introduce migration and adaptation as useful and

Chapter 1 Introduction & Contributions

 22

conservative extensions of the classical imperative toolkit paradigm (4.1). Then we pre-
sent the general distributed structure of a widget (4.2), we introduce the EBL Store con-
struct which implements the whole migration, adaptation and limited multi-user func-
tionality (4.3), we address the receiving end of a migration (4.4), we focus on the adapta-
tion mechanism (4.5), and finally we address distributed aspects also related to this thesis:
the low level network implementation (4.6) and the security issues (4.7).

Chapter 5 details the architecture of the implemented solution so as to give the reader a
good understanding on the inner working of EBL: a distribution overview (5.1), the run-
time architecture (5.2), the migration capabilities (5.3), the distributed widget architecture
(5.4), the display site architecture (5.5), the low level network component (5.6), the most
important protocols (5.7), and finally the way EBL is interfaced to an actual toolkit is
presented as a set of recipes (5.8). This chapter is focused on the "how" of the problem.

Chapter 6 presents different case studies exemplifying important aspects of EBL: the im-
plementation of a migratable widget, and the usage of this functionality (6.1), the imple-
mentation of an adaptable widget, and the usage of this functionality (6.2), the implemen-
tation of an application that is adaptable for a PC and for a PDA (6.3), and the analysis of
a multi-user application (6.4). Also this chapter further showcases the flexibility of the
transparent migration (6.5), details security considerations relevant to using a distributed
toolkit (6.6), analyses the performance of the tool (6.7), and finally compare this tool with
other existing tools (6.8)

Finally Chapter 7 concludes this thesis, with a summary of results and contributions (7.1),
future work in prospect (7.2), and final concluding remarks (7.3).

Chapter 2 State of the Art

 23

Chapter 2 State of the Art

This chapter places this thesis in context of the state of the Art. Also, this work is placed
in the context of the evolution of the graphical toolkit bindings for Mozart.

2.1 Dynamic migration of running user interfaces

Distributed User Interfaces (DUIs) [Berti05, Deme05, Luyt05] apply the notion of distrib-
uting parts or whole of a user interface (UI) across several places or locations like Dis-
tributed Systems [Li03] do for general software.

2.1.1 History of the migration of running user interfaces

The first steps that have been made towards moving UIs between screens were achieved
by virtual window managers capable of remotely accessing an application over the net-
work, such as X-Windows X11 remote displays [X11], Virtual Network Computing [Vnc],
and Windows Terminal Server [Wts]. It is possible to launch an interactive application lo-
cally, but to transfer the UI input/output to another workstation. These solutions are
controlled by the underlying operating system with a service that is independent of the
interactive application. These solutions suffer from the following drawbacks: the UI can-
not control its own transfer since it is independent from the service, there is no adapta-
tion to the target platform, the UI cannot be dissociated, and some of them rely on a cli-
ent/server solution (a server that has nothing to do with the interactive application is re-
quired to run the solution ; if the server disappears, the interactive application also disap-
pears).

Pioneering work in migration has been done by Bharat & Cardelli [Bahr95]: their migra-
tory applications are able to move from one platform to another one at run-time, pro-
vided that the operating system remains the same. This is probably the first truly migrat-
ing application; however the migration granularity is restrictive as it is not possible to
benefit from devices closely situated by splitting the UI between them. The situation is
similar for multi-user applications when an application should be transferred to another
user as in [Dewa00]. In The Migration Project [Band03], only the UI is migrated, in part or in
whole, from one computing platform to another. At run-time, the user can choose the
platform where to migrate. But only web pages are migrated between platforms (thus the
example toolbar can be run), a migration server is required and all the various UIs for the
different platforms are pre-computed.
Remote Commander [Myer04] is an application that supports all keyboard and mouse func-
tions and displays screen images on the handheld PC, so it can serve as a host for our ex-
ample’s toolbars, but the handheld PC is the only platform capable of welcoming the
controls. It is not possible to decompose or recompose UI parts, the portion that is mi-
grated needs to be predefined.
The Pick & Drop interaction paradigm [Reki97] supports migration of information be-
tween platforms, like other interaction techniques and migration environments such as i-

Chapter 2 State of the Art

 24

Land [Stre99], Stanford Interactive Mural [Guim01], Aura [Sous02], ConnecTables [Tand01]. But
these solutions do not support the properties of migrating only part of the user interface,
the flexibility of attaching together any user interface, and adapting it to the target plat-
form. In addition, all the platforms should belong to the same family of devices, operat-
ing systems and software, which is rarely the case when people meet or for a single per-
son. For instance, the Stanford Interactive Mural enables user to freely move windows
from one screen to another, the screens being displayed on walls, side by side or not, but
the whole configuration is predefined and described in a topology model that does not
accommodate entries and leavings of different platforms.
I-AM [Cout00,Cout03b] exhibits the capabilities of platform discovery and resources shar-
ing between compatible platforms. A meta-UI [Cout03b] is defined to control the migra-
tion process [Cout03a] across various platforms and in varying circumstances, thus releas-
ing the user from having a predefined configuration. I-AM is mainly resource centric: the
focus is on merging physical resources together, creating a bigger virtual resource for the
application to run on. For example with I-AM, an application can spawn on several de-
vices with a single mouse cursor for all the devices. We use a different approach that is
application centric: the EBL applications migrate their UI into other EBL applications,
possibly adapting them on the fly. The physical resources that run these applications stay
separate contrarily to I-AM; for example each one of them have their own independent
mouse cursor. Also there is no meta-UI for controlling the adaptation and the migration;
the EBL application has the complete control over these aspects and should provide a UI
suited for the task. Finally the EBL enabled applications contain the entire infrastructure
required for migrating UIs, there is no dependency over an external component like a
dedicated server. All devices that run EBL applications can be used for UI migration.
EBL applications are written for the Mozart Programming System which is available for
Windows, Mac OS/X and many flavors of Unix/Linux.
The INDIGO project [Blanch05a, Blanch05b] also proposes an architecture for running
distributed UIs. Interestingly, their approach share a basic similarity with EBL: each UI
component is split into a logical part for the application and a physical part for the end-
user. Beyond this similarity, the techniques used are very different: the INDIGO project
uses model-based techniques where both parts share a common model pertinent to the
UI component, and the parts interact by making the model evolve over time. The physi-
cal part is obtained by transformation of this model. EBL does not use a model based
approach, instead it provides a dedicated data structure along with specialized functional-
ity that facilitates the extension of any existing graphical toolkit to support adaptation
and migration (limited to the Mozart Programming System). Also EBL provides a com-
plete control over migration and adaptation to the application itself, while INDIGO is
limited to running a UI remotely: once the UI is created, it stays were it is; there is no dy-
namic migration or adaptation.

2.1.2 Current issues for DUIs

In studying DUIs, [Moli06b] has identified two main classes of problems: an ontological
confusion about the various concepts and associated definitions expressing how and ac-
cording to what to distribute a given UI; a practical problem of experimenting a DUI at
early design time before developing it completely. The first class of problems is moti-
vated by observing that the several recent advances in DUIs do not necessarily rely on
the same concepts of distribution and, when it is the case, the definition and/or the axes

Chapter 2 State of the Art

 25

according to which the distribution may take place largely vary from one research to an-
other. Although significant efforts exist to shed some light in this area and to structure
DUI design issues, mainly in [Berti05,Deme05], the relationship between these design is-
sues and their corresponding physical configurations are not always straightforward to es-
tablish. The second class of problems poses even more challenges because developing
DUIs require a sophisticated architecture, and due to that level of sophistication it not
surprising that DUIs are slow to obtain, expensive to produce, and probably equally
complex to use. The aforementioned observations show that designing a DUI remains a
complex problem which may prevent designers from exploring design issues because of
their associated cost. If the development cost of several DUIs is too high with respect to
the benefit of exploring different design issues and physical configurations for distribu-
tion, it is likely that this exploration will be abandoned soon due to lack of flexibility. In
addition, the usability issues raised by distributing a UI across one or several dimensions
[Grud01,Tan03a] are serious and could be hard to uncover before a really usable solution
is found.

To overcome these difficulties, this thesis extends a graphical toolkit so that all its com-
ponents automatically support dynamic migration:

• All components of the user interface receive the migration ability.
• This ability is expressed as a capability, which is a value.
• This value can be obtained by the creator of the component, which can pass it

along to another device/process/component, using any means (web server,
SOAP, FTP, email ...). As capabilities are just values (hence are stateless), they
can be passed along by anyone that knows it.

• Some components have the capability to migrate others into themselves. Typi-
cally the table component can migrate any other widget in the different cells it
has. The placement of the inner components (hence their migration into this
one), is triggered by giving their migration capabilities.

• Note that container components are themselves components; as such they also
have the migration capabilities. A site that uses such capability to migrate the
container will also migrate the content of the container along.

Consequently, it is up to the application to define the discovery and negotiation aspects
of the capabilities. This approach allows the rapid development of prototype applica-
tions, as advocated by [Moli06b]. In particular, in our approach the runtime architecture
required to run DUIs is embedded directly in the tool, and does not require an extra ex-
ternal architecture. The application that has created a migrated UI acts as the
server for this UI, while the application currently displaying this UI acts as a cli-
ent.

2.2 Dynamic adaptation of running user interfaces

Nowadays application users are often immersed in a constantly evolving environment
where there is no longer an ability to predefine all possible configurations and conditions
of the context of use. For instance, corporate environments, which are prompted to ad-
dress the challenges of market internalization, have to create, introduce, and expand
strategies to maintain or to improve their market position. For this purpose, they tend to

Chapter 2 State of the Art

 26

switch from a business logic, where tasks are planned in a predefined way and their re-
sults are observed afterwards, to a dynamic and anticipative strategy that enables them to
react to unpredicted contextual events as quick as possible. Moreover, users of such in-
teractive applications supporting the activities of these organizations become more mo-
bile. In order to react to those contextual events, they move with different computing
platforms, ranging from a laptop or pocket computer to a Personal Digital Assistant
(PDA); or they move from one computing platform to another, thus causing multiple
opportunities for changing the conditions of the context of use. At runtime, the context
of use may dynamically change: the computing platform may differ widely, the network
bandwidth may decrease, the interaction and display capabilities may be reduced, the user
may assume a new role in an ever-changing organization structure, the task may evolve,
etc. Those changes have created a need for new user interfaces (UIs), that continue to
support users in accomplishing their tasks while the context evolves in time, space, and
resources. When the context of use changes, a particular UI may suggest a reconfiguration,
that is an adaptation of its presentation and/or dialog to fit the new context of use. We
characterize such Context-Sensitive User Interfaces (CSUIs) by first reporting on some chal-
lenges posed by this new type of user interface. We introduce a design space specifying
the contextual changing parameters that need to be reflected in a CSUI in some way to
continue to support users in their interactive tasks while the environment is changing.
We provide some representative examples of CSUI based on the design space.

2.2.1 Challenges of context-sensitive user interfaces

Developing CSUIs poses a series of challenges that still need to be solved due to several
shortcomings:
♦ Limited specification of context: specifying the circumstances in which a wide range of

varying contexts may occur and turning this information into precise design require-
ments of UI configurations (i.e. layout and dialog) constitutes a challenging problem.
Although that problem has been addressed [Thev99, Cal00, Crea01, Dey03, Eise03,
Puer99, Szek95], it seems that there is neither common representation nor widely ac-
cepted technique on how to capture knowledge of these variations so as to exploit
them easily and consistently at runtime. Sometimes, not all possible configurations of
the context of use can be identified at the design time: rather, they are known at run-
time. If these configurations are not supported, the user’s task may be definitely in-
terrupted.

♦ Questionable usability: a fixed UI may be considered usable in some expected contexts
of use, where a given set of constraints is met [Eise00]. These inflexible UIs tend to
rapidly become inappropriate or unusable when the context of use changes, thus
leading to a questionable usability. It is therefore crucial to take the changing context
into account while keeping a minimal usability.

♦ Tremendous development effort: CSUIs are traditionally developed through classical pro-
gramming environments, such as Basic, C++, or Java [Szek96]. In these environ-
ments, developing a CSUI typically involves designing the various configurations cor-
responding to the multiple contexts of use. Any change of this context is then re-
flected in a configuration change. Programming a dynamically reconfigurable UI re-
mains a very complex task. A layout reconfiguration depending on a user change
might be reasonably complex to specify, but may require hundreds lines of code to
be supported. Not only may this activity increase the user interface code portion, but

Chapter 2 State of the Art

 27

also require a dedicated software architecture receiving contextual information thanks
to context-aware widgets [Crea01].

♦ Increased testing and maintenance efforts: as layout and dialog are often intertwined in a
traditionally developed CSUI, the testing and the maintenance of configurations deal-
ing with layout and/or dialog can become painful and unstructured. In particular, in-
serting a new configuration into an existing set of configurations may undesirably af-
fect several portions of code, thus lengthening the maintenance period. The devel-
opment and maintenance efforts are easily duplicated for cross-platform user inter-
faces, while potentially reducing consistency [Vand05a].

2.2.2 State of the art

For years, there has been much interest in the adaptation of UIs as there is today a core
of extensive research and development of the two facets of adaptation
[Hart93,Puer99,Szek96]:
♦ Adaptivity: when the system executes the adaptation for the user. For example, the

system displays different levels of help depending on the type and frequency of errors
made by a user.

♦ Adaptability: when the user executes the adaptation. For example, a user personalizes
a UI according to selected preferences as in Figure 2-1.

Figure 2-1. Adaptability of a widget presenting the user with a bounded value.

Adaptation expresses some UI change according to possible types of variation, the most
frequently used being, with respect to the user’s characteristics, the user preferences, per-
formance, the number of errors, the previous interaction history, and the possible dis-
abilities in case of users with special needs. The ultimate goal of adaptation is to em-
power any user with a UI that is uniquely customized according to his or her particular
needs so as to create a UI with maximal usability [Dey03, Thev99]. Since this usability
highly depends on the context of use, any change of this context may no longer preserve
the expected quality level of usability. Therefore, context-sensitivity is intended to con-
stantly perform some adaptation to increase or at least to maintain this level of usability
while the context of use is changing [Crea00]. The availability or the lock of resources re-
quired for human-computer interaction should be taken into account when adapting a
given UI.
Context-sensitivity subsumes many interesting forms that can be considered in isolation.
One significant form of context-sensitivity is that of plasticity [Calv00, Calv01, Calv02,
Thev99]: a plastic UI is a particular UI type sensitive to any variation of the computing
platform and/or the environment that preserves some level of usability. This environ-
ment encompasses physical aspects (e.g., noise and light conditions), software/hardware
constraints (e.g. screen resolution, network bandwidth), and social positions (e.g., organi-

Chapter 2 State of the Art

 28

zation structure, task allocation and role definition). A need clearly appears for consoli-
dating various experiences and approaches that have been undertaken under the umbrella
of adaptive, adaptable, plastic, and reconfigurable UIs, that is a CSUI.

2.2.3 A general design space

To represent the types of variation that can be theoretically considered in context-
sensitivity, Figure 2-2 depicts a design space expanding a design space for adaptation
[Hart93] and another for plasticity [Thev99]. This design space is presented like an action-
reaction process: its upper part describes what type(s) of context variation may cause the
reconfigurability (the action), while the bottom part describes what type of reconfigura-
bility is undertaken as a reaction to the change of context.

• Along the “With respect to what?” axis, context-sensitivity is concerned with the
types of context variations raising the need for reconfiguring a UI [Dey03]. Classi-
cally, model-based approaches are used to model these types of variations. A UI
model is a declarative, editable, and analyzable representation of some predefined
aspects of a UI, according to relevant abstractions [Puer97].

• Along the “What?” axis, context-sensitivity is concerned by the locus of recon-
figuration: any parameter that is relevant to a running UI is considered. For ex-
ample, any change of a computing platform characteristic (e.g., a screen resolu-
tion reduction declared in a computing-platform model) should trigger a presen-
tation reconfiguration (e.g., a simpler UI with widgets consuming less screen real
estate). In computer-based systems, any change of a user (e.g., the learning level
of a student defined by skills, experience, and cognitive ability) should reconfig-
ure the tutorial (e.g., keeping advanced topics in a tutorial model).

• Along with the “For what?” axis, context-sensitivity is concerned by the four
steps considered in adaptation [Hart93]. The initiative specifies the entity which
initiates the need of reconfiguration. The proposal describes possible reconfigura-
tions to be performed on the UI. The decision states the entity that decides to
apply the reconfiguration when needed. The execution clarifies the entity which is
responsible for effectively performing the reconfiguration that has been decided.

• Along with the “Who?” axis, context-sensitivity is concerned by the responsibility
of undertaking any adaptation step: it could be a user, a third party, the system or
a mixed-initiative involving several actors. Typically, one entity (e.g., the system)
is responsible for performing the four steps. But a system may prompt a user
with possible reconfiguration mechanisms from which the user is able to pick up
one, thus decreasing the negative disruptive effects induced by adaptivity [Hart93].
For instance, a user may select one possible presentation style among a set of
predefined ones. In Figure 2-3, the user selects and changes the presentation of a
calculator, while keeping its functionality.

• Along with the “How many?” axis, context-sensitivity is concerned by the num-
ber of reconfiguration occurrences required to achieve the context-sensitivity.
For example, one variation of screen resolution in the computing platform may
result into several presentation and dialog reconfigurations. One task variation
may lead to many presentation and dialog reconfiguration to reflect the fact that
the task structure has changed.

Chapter 2 State of the Art

 29

• Along the “When?” axis, context-sensitivity is concerned by the moment during
which the reconfiguration is effectively considered: at design-time, at runtime or
both. For example, a web page is intrinsically designed to support various Web
appliances (such as a classical web browser, a WAP-compatible cellular phone, a
television set top box, and an Internet screen phone). Similarly, a web page may
compute a frame rate of a video sequence at runtime, depending on the available
bandwidth.

• Along the “With what?” axis, context-sensitivity is concerned by the type of
model needed to support the intended reconfiguration. A passive model holds static
properties that are only read to perform a reconfiguration, while an active model
holds dynamic properties that can be changed at runtime. A mixed model can hold
both kinds of properties. For example, to accommodate multiple screen resolu-
tions of a same computing platform, a UI may need to embark an active model to
apply an appropriate reconfiguration. When models are considered only at design
time, they often remain passive. “When?” and “With what?” axes are highly cor-
related.

Task
Domain

User
Interaction object

Device
Computing platform

Physical environment
Organization

Application
Presentation

Dialog
Help

Guidance
Tutorial

Design

With respect to what?

What?

Action (Before)

Reaction (After)

Who?
User Mixed System

When?With
what?

Passive m
odels

Shared m
odels

A
ctive m

odels

At design time
At run time

At both design and run time

How many?

One
Some

Many

For what?

Initiative

Proposal

D
ecision

Execution

Figure 2-2. A design space for context awareness.

Chapter 2 State of the Art

 30

Figure 2-3. Multiple presentation styles for

a single user interface.

2.2.4 Representative examples of context - sensitivity

The design space for context-sensitivity is able to express several important UI catego-
ries. This thesis focuses on these particular categories:
1. Plastic UIs: the UI is able redistribute on different devices, and remodel itself to sup-

port variations in the computing platform (e.g. screen resolution, colors, operating
systems) and the physical environment (e.g. the network bandwidth, the availability
of interaction devices), while preserving some level of usability. The usability is a set
of properties specified during the requirements phase. These properties are defined
in [Cal00,Thev99]. For example, the same UI can display a network load in multiple
forms according to varying screen constraints [Eise00]. Figure 2-4 represents a plastic
UI that accommodates different presentations of a network load while the window is
being resized.

Figure 2-4. A plastic user interface for network load

(inspired from [Eise01]).

2. Cross-platform UIs: the UI is able to accommodate variations of the computing plat-
form, while preserving a given usability level. For example, SUIT enables designers to
design one UI that can run on different computing platforms, while preserving con-
sistency [Paus92].

3. Migratory UIs: the UI is able to accommodate relocation of the user terminal [Bahr95],
while maintaining the same context for the application. A UI can be migrated inter-
nally inside the application process, for example changing the position of a toolbar
from the top of the window to the bottom of the window. The UI can be migrated
into a remote process on the same device, for example detaching the toolbar from
the main window into a window run in a separate process. In general, the UI is mi-
grated into a remote process on a separate device, for example placing the toolbar on
a PDA so as to free room estate for the work area.

4. Mobile or nomadic UIs: the UI is able to accommodate variations of the context of use
and the change of user location.

Chapter 2 State of the Art

 31

2.3 Definition of the design space

The retained design space, after considering the thesis hypotheses is decomposed into
two design axes or dimensions.

 Figure 2-5. Design space.

2.3.1 Number of devices in use

This axis corresponds to the number of devices concurrently in use by a single applica-
tion to display its UI. At one end of the spectrum, the application uses a single device to
run its functional core along with its user interface: this corresponds to the classical sta-
tionary applications. At the other end of the spectrum, the application uses several de-
vices to run its user interface, and we are in a distributed environment. This aspect corre-
sponds to the migration capability.

2.3.2 Number of renderings per component

This axis corresponds to the capacity of the components to display themselves differ-
ently. At one end of the spectrum, the components have a single way of rendering them-
selves: this corresponds to the classical non adaptable/adaptative situation. At the other
end of the spectrum, each component has several ways of displaying itself. This aspect
corresponds to the adaptation capability.

2.4 Previous personal work related to this thesis

This research is the result of several years of experimentation with distributed systems,
user interfaces development and design in general. It started out of my own frustration of

Devices

Rendering

Distributed

Stationary

Adaptable/
Adaptative

Fixed Representa-
tion

Chapter 2 State of the Art

 32

using a purely imperative graphical toolkit in the context of a multi-paradigm program-
ming language [Moza]. Surely we could do better in term of expressivity, compactness
and general easy of use by tapping into the other aspects of the language. At first QTk
was developed to use a mixed declarative-imperative approach. The philosophy was to
use the declarative paradigm for those aspects that expresses well declaratively, while
keeping the imperative paradigm for all remaining aspects [Grol01a]. QTk was well ac-
cepted by the Mozart community and is now part of the standard distribution of the sys-
tem [QTk]. QTk allowed us to explore different ways of programming user interfaces,
and we discovered it was well adapted for the creation of adaptative user interfaces
[Grol02]. At the same period of time we were also doing active research in the field of
distribution algorithms, working on creating general high level abstractions for large scale
distributed systems. The mixing of these two researches came naturally into two results:

• QHTML [Elan04] which was basically a graphical toolkit similar to QTk but relies
on the Dynamic HTML technology to use Internet Explorer as the effective
toolkit instead of Tcl/Tk.

• A migratable version of QTk [Grol04] that extends its basic functionality to sup-
port transparent migrations of widgets. This work is very experimental as it ex-
tends a toolkit in a way that it was not designed to in the first place. The result al-
lowed us to experiment with migration; however the implementation is fragile
with no way of easily making it robust in general for fault tolerance.

This thesis integrates all these results together. From the QTk and QHTML experience,
we learned how to split a toolkit binding into a non-toolkit-dependent-general-purpose
part and a toolkit-dependent part. From the migratable and adaptation experiences, we
gained insight for designing this sort of distributed system and a way to address the adap-
tation problem as a migration one, effectively killing two birds with one stone.

2.4.1 The Mozart Programming System

This research relies heavily on the Mozart Programming System. Here is an excerpt from
the Mozart web site that describes it nicely [Moza]:

“The Mozart Programming System is an advanced development platform for intelligent, distributed ap-
plications. The system is the result of a decade of research in programming language design and implemen-
tation, constraint-based inference, distributed computing, and human-computer interfaces. As a result,
Mozart is unequaled in expressive power and functionality. Mozart has an interactive incremental devel-
opment environment and a production-quality implementation for UNIX and Windows platforms. Mo-
zart is the fruit of an ongoing research collaboration by the Mozart Consortium.

Mozart is based on the Oz language, which supports declarative programming, object-oriented program-
ming, constraint programming, and concurrency as part of a coherent whole. For distribution, Mozart
provides a true network transparent implementation with support for network awareness, openness, and
fault tolerance. Security is upcoming. Mozart is an ideal platform for both general-purpose distributed
applications as well as for hard problems requiring sophisticated optimization and inferencing abilities.
We have developed many applications including sophisticated collaborative tools, multi-agent systems, and

Chapter 2 State of the Art

 33

digital assistants, as well as applications in natural language understanding and knowledge representa-
tion, in scheduling and time-tabling, and in placement and configuration.”

The Mozart Programming System is a great facilitator for this thesis for two main rea-
sons:

• Mozart provides a state of the art transparent distribution mechanism. Distribu-
tion algorithms are automatically attached to entities depending on their types.
Also Mozart provides advanced concurrency management like lightweight
threads and dataflow synchronization. Those are great facilitators for efficiently
developing complex distributed systems.

• Mozart supports imperative (procedural and object-oriented) programming and
functional programming with high level data structures. One of these high level
data structures is the record which is expressively equivalent to an XML tree.
Obviously, being able to use this expressivity level directly inside an imperative
application has a lot of advantages. This thesis takes direct benefits from the tight
integration of the imperative and declarative paradigms.

To reproduce this work in a more mainstream programming language like Java, one
would have to:

• Redevelop the distributed algorithms. Mainstream programming languages pro-
vide their own mechanisms for distribution very different from Mozart, e.g.
RPC/RMI mechanisms versus transparent distribution.

• Redevelop the concurrency algorithms. Mozart provides lightweight threads with
dataflow synchronization, mainstream programming languages use much more
hard to use concepts like OO threads and semaphores.

• In the absence of a symbolic tree structure and support for functional program-
ming, one should use an external declarative language like XML and interface it
to the toolkit. Dynamically computing a record in Oz is a direct straightforward
operation, but this would now become an awkward manipulation of an external
language.

For efficiency reasons and the elegance of the end result, Mozart is a better platform for
the problem of this thesis.

Chapter 3 EBL General Toolkit Design

 34

Chapter 3 EBL General Toolkit
Design

The previous chapters introduce the context, state of the art and goals of the tool we are
building. This chapter presents the graphical user interface toolkit aspects of EBL, inde-
pendently of the migration, adaptation and in general distribution aspects that are cov-
ered in the next chapter. This is required for understanding the examples properly on one
hand, but also because this still has an impact on the migration and adaptation support
for applications. This aspect of EBL if largely inspired by ideas developed during my
work on QTk [Grol01a].

The chapter first introduces the general approach, and the Oz data structure we rely on
(3.1). Next is a discussion on the geometry management, in the context of this approach
but also in the context of migration (3.2). Lastly, we discuss how we can mix object-
orientation and model-based programming together (3.3).

3.1 Hybrid declarative and imperative approach

Before starting on the migration and adaptation design issues, we address a more general
design issue of EBL which is required to understand the examples later on. The result of
interfacing EBL with an effective graphical toolkit is a binding to this toolkit for the Mo-
zart Programming System. This binding can be used by two different approaches:

1. A purely imperative toolkit. Widgets are instances of classes (in the object-
orientation sense). They are created by instantiation, and then methods are used
for configuration and interaction:

MyLabel={New ETkLabel init}
{MyLabel set(text:"Hello World")}
MyWindow={New ETkWindow init}
{MyWindow show}
{MyWindow display(MyLabel)}

This example creates a label widget, and set its content to Hello World. Then a
window is created, made visible (by default windows are hidden), and finally the
label is placed inside the window, as shown in Figure 3-1.

Figure 3-1. Hello World example.

2. A partly declarative, partly imperative toolkit. EBL provides a support for

creating windows using a tree data structure mixing symbolic information and
references to live entities. This tree specifies a complete user interface in its initial

Chapter 3 EBL General Toolkit Design

 35

state, and also its behavior upon window resize. This roughly corresponds to the
presentation model (the application appearance) and part of the dialog model (the
behavior upon resize of the widget, and for some widgets their reaction upon ac-
tivation by the user):

UI={Build window(name:window
 label(text:"Hello World"
 name:label))}
{UI.window show}

This example also creates a window with a Hello World label inside, this time us-
ing the declarative approach. The symbolic tree data structure describes the UI,
and is given to the Build function provided by EBL. This function creates the UI,
and returns an object that allows referencing the widgets of the UI (by relying on
the arbitrary atom value set by the name feature in the description tree). Once the
UI is created, we fall back to the imperative approach above, and rely on the ob-
jects for configuration and interaction.

3.1.1 Oz data structures

To fully grasp the power of the declarative approach, we describe the data structures of
Oz [Moza] that we use to support this functionality.

3.1.1.a Atom

An atom is a symbolic constant that has a printable representation made up of a se-
quence of alphanumeric characters starting with a lower case letter, or arbitrary printable
characters enclosed in quotes. Atoms are scalar values of the language that have no inter-
nal structure. For example: a foo '=' ':=' 'OZ 3.0' 'Hello World'. Atoms have an
ordering based on lexicographic ordering.

3.1.1.b List

A list is either the atom nil representing the empty list, or is a tuple using the infix opera-
tor | and two arguments which are respectively the head and the tail of the list. Thus, a
list of the first three positive integers is represented as: 1|2|3|nil. A list ending by nil
can also be represented by all elements between [and], separated by a space and with-
out the ending nil : [1 2 3] which is the same as 1|2|3|nil.

3.1.1.c Strings

Another notation for a list is a sequence of characters surrounded by " (double quotes),
for example "Hello World". This is equivalent to a list of integers where each integer is
the ASCII value of the corresponding character in the string. This implies that all list op-
erations are available for calculating with strings.

3.1.1.d Records

Records are structured compound entities. A record has a label and a fixed number of
components or arguments of the form label(feat1:val1 ... featN:valN) where label
is an atom, the featX are atoms or numbers, and valX can be any valid data structure.
Note that featX are optional. If not specified, they are implicitly numbered as: label

Chapter 3 EBL General Toolkit Design

 36

(val1 ... valN) == label(1:val1 ... N:valN). Many operations can be performed
on Oz records (Table 1): let R=toto(foo:10 bar:20).

Operation Example
Selection R.foo == 10

Get arity {Arity R} == [bar foo]

Add feature {Record.adjoinAt R nuk 30}
 == toto(foo:10 bar:20 nuk:30)

Subtract feature {Record.subtract R bar} == toto(foo:10)

Extract label {Label R} == toto

Rename label {Record.adjoin R lala} == lala(foo:10 bar:20)

Iterations on record Record.forAll, Record.map, Record.while, ...

{Record.map R fun{$ V} V div 10 end}
 == toto(foo:1 bar:2)

Table 1. Some Oz operations.

Many other operations are available, and if they still do not cover the needs, the func-
tional paradigm of Oz can be used to write new ones compactly and efficiently. Because
of dynamic typing, it is easy to create new record types at runtime.

3.1.2 Declarative semantics

The semantics of the declarative specification is the following:
 A widget is defined by a properly formatted record.
 The label of the record defines the type of the widget.
 By convention the widgets placed inside container widgets are defined by using

numerical features. As stated above, the content of a label is implicitly numbered
in the absence of a feature. As a result, the sub-widgets are generally defined with
no feature prefixed: td(label(text:"Hello world")) instead of
td(1:label(text:"Hello world")).

