
M.F. Costabile and F. Paternò (Eds.): INTERACT 2005, LNCS 3585, pp. 198 – 212, 2005.
© IFIP International Federation for Information Processing 2005

Attach Me, Detach Me, Assemble Me Like You Work

Donatien Grolaux1,2, Jean Vanderdonckt1, and Peter Van Roy2

1 School of Management, Information Systems Unit, Place des Doyens,
2 Dept. of Computing Science and Engineering, Place Sainte Barbe,

Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
ned@info.ucl.ac.be, vanderdonckt@isys.ucl.ac.be,

pvr@info.ucl.ac.be

Abstract. Detachable user interfaces consist of graphical user interfaces whose
parts or whole can be detached at run-time from their host, migrated onto an-
other computing platform while carrying out the task, possibly adapted to the
new platform and attached to the target platform in a peer-to-peer fashion. De-
taching is the property of splitting a part of a UI for transferring it onto another
platform. AttAaching is the reciprocal property: a part of an existing interface
can be attached to the currently being used interface so as to recompose another
one on-demand, according to user’s needs, task requirements. Assembling inter-
face parts by detaching and attaching allows dynamically composing, decom-
posing and re-composing new interfaces on demand. To support this interaction
paradigm, a development infrastructure has been developed based on a series of
primitives such as display, undisplay, copy, expose, return, transfer, delegate,
and switch. We exemplify it with QTkDraw, a painting application with attach-
ing and detaching based on the development infrastructure.

1 Introduction

With the advent of ubiquitous computing and the ever increasing amount of comput-
ing platforms, the user is encouraged to work in more varying conditions that were
not expected before. From a user’s perspective, various scenarios may occur:

1. Users may move between different computing platforms whilst involved in a task:
when buying a movie on DVD a user might initially search for it from her desktop
computer, read the reviews of the DVD on a PDA on the train on the way home
from work, and then order it using a WAP-enabled mobile phone.

2. The context of use may change whilst the user is interacting: the train may go into
a dark tunnel so the screen of the PDA dims, the noise level will rise so the vol-
ume of audio feedback increases so it can still be heard.

3. Users may want to collaborate on a task using heterogeneous computing plat-
forms: the user decides to phone up a friend who has seen the movie and look at
the reviews with her, one person using WebTV and the other using a laptop, so the
same information is presented radically differently.

There are many other similar situations where these types of interactions may
occur, for example, graphic expert teams doing collaborative drawing tasks using

 Attach Me, Detach Me, Assemble Me Like You Work 199

information shared across multiple computing platforms, or a stock market trader who
wants to access the same market data on his desktop computer and his mobile phone
when she is away from her desk. We can easily extend these scenarios for multi-user
communication where users interact from different contexts of use and even the type
of coordination and communication that can occur among them depends on a number
of aspects related to the context of use. Although more mobile computing platforms
exist, they are not always compatible (they do not share the same operating system),
communicant (the communication protocols are different), and composable (once
together, computing platforms cannot take advantage of the newly available resources
to return to another situation when some platform is leaving). Since the User Inter-
faces (UIs) that are running on these heterogeneous platforms cannot be composed,
they are rather inflexible for reconfiguring at run-time and they may impose configu-
rations that are not natural to the user.

For example, when a painter is painting a scene, the painting is the main focus of
attention, while all tools (e.g., the color palette, the pencil, and the painting tools)
remain secondary, available at hand when needed. Unfortunately, this is not the case
with most painting/drawing software where the real world is reproduced by a working
area representing the painting and a series of menu bars and tool bars containing fami-
lies of related tools. When many of these bars are displayed, the UI rapidly becomes
cluttered so as to reduce the working area to its minimum (Fig. 1). This UI is not
considered natural [9] in the sense that tools contained in such bars are not required
all the time during interaction, but solely at certain specific moments (e.g., changing
the color, increasing the size of the pencil, choosing a painting effect). Of course, the
end user can customize the display of tool bars, but this operation remains manual,
tedious, repetitive and not related to the main task. Some UIs tend to improve this by
displaying toolbars only when they are related to any object manipulated (e.g., an
image, a rectangle) and undisplaying them afterwards. For example, PaintShopPro™
includes a ‘Tool Options’ dialog box that is displayed according the tool currently
being selected. Although this partially reduces the screen density, it provokes fast
visual change of the UI that may confuse the user [9].

