
 - 55 -

3D User Interfaces for Information Systems
Based on UsiXML

Juan Manuel González-Calleros, Jean Vanderdonckt
Université catholique de Louvain

Place des Doyens 1, 1348
Louvain-la-Neuve, BELGIUM

+32 (0)1 047 8349
{juan.m.gonzalez, jean.vanderdonckt}@uclouvain.be

ABSTRACT
Since many years, 3D interactive systems have demonstrat-
ed some benefits in reproducing adequately the reality, in
improving it, and even in augmenting it by providing the
user with unprecedented actions. 3D User Interfaces are
becoming the primary subject of interest of a growing
community of researchers and developers adopting differ-
ent approaches for specifying and creating 3DUIs. Provid-
ing development methods and software support for 3DUIs
is a complex problem. In this paper, we argue that develop-
ing 3DUIs for Information Systems is an activity that
would benefit from the application of a model-driven de-
velopment methodology composed of: a set of models de-
fined according to an ontology, a language that expresses
these models, and a structured method manipulating these
models.

CATEGORIES AND SUBJECT DESCRIPTORS
D2.2 [Software Engineering]: Design Tools and Techniques –
Modules and interfaces; user interfaces. D2.m [Software Engi-
neering]: Miscellaneous – Rapid Prototyping; reusable software.
H.1.2 [Information Systems]: Models and Principles – Us-
er/Machine Systems. H5.2 [Information interfaces and presen-
tation]: User Interfaces – Prototyping; user-centered design; user
interface management systems (UIMS).

General Terms
Design, Experimentation, Human Factors, Verification.

Author Keywords
User Interface, 3D User Interface, 3DUI, Model-Based User In-
terface Development, Information Systems design.

INTRODUCTION
In HCI, a Graphical User Interface (GUI) is often under-
stood as a User Interface (UI) that involves graphical widg-
ets that are displayed as planar regions in xy planes accord-
ing to their abscissa and ordinates. As such, they are con-
sidered as two-dimensional UIs (2DUIs). Many desktop
environments support overlapping of widgets, pseudo-
relief effects (such as shadows) and depth effects, thus rais-
ing the level up to two-dimensional and half user interfaces
(2D½UIs). In contrast, three-dimensional user interfaces
(3DUIs) involve graphical widgets that are rendered as
volumes in xyz spaces according to their 3D coordinates.

2DUIs, as well as 3DUIs, could be used to support the user
to achieve a 2D or a 3D interactive task. A 2D task in na-

ture, e.g., navigating on a map, can be supported by a 2DUI
and does not necessarily require a 3DUI. A 3D task in na-
ture, e.g., controlling a satellite in space, can be supported
by both 2DUI and 3DUI, but not with the same quality.
Table 1 categorizes UI types according to two axes: the na-
ture of the task (2D vs. 3D) and the associated front-end
(2D vs. 3D). For instance, navigating on a map, a 2D task
in nature, can be rendered as a GUI on a 2D desktop, but
also as a flat object in a 3D environment, although this is
not particularly interesting. Organising tasks in windows, a
2D task in nature, is typically achieved in a 2DUI, but also
benefit from a 3DUI (Figure 1). Controlling a satellite in
space, a 3D task in nature, would really benefit from a
3DUI, although it could be projected into 2D planes as a
GUI in 2D. In most situations, 3DUIs have shown some
benefits with respect to 2DUIs, but also some shortcom-
ings. 3DUIs are not automatically superior or inferior to
2DUIs. Moreover, some transitions may become desirable
from 2D to 3D and vice versa in order to ensure appropri-
ate representation of a change of context and reasons exist
why maintaining 2D contents in 3D [10].

 Nature of the task
Front-end 2D 3D

2D 2DUI, such as a GUI GUI in 2D

3D GUI in 3D 3DUI

Table 1. Nature of the task and its front-end.

Some reasons to care about 3DUIS are the following: some
users, not all, prefer the use of 3DUIs [6] although they are
helpful for specific tasks, but not all [40]; human perceptu-
al mechanisms to analyze the world into structures of 3D
primitives are better compared to 2D representations [5];
human visual bandwidth is much larger in 3DUIs than in
2DUIs [39]; users tend to remember better objects shapes
and location in 3DUIs than in 2DUIs [38]; companies ven-
turing into virtual worlds virtual worlds, such as IBM for
hosting virtual meetings, has been rewarded with an incre-
ment in collaboration [28].

Thus, 3DUIs are becoming the primary subject of interest
of a growing community of researchers and developers
[3,27] adopting different approaches for specifying and
creating 3DUIs. Providing development methods and soft-
ware support for 3DUIs is a complex problem. Researchers
are at a stage where they are developing new interaction

In Faure, D., Vanderdonckt, J., (Eds.), Proc. of 1st Int. Workshop on User Interface Extensible Markup Language UsiXML’2010 (Ber-
lin, 20 June 2010), Thales Research and Technology France, Paris, 2010. ISBN 978-2-9536757-0-2

 - 56 -

techniques, gestures and metaphors for 3DUIs [33]. Most
research and development is focusing on technological is-
sues, as reported in a survey of major publications on
3DUIs [43]. The research is mainly focusing on how to
overcome hardware and software issues [11]. Little or no
attention is devoted to the design knowledge that should
drive the development life cycle of 3DUIs.