 By convention some features are valid for all widgets, and have special meaning.
For example the name feature defines an atom that is a feature of the object re-
turned by the Build function, for further referencing of the widget.

 The rest of the features define the parameters of the widget in its initial state.
Valid features are widget dependent. For example a label widget has a text fea-
ture, while a frame widget does not have this feature.

This hybrid approach allows writing examples that are easy to read and understand. The
examples in this thesis will therefore use this approach.

3.2 Geometry management

As stated in 3.1.2, we use container widgets to organize the placement of the widgets on
screen. A single UI description specifies at the same time the widgets of the UI and their
placement. This is in opposition to a split approach where the widgets of the UI are
specified separately of their organization on screen. The approach of the container wid-
gets comes historically from QTk which did not support migration. It allows for simple
UI specifications that are human readable. The changing of geometry is typically achieved

Chapter 3 EBL General Toolkit Design

 37

by moving widgets from one container to another, which is a simple task to perform by
hand or by computation.

 However we have a stronger reason to use this approach with EBL because of the mi-
gration support. The next chapter details further this distributed aspect, for now it suf-
fices to know that the migration support is at the widget level: all widgets have the capa-
bility to dynamically migrate from one site to another. However UIs are organized in
groups of widgets, and it has more sense to migrate/adapt these groups as a whole. For
example in modern applications, it is common to have different toolbars that group sets
of the functionality of the application together. These toolbars can often be moved
around docked at the top, bottom, left side, or right side of the window, or as an inde-
pendent floating window.

Figure 3-2 Toolbars are movable entities

These toolbars are not migratable in the sense of this thesis, as they stay at the host ap-
plication. However they are movable and a good example of the functionality a migra-
tory-capable system should offer.

We observe that there are two levels of movability:

1. Whole toolbars. The top/left handle allows to move the toolbar using a drag &
drop operation. The logical relationship between the icons of the toolbar (their
order) is kept when moved.

2. Independent icons inside a toolbar. The Customize… menu allows to modify the
set of icons active in each toolbars.

Chapter 3 EBL General Toolkit Design

 38

Generalizing these two levels, we see that we need a system that allows migrating widgets
at widgets level, or group of widgets level. The migration of a group of widgets may re-
quire a reorganization of the geometry of the place they are leaving, and of the place they
are arriving to. This reorganization should follow some logical relationship between the
widgets and in particular those of the group being migrated. In fact this logical relation-
ship imposes some restrictions in the management of the placement of the widgets.

3.2.1 Absolute coordinate geometry

If widgets are placed using absolute coordinates independently of each other, the rela-
tionship information is just not there. In this case, widgets cannot be migrated in groups
easily: at best the system can infer (guess) relations between them, without providing any
guarantee that the result makes any sense. Another solution would be to have a complete
window migration, at the pixel level, so as to be sure to keep the geometry exactly as in-
tended by the application. This is similar to what VNC does. However, you cannot rea-
sonably expect any kind of adaptation support with this approach. Consequently absolute
geometry manager are ruled out.

3.2.2 Free rectangular splitting

From the point above, we conclude that the widgets must be placed relatively to each
other. For simplification, we assume all widgets occupy rectangular areas of a window
(this is generally true for all graphical toolkits). The window space is split in rectangular
areas, and the widgets are placed inside them.

Figure 3-3 Splitting the window into rectangular areas

This is however still not complete enough for migration. First there is no direct relation
between widgets that don’t have contiguous borders, so we cannot determine how they
should be placed into the receiving window.

Chapter 3 EBL General Toolkit Design

 39

Figure 3-4 Non contiguous widgets

Second, the relation between contiguous widgets is also not complete enough: the result-
ing outside border can have any shape, and we cannot be sure that the receiving window
can accept that shape.

Figure 3-5 Arbitrary shape

If we assume that widgets can be stretched vertically and horizontally arbitrarily, then
rectangular shaped group of widgets can be migrated into rectangular areas.

Chapter 3 EBL General Toolkit Design

 40

Figure 3-6 Rectangular shape

3.2.3 Hierarchical containers

Although the rectangular shape is good enough for migration, there is still a deeper prob-
lem: do the widgets inside the rectangular area have a logical relationship that has sense
for migration/adaptation? There surely are situations where this is not the case. As EBL
does not provide a model for specifying this relationship, we cannot add this information
externally. Instead, we use the widgets themselves to carry logical relationship informa-
tion, using a container widget approach for managing the geometry. In this approach,
container widgets organize zero, one or more contained widgets in the rectangular area
they occupy. Container widgets represent at the same time the physical organization of
their contained widgets, and the logical relationship between them. For example, a tool-
bar container organizes physically its buttons on screen, but also represents the logical re-
lationship between them (they form a toolbar). The migration/adaptation mechanism
works at the widget level, hence in this case at the whole toolbar level, or its individual
buttons.

The most generic possible container widget is the table. In a table, each column and row
splits the globally available space.

Figure 3-7 Nested tables

Widgets are placed inside cells of the table, possibly spanning over several cells of rectan-
gular form.

Chapter 3 EBL General Toolkit Design

 41

 File

 Status bar

Figure 3-8 Widgets inside cells

Inside their respective cells, each border of each widget is in contact with zero or up to
four of its cell border.

 File

 Status bar

Figure 3-9 Widgets border

The black dots in the Figure 3-9 show that the File menu is configured to stay on the left
side of its cell. The status bar is configured to touch the left and right side of the cell by
expanding itself horizontally. The scrollbar on the right is configured so that the widget
touches the top and bottom side of the cell by expanding itself.

3.2.3.a EBL td and lr widgets

EBL provides a specific support for table widgets using the declarative approach. These
widgets organize the contained widgets respectively top to down and left to right.

UI={Build
 window(name:window
 lr(glue:nswe
 td(glue:nswe
 menubutton(text:"File" glue:w)
 main area widget
 label(name:statusbar text:"Status bar"
 relief:sunken glue:ew))
 scrollbar(glue:ns orient:vertical)))}

This example creates the window of Figure 3-10.

Chapter 3 EBL General Toolkit Design

 42

Figure 3-10 EBL geometry management example

Any of the contained widgets can recursively be a container. The td and lr widgets can
split a window into packed rectangular areas. To determine what size these areas must
occupy, each widget has a glue parameter that place constraints on them. Without going
into full details, one can choose that either a widget should occupy only the size required
in a specific direction, or take as much space as possible. One can also choose to stick
widgets to none, one, or more of its four possible edges to "glue" its neighbors or con-
tainer border.

It is possible to have a grid structure where all widgets are organized in lines or columns
of the same size (Figure 3-11). The lr (resp. td) widget supports the newline special
code which makes the following contained widgets jump to a new line (resp. column)
right below the previous widgets, keeping the same column structure (resp. line) with the
widgets above them. The empty special code leaves an empty space in a line (resp. col-
umn) and the continue special code spans a widget over several columns (resp. lines).

lr(button(text:"One" glue:we) button(text:"Two" glue:we)
 button(text:"Three" glue:we) newline
 button(text:"Four" glue:we) button(text:"Five" glue:we)
 button(text:"Six" glue:we) newline
 button(text:"Seven" glue:we) button(text:"Height" glue:we)
 button(text:"Nine" glue:we) newline
 empty button(text:"Zero" glue:we) continue)

Chapter 3 EBL General Toolkit Design

 43

Figure 3-11 EBL geometry management with grid structure example.

When the window is stretched horizontally, the widgets grow or shrink to occupy the whole space.

When the window is stretched vertically, the widgets keep their vertical size, disappearing if there

is not enough space.

Graphical toolkits usually provide a table structure for geometry placement. EBL pro-
vides special functions for creating compatible td and lr widgets on top of the table wid-
get.

3.3 Combining object-oriented and model-based approaches

Section 3.1 introduced the hybrid declarative-imperative approach supported by EBL.
Now we further analyze this approach with respect to adaptation.

There is a very long tradition of developing graphical user interfaces by means of object
orientation (OO). In fact it is arguably the best example of the benefits of OO. As this
approach uses the full capacity of a Turing complete [Brai74] programming language, any
UI can be created. However, first there is a lot of verbosity involved, and second con-
cerns that are different in nature are intertwined together. For example the code manag-
ing the actual task of the user is mixed with the code that arranges the UI components
on the screen. These yields to high development and maintenance cost. To tackle these
problems, a new trend is to use model-based approaches, where each separate concern is
expressed orthogonally to the others, in a declarative way. Declarative languages are not
Turing complete though, so not all UI can be created by this approach. In particular it is
difficult to envision all the future possible needs for the models, which can result in
cumbersome extensions to the models. A well known example is the development of the
web: HTML is a declarative representation of the content of a web page. However over

Chapter 3 EBL General Toolkit Design

 44

the time new needs appeared: client-side interactivity, separation of concern between the
content and the presentation, and partial updates of the content of a page. The technolo-
gies introduced for covering these needs are:

 Client-side Turing complete scripting language (eg Javascript).
 Separate styling mechanism (CSS).
 AJAX technology relying on XML exchanges between the client and the web

server for partial page updates.
Consequently modern web applications are a mix of 4 different programming languages,
each one using its own concepts, syntax and semantics. The expertise required to develop
these applications is huge, as is the development and maintenance cost.

In this thesis we advocate a hybrid approach, where we can bridge imperative and de-
clarative approaches as needed depending on the situation.

3.3.1 Imperative object-oriented approach

In this approach, the components of the user interface are represented by objects. These
objects are instances of classes that form a hierarchy depending on the specialization of
the component. For example, a button is a specialized label that is able to receive mouse
clicks. The label is itself a specialized frame that is able to display some text. From the
application point of view, the user interface is a set of objects created from the classes
provided by the toolkit. User inputs are retrieved in an event based fashion, and the ob-
jects are configured to execute some code when the user executes some action. All main-
stream graphical toolkits follow this scheme (GTk, Windows API, Java AWT, Mac API,
…). The main advantage of this approach is the complete expressivity power due to the
Turing completeness of the underlying OO programming language. For this reason, EBL
fully supports this approach, providing an object oriented API. At the implementation
level, we thus have:

• Widgets, defined by classes, instanced into objects the application use to interact.
• Events, configured by the widgets and the user’s action to execute some code in-

side the application.

Window={New ETkWindow init}
Label={New ETkLabel init}
{Window show}
{Window wm(title:"Test")}
{Label set(text:"Hello World")}
{Window display(Label)}

Figure 3-12. A sample ETk application using object orientation.

3.3.2 Declarative approach

Another way of developing graphical user interfaces is by use of models. Different mod-
els statically describe the different (potentially dynamic) aspects of the user interaction:
layout of the widgets, reactions to user events, but also the task at hand, the user’s envi-
ronment, the navigation between the different parts of the UI, and so on. Model based

Chapter 3 EBL General Toolkit Design

 45

approaches have much deeper knowledge of the semantics of the user interaction. If the
model is complete enough, it becomes possible to dynamically calculate a concrete user
interface corresponding to a change of environment, i.e. automatically adapt the UI. The
completeness of the model is not trivial though, particularly when facing the evolution of
needs over time. Also, the complexity of the models is often inversely related to its ex-
pressivity power, and complex models tend to be hard to use. This complexity can be
mostly hidden away by using modeling tools instead of directly manipulating the models.
Another interesting benefit of the models is the possibility to make calculations on them
directly. In particular models allow the creation of metrics, for example measuring the
maximum number of mouse clicks required to achieve a particular task.

A number of researches are already exploring the model-based approach [Calv05,
Limb04a], so this thesis took a different route. Model-based approaches focus first on the
problem of how to describe migratable & adaptable UIs. However, they also have to
solve the problem of how to actually run such interfaces. This thesis focuses mainly on
this problem, even though we also introduce a bit of model-based approach. In particular
we do not offer editing tools for our models.

3.3.3 Hybrid approach

EBL is provided for the Mozart Programming System, supporting the Oz programming
language. This language supports symbolic programming, in particular the record data
structure. This structure is expressively equivalent to XML, but fully integrated with the
rest of the language. In particular, the mixing of a record inside a procedure or an object
is direct. Conversely, features of a record can be procedures or objects. The imperative
and declarative worlds are seamlessly intertwined together. EBL takes advantage of this
to provide a model for constructing widgets in their initial state, along with their behavior
upon resizing. This model covers presentation model and part of the dialog model (be-
havior upon window resize, and for some widgets some of their events) of classical
model-based approaches.

UI={Build window(name:window
 label(text:"Hello World" glue:nswe))}
{UI.window wm(title:"Test")}
{UI.window show}

Figure 3-13. A sample ETk application using the hybrid approach.

A valid EBL UI specification is a record where:

 A widget is defined by a properly formatted record.
 The label of the record defines the type of the widget.
 By convention, numerical features define widgets that must be placed inside this

one.
 By convention some features are valid for all widgets, and have special meaning.

For example the name feature defines an atom that is a feature of the object re-

Chapter 3 EBL General Toolkit Design

 46

turned by the Build function, for further referencing of the widget. Another ex-
ample is the glue parameter that specifies the behavior of the widget upon win-
dow resize.

 The rest of the features define the parameters of the widget in its initial state.
Valid features are widget dependent. For example a label widget has a text fea-
ture, while a frame widget does not have this feature.

The Build function takes a valid EBL hybrid model as input, creates the user interface
correspondingly, and returns an object providing control over all the created widgets. In
particular, this object allows direct access to the created widgets that have used the name
feature. Once a UI has been built, the developer gets back the objects controlling the cre-
ated components, and falls back into the object-oriented paradigm.

EBL widgets are defined by classes. To support the hybrid approach, a one parameter
function has to be attached to each widget defined. This function takes the record as re-
ceived by the build function for that particular widget, and returns the corresponding ob-
ject configured as requested by the widget.

3.3.4 Relation between the hybrid approach and adaptation

The functional paradigm of Mozart allows easy manipulations of declarative data struc-
tures. In particular, we can transform data into records properly formatted for EBL.

Data=data(name:"Roger"
 surname:"Rabbit"
 address1:"Rue des toons"
 address2:"WB")

fun{Transform1 D}
 {List.toTuple td
 {List.map
 {Record.toListInd D}
 fun{$ I#E}
 lr(label(text:I)
 label(text:E))
 end}}
end

The parameter D of the function is firstly transformed into a list of pairs: featX#valX.
This list is mapped to a list where each elements have the form: lr(label (text:featX)
label(text:valX)), where X is the position of the item in the list. This list is transformed
back into a tuple, i.e. a record where each feature is implicitly numbered. The example
record is thus transformed into (assuming implicit numbering):

td(lr(label(text:address1)
 label(text:"Rue des toons"))
 lr(label(text:address2)
 label(text:"WB"))
 lr(label(text:name)
 label(text:"Roger"))
 lr(label(text:surname)
 label(text:"Rabbit")))

Chapter 3 EBL General Toolkit Design

 47

This record is a valid EBL specification of this UI:

We can use a different transformation:

fun{Transform2 D}
 fun{Loop P}
 case P of I#E|Xs then
 label(text:I)|
 label(text:E)|
 newline|
 {Loop Xs}
 else nil end
 end
in
 {List.toTuple lr
 {Loop {Record.toListInd D}}}
end

Like Transform1, the function Transform2 first transforms the record given as parameter
into a list of pairs featX#valX. This list is then transformed by the Loop function and the
resulting list transformed back into a tuple whose label will be lr. The Loop function re-
cursively parses a list of pairs and creates another list where for one item featX#valX in
the first list corresponds three items in the second list:
label(text:featX)|entry(init:valX)|newline. The resulting record is:

lr(label(text:address1)
 label(text:"Rue des toons")
 newline
 label(text:address2)
 label(text:"WB")
 newline
 label(text:name)
 label(text:"Roger")
 newline
 label(text:surname)
 label(text:"Rabbit")
 newline)

This record is a valid EBL specification for this UI:

More transformations are possible, for example we could replace the label widgets on the
right by entry widgets, resulting in this UI which allows edition by the user:

Chapter 3 EBL General Toolkit Design

 48

As we see, the hybrid approach allows the creation of application specific models, and
their interpretation into runnable UIs.

3.3.5 Relation between the hybrid approach and MVC

Model-view-controller (MVC) [Kras88] is an architectural pattern used in software engi-
neering. In complex computer applications that present a large amount of data to the
user, a developer often wishes to separate data (model) and user interface (view) con-
cerns, so that changes to the user interface will not affect data handling, and that the data
can be reorganized without changing the user interface. The model-view-controller
solves this problem by decoupling data access and business logic from data presentation
and user interaction, by introducing an intermediate component: the controller.

It is easy to extend the approach of the previous section to have an explicit MVC ap-
proach:

 The model describing the data should be made mutable so that the controller is
allowed to modify the model:

Data=data(name:{NewCell "Roger"}
 surname:{NewCell "Rabbit"}
 address1:{NewCell "Rue des toons"}
 address2:{NewCell "WB"})

The NewCell function creates a mutable cell entity; the parameter defines the initial value
of the cell.

 With MVC, there is a view associated to the model. With EBL, this view is de-
fined by the description record the UI is built from. The name feature of the
widgets will allow the controller to control the widgets defined in the view.

Desc=td(lr(label(text:address1)
 label(text:@Data.address1 name:address1))
 lr(label(text:address2)
 label(text:@Data.address2 name:address2))
 lr(label(text:name)
 label(text:@Data.name name:name))
 lr(label(text:surname)
 label(text:@Data.surname name:surname))
 lr(button(text:"Ok" name:ok) button(text:"Cancel" name:cancel))

 With MVC, there is a controller associated to the view/model. With EBL, the

controller is implemented by the imperative paradigm.

UI={Build window(name:top Desc)}

Chapter 3 EBL General Toolkit Design

 49

{UI.top show}

% clicking on Ok sets the values in the model to the current input of the
user

{UI.ok bind(event:'1'
 action:proc{$}
 {ForAll [address1 address2 name surname]
 proc{$ Item}
 Data.Item:={UI.Item get(text:$)}
 end})}

Note that we can still use the approach from the previous section to associate multiple
combinations of views and controllers to the same model. Instead of hand-defining the
associated view and controller, we use the functional paradigm of Oz to calculate them.

fun{Model1 D}
 {List.toTuple td
 {List.adjoin
 {List.map
 {Record.toListInd D}
 fun{$ I#E}
 lr(label(text:I)
 label(text:@E))
 end}
 [lr(button(text:"Ok" name:ok) button(text:"Cancel" name:cancel))]}}
end

proc{Control1 D UI}
 {UI.ok bind(event:'1'
 action:proc{$}
 {ForAll {Arity D}
 proc{$ Item}
 D.Item:={UI.Item get(text:$)}
 end})}
end

The Model1 function takes the model as parameter and returns the description record de-
fining its view. The Control1 procedure takes the model and the UI built out of the cor-
responding view as inputs, and creates the UI control. Similarly to the previous section,
we can define more functions to generate alternate views and their associated controllers.

3.3.6 Relation between the hybrid approach and Arch/Slinky

Arch/Slinky [Bass92] is another architectural pattern used in software engineering.

Chapter 3 EBL General Toolkit Design

 50

Figure 3-14. Arch/Slinky.

Arch/Slinky identifies the following five basic functions of user interface software as
shown in Figure 3-14:

 Functional Core (FC). This component performs the data manipulation and
other domain-oriented functions. It is these functions that the user interface is
exposing to the user. This is also commonly called the Domain Specific Compo-
nent, or simply the Application.

 Functional Core Adapter (FCA). This component aggregates domain specific
data into higher-level structures, performs semantic checks on data and triggers
domain-initiated dialogue tasks.

 Dialogue (D). This component mediates between the domain specific and pres-
entation specific portions of a user interface, performing data mapping as neces-
sary. It ensures consistency (possibly among multiple views of data) and controls
task sequencing.

 Logical Interaction (LI) component. This component provides a set of toolkit in-
dependent objects (sometimes called virtual objects) to the dialogue component.

 Physical Interaction (PI) component. This component implements the physical
interaction between the user and the computer. It is this component which deals
with input and output devices. This is also commonly called the Interaction
Toolkit Component.

We can use this pattern in the context of a multi-paradigm programming language with
an hybrid declarative/imperative toolkit:

 The FC is typically developed using an imperative paradigm (OO or functional
style).

 The FCA component is preferably developed using a functional programming
style as it is well adapted to aggregate, filter and further manipulate data.

 The dialogue uses a functional programming style to generate high-level UI de-
scriptions corresponding to the tasks, and an imperative style to control tasks se-
quencing.

 The LI uses a functional programming style to further transform the high-level
UI descriptions from the dialogue into valid toolkit descriptions. In many cases
the dialogue can generate directly to valid toolkit descriptions, and the LI layer is
empty.

Functional Core

Functional Core Adapter

Dialogue

Logical Interaction

Physical Interaction

Chapter 3 EBL General Toolkit Design

 51

 The PI builds the concrete UI out of the UI description record, by calling the
build method of the toolkit.

In summary: first the functional programming style is well adapted to manipulate data in
general, which is very helpful to FCA, D, and LI. Second, the hybrid approach of the
toolkit provides a high-level of expressivity to GUI programming that D can target di-
rectly, reducing LI to nothing and PI to a simple call to the build method of the toolkit.

Chapter 4 EBL Distributed Toolkit Design

 52

Chapter 4 EBL Distributed Tool-
kit Design

The previous chapter introduces the EBL approach as a general graphical user interface
toolkit. This chapter now covers the distributed aspects of the toolkits, which involve
migration but also adaptation and limited support for multi-user applications. This gives
us an overall view of the design of EBL. When pertinent, examples using the EBL/Tk
toolkit are provided to give the readers insight on the impact of the design decisions over
the final result. In section 4.1, we start by introducing migration and adaptation as useful
and conservative extensions of the classical imperative toolkit paradigm. This section
contributes the concepts of migration capability (a givable token that triggers a migra-
tion), adaptation as a configuration parameter, and migration and adaptation transpar-
ency (the process of the migration/adaptation is independent of the concurrent running
of the application). Section 4.2 presents the general distributed structure of a widget. Sec-
tion 4.3 introduces the EBL Store construct which implements the whole migration, ad-
aptation and limited multi-user functionality. This is the main technical contribution of
the thesis. Section 4.4 addresses the receiving end of a migration. Section 4.5 focuses on
the adaptation mechanism which is a direct simple extension of the migration mecha-
nism. Finally sections 4.6 and 4.7 address distributed aspects also related to this thesis:
the low level network implementation and the security issues.

4.1 Migration and adaptation properties

EBL is designed to provide migration and adaptation functionality with a maximum of
flexibility, yet with a minimum of impact on the development cost. These requirements
drive the design in specific directions.

4.1.1 Granularity of migration & adaptation

A running application could have its UI migrated and/or adapted at different levels of
granularity:

1. Whole screen containing the UI of the application (which may also contain the
UI of other running applications).

2. Whole UI of the application, typically contained in a single window.
3. Subset of widgets of the application:

a. Limited to a single widget.
b. Limited to widgets that respects some placement constraints (for example

respecting a rectangular shape).
c. Any arbitrary selection of widgets.

4. Arbitrary pixel area.
Not all these levels are interesting for our purpose. In level 1, we lack information re-
garding the remaining of the screen which makes virtually impossible to provide interest-
ing adaptation. In level 4, the arbitrary nature of the area also makes it virtually impossi-
ble to provide interesting adaptation. Level 2 is a particular case of level 3, where the
whole UI of the application is used instead of a particular subset of it. Consequently

Chapter 4 EBL Distributed Toolkit Design

 53

EBL provides migration and adaptation support at the widget level. We want a
maximum of flexibility: any widget can be migrated to any platform at any time. Two
widgets from the same running application can be migrated to the same platform, or to
two different ones. As the migration is independent for each widget, covering 3a is
enough to also cover 3b and 3c, by executing several migrations at the same time.

4.1.2 Orthogonal migration & adaptation

To be useful, a graphical toolkit with migration and adaptation support must still offer a
functionality equivalent to a graphical toolkit with no such support. In other words the
migration and adaptation are new functionality on top of the pure graphical toolkit func-
tionality. We argue that this new functionality is important enough to be isolated from
the pure toolkit functionality. EBL is consequently designed to provide the migration and
adaptation functionality orthogonally to the pure graphical one.

• The migration functionality is provided as a capability of the widget. This capabil-
ity is a value which can be passed along freely to another process, on another
computer: the migration is a distributed operation between different computers
connected over the Internet (local migrations on the same computer/process are
of course supported). Once a migration capability has been passed to another proc-
ess, it can be used to trigger the migration of the widget, like a PULL mechanism.
To achieve this, the capability serves two purposes: 1) it contains the authority to
migrate the widget, and 2) it is a reference to the home site of the widget over the
Internet, like a URL for a web page. Because of 2), we often call the migration ca-
pability of the widget the reference of the widget.

It is the responsibility of the application to pass the capabilities to interested par-
ties: it has the complete control on who receives them. However it does not have
the control on when these capabilities are used by the remote peers, i.e. when the
migration really occurs. Consequently the application should be as impermeable
to the migration process as possible. The only observable effect is a temporary
blocking of the threads interacting with the migrated UI. For this reason we say
that the migration is transparent to the application. Note that the application can
register its interest for migration events if it wants to be notified of the process.
Note also that the application has a direct access to the capabilities of the widgets
it has created, and consequently can use them to migrate the widget back into its
original place.

In summary, the application that has created a widget must provide its capability
and the application where this widget must be migrated to must get the capability
and use it to trigger the migration. Note that no external meta-UI [Cout03b,
Cout06, Roud06] is required by this process: if a UI is required so that the user can
control the migration, it is part of the whole UI of the application. In other
words, the meta-UI is defined by and embedded inside the application itself. This
control UI could be implemented by a drop down menu for sending part of the
whole UI, by detecting a drag and drop operation from the user, or any other
way... As this control UI is no different than the rest of the UI, it can also be mi-
grated!

Chapter 4 EBL Distributed Toolkit Design

 54

Process A on computer X Process B on computer Y
UI={Build
 label(name:label
 text:"Hello world")}
{OfferCap {UI.label getRef($)}}

UI={Build
window(name:window)}
Cap={TakeCap}
{UI.window display(Cap)}

This example illustrates the computer X offering the migration capability of a la-
bel widget, and the computer Y creating a window, getting the capability, and us-
ing it to migrate the label into its local window. Note that the OfferCap and
TakeCap functions are not specified here and can be implemented in numerous
different ways. This example assumes that they are able to get in touch with each
other, and then exchange the piece of information given to OfferCap. A possible
implementation is to have a shared file between the processes. Another possible
implementation is to rely on emails: OfferCap sends an email with the capability
attached to it to a mail box that is then read by TakeCap. Still another possible
implementation is to use a DHT (distributed hash table) based P2P (peer to peer)
network, and use a shared name between the two processes to place the value
into the network, and obtain it back. And many more implementations are still
possible.

• The adaptation of the widgets consists in changing its representation (presenta-

tion and/or interaction) while keeping a useful level of usability. In that sense, the
simple reconfiguration of a visual parameter of a widget like its background color
is already an adaptation of that widget. EBL pushes this view forward by intro-
ducing a special adaptation parameter to every widget. When this special configu-
ration parameter is changed, it is the whole way the widget is displayed that is
changed. Once again, this process is impermeable to the application; the only ob-
servable effect is a temporary blocking of the threads interacting with the adapted
UI. For this reason we say that the adaptation is transparent to the application. Be-
cause of this transparency, the application is independent of the representation
currently used for a particular widget. For example the target device of a migra-
tion could provide its own representation of the widget, adapting it on the fly to
its own specifics.

UI={Build window(selector(name:selector
 text:"Car Model"
 items:["Ford" "Peugeot" "Renault"]))}

{UI.selector setContext(list)}

...

{UI.selector setContext(default)}

Chapter 4 EBL Distributed Toolkit Design

 55

This example illustrates a selector widget that supports different representations.
Switching between these representations is achieved by calling the setContext
method. It is up to the application to define why and when the widget should
change the representation. In this example, the representation is just changed at
unspecified points in the execution of the code. In the example of Figure 1-3 on
page 16, the representation is changed as a reaction to a user selection.

Coupled with the hybrid functionality of EBL, it is easy to develop a wid-
get with multiple possible interpretations, each of them supported by a
different renderer. The application can then use this widget, and dynami-
cally switch between the renderers by the simple call of the setContext
method.

4.2 Overview of the distributed structure of a widget

Desktop applications are often centralized applications running the functional core and
the UI inside a single process of a computer. Some of them have a distributed functional
core (voice over IP applications for example), but that is not what interest us in this
work. Once we let parts of the UI migrate from site to site, several devices become in-
volved in the running of the application, and we also shift from a centralized environ-
ment into a distributed one.

The way EBL introduces distribution is dictated by the design choices:

• Any widget of a running application can be migrated at any time (transparent dis-
tribution). Consequently EBL widgets are distributed entities. At anytime they
may be situated at the application's process, a remote process, or even nowhere if
they are not currently displayed. Later we will see that it is also possible to have
several renderers connected to a single proxy, replicating the UI of the widget at
several places simultaneously.

• As for the functional core of the application, EBL does not dictate if it should be
distributed or stationary, nor does it offer any support for distribution.

EBL provides specific distribution support for all widgets, allowing them to dynamically
migrate from one site to another. But the widgets are also used by the functional core of
the application that interacts with the UI, so part of them should behave in a stationary
way. The distribution scheme of widgets is composed of:

• A part that is stationary to the process that created the widget. That part is re-
turned to the functional core of the application so that it can interact with the
widget. This part is called the proxy of the widget.

• A part that is distributed, and run on the site actually displaying the widget. That
part is the one the user can interact with. This part is called the renderer of the
widget.

Chapter 4 EBL Distributed Toolkit Design

 56

Figure 4-1 Distributed architecture example

In Figure 4-1, three sites are running on three different computers. Site A creates two
widgets that are migrated into Site B. Site C creates one widget that is also migrated into
Site B. Each gray area covers a widget in its distributed execution. The proxies stay at the
site that created them forever. However the renderers are running at the site the widgets
are migrated to. The proxies and the renderers are connected together over the Internet,
so as to be synchronized.

4.2.1 Fault tolerance

One of the most difficult aspects of distribution is the fault tolerance: distributed applica-
tion should be tolerant to network faults; they should have an acceptable behavior in
such situation. The transparent migration of EBL means the application has very little
control to when and why part of its UI becomes distributed. Obviously under this condi-
tion, the application must be very tolerant to network faults. It would be unacceptable if
a transparent migration followed by a network problem resulted in the application crash-
ing or misbehaving. Also, it would be unacceptable if the widget ended up in an inconsis-
tent state between the proxy and the renderer which would result in inconsistencies be-
tween the application and what the user has in front of his eyes. Different types of distri-
bution problem can happen in the proxy-renderer relationship:

1. The application running the proxy crashed. In this situation there is no reason to
keep a ghost UI with no application behind it. Consequently the renderer de-
stroys itself, removing the widget from view.