Fig. 1. Natural world vs. user interface world

200 D. Grolaux, J. Vanderdonckt, and P. Van Roy

The availability of today’s computing platforms ranging from the traditional PC
and the laptop to handheld PC and pocket PC invites us to address this problem by
exploiting interaction between multiple surfaces of interaction [5] at the same time. In
the painter example, a more natural UI, i.e. a UI that would mimic more the real
world depending on availability of platforms, would be the largest screen used as the
main painting area and a Pocket PC used only for displaying tool bars and picking
there the right tools on demand.

To support this scenario and any similar situation where the user may want to com-
pose, decompose and re-compose the components of a UI on-demand, depending on
users’ needs, task requirements and platforms availability, we introduce a new
interaction paradigm, called Detachable User Interfaces that are characterized by the
‘Demi-Plat’ set of properties (Fig. 2):

− Detachability: any UI component of the interactive application of interest can be
detached from its host UI, provided it is authorized to do so, while continuing to
carrying out the corresponding interactive task.

− Migratability: the detached UI component is migrated from the source computing
platform running the interactive application to another target platform, possible
equipped with totally different operating systems, protocols, screen resolution.

− Plastifiability: the migrated UI component is adapted according to the new con-
straints posed by the new target computing platform, if needed [3].

− Attachability: the plastified UI component is attached to any UI running on the
target computing platform, if needed.

Fig. 2. The basic principle of detachable user interface

The remainder of this paper is structured as follows. The next section 2 summa-
rizes the related work in the domain of dynamically changing UIs on different plat-
forms. Then, the definitions, motivations, the design choices and a definition of the
four ‘Demi-Plat’ properties are provided in Section 3, along with the primitive opera-
tions required to support them. Section 4 explains the development infrastructure that
we developed to support the interaction paradigm of detachable UIs. Then, a complete
implementation is described in Section 5, based on the above scenario of the painter:
QTkDraw is an interactive painting software supporting the four properties. In par-
ticular, any toolbar can be detached from the initial application to any other comput-
ing platform, even running a different operating system (e.g., from a PC to Mac and
back), can be automatically adapted to it, and can continue interaction with the main
screen. Finally, a conclusion reports on the original points of detachable UIs, some
open questions and future work in Section 6.

 Attach Me, Detach Me, Assemble Me Like You Work 201

2 Related Work

In order to uniformly compare existing work we will take the common scenario of the
Painter’s palette as represented in Fig. 1 and as described in the introduction.

The first steps that have been made towards moving UIs between screens were
achieved by virtual window managers capable of remotely accessing an application
over the network, such as X-Windows X11 remote displays (http://www.x.org/), Vir-
tual Network Computing (http://www.uk.research.att.com/vnc/), and Windows Ter-
minal Server (http://www.microsoft.com/windows2000/technologies/terminal/ de-
fault.asp). It is possible to launch an interactive application locally, but to transfer the
UI input/output to another workstation. These solutions are controlled by the underly-
ing operating system with a service that is independent of the interactive application.
These solutions suffer from the following drawbacks: the UI cannot control its own
transfer since it is independent from the service, the UI can only be moved among
workstations of the same operating system (e.g., Unix or Windows), there is no adap-
tation to the target platform, it cannot be dissociated, and it is a client/server solution
(a server that has nothing to do with the interactive application is required to run the
solution ; if the server disappears, the interactive application also disappears).

Pioneering work in migration has been done by Bharat & Cardelli [2]: their migra-
tory applications are able to move from one platform to another one at run-time, pro-
vided that the operating system remains the same. While this is probably the first truly
migrating application, the main restriction is that the whole application is migrated.
The situation is similar for multi-user applications when an application should be
transferred to another user as in [7]. In The Migration Project [1], only the UI is mi-
grated, in part or in whole, from one computing platform to another. At run-time, the
user can choose the platform where to migrate. But only web pages are migrated be-
tween platforms (thus the example toolbar can be run), a migration server is required
and all the various UIs for the different platforms are pre-computed.