Figure 1. TaskGallery, an example of a 2D task in 3D

[38].

In this paper we argue that developing 3DUIs for Infor-
mation Systems is an activity that would benefit from the
application of a development method which is typically
composed of: (1) a set of models defined according to an
ontology, (2) a language that expresses these models, and
(3) a principle-based approach manipulating these models
based on principles.

STATE OF THE ART
3DUIs can be the result of different development ap-
proaches: programmatic, toolkit based, method.

In the programmatic approach, the 3DUI is obtained by di-
rectly coding in its target computer language, e.g., C++.
The programmatic approach is frequently preferred for ap-
plications where performance is a priority such as in
games. Most games are written in C++ although, some may
use C to try to get even more speed (at the cost of not hav-
ing built in Object Oriented support). There are also some
other application programming interface (API) that can be
used in most common programming languages, for in-
stance, Google O3D, Microsoft XNA.

A 3DUI can be also coded as a XML-based language, ex-
amples are: X3D, VRIXML [7,9]. Programming and main-
taining 3DUIs without any method could be not as simple
as it gives no guarantee for regularity. There are no evalua-
tion criteria to consider unless the final result is achieved.
The tendency is on the “rush to code” approach without
any structure favours a “trial and error” method.

A toolkit approach allows a straightforward implementa-
tion of a final interface once modelled in a tool. Using a
predefined set of objects that help developers in their pro-

gramming task, the toolkit approach offers the best solution
to draw 3DUIs elements with an immediate feedback. A lot
of toolkits exists for 3D modelling, open source (Google
SketchUp, Vivaty Studio), and commercial (Autodesk, An-
ark). While they are very similar in their basic capabilities,
there are some differences more related to the interopera-
bility with other technologies. For instance Autodesk Maya
or 3ds Max can import 2D diagrams from AutoCAD and
making the process of creating 3D content very simple. A
toolkit is always useful and it was for us for designing our
3D objects. However does not provide design knowledge
for developing 3DUIs.

The methodological approach relies on the step-wise
frameworks for developing 3DUIs. There is a plethora of
methods VR-Wise [35], CoGenIVE [9], InTML [13], Con-
tigra [8], Tres-D [31], Desktop 3DUIs [25,26,42], Partici-
pative [34], Task analysis [14,37] to develop 3DUIs, we
might have skipped some significant work in this area but
we are not trying to be exhaustive but just reviewed some
significant exiting work. Although these different methods
share some similarities on their steps, several conceptual
dissimilarities differentiate them.

Consequently, it is challenging to transfer one abstraction
from one method to another in order to have one consistent
framework supporting the development lifecycle of 3DUIs.
They decompose the software life cycle into steps and sub-
steps, but these methods rarely provide the design
knowledge that should be typically used for achieving each
step. Most approaches cover aspects such as task model-
ling, dialog modelling and implementation aspects. While
some knowledge in explicit of existing method most of the
time it is hard to find the abstracted models, the transforma-
tional approach along with its rules.

To identify shortcomings on existing work, a series of
comparative analyses were conducted using the three axes
recommended in [1]: descriptive part: a common ground is
needed to describe every piece of work (for this purpose
we use the Cameleon reference framework); comparative
part: a set of criteria were defined to compare the different
works that we described using a common syntax (next par-
agraph describe such criteria); generative part: new work
emerges from the comparative analysis as a result of the
identification of limitations or potentiality of the literature
review (the proposed methodology is the result of this pro-
cess).

The properties analyzed in the comparison were: models
manipulated by the toolkit, all of them compliant with
UsiXML models with the following notation: Di = dialog,
AUI=abstract presentation, CUI=concrete user interface,
FUI = Final User Interface, U = user, C = context. Along
with this models to support a transformational approach
then a series of inter model transformation is needed. When
such transformational approach exists then it is explicitly
denoted using the following notation: (A, …, B) indicates
that A, …, B are grouped models that are done at the same

 - 57 -

level; A B indicates that A derivates B and B is reengi-
neered from A; A→B indicates that A derivates B; A≈ B
indicates that model A concepts could be manually linked
to model B concepts and that B can be manually reengi-
neered to A; A≈→B indicates that model A concepts could
be manually linked to model concepts B. This means that
the rules and the models exist but not a tool to support the
automatic transformation.

Table 8 Comparison of Model-Based methodologies

3D USER INTERFACES FOR INFORMATION SYSTEMS
Similarly to a 2DUI, a 3DUI can be decomposed into two
parts: the presentation part (also called front-end) and the
semantic core part (also called back-end) equipped with the
semantic functions, the system data storage, and the com-
munication layer. 3DUIs are often associated to various 3D
systems, such as those in virtual reality, mixed reality,
augmented reality, and 3D desktop environments [29]. We
focus of the 3DUIs we propose is Information systems (IS)
for desktop-based systems. An IS for an organization is a
construction made up of four blocks [2]: (1) data, a partial
representation of facts that interest the organization; (2)
processes, that represent means to acquire, search, store,
present, and con-vey information; (3) organizational rules,
governing the implementation of informational treatments;
and (4) human & Technical Resources, required for the
functioning of IS.