2. The application running the renderer crashed. In this situation the application
should continue working on because of the transparent nature of the migration.
The widget is still migratable, and when a new renderer comes in, it should be put
in a state that is consistent with the application. To enforce this, EBL restricts the
collaboration between the proxy and the renderer to an abstraction that imple-
ments this consistency. With this abstraction, the proxy serves as the reference of
the state of the widget and the renderer follows the proxy updates to reflect them
to the user. The renderer is not allowed to update the state directly; it has to
submit the update to the proxy which can then apply it globally. For example,

Site A

Site B

Site C
Proxy A1

Proxy A2
Proxy C1

Renderer A1

Renderer A2

Renderer C1

Chapter 4 EBL Distributed Toolkit Design

 57

when a user types in a text entry, the renderer submits the new text to the proxy
which then updates the state of the widget globally; eventually the renderer re-
ceives the update from the proxy. To have a better user feedback, it is possible to
program the renderer so that its UI reacts directly to the user input, while the up-
date is done in the background (by anticipating the update from the proxy and
apply it immediately instead of waiting for the message to bounce). However in
this situation, the UI may be in a transient inconsistent state with the proxy: if the
renderer fails and the widget is migrated again, the new renderer may be in a dif-
ferent state than the former renderer. The time taken by an update message is
two times the delay of the network between the proxy and the renderer: this is
often measured in the hundred of milliseconds. Consequently the potential in-
consistency of the renderer is typically very limited. In summary the EBL ap-
proach allows to have a UI that reacts instantaneously to the user input, while
keeping an eventual consistency between the proxy and its UI. In case of network
faults, small updates may be lost though.

3. Indefinite/transient network problems between the proxy and the renderer. On
the Internet, there is typically no information available when a remote site fails: it
does not notify that it is down, it just stops responding. Similarly, there is no in-
formation if a network link is down; all traffic on this link is just lost. In the first
scenario, the remote site is gone forever (the application may be restarted, but it
is a new process, the old one is gone forever), while in the second scenario the
remote site can come back (the network gets reconnected). The Mozart distribu-
tion layer provides support for detecting when a remote site stops responding,
but of course is unable to detect if the site will come back later or not. EBL in-
terprets this information differently at the proxy and renderer side:

a. If a proxy detects there is a communication problem with a renderer, it
cuts its connection with it. Even if the communication problem was tran-
sient, the connection is terminated. As a result the renderer disappears.
We consider this solution to be acceptable because it is always possible to
migrate the widget again when the connection is more stable. And in case
of a permanent failure, the connection is rightly cut.

b. If a renderer detects there is a communication problem with its proxy, it
cuts its connection with it. Even if the communication problem was tran-
sient, the connection is terminated. As a result the renderer disappears.
We consider this solution to be acceptable because it is always possible to
migrate the widget again when the connection is more stable. And in case
of a permanent failure, the connection is rightly cut.

4.3 EBL store

Widget proxies collaborate distributively with their renderers at runtime. The purpose of
this collaboration is to maintain consistency between the state of the widget at the proxy,
and the actual rendering of the widget at the renderer. To fix the idea, let’s consider a
simple button widget. Its state is defined by different parameters:

• The text displayed inside the button.
• The colors used to draw the text and the background of the button, the color

used once the mouse cursor is over the button, or when the button is pushed...
• The width and height of the button.

Chapter 4 EBL Distributed Toolkit Design

 58

• The image displayed inside the button, if any.
• The type of border drawn outside the button (relief, sunken, flat…) and its width.
• And so forth...

Typically the effective back end toolkit offers a way to dynamically change the value of
these parameters. They are named, and the widget maintains a dictionary associating the
parameter name with the parameter value. The possible parameter values depend on the
type of the corresponding parameter name. For example, a text parameter expects a text
string while a width parameter expects an integer. EBL provides a distributed entity
for storing such dictionary; we call this entity a store:

• The store maintains name->value associations. Also it is possible to associate de-
fault values for specific names.

• The store associates type checking to specific name->value pairs. For example,
the store can be configured so that only integer values are accepted for the width
parameter of a button. Illegal updates of the store trigger exceptions.

The stores are distributed entities:
• Each peer that has an access to a store can get or update values from that store.
• However one of these peers has the special master role, while the other peers

have role of slaves. The master act as the reference for the content of the store.
Each update must transit by the master and only then is the update really ap-
plied. The master runs at the proxy while the slaves run at the renderers. The
disappearance of the master breaks the store (it cannot work correctly anymore).
However when that happens, the proxy itself also disappears and the whole wid-
get is gone: there is no more reason for this store to exist at the renderers.

• Implementation wise, a store is a dictionary that is replicated at each peer that
has a reference to it. At the master, the content of the local dictionary is the offi-
cial content of the store. At the slaves, the content of the local dictionary is a
cache to the currently known state of the store by this slave. Consequently ob-
taining information from the store is always performed on the local dictionary.
Updating information on the other hand must always transit to the master,
which then broadcasts the information to the slaves so that their cache is up-
dated accordingly.

• Eventually each entry of the cached dictionaries used by the slaves has the same
value as the dictionary of the master. In other words, the store guarantees even-
tual consistency of the name->value association betweens its connected peers.

• There is no transactional mechanism to update multiple keys of the store, and
guarantee that if one of them is really applied, then all of them are. See the next
point for why this is not a restriction.

• The store also provides asynchronous messaging between the master and the
slaves. The content of a message can be any Oz value, which can be very com-
plex data structures (lists, trees...). Mozart guarantees the integrity of each mes-
sage: they arrive completely or not at all. Consequently a slave can send a mes-
sage instructing multiple updates of the store to the master. Either the master re-
ceives this message and then applies each update in turn, or it disappears in the
process. In the later case, the whole store disappears. This scheme implements a
transaction that is either committed, or the whole store disappears.

Chapter 4 EBL Distributed Toolkit Design

 59

• Each peer can be notified when the content of the store is updated. For example,
the renderer can configure its store to trigger a particular action when the store is
updated by the proxy.

• Each peer can specify translation rules for the content of the local dictionary rep-
resenting the store, and what is really exchanged over the network. The transpar-
ent distribution of Mozart translates automatically many of the types of Oz, the
store provides a support for those situations not directly covered by Mozart.

• Finally, stores are attached to widgets, and for convenience widgets can use as
many stores as they need; the stores are created on the fly.

In summary the store is the basic data structure that implements the proxy-
renderer relationship.

Here is an actual example of the usage of a store:

{Store setParametersType(t(text:'String' relief:'Relief'))}
{Store setTypeChecker(t('String':String.is#"A String"
 'Relief':fun{$ L}
 {List.member L [flat sunken raised]}
 end#"The atom flat, sunken, or raised"))}
{Store setProxyMarshaller(t('String':m(u2s:fun{$ V}
 {String.toByteString V}
 end
 s2u:fun{$ V}
 {ByteString.toString V}
 end)))}
{Store setRenderMarshaller(t('String':m(u2s:fun{$ V}
 {String.toByteString V}
 end
 s2u:fun{$ V}
 {ByteString.toString V}
 end)))}
{Store setDefaults(t(text:"" relief:flat))}

This example configures a store:

 The allowed keys for this store are text and relief. Attempt to access other keys
will raise an exception. The type of text is 'String', and the one of relief is
'Relief'.

 The type definition of 'String' and 'Relief' is composed of two parts: a unary
function that returns a Boolean telling if the parameter checks the type, and a
string that is displayed in case of type error.

 The proxy side of the store is configured to automatically translate the data pro-
vided for the type 'String' before putting in into the store. One translation is
defined when the application sets the value (u2s: user to store), and reflexively
another translation is defined when the application gets the value (s2u: store to
user). In this example, the store uses the more compact ByteString type for put-
ting strings into the store. Note that the actual translation of the ByteString type
for transfer over the network is done by the distribution layer of Mozart. The
marshal configuration of the proxy allows translating types that are not directly
supported by the distribution layer of Mozart.

 The render side of the store is similarly configured to automatically translate the
'String' type.

Chapter 4 EBL Distributed Toolkit Design

 60

 Finally, default values are specified for this store.

{Store set(text "Hello World")}

This example sets the value of the text parameter to "Hello World".

V={Store get(relief $)}

This example puts the current value of the relief parameter into the variable V.

{Store set(relief wrongvalue)}

This example raises an exception because wrongvalue is not accepted by the type of
relief.

Event={Store createEvent(action:proc{$} {Show 'Value Changed'} end
 code:$)}
{Store registerVirtualEvent(text Event)}

This example registers an event at the store that displays a 'Valued Changed' message.
The store triggers this event each time the text key is modified.

4.3.1 Simple multi-user functionality

Note that there is no condition on the number of renderers connected to a store at any
time. It could be zero, one or more, and that can evolve dynamically over time. The
eventual coherency ensures that the proxy and all its connected renderers will eventually
agree on the state of the widget. In other words, the store implements the independence
on the number of connected renderers.

If one renderer is connected to a proxy then there is one physical widget linked to the
logical widget viewed by the application. If there is no renderer connected to a proxy
then the application still sees its logical widget, and thus can continue working on, but
there is no physical counter part for the user to interact with. If there is more than one
renderer connected to a proxy, the application still sees a single logical widget, though
there are several physical representations of this widget that mirror this widget. These
representations can be running on different devices, in front of different users. This is a
lightweight and limited way of introducing multi-user functionality that we call simple
multi-user ability. This functionality is configured by the connection policy of the proxy.
When a new renderer joins, this connection policy is executed: by default it disconnects
from all previous renderers, ensuring only one renderer is connected at all time. By
changing the default connection policy, the proxy can accept the new renderer without
disconnecting the others, effectively allowing multiple simultaneous renderers.

4.3.1.a Updated design space

The design space of Figure 2-5 on page 31 is extended to reflect this new functionality.

Chapter 4 EBL Distributed Toolkit Design

 61

Figure 4-2 Extended design space

Figure 4-2 displays the extended design space where a third dimension is introduced.
This axis corresponds to the number of times each component is concurrently displayed.
At one end of the spectrum each component is displayed exactly once: this corresponds
to he classical single user situation. At the other side of the spectrum the components are
concurrently displayed several times, allowing multiple users to interact with them con-
currently.

4.3.1.b Ubiquitous widgets

Some widgets are particular in the sense that they are not attached to a particular con-
tainer. Calling them widgets is a bit of a stretch; they are usually called resources. Text
fonts are a typical example: a “Courier 10” font is not a widget per se, still it is a resource
defined at the application side, but consumed at the widget side. Other examples are im-
ages and drop down menus, as they can be displayed/used multiple times. EBL treat
these resources as special widgets, that are able to be displayed multiple times.

4.3.2 Event bindings

Displaying the content of a widget is only half of the interaction between the user and
the application. The user must also be able to communicate to the application, typically
by using the mouse or keyboard to interact with the widgets. Graphical toolkits manage
user interactions in an event driven way: the application registers the user events it is in-
terested in with some callback code; the toolkit triggers the code in reaction to the user
inputs. In the case of EBL, the applications have access to the proxies of the widgets and
not directly to their renderers. Consequently the events are registered to the proxies, even
though these events in fact happen at the renderers. The information relevant to each
event (event type like mouse click, parameters to get like the coordinates of the mouse,
and a unique id for the callback code) is placed in an EBL store, which is eventually rep-

Rendering

Incarnations

Adaptable/
Adaptative

Fixed Representa-
tion

Single User

Multi-user

Devices

Distributed

Stationary

Chapter 4 EBL Distributed Toolkit Design

 62

licated at the renderers. The renderers configure the events using the low level toolkit to
trigger a code that reports the event back to the proxy. In turn the proxy triggers the
code configured by the application.

Proxy Renderer
meth bindOnClick(Action)
 Event={Store createEvent(
 event:'<MouseClick>'
 action:Action
 code:$)}
 {Store bind(Event)}
end

meth bind(Event P)
 {Widget bind(event:Event
 action:P)}
end

This example shows the event management at the proxy-renderer level. The EBL store
provides a method to create a distributed representation of an event. Basically, this
method creates a unique code that contains the type of the event, its parameters (if any),
and replaces the callback code by a unique id, while mapping this id to the actual code in
a separate dictionary. The bind method of the EBL store then places this event into the
store, which is eventually replicated at the renderer(s). When an EBL renderer manager
receives a new event in a store, it automatically calls the bind method of the renderer of
this widget. The first parameter of this method is the type and parameters of the event,
while the second parameter embeds a callback code to execute. This code is executed at
the renderer, and embeds the sending of a message to the proxy to notify of the event.
This message contains the id corresponding to the callback code configured by the appli-
cation for this event. Eventually, the EBL proxy manager receives this message, and trig-
gers the callback code configured by the application.

4.3.3 Causality management of events

With EBL, each widget is an independent entity, migrating from site to site independ-
ently of other widgets. However, a running UI does not behave in an independent way:
each user action triggers a response that can span on different parts of the UI. For exam-
ple, clicking on the OK button of a dialog box closes it. For coherency reasons, it is fun-
damental to respect the causality relationship: successive user inputs should be treated in
the order they were entered.

With EBL, it is possible to split the UI of an application on multiple devices. We con-
sider that respecting the global causality of the UI on all these devices to be:

1. Very inefficient: we would need a global clock mechanism to order all events pre-
cisely. Also the processing of each event would have to wait long enough to make
sure no other event arrived on another device, but the network message was slow
to arrive. This would create a constant lag between the user interaction, and the
reaction of the application.

2. Not very useful: if different components of the UI have a causality relationship
(the Ok button of a form that must be filled completely), there is probably little

Chapter 4 EBL Distributed Toolkit Design

 63

reason to split them on different devices. Also the UI can often force the causal-
ity when needed (enabling the Ok button only when the form is filled).

For these reasons, EBL restricts its guarantee for causality only for the parts of the UI
that are migrated inside the same window. From the application point of view, this
means that user events should be piped in a stream that respects the FIFO order. For ex-
ample, if a user clicks on the buttons 1, then 2, then 3, at the application level, the events
1, 2 and 3 should be raised in that particular order. This result requires to order the
events at the display, and to keep this ordering at the proxy side down to the actual ac-
tion configured for this event.

Another issue is related to the management of events: when running on multiple devices,
combination of events become possible that cannot be on a single device. For example, if
an application has two separate buttons, when running on a single device, the mouse cur-
sor can pass over only one of them at a time. However when the buttons are split on
separate devices, each of these devices have their own mouse cursor, and now the but-
tons can both have a mouse cursor over them simultaneously. This is a limitation of the
transparency provided by EBL: the transparency is at the widget level, and not at the
whole UI level. In my experience, this limitation has never been a problem because once
again when such widget interdependency occurs, it is logical to migrate them as a whole.

4.3.4 Functional core of the widget

The stores contain the state of the widget. The content can be changed by the application
through the API provided by the proxy, internally by the proxy itself (update the time of
a clock widget automatically for example), or even by one of the renderers. The func-
tional core of the widget implements the functions that make its state evolve, hence
change the content of its stores. Depending on the widget semantics, the functional core
can have different level of complexity:

• A simple button widget supports functions for changing its displayed text, color
and so forth.

• A complex text widget supports functions for changing characters fonts,
search&replace, image insertion, and so forth.

This functional core is typically implemented by the low-level toolkit. However this one
runs at the renderer and not at the proxy. Yet the proxy-renderer relationship supposes
that the proxy serves as the canonical reference for the full state of the proxy. Conse-
quently the functional core that evolves the state should also be replicated at the
proxy. This can require a lot of reimplementation work. EBL offers a technique for
avoiding this rewriting by delegating part of the functional core to the renderer,
using an RPC (remote procedure call) like mechanism:

• The proxy provides a method for updating the state of the widget to the applica-
tion.

• When called, this method submits the request to the renderer.
• The renderer receives the request:

o It uses the low level toolkit to apply it.
o It gets back the resulting state.
o It submits the new state to the proxy.

Chapter 4 EBL Distributed Toolkit Design

 64

The proxy ends up receiving the new state, and updates its state. Note that if several ren-
derers are connected, they all receive the request from the proxy. However the proxy
only accepts the first answer it receives and ignores the rest. Anyway when accepting the
first answer, the new state is broadcasted to all the renderers and they eventually end up
synchronized.

This delegation mechanism creates a dependency on the renderer that does not exist oth-
erwise. To guarantee consistency, the delegation is encapsulated in a transaction: if the
renderer survives long enough to submit the resulting state to the proxy, the transaction
commits. When it is not the case, the transaction is suspended until a new renderer
comes in, its state is synchronized with the proxy and then the transaction is tried again.
From the application perspective, a call to a method of the proxy may suspend until a
renderer survived long enough for the call to be fully processed. In summary, the delega-
tion mechanism provides an interesting trade-off to widget developers:

 Invest more time in the development of the widget, reproducing as much as pos-
sible the functional core of the widget at the proxy side. The widget will have bet-
ter performance (no round-trip necessary between the proxy and the renderer),
and offer better behavior in case of network faults (no thread suspended).

 Invest as little time as possible in the development of the widget, using delegation
as much as possible to avoid reproducing the functional core completely. The
widget will have bad performance (due to round-trips between the proxy and the
renderer), and offer bad behavior in case of network faults (suspension).

 Use a mix between these two approaches, balancing the cost of development
with the benefit in terms of performance and behavior in case of network faults.

When creating an EBL binding for a new toolkit, it is possible to start with a
minimum development effort by using delegation as much as possible, and then
add more functionality to the proxies as needed by real world situations. This
minimizes greatly the initial development cost for binding EBL to a toolkit,
while keeping the possibility to enhance performance and behavior upon net-
work faults later if needed.

Proxy Renderer
meth setComplexVariableTo(V)
 if {Not {Store askSet(cv V $)}}
 then raise exception end
 end
end

meth askSet(Key V R)
 try
 {Widget configure(Key V)}
 R=true
 catch Error then
 R=false
 end
end

In this example, the proxy provides a method for setting a particular variable to a value.
However the functional part that checks that the value is acceptable for this variable has

Chapter 4 EBL Distributed Toolkit Design

 65

not been implemented. Instead the proxy uses the askSet method to rely on the ren-
derer. This method is similar to the set(Key Value) method with a third parameter that
will be eventually bound to true or false depending on what the renderer reports. Even-
tually the askSet method of the renderer is called: it uses the actual widget to try and use
the parameter, and reports the success of the operation.

4.4 The receiving end of a migration

So far we explained the relationship between a proxy and its renderers when they are al-
ready running. Proxies are created by the application itself, but we have not addressed
who creates the renderers yet. We could have a dedicated generic application just for that
purpose: it would open an empty window, receive a migrated widget and display it inside
the window. However that seriously limits the possibilities of migration: for example we
could not display multiple migrated widgets in a single window. Also it is quite natural to
expect that a widget migrated away from a window can later get back into its original
place. To achieve maximum flexibility, we would like to be able to migrate any widget
into any place of any window. EBL forces the container widgets to use the migration
mechanism for all their content, even if the content is created at the same place as the
container. The content of the container widgets is managed by a special EBL store: each
contained widget receives a unique name, and its value is composed of its universal refer-
ence and its placement information inside the container (row and column coordinates for
example). For each entry of the content store, a special method is called at the renderer
site by the renderer manager. The first parameter of this method is the renderer actually
created by using the universal reference, and the second parameter is the placement in-
formation of this widget. The method must implement the effective low level toolkit
commands to place the renderer according to the placement information.

meth importHere(SubWidget PlacementInstructions)
 {Toolkit place(SubWidget PlacementInstructions)}
end

This example shows the method that must be implemented by a container widget. It is
called automatically by EBL when another widget must be placed inside this one. Sym-
metrically, the container widget must also implement a method for removing a contained
widget:

meth remove(SubWidget)
 {Toolkit remove(SubWidget)}
end

4.4.1 Container composition

Now that we know how a renderer is created when its content is migrated inside a con-
tainer, we can consider what happens when the migrated widget is itself a container with
some content already migrated inside. For example, let's consider the most common con-
tainer: the table widget. It splits a rectangular area into rows and columns, each contained
widget occupying one or more cells. When the table is migrated, the renderer store syn-
chronizes with the proxy store, and eventually the content of the special store referencing
its contained widgets is restored. As a side effect all its contained widgets are then mi-
grated along. As a result, it is possible to dynamically compose user interfaces, by succes-

Chapter 4 EBL Distributed Toolkit Design

 66

sively migrating widgets into place. Also, a table can be a target for the migration of wid-
gets from different sites, gathering them together at a single place. This table can in turn
be migrated to yet another site: the contained widgets are also migrated along, see Figure
4-3.

Figure 4-3 Composition of UI by successive migrations

4.4.2 Toplevel widgets

Widgets are migrated inside other container widgets. However we need a toplevel widget:
one that is a container, but that is not itself contained inside another one; the root of the
tree of contained widgets. EBL provides a way to create a local toplevel widget which is
displayed directly at the site that creates it, and cannot be migrated away from this loca-
tion. Toplevel widgets are containers, and any other widget can be migrated inside them.

A B

C

D

Chapter 4 EBL Distributed Toolkit Design

 67

Figure 4-4 Toplevel widget

In Figure 4-4, the application at site A creates a toplevel widget. This widget is displayed
directly at the site A, and is not migratable. However, widgets from another site (here B)
can be displayed inside this toplevel.

Toplevel widgets also serve other purposes:

• They link to an actual toolkit resource, and provide this resource to their con-
tained sub-widgets.

• They provide an event stream for serializing all events for all widgets they contain
in order to keep their causality order for the events happening in this window only.

For example, the EBL/Tk binding uses the Tk module [TkMod] for implementing a
toplevel window. When a widget is migrated inside this window, the window passes the
reference to the Tk module to this widget’s renderer: the renderer uses it to create its
widget. If this widget is itself a container, when another widget is migrated inside itself, it
will also pass the reference to Tk along. In other words, the toplevel widget defines the
resource that is used for the actual UI, and the migrated renderers consume this resource
for achieving their task. This has very interesting consequences:

• Versioning: each renderer definition is attached a rendererClass parameter. The
migration of widget A inside container B can succeed if and only if their
rendererClass parameters are identical; otherwise the migration fails and nothing
happens. This rendererClass parameter makes sure that the site that provides
widgets and the one that imports them are using the same version of the toolkit.

• Heterogeneity: it is possible to define more than one toplevel widgets that use
different rendererClass values. If other widgets define at least one renderer per
rendererClass value, then the UI can be migrated (and adapted to the underlying
toolkit) between these different toplevel widgets successfully. For example, a uni-
versal toolkit could provide a unified version of the table, label, button, radiobox

Site A

Display AApplication A
Toplevel Proxy Toplevel Renderer

Site B
Application B

Widget Proxy

Widget Renderer

Chapter 4 EBL Distributed Toolkit Design

 68

and checkbox widgets for GTk and Tcl/Tk. The system would allow the trans-
parent migration between a GTk window and a Tcl/Tk window; the correct ren-
derer would be automatically used. Note that the heterogeneity is at the granular-
ity of the toplevel widget; it is not possible to mix different low level toolkits in-
side the same window. This feature has not been fully implemented though.

4.4.3 Migration trigger

An important aspect of the migration mechanism is its trigger. This trigger is a distrib-
uted operation between the application’s site and the site effectively receiving the wid-
get’s renderer:

• The application site could push the migration to the receiving site. This requires
that the application knows a willingly accepting receiving site.

• The receiving site could pull the migration from the application. This requires
that the receiving site knows a willingly offering application site.

In both situations, both sites need to get in touch.

One can see this problem as a discovery service problem. The receiving site offers a ser-
vice for accepting migrated widgets, while the sending site offers a service for offering
widgets. There are many different ways of implementing discovery services, each one of
them having its advantages and problems. The purpose of this thesis is not to promote
one of them over others; instead we assume a discovery service already exists and allows
sites to know about each other, and focus on the actual migration trigger instead.

Conveniently Mozart offers extensive support for distributed applications, including a
distributed connection mechanism. The distribution support allows sharing language en-
tities among remote sites, with distributed protocols automatically attached to them de-
pending on their types (not all types support distribution though), along with configur-
able fault detection and recovery. To share an entity between two or more sites, one can
either pass its reference on another already shared entity, or use the ticket mechanism.
This mechanism prepares a local entity to be shared by other sites, and creates a text
string (the ticket) that points to it. This string can be passed by any medium, including a
URL on a web server, ftp, by telling people on the phone, by SMS, and so on. Another
Mozart site can use this string to get a reference to the entity it points to.

There is another valid interpretation to this mechanism: a ticket is a capability granted on
the reference of the entity. Any site that has this ticket can use this capability and have
the reference to the entity. EBL extends this philosophy to widgets: the proxy of the
widget can grant the capability to migrate the widget, in the form of a universal reference
which in fact is a ticket. The application can give this capability away to remote sites any
way that suits its purpose. Remote sites that receive this capability can use it to pull the
widget, i.e. trigger the migration. It is the responsibility of the application to give access
to these capabilities wisely. For example it could use a secure web server that requires the
user to identify himself. However once a capability has been given away, it cannot be
taken back. In particular, the site receiving the capability could pass it along to another
site; after all it is just a text string. For the proxy site, the capability would still be valid,
and this other site can pull the widget. At first this looks like a security issue, however
this is a pertinent property for dynamically migrating widgets: a widget A is sent into a

Chapter 4 EBL Distributed Toolkit Design

 69

container widget B of a remote site. B is itself sent into a third remote site. To keep the
consistency, the content of the container should be migrated also, and so the widget A is
now at the third site too.

One could envision different levels of capability for a widget:

• Full migration capability, where the widget is migrated and the user can interact
with it

• Read only version capability, where the widget is migrated, reacts to the applica-
tion’s updates, but doesn’t allow the user to interact with it.

For now EBL supports the full transferable capability only, further work is required to
add support for less restrictive capabilities. EBL also implements a basic discovery ser-
vice for publishing and receiving tickets based on IP/Socket number combination. Mo-
zart itself provides a discovery service over local area networks (LANs).

4.5 Adaptation

So far we focused mainly on the migration aspect of EBL. However, we also want sup-
port for adaptation at the widget level. This is defined by the capability of a widget to
have different representations and user interactions that support the same semantics. For
example, a clock widget with an analog representation or a digital representation is said
adaptable. Fortunately the proxy-renderer mechanism of EBL provides a straightforward
solution for this problem:

• The semantics of the widget is defined by its proxy, which is fixed at the applica-
tion’s site.

• The actual representation and user interaction is defined by its renderer, which is
running at the receiving site.

The adaptation is trivially achieved by allowing a single proxy to work with different-but-
semantically-compatible renderers.

Figure 4-5 Adaptable widget definition example

Figure 4-5 shows two widget definitions. The widget X has only one possible renderer:
all instances of X will be displayed using this unique renderer. Consequently the widget X
is not adaptable. On the other hand, the widget Y has three possible renderers: the in-

Widget X definition

Widget Y definition

Proxy Y

Renderer Y1

Renderer Y2

Renderer Y3

Proxy X Renderer X1

Chapter 4 EBL Distributed Toolkit Design

 70

stances of Y will be able to use any of these three renderers, and switch between them
dynamically at runtime. Consequently the widget Y is adaptable.

Note that the possible renderers are defined at the proxy side and not at the side where
the renderer runs. The renderer is defined as a class which is sent by the proxy to the
renderer site during the migration protocol. Consequently it is possible for an application
to add new renderer definitions and use them at runtime; the display does not have to be
changed or linked to a newer version of the GUI library to use these new definitions.

The action of adapting a widget consists in migrating the widget into the place it is al-
ready occupying, but using a different renderer definition. The renderer currently in use
is a configuration parameter of the proxy changed by the setContext method. The adap-
tation automatically occurs when this parameter is changed.

Figure 4-6 Runtime adaptation example

In Figure 4-6, an instance of the widget Y has been created at the application A, and mi-
grated into the application B. At first, the widget was configured to use the renderer Y1
for this widget. At any time, the application A can change the adaptation parameter: con-
sequently, the renderer Y1 is replaced by a new renderer Y2 at the application B. This is
achieved by re-migrating the widget into the application B, but this time using the ren-
derer Y2 instead of Y1.

Multiple renderers connected to the same proxy could be adapted independently, how-
ever EBL does not implement this functionality yet. Currently all the renderers are
adapted similarly.

The possible values for the adaptation parameter depends on each widget, however they
must all define at least a default one otherwise the widget can not be displayed at all. EBL
provides the support for defining the extra renderers for a widget and also provides the
adaptation protocol itself. In summary the concept of stores provided by EBL allows si-

Application A

Proxy Y

Application B

Renderer Y1

Application A

Proxy Y

Application B

Renderer Y2

Adaptation of Y, from renderer Y1 to Y2

Chapter 4 EBL Distributed Toolkit Design

 71

multaneously the migration, adaptation and simple multi-user functionality for graphical
user interfaces.

UI={Build window(name:window
 selector(name:selector
 text:"Pick a number"
 items:["One" "Two" "Three"]))}
...
{UI.selector setContext(listbox)}
...
{UI.selector setContext(menu)}
...
{UI.selector setContext(default)}

The selector widget of this example supports three renderers. The setContext method
switches between them (when and why this happen is unspecified in this example).

4.6 Low level network implementation independence

The proxy-renderer scheme requires a communication mechanism that:
• Allows two kinds of peers (the proxy and the renderer(s)), pretty much like a cli-

ent-server architecture.
• Provides a fault reporting mechanism and explicit removal of peers.
• Supports one-to-one communication so that renderers can notify the proxy of

user events for example.
• Supports one-to-many communication so that the proxy can send state update

messages to all the renderers simultaneously for example.
To maximize flexibility, EBL completely isolates this functionality; however it also relies
on another assumption about its properties:

• Communications between two peers are FIFO ordered. This order is true for
one-to-one messages, for one-to-many messages, but also for mixes between
one-to-one and one-to-many. In other words, if peer A sends messages M1 then
M2, and peer B receives them: B will receive them in the M1->M2 order no mat-
ter if M1 and M2 were sent as one-to-one or one-to-many. Note that there is no
order for messages between different targets, and consequently there is no global
causality. If A sends M1 to B and M2 to C, and B upon reception of M1 sends
M3 to C, there is no guarantee that M2 will arrive before M3 at C.

This assumption allows relying on the ordering of the messages when implementing the
network protocols between the peers.

This low level network library can be almost trivially implemented using a client-server
approach. However other possible implementations exist, for example using a peer to
peer network instead of a client-server one. EBL provides a default client-server imple-
mentation, but another one can be provided and used if needed. All EBL high level pro-
tocols between distributed components rely on this low level network library.