Remote Commander [11] is an application that supports all keyboard and mouse
functions and displays screen images on the handheld PC, so it can serve as a host for
our example’s toolbars, but the handheld PC is the only platform capable of welcom-
ing the controls. It is not possible to decompose or recompose UI parts, the portion
that is migrated needs to be predefined.

The Pick & Drop interaction paradigm [12] supports migration of information be-
tween platforms, like other interaction techniques and migration environments such as
i-Land [15], Stanford Interactive Mural [8], Aura [14], ConnecTables [16]. But these
solutions do not support the properties of detachability, attachability and plasticity
when migrating a UI across platforms. In addition, all the platforms should belong to
the same family, which is rarely the case when people meet or for a single person. For
instance, the Stanford Interactive Mural enables user to freely move windows from
one screen to another, the screens being displayed on walls, side by side or not, but
the whole configuration is predefined and described in a topology model that does not
accommodate entries and leavings of different platforms. Only I-AM [4,5] today
exhibits the capabilities of platform discovery and UI plasticity at the same time. A
meta-UI [4] is defined to control the migration process [10] across various platforms

202 D. Grolaux, J. Vanderdonckt, and P. Van Roy

and in varying circumstances, thus releasing the user from having a predefined con-
figuration. In contrast, detachable UIs allow people to migrate parts or whole of the
UI by direct manipulation of the parts that can be effectively migrated.

3 Definitions, Motivations, and Design Choices

A UI migration is hereby defined as the action of transferring a UI from one source
computing platform to a target one, such as from a desktop computer to a handheld
device. A UI is said to be migratable if it holds the migration ability. A migration is
said to be total, respectively partial, when the whole interactive application, respec-
tively the UI, are migrated [1,4]. If we decompose a UI into the control which is re-
sponsible for the UI behavior and the presentation which is responsible for presenting
information to the user, control migration [1] migrates only the control component
while the presentation remains. In presentation migration [1], the situation is the
inverse: the presentation component is migrated while the control remains on the
source platform. When the migration is mixed [1], different parts of both the control
and the presentation are migrated. To support all these different cases of migration, a
special UI is required that will perform the required steps to conduct the migration,
such as identification of migration possibility, proposal for migration, selection of
migration alternative, and execution of the migration itself. Since these types of mi-
grations and underlying steps require complex handling of UI events and procedures,
the UI responsible for migration is even more complex and not always visible to the
eyes of the end user. This UI is referred to as the meta-user interface in [4], i.e. the UI
for controlling the run-time migration of the UI of the interactive systems. A meta-UI
could be system initiated (the system initiates the migration), user-initiated (the user
initiates the migration), or mixed-initiated (the user and the system collaborate to
perform the migration).

A UI component is hereby defined as any part or whole of a UI of interest. It can
be an individual widget (e.g., a control), a composed widget (e.g., a tool bar or a
group box with contained widgets), a container (e.g., an area displaying an activity
chart), a child or an application window, or any combination of these. The computing
platform is referred to as the complete hardware/software environment that is consid-
ered as a whole, including the operating system and the input/output capabilities.

A detachable UI is a UI from which any allowed portion can be detached at run-
time from one platform, migrated and adapted to another one. We now detail the four
main properties of detachable UIs, as referred to the ‘Demi-Plat’ properties:

3.1 Detachability

Any UI component with its current status of interaction can be detached at any time.
Detaching a UI is achieved by dragging a portion of the UI and dropping it outside the
UI: the migration could be partial or total, presentation-, control-oriented or mixed,
and user-initiated. Different types of detachability exist:

1. Full screen when the entire UIs of all applications running on the current plat-
form are detached.

 Attach Me, Detach Me, Assemble Me Like You Work 203

2. Window when an entire user/system-selected window or any portion of it is de-
tached. For instance, a whole window within the border, along with its title bar,
its menu bar, the scroll bar or captions lines.