An IS supports management tasks according two axes [2]:
functioning level, which ranges from operational, decision-
al to strategic; and the structure level, which ranges from
structured to informal. We primarily consider management
tasks that are operational and structured activities typically
corresponding to administrative tasks, which are defined to
deal with routine activities [2]. In this scenario, a context of
use is assumed to be quasi-constant: the physical environ-
ment is assumed to be an office setup; the user has known
skills required conducting these administrative tasks, and a

desktop computer is considered as the main computing
platform. Therefore, we consider that 3DUIs that corre-
spond to other tasks than such administrative tasks are be-
yond the scope of this thesis, as well as contexts of use that
significantly depart from this assumption. For instance, a
mobile traveler could conduct administrative tasks, but the
resulting context no longer satisfies our assumption. And
so do 3D games, volumetric displays, Organic UIs.

For administrative tasks supported by IS several interaction
styles are candidates [45]: form filling, multi-windowing,
direct manipulation, iconic interaction, graphic interaction,
multimedia interaction, and 3DUIs. 3DUIs were chosen as
a potential interaction style for IS since this option is un-
derexplored. IS examples that are not covered by the pre-
sent work includes: non interactive contents (e.g., a surgery
room), information visualization (e.g., 3D statistics), and
custom 3D contents (e.g., a stadium).

MODEL-BASED DEVELOPMENT OF 3DUIs

Models
In this section we define concepts related to 3DUIs, i.e., the
representation of 3D widgets, their characteristics, and how
from a user task we can derive the 3DUI. These models
were incorporated to UsiXML to support:

 3D Rendering of 2D User Interfaces. The UsiXML
model that considers 2D GUI was specialized to con-
sider the attributes specific for their 3D rendering.
The extension specialize the Concrete Interaction Ob-
jects (CIOs) by adding extra attributes to define their
size (height, width) and position (top, left) when it
applies.

 3DUIs A second approach involves a true 3D presen-
tation of the 3DUI. By true representation is meant
going beyond an imitation of their 2D GUI counter-
part. In that scenario it was not enough to rely on the
existing model as concepts such as appearance, tex-
ture, shape, and behaviour were needed.

 Hapgets Haptically enhanced 3D widgets [23,24].

We create the 3DUI model that includes concepts to ex-
press haptic interaction and different representations for 3D
UIs depicted in Figure 2.

Language
In order to be fully-MDA compliant, this works need a Us-
er Interface Description Language (UIDL). Some environ-
ments may includes models, and a transformational ap-
proach but do not have a genuine modeling language be-
hind. It is not just because there is a XML language that a
genuine modeling language may exist [46]. A genuine
UIDL must be strongly defined based on a trilogy (seman-
tics, syntax, stylistics), this is the case of UsiXML. A re-
view of the literature of existing UIDLs was conducted in
[15] to justify the selection of UsiXML as UIDL for our
work.

Methods Models
Inter Model Transfor-

mation

VR-Wise CUI CUI → FUI

CoGenIVE T, Di, CUI (T, Di, CUI) FUI

InTML Di, CUI T ≈→ (Di, CUI),

(Di, CUI) ≈→ FUI

Contigra CUI, Di (CUI, Di) → FUI

Tres-D T, U, C, Di,
Do

T, Do≈→ CUI,
CUI≈→ FUI

Desktop
3DUIs

T, CUI, Di T≈→CUI, CUI → FUI

Participative T, CUI, Di T≈→CUI, CUI ≈→ FUI

Task analysis T, CUI, Di T≈→CUI

 - 58 -

Figure 2 UsiXML 3DUI Concrete User Interface Model.

Regarding the UIDL trilogy we briefly comment that: the
semantics are expressed as Meta-Models using the UML
class diagram notation; the syntax is abstract expressed as
XML Schemas and concrete expressed as a XML file; fi-
nally, the stylistics are the graphical representation used
to represent the different artifacts involved in the method-
ology.

Software Tools
The set of software tools required to support the devel-
opment of 3DUIs includes: model editors to assist the de-
signer in constructing the models; design critics providing
a designer with quality assessment facilities, models cap-
turing explicit properties of the artefact are an ideal repre-
sentation to perform evaluation; implementation tools
translate a specification into a representation that can be
used by a compiler, an interpreter or an interface builder;
and transformation tools provide support to the designer
to edit, store and execute model transformation rules.

Finding the right tool is a trade-off between six main cri-
teria [41]: partial support of the tool not supporting the
whole development process, learning time, building time,
communication with other subsystems, extensibility and
modularity. Supporting the evolution and the reuse of
software remains a challenge. Although, it is hard to keep
a valance we select the software to be used based on ex-
tensibility and modularity.

The software modules that support the methodology are:

 IdealXML [32]. Task, domain and AUI models are
designed sing this tool. The semantics and models is
from UsiXML. The notation of the task model is
based on the stylistics from CTT [35] while its oper-
ators on the semantics of LOTOS operators. The
domain model uses as stylistics UML class dia-
grams. The AUI uses an innovative expression for
gathering abstract concepts related to the AUI mod-
el. Transformations from task and AUI model are
supported.