4.7 Security issues

There are security issues at different levels:

Chapter 4 EBL Distributed Toolkit Design

 72

• Trust of the network. On trusted networks (typically private local area networks

and virtual private networks), all devices and services on the network are consid-
ered trustable. In this scenario, there is no need to protect migration capabilities
and connections between EBL peers. On networks that are not trustable (typi-
cally the Internet), the migration capabilities could be captured and abused by at-
tackers. To prevent this, the discovery service used by the EBL peers should use
encryption to pass the capabilities securely. Similarly the communication between
the proxies and their renderers should be encrypted to prevent man in the middle
attacks. It is not the purpose of EBL to provide a discovery service, be it secure
or not. Also, encrypted communications should be done at lower communication
levels, the Mozart distribution layer in this case. For these reasons EBL does not
provide security at the network level. Note that multiple devices physically close
to each other typically run on a private trusted LAN, and this scenario is covered
by EBL. In the case of the Internet, using a Virtual Private Network, or SSH tun-
neling techniques can secure EBL applications.

• Trust of the good usage of the migration capability. Once an application gives a
migration capability away, it loses control over 1) what sites have access to this
capability and so where the UI will be displayed and 2) when and how many
times will the capability be used to trigger a migration. Note that this enables mi-
grated containers to restore their content as the migration capabilities of their
content is passed to their new renderer site. However this property is not accept-
able from a security point of view. To fix this problem, proper control over the
capability should be given to the application: revocation (the migration capability
does not function anymore) and/or restriction (the migration capability works
only if triggered by specified site(s)). These controls have not been implemented
by EBL so far.

• Trust of the remote proxy. When an application triggers a migration, it receives
the renderer definition from the proxy and then executes it using local resources.
Executing remote code using local resources is always a huge security threat.
There are two ways to mitigate this threat:

 Sandboxing: the code is executed with very restricted access to the local
machine, so that it cannot possibly do any harm. With EBL the local re-
sources available to the renderers at runtime are defined by the renderer
environment. When creating a toolkit binding with EBL, one can make
sure this environment is as restricted as possible. However a reference to
the low level toolkit is typically required for the renderer to function, and
low level toolkits often permit a lot more than we would like, including an
access to the file system.

 Trusted computing: an authority certifies that the remote proxy is trust-
able from a security perspective. The renderer site accepts a migration
only after making sure the proxy is trustable. EBL does not implement
this level of security directly; EBL bindings should use an extra certifica-
tion mechanism to use this security model.

• Trust of the remote renderer. When a UI is migrated away, the proxy sends the
renderer definition to the remote site, and then receives an active connection
with the newly created renderer. However there is no guarantee that it is indeed

Chapter 4 EBL Distributed Toolkit Design

 73

the renderer definition that is used by the remote site. It is a situation similar to
web applications: it is trivially simple to change a web page so that it sends arbi-
trary data to the server. In particular all the type checks of the web page can be
bypassed, and the server receives invalid data. For this reason, data input valida-
tion should always be done at the server side even if they are also done at the cli-
ent side. The EBL store implements this scheme: updates originating from the
renderers are validated by the proxy before being applied. This security is still
quite weak, for example it does not prevent a denial of service attack where a
false renderer floods its proxy with updates so as to make the UI unusable. For
stronger security, we need trusted computing like in the previous bullet.

• Trust at the EBL binding high level. Let's suppose that we have EBL, a secure
EBL toolkit binding that uses a secure discovery service, encrypted data channels
between EBL peers, and a trusted platform to ensure that proxies and renderers
are all trustable. Let's consider the login application A whose UI is migrated to
the remote application B. Even with EBL, B could introspect its UI to steal the
login information. Such introspection is not allowed by EBL: the proxy of a con-
tainer only knows the migration capabilities and placement information of its
content, and is completely unable to access its contained widgets. However if B
has an access to the low level toolkit (which is typically the case), and the low
level toolkit offers introspection (which is also typically the case), B can use it to
access the displayed widgets. To fully solve this security issue, we also need
trusted computing at the application level.

Chapter 5 Implementation

 74

Chapter 5 Implementation

Chapter 3 and 4 present what the problem EBL solves is. Chapter 5 now focuses on how
this problem is solved. We detail the most important technical aspects of EBL. EBL is a
toolkit agnostic middleware written for the Mozart Programming System. EBL has to be
linked to an actual toolkit, resulting in another toolkit supporting the functionality of the
original one, plus:

 Full support for dynamic transparent migration, using the migration capability
approach.

 Full support for dynamic transparent adaptation, using the configuration ap-
proach.

 Support for simple multi-user interfaces.
 Support for mixed declarative/imperative approach to GUI programming.

In particular, EBL has been linked to Tcl/Tk to create the EBL/Tk graphical toolkit.
Examples of use of EBL/Tk are available in chapter 5.

Section 5.1 defines what the distributed infrastructure EBL is built on. Section 5.2 gives
an overview of the distributed architecture, at the granularity of complete EBL applica-
tions. Section 5.3 focuses on migration capabilities, and contributes their routing through
the different distributed entities of EBL applications. Section 5.4 gives detailed informa-
tion of the distributed architecture, this time at the granularity of EBL widgets. Section
5.5 details the architecture of the receiving end of a migrated UI. Section 5.6 describes
the low level network component of EBL. Section 5.7 describes the most important net-
work protocols. And finally section 5.8 describes a set of recipes to follow when binding
EBL to a graphical toolkit.

5.1 Distribution overview

All distributed operations are implemented by an asynchronous FIFO message passing
system by using the port data type of Mozart. A port is composed of

 A receiving end which is stationary (future versions of Mozart may allow distribu-
tion for this type) and cannot be closed.

 A sending end which can be distributed among multiples sites so that they can
all send messages on the same port.

Network faults are detected by the distribution layer of Mozart, which gives us an oracle
approximating the current status of the network link. EBL is configured to manage these
faults lazily, that is only when an actual network operation is performed. The conse-
quence of a network fault is always a disconnection of the distributed part of the widget
(the renderers). Because of the laziness, when a network fault occurs between an applica-
tion and its remote UI, only when the remote UI tries to interact with the application
(usually in response to a user event or an application update), will it disconnect from the
application, resulting in its disappearance. This laziness is advantageous though, because
transient network errors do not necessarily result in a disconnection, only if the UI is in
use will it be the case. Also Mozart provides the transparent distribution of some of its data
type: a distributed network protocol is automatically attached to the entity, and it can be
used remotely as if it were a local entity. For EBL this functionality is limited to values,

Chapter 5 Implementation

 75

which are transparently copied over the network when a reference is passed from a site
to another one. As Mozart supports high order programming, procedures and class defi-
nitions are values, and as such they can be transparently passed from one site to another.

5.2 Runtime architecture

Figure 5-1 General running architecture

At runtime, each widget is split in two parts: the stationary part that stays at the creator
site (the proxy), and the migratable part that is run at a remote site to actually display the
widget (the renderer). A notable exception is the toplevel window widget: the migratable
part stays at the creator site; it is created immediately along with the proxy and cannot
migrate away. The renderer part of a widget needs a window to be displayed inside, so it
can only run at a site were a window proxy is running. Note that the content of a window
is a separate widget that can be migrated away. In other words, toplevel windows provide
the physical hook where widgets can be displayed. Also Note that there is no dependency
on an external server for this architecture to work. Widget proxies act as servers for their
renderers. This is based on the distribution layer of Mozart.

5.3 Migration capabilities

In order for the sites to get in touch and start working together, we need a way of refer-
encing the widgets over the Internet. This is achieved by the migration capabilities that
serve 1) as references and 2) as authority for pulling the widget. The proxy of each widget
(except the toplevel window that is not migratable) has a migration capability that con-
sists in a combination of bytes that encapsulates all the information required to connect
to the widget through the Internet. Migration capabilities are given to the proxies of con-
tainer widgets, triggering the creation of a renderer for the proxy corresponding to the
capability inside the renderer of the container widget.

Process A

Process B

Process C

Widget Proxy
Widget Proxy

Widget Proxy
Widget Proxy

Window Proxy

Window Renderer

Widget Renderer
Widget Renderer

Widget Renderer

Process D
Window Proxy

Window Renderer
Widget Renderer

Chapter 5 Implementation

 76

5.3.1 Trajectory of a universal reference

Figure 5-2 Universal reference trajectory

Dashed arrows are actual connections, plain arrows are the trajectory of the universal reference

The universal reference is a capability the creator of the widget can give to a remote site.
Typically, an intermediate discovery service allows the sites to exchange these values.
Figure 5-2 is a typical scenario:

1. Process A running on computer X creates a widget and asks for its migration ca-
pability.

2. Process A stores this capability at the discovery service.
3. Process B running on computer Y asks the discovery service for the capability of

the widget it wants to display.
4. Process B receives the answer
5. Process B passes it to the proxy of a container widget, here a window.
6. The proxy forwards the capability to its renderer.
7. And lastly the renderer opens a connection with the proxy corresponding to the

capability. In section 4.7.1 we show how this connection is used for creating a
new renderer for this proxy.

Process A

Widget ProxyRef

Discovery Service

Ref

Process B

Window Proxy

get Ref

Ref

Window Renderer

Chapter 5 Implementation

 77

Figure 5-3 Complex trajectory

Figure 5-3 displays a more complex scenario where the process B migrates the widget in-
side a container that is currently displayed at the process C. The migration capability fol-
lows the same route as in Figure 5-2, except that the container proxy forwards the capa-
bility to its renderer at process C and not locally anymore.

5.3.2 Discovery service

The discovery service can be implemented in a number of different ways:
• By phone with the operator in front of the offering sites dictating the content of

the reference to the operator in front of the receiving site.
• By email sent by the offering site and read by the receiving site.
• By using an intermediate web site where the offering site puts the reference and

the receiving site gets back.
• By using an FTP server.
• The offering site can start a server on a specific socket which serves the capabili-

ties. The receiving site knows the IP and socket numbers to connect to this
server. EBL provides a simple implementation of this service.

• On local area networks, the offering applications can listen to specific broadcasts,
and the receiving site broadcast its request. This is implemented by the Discovery
module of Mozart.

• The offering and receiving sites can connect to a peer to peer network, and use it
for registering and discovering capabilities. For example, we can use the P2PS
module [P2PS] to register capabilities to a distributed hash table (DHT), and allow
looking up for them.

Process A

Widget ProxyRef

Discovery Service

Ref

Process B

Container Proxy

get Ref

Ref

Window Renderer

Window Proxy
Process C

Container Renderer

Chapter 5 Implementation

 78

As we see, the discovery service is orthogonal to the problems solved in this thesis, and
there are many possibilities depending on the actual application needs, so EBL does not
try very hard to provide a proper one.

5.4 Distributed widget architecture

Widgets are split in two parts: the proxy that always stay at the application site, and the
renderer that is dynamically migrated between sites. EBL provides a high level service
that is well fitted for synchronizing these parts together.

Figure 5-4 Widget architecture

5.4.1.a Specifics of the widget proxy

Widget proxies implement the application side of the widgets, as classes. These classes
are public to the application, and the visibility of their methods directly defines what the
application can use or not. For that reason EBL does not impose anything regarding the
definition of the proxies, in particular it does not provide a master proxy class all proxy
classes should inherit from. Instead the proxy functionality of EBL is accessed through
the EBL proxy manager; widget proxies should create an instance of this class, and keep
a reference to it. The proxy manager provides different services to the proxy (see Annex
A for the complete reference):

• Migration capability management
• Support for container widgets
• Support for migration, adaptation, and simple multi-user functionality.
• Support for toplevel widgets
• Communication medium with the renderers, including direct message passing,

and simple transactional mechanism.
• Destruction of the widget.
• Creation of stores that manage the state of the widget and the user events.

Process A Process B

Widget Proxy

- public API
EBL Manager

EBL Store x

EBL Store y

EBL Store z

Widget Renderer

- EBL compatible API
EBL Manager

EBL Store x

EBL Store y

EBL Store z

Chapter 5 Implementation

 79

In particular, the manager is able to create an arbitrary number of stores. A store is a dis-
tributed dictionary that is automatically synchronized with all connected peers, à la Linda
[Leler90]. Using dictionaries as the basic communication medium between the proxies
and the renderers has several benefits: first, there is independence on the number of con-
nected peers, which allows working when zero, one or more renderers are connected to
the proxy. Second, it corresponds to the needs of widgets that mainly associate values to
specific parameters. When a renderer is created, its stores contain the current known
state at the proxy, and it has to configure the actual widget accordingly. Further updates
to the stores trigger dedicated methods at the store, so that it is notified of the updates
and is able to reflect them at the actual widget. Stores are highly configurable: the allowed
keys can be restricted to a known set, each key can be strongly typed, and the serializa-
tion of the value between the proxy and the renderer(s) can also be configured. Further,
the store provides transactional operations to update keys, were the renderer becomes
the actual responsible for updating the value. This is particularly useful when the proxy
does not implement the complete functional core of the widget: it can rely on the ren-
derer to apply state updates and get back the resulting state. Transactions automatically
succeed if the renderer survives long enough to send back the response to the update,
otherwise the transaction suspends until a new renderer arrives, and it is submitted there
back again. As a result, transactions never fail, but they can be suspended forever. When
a renderer is connected to the proxy, all transactions eventually succeed, granted the ren-
derer survives for long enough. Pending transactions are kept in order with the known
state of the widget, so as to make sure that the state of the widget is always the same
when a particular transaction is attempted. Finally stores also manage the user events, like
responding to a mouse click. The complete reference is at the Annex A.

5.4.1.b Specifics of the widget renderer

Widget renderers implement the migrated side of the widget, the one that has an actual
physical incarnation. EBL creates instances of the renderers as required by a migration or
an adaptation. Renderers are also defined as classes. EBL forces the renderer to follow an
interface that implements a specific set of methods. These methods are called by EBL
automatically when needed. Some of these methods are notification of updates of the
store, so that the renderer can reflect them on the actual widget. Some of these methods
are for container widgets, and required to create the environment of the children widgets.
And finally some methods are related to the user events, like responding to a mouse
click. In particular, the init method receives the renderer manager as parameter. Contrar-
ily to the proxy which has to create it explicitly, the renderer receives an already config-
ured and fully working manager that is already connected to the proxy. In particular, the
renderer can ask the manager to have access to the stores. These stores already contain
the current state as known by the proxy at the time of the migration. Lastly, the renderer
manager provides an access to the environment object (typically contains the reference to
the local toolkit, see below for more information). The complete reference is at the An-
nex A.

5.5 Display site architecture overview

The renderer part of a widget is a distributed agent that links to the resource of the host
site while collaborating with its proxy:

Chapter 5 Implementation

 80

 The renderer manager provides a way to synchronize with the proxy, by means of
the stores.

 The renderer manager provides an access to the local resources, by means of a
shared state with its container that we call migration environment.

Figure 5-5 Runtime environment architecture

Plain arrows are the trajectory of the environments, finely dashed arrows points to widgets actually
created from a local environment, large dashed arrows points to the actual widget the parent is re-

ferring to. Tk is the toolkit in use in this example.

The toplevel proxy creates a migration environment from scratch, typically putting a ref-
erence to the actual toolkit to use, and gives it to its local renderer. Each container ren-
derers passes the environment down to their contained widgets, adding a reference to
themselves as the parent of the contained widget. Each renderer receives the environ-
ment from their manager, and uses its content to gain an access to the actual toolkit, and
their parent widget. Using that resource, they are able to create the actual widget to put
inside the parent widget.

Window RendererApplication
Window Proxy

Env: Tk

Env: Tk

Window Widget

Container Renderer

Env: Tk

Env: Tk, Parent

Env: Tk, Parent Cont. Widget

Widget Renderer
Env: Tk, Parent Widget

Widget Renderer
Env: Tk, Parent Cont. Widget

Env: Tk, Parent Env: Tk, Parent

Chapter 5 Implementation

 81

5.6 Low level network component

Figure 5-6 Runtime environment architecture

All network protocols of EBL (store protocols, migration protocols ...) are built on top
of a single low level network component (LLNC in Figure 5-6). A default client-server
implementation is provided; others implementation could be used, for example to run on
a peer to peer network.

5.7 Protocols

This section presents the most important protocols used by EBL.

Application A Application B

Widget Proxy

- public API
EBL Manager

EBL Store x

EBL Store y

EBL Store z

Widget Renderer

- compatible EBL API
EBL Manager

EBL Store x

EBL Store y

EBL Store z

LLNC

LLNC

Chapter 5 Implementation

 82

5.7.1 Migration protocol

Figure 5-7 Migration protocol

The migration protocol is a negotiation between the proxy of the receiving container
(PC), the proxy of the migrated widget (PM), the renderer of the container (RC) and the
renderer of the migrated widget (RM). First, the migration capability of PM has to be
given to PC somehow . The migration starts at PC, by using the importHere method
of its manager using the reference given by PM (the second PI parameter is further
placement instructions for example the row/column coordinates of a table container).
This method stores this new child; stored children are automatically given to RC (ei-
ther at the child's creation or at the RC creation). RC connects to PM using the reference
contained in the capability , and in returns PM sends the class definition of the widget
renderer . RC creates an environment and then asks EBL to create RM using the class
definition just received. If RC fails to create RM (due to PM not responding, or an error
while creating RM), RC tells PC to drop this particular child. To create RM, EBL first
creates its manager, connects back to PM , gets the actual state of all stores , and
then creates the RM object with the manager as parameter . The initialization of RM

RC PC

PM
getRef

PM ref

importHere(Ref PI)

getClassDef

classDef
create env

create manager
connectManager

current state

create RM
RM

state update

apply current
state

Proxy of receiving
container

Renderer of
container

Proxy of migrated
widget

Renderer of migra-
ted widget

Chapter 5 Implementation

 83

should create the actual widget, and update its state according to the current content of
the store (parameters & event bindings). Once initialized, EBL automatically calls the
methods of RM according to the updates of the store . If the migrated widget is itself a
container, the information necessary to restore its content is in the store it receives from
PM, and RM reacts to it like RC after step . As a result its content is also migrated
along.

5.7.1.a Negotiation phase

The step of the protocol above asks a class definition for the renderer and is returned
the one currently selected by PM. Indeed there can be different renderers possible for
this widget, and the process running PM has selected one of them in particular (using the
setContext method). However we can extend this protocol further by adding a negotia-
tion phase where RC uses the knowledge of its own available resources (keyboard/mouse
presence, screen size...) to hint PM so that it is able to override the current selection for
the renderer with another one that is more fit to the device. The scheme would require:

• A model for describing the platform running the UI.
• Introspection capabilities for renderers determining their level of compatibility

with specific platforms.

Another option is for RC to use its own renderer definition, ignoring the one sent by
PM. This may result in an incorrect renderer that is unable to behave correctly with its
proxy, however this would open up the possibility of having a target device that adapts
the UIs it receives even if the process running those UIs do not know how to adapt them
!

The current implementation of EBL is limited to the protocol of the Figure 5-7 though.

5.7.1.b Fault tolerance

Network failures can happen at any time, between any of the sites:
 Between PC and PM. There is no direct connection between these two sites: the

capability of PM can be brought to PC by a third site.
 Between PC and RC. If message cannot be sent be cause of a network failure

or because there is currently no RC, then the migration cannot be executed. Nev-
ertheless, the migration instruction is now part of the store of the widget. When a
new RC comes in, it will then proceed with the migration of PM. As a result,
there may be an arbitrary time between the application command to migrate a
widget, and when this command is really executed. If message was sent, and
there is a network failure between PC and RC then RC eventually disappears.
This can happen while the migration protocol is still running, or afterwards. In all
cases, the disappearance of RC will result in a disconnection with either PM or
with RM. In both situations the migration of RM is cancelled, and it is destroyed
if it exists.

 Between RC and PM. The only time this network connection matters is between
messages and . If there is a network failure there, then the migration of PM
is aborted. Also RC removes PM from the migration store shared with PC, so
that PM is no more considered as a contained widget of PC.

 Between PM and RM. This is the same as between PC and RC, see above.

Chapter 5 Implementation

 84

5.7.2 Adaptation protocol

With EBL an adaptation is the migration of a widget into the place it currently occupies,
this time using a different renderer. The migration protocol is described at the point
above. However, a protocol is still needed to trigger this re-migration.

Figure 5-8 Adaptation protocol

When no renderer is connected, the adaptation trivially consists in storing the new ren-
derer to use for the next migration, which is served at step of Figure 5-6. When ren-
derer(s) are connected, the proxy must make sure they are replaced by the new one. First
PM sends a replace message to RM in reaction to the change of renderer . RM cannot
replace itself directly, it must contact its container widget and forward the replace request

. RC reacts by destroying the current RM , and starting the whole migration process
for RM again (gray area). When PM is asked for the class definition of RM, this time it
sends the new one. As a result, the old renderer is replaced by the new one.

RM PM RC

setContext(N)
replace

replace

destroy

getClassDef

connectManager

current state

RC2

state update

apply current
state

classDef

Chapter 5 Implementation

 85

5.7.3 Single user and simple multi-user variations

The ability to have one or more renderers concurrently connected to a single proxy is
configured at the proxy level. This is controlled when responding to the connectManager
request during migration in Figure 5-7. When a single renderer is concurrently al-
lowed, PM first disconnects its currently connected renderer(s) (if any), and then re-
sponds to the message. When multiple renderers are allowed concurrently, PM simply
accepts the new renderer, leaving the previously connected ones alone. The simple multi-
user functionality is quite limited. For example all renderers have equal rights in updating
the widget state, or responding to a proxy delegation. However the nature of the collabo-
ration is so that all the stores ends up synchronized to the proxy content, so all the ren-
derers end up displaying the same information. If users are using different renderers con-
currently, the management of the consistency between their actions depends on the way
the renderer-proxy interaction is implemented, which is let to the widget developer. A
current limitation of EBL is that there is a single current active renderer class, which
means that a widget with multiple renderers cannot have them adapted differently. This
is an implementation limitation that could be overcome.

5.7.4 User event management

User events are the events related to the running user interface. Widgets are normally in-
dependent agents; changing the color of a widget does not interfere with the state of
other widgets. However in the case of user events, one expects the causality of the events
to be kept. If a user clicks successively on button 1, button 2, and then button 3, the ap-
plication listening to these events expects them to arrive in this order. The user events in-
troduce a dependency between the widgets. The causality of the events happening in a
single EBL window (UIs split over different windows/devices do not respect the cau-
sality between the windows/devices) is kept by serializing them at the renderer side be-
fore sending them to the proxy, and by keeping this serialization at the proxy up to the
actual triggering of the action configured at the application.

Mozart provides a data type that supports a FIFO stream behavior: ports. A single
stream is associated to a port that serializes all the messages sent on it.

Chapter 5 Implementation

 86

Figure 5-9 Events ordering

When an application configures an action to be executed in reaction of an event, the
proxy of the widget uses a store to associate the action with the event, and possibly fur-
ther instructions concerning the parameters returned with the event like the coordinate
of the mouse for example. The synchronized store at the renderer executes a method to
bind the event on the actual widget. When the user triggers the event, it is encapsulated
with its parameters in a single message that is sent to the toplevel widget. The toplevel
widget has a single thread for receiving these messages (hence, it serializes them all), and
sends them to the proxy corresponding to the message. This message is received on the
event port associated to the proxy. A single thread reads all the messages from the stream
of this port, to execute the associated action. When several widgets need to keep the
causal ordering between them, they have to be configured to use the same event port.

By default all widgets constructed out of a single declarative data structure will use the
same event port; consequently if these widgets are displayed in a single window, the cau-
sality of the events is respected down to the application level.

5.7.5 Stores

The main communication medium between the proxy and its renderer(s) is the store. A
single widget can have an arbitrary number of named stores concurrently. Methods are
provided for reading and writing to these stores (see annex A for a complete reference):

 set(I K V): sets the key K of store I to V
 get(I K ?V): returns current value V in the store I for the key K

Each time the store is updated, a method is triggered at the renderer side. For that reason
the class defining a renderer must respect a specific API. For example, the renderer class

Site A

Proxy of One

Proxy of Two

Proxy of Three

Window Seriali-
zer/Dispatcher

Dis-
patcher

Site B

Proxy of Four

Proxy of Five

Proxy of Six

Dis-
patcher

Chapter 5 Implementation

 87

must implement the set(I K V) method. This method is automatically called by the ren-
derer manager in reaction to an update of the key K of the store I with the new value of
V. This method should implement the update of the actual widget corresponding to this
update of the store. In some sense, this is a remote method invocation (RMI) mecha-
nism, with proper storage of the data at the proxy. Another interpretation is that the
stores are repositories of the state widget at the proxy, and as a side effect trigger meth-
ods at the renderer so that it can reflect the state changes to the actual widget.

In summary the renderer manager triggers methods of the renderer object as needed by
the store updates. To simplify concurrency issues, the renderer manager uses a single
thread for invoking methods, which are implicitly serialized.

5.7.6 Delegation protocols

EBL allows the proxy to delegate (part of) its functional core to the renderer. As the ren-
derer is the place where the real toolkit is, and since the toolkit often already implements
the functional core of the widget, this is a convenient way of avoiding re-implementing
that part at the proxy. The delegation is at two different levels of granularity:

 At the whole widget level, by means of the ask(Q R) method of the proxy man-
ager. Q is the question submitted to the renderer, and R is eventually bound to a
response to this question. On the other side, the renderer manager automatically
invokes the ask(Q R) method of the renderer, and expects this method to even-
tually bind R to the response of Q. Once bound, the response is routed back to
the proxy.

 At the key level of each store, by means of:
o The remoteGet(I K R) method. I is the name of the store, K is the name

of the value, and R is eventually bound by the value returned by the ren-
derer for this key.

o The remoteSet(I K V R) method. I is the name of the store, K is the
name of the value, V is the new value proposed by the proxy itself for this
key, and R is eventually bound to true if the renderer confirms it accepts
this value (typically by checking the actual toolkit accepts it), or false oth-
erwise.

Delegation operations are implemented by transactions:

 If a renderer and the proxy survive long enough for the response to get back to
the proxy, then the transaction commits. For store transactions, the value update
becomes official, ie enters the store. As a side effect if there is more than one
renderer, they all receive the updated value.

 If a renderer does not survive long enough for the transaction to complete, then
the transaction is suspended until a new renderer comes in. When this happens,
first the state of the renderer is synchronized with the one of the proxy, and then
all pending transactions are automatically retried in order.

 If the proxy does not survive long enough for the transaction to complete, then
the widget itself disappears, and the transaction is lost forever as there is no store
anymore to apply it to.

Chapter 5 Implementation

 88

As stated in 3.4.3, the keys of a store are independent of each other. The store maintains
the consistency of each individual key, but not the consistency of multiple key updates.
However it is trivially simple to achieve this effect by making sure it is the proxy that
makes the multiple updates: either it survives all the updates, and then they will be even-
tually applied also at the renderers, or it disappears in the process but then the whole
widget and its store also disappear. For the delegation mechanism, this translates into us-
ing the key granularity for independent key updates, and the whole widget granularity for
multiple updates. We did not refine this granularity further as the need did not arise for
it. Consequently EBL maintains the consistency of the store by the following strategy:

 At the whole widget level the transactions are FIFO ordered. As EBL uses a sin-
gle thread at the renderer side, it means that ask(Q R) methods are called succes-
sively in the order of the transactions.

 Each key has its own transaction lock that serializes the transactions in the FIFO
order, while transactions on different keys are completely independent. As EBL
uses a single thread at the renderer side, it means that all the
remoteGet/remoteSet methods will be submitted to the renderer successively in
the order of the transactions.

It is up to the developer to make sure that the key granularity is used correctly, i.e. that
the key state is independent from the rest of the store. Under this assumption, the strat-
egy makes sure that the state of the store over which the transactions are applied stay co-
herent in case of a retry. Indeed in this situation, the stores of the new renderer are first
set to the current state of the proxy (i.e. last known state before the pending transac-
tions), and then the transactions are applied in order.

As a result, the proxy is not dependent on the survival of the renderer: it maintains the
complete state of the widget plus the pending transactions. As a result the renderers can
be disconnected at any time with no ill effect on the proxy. This ensures network fault
tolerance.

5.8 EBL toolkit binding recipes

To offer interesting functionality to the applications, EBL has to be interfaced to an ac-
tual graphical toolkit, resulting in a Mozart binding for this toolkit plus the EBL enabled
functionality. The previous sections introduced separately the different artifacts provided
by EBL for supporting the migration, adaptation, and simple multi-user functionalities.
This section will now show how to use them together, and details the actual binding of a
toolkit with EBL, as a set of recipes depending on the kind of widgets to interface.

5.8.1 Simple widget

A simple widget is a widget that corresponds to (1) an actual toolkit widget, and (2) is
composed of a single graphical entity to configure and interact with. Buttons, labels, ra-
dio buttons, and checkboxes are examples of simple widgets. Because of (2), a single
store is enough for all configuration parameters, and all event bindings.

5.8.1.a Proxy

Chapter 5 Implementation

 89

A class defines the proxy side of the widget. Its API is not imposed by EBL and is com-
pletely free. To work with EBL, the proxy must create an EBLProxyManager, which
controls the distributed widget. This manager gives an access to the stores of this widget.

The stores are highly configurable:

 Specification of the accepted keys, and their type:

{self.Store setParametersType(t(key1:type1 ... keyN:typeN))}

Only the keys key1...keyN will be accepted by the store. The special key '...' can
be specified as a wildcard for accepting any other keys:

{self.Store setParametersType(t('...':typeX))}

 Specification of the type verification functions, and their error message:

{self.Store setTypeChecker(t(type1:CheckFun1#ErrorString1 ...))}

CheckFunX is a unary function that returns a Boolean telling if the parameter is of
the valid type. ErrorStringX is the string displayed in the error message in case of
a type error.

 Specification of default values for the parameters:

{self.Store setDefaults(t(key1:Val1 ... keyN:ValN))}

 Specification of automatic translations before putting or getting a value in the
store, at the proxy and at the renderer side:

class ProxyOfMyWidget
 feat
 widgetName:myWidget
 Manager
 Store
 meth init
 self.Manager={NewEBLProxyManager self.widgetName}
 self.Store={self.Manager getStore(default $)}
 configuration of the store
 end

 functional core of the widget

 meth destroy
 {self.Manager destroy}
 end
 meth getRef($)
 {self.Manager getRef($)}
 end
 meth setContext(C)
 {self.Manager setContext(C)}
 end

end

Chapter 5 Implementation

 90

{self.Store setProxyMarshaller(t(type1:m(u2s:Fun1a s2u:Fun1b) ...))}
{self.Store setRenderMarshaller(t(type1:m(u2s:Fun1a s2u:Fun1b) ...))}

Values are translated by the function u2s (user to store) when putting them into
the store, and translated by the function s2u (store to user) when getting them
from the store.

The proxy widget should also provide an interface for destroying the widget, getting its
migration capability, and changing its renderer. The methods simply forward the request
to the proxy manager.