3. Active window when the windows that has the focus of interaction on the desktop
is detached when the detach operation is invoked.

4. Region when any user-defined rectangular region of the UI is detached. For in-
stance, a user may select by direct manipulation a rectangle surrounding compo-
nents subject to detachment.

5. Fixed region when a user-defined rectangular fixed region of the platform desk-
top defined by absolute pixel coordinates.

6. Widget when any individual widget is detached.

For example, to detach a palette from a drawing application, a region will be se-
lected. When only a particular tool is required to detach, the widget part will be used
instead. The fixed region can be used for instance for the menu bar of an application
provided that it has been maximized full screen. In addition to the detachability prop-
erty, any UI component can be declared detachable or not, splittable or not. Detach-
ability decides whether a UI component can be detached to another platform or should
remain fixed with the main UI. Splittability specifies whenever a composed UI com-
ponent can be detached in itself, but that none of its sub-components can be detached
individually. For example, a color palette can be declared unsplittable to avoid wide-
spreading of color schemes on different surfaces. Any component that is contained in
an upper-level component that is unsplitttable cannot be detached. The detach mode is
invoked by triggering a special function which can be tailored on any supported plat-
form, e.g. a function key (F12) on PC and workstation, a menu item on handheld and
pocket PCs. Then, by direct manipulation, the user can visually determine the UI
component subject to detachment depending on the cursor position: the component
subject to detachment is highlighted. When the cursor is inside an undetachable area,
respectively a detachable area, it is transformed into a forbidden sign () (Fig. 3a),
respectively a hand (Fig. 3b) before migration.

Fig. 3. Detaching a UI component before migration (forbidden area, allowed area, migration)

204 D. Grolaux, J. Vanderdonckt, and P. Van Roy

3.2 Migration

Migration consists of transferring any UI component (presentation and dialogue
states) from one platform to another, which can be characterized along four axes:

• Amount of platforms: the migration can be one-to-one (from one platform to
another one) or one-to-many (from one platform to many platforms).

• Amount of users: the migration is said to be single-user, respectively multi-user,
when it occurs across platforms owned by one user, respectively by many users.

• Amount of platform types: the migration is said to be one-threaded, respectively
multi-threaded, when it occurs between platforms of the same type (e.g. between
two PCs), respectively of different types (e.g., from a PC to a PDA that does not
necessarily run the same operating system).

• Amount of interaction surfaces: the migration can be mono-surface, respectively
multi-surface, when it occurs from one interaction surface to another (e.g., from
screen to screen), respectively from one surface to multiple surfaces [5,6] at the
same time (e.g., from one screen to several different screens of various sizes).

For example, the QTkDraw is one-to-one (e.g., the tool bars are transferred from
the PC to the Pocket PC), single-user (it is expected to be for the usability of the same
user), multi-threaded (because of different platforms involved), and mono-surface
(only the tool bars are migrated to a Pocket PC, although separate tool bars can mi-
grate to different Pocket PCs). To support these configurations, a set of primitives is
now defined that will be further supported in the implementation.

Display (UI, platform). Any component of the currently being used UI is displayed
on a given platform. In the multi-user case, the display is remote on the other one.

Undisplay (UI, platform). Any component of the currently being used UI being on
display on a given platform is erased.

Copy (UI, source, target). Any component of the currently being used UI with its
current status of presentation (e.g., activated and deactivated parts) and dialogue (e.g.,
values already entered) is copied from the source platform to a target platform. This
primitive results in having two copies of the same UI component with the status pre-
served, but which can now work independently of each other. The source and target
UIs live their life independently. For example, a first drawing is realized and at a
certain timestamp, there is a need to continue with two separate versions of the draw-
ing to expand it with different alternatives.

Expose (UI, source, target). Any component of the currently being used UI with its
current status is copied from the source platform to the target platform and frozen.
Only the source UI can continue to live, the other being merely exposed to the target
platform for viewing purpose and being closed afterwards. For example, one user
wants to a show to a colleague the current version of a drawing to get her advice, but
does not want to allow her to apply any modification.