 Usability Adviser [44]. Usability guidelines were in-
troduced for each development step. Usability
guidelines can be evaluated automatically using the
Usability Adviser this software determines the
usability of any UI specified in UsiXML.

 3D Modelling was possible by relying on non-
commercial tool: Alice (www.alice.org), Blender
(www.blender.org), VUIToolkit [31] and Vivaty
(http://developer.vivaty.com/).

 Software Support for Transformations. An analysis
was reported for the transformation engines [18]
used to support the transformational approach of our
methodology.

 Haptic support was tested via the haptic browser,
which was reported in [23,24].

 - 59 -

Figure 3. Outline of the method for developing 3DUIs.

METHOD AND CASE STUDY
The goal is not to come up with yet another Software De-
velopment Method but to reuse existing work and struc-
ture it accordingly. The result is a method that structures
the development life cycle of a 3DUI of an IS in a princi-
ple-based way. The method follows an exploratory ap-
proach as its goal is to show a variety of possibilities to
encourage design. It is said that is structured as it is based
on a structured Framework, the Cameleon Framework
[4]. Second, a set of instruments (evaluation guidelines
[19,21], task patterns [21], canonical task types [20], rules
for model to model transformations [17,18]) guide de use
of the method then making it principle-based. The method
(Figure 3) includes an evaluation of each development
step, which can be performed manually or automatically.
In order to provide another possibility to evaluate a 3DUI,
our method could be an option to cope with the budget
problem that rises when costly user experiments including
experts are needed [Bowm02]. We rely on principles ex-
pressed as guidelines for modelling the task and abstract
user interface (AUI) model. They are applied manually
and refine the models. At the concrete user interface
(CUI) model direct evaluation over the code is performed
by evaluating rules and conventions or recommendations.
The refined model is then used for the code generation.
The next subsections details the development steps. Due
to space reasons the following case study will not include
haptic interaction in the final result.

Step 1: Task and Domain Modeling
In order to provide some means to designers for task
modelling we propose [21]: 1) to reuse existing success-
ful solutions existing as task patterns and 2) to follow a
set of guidelines that might lead to a consistent task mod-
el that later can be object of transformations.

The 3D Universal interaction tasks patterns described in
[3] are expressed in UsiXML task model notation. It is

not the scope of this paper to go beyond this description
since most issues related to pattern-based design is exten-
sively addressed in the literature. Even that the use of pat-
tern-based development life-cycle is contradictory to
model-driven engineering, as patterns are poorly struc-
tured or in many different ways. There has been some
works [15] showing the potential of modelling patterns
for task models and to reuse successful solutions. This
could be easily extended into more detailed pattern
Markup languages such as PLML (Pattern Language
Markup Language.

Guideline based evaluation of task modelling is based on
principles reflecting broad knowledge about task model-
ling coming from the literature. For instance, promote the
use of systematic mechanism for the selection of task at-
tributes, such as the task types [20].

Task Model Case Study

In this example we refer to a simple navigation task in a
virtual office, with two interactive objects: an interactive
table and an interactive screen. The user can interact with
a table, navigate through the room and interact with a
screen. For the navigate room, the task model uses the
identified task pattern travel and Wayfinding. The inter-
action with big Screen indicates as the user interacts with
screen task refers to a turn on/off a screen than renders
video or images.

Figure 4. Virtual Office Task Model.

Step 2: Task and Domain Modeling
An AUI model can be generated automatically or pro-
duced manually from a task model following a set of heu-
ristics. Various set of heuristics may fit this purpose de-
pending on the type of AUI to be obtained: an AUI that
reflects the task structure, an AUI minimizing navigation,
an AUI compacting input/output. Most of them are com-
pliant with the knowledge base from UsiXML. Although
this level is independent of any modality, some guidance
is still desired on how AUI might be structured consider-
ing further reifications into 3D CUI objects. Several met-
aphors have been introduced in order to display infor-
mation or windows. If we imagine for instance a cube to
render the different tasks as an Abstract Container (AC),

 - 60 -

then authors need to add inputs with navigation facets in
order to guarantee the cube transitions.

AUI Model Case Study

The task model of previous section (Figure 4) is reified
into the AUI model (Figure 5), using the rules are similar
as in the previous example so there is no need to explain
the internal process of the tool. What is relevant is to no-
tice, that even that we put in the task model the make de-
cision task for wayfinding, at the CUI model this kind of
task do not appear, as they are not part of the UI.

Figure 5. Partial Abstract User Interface Model of the

Virtual Office.