Typically the functional core of the widget provides an API for 1) changing/accessing its
parameters and 2) listen to user events:

 meth set(K V)
 {self.Store set(K V)}
 end
 meth get(K V)
 {self.Store get(K V)}
 end
 meth bind(…)
 Event={self.Store createEvent(…)}
 in
 {self.Store bind(Event)}
 end

The methods simply apply the request to the store. In this example, we rely completely
on the configuration of the store for checking the validity of the request. If it is not pos-
sible to configure the store completely, for example because the checking of the validity
of a parameter is too complex, then we can use the delegation mechanism instead:

 meth set(K V)
 if {Not {self.Store askSet(K V)}} then
 raise exception end
 end
 end
 meth bind(…)
 Event={self.Store createEvent(…)}
 in
 if {Not {self.Store askBind(Event $)}} then
 raise exception end
 end
 end

The askSet and askBind methods submit the requests to the renderer, and eventually re-
turns if it agrees on them or not. They use the transactional protocol described in section
4.7.6.

5.8.1.b Renderer

The renderer is defined by a second class. This class has to follow a template imposed by
EBL.

class RendererOfMyWidget
 feat handle manager store env toolkit parent eventPort

Chapter 5 Implementation

 91

 meth init(M)
 self.manager=M
 self.store={M getStore(default $)}
 configuration of the store
 self.env={M getEnv($)}
 self.toolkit={self.env get(toolkit $)}
 self.parent={self.env get(parent $)}
 self.eventPort=(self.parent).eventPort
 self.handle=self.toolkit command for creating the actual widget
 configuration of the initial state of the widget
 end
 meth set(I K V)
 toolkit command for changing the parameter K of the store I to V
 end
 meth remoteSet(I K V ?R)
 toolkit command for trying to change the parameter K of the store I
 to V, and return the success of the operation in R
 end
 meth remoteGet(I K ?R)
 toolkit command for returning the current value of the parameter K
 of the store I into R
 end
 meth bind(I Event P)
 toolkit command for configuring the widget to listen to the event
 Event of the store I and trigger P
 end
 meth askBind(I Event P ?R)
 toolkit command for trying to configure the widget to listen to the
 event Event of the store I and trigger P, and return the success of
 the operation in R
 end
 meth ask(Q ?R)
 respond to the question Q in R
 end
 meth send(M)
 apply the message M
 end
 meth destroy
 toolkit command for destroying the widget
 end
end

The init method receives the RendererManager as parameter. Similarly to the ProxyMan-
ager, the RendererManager gives an access to the stores of the widget. Stores are also
configurable at the renderer side, however in most situations they have already been con-
figured by the proxy. Differently from the ProxyManager, the RendererManager provides
an access to the migration environment, which contains a reference to:

 The local graphical toolkit to use.
 The parent container widget. This is required by the local toolkit when creating a

widget inside another one.
 The eventPort that serializes the user events.

The init method must create the actual widget for this renderer, and set it in its initial
state by getting the content of the store. Typically, this is achieved by:

 {ForAll {self.store getState($)}
 proc{$ K V} {self set(default K V)} end}
 {ForAll {self.store getBinding($)}
 proc{$ K#V} {self bind(default K V)} end}

Chapter 5 Implementation

 92

Besides the init method, the Renderer class must define several other methods:
 set(I K V): automatically called by EBL when the key K of the store I is set to

the value V.
 remoteSet(I K V ?R): automatically called by EBL when the proxy relies on the

renderer for setting the key K of the store I to the value V. This method must re-
turn the success of the operation in R.

 remoteGet(I K ?R): automatically called by EBL when the proxy uses the
remoteGet function of its manager. The renderer must return in R the current
value of the widget corresponding to the key K of the store I.

 bind(I Event P): automatically called by EBL to configure a user event. The
renderer must use the local toolkit to configure the widget to listen to Event of
the store I, and trigger an action that sends P on the eventPort, so that events
are forwarded to the proxy while respecting their causality order.

 askBind(I Event P ?R): automatically called by EBL when the proxy relies on
the renderer for checking the validity of Event of the store I. The event must be
configured like for bind(I Event P), and the method must report the success of
the operation in R.

 ask(Q ?R): automatically called by EBL when the proxy submits a question to the
renderer by means of the ask(Q R) method of its manager. The renderer must in-
terpret Q, and return the answer in R.

 send(M): automatically called by EBL when the proxy sends a message to the
renderer by means of the send(M) method of its manager.

 destroy: automatically called by EBL when the widget must be destroyed.

5.8.2 Windowing information

Even for simple widgets, application often needs windowing information: information
regarding their actual rendering in a window that is not an actual parameter of the widget.
The color depth of the screen displaying the widget and the absolute position of the wid-
get on the screen are examples of windowing information. This information is dynamic
in essence, and should not be cached in a store. Instead the proxy can directly ask the
renderer. This question is an EBL transaction that is eventually answered when a ren-
derer survives long enough to send to answer.

class WInfoProxyOfMyWidget
 from ProxyOfMyWidget
 meth winfo(K ?V)
 {self.Manager ask(winfo(K) V)}
 end

end

class WInfoRendererOfMyWidget
 from RendererOfMyWidget
 meth ask(Q R)
 R=case Q of winfo(P) then
 toolkit command for returning the P windowing information
 end
 end
end

Chapter 5 Implementation

 93

5.8.3 Compound widget

A compound widget is a widget that is composed of several simple widgets, but is con-
sidered as a single widget from the point of view of the application. For example a
monthly calendar that is created as a table of labels. The widget itself is the calendar; its
implementation however uses several simple widgets. In practice, a single proxy will have
to manage several physical widgets; each of them is associated to its own store to access
and modify it.

5.8.4 An item container widget

An item container widget is a widget that is composed of different identifiable entities
not detachable from the widget, and the application has a direct access to these entities.
This is somewhat similar to a container widget, except that the sub-entities are not real
widgets. For example the graphical items drawn on a vector based drawing area. The
items are not proper widgets; in particular they can exist only inside a drawing area. For
that reason, they are not programmed as individual widgets. Similarly to the compound
widget, we associate a store per item. At the proxy side, the proxy creates individual ob-
jects for each item, so that they know their identity and use the widget's manager to
communicate.

class ItemProxy
 feat Id Store
 meth init(I S)
 self.Id=I self.Store=S
 end
 functional core of the item using self.Store
end

class ItemContainerProxyOfMyWidget
 from ProxyOfMyWidget
 meth createItem(... return:R)
 Id={NewName}
 in
 R={New ItemProxy init(Id {self.Manager getStore(Id $)})}
 configuration of R
 notification of the existence of R to the renderer, for example
 by using a special key/store combination that maintains the list
 of the items
 end
end

5.8.5 Container widget

A container widget allows other widgets to migrate and be displayed inside its renderer.
A very common container is the table widget. At the proxy side, a container provides a
command for receiving other widgets. The renderer must implement a method that dis-
plays the migrated widget using the low level toolkit. Also, the renderer must implement
a method that creates the child migration environment. In particular, this method must
pass the reference to the toolkit to the child.

class ContainerProxyOfMyWidget
 from ProxyOfMyWidget
 meth display(Ref PlacementInstructions)
 possibly the proxy checks if another widget is already

Chapter 5 Implementation

 94

 at the PlacementInstructions place to remove it from there
 {self.Manager importHere(Ref PlacementInstructions)}
 end

end

class ContainerRendererOfMyWidget
 from RendererOfMyWidget
 meth importHere(Ob PlacementInstructions)
 toolkit command for placing Ob according to PlacementInstructions
 end
 meth setChildEnvironment(E PlacementInstructions)
 {E put(toolkit self.toolkit)}
 end
end

5.8.6 Toplevel widget

A toplevel widget creates a resource for receiving other widgets. Typically, the toplevel
widget is a window. From the point of view of EBL, a toplevel renderer receives an ac-
cess to the local resource directly from its proxy; toplevel widgets are also container wid-
gets and as such this resource is passed down to each individual migrated widget for the
whole window. Also container widgets create the unique user eventPort associated to
the site for keeping the causality order of user events. Messages received on the stream of
this port are zero parameter procedures encapsulated by EBL that forwards the user
event to the corresponding proxy when they are applied.

class WindowRendererOfMyWidget
 from ContainerRendererOfMyWidget
 meth init
 ContainerProxyOfMyWidget,init
 EventPort
 thread
 {ForAll {NewPort $ self.eventPort}
 proc{$ M} {M} end}
 end
 Env={self.Manager createRemoteEnvironment($)}
 {Env put(toolkit Toolkit)}
 {Env put(eventPort EventPort)}
 in
 {self.Manager createRemoteHere(Env)}
 end
end

The init method creates the eventPort, and applies the procedures received from it. Also
it creates an environment from scratch, and enters the toolkit and eventPort inside. Fi-
nally, the renderer is created locally with this environment by the createRemoteHere
method of the ProxyManager.

5.8.7 Simple multi-user functionality

EBL supports a simple multi-user functionality by letting a single widget having multiple
renderers concurrently. By default, widgets are configured to have only one renderer con-
nected at all time. This can be easily reconfigured.

class MultiUserProxyOfMyWidget

Chapter 5 Implementation

 95

 from ProxyOfMyWidget
 meth allowMultipleRenderers(B)
 {self.Manager setConnectionPolicy(
 proc{$ M}
 case M of incoming(Id) then
 if {Not B} then
 {ForAll {self.Manager getRenderIds($)}
 proc{$ I}
 {self.Manager disconnect(I)}
 end}
 end
 {self.Manager connect(Id)}
 else skip end
 end}
 end
end

The setConnectionPolicy method of the proxy widget configures a code that is applied
when a renderer attempts to connect to this proxy. The code defined here accepts new
incoming connections by calling the connect method of the ProxyManager. However
when B is false, this code first disconnects all currently connected renderers, by using the
disconnect method of the ProxyManager.

5.8.8 Global resource

A global resource is a simple multi-user widget that can be present several times at the
same site; however there should be only one renderer created for it. For example, a font
is a physical resource:

 It is a physical object one can interact with, to get information about its metrics
for example.

 It can be used by several different widgets simultaneously.
 However if several widgets at the same site use the same font, it is better to have

only one renderer for this font at that site.
This effect is achieved by using a unique storage for global resources at each site. The
toplevel window creates the storage, which is passed down to all migrated widgets
through the environment. The marshallers of the proxy and renderer stores are config-
ured so that fonts use this unique storage automatically.

Globalizer

GlobalDict={Dictionary.new}

fun{Globalizer Env Ref}
 Id={VirtualString.toAtom Ref}
 O N
 H={Env get(render $)}
in
 {Dictionary.condExchange GlobalDict Id unit O N}
 if O==unit then
 %% create it
 E={H.manager createRemoteEnvironment($)}
 {H setChildEnvironment(E unit)}
 {E put(proxy Ref)}
 in
 {H.manager createRemoteHere(E render:N)}
 else
 %% already created, return the current occurence

Chapter 5 Implementation

 96

 N=O
 end
 {N getWidget($)}
end

The Globalizer function takes an environment and a reference (migration capability) as
input. It uses a dictionary for mapping the global resources to their reference, creating
the entry in the dictionary when not already present.

The toplevel widget puts the Globalizer in the environment before creating its renderer:

{Env put(global Globalizer)}

Container widgets (including the toplevel itself) pass this resource to their children, in the
method setChildEnvironment:

{E put(global {self.env get(global $)})}

Widgets have parameters of the type of font. A font is itself implemented by a proxy-
renderer class pair. At the application side, when a parameter is set to a font, it is in fact
set to the proxy of the font. This proxy cannot enter the store of the widget because it is
not a distributable entity. Instead, the store is configured to transparently put the refer-
ence (migration capability) to the font instead. At the renderer side, the marshaller of the
store is configured to automatically translate this reference into an actual renderer. We
use the Globalizer function for this last step, so that a single renderer will represent all
the occurrences of the same font at the renderer site.

fun{ObjectToRef O}
 if {Object.is O} then
 {O.Manager getRef($)}
 else
 O
 end
end

fun{RefToHandle O M}
 E={{M getManager($)} getEnv($)}
in
 {{E get(global $)} E O}.handle
end

A store can be configured to marshall/unmarshall the globalResource type automatically
at the proxy side:

{ProxyStore setMarshaller(p(globalResource:m(u2s:ObjectToRef)))}

And finally at the renderer side:

{RendererStore setMarshaller(p(globalResource:m(s2u:RefToHandle)))}

Chapter 6 Case Studies and Evaluation

 97

Chapter 6 Case Studies and
Evaluation

Chapter 3 and 4 define what the problem EBL solves is. Chapter 5 explains how EBL
solves this problem and finishes by recipes for linking EBL to an actual toolkit. The
Tcl/Tk graphical toolkit was interfaced with EBL to create the EBL/Tk toolkit [ETk].
Chapter 6 now focuses on how to use this EBL-enabled toolkit. This chapter presents a se-
ries of case studies using EBL/Tk and exemplifying how it can be used to support run-
time migration, adaptation, and multi-user interaction. It also discusses how the design
principles stated in Chapter 3 and 4 are materialized into relevant facilities. The case stud-
ies are: a migratable clock (6.1), an adaptable clock (6.2), an application adaptable to a PC
and a PDA (6.3), and a multi-user game (6.4). The next section (6.5) explains the Univer-
salReceiver application that takes advantage of the generality of the migration capability
mechanism. The last sections of this chapter evaluate different aspects of the approach:
software engineering issues (6.6), performance measurements (6.7) and finally a compara-
tive analysis with other solutions (6.8).

6.1 Case study #1: A migratable clock

This case study revolves around a simple clock application. Contrarily to the well known
xclock application, our application will support migration.

Figure 6-1 xclock

We define the clock so that it uses the home site time, and not the time of the site cur-
rently displaying it. There are many different ways to implement this clock; this section
will present some on them.

We first consider the clock as a stand-alone application whose functional core imple-
ments the clock (6.1.1). This functional core is then moved into the proxy of a special-

Chapter 6 Case Studies and Evaluation

 98

ized widget to give birth to a proper clock widget (6.1.2). For efficiency reasons, the
functional core is then moved to the renderer, by using the delegation mechanism (6.1.3).
So far the clock widget is a specialization of another widget. This limits the possible ad-
aptations for the clock to this kind of widget. We remove this limitation by implementing
a proper clock widget that relies directly on the low level toolkit (6.1.4). Relying on the
low level toolkit forced us to use a different abstraction level for the programming of the
user interface. EBL provides a technique that allows using the high level abstraction of
EBL/Tk also at the renderer side (6.1.5).

6.1.1 The clock as a stand-alone application

The first approach is to develop a stand-alone application; the application’s functional
core is setting the displayed text to the current time every second.

UI={Build window(name:window
 label(name:clock))}

proc{RunClock Clock}
 thread
 proc{Loop}
 Time={OS.localTime}
 in
 {Clock set(text:{Format Time.hour}#":"#
 {Format Time.min}#":"#
 {Format Time.sec})}
 {Delay 1000}
 {Loop}
 end
 in
 {Loop}
 end
end

{RunClock UI.clock}
{UI.window show}

Figure 6-2 EBL clock

The user interface is trivial: a label inside a window. The thread runs a loop (implemented
by recursion using a functional style) that sets the text of the label to the current time
each second.

To migrate this clock away from the display of the site that created it, we need a place to
receive it. Let's call this place the rendering site, and pass the migration capability of the
clock over there. EBL provides a simple discovery mechanism based on the IP address
of the site offering the migration capabilities, and a TCP port number. Note that other
discovery services could be used instead.

ClockReference={UI.clock getRef($)}
Pu={NewPublisher 15632}
{Pu.subscribe clock ClockReference "The Clock"}

Chapter 6 Case Studies and Evaluation

 99

The getRef method of the label widget returns its migration capability. This capability is
a text string containing a reference to this widget over the Internet. It looks like
^3#35^E^#E3x-ozticket://10.0.0.4:9000:eEKaiy:Ve/W:w:w:m:zR4OtvE^m*.
The NewPublisher function of EBL creates a publisher object bound to the TCP port
provided as parameter. The publisher object is a dictionary that maps a key to a value and
a string describing this value. The subscribe feature of the publisher object enters an en-
try into this dictionary.

The rendering site first has to create a window that will be the container in which to dis-
play this widget. Then, it must get the migration capability, and pass it to the container
where to put it.

% the rendering site: another process running on another computer

UI={Build window(name:window)}
{UI.window show}

% the IP/port combination is hardcoded below
L={GetFromPublisher "10.0.0.4" 15632}

% L is a list of pairs Reference#Description. Here we need the first item of
the pair that is the first item of the list, hence L.1.1

{UI.window display(L.1.1)}

Once migrated, the label widget is still migratable by any other site that obtains its migra-
tion capability.

% yet another rendering site

UI={Build window(name:window
 td(name:table
 label(text:"Migrated Clock ")))}

{UI.window show}
L={GetFromPublisher "10.0.0.4" 15632}
{UI.table display(L.1.1 g(row:1 column:0))}

Figure 6-3 EBL clock

Figure 6-3 is a screenshot of migrating the clock inside a cell of a table instead of inside
the window itself.

6.1.2 The clock as a widget, v1

We will now build a clock widget instead of having an application whose functional core
implements one. We will have a proper clock widget which updates itself; the functional
core of the application is no more concerned with the update of the clock. The new wid-
get consists in three parts that have to be registered to EBL/Tk:

Chapter 6 Case Studies and Evaluation

 100

 The proxy of the widget. In this example, the clock is a specialized label widget.
The clock proxy is defined by this class:

ETkLabelProxy={GetWidgetClass label} % proxy definition of the label widget

class ClockProxy from ETkLabelProxy
 meth init
 ETkLabelProxy,init
 {RunClock self}
 end
end

 The renderer of the widget. As the widget is a specialization of the label widget,
we simply reuse the label widget renderer.

ETkLabelRenderer={GetRenderClass label default}

 The hybrid approach of EBL also needs a build function for mapping the de-

scription record of the UI into the actual widget. Once again this widget special-
izes the label widget, and we will reuse its build function.

ETkLabelBuild={GetBuildFun label}

The clock widget is registered by:

{RegisterAs clock ClockProxy ETkLabelBuild}
{SetRenderContextClass TCLTK clock default ETkLabelRenderer}

Once registered, the clock widget can be directly used:

UI={Build window(name:window clock(name:clock))}
{UI.window show}

As the clock is a specialized label, it supports its migration mechanism like we did before:

ClockReference={UI.clock getRef($)}
Pu={NewPublisher 15632}
{Pu.subscribe clock ClockReference "The Clock"}

Note that nothing changes at the renderer site as it still uses the capability registered by
this proxy to migrate the clock widget. The fact that the migration capability now refers
to a clock widget instead of a label one does not matter, the migration still occurs.

6.1.3 The clock as a widget, v2

The clock widget of 5.1.2 is still a label widget. In particular nothing prevents the applica-
tion from changing the displayed text. Each second the clock widget would reset the text
to the time, but in the meantime the application can still make it behave strangely. To ad-
dress this problem, we will now create a proper clock widget which is not a direct spe-
cialization of another one. The API of this widget is limited to the clock functionality
only.

Chapter 6 Case Studies and Evaluation

 101

class ClockProxy
 feat Clock !Manager
 meth init
 UI={Build label(name:clock)}
 in
 self.Clock=UI.clock
 self.Manager=self.Clock.Manager
 {RunClock self.Clock}
 end
 meth getRef($)
 {self.Clock getRef($)}
 end
end

The solution that requires the least changes over version 1 above is to have the
ClockProxy delegate to a label widget instead of directly inheriting from it. To still be a
valid EBL/Tk proxy, this version must provide the getRef method and pass the capabil-
ity of the label. Also the Manager feature of the label must be replicated and point to the
EBLProxyManager of the label widget.

Note that nothing changes at the renderer site as it still uses the capability registered by
this proxy to migrate this new clock widget.

6.1.4 The clock as a widget, v3

The two first versions of the clock explicitly rely on the label widget. Their implementa-
tion is simplified and in particular it avoids creating a clock renderer class. However it
limits the adaptation ability of the clock as we are stuck with the renderer of the label
widget. To address this problem, we create a proper proxy-renderer pair for the clock
widget.

class ClockProxy
 feat !Manager
 meth init
 self.Manager={NewProxyManager clock}
 thread
 Store={self.Manager getStore(clock $)}
 {Store setParametersType(t('...':'...'))}
 {Store setTypeChecker(t('...':fun{$ _} true end#""))}
 proc{Loop}
 {Store set(time {OS.localTime})}
 {Delay 1000}
 {Loop}
 end
 in
 {Loop}
 end
 end
 meth getRef($)
 {self.Manager getRef($)}
 end
end

This time the clock proxy creates its own EBL ProxyManager. According to the defini-
tion of this clock, the time is updated by the proxy. A thread runs a loop that updates a

Chapter 6 Case Studies and Evaluation

 102

key of a store to the current time of the proxy each second. Note that the store is config-
ured to accept any value for any key; as it is used only internally by the proxy we can al-
ways assume the correctness of the updates.

class ClockRenderer
 feat
 manager handle tk parent eventPort
 meth init(M)
 self.manager=M
 self.tk={{M getEnv($)} get(tk $)}
 self.parent={{{M getEnv($)} get(parent $)} getWidget($)}
 self.eventPort=self.parent.eventPort
 self.handle={New (self.tk).label tkInit(parent:self.parent.handle)}
 {ForAll {{self.manager getStore(clock $)} getState($)}
 proc{$ K#V} {self set(clock K V)} end}
 end
 meth set(I K V)
 {self.handle tk(configure
 text:{Format V.hour}#":"#{Format V.min}#":"#{Format
V.sec})}
 end
 meth destroy
 try
 {self.handle tkClose}
 catch _ then skip end
 end
end

The renderer must respect a skeleton imposed by EBL. With this simple example, the
renderer must implement these methods:

 init(M): when the clock widget is migrated, EBL creates an instance of this class,
and calls the init constructor with the renderer manager as parameter. The man-
ager gives an access to the local environment, in particular to the local graphical
toolkit and to the parent widget. These allow the creation of the widget
(self.handle). Finally the widget is initialized to the current state of the store.

 set(I K V): this method is called by EBL each time the key K of the store I has
been changed to V. This method must implement the consequence of this update
on the actual widget. In this example, a single key of a single store is used for set-
ting up the current time. Note that this method uses the low level commands of
the toolkit, so that the portion of the code of the RunClock procedure that ac-
complishes this task cannot be reused directly.

 destroy: this method is called by EBL each time this actual renderer is no more
needed, for example because it is migrated to another site, or because the widget
is destroyed.

After registering the proxy and the renderer to EBL:

{RegisterAs clock ClockProxy proc{$ _} skip end}
{SetRenderContextClass TCLTK clock default ClockRenderer}

We end up with a functional clock widget.

Note that nothing changes at the renderer site as it still uses the capability registered by
this proxy to migrate this new clock widget.

Chapter 6 Case Studies and Evaluation

 103

6.1.5 The clock as a widget, v4

The renderer of the version 3 of the clock had to be implemented using low level toolkits
command. In particular, the code updating the label widget according to the time is dif-
ferent with the one from the RunClock procedure:

RunClock v3 Renderer
{Clock set(text:{Format Time.hour}#":"#
 {Format Time.min}#":"#
 {Format Time.sec})}

{self.handle tk(configure
 text:{Format V.hour}#":"#
 {Format V.min}#":"#
 {Format V.sec})}

Although they are pretty close in this example, they are different because they use differ-
ent abstraction levels: RunClock uses the EBL/Tk abstraction level while the v3 renderer
uses the Tcl/Tk abstraction level. This difference adds supplementary complexity when
creating EBL widgets. For this reason EBL provides a way to work around the problem,
by giving an access to the declarative build function at the renderer side. This function
will create widgets at the EBL/Tk level of abstraction at the renderer side. These widgets
can then be displayed locally there, by using a technique similar to the one for the
toplevel widgets: create an environment from scratch, and display these widgets locally
inside the renderer. So now the renderer is in fact a container for the widgets he himself
creates. We hide the complexity of this mechanism into a generic renderer class. This
class is dependent on the low level toolkit, and as such cannot be part of EBL itself. It is
part of EBL/Tk however. Here is its definition:

class GenericRenderer
 feat
 manager handle tk parent content eventPort
 meth init(M)
 self.manager=M
 self.tk={{M getEnv($)} get(tk $)}
 {{M getEnv($)} put(render self)}
 {{M getEnv($)} put(handle self.handle)}
 self.parent={{{M getEnv($)} get(parent $)} getWidget($)}
 self.eventPort=self.parent.eventPort
 self.handle={New (self.tk).frame tkInit(parent:self.parent.handle)}
 {(self.tk).send grid(columnconfigure self.handle 0 weight:100)}
 {(self.tk).send grid(rowconfigure self.handle 0 weight:100)}
 {self createContent}
 {M displayHere({self.content.top.Manager getRef($)} unit)}
 end
 meth importHere(Ob P)
 Tk=self.tk
 in
 {Tk.send grid(Ob.handle column:0 row:0 sticky:nswe)}
 end
 meth remove(Ob)
 {(self.tk) grid(forget Ob.handle)}
 end
 meth destroy
 try
 {self.handle tkClose}
 catch _ then skip end
 end
 meth setChildEnvironment(E _)
 {E put(tk self.tk)}
 {E put(system {{self.manager getEnv($)} get(system $)})}

Chapter 6 Case Studies and Evaluation

 104

 {E put(global {{self.manager getEnv($)} get(global $)})}
 end
end

As this renderer is now a container, it must also implement the importHere, remove and
setChildEnvironment methods. Now we can implement a clock renderer based on this
class:

class ClockRenderer from GenericRenderer
 meth init(M)
 GenericRenderer,init(M)
 {ForAll {{self.manager getStore(clock $)} getState($)}
 proc{$ K#V} {self set(clock K V)} end}
 end
 meth createContent
 self.content={self.manager build(label(name:top) $)}
 end
 meth set(I K V)
 {self.content.top set(text:{Format V.hour}#":"#
 {Format V.min}#":"#
 {Format V.sec})}
 end
end

And now the renderer is working at the EBL/Tk abstraction level instead of the low
level Tcl/Tk one.

There is a last implementation detail that needs to be solved for this example to work:
EBL allows defining several widget repositories concurrently, each one using their own
set of proxy class definitions, while the renderer definitions are shared among all these
repositories. For the build function of the renderer manager to work right, EBL needs to
know which proxy repository should be used. This information is known when the appli-
cation constructs the widget, by the build function associated to the proxy for supporting
the declarative approach for building UIs. This function must pass this information to
the manager of the proxy, which relays it automatically to the connected renderer. Con-
sequently the clock proxy must now be registered like this:

{RegisterAs clock ClockProxy
 proc{$ E} {E.handle.Manager setBuilder(E.builder)} end}

6.2 Case study #2: An adaptable clock

Let us extend the clock v4 of section 5.1 by adding new renderers. This will allow an ap-
plication to dynamically switch between them, for example to dynamically adapt the
clock with respect to the size available to display it. To offer adaptation to the applica-
tion, the clock widget must provide a method to support it:

meth setContext(C) {self.Manager setContext(C)} end

We begin by simple alternate textual adaptations for the clock (5.2.1). Then we continue
with a complete different type of representation for the clock: an analog clock (5.2.2),
and show examples of further possible adaptations (5.2.3).

Chapter 6 Case Studies and Evaluation

 105

6.2.1 Adaptation example #1

Let us first create other textual representations of the time, which can still use a label
widget:

F=[hourmin#fun{$ V} {Format V.hour}#":"#{Format V.min} end
 hourminsecdate#fun{$ V}
 {Format V.hour}#":"#{Format V.min}#";"#
 {Format V.sec}#"\n"#
 {Format V.mDay}#"/"#{Format V.mon+1}#"/"#V.year+1900
 end]

{ForAll F
 proc{$ Name#Fun}
 class LabelRenderer from ClockRenderer
 meth set(I K V)
 {self.content.top set(text:{Fun V})}
 end
 end
 in
 {SetRenderContextClass TCLTK clock Name LabelRenderer}
 end}

Two functions are created to transform a date into different string representations. These
functions are paired with names, and placed in a list. The list is parsed by the ForAll pro-
cedure, and for each name & function pair, a class is created that specializes the
ClockRenderer of v4 so that the set method now uses the function to map the time to a
string. This class is registered with the associated name.

We can now build a clock as usual, and then switch between the default representation
defined by v4, and these two new ones:

UI={Build window(name:window clock(name:clock))}
{UI.window show}

...

{UI.clock setContext(hourminsecdate)}

...

{UI.clock setContext(hourmin)}

...

{UI.clock setContext(default)}

It is interesting to note how we used a mixed declarative/imperative approach for creat-
ing these two new renderers:

 The list is a declarative data structure that contains high level specification of a
problem.

 This list is parsed to create the individual renderers.
In other words, the list is a specification in a model, while the second part is the dynamic
interpretation of this model into an executable entity. This approach is possible because
Oz is a multi-paradigm programming language. With this approach, new textual render-

Chapter 6 Case Studies and Evaluation

 106

ers can be added by simply extending a list. Alternate renderers are created at a very low
development cost. In other words, this approach facilitates the creation of adaptable
widgets.

6.2.2 Adaptation example #2

In the adaptation example #1, the renderers we added were well suited for a mixed de-
clarative/imperative approach. Let us now add a renderer which is not well suited for this
approach: an analog clock that cannot be implemented by a label widget. The only
Tcl/Tk widget that supports displaying such information is the canvas widget: a vector
based drawing area that is piloted by imperative commands. Drawing an analog clock in a
EBL/Tk canvas is achieved by these procedures:

PI2={Float.acos 0.0}

fun{InitCanvas Canvas}
 Ring Hour Min Sec
 {Canvas create(oval [0.0 0.0 0.0 0.0] handle:Ring)}
 {Canvas create(line [0.0 0.0 0.0 0.0] width:3 handle:Hour)}
 {Canvas create(line [0.0 0.0 0.0 0.0] width:1 handle:Min)}
 {Canvas create(line [0.0 0.0 0.0 0.0] width:1 handle:Sec)}
in
 r(ring:Ring hour:Hour min:Min sec:Sec)
end

proc{SetTime AC Time Width Height}
 CM={Int.toFloat Time.min}/60.0
 CH={Int.toFloat (Time.hour mod 12)}+12.0+CM/12.0
 CS={Int.toFloat Time.sec}/60.0
 S={Max {Min Width Height} 40.0}
 S2=S/2.0
 S23=S2*2.0/3.0
 S25=S2*2.0/5.0
in
 {AC.ring setCoords([10.0 10.0 S-10.0 S-10.0])}
 {AC.sec setCoords([S2 S2
 S2+S23*{Float.cos CS*4.0*PI2-PI2}
 S2+S23*{Float.sin CS*4.0*PI2-PI2}])}
 {AC.min setCoords([S2 S2
 S2+S23*{Float.cos CM*4.0*PI2-PI2}
 S2+S23*{Float.sin CM*4.0*PI2-PI2}])}
 {AC.hour setCoords([S2 S2
 S2+S25*{Float.cos CH*4.0*PI2-PI2}
 S2+S25*{Float.sin CH*4.0*PI2-PI2}])}
end

The InitCanvas function creates the artifacts of the analog clock. The SetTime proce-
dure changes the coordinates of these artifacts according to a time, a width, and a height.
We can use these functions directly on a canvas:

UI={Build window(name:window canvas(name:canvas))}
{UI.window show}
AC={InitCanvas UI.canvas}
{SetTime AC {OS.localTime} 100.0 100.0}

Chapter 6 Case Studies and Evaluation

 107

To create a proper live analog widget, we need to extend this code to update the time
each second: this is achieved by the clock proxy. Also we need to take the display size of
the canvas into account, so that the analog clock resizes itself accordingly. We could im-
plement that part at the proxy side. However in that situation when the canvas is resized,
the action that resizes the clock would be executed by the proxy and not by the renderer.
This action must first obtain the new width and height of the canvas, and then update
the clock accordingly: these are all remote operations.