Return (UI, target, source). Any component of the currently being used UI with its
current status that has been copied previously, after living on its own, can be returned
to the platform which initiated it. For example, a drawing that has been separately
modified at a certain stage by a colleague can be returned to its originator. Then, the
UI of concern disappears from the current platform and appears again in its new state
of the platform from where it has been copied.

 Attach Me, Detach Me, Assemble Me Like You Work 205

Transfer (UI, source, target). Any UI component with its status is copied from the
source to the target and deleted from the source platform to live its life on the target.

Delegate (UI, source, target). A delegation is defined by a sequence of transfer and
return. For example, a user wants to completely delegate the realization of a drawing
and recuperate the results when done.

Switch (Source UI, source, Target UI, target). Two UI components of two different
UIs with their status are exchanged between a source and a target. The source UI is
transferred to the target and the target UI is transferred to the source. For example,
when two persons working in a collaborative environment need to swap their work
and to continue on each others’ work.

The Copy, Expose, and Transfer primitives can be made multi-user, multi-platform
by repeating the same process for multiple platforms at the same time.

3.3 Plasticity

The property of plasticity [3] is defined as the property of adapting a user interface
depending on the change of the context of use, while preserving predefined usability
conditions. In our case, the UI that is immigrated in the new target computing plat-
form can be submitted to the process of plastification, if it holds the plastifiability. For
instance, if a toolbar is moved from a desktop PC to a handheld PC, and only this
component, then the toolbar can be magnified by increasing the size of each button
belonging to the toolbar. Or the initial size of the toolbar can be preserved. If the size
of the UI element that emigrated from the source platform is larger that the screen
resolution of the target platform where it should immigrate, then it can be submitted
to a series of plasticity rules, such as widget replacement, size reduction, text summa-
rization techniques, repositioning of widgets, and reshuffling of components. For this
purpose, we used the PlaceHolder technique (http://www.mozart-oz.org) to contain
any part of the UI that can be submitted to plasticity. Thanks to this system, a con-
tainer is generated at run-time that only knows its components after firing the appro-
priate plasticity rules. Once these subcomponents are known, their size and locations
can be computed so as to determine the final size of the PlaceHolder.

3.4 Attachability

The attachability is defined by analogy with detachability since it is the inverse of
detachability. Any UI component of interest can be attached back to its previously
detached UI or to any other UI. Thanks to the attachability property, it is possible to
support a UI development process by copy/paste. In traditional visual programming,
any UI is drawn by composition of widgets dragged from a tool palette onto a work-
ing area. This process does not support per se composition of new UI from previously
defined UIs. Of course, it is possible to copy/paste parts of the widgets, but there is a
need to redraw everything. In Programming by demonstration, a UI that will be im-
plemented is demonstrated and then derived. Here, when a UI component is attached
to another UI component, they are automatically merged so as to create an entirely
new UI. There is no need to redraw the UI and this operation can be done at run-time

206 D. Grolaux, J. Vanderdonckt, and P. Van Roy

rather than at design-time. Or any selected component from one UI can be copied,
dragged and dropped into another UI to compose a new UI merging functions which
are the sum of functions provided by the individual components.

4 Development Infrastructure for Detachable User Interfaces

To support the above properties, we have developed techniques for making UI de-
tachable by relying on the Mozart-Oz environment (www.mozart-oz.org) that intrinsi-
cally supports distributed computing. This environment is multi-platform: a freely
downloadable version exists for Linux, Windows, and Macintosh operating systems,
thus providing us the advantage that any UI that will be made detachable thanks to
this infrastructure will be able to migrate between any operating system in a peer-to-
peer fashion as there is no need to run a server. Each interactive application can man-
age its own detachability and attachability. We now describe the indirection mecha-
nism that supports at the application level the properties of detachability, attachability,
and migration. The toolkit creates a window out of a declarative data structure, called
an Oz record, similar in expressiveness to XML. This data structure describes many
(if not all) aspects of the window that are specifiable declaratively: the widgets that
compose the window, their initial states, their geometry inside the window, their be-
havior upon window resizing, etcetera. Also, using the handle parameter of the wid-
gets in the description record, controller objects are created that allows a dynamic
interaction between the UI and the application once the window has been created. In
summary, this toolkit uses first a record DR to create the window in its initial state;
during the creation of the window, Oi objects are created to further control individual
widgets in an object-oriented imperative way.