Step 3: Concrete User Interface Modeling

Abstract Interaction Objects (AIOs) can be selected based
on the facet of the Abstract individual component (AIC),
the action type and action item of the task [20]. Unfortu-
nately, it is not enough while the action type and action
item combined with the facet to properly select the AIO.
An example can be used to clarify this situation. Assum-
ing that the UI action type corresponds to a select of a
collection of elements, then, several are the potential AI-
Os that can be used such as: combo box, radio button
group, text fields. The problem became then on deciding
the appropriate AIO depending on the context of use, the
type of value to be selected, and the domain. For that pur-
pose, UsiXML meta-models can be used. Our aim is on
the use of them and to provide guidelines on the proper
selection of AIOs. How to differentiate 2D and 3D tasks
working on 2D or/and 3D objects? Another question is
related to the final code. What is the appropriate represen-
tation of 3DUIs? Should the 2D desktop metaphor still be
used or are there alternative visualizations or metaphors.
Several attempts go towards defining a new toolkit of 3D
objects which are natively appropriate to 3D applications.
Again, this represents an advantage to have a predefined
collection of such 3D-widgets, but then the interaction is
reduced by what they offer natively.

The primary problem to solve at this level of abstraction
consists in determining which mapping rules can be de-
fined in order to transform an AUI into one or several
CUIs. The selection has been largely reported [17,
19,21,22]. The second, not less important, issue is regard-
ing the selection of AIOs. For that purpose we build a
taxonomy of 3DUIs. The taxonomy can be of some help
in making that decision [3] as a design space of potential
representations of the AIO. During a second phase, se-
lecting 3D presentations based on the questions and an-
swers method as we did for the hapgets [23,24].

The problem is not just a matter of 3DUI representation,
but also the selection of the appropriate representation.
The possible mappings and guidelines to support the cor-
rect transfer from task model to 3DUI widgets are also
relevant. Because it is not enough just to use any arbitrari-
ly selected widget, for instance, a combo box for selecting
a value instead of a radio button group. The selection of a
simple value can be mapped to a radio button group or a
list box, the difference relies on the number of possible
values to select. This characteristic could be part of the
design in UsiXML [30].

CUI Model Case Study

The third step implies a transformational system that is
composed of necessary rules for realizing the transition
from AUI to CUIs. We won’t consider in this example the
attachment of objects to any surface, we just create a di-
rect mapping, for each component and then in the high
level editor each component is put in the corresponding
shape. This sub-step involves the highest number of rules
of all transformation sets as the different combinations of
facet types, data types, cardinalities, are numerous. Figure
6 provides the subset of rules applied in this case study.
The designer can choose among the different alternatives
provided by the rules. We illustrate in Figure 7 how the
taxonomy can be used for proper selection of the repre-
sentation of the widget. The meaning of the simbols are:
the darkest solid line (++) means strongly supported, dark
solid line (+) means supported, solid line (~) means neu-
tral, dash lines (-) means denied and dot lines (..) means
strongly denied.

Figure 6. Correspondence between AIOs and CIOs.

 - 61 -

Figure 7. Questions and answer criteria to select a

toggle button.

Figure 8. Graphical representation for a toggle button.

In this particular example the decision was towards the
use of a more 2D related representation, see options in
Figure 8. The resulting specifications are obtained by re-
alizing the above transformational development sub-steps.
Figure 9, present a mock-up of the graphical UI corre-
sponding to the CUI model.

Step 4: Final User Interface
The resulting CUI 3DUI can be encoded in a software
tool, such as: Vivaty studio, Blender. The idea is not to
start from scratch your models, this can be done but it is
preferable to have a direct mapping in the tools and reuse
existing work. Of course authors might produce their own
objects if needed. The target languages in which we rely
to concretize 3DUIs are: Java3D, VRML, X3D. The final
rendering can be evaluated using any usability evaluation
method. We are not aware of any system that performs
usability evaluation directly on the code of a 3DUI (e.g.,
on VRML), although this could be a future avenue for au-
tomated evaluation. This is because at this stage, it is very
complicated to analyze the code in a meaningful way.
This is why we propose the use of automatic evaluation
over the CUI model where semantics expressing the

3DUI can be object of evaluation [21]. For the final ren-
dering guidelines can be followed before generating the
code. We rely on existing knowledge on guidelines and
some proposed such as those related to the hapgets [24].

Screen

Low Mid

High 3D

On/

Off S

S S

S

Figure 9. Mock-up of the Control Screen and Interact-

ing table.

Figure 10. Virtual office with an interactive table.

Figure 11. Top View of the virtual table.

FUI Rendering of the Case Study

The screenshot of Figure 10 shows the virtual office. No-
tice that the office follows the guideline “Virtual objects
should be similar as much as the real objects” [25]. The
Big screen, Figure 11 shows the interactive table com-
posed of four control screens. The navigation task is con-
trolled by the Cortona player plug-in., which support the
navigation with the mouse and keyboard, as input devic-
es, the user just decide where to go.

EVALUATION
Several cases studies have been developed around this
methodology for different domain of application. Their
goal was to serve as a proof of the concept of the different

 - 62 -

principles introduced in the methodology, and to prove
the feasibility of method through a set of case studies.

The first case study [17] was devoted to the development
of an opinion polling system, a reasonably scaled exam-
ple of a typical information system. A second case study
[19,21] is dedicated to the development of an administra-
tive application for a management school. Even that the
problem complexity was moderate it has been chosen to
illustrate the design diversity that offers 3DUI. A third
case study [22] was devoted to the development of a
flight navigation system for an aircraft. The complexity of
this system is high but is more related to the algorithms
that compute aircraft behaviour during the flight, while all
this already exist. We conduct an in depth study to pro-
vide a MDA to the development of the Navigation Dis-
play UI and namely using a 3DUI instead the 2DUI. Fi-
nally, the fourth case study [23,24] was dedicated to the
rendering of web site in the haptic web browser.