This places an unnecessary overhead on the network. To avoid this problem, the ren-
derer will manage the resize of the canvas directly:

class AnalogClockRenderer from GenericRenderer
 attr Width Height Time
 feat AC
 meth init(M)
 GenericRenderer,init(M)
 %% The InitCanvas function creates the clock artifacts
 self.AC={InitCanvas self.content.top}
 %% The Configure event below is triggered when the widget is resized
 {self.content.top
 bind(event:'Configure'
 action:proc{$}
 %% Obtains the new width and height of the widget

Proxy Renderer

‘Configure’ event

winfo(width:?)
winfo(height:?)

winfo(width=W)
winfo(height=H)

{Seconds setCoords(…)}

{Hours setCoords(…)}
{Minutes setCoords(…)}

Chapter 6 Case Studies and Evaluation

 108

 Width:={Int.toFloat {self.content.top winfo(width:$)}}
 Height:={Int.toFloat {self.content.top
 winfo(height:$)}}
 %% The SetTime procedure configures the clock artifacts to display
 %% a specific time at a specific width and height
 {SetTime self.AC @Time @Width @Height}
 end)}
 %% The stores are preconfigured with the current state of the widget
 {ForAll {{self.manager getStore(clock $)} getState($)}
 proc{$ K#V} {self set(clock K V)} end}
 end
 meth createContent
 self.content={self.manager build(canvas(name:top) $)}
 end
 meth set(I K V)
 Time:=V
 %% The SetTime procedure configures the clock artifacts to display
 %% a specific time at a specific width and height
 {SetTime self.AC V @Width @Height}
 end
end

{SetRenderContextClass TCLTK clock analog AnalogClockRenderer}

This example shows two important points of EBL:

1. It is possible to use the high level toolkit (EBL/Tk) when defining a renderer.
This makes it possible to directly move part of the functional code between the
proxy and the renderer.

2. The hybrid declarative/imperative approach allows using a model-based ap-
proach when the situation is favorable and an imperative approach otherwise. In
particular, there is no restriction of expressivity on what is possible to implement.

Chapter 6 Case Studies and Evaluation

 109

6.2.3 More adaptation examples

Figure 6-4 Adaptable clock with calendar

Figure 6-4 shows more adaptation examples for the clock. Once a widget has been de-
fined, any application can use it and benefit from its adaptations. EBL can be used as a
repository for adaptable widgets, allowing reusability for all applications.

6.3 Case study #3: An adaptable application

Some of the widgets of EBL/Tk support natively different representations. Let us show
an example of an application for entering information about a movie, using adaptation.

UI={Build window(name:window
 td(navigator(name:navigator
 lr(label(text:"Director:" glue:w)
 entry(name:director glue:we) newline
 label(text:"Writers:" glue:w)
 entry(name:writes glue:we) newline
 label(text:"Release Date:" glue:w)
 entry(name:releasedate glue:we))
 lr(selector(name:genre
 text:"Genre"
 items:["Action" "Crime"
 "Drama" "Comedy"]))
 td(label(text:"Plot outline")
 text(name:text width:40 height:10

Chapter 6 Case Studies and Evaluation

 110

glue:nswe)))))}

Each adaptable widget defines its own names for the different possible renderings. We
can force them to use shared names for the combination of renderings that interest us.
We will define two of them:

 One for use on a PC where a large screen and a keyboard are present.
 One for use on a PDA where the screen estate is small, and there is no keyboard.

AdaptationMap=[navigator#flat#default entry#default#virtualkb
 spinbox#default#virtualkb selector#default#menu]

{ForAll AdaptationMap
 proc{$ Widget PC PDA}
 {SetRenderContextClass TCLTK Widget pc {GetRenderClass Widget PC}}
 {SetRenderContextClass TCLTK Widget pda {GetRenderClass Widget PDA}}
 end}

The AdaptationMap list is parsed and for each of the specified widget, the two renderer
definitions we are interested in are obtained, and re-registered using the pc and pda
names.

This allows us to use the setContext method on UI itself, which applies the context to
all the widgets it manages.

{UI setContext(pc)}

The PC version offers a side by side presentation for the three groups of input fields.
The left part uses the normal text and number input widgets. The middle part uses a set
of radio buttons for selecting the genre. The right part uses a normal text widget.

{UI setContext(pda)}

Chapter 6 Case Studies and Evaluation

 111

On the other hand the PDA version only display one part at a time, with navigational
buttons at the bottom. Further the text and number input widgets have an arrow that
displays a virtual keyboard for entering the data:

The middle part uses a menu to select between the items instead of radio buttons. This
widget also has a listbox renderer that we could use instead:

And finally the right part uses a text widget for which no alternate renderer is currently
provided unfortunately. If a renderer was created with support for a virtual keyboard,
then we could use it by specifying it in the AdaptationMap, without changing any other
part of the code.

Chapter 6 Case Studies and Evaluation

 112

6.4 Case study #4: A multi-user application

Let’s consider a digital Pictionary-like game. The game is run on three devices: a PDA, a
laptop, and a computer connected to a video projector as illustrated in Figure 6-5.

Team 1 member guesses the
drawn word.

Team 1 member draws the word
on the PDA.

Team 2 member selects a word
for team 1 and watches how they
manage to guess it.

Team 1 member guesses the
drawn word.

Team 1 member draws the word
on the PDA.

Team 2 member selects a word
for team 1 and watches how they
manage to guess it.

Figure 6-5 Mobictionary scenario

To start the game, the application must be run on the three devices.

Once the connection is established,

• The laptop is given to one team for them to enter a word. Once entered, a
countdown starts.

• The drawer from the other team is given the PDA: the word appears on it, and

he can draw whatever he wants on the screen.

Chapter 6 Case Studies and Evaluation

 113

• A video projector projects the drawing from the laptop.

Let’s design this application with our toolkit, using the simple multi-user aspects of the
toolkit. Even if three different devices are used in a distributed fashion, we must think of
this application as a single process application, with transparently distributed user inter-
faces. The widgets used are:

• A text field for entering the text (Laptop)

Chapter 6 Case Studies and Evaluation

 114

• A label for displaying this text (PDA)
• A start button for accepting the text input and starting the countdown (Laptop)
• A clock (PDA, Laptop, and PC)
• A free drawing area (PC and PDA)
• A toolbar for selecting the drawing tools (PDA)
• A “Win” button the click if the word is guessed on time (Laptop)

We end up with 7 different components, some of them present only on one device, oth-
ers at different devices simultaneously. Let’s get back to the proxy-renderer relationship:
the underlying principle is that the proxy serves as the reference for the state of the wid-
get while the renderer follows the instructions of the proxy for updating its incarnation.
This principle allows the existence of several renderers; each of them following the same
instructions. Basically they all act as mirrors views of the same proxy. Note that this is
against the principle of not disrupting the stationary behavior as we introduce multi-user
capabilities. New complexity is introduced because of concurrency and coherency prob-
lems. The toolkit itself provides a very basic way of dealing with this complexity: each
widget can be configured so as to have at maximum one renderer at a time (the default),
or to let an arbitrary number of renderers connected at the same time. This thesis is not
going to explorer further the complexity of managing multi-user interfaces that way;
however we plan on doing it on future research. Nevertheless for the Mobictionary ap-
plication, we have enough:

• The application can be run from any device, including the PC, the laptop, the PC
or even another computer. For our demonstration, we use the laptop.

• The text field, Start and Win buttons are created and migrated to the laptop
• The clock is created, configured to support multiple renderers and displayed on

all the devices
• The label and the toolbar are created and migrated to the PDA.
• The canvas is created, configured to support multiple-renderers and displayed on

the PDA and the PC.
When the start button is clicked, the content of the text entry is placed into the label, and
a countdown thread is created: each second the clock is updated to reflect the remaining
time. The toolbar chooses the active drawing tool, while the clicks on the drawing area
issue commands to apply it at that place. And that’s it; we have a functional simple multi-
player game!

Note that the three processes find each other using the Discovery module of Mozart,
which uses a broadcasting message on a LAN to find providers.

Chapter 6 Case Studies and Evaluation

 115

Figure 6-6 The Mobictionary application

The code of this application is available at Annex B. This case study is a good example of
how EBL enables a simple multi-user application to be designed as a single application.

6.5 Flexible & transparent migration: UniversalReceiver

With this toolkit, all the widgets have automatically a migration capability. This capability
is controlled by the universal reference of the widget. This universal reference is a simple
text string encoding the information needed to find the widget on the Internet. As long
as the widget exists, this reference implements the migration capability of the widget.
Typically, passing a reference from an application A to an application B is achieved by a
discovery service. This service can be implemented in many different ways:

− By human beings, dictating the reference over the phone.
− By email, sending the reference inside an email.
− By using an Internet server, where A registers the reference and B gets it back.

This server can be a Web server, an FTP server, or the simple socket server
provided by EBL itself.

− By broadcasting messages over a LAN, allowing B to find A and get the refer-
ence. This can be implemented by the Discovery module of Mozart.

− By registering to a peer to peer network and using its functionality to get the
reference. This can be implemented by the P2PS module for Mozart.

The reference mechanism completely hides the actual functionality of the associated UI.
In particular the application B does not need to be specifically designed to fit with the
application A in order for the migration to work. The application could B designed to
work hand in hand with some part of the UI of the application A: this is a design issue
and not a requirement. Thanks to that property, we have created a UniversalReceiver that
uses the embedded EBL discovery functionality for migrating any UI offered by this ser-

Chapter 6 Case Studies and Evaluation

 116

vice. The screenshots are executed on the display of a single computer for clarity; the re-
mote applications are different processes on the same computer. For EBL it would work
exactly the same if the processes were on other computers.

The Calendar application at the left offers different parts of its UI using the EBL discov-
ery module. The UniversalReceiver application at the right gets the information over
these parts. One can select one of them, and import it.

The Zoom button in the UniversalReceiver window creates a new window (in the same
process as the UniversalReceiver) and migrates the widget there.

Chapter 6 Case Studies and Evaluation

 117

A second UniversalReceiver can be concurrently launched, and get the references from
the Calendar.

A UI migrated at the second UniversalReceiver can still be migrated at the first one.

Chapter 6 Case Studies and Evaluation

 118

Now let's connect the second UniversalReceiver to the first one (note the different port
number).

And we can migrate the right part of the first UniversalReceiver (the panedwindow) into
the second UniversalReceiver. Note how the calendar is migrated along.

Chapter 6 Case Studies and Evaluation

 119

And finally we can use the Restore All Widget button of the Calendar application to gets
all the widgets back in place.

This example demonstrates the great flexibility of the migration provided by EBL.

6.6 Software engineering issues

The purpose of this thesis is to demonstrate the EBL approach to providing migration,
adaptation and simple multi-user for graphical user interfaces. We do not have any par-
ticular claims regarding the software engineering aspects of EBL enabled toolkits. In par-
ticular EBL is not designed to enforce the developer into a style deemed appropriate for

Chapter 6 Case Studies and Evaluation

 120

GUI programming. The focus is to add the extra functionality on top of the concepts of
usual graphical toolkits (widgets, event bindings) in a mostly conservative way. Because
of this, EBL is by default no better or worse than typical toolkits from a software engi-
neering point of view. However we can make several observations that hints that EBL
has in fact several interesting properties from this point of view:

 The MVC (model-view-controller) pattern is usually considered the correct way
to program complex UIs. The mixed declarative/imperative approach naturally
favors this approach: using a functional approach, it is natural to isolate the
model, and infer a view (the description record in a declarative paradigm) and the
associated controller (the functional core in an imperative paradigm). The switch-
ing of paradigm forces a clean split between the view and the controller. Creating
alternate representations for supporting adaptation is implemented by creating al-
ternate functions that infer other view/controller pairs.

 The management of user events by the toolkit often forces the programmer into
a bad programming style:
1. Typically toolkits associate one event to one piece of code, however in gen-

eral the real association must also take a context into account. For example,
clicking on an unselected rectangle selects it, while clicking on an already se-
lected rectangle initiate a move operation by drag and drop. The context of
the rectangle is characterized by its selection state, which changes the code to
execute in reaction to the same user event. Except some toolkits like HsmTk
[Blanch05b] designed to specifically deal with this situation, most toolkits ig-
nore the context and only allow user event to code direct associations.

2. Some mainstream toolkits (e.g. AWT for Java) force managing user events in
specific groups. For example, a group will handle all mouse related events; the
developer will have to manage all these events specifically in this group.

These two reasons force the place where the events are treated inside the code of
the application. This place is not based on modularity or locality considerations,
but on the place imposed by the toolkit. This results in spaghetti like coding,
where pieces of code logically connected together are split throughout the rest of
the code.
EBL provides a single bind method for all events configuration. This method
works at the individual event granularity, hence does not suffer from point two
above. However EBL does not manage contexts for the user events, hence suf-
fers from the limitation of point one above. Context management of user events
can be added in future versions of EBL.

6.7 Performance

The speed tests are executed on a 2 GHz Pentium-M laptop with 1 GB of memory run-
ning Windows XP SP2. All tests are executed inside the Mozart OPI using a fresh virtual
machine. The time is measured in milliseconds (ms).

6.7.1 Toolkit speed analysis

As EBL relies on an external library for the actual display of the widgets, its performance
is the one of that library plus the overhead it introduces itself. This overhead occurs each
time the widget has to communicate with the application, which could happen:

Chapter 6 Case Studies and Evaluation

 121

1. when the proxy sends an update to the renderer (simple send)
2. when the proxy asks the renderer to apply an update and return back the result

(send & receive)
3. when the renderer notifies the proxy of an update, for example when the user

types a letter in an entry widget (simple send)
4. when the renderer notifies the proxy of an event (simple send)

Also, the migration process itself is a distributed operation that may require a lot of in-
formation to be sent to the renderer. Note that when the renderer is displayed at the
same site as its proxy, then the distribution feature of Mozart makes sure that all the
communication is purely local; in this situation the overhead is very minimal.

It is very hard to have a useful metrics to measure the overhead introduced by EBL, be-
cause a lot of factors beyond our control take part of the global overhead:

1. Respective speed of the computers involved in the distribution of the UI. In par-
ticular, embedded devices like handhelds computers have very little computa-
tional capability when compared to desktop computers.

2. The network latency often introduces a huge perceivable delay. Working on a
LAN reduces this delay.

3. Each widget is implemented as a dual proxy-renderer entity. The functional core
of the widget can often be arbitrarily placed more at the proxy or more at the
renderer. This greatly influences the final performance of the widget. Also, the
implementation of the proxy can have different degree of reliance on the ren-
derer. In particular, the functional core of the widget can be duplicated at the
proxy with a great deal of flexibility: this reduces greatly the amount of work re-
quired to create a proxy class, however the dependance introduced is an overhead
directly dependent on the network latency.

6.7.1.a Asynchronous speed comparison

First we survey the speed of ETk in a centralized environment, for commands that do
not rely on rely on the renderer to complete. We compare the ETk speed with these two
other bindings for Mozart:

− The Tk module is a direct object-oriented binding to Tcl/Tk. Commands are
sent asynchronously to Tcl/Tk; errors appear at the Tcl/Tk side and are not
reported back to the Oz application.

− The QTk module is a high level binding to Tcl/Tk, which supports a mixed
declarative/imperative approach for building user interfaces. Commands are
sent synchronously to Tcl/Tk; errors at the Tcl/Tk side are reported back to
the Oz application.

The benchmark code consists in changing the foreground color of a button widget 20
000 times.

declare

Win={New Tk.toplevel tkInit}
Button={New Tk.button tkInit(parent:Win text:"Button")}
{Tk.send pack(Button)}

proc{Loop I}

Chapter 6 Case Studies and Evaluation

 122

 if I<10000 then
 {Button tk(configure fg:"red")}
 {Button tk(configure fg:"black")}
 {Loop I+1}
 end
end

T1={Property.get 'time.total'}
{Loop 0}
T2={Property.get 'time.total'}
{Show T2-T1}

Tk version

declare

[QTk]={Module.link ["x-oz://system/wp/QTk.ozf"]}
Button
Win={QTk.build td(button(handle:Button text:"Button"))}
{Win show}

proc{Loop I}
 if I<10000 then
 {Button set(fg:red)}
 {Button set(fg:black)}
 {Loop I+1}
 end
end

T1={Property.get 'time.total'}
{Loop 0}
T2={Property.get 'time.total'}
{Show T2-T1}

QTk version

declare

[ETkMod]={Module.link ["ETk.ozf"]}
ETk=ETkMod.etk

Button
All={ETk.build window(name:top button(handle:Button text:"Button"))}
{All.top show}

proc{Loop I}
 if I<10000 then
 {Button set(fg:ETk.color.red)}
 {Button set(fg:ETk.color.black)}
 {Loop I+1}
 end
end

T1={Property.get 'time.total'}
{Loop 0}
T2={Property.get 'time.total'}
{Show T2-T1}

ETk version

The measure times are:

Chapter 6 Case Studies and Evaluation

 123

Toolkit Time in ms
Tk 422
QTk 24 297
EBL/Tk 750

The synchronous approach of QTk drastically slows it down. However in this situation
EBL/Tk is still running asynchronously. The overhead introduced by EBL over Tk is
328ms for 20 000 operations.

6.7.1.b Synchronous speed comparison

We repeat the previous test, this time using a command implemented synchronously in
EBL/Tk.

declare

Win={New Tk.toplevel tkInit}
Canvas={New Tk.canvas tkInit(parent:Win)}
{Tk.send pack(Canvas)}
Item={Canvas tkReturn(create(rect 10 10 100 100) $)}

proc{Loop I}
 if I<10000 then
 {Canvas tk(itemconfigure Item outline:"red")}
 {Canvas tk(itemconfigure Item outline:"black")}
 {Loop I+1}
 end
end

T1={Property.get 'time.total'}
{Loop 0}
T2={Property.get 'time.total'}
{Show T2-T1}

Tk version

declare

[QTk]={Module.link ["x-oz://system/wp/QTk.ozf"]}
Canvas
Win={QTk.build td(canvas(handle:Canvas))}
{Win show}
Item={Canvas create(rectangle 10 10 100 100 handle:$)}

proc{Loop I}
 if I<10000 then
 {Item set(outline:red)}
 {Item set(outline:black)}
 {Loop I+1}
 end
end

T1={Property.get 'time.total'}
{Loop 0}
T2={Property.get 'time.total'}
{Show T2-T1}

Chapter 6 Case Studies and Evaluation

 124

QTk version

declare

[ETkMod]={Module.link ["ETk.ozf"]}
ETk=ETkMod.etk

Canvas
All={ETk.build window(name:top canvas(handle:Canvas))}
{All.top show}
Item={Canvas create(rectangle [10.0 10.0 100.0 100.0] handle:$)}

proc{Loop I}
 if I<10000 then
 {Item set(outline:ETk.color.red)}
 {Item set(outline:ETk.color.black)}
 {Loop I+1}
 end
end

T1={Property.get 'time.total'}
{Loop 0}
T2={Property.get 'time.total'}
{Show T2-T1}

ETk version

The measured times are:

Toolkit Time in ms
Tk 453
QTk 12 188
EBL/Tk 13 968

The synchronous approach of QTk and EBL/Tk drastically slows them down. The dif-
ference in speed with QTk is directly due to the overhead of the proxy-renderer mecha-
nism; here it is 1780ms for 20 000 operations.

6.7.1.c Migration speed

The next speed measurement consists in migrating a single widget in a single process 20
000 times.

declare

[ETkMod]={Module.link ["ETk.ozf"]}
ETk=ETkMod.etk

Label
All1={ETk.build window(name:top label(text:"Label" handle:Label))}
{All1.top show}
All2={ETk.build window(name:top)}
{All2.top show}
Ref={Label getRef($)}

proc{Loop I}

Chapter 6 Case Studies and Evaluation

 125

 if I<10000 then
 {All2.top display(Ref)}
 {All1.top display(Ref)}
 {Loop I+1}
 end
end

T1={Property.get 'time.total'}
{Loop 0}
T2={Property.get 'time.total'}
{Show T2-T1}

To ensure the fault tolerance, the proxy contains the complete state of the widget. As a
result, the migration process between two sites consists in dropping the old site, and mi-
grating to the new one. There is no dependency between these two sites, and in particular
the old site can be dropped even during the migration process. As a result, the migration
process is asynchronous, and the code above is executed in only 203ms.

To have a more interesting figure, we can issue a command that requires that the migra-
tion process is completed before migrating away.

declare

[ETkMod]={Module.link ["ETk.ozf"]}
ETk=ETkMod.etk

Label
All1={ETk.build window(name:top label(text:"Label" handle:Label))}
{All1.top show}
All2={ETk.build window(name:top)}
{All2.top show}
Ref={Label getRef($)}

proc{Loop I}
 if I<10000 then
 {All2.top display(Ref)}
 {Wait {Label winfo(width:$)}}
 {All1.top display(Ref)}
 {Wait {Label winfo(width:$)}}
 {Loop I+1}
 end
end

T1={Property.get 'time.total'}
{Loop 0}
T2={Property.get 'time.total'}
{Show T2-T1}

To isolate the time taken by the migration process, we have to remove the time taken by
the synchronous operation itself.

declare

[ETkMod]={Module.link ["ETk.ozf"]}
ETk=ETkMod.etk

Label
All={ETk.build window(name:top label(text:"Label" handle:Label))}
{All.top show}

Chapter 6 Case Studies and Evaluation

 126

proc{Loop I}
 if I<10000 then
 {Wait {Label winfo(width:$)}}
 {Wait {Label winfo(width:$)}}
 {Loop I+1}
 end
end

T1={Property.get 'time.total'}
{Loop 0}
T2={Property.get 'time.total'}
{Show T2-T1}

The first test executed in 93 281 ms while the second in 12 844 ms and so it took 80 437
ms to migrate the widget 20 000 times or around 4 ms per migration. Each migration re-
quired to destroy the old widget, and create a new one. We can measure the time this
takes with the Tk module.

declare

Win={New Tk.toplevel tkInit}

proc{Loop I}
 if I<20000 then
 Button={New Tk.button tkInit(parent:Win text:"Button")}
 in
 {Tk.send pack(Button)}
 {Wait {Tk.return update(idletasks)}}
 {Button tkClose}
 {Loop I+1}
 end
end

T1={Property.get 'time.total'}
{Loop 0}
T2={Property.get 'time.total'}
{Show T2-T1}

This code executed in 27 313 ms. Consequently the migration overhead introduced by
EBL/Tk is 53 124 ms for 20 000 migrations or around 2.6 ms per migration.

In conclusion we argue that EBL is very well fitted with UIs that do not constantly
change their state constantly. This covers WIMP desktop applications at large. However
this does not cover multimedia applications with video, nor does it cover 3D games
where the view is also constantly changing.

6.7.2 Development cost of EBL/Tk

The EBL/Tk toolkit was developed to validate the EBL approach. The code is com-
posed of core proxy and renderer classes that are valid for all widgets supported by
Tcl/Tk. These classes are defined in around 800 lines of code. Each widget specialize
these classes, to further reflect their functionality at the proxy level. The stores are con-
figured automatically by getting the type information of the widget parameters from
Tcl/Tk when compiling EBL/Tk. Consequently, the specialization is often very cheap,
for example the button widget is defined in only 33 lines of code. The most complex

Chapter 6 Case Studies and Evaluation

 127

widget is the canvas widget which is defined in around 500 lines of code; this code also
introduces objects for representing the items in the canvas. The global development ef-
fort for EBL/Tk was around a single man/month of work.

Filename # lines
ETk.oz 833
ETkButton.oz 32
ETkCanvas.oz 510
ETkCheckbutton.oz 82
ETkDialogbox.oz 216
ETkEntry.oz 335
ETkFont.oz 111
ETkImage.oz 283
ETkLabel.oz 44
ETkLabelframe.oz 51
ETkListbox.oz 281
ETkMenubutton.oz 449
ETkMessage.oz 18
ETkMisc.oz 1225
ETkNavigator.oz 404
ETkPanedwindow.oz 256
ETkRadiobutton.oz 116
ETkReceiver.oz 19
ETkScale.oz 92
ETkScrollbar.oz 191
ETkSelector.oz 207
ETkSpinbox.oz 128
ETkTable.oz 150
ETkTest.oz 165
ETkText.oz 136
ETkWindow.oz 191

6.7.3 Development cost of applications using EBL/Tk

Not enough data is available to draw accurate conclusions on the impact of EBL/Tk on
the development cost of applications. However we can tell that the EBL/Tk abstraction
is pretty similar to the QTk abstraction as they both use a similar mixed declara-
tive/imperative approach, and both use the same low level Tcl/Tk toolkit. The mixed
approach greatly reduces the code size required for building UIs, some personal experi-
ments showed a factor of up to 3 times smaller code. Also the code is more readable and
easier to maintain.

Chapter 6 Case Studies and Evaluation

 128

6.8 Comparative analysis

We will now compare EBL to five other technologies supporting migration and/or adap-
tation as well as Tcl/Tk that is used by EBL/Tk. We selected seven criteria that place the
benefits of EBL into relief. We assess the different technologies according to these crite-
ria, and display the result in Kiviat diagrams for an immediate visual comparison.

6.8.1 Places

This dimension covers the numbers of places where the user interface extends itself. The
possible values are:

• Single place, like a single window on a single computer.
• Several places on the same computer, like an application composed of a main

window and a floating toolbox.
• Several places on several computers, like an application that has parts of its UI on

a laptop, and part of it on a PDA connected wirelessly to the laptop.

6.8.2 Dynamicity of the distribution

This dimension covers the nature of the distribution of the user interface. This point is
related to the previous one. The possible values are:

• Stationary, not distributed.
• Fixed remote display, the application runs at one site, the UI appears at another,

both sites are fixed for the whole duration of the application.
• Dynamic remote display, the application runs at one site, the UI appears at an-

other which can change at runtime.
• Full dynamic migration, the application can completely migrate from one site to

another at runtime.

6.8.3 Control

This dimension covers who is in charge of the migration/remote display ability. The pos-
sible values are:

• No control, there is no migration/adaptation possible.
• External control, the mechanism is provided outside the application which can-

not control it in any way.
• Application control, the mechanism is controlled by the application itself.

6.8.4 Reproduction

This dimension covers the possibility of the UI to be physically present several times.
This point is related to the previous one. The possible values are:

• One and only one incarnation at all time, the elements of the UI are restricted to
be physically present once and only once.

• Many incarnations at the same time, individual elements of the UI can exist sev-
eral times concurrently.

Chapter 6 Case Studies and Evaluation

 129

6.8.5 Users

This dimension covers the concurrent number of users of an application. The possible
values are:

• Single user.
• Simple multi-user interfaces like in this thesis.
• Real multi-user support.

6.8.6 Adaptation

This dimension covers the ability of adapting the user interface. This point is related to
the previous one. The possible values are:

• No adaptation.
• Widget level adaptation, different representations are available for the widgets,

and the adaptation mechanism selects the best one depending on the situation.
• Global level adaptation, there exists an adaptation model for the complete UI

that allows to calculate different representations according to different situations.
This approach is quite disruptive with usual UI programming techniques, as it re-
quires a model-based approach instead of the more classical imperative direct ap-
proach.

6.8.7 Granularity level

This dimension covers the level of granularity for splitting the UI among different places.
The possible values are:

• Complete UI, the UI cannot be split.
• Widget level, the UI can be split at the individual widget’s level. Usually, it’s the

logical functionality that is reproduced on remote sites (for example a remote text
entry uses the local text entry widget of the distant site, ie it’s the logical function-
ality of the text entry that is shared between the sites).

• Pixel level, the UI can be split at any pixel level. Usually it’s the physical incarna-
tion of the application’s home site that is mirrored at the remote site.

6.8.8 Relation of the criteria with migration, adaptation, and multi-user func-
tionality

 Places Distribution Control Reproduction Users Adaptation Granularity
Migration
Adaptation
Multi-user

6.8.9 Comparison charts

This section presents visual representations for the categorization of different tools. This
representation is to be interpreted as a convenient way for grasping the capabilities of
these tools, but not as a scientific tool of measure. In particular, the area covered by the

Chapter 6 Case Studies and Evaluation

 130

tools does not have any particular unit, and should not be used as a measure of anything.
Also the values used on each axis are arbitrary as they represent discrete capabilities in a
continuous representation. Nevertheless, we think this representation is a convenient way
of graphically showing the tools capabilities. The criteria are related to the functionality
EBL adds, which is why it fares well in the comparison. Depending on the usage one has
of a particular toolkit, other criteria may apply, where EBL may not fare well.

We use these values for the categorizations:

Places 0,05=Single, 0,5=many on single computer, 1=many
Users 0,05=single, 0,5=simple, 1=full multi-user support

Distribution
0,05=stationary, 0,33=fixed remote UI, 0,66=dynamic remote UI, 1=full ap-
pli migration

Reproduction 0,05=single, 1=many
Granularity
level 0,05=NA, 0,33=full UI, 0,66=widget level, 1=pixel level
Adaptation 0,05=none, 0,5=widget level, 1=model based
Control 0,05=NA, 0,5=external, 1=application

Tcl/Tk allows the opening of several
windows, besides that it doesn’t pro-
vide any support for remote dis-
play/migration/adaptation/multiple
users.

Tcl/Tk

0

1
Places

Distribution

Control

ReproductionUsers

Adaptation

Granularity level

Chapter 6 Case Studies and Evaluation

 131

EBL/Tk offers a complete application
control for migration and adaptation
at the widget level. Also widgets can
be rendered simultaneously at differ-
ent places for a basic multiple users
support.

EBL/Tk

0

1

Places

Distribution

Control

ReproductionUsers

Adaptation

Granularity level

X11 provides a remote display mecha-
nism external to the application. Once
the application is started, the UI can-
not be migrated away from where it is
displayed. Also there is no adaptation
nor multi-user functionality.

X11

0

1

Places

Distribution

Control

ReproductionUsers

Adaptation

Granularity level

Systems allowing a complete dynamic
migration of a running application do
not provide any benefit regarding ad-
aptation and multi-user support. Note
that the UI is situated at a single de-
vice at a time, hence the score for
places.