Let us build a migratable window from a description record DR (Fig. 4). The han-
dle parameters of DR are bound to Pi proxy objects instead of the usual Oi objects,
and a CM communication manager object is created. The original DR record is also
stored by CM. At this stage, there is no display D site yet.

Application

Construction of the
window from a DR record

CM

DR

Relay buffer

Callbacks relay

P1

P2

PN

.

.

.

L Site

Fig. 4. Definition of a migratable window

 Attach Me, Detach Me, Assemble Me Like You Work 207

The proxy objects will act as the local representatives of the actual Oi widget
objects. There are at least two ways to implement Pi objects:

1. Pi objects reflect the whole semantics of their corresponding Oi objects. They
don’t rely on any Oi object to serve their purpose. This requires a huge amount of
development and maintenance work: each widget must exist in an actual and
proxy flavor.

2. Pi objects are generic objects that relay application messages to their currently
connected Oi. This is the solution used by our toolkit. As a side effect, a Pi ob-
ject cannot work correctly unless it is connected to an actual Oi object. When not
connected, method invocation messages are buffered; only when connected these
messages are processed by the display site.

Application

Construction of the
window from a DR record

CM

DR

Relay buffer

Callbacks relay

P1

P2

PN

.

.

.

L Site

CM

DR 1

2

N

.

.

.

O

O

O

UI

D1 site

Fig. 5. Configuration of a migrated window

Application

Construction of the
window from a DR record

CM

DR

Relay buffer

Callbacks relay

P1

P2

PN

.

.

.

L Site

CM

DR 1

2

N

.

.

.

O

O

O

UI

Dk+1 site

Application

Construction of the
window from a DR record

CM

DR

Relay buffer

Callbacks relay

P1

P2

PN

.

.

.

L Site

CM

DR 1

2

N

.

.

.

O

O

O

UI

Dk site

K

K

K

K+1

K+1

K+1

Fig. 6. Migration to another site

208 D. Grolaux, J. Vanderdonckt, and P. Van Roy

When the first remote display site D1 connects to the CM of L (Fig. 5), the DR re-
cord is sent. D1 creates the effective UI and the Oi’s from this DR. At this moment, the
application can start working with the migrated UI; the buffered messages are sent
first. When migrating to a Dk+1 site (Fig. 6), the actual user interface and Ok+1i’s are
still created from the DR record. However the visual aspects of the widgets might have
changed since their creation time, and the Dk+1 site should reflect that. Let’s define:

• VA(O)={v | v is a visually observable aspect of the widget controlled by O}

• get(O,v): returns the current value of the visual aspect v of O.
• set(O,v,s): sets the visual aspect v of O to s.

After the user interface and O(k+1)i’s are created at Dk+1, ∀ i in 1..N, ∀ v in
VA(Oki): set(Ok+1i,v,get(Oki,v)). In practice, Pi’s are used to store the visual
parameters: Pi’s contain a dictionary that supports the operations: get(P,v): returns
the value of the key v of the dictionary of P and set(P,v,s): sets the key v of the
dictionary of P to s. When disconnecting from a display site Dk, ∀ i in 1..N, ∀ v in
VA(Oki), set(Pi,v,get(Oki,v)). When connecting to a display site Dk+1, ∀ i in
1..N, ∀ v in VA(Ok+1i), set(Ok+1i,v,get(Pi,v)).