CONCLUSION
The development methodology relies on three main axes:
models, method and language. The contribution to
UsiXML models is summarized: more than 200 attributes,
90 classes, 100 relationships were added to the UsiXML
models that corresponds mainly to aspects for 3DUIs and
some more to task modelling concepts. A sanity check of
the resulting models was made to consolidate them.

The method aspects adhere to the MDE paradigm. Models
and transformations are explicitly defined and used,
around 85 transformations rules (25 old, 15 adapted, 45
new). The method relies on the Cameleon reference
framework then is said that is structured. It just provides
means for forward engineering. A set of principles de-
composed in: guidelines for the different development
steps for evaluating the resulting models, task models re-
lying on patterns and a canonical list of task type. All the-
se principles promote systematicity when modelling
3DUIs.

The development steps reinforce existing knowledge on
3DUI development methods at different levels. In terms
of transformational explicitness, abstraction layers inde-
pendent of the modality of interaction. We provide some
means to identify the diversity of concretizations of the
3DUI (i.e. its representation) for a task.

3DUIs are not intended for everybody. For the increasing
number of users interested by 3DUIs, organizations need
to be present in virtual online applications. For those us-
ers who are not interested by 3DUIs, our method benefits
from using UsiXML and its MDA approach introduced in
this paper that supports multi-path development, i.e., one
source, many targets, an important benefit. These targets
vary in computer platforms (e.g., mobile phone, desktop),
programming languages (e.g., Java, Html). The goal of
this work was not to prove that the method is better than
another, neither the usability of the 3DUI produced. The
goal was to define a method to develop 3DUI in a princi-

ple-based way as opposed to an opportunistic way. There-
fore, the appropriateness of this method in this paper is
for sure the major piece of work to investigate in the near
future.

ACKNOWLEDGMENTS
We gratefully acknowledge the support of the ITEA2 Call
3 UsiXML project under reference #20080026.

REFERENCES
1. Beaudouin-Lafon, M., Instrumental Interaction: an In-

teraction Model for Designing Post-WIMP User Inter-
faces. Proc. of ACM Human Factors in Computing
Systems (CHI’2000), La Haye (The Netherlands),
April 2000, ACM Press, CHI Letters 2(1), pp.446-
453.

2. Bodart, F. Pigneur, Y., Conception assistée des sys-
tèmes d'information : méthode, modèles, outils, Mas-
son, 1989.

3. Bowman, D.A., Kruijff, E., LaViola, J., Poupyrev, I.,
3D User Interfaces: Theory and Practice, Addison
Wesley, Boston, July 2004.

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., and Vanderdonckt, J. A Unifying Refer-
ence Framework for Multi-Target User Interfaces. In-
teracting with Computers 15, 3 (June 2003) 289–308.

5. Carrol, J., HCI models, theories, and frameworks: to-
ward a multidisciplinary science, Morgan Kaufmann,
San Francisco, 2003.

6. Cockburn, A., McKenzie. 3D or not 3D? Evaluating
the Effect of the Third Dimension in a Document
Management System. In Proc. of the ACM Conf. on
Human factors in computing systems CHI'2001, Seat-
tle (USA), 31 March-5 April 2001, ACM Press, New
York, 2001, pp. 434–441.

7. Cuppens, E., Raymaekers, Ch., Coninx, K, A Model-
Based Design Process for Interactive Virtual Envi-
ronments, Proc. of Int. Workshop on Design, Specifi-
cation, and Verification of Interactive Systems (DSV-
IS'2005), Newcastle upon Tyne (England), 13-15 July
2005, Lecture Notes in Computer Science, Vol. 3941,
Springer, Berlin, 2005, pp. 225-236.

8. Dachselt, R., Hinz, M., Meißner, K. CONTIGRA: An
XML-Based Architecture for Component-Oriented 3D
Applications, Proc. of 7th Int. Conf. on 3D Web Tech-
nology (Web3D’2002), Tempe (USA), 24-28 Febru-
ary 2002, ACM Press, New York, 2002, pp. 155–163.

9. De Boeck, J., Raymaekers, Ch., Coninx, K., A Tool
Supporting Model Based User Interface Design in 3D
Virtual Environments. In Proc. of the 3rd Int. Conf.
on Computer Graphics Theory and Applications
GRAPP'2008 (Funchal, January 22-25, 2008). IN-
STICC - Institute for Systems and Technologies of In-
formation, Control and Communication, 2008, pp.
367-375.

 - 63 -

10. Deléglise, E., Paul, D., Fjeld, M., 2D/3D Web Transi-
tions: Methods and Techniques, Proc. of the 5th Int.
Conf. on Web Information Systems and Technologies
(WEBIST'2009), Lisbon (Portugal), 23-26 March
2009, INSTICC Press, 2009, pp. 294-298.