Full migration

0

1

Places

Distribution

Control

ReproductionUsers

Adaptation

Granularity level

Chapter 6 Case Studies and Evaluation

 132

VNC allows controlling remotely an-
other computer, by mirroring exactly
the remote display at the pixel level.
It’s possible to remote control several
times the same computer at the same
time, but it doesn’t introduce real mul-
tiple user possibilities. Once again,
there is no adaptation possible.

VNC

0

1

Places

Distribution

Control

ReproductionUsers

Adaptation

Granularity level

The model based approach is a very
different approach for creating a user
interface. All aspects are described us-
ing high level models, and the system
is capable to dynamically infer a con-
crete user interface from these models
and the current context. This graph
corresponds to a model-based ap-
proach that provides adaptation and
migration, but no multi-user support.
Other model-based approaches may
exist.

Model Based

0

1

Places

Distribution

Control

ReproductionUsers

Adaptation

Granularity level

Chapter 7 Conclusion

 133

Chapter 7 Conclusion

7.1 Summary of results

The EBL middleware was developed to provide migration, adaptation, and simple multi-
user capability to an effective toolkit. The EBL/Tk toolkit was created on top of EBL
using the Tcl/Tk back-end toolkit. This toolkit is functionally equivalent to Tcl/Tk; any
UI created with Tcl/Tk can be implemented using EBL/Tk. Further the extra function-
ality provided by EBL is orthogonal to the basic toolkit functionality; there is no penalty
in term of development cost in using EBL/Tk instead of directly using Tcl/Tk. On the
contrary, the mixed declarative/imperative approach of EBL/Tk often reduces the de-
velopment cost. Any UI created by EBL/Tk is migratable by default; this migration is
transparent to the application that created in the sense that a) the running of the applica-
tion is independent on the physical location of the widget and b) the migration mecha-
nism is independent on the concurrent execution of the application. All widgets can have
several different physical representations, and they can change between them at runtime.
The adaptation mechanism is similarly transparent to the application. Finally widgets can
be displayed several times simultaneously, offering a simple multi-user functionality. The
flexibility of the transparent migration/adaptation allows adding migration and adaptation
as an afterthought to a stationary/non adaptable UI. This allows the rapid prototyping of
migratable/adaptable applications.

7.1.1 Contributions

This thesis contributed the following:
• Idea of the migration as a widget capability and its validation.
• Idea of the adaptation as a special migration case and its validation.
• Idea of simple multi-user interfaces as a special migration case and its validation.
• Specification and implementation of a middleware supporting these ideas.
• Implementation of an actual, usable module for use by the Mozart community.

In particular, we know no other work providing a ready to use toolkit supporting trans-
parent migration and adaptation of any part of the UI.

7.2 Future work

7.2.1 Hybrid approach

In papers predating this work [Grol01] [Grol02] [Elan04], we explored the idea of mixing
together an imperative approach and a declarative one to the creation and running of
UIs, in the context of a multi-paradigm programming language. The declarative part uses
a model-based approach for the specification of the presentation and (part of) the dialog
models. The dynamic behavior of the UI is then implemented using a classical object-
oriented imperative approach.

Chapter 7 Conclusion

 134

Compared to a pure imperative approach, we observed that this hybrid approach greatly
reduces the amount of work required for the creation of the UI. Also as we are in the
context of a multi-paradigm programming language that supports functional program-
ming, we are able to dynamically calculate the content of a UI by writing a function, a
task that is hard to achieve using a pure imperative approach.

Compared to a pure model-based approach, this hybrid approach does not benefit from
the design and verification tools generally available to model-based approaches. How-
ever, the hybrid approach does not suffer from any expressivity restriction as the impera-
tive guarantees the Turing completeness. This is often not the case with model-based ap-
proaches that are domain specific, and may not support all future new requirements,
and/or may introduce a lot of verbosity when going to the limit of its expressivity.

EBL provides the migration/adaptation/simple multi-user functionality, but also pro-
vides a support for the hybrid approach. With the support of the multi-paradigm pro-
gramming language, it is possible to switch between a more declarative and a more im-
perative world constantly, as best fits the situation at hand. We think this yield a very in-
teresting way of quickly developing UI, in general for prototyping purposes. The meth-
odology would be to develop application-specific models for all parts of the functional
core that are easily expressible into models, and stick to an imperative approach for the
rest. These models would not benefit from the design and validation tools of more gen-
eral domain-specific models, nevertheless their expressivity can be made as to the point
as possible, in a as compact as possible way.

One possible direction for future work is to further explore this methodology with EBL
in the context of migratable/adaptatble/multi-user applications.

7.2.2 Tool extensions

EBL/Tk is available in version 1.0. The implementation is fully functional granted these
limitations:

 The independent adaptation of multiple renderers connected to a single proxy is
not supported. This is a limitation of the current implementation that could be
easily removed.

 The current EBL implementation does not support several toolkits to be concur-
rently used. This limitation can be removed by introducing a negotiation phase
during the migration protocol so that the renderer class is also selected according
to the toolkit offered by the receiving container. In other words, the widget
would transparently adapt to the toolkit offered by its container.

 The security aspect of the migration is only partially managed; it should be ex-
tended to support real world situations. To achieve proper security, all communi-
cation channels should be encrypted. Further, the migration capabilities should
also be encrypted to prevent attackers from reading them over the network and
then using them. This security can already be achieved by using a virtual private
network or SSH tunneling. Embedding the encryption directly into EBL requires
some more work.

• The end user module (EBL/Tk) uses Tcl/Tk as the actual toolkit which is quite
aging compared to more recent toolkits. We intend on replacing Tcl/Tk by a

Chapter 7 Conclusion

 135

newer toolkit like GTk. Also we would like to use the Ajax and DHTML tech-
niques for creating a toolkit running in a web browser.

7.2.3 Future exploration areas

The simple multi-user aspect of EBL is largely unexplored. It appeared as a side product
of the migration/adaptation design; still it has an interesting research potential in itself.
The concurrent use of a single widget by multiple users raise questions on the consis-
tency of the state of the widget, and how this is reflected to the user. Should the users be
restricted in their concurrent interactions, so as to prevent them for executing contradic-
tory changes? How do we manage that? What support can EBL offer? What methodol-
ogy is best adapted for designing such widgets, and then what methodology is best
adapted for creating applications that use them?

Further research is also needed to assess the limits of this approach for more complex
migratable/adaptable applications. In particular, the ergonomic aspects of migrat-
able/adaptable applications will have an impact on the methodology used to create them.
I personally think that the EBL approach is helpful in dealing with this problem, thanks
to 1) the transparent aspect of the migration and the adaptation, and 2) the hybrid ap-
proach that allows an easy integration with model-based design. However further re-
search is required to verify that.

7.3 Concluding remarks

This work is mainly an enabler: it gives a new functionality not previously available to ap-
plications. This functionality has a disruptive potential, in the sense that it could yield to
new ways of thinking and developing applications, or even to completely new kinds of
applications. However this functionality is provided to the developers in a non disruptive
fashion: if you don't use them, they don't come into the way. And you can use them as an
afterthought of an already developed application. Hopefully this thesis convinced you
that this goal is achieved.

References

 136

References

A

B

[Band03]

Bandelloni, R., Paternò, F., Platform Awareness in Dynamic Web User Interfaces Migration, Proceedings
of International Conference on Human-Computer Interaction with Mobile and Handlheld De-
vices MobileHCI’2003.

[Bass92]
Len Bass and UIMS Tool Developers Workshop, A Metamodel for the Runtime Architecture of an In-
teractive System, SIGCHI Bulletin, 24(1), 32-37. 1992.

 [Berti05]
Berti, S., Paternò, F., and Santoro, C., A Taxonomy for Migratory User Interfaces, in Proc. of 12th Int.
Workshop on Design, Specification, and Verification of Interactive Systems DSV-IS’2005 (New-
castle upon Tyne, 13-15 July 2005), M. Harrison (ed.), Lecture Notes in Computer Science, Vol.
3941, Springer-Verlag, Berlin, 2005.

[Bahr95]
Bharat, K.A., Cardelli, L., Migratory Applications Distributed User Interfaces, Proceedings of ACM
Conference on User Interface Software Technology UIST’95 (Snowbird, October 1995), ACM
Press, New York, 1995, pp. 133–142.

[Blanch05a]
Renaud Blanch, Michel Beaudouin-Lafon, Stéphane Conversy, Yannick Jestin, Thomas Baudel
and Yun Peng Zhao, INDIGO : une architecture pour la conception d'applications graphiques interactives dis-
tribués, in Proceedings of IHM 2005, Toulouse - France, September 2005.

[Blanch05b]
Renaud Blanch, Facilitating post-WIMP Interaction Programming using the Hierarchical State Machine Tool-
kit. Rapport de Recherche 1410, Laboratoire de Recherche en Informatique, Université Paris-Sud,
France, April 2005.

[Brai74]
Brainerd, W.S., Landweber, L.H., Theory of Computation, Wiley, 1974.

C

[Calv00]

G. Calvary, J. Coutaz, and D. Thévenin, Embedding Plasticity in the Development Process of Interactive
Systems, Proc. of Workshop on User Interfaces for All UI4ALL’2000, ERCIM Press, 2000.

[Calv01]
Calvary, G., Coutaz, J., Thevenin, D., A Unifying Reference Framework for the Development of Plastic User
Interfaces, Proceedings of 8th IFIP International Conference on Engineering for Human-Computer
Interaction EHCI’2001 (Toronto, May 11-13, 2001), Little, R., Nigay, L. (eds.), Lecture Notes in
Computer Science, Vol. 2254, Springer-Verlag, Berlin, 2001, pp. 173–192.

[Calv02]
Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Souchon, N., Bouillon, L., Florins, M., Van-
derdonckt, J., Plasticity of User Interfaces: A Revised Reference Framework, Proceedings of 1st Int. Work-
shop on Task Models and Diagrams for user interface design TAMODIA’2002 (Bucharest, July
18-19, 2002), Academy of Economic Studies of Bucharest, INFOREC Printing House, Bucha-
rest, 2002, pp. 127–134.

[Calv04]

References

 137

Calvary, G., Coutaz, J., Daassi, O., Balme, L., Demeure, A., Towards a new generation of widgets for
supporting software plasticity: the 'comet', Proceedings of the 9th IFIP International Working Confer-
ence on Engineering for Human-Computer Interaction, Jointly with the 11th International Work-
shop on Design, Specification and Verification of Interactive Systems EHCI-DSVIS'04 (Ham-
burg, July 11-13, 2004).

[Calv05]
Calvary, G., Daassi, O., Coutaz, J., Demeure, A., Des widgets aux comets pour la Plasticité des Systèmes
Interactifs, Revue d'Interaction Homme-Machine, 6(1), 2005, pp. 33–53.

[Chae04]
Chae, M.W., Kim, J.W., Do size and structure matter to mobile users? An empirical study of the effects of
screen size, information structure, and task complexity on user activities with standard web phones, Behaviour &
Information Technology, 23(3), 2004, pp. 165–181.

[Chu04]
Chu, H., Song, H., Wong, C., Kurakake, S., Katagiri, M., Roam, a seamless application framework,
Journal of Systems and Software, 69(3), 2004, pp. 209–226.

[Cout00]
Coutaz, J., Lachenal, C., Calvary, G., Thevenin, D., Software Architecture Adaptivity for Multisurface In-
teraction and Plasticity, Proc. of IFIP Workshop on Software Architecture Requirements for
CSCW–CSCW’2000 Workshop (Philadelphia, December 2-6, 2000), ACM Press, New York,
2000. Accessible at http://iihm.imag.fr/coutaz/ifipcscw2000/workshop.html

[Cout03a]
Coutaz, J., Balme, L., Lachenal, Ch., Barralon, N., Software Infrastructure for Distributed Migrat-
able User Interfaces, Proceedings of UbiHCISys Workshop on UbiComp 2003, 2003.

[Cout03b]
Coutaz, J., Lachenal, Ch., Dupuy-Chessa, S., Ontology for Multi-Surface Interaction, Proceedings of 9th
IFIP TC 13 International Conference on Human-Computer Interaction INTERACT’2003 (Zurich,
September 1-5, 2003), Rauterberg, M., Menozzi, M., Wesson, J. (eds.), IOS Press, Amsterdam,
2003.

[Cout06]
Coutaz, J., Meta-User Interface for Ambient Spaces, invited talk of the 5th Internal Workshop on Task,
Models and Diagrams for UI design TAMODIA'2006 (Hasselt, October 23-24, 2006).

[Crea00]
Crease, M., Gray, P., Brewster, S., A Toolkit of Mechanism and Context Independent Widgets, Proceed-
ings of the International Workshop on Design, Specification, and Verification of Interactive Sys-
tems DSV-IS’2000 (Limerick, June 5-6, 2000), Springer-Verlag, Berlin, 2000.

[Crea01]
Crease, M., A Toolkit of Resource-Sensitive Multimodal Widgets, Ph.D. Thesis, Department of
Computing Science, University of Glasgow, December 2001.

D

[Dâas03]

Dâassi, O., Calvary, G., Coutaz, J., Demeure, A., Comet : Une nouvelle génération de « Widget » pour la
Plasticité des Interfaces, Actes de la 15ème Conférence Francophone sur l’Interaction Homme-
Machine IHM’2003 (Caen, November 2003), Hermès, Paris, 2003, pp. 64–71.

[Deme05]
Demeure, A., Calvary, G., Sottet, J.-B., Ganneau, V., Vanderdonckt, J., A Reference Model for Dis-
tributed User Interfaces, Proceedings of 4th International Workshop on Task Models and Diagrams
for user interface design TAMODIA’2005 (Gdansk, 26-27 September 2005), ACM Press, New
York, 2005, pp. 79–86.

[Deme06a]
Demeure, A., Calvary, G., Coutaz, J., Vanderdonckt, J., The Comets Inspector: Manipulating Multiple
User Interface Representations Simultaneously, Proceedings of 6th International Conference on Com-
puter-Aided De-sign of User Interfaces CADUI’2006 (Bucharest, June 6-8, 2006), Chapter 13,
Springer-Verlag, Berlin, 2006, pp. 167–174.

[Deme06b]
Demeure, A., Calvary, G., Coutaz, J., Vanderdonckt, J., The Comets Inspector: Towards Run Time Plas-

References

 138

ticity Control based on a Semantic Network, Proceedings of 5th Int. Workshop on Task Models and
Diagrams for User Interface Design TAMODIA’2006 (Hasselt, October 23-24, 2006), Coninx, K.,
Luyten, K., Schneider, K. (eds.), EDM-Luc, Hasselt, 2006, pp. 199–206.

[Dewa00]
Dewan, P., Choudhary, R., Coupling the User Interfaces of a Multiuser Program, ACM Transactions on
Computer-Human Interaction, 2(1), 2000, pp. 1–39.

[Dey03]
A.K. Dey and G.D. Abowd, Support for adapting applications and interfaces to context, In Multiple User
Interfaces: Cross-Platform Applications and Context-Aware Interfaces, Seffah, A. and Javahery,
H. (eds.), John Wiley & Sons, 2003.

E

[Elan04]

El-Ansary, S., Grolaux, D., Van Roy, P., Rafea, M., Overcoming the Multiplicity of Languages and Tech-
nologies for Web-based Development Using a Multiparadigm Approach, Proceedings of 2nd International
Mozart/Oz Conference MOZ’2004 (Charleroi, October 2004), Lecture Notes in Computer Sci-
ence, Volume 3389, Springer-Verlag, Berlin, 2004, pp. ?. Accessible on-line at
http://www.cetic.be/moz2004.

[Eise00]
Eisenstein, J. Vanderdonckt, and A.R. Puerta, Adapting to Mobile Contexts with User-Interface
Modeling, Proc. of IEEE Working Conference on Mobile Computer Applications WMCSA’2000,
IEEE Press, Los Alamitos, 2000.

[Eise01]
Eisenstein, J., Vanderdonckt, J., Puerta, A., Applying model-based techniques to the development of UIs for
mobile computers, Proceedings of the 6th International ACM Conference on Intelligent User Inter-
faces IUI’2001 (Santa Fe, January 14-17, 2001), ACM Press, New York, 2001.

[Eise03]
A.K. Dey and G.D. Abowd, Support for adapting applications and interfaces to context, In Multiple User
Interfaces: Cross-Platform Applications and Context-Aware Interfaces, Seffah, A. and Javahery,
H. (eds.), John Wiley & Sons, 2003.

[ETk]
The EBL/Tk homepage, accessible at http://gforge.info.ucl.ac.be/projects/ebl/.

F

G

[Grol01a]

Grolaux, D., Van Roy, P., Vanderdonckt, J., QTk: A Mixed Model-Based Approach to Designing Ex-
ecutable User Interfaces, Proceedings of 8th IFIP Working Conf. on Engineering for Human-
Computer Interaction EHCI’2001 (Toronto, May 11-13, 2001), Lecture Notes in Computer Sci-
ence, Vol. 2254, Springer-Verlag, Berlin, 2001, pp. 109–110. Accessible at ftp://ftp.info.ucl.ac.
be/pub/publi/2001/ehci2001final.ps.gz or at http://www.mozart-oz.org/papers/abstracts/ehci
2001.html

[Grol02]
Grolaux, D., Van Roy, P., Vanderdonckt, J., FlexClock, a Plastic Clock Written in Oz with the QTk
toolkit, Proceedings of 1st Int. Workshop on Task Models and Diagrams for user interface design
TAMODIA’2002 (Bucharest, 18-19 July 2002), Academy of Economic Studies of Bucharest, IN-
FOREC Printing House, Bucharest, 2002, pp. 135–142.

[Grol04]
Grolaux, D., Van Roy, P., Vanderdonckt, J., Migratable User Interfaces: Beyond Migratory User Interfaces,
Proceedings of 1st IEEE-ACM Annual International Conference on Mobile and Ubiquitous Sys-
tems: Networking and Services MOBIQUITOUS’04 (Boston, August 22-25, 2004), IEEE Computer
Society Press, Los Alamitos, 2004, pp. 422–430.

[Grud01]
Grudin, J., Partitioning digital worlds: focal and peripheral awareness in multiple monitor use, Proc. of ACM

References

 139

Conference on Human Aspects in Computing Systems CHI’2001 (New Orleans, April 2001),
ACM Press, New York, 2001, pp. 458–465.

[Guim01]
Guimbretière, F., Stone, M., Winograd, T., Fluid Interaction with High-resolution Wall-size Displays,
Proceedings of ACM International Conference on User Interface Software Technology
UIST’2001, ACM Press, New York, 2001, pp. ? –?.

H

[Hart93]

Hartmut, U. Malinowski, T. Kuhme, and T. Schneider-Hufschmidt, State of the Art in Adaptive
User Interfaces, in Adaptive User Interfaces, M. Schneider-Hufschmidt (ed.), North Holland, Am-
sterdam, pp. 1-48, 1993.

J

K

[Kras88]

Krasner, G . E . & S . T. Pope, A cookbook for using model-view-controller user interface paradigm in Small-
talk-80, Journal of Object Oriented Programming, 1,3, 26-49, 1988.

L

[Leler90]

W. Leler, Linda Meets Unix, Computer, vol. 23, no. 2, pp. 43-54, Feb., 1990
[Li03]

Li, B., Tsai, W.-T., and Zhang, L.-J., A Semantic Framework for Distributed Applications, Proc. of the
5th Int. Conf. on Enterprise Information Systems ICEIS’2003 (Angers, 22-26 April 2003), Vol-
ume IV - Software Agents and Internet Computing, pp. 34-41.

[Limb04a]
Limbourg, Q., Vanderdonckt, J., UsiXML: A User Interface Description Language Supporting Multiple
Levels of Independence, in Matera, M., Comai, S. (Eds.), “Engineering Advanced Web Applications”,
Rinton Press, Paramus, 2004, pp. 325–338.

[Luyt05]
Luyten, K., Vandervelpen, Ch., and Coninx, K., Task Modeling for Ambient Intelligent Environments:
Design Support for Situated Task Executions, Proc. of 4th Int. Workshop on Task Models and Dia-
grams for user interface design TAMODIA’2005 (Gdansk, 26-27 September 2005), ACM Press,
New York, 2005, pp. 87-94.

M

[Moli05]

Molina, J.P., Vanderdonckt, J., Montero, F., Gonzalez, P., Towards Virtualization of User Inter-faces
based on UsiXML, Proceedings of 10th ACM International Conference on 3D Web Technology
Web3D’2005 (Bangor, March 29-April 1, 2005), ACM Press, New York, 2005, pp. 169-178.

[Moli06b]
Molina, J.P., Vanderdonckt, J., González, P., Fernández-Caballero, A., Lozano, M.D., Rapid Proto-
typing of Distributed User Interfaces, Proceedings of 6th International Conference on Computer-Aided
Design of User Interfaces CADUI’2006 (Bucharest, 6-8 June 2006), Chapter 12, Springer-Verlag,
Berlin, 2006, pp. 151–166.

[Moza]
 The Mozart Programming System, accessible at http://www.mozart-oz.org/
[Myer04]

References

 140

Myers, B.A., Nichols, J., Wobbrock, J.O., Miller, R.C., Taking Handheld Devices to the Next Level,
IEEE Computer, 37(12), December 2004, pp. 36–43.

N

O

[Oust94]
 Ousterhout, J., Tcl and TK Toolkit, Addison-Wesley, Reading, 1994.

P

[Paus92]

Pausch, R., Conway, M., DeLin, R., Lesson Learned from SUIT, the Simple User Interface Toolkit, ACM
Transactions on Information Systems, 10(4), 1992, pp. 320–344.

[Pier04]
Pierce, J.S., Mahaney, H.E., Opportunistic Annexing for Handheld Devices: Opportunities and Challenges,
Proceedings of Human-Computer Interface Consortium 2004, accessible on-line at: http://www-
static.cc.gatech.edu/~jpierce/papers/OA-HCIC2004.pdf

[P2PS]
 Peer to peer library available at http://gforge.info.ucl.ac.be/projects/p2ps/ .
[Puer97]
 Puerta, A.R., A model-based interface development environment, IEEE Software, 14(4), 1997, pp. 40-47.
[Puer99]

Puerta, A.R., Eisenstein, J., Towards a General Computational Framework for Model-Based Interface Devel-
opment Systems, Proceedings of the 4th ACM International Conference on Intelligent User Inter-
faces IUI’1999 (Los Angeles, January 5-8, 1998), ACM Press, New York, 1999.

Q

[QTk]

Donatien Grolaux, QTk - Graphical User Interface Design for Oz, http://www.mozart-
oz.org/documentation/mozart-stdlib/wp/qtk/html/index.html

R

[Reki97]

Rekimoto, J., Pick-and-Drop: A Direct Manipulation Technique for Multiple Computer Environments, Proc.
of ACM International Conference on User Interface Software Technology UIST’97 (Banff, Al-
berta, Canada, October 14-17, 1997), ACM Press, New York, 1997, pp. 31–39.

[Roud06]
Roudaut, A., Coutaz, J., Méta-IHM ou comment contrôler l’espace interactif ambient, Actes des Troisièmes
Journées Francophones sur la Mobilité et l’Ubiquité UBIMOB’2006 (Paris, September 5-8, 2006),
ACM Press, New York, 2006.

S

[Shne83]

Shneiderman, B., Direct manipulation: A step beyond programming languages, IEEE Computer, 16(8),
1983, pp. 57–69.

[Sous02]
Sousa, J., Garlan, D., Aura: an Architectural Framework for User Mobility in Ubiquitous Computing Envi-
ronments, Proceedings of IEEE-IFIP International Conference on Software Architecture 2002.

[Stre99]
Streitz, N., et al., i-LAND: An interactive Landscape for Creativity and Innovation, Proceedings of ACM
International Conference on Human Factors in Computing Systems CHI’99 (Los Angeles, April

References

 141

1999), ACM Press, New York, 1999, pp. 120–127.
[Szek95]

Szekely, P., Sukaviriya, P., Castells, P., Muthukumarasamy, J., Salcher, E., Declarative interface models
for user interface construction tools: the MASTERMIND approach, Proceedings of the IFIP Working
Conference on Engineering for Human-Computer Interaction EHCI’1895 (Grand Targhee, Au-
gust 14-18, 2005).

[Szek96]
Szekely, P., Retrospective and Challenges for Model-Based Interface Development, Proceedings of the 2nd
International Workshop on Computer-Aided Design of User Interfaces CADUI’1996 (Namur,
June 5-7, 1996), Vanderdonckt, J. (ed.), Presses Universitaires de Namur, Namur, 1996, pp. xxi-
xliv.

T

[Tan03a]

Tan, D.S., Czerwinski, M., Effects of Visual Separation and Physical Discontinuities when Distributing In-
formation across Multiple Displays, Proceedings of 9th IFIP TC 13 International Conference on Hu-
man-Computer Interaction INTERACT’2003 (Zurich, September 1-5, 2003), Rauterberg, M.,
Menozzi, M., Wesson, J. (eds.), IOS Press, Amsterdam, 2003.

[Tand01]
Tandler, P., et al., ConnecTables: Dynamic coupling of displays for the flexible creation of shared workspaces,
Proceedings of ACM International Conference on User Interface Software Technology
UIST’2001, ACM Press, New York, 2001, pp. 11–20.

[Thev99]
Thevenin, D., Coutaz, J., Plasticity of user interfaces: Framework and research agenda, Proceedings of the
7th International Conference on Human-Computer Interaction INTERACT'99 (Edinburgh, August
30-September 3, 1999), IOS Press, Amsterdam, 1999, pp. 110–117.

[Thev01]
Thevenin, D., Adaptation en Interaction Homme-Machine: le cas de la Plasticité, Ph.D. thesis, Université
Joseph Fourrier, Grenoble, 2001.

[TkMod]
Christian Schulte, Window Programming in Mozart, http://www.mozart-
oz.org/documentation/wp/index.html

U

V

[Vand05a]

Vanderdonckt, J., A MDA-Compliant Environment for Developing User Interfaces of Information Systems,
Proc. of 17th Conf. on Advanced Information Systems Engineering CAiSE'05 (Porto, June 13-17,
2005), Pastor, O., Falcão e Cunha, J. (eds.), Lecture Notes in Computer Science, Vol. 3520,
Springer-Verlag, Berlin, 2005, pp. 16–31.

[Vanr04]
Van Roy, P., Haridi, S., Concepts, Techniques, and Models of Computer Programming, MIT Press, hard-
cover, 900pp+xxix, ISBN 0-262-22069-5, March 2004.

[Vnc]
Virtual Network Computing, accessible at http://www.uk.research.att.com/vnc/.

W

[Weis91]
Weiser, M., The Computer for the Twenty-First Century, Scientific American, September 1991, pp. 94-
10.

[Weis93]
Weiser, M., Some Computer Science Issues in Ubiquitous Computing, Communications of the ACM,
36(7), 1993, pp. 75–84.

[Wts]

References

 142

Windows Terminal Server, accessible at
http://www.microsoft.com/windows2000/technologies/terminal/default.asp.

X

[X11]

The X11 Consortium, accessible at http://www.x.org/.

Y

Z

Annex A

 143

Annex A: EBL reference
This is the reference of the EBL middleware which provides a factory for binding a
graphical toolkit in Mozart. An example of such toolkit is EBL/Tk which is documented
at http://gforge.info.ucl.ac.be/plugins/wiki/index.php?id=24&type=g.

EBL Module

• NewWidgetRepository

This zero parameter function creates a new widget repository. A widget reposi-
tory stores proxy widget definitions, the build function, and more. Several widget
repositories can coexist simultaneously, each of them having their own set of
proxies. Note that renderer definitions are global to all widget repositories, be-
ware of name clashes. This function returns a record with the following features:
− register

The first parameter of this procedure is a proxy class definition. The sec-
ond parameter is the procedure to call when creating the widget from a
description record. The proxy is registered under the name provided by
the widgetName feature of its class.

− registerAs
The first parameter is the name under which this widget proxy must be
registered. The second parameter is a proxy class definition. The third pa-
rameter is the procedure to call when creating the widget from a descrip-
tion record.

− registerAlias
The first parameter is the name under which this widget must be regis-
tered. The second parameter is a unary function which parameter is the
description record used to create this widget. The function must return
another record to use instead of the original one. For example register-
Alias could be used to create an alias called predeflabel, and the function
replaces the description record for predeflabel by a label with some prede-
fined parameter values.

− getWidgets
This zero parameter function returns the names of the proxy widgets de-
fined in this repository.

− getWidgetClass
Same as getProxyClass

− getProxyClass
This one parameter function returns the proxy class corresponding to the
parameter.

− getBuildFun
This one parameter function returns the procedure to call when creating
the widget named after the parameter.

− setGathererClass

Annex A

 144

The build function returns a gatherer object that centralizes information
regarding all the widgets created in this build. The single parameter of this
procedure is a class that further specialize the class of the gatherer object.
The final gatherer object returned by a build function has features corre-
sponding to the name features defined in the construction record. It also
has features that are Oz names, one per widget created. It also supports
these methods:
 getAllIds(?L): binds L to a list of all the Oz names corresponding to

the widgets created by build.
 getAllItems(?L): binds L to a list of all the proxy objects created by

build.
 getAllNames(?L): binds L to a list of all the names specified in the

construction record.
 getDefaultLook(?L): binds L to the default look given to all the wid-

gets created.
 restoreInitialGeometry: places all the widgets back into the position

were they were first placed by the construction record.
Note that when using the build method of the EBL renderer manager, the
gatherer class is never specialized according to the setGathererClass func-
tion.

− setRenderContextClass
Same as the SetRenderContextClass below

− build
The build function takes a construction record as input, creates the corre-
sponding user interface, and returns the gatherer object.

− defaultLook
A look that is used by default for all widgets created by this repository.

− getRenderClass
A two parameter function that returns the renderer class corresponding to
the widget named after the first parameter, in the context named after the
second parameter.

• SetRenderContextClass
A four parameter procedure that registerers a renderer class. The first parameter
is the toolkit identity, the second is the widget name, the third is the context for
this renderer, and the last is the renderer class. The toolkit identity is an Oz name
that corresponds to a particular back-end graphical toolkit. A container renderer
will accept a child renderer if and only if their toolkit identities are the same.

• NewEBLProxyManager
This zero parameter functions returns a proxy manager. See below.

• NewLook
This zero parameter functions returns a look. A look is a special dictionary that
allows specifying default parameter values for widgets. This is a supplementary
functionality provided by EBL that is independent of the migra-
tion/adaption/simple multi-user one. A look is a record composed of the fea-
tures:
− set

Annex A

 145

The single parameter of this procedure specifies a record whose label cor-
responds to a widget, and the features to default values for the corre-
sponding parameters of the widget.

− get
The single parameter of this function is the name of a widget; it returns
the current record defining the default value for this widget.

− getWidgetLook
The single parameter of this function is the name of a widget; it returns
the current widget look defined for this widget (see below).