5 The QTkDraw Demonstration Application

In this section we demonstrate the results of using the development infrastructure
explained in Section 4 for the QTkDraw application that serves as a demonstration.
We then applied the development infrastructure to obtain the detachable UI repro-
duced in Fig. 7, where two UI components were declared detachable, splittable. Fig. 7
shows a screenshot of the application before detaching the toolbar (left arrow) and the
color bar (right arrow). This demonstration is available at http://www.isys.ucl.ac.be/
bchi/members/dgr/palette.html.

Fig. 7. Detaching the toolbar and the color bar from a desktop to PocketPCs

Since the application is developed on top of Tcl/Tk which is itself running on sev-
eral computing platforms (i.e., Linux, Windows, and Macintosh) the native Look &

 Attach Me, Detach Me, Assemble Me Like You Work 209

Feel of the platform is preserved. Therefore, the same application can run on all these
platforms without changing one line of code: they are simply re-interpreted on top of
the development infrastructure.

Fig. 8. Detaching the toolbar and the color palette from a TabletPC and attaching them together
on a desktop

In Fig. 7 and Fig. 8, the screenshots have been taken in the Windows environment,
but they could have been taken in any other environment equally. Even among differ-
ent platforms running the same operating system and window manager (here, Win-
dows), the application can be run on different devices such as desktop (Fig. 7), Ta-
bletPC (Fig. 8), and PocketPC (Fig. 9) by accommodating the different resolutions,
with or without plasticity depending on underlying plasticity rules embedded and

210 D. Grolaux, J. Vanderdonckt, and P. Van Roy

called. Thanks to the availability of the Mozart software platform for different operat-
ing systems (e.g., Microsoft Windows, Apple OS X, and Linux), it is possible to run
the same UIs with the same support for Demi-plat properties without changing any
line of code. The same UI transparently runs on all these platforms. This facility also
allows us to think about migrating a UI across computing platforms running different
operating systems since the code of the application can be run indifferently on any of
these platforms.

In Fig. 7, 8, the toolbar and the color bar have been detached from the initial win-
dows, thus freeing some real estate and provoking a resizing of the window. The two
bars have been merged to be displayed on the monitor of a desktop PC, as pictured in
Fig. 9. They could have been maintained separated as well.

Fig. 9. Detaching the toolbar and the color palette from a TabletPC and attaching them together
on a desktop (picture of situation in Fig. 8)

Fig. 10. Detaching the toolbar and the color palette from a PC and attaching them together on
another PocketPC

Fig. 10 depicts another configuration in which QTkDraw is executed: first, the
complete application is running on a PC, then the toolbar and the color bar are in turn

 Attach Me, Detach Me, Assemble Me Like You Work 211

detached from the initial PC and migrated onto a PocketPC. The migration of the
second color bar onto the same target PocketPC provokes an attaching of the second
bar to the first one, thus leading to repositioning and resizing the bars to fit in a gen-
eral PlaceHolder. Note that in this case the rule is not detachable, therefore it cannot
be migrated onto any other platform. From Fig. 7 to Fig. 10, there is no problem of
detaching, attaching the two bars at any time from one platform to another. There is
no need of migration server since the application satisfies the ‘Demi-Plat’ properties
itself. The user does not loose the control after detaching and attaching: the UI state is
preserved. Actually, there is even no true need to save and restore the UI state since it
is simply redirected to another platform wirelessly.

6 Conclusion

This paper presented a development infrastructure supporting detachable UIs. From
the application point of view, this is a transparent process: there is no difference be-
tween using a stationary UI and a migratable one. A painting application has been
changed to behave like the painter’s palette (Fig. 2): the tool bar and the color bar can
be taken away from the main window, and migrated to any other computer. The dif-
ference between the stationary version of the application and the migratable one is
around 30 lines of code out of more than 8000. The application that receives the mi-
grated UI is also around 30 lines of code. Note that the core of the application can be
extended as if the whole application was purely stationary. As a window can contain
an arbitrary amount of migrated UIs at the same time, it is also possible to dynami-
cally compose a UI from different migrated UI components. One could imagine sev-
eral different applications managing different aspects of a unique problem: their UIs
are conveniently migrated to a single place. The system administrator migrates the
UIs from all these applications into a single window. This window is migrated be-
tween his desktop when he is in front of his desk, and his laptop computer when he is
away. Also the development cost of this application is almost the same as the devel-
opment cost of a stationary version, very little change is required to make the infor-
mation migrating. This toolkit provides low cost migration mechanism that enables us
to have more freedom with multi-platform ubiquitous UIs.