11. Dünser, A., Grasset, R., Seichter, H., Billinghurst,
M., Applying HCI Principles in AR Systems Design,
Proc. of the 2nd Int. Workshop on Mixed Reality User
Interfaces: Specification, Authoring, Adaptation
(MRUI’07), Charlotte (USA), 11 March 2007.

12. Fencott, C., Isdale, J., Design Issues for Virtual Envi-
ronments, Proc. of Int. Workshop on Structured De-
sign of Virtual Environments and 3D-Components at
the Web3D 2001 Conference, Paderborn (Germany),
2001.

13. Figueroa, P., Green, M., Hoover, H. J., InTml: A De-
scription Language for VR Applications, Proc. of 7th
Int. Conf. on 3D Web Technology (Web3D'2002),
Tempe (USA), 24-28 February 2002, ACM Press,
New York, 2002, pp. 53-58.

14. Gabbard, J.L., Hix, D., Swan, J.E. II, User-Centered
Design and Evaluation of Virtual Environments, IEEE
Computer Graphics and Applications, 19 (6), No-
vember 1999, pp. 51-59.

15. Gaffar, A., Sinnig, D., Seffah, A., Forbrig, P., Model-
ing patterns for task models, Proc. of 3rd Int. Work-
shop on Task Models and Diagrams for user interface
design (TAMODIA’2004), Prague, 15-16 November
2004, Ph. Palanque, P. Slavik, M. Winckler (Eds.),
ACM Press, New York, 2004, pp. pp. 99-104.

16. Guerrero García, J., González Calleros, J.M., Vander-
donckt, J., and Muñoz Arteaga, J. A Theoretical Sur-
vey of User Interface Description Languages: Prelim-
inary Results. In Proc. of Joint 4th Latin American
Conference on Human-Computer Interaction-7th Lat-
in American Web Congress LA-Web/CLIHC'2009
(Merida, November 9-11, 2009), E. Chavez, E. Furta-
do, A. Moran (Eds.). IEEE Computer Society Press,
Los Alamitos, 2009, pp. 36-43.

17. Gonzalez-Calleros, J.M., Vanderdonckt, J., and
Muñoz-Arteaga, J.M. A Method for Developing 3D
User Interfaces of Information Systems. In Proc. of 6th
Int. Conf. on Computer-Aided Design of User Inter-
faces CADUI'2006 (Bucharest, 6-8 June 2006). Chap-
ter 7, Springer-Verlag, Berlin, 2006, pp. 85-100.

18. González-Calleros, J.M., Stanciulescu, A., Vander-
donckt, J., Delacre, J.P., and Winckler, M. Compara-
tive Analysis of Transformation Engines for User In-
terface Development. In Proc. of 4th Int. Workshop on
Model-Driven Web Engineering MDWE’2008 (Tou-
louse, 1 October 2008). N. Koch, G.-J. Houben, A.
Vallecillo (Eds.), CEUR Workshop Proceedings, Vol.
389, 2008, pp. 16-30.

19. González-Calleros, J.M., Vanderdonckt, J., and
Muñoz-Arteaga, J. A Structured Approach to Support
3D User Interface Development. In Proc. of 2nd Int.
Conf. on Advances in Computer-Human Interactions
ACHI’2009 (Cancun, 1-6 February 2009). IEEE
Computer Society Press, Los Alamitos, 2009, pp. 75-
81.

20. González-Calleros, J.M., Guerrero-García, J.,
Vanderdonckt, J., and Muñoz-Arteaga, J. Towards
Canonical Task Types for User Interface Design. In
Proc. of Joint 4th Latin American Conference on Hu-
man-Computer Interaction-7th Latin American Web
Congress LA-Web/CLIHC'2009 (Merida, 9-11 No-
vember 2009). E. Chavez, E. Furtado, A. Moran
(Eds.), IEEE Computer Society Press, Los Alamitos,
2009, pp. 63-70.

21. Gonzalez-Calleros, J.M., Vanderdonckt, J., and
Muñoz-Arteaga, J. A Structured Methodology for De-
veloping 3D Web Applications. In T. Spiliotopoulos,
P. Papadopoulou, D. Martakos, and G. Kouroupetro-
glou (eds.), “Integrating Usability Engineering for De-
signing the Web Experience: Methodologies and Prin-
ciples”, Chapter 2, IGI Global Inc., Hershey, 2010,
pp. 15-43.

22. Gonzalez-Calleros, J.M. A Model-Driven Approach
for Developing Three-Dimensional User Interfaces of
Information Systems in a Principle-based Way, PhD
Thesis, Université catholique de Louvain Press, Lou-
vain-la-Neuve, February 2010.

23. Kaklanis, N., González-Calleros, J.M., Vanderdonckt,
J., Tzovaras, D. Hapgets, Towards Haptically-enhan-
ced widgets Based on a User Interface Description
Language. In Proc. of Workshop on Multimodal In-
teraction Through Haptic Feedback MITH’2008 (Na-
ples, 31 May 2008).

24. Kaklanis, N., González-Calleros, J.M., Vanderdonckt,
J., Tzovaras, D. Haptic Rendering Engine of Web
Pages for Blind Users. In Proc. of 9th Int. Conf. on
Advanced Visual Interfaces AVI'2008 (Naples, 28-30
May 2008). ACM Press, New York, 2008, pp. 437-
440.