• NewWidgetLook
A widget look if the part of a look that focuses on a single widget. The NewWid-
getLook function is a zero parameter function that returns a record whose fea-
tures are:
− set

The single parameter of this procedure specifies a record whose features
correspond to default values for the corresponding parameters of this
widget.

− get
This zero parameter function returns the current record defining the de-
fault value for this widget.

− register
The parameter of this function specifies an Oz port. Each time the look
of this widget is set, the new record is sent on this port. The function re-
turns a record with a single feature named unregister, which is a zero pa-
rameter functions that stops the updates from being sent on the port.

• NewRadioListeners
Radiobutton widgets are grouped together so that a single radiobutton can be se-
lected at a time. In the EBL context, radiobuttons of the same groupe can be mi-
grated into different devices, so we cannot rely on the back-end toolkit synchro-
nisation mechanism for radiobuttons. The NewRadioListeners function is a zero
parameter function that creates a structure for synchronizing radiobuttons (and
assimilated widgets). The function returns a record with the following features:
− register

This procedure registers a widget in a group. The first parameter is an Oz
name that specifies a group (widgets registering using the same name will
be part of the same group). The second parameter is a reference to the
widget proxy. The third parameter is a zero parameter procedure that is
called when the widget must be deselected. The selection of the widget
must be implemented by the widget itself, it is not specified in the Radio-
Listener.

− unregister
This procedure removes a widget from a group. The first parameter is an
Oz name that specifies the group; the second parameter is the reference
to the widget proxy.

− setActive

Annex A

 146

When a radiobutton is selected by the user, the proxy of the widget must
make sure that first the widget appears selected, and two that the setAc-
tive procedure is called. The first parameter is the name of the group; the
second parameter is the reference of the proxy widget calling the setAc-
tive procedure. This procedure makes sure that all the other widgets in
this group are deselected.

• AddLookSupport
This function takes a proxy class definition as the single parameter, and returns a
specialization of that class that adds look support. This is a supplementary func-
tionality provided by EBL that is independent of the migration, adaptation, and
simple multi-user one. This function assumes that the class given as parameter
supports the method set(K V) for setting the value of the parameter K to V, un-
set(K) for restoring the parameter K to its default value, init(...) for initiliazing the
object, and destroy for finalizing it. The returned class adds the setLook(L)
method that can be called to specify a look L to use for this widget.

• AddSynonymSupport
This function takes a proxy class definition as the single parameter, and returns a
specialization of that class that adds synonym support for the parameters of the
widget. This is a supplementary functionality provided by EBL that is independ-
ent of the migration, adaptation, and simple multi-user one. This function as-
sumes that the class given as parameter supports the method set(K V) for setting
the value of the parameter K to V, unset(K) for restoring the parameter K to its
default value, init(...) for initiliazing the object, and destroy for finalizing it. The
returned class is so that the set(K V) method also works for synonyms of K. The
synonyms are specified by the synonyms feature of the class, as a record where
feature#value pairs specify synonym#realParameterName combinations.

• AddMultiSetGetSupport
This function takes a proxy class definition as the single parameter, and returns a
specialization of that class that adds multiple parameter setting and getting in a
single method call. This is a supplementary functionality provided by EBL that is
independent of the migration, adaptation, and simple multi-user one. This func-
tion assumes that the class given as parameter supports the method set(K V) for
setting the value of the parameter K to V, and get(K ?V) for getting the current
value for parameter K. The returned class supports set(feat1:Val1 ... featX:ValX)
and get(feat1:Val1 ... featX:ValX) methods for setting and getting all the parame-
ters feat1, ..., featX in a single method call.

• CreateWidgetClass
Combines AddLookSupport, AddSynonymSupport and AddMultiSetGetSupport,
and register the default renderer class, and also other renderers if provided.

• NewPublisher
This function creates a simple discovery service for passing references to remote
sites. This service is based on a local server that binds on the port specified as the
single parameter of the NewPublisher function. This function returns a record
where the features are:
− getIP

This zero parameter function returns the IP address of this device.

Annex A

 147

− getPN
This zero parameter function returns the port number this publisher is
bound to.

− close
This zero parameter procedure closes this publisher server.

− subscribe
The first parameter of this procedure is a unique key for the item to sub-
scribe. The second parameter is the item to subscribe (generally the refer-
ence of a widget). The third parameter is a string describing this item.

− unsubscribe
The single parameter of this procedure is the key of the item that should
not be provided by this publisher server anymore.

• GetFromPublisher
This function takes a string representing an IP adress as first parameter, and a
port number as second parameter. If a publisher server is responding at this
adress, the function returns a list of Items#Description, otherwise it raises an ex-
ception.

EBL Construction Record Procedure

The build function takes a description record and creates the corresponding user inter-
face. The name of the record determines the type of the widget. An instance of the proxy
is created, and then the corresponding procedure specified in register or registerAs is
called. This procedure is given a single parameter that is a record with the following fea-
tures:
• build

If the widget is a container, and the description record specifies the content to be
created inside, one must use this build function instead of the build of the widget
repository. This allows the gatherer to register all the created widgets and their
initial position.

• builder
If the renderer of this widget needs to use the build function of the EBL renderer
manager, this builder reference must be passed to the proxy manager of this wid-
get by calling the setBuilder method of the manager and giving it this builder ref-
erence as parameter.

• handle
References the newly proxy widget for this widget

• gatherer
References a temporary version of the gatherer, which is specialized by the set-
GathererClass, but does not yet provide the normal gatherer functionality (fea-
tures are absent, getAllIds, getAllNames, ... methods are absent too).

• eventPort
The build function creates a single eventPort which should be passed to the
method setEventPort of the proxy manager so that all the widgets created by a
single build command uses a single eventPort for processing their events.

Annex A

 148

• id
An Oz name that is the unique id associated to this widget inside the gatherer.

• desc
The description record that specifies how this widget should be created.

EBL Proxy Manager

• setBuilder(S)

Allows the renderer to use its build method. The S parameter is from the builder
feature of the parameter given to the procedure called when the widget is created
from a description record.

• getStore(Name ?O)
Binds O to a direct reference to the store named Name.

• refToId(R ?I)
Binds I to the id of them reference R.

• setRenderContextClass(C R)
Sets the C render class for the context R for this particular widget.

• setContext(C)
Sets the current context of the widget to C.

• getContext(?C)
Binds C to the current context of the widget.

• getRenderClass(?R)
Gets the render class corresponding to the current context.

• destroy
Destroys the widget, terminating all its renderers.

• setConnectionPolicy(P)
P is a one parameter procedure that determines the connection policy for this
widget, ie the actions to undertake when a rendererer connects to the proxy. The
parameter of this procedure determines the event to handle:
o incoming(Id)

A new renderer whose id is Id just connected to this proxy.
Typically, the P procedure disconnects from the currently connected renderers
(this list is obtained by the getRenderIds method and the disconnection is exe-
cuted by calling the disconnect method) and then connects to the incoming ren-
derer (by using the connect method).

• setEventPort(P)
Sets the port were all user events are sent to P.

• createRemoteEnvironment(?E)
Binds E to an environment. Typically this method is used by toplevel widgets that
have to create a local renderer for which they require a preconfigured environ-
ment.

• getRef(?R)
Binds R to the reference of this proxy. This reference can be used by another
container proxy to trigger a migration of this widget.

• getRenderIds(?R)
Binds R to the list of the ids of all the currently connected renderers.

Annex A

 149

• getChildrenIds(?R)
Binds R to the list of the ids of all the children widgets of this container.

• getChildInfo(I ?R)
Binds R to unit if there is no child with id I, or to a pair
Ref#PlacementInstructions corresponding to this child.

• disconnect(Id)
Disconnects the renderer whose id is Id.

• connect(Id)
Connects the renderer whose id is Id. This should be only called from the policy
procedure defined by setConnPolicy.

• createRemoteHere(Env)
This method instructs EBL to create a renderer connected to this proxy locally,
using the environment Env. This is typically used by toplevel windows.

• importHere(Ref PlacementInstructions id:?Id<=_)
This method instructs EBL to migrate the widget whose reference is Ref, using
the placement instructions specified by PlacementInstructions. Id is bound to the
id of the newly created child.

• restoreHere(Ref PlacementInstructions)
If no child widget already corresponds to Ref#PlacementInstructions, then im-
portHere this widget, otherwise does nothing.

• dropClient(I)
This method instructs EBL to disconnect the child widget whose id is I.

• execEvent(E Args)
Executes the event E with parameters Args. E can be a procedure, a pair ob-
ject#method or a pair port#message.

• ask(Q ?R)
Creates a transaction that sends the query Q to the renderer(s) of this proxy, and
waits for the response which is eventually bound to R. If several renderers are
connected, the first one to provide the response is taken into account. If no ren-
derer is connected (long enough for having the response sent back), then the
ask(Q ?R) blocks until a new renderer comes in and send the response. All ask(Q
?R) request are serialized. In particular if one of them suspends due to a lack of
renderer, when a new renderer connects its state if first completely updated, and
then pending transactions are resumed keeping the serialisation at all time.

• send(M)
Sends the message M to the renderer(s) of this proxy in the FIFO order. If no
renderer is connected, the message is dropped.

• getState(?S)
Used internally to obtain a serialisation of the complete current state of the wid-
get.

EBL Proxy Store

• setProxyMarshaller(P)

Annex A

 150

Defines how items are transformed at the proxy before putting them into the
store, or getting them back from the store. P must be a record where each feature
is a type name, and the value is also a record. The value record can have a feature
u2s (applied when the user sends a value to the store) and a feature s2u (applied
when the user gets a value from the store). The u2s feature specifies a function
which returns the transformed version of its parameter. The s2u feature is similar,
but can also receive a second parameter which is bound to the store object that is
applying this transformation.

• setRenderMarshaller(P)
Defines how items are transformed at the renderer when interacting with the
store. See setProxyMarshaller for the structure of P.

• setTypeChecker(P)
Defines a map between a type name and a function validating a value for this
type. P must be a record where each feature is a type name, and the value is a pair
Function#Description. Function is a one parameter function that returns true if
the parameter is of the valid type, false otherwise. Function can also return the
atom remote, which instructs EBL that the value of this store can only be vali-
dated by a renderer; in this situation, an update of a parameter of this type will
require a renderer to be able to apply the update, and if it does not raise an excep-
tion, then this update is confirmed at the proxy, otherwise the update is refused
and an exception is raised. Description is the text that is displayed in the error
message raised when an invalid type is used.

• setParametersType(P)
Defines a map between parameters name and their type. P must be a record
where each feature is a parameter name, and the value is the type associated to
this parameter. The feature named '...' can be also used to associate a default type
to parameters not present in P.

• setDefaults(P)
Defines default values for parameters. P must be a record where each feature is a
parameter name, and the value is the default value.

• set(K V)
Sets the parameter K to the value V. Raises an exception if V is not acceptable
for K. This method follows the type instruction specified by setParametersType
and setTypeChecker, which can make the check purely local, or executed re-
motely.

• localSet(K V)
Sets the parameter K to the value V. Raises an exception if V is not acceptable
for K. This methods does not completely follow the type instruction specified by
setParametersType and setTypeChecker, because only local checks are executed,
remote checks are assumed to succeed.

• remoteSet(K V ?R)
Sets the parameter K to the value V. Binds R to true if the update succeeds, false
otherwise. This methods does not completely follow the type instruction speci-
fied by setParametersType and setTypeChecker, because even if local checks suc-
ceed, a remote check is also executed before accepting the update.

• unset(K)

Annex A

 151

Sets the parameter K back to its default value as specified by setDefaults.
• getManager(?M)

Binds M to the proxy manager this store is part of.
• get(K ?V)

Binds V to the current value of the parameter K. This method depends on the
configuration specified by setDefaults: a value that has been previously set, or
one that has a default value defined will use a localGet, otherwise a remoteGet
will be used.

• localGet(K ?V)
Binds V to the current value of the parameter K, as known by the proxy which is
either the last value set for this parameter, or its default value as defined by set-
Defaults. Raise an exception when EBL is unable to obtain such value.

• remoteGet(K ?V)
Binds V to the current value of the parameter K, as known by the renderer.

• createEvent(event:E<=unit action:A args:G<=nil unbind:?U<=_ code:?C)
Creates an event, whose event string is E, action is A, and arguments are the list
G. Binds U to a zero parameter procedure that destroys this event when applied,
and binds C to the code id of this event.

• registerVirtualEvent(Virtual Code)
Real events are events related to the actual toolkit, while virtual events are internal
events managed at the Oz level. This method associates a virtual event named
Virtual (an atom or Oz name) to the event whose id is Code.

• triggerVirtualEvent(Virtual FullArgs)
Triggers the virtual event named Virtual (which triggers all events associated to
this virtual event by the registerVirtualEvent method), with the list of arguments
provided by FullArgs.

• triggerEvent(Code Args<=nil)
Triggers the event whose id is Code with the list of arguments provided by Args.

• askBind(Code ?R)
Sends the event whose id is Code to the renderer, which then creates a proper
event binding using the back-end toolkit. If this operation is successful, R is
bound to true, otherwise R is bound to false. Note that askBind also use the
transactional mechanism like the ask method.

• bind(Code)
Sends the event whose id is Code to the renderer, which then creates a proper
event binding using the back-end toolkit. This method assumes that the event
binding will succeed at the renderer.

• removeBind(Code)
Tells the renderer that it must no more having an event configured for Code.

• getState(?S)
This method is used internally to serialize the complete state of the store.

• destroy
Destroys the store and its content.

EBL Renderer API

Annex A

 152

EBL Renderers must follow this specific API:

• init(M)

Initialization method, the parameter M gives a reference to the manager of this
renderer. See below for the functionalities of this manager. The init method cre-
ates the actual widget, and initializes its state according to the store (parameters
and event bindings).

• set(I K V)
The key K of the store I must be updated to V: reflect this update in the widget.

• remoteSet(I K V R)
Try to set the value of K of the store I to V. If it is possible, apply the update to
the widget, and return R=true, else return R=false.

• remoteGet(I K R)
Ask for the current value of the key K of the store I, and return it in R.

• ask(Q R)
Reply to the question Q in R

• send(M)
Receive the message M and apply it

• setChildEnvironment(E PlacementInstructions)
If this widget is a container, this method specifies further configuration for the
environment of the child widget E

• importHere(Ob PlacementInstructions)
If this widget is a container, the child widget Ob has to be migrated inside this
one, using the placement instructions given by PlacementInstructions.

• bind(I E P)
Bind the event whose id is E of the store I according to the specification of P.

• askBind(I E P R)
Try to bind the event whose id is E of the store I according to the specification
of P. If it is possible, returns R=true, else returns R=false and the binding is can-
celed.

• removeBind(I E)
Remove the binding whose id is E of the store I.

• destroy
Destroy the widget

EBL Renderer Manager

• getEnv(?E)

Bind E to the environment of this renderer. The environment is a special diction-
ary containing renderer side information necessary for the good running of the
widget. In particular, the environment contains a reference to the effective toolkit
the renderer should use. Also the environment contains a reference to the event
stream of the toplevel widget.

• getStore(Name ?O)

Annex A

 153

Bind O to a direct reference to the store named Name.
• getWidget(?R)

Bind R to the renderer object this object is the manager of.
• refToId(R ?I)

Bind I to the id of them reference R.
• createRemoteHere(Env)

This method instructs EBL to create a renderer connected to this proxy locally,
using the environment Env. Use this method to display widgets created by the
build method.

• createRemoteEnvironment(?E)
Bind E to an environment. Typically this method is used by widgets that have to
create a local renderer for which they require a preconfigured environment.

• importHere(Ref PlacementInstructions id:?Id<=_)
This method instructs EBL to migrate the widget whose reference is Ref, using
the placement instructions specified by PlacementInstructions. Id is bound to the
id of the newly created child.

• build(Desc V) & displayHere(R P)
For symmetry reasons, the EBLRemoteManager also provides an access to the
mixed declarative/imperative approach. The build method is equivalent to the
build function provided by EBL, however the widgets created are running at this
renderer side, and not at the application side. Because of this, the universal refer-
ences of these widgets should be used only at this renderer, by using displayHere
instead of importHere. In practice, the technique consists in three steps:
o Create a renderer widget that is a single widget container.
o At the renderer’s side, use the build method of its EBLRemoteManager to

create a complex UI using the high level approach provided by EBL.
o Get the universal reference of the toplevel widget of this newly created UI,

and use the displayHere method of the renderer
the renderer should also implement the importHere(Ob PlacementInstruc-
tions) method to finally put the toplevel widget in place

• destroy
Destroy the widget, terminating all its renderers.

EBL Renderer Store

• setRenderMarshaller(P)

Same effect as the method from the EBL Proxy Store.
• setParametersType(P)

Same effect as the method from the EBL Proxy Store.
• set(K V)

Set the parameter K to the value V. Access to the K parameter by the renderer
are blocked until the proxy has applied this update.

• get(K ?V)
Binds V to the current value of the parameter K.

• getName(?N)

Annex A

 154

Binds N to the name of this store.
• getManager(?M)

Binds M to the manager this store belongs to.
• createEvent(event:E<=unit action:A args:G<=nil unbind:?U<=_ code:?C)

Creates an event, whose event string is E, action is A, and arguments are the list
G. Binds U to a zero parameter procedure that destroys this event when applied,
and binds C to the code id of this event.

• registerVirtualEvent(Virtual Code)
Real events are events related to the actual toolkit, while virtual events are internal
events managed at the Oz level. This method associates a virtual event named
Virtual (an atom or Oz name) to the event whose id is Code.

• triggerVirtualEvent(Virtual FullArgs)
Triggers the virtual event named Virtual (which triggers all events associated to
this virtual event by the registerVirtualEvent method), with the list of arguments
provided by FullArgs.

• triggerEvent(Code Args<=nil)
Triggers the event whose id is Code with the list of arguments provided by Args.

• removeBind(Code)
Tells the renderer that it must no more have an event configured for Code.

• getState(?S)
This method is used internally to serialize the complete state of the store.

• destroy
Destroys the store and its content.

EBL Renderer Environment

The RemoteEnvironment provides these functionalities:
• put(K V)

Sets the key K to the value V
• get(K ?V)

Binds V to the value of K, raise an exception if absent.
• condGet(K D ?V)

Binds V to the value of K, binds V to D if K is absent.
• destroy

Empties the environment.
• entries(?L)

Returns the list of pairs Key#Value defined in this environment.
• clone(?C)

Returns a new environment that contains the same information as this one.

Annex B

 155

Annex B: Mobictionary source
code
There are 3 peers in a mobictionary game:
A. Team A that chooses a word
B. A drawer from team B that knows the words, and makes drawing of this word
C. The rest for team B that try and guess the word from the drawing

A single piece of code runs the three GUIs for each type of peers. The code starts by
creating a window, and then search for running games. The discovery service searches
for games on the local area network. If a game is found, then the main part of the win-
dow and the status bar at the bottom of the window are migrated, and that's it: the func-
tional core behind the UI is executed at the host of the game. If a game is not found,
then we create a new host for one. Creating a game consists in creating the different
components of the UI including the components for the two other peers. Some of them
are present at several peers simultaneously:

• A text field for entering the text (A)
• A label for displaying this text (B)
• A start button for accepting the text input and starting the countdown (A)
• A clock (A, B, and C)
• A free drawing area (B and C)
• A toolbar for selecting the drawing tools (B)
• A “Win” button the click if the word is guessed on time (A)

Once created, this game host waits for another peer to connect, and provides it the mi-
gration capabilities for the UI of A. Then the host waits for another peer to connect, and
provides it the migration capabilities for the UI of B. The host itself displays the UI of C.
When all peers are connected, the host runs the game: it waits for a word to be entered
by A, starts the timer and displays the word at B, updates the timer each second, and
when it falls to zero terminates the game. Alternatively, the "Win" button terminates the
game sooner in case of victory.

declare

ETkModule={Module.link ["ETk.ozf"]}.1
ETk=ETkModule.etk

PortNu=15435

Master

{DPInit.init init(ip:"127.0.0.1") _}

Win={ETk.build window(name:top

Annex B

 156

 td(glue:nswe name:inner
 td(name:main glue:nswe bg:ETk.color.white)
 label(glue:swe name:info relief:sunken
 text:"Searching for running game.")))}

{Win.top show}
{Win.top wm(title:"Mobictionary")}

Client={New Discovery.client init(port:PortNu)}
Master=case {Client getOne(timeOut:2000 info:$)} of timeout then unit [] X
then X end
try {Client close} catch _ then skip end

if Master==unit then
 %% nobody is running a game => create a fresh one

 {Win.info allowMultipleRenderers(true)}
 {Win.info set(text:"Waiting for first team")}
 CanvasB={ETk.build canvas(name:canvas bg:ETk.color.white borderwidth:0)}
 Canvas=CanvasB.canvas
 {Canvas allowMultipleRenderers(true)}
 ClockB={ETk.build lr(name:clockline glue:nwe
 label(glue:w text:"Remaining time: ")
 label(glue:w name:clock text:"02:00"))}
 ClockLine=ClockB.clockline
 Clock=ClockB.clock
 {ForAll {ClockB getAllItems($)}
 proc{$ H} {H allowMultipleRenderers(true)} end}
 {Win.main display(ClockLine o(row:0 column:0 sticky:nwe))}
 {Win.main rowconfigure(1 weight:100)}
 {Win.main columnconfigure(0 weight:100)}
 {Win.main display(Canvas o(row:1 column:0 sticky:nswe))}
 Int1={ETk.build td(name:top
 lr(glue:nwe
 label(text:"Enter word: ")
 entry(name:word glue:we))
 lr(glue:we
 button(text:"Start" name:start
 state:disabled glue:n)
 button(text:"Found !" name:stop
 state:disabled glue:n))
)}
 Colors=[black white green red blue yellow]
 ColorsDesc={List.toTuple lr
 {List.map Colors
 fun{$ C}
 button(name:C text:" " bg:ETk.color.C glue:w)
 end}}
 Int2={ETk.build td(name:top
 lr(glue:nwe
 label(text:"Word: " glue:w)
 label(name:word glue:w))
 {Record.adjoin ColorsDesc lr(glue:nwe relief:sunken)}
)}
 Pu1={New Discovery.server
 init(port:PortNu
 info:{Connection.offer {Win.info getRef($)}#
 {Int1.top getRef($)}})}
 Pu2
 Start Go Won
 {Int1.top bind(event:'connect'
 action:proc{$}

Annex B

 157

 {Pu1 close}
 Pu2={New Discovery.server
 init(port:PortNu
 info:{Connection.offer
 {Win.info getRef($)}#
 {Int2.top getRef($)}})}
 {Win.info set(text:"Waiting for second team")}
 {Int1.top display(ClockLine
 o(row:2 column:0 sticky:nwe))}
 end)}
 {Int2.top bind(event:'connect'
 action:proc{$}
 {Pu2 close}
 {Int2.top display(ClockLine
 o(row:2 column:0 sticky:nwe))}
 {Int2.top rowconfigure(3 weight:100)}
 {Int2.top columnconfigure(0 weight:100)}
 {Int2.top display(Canvas
 o(row:3 column:0 sticky:nswe))}
 Start=unit
 end)}

 %% waits for everybody to connect

 {Wait Start}

 %% first step : wait for a word

 DrawColor={NewCell black}
 {Win.info set(text:"Waiting for a word")}
 {Int2.black set(relief:sunken)}
 {Int1.start set(state:normal)}
 {Int1.start bind(event:default
 action:proc{$}
 Go=unit
 {Int1.start set(state:disabled)}
 end)}
 {Wait Go}

 %% second step : run game

 {Win.info set(text:"Running Game")}
 {Int1.stop set(state:normal)}
 {Int1.stop bind(event:default
 action:proc{$}
 try Won=true catch _ then skip end
 {Int1.stop set(state:disabled)}
 end)}
 {Int2.word set(text:{Int1.word get(text:$)})}

 %% this thread updates the time each second for 120 seconds
 %% or until the game is won

 thread
 fun{ToTime T}
 M=T div 60
 S=T mod 60
 in
 if M<10 then 0#M else M end#":"#
 if S<10 then 0#S else S end
 end
 proc{Loop T}

Annex B

 158

 if {IsFree Won} then
 {Clock set(text:{ToTime T})}
 {Delay 1000}
 if T>0 then
 {Loop T-1}
 else
 try Won=false catch _ then skip end
 end
 end
 end
 in
 {Loop 120}
 end

 %% let the drawer select the active color

 {ForAll Colors
 proc{$ C}
 {Int2.C bind(event:default
 action:proc{$}
 {Int2.{Access DrawColor} set(relief:raised)}
 {Assign DrawColor C}
 {Int2.C set(relief:sunken)}
 end)}
 end}

 %% let the drawer draw

 CX={NewCell 0.0}
 CY={NewCell 0.0}
 UnEvent1 UnEvent2
 {Canvas bind(event:'1'
 args:[float(x) float(y)]
 action:proc{$ X Y}
 Col={Access DrawColor}
 in
 {Canvas create(oval [X-1.0 Y-1.0 X+1.0 Y+1.0]
 fill:ETk.color.Col
 outline:ETk.color.Col)}
 {Assign CX X}
 {Assign CY Y}
 end
 unbind:UnEvent1)}
 {Canvas bind(event:'B1-Motion'
 args:[float(x) float(y)]
 action:proc{$ X Y}
 {Canvas create(line [{Access CX} {Access CY} X Y]
 width:3
 fill:ETk.color.{Access DrawColor})}
 {Assign CX X}
 {Assign CY Y}
 end
 unbind:UnEvent2)}
 {Wait Won}

 %% last step: game over

 {UnEvent1}
 {UnEvent2}
in
 {Win.info set(text:"Game Over")}
else

Annex B

 159

 %% connected to a site that is running a game => get my UI

 P={Connection.take Master}
in
 {Win.inner display(P.1 o(row:1 column:0 sticky:swe))}
 {Win.main display(P.2 o(row:0 column:0 sticky:nswe))}
end

	1.1 Motivation: the challenge of developing user interfaces for ubiquitous computing
	1.1.1 First dimension: variety of computing platforms
	1.1.2 Second dimension: variety of locations

	1.2 Thesis
	1.2.1 Thesis goal
	1.2.2 The Mozart Programming System
	1.2.3 EBL
	1.2.4 EBL/Tk example
	1.2.5 Implementation of the thesis statement
	1.2.5.a Benefits of this approach

	1.2.6 Scope and limitations

	1.3 Road map
	2.1 Dynamic migration of running user interfaces
	2.1.1 History of the migration of running user interfaces
	2.1.2 Current issues for DUIs

	2.2 Dynamic adaptation of running user interfaces
	2.2.1 Challenges of context-sensitive user interfaces
	2.2.2 State of the art
	2.2.3 A general design space
	2.2.4 Representative examples of context - sensitivity

	2.3 Definition of the design space
	2.3.1 Number of devices in use
	2.3.2 Number of renderings per component

	2.4 Previous personal work related to this thesis
	2.4.1 The Mozart Programming System

	3.1 Hybrid declarative and imperative approach
	3.1.1 Oz data structures
	3.1.1.a Atom
	3.1.1.b List
	3.1.1.c Strings
	3.1.1.d Records

	3.1.2 Declarative semantics

	3.2 Geometry management
	3.2.1 Absolute coordinate geometry
	3.2.2 Free rectangular splitting
	3.2.3 Hierarchical containers
	3.2.3.a EBL td and lr widgets

	3.3 Combining object-oriented and model-based approaches
	3.3.1 Imperative object-oriented approach
	3.3.2 Declarative approach
	3.3.3 Hybrid approach
	3.3.4 Relation between the hybrid approach and adaptation
	3.3.5 Relation between the hybrid approach and MVC
	3.3.6 Relation between the hybrid approach and Arch/Slinky

	4.1 Migration and adaptation properties
	4.1.1 Granularity of migration & adaptation
	4.1.2 Orthogonal migration & adaptation

	4.2 Overview of the distributed structure of a widget
	4.2.1 Fault tolerance

	4.3 EBL store
	4.3.1 Simple multi-user functionality
	4.3.1.a Updated design space
	4.3.1.b Ubiquitous widgets

	4.3.2 Event bindings
	4.3.3 Causality management of events
	4.3.4 Functional core of the widget

	4.4 The receiving end of a migration
	4.4.1 Container composition
	4.4.2 Toplevel widgets
	4.4.3 Migration trigger

	4.5 Adaptation
	4.6 Low level network implementation independence
	4.7 Security issues
	5.1 Distribution overview
	5.2 Runtime architecture
	5.3 Migration capabilities
	5.3.1 Trajectory of a universal reference
	5.3.2 Discovery service

	5.4 Distributed widget architecture
	5.4.1.a Specifics of the widget proxy
	5.4.1.b Specifics of the widget renderer

	5.5 Display site architecture overview
	5.6 Low level network component
	5.7 Protocols
	5.7.1 Migration protocol
	5.7.1.a Negotiation phase
	5.7.1.b Fault tolerance

	5.7.2 Adaptation protocol
	5.7.3 Single user and simple multi-user variations
	5.7.4 User event management
	5.7.5 Stores
	5.7.6 Delegation protocols

	5.8 EBL toolkit binding recipes
	5.8.1 Simple widget
	5.8.1.a Proxy
	5.8.1.b Renderer

	5.8.2 Windowing information
	5.8.3 Compound widget
	5.8.4 An item container widget
	5.8.5 Container widget
	5.8.6 Toplevel widget
	5.8.7 Simple multi-user functionality
	5.8.8 Global resource

	6.1 Case study #1: A migratable clock
	6.1.1 The clock as a stand-alone application
	6.1.2 The clock as a widget, v1
	6.1.3 The clock as a widget, v2
	6.1.4 The clock as a widget, v3
	6.1.5 The clock as a widget, v4

	6.2 Case study #2: An adaptable clock
	6.2.1 Adaptation example #1
	6.2.2 Adaptation example #2
	6.2.3 More adaptation examples

	6.3 Case study #3: An adaptable application
	6.4 Case study #4: A multi-user application
	6.5 Flexible & transparent migration: UniversalReceiver
	6.6 Software engineering issues
	6.7 Performance
	6.7.1 Toolkit speed analysis
	6.7.1.a Asynchronous speed comparison
	6.7.1.b Synchronous speed comparison
	6.7.1.c Migration speed

	6.7.2 Development cost of EBL/Tk
	6.7.3 Development cost of applications using EBL/Tk

	6.8 Comparative analysis
	6.8.1 Places
	6.8.2 Dynamicity of the distribution
	6.8.3 Control
	6.8.4 Reproduction
	6.8.5 Users
	6.8.6 Adaptation
	6.8.7 Granularity level
	6.8.8 Relation of the criteria with migration, adaptation, and multi-user functionality
	6.8.9 Comparison charts

	7.1 Summary of results
	7.1.1 Contributions

	7.2 Future work
	7.2.1 Hybrid approach
	7.2.2 Tool extensions
	7.2.3 Future exploration areas

	7.3 Concluding remarks