Acknowledgements

We acknowledge the support of the Pirates and Salamandre research projects and the
SIMILAR network of excellence, the European research task force creating human-
machine interfaces similar to human-human communication (http://www.similar.cc).

References

1. Bandelloni, R., Paternò, F.: Flexible Interface Migration. In: Proceedings of ACM Con. on
Intelligent User Interfaces IUI’04 (Funchal). ACM Press, New York (2004) 148–155

2. Bharat, K.A., Cardelli, L.: Migratory Applications Distributed User Interfaces. In: Proc. of
ACM Conf. on User Interface Software Technology UIST’95. ACM Press (1995) 133–
142

212 D. Grolaux, J. Vanderdonckt, and P. Van Roy

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target UI. Interacting with Computers 15,3

4. Coutaz, J., Balme, L., Lachenal, Ch., Barralon, N.: Software Infrastructure for Distributed
Migratable User Interfaces. In: Proc. of UbiHCISys Workshop on UbiComp 2003 (2003).

5. Coutaz, J., Lachenal, C., Calvary, G., Thevenin, D.: Software Architecture Adaptivity for
Multisurface Interaction and Plasticity. In: Proc. of IFIP Workshop on Software Architec-
ture Requirements for CSCW–CSCW’2000 Workshop.

6. Coutaz, J., Lachenal, Ch., Dupuy-Chessa, S., Ontology for Multi-Surface Interaction. In:
Proc. of IFIP Conf. on Human-Computer Interaction Interact’2003. IOS Press (2003).

7. Dewan, P., Choudhary, R.: Coupling the User Interfaces of a Multiuser Program. ACM
Transactions on Computer-Human Interaction 2,1 (2000) 1–39

8. Guimbretière, F., Stone, M., Winograd, T.: Fluid Interaction with High-resolution Wall-
size Displays. In: Proc. of ACM Conf. on User Interface Software Technology UIST’2001

9. Jacobson, J.: Configuring Multiscreen Displays with Existing Computer Equipment. In:
Proc. of Conf. on Human Factors HFES’2002.

10. Milojicic, D.S., Douglis, F., Paindaveine, Y., Wheeler, R., Zhou, S.: Process Migration.
ACM Computing Surveys 32, 3 (September 2000) 241–299

11. Myers, B.A., Nichols, J., Wobbrock, J.O., Miller, R.C.: Taking Handheld Devices to the
Next Level. IEEE Computer 37, 12 (December 2004) 36–43

12. Rekimoto, J.: Pick-and-Drop: A Direct Manipulation Technique for Multiple Computer
Environments. In: Proc. of UIST’97. ACM Press, New York (1997) 31–39

13. Rekimoto, J., Masanori, S.: Augmented Surfaces: A Spatially Continuous Work Space for
Hybrid Computing Environments. In: Proc. of CHI’99. ACM Press, NY (1999) 378–385

14. Sousa, J., Garlan, D.: Aura: an Architectural Framework for User Mobility in Ubiquitous
Computing Environments. In: Proc. of IEEE-IFIP Conf. on Software Architecture (2002)

15. Streitz, N., et al.: i-LAND: An interactive Landscape for Creativity and Innovation. In:
Proc. of ACM Conf. on Human Factors in Computing Systems CHI’99. 120–127

16. Tandler, P., et al.: ConnecTables: Dynamic coupling of displays for the flexible creation
of shared workspaces. In: Proc. of UIST’01. ACM Press, New York (2001) 11–20

	Introduction
	Related Work
	Definitions, Motivations, and Design Choices
	Detachability
	Migration
	Plasticity
	Attachability

	Development Infrastructure for Detachable User Interfaces
	The QTkDraw Demonstration Application
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