25. Kaur, K., Designing virtual environments for usabil-
ity, Ph. D. Thesis, City University, London, 1998.

26. Kim, G.J., Kang, K.C., Kim, H., Lee, J., Software En-
gineering of Virtual Worlds. In Proc. of ACM Sympo-
sium on Virtual Reality Software and Technology
VRST'98 (Taipei, November 1998). ACM Press, New
York, 1998, pp. 131-139.

27. Latoschik, M.E., Reiners, D. Blach, R., Figueroa, P.,
Dachselt, R., Proc. of Workshop of Software Engi-
neering and Architectures for Realtime Interactive
Systems SEARIS’2008 (Reno, March 2008). IEEE
Computer Society Press, Los Alamitos, 2008.

 - 64 -

28. Laudon, K.C., Laudon, J.P., Management Information
Systems: Managing the Digital Firm. Pearson, 2009.

29. Laviola, J., Bringing VR and Spatial 3D Interaction to
the Masses through Video Games. IEEE Computer
Graphics and Applications 28, 5 (2008), pp. 10-15.

30. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouil-
lon, L., and Lopez, V. UsiXML: a Language Support-
ing Multi-Path Development of User Interfaces. In
Proc. of 9th IFIP Working Conference on Engineering
for Human-Computer Interaction jointly with 11th Int.
Workshop on Design, Specification, and Verification
of Interactive Systems EHCI-DSVIS’2004 (Hamburg,
July 11-13, 2004). Lecture Notes in Computer Sci-
ence, Vol. 3425, Springer-Verlag, Berlin, 2005, pp.
200-220.

31. Molina, J.P., A Structured Approach to the Develop-
ment of 3D User Interfaces. Ph.D. thesis, University
of Castilla-La Mancha, Albacete, Spain, 29 February
2008.

32. Montero, F., López-Jaquero, V., Vanderdonckt, J.,
Gonzalez, P., Lozano, M.D., and Limbourg, Q. Solv-
ing the Mapping Problem in User Interface Design by
Seamless Integration in IdealXML. In Proc. of 12th
Int. Workshop on Design, Specification, and Verifica-
tion of Interactive Systems DSV-IS’2005 (Newcastle
upon Tyne, 13-15 July 2005). S.W. Gilroy, M.D. Har-
rison (Eds.), Lecture Notes in Computer Science, Vol.
3941, Springer-Verlag, Berlin, 2005, pp. 161-172.

33. Myers, B., Hudson, S. E., Pausch, R., Past, Present
and Future of User Interface Software Tools, ACM
Transactions on Computer Human Interaction 7, 1
(March 2000), pp. 3-28.

34. Neale, H., Nichols, S., Designing and developing Vir-
tual Environments: methods and applications, Proc.of
Workshop on Visualization and Virtual Environments
Community Club VVECC’2001, Designing of Virtual
Environments, 2001.

35. Paternò F., Mancini C., and Meniconi S. Concur-
TaskTree: A diagrammatic notation for specifying
task models. In Proc. of IFIP TC 13 Int. Conf. on
Human-Computer Interaction Interact'97 (Sydney,
14-18 July 1997), Kluwer Academic Publishers, Bos-
ton, 1997, pp. 362-369.

36. Pellens, B., Bille, W., De Troyer, O., Kleinermann, F.:
VR-WISE: A Conceptual Modeling Approach for

Virtual Environments, Proc. of the Methods and Tools
for Virtual Reality Workshop MeTo-VR'2005, Gent
(Belgium), 2005.

37. Polys, N.F., Hetherington, R., Brutzman, D., Graca-
cin, D., Engineering Virtual Environments with X3D,
Tutorial at ACM Web3D 2005 Symposium, 10th Int.
Conf. on 3D Web Technology, Bangor, March 2005.

38. Roberts, N., Andersen, D., Deal, R., Garet, M., Shaf-
fer, W., Introduction to Computer Simulation, a sys-
tem dynamics modeling approach, Productivity Press,
1983.

39. Shneiderman, B., 3D or Not 3D: When and Why Does
it Work?, Human-Computer Interaction Laboratory &
Department of Computer Science University of Mary-
land, Talk in Web3D, Phoenix (USA), 26 February
2002.

40. Shneiderman, B., Why Not Make Interfaces Better
than 3D Reality, Virtualization Viewpoints. Theresa-
Marie Rhyme (Ed.), November-December, 2003.

41. Shneiderman, B., Plaisant, C., Designing the User In-
terface. 4th Edition, Addison Wesley, Reading, 2004.

42. Smith, S., Duke, D., Design Support for Virtual Envi-
ronments. Proc. of Workshop: Design of Virtual Envi-
ronments, Oxford shire, 2001.

43. Swan, J.E., Gabbard, J.L. Survey of User-Based Ex-
perimentation in Augmented Reality? Proc. of 1st Int.
Conf. on Virtual Reality, Las Vegas (USA), 2005.

44. Vanden Bossche, P., Développement d'un outil de cri-
tique d'interface intelligent : UsabilityAdviser, M.Sc.
thesis, Université catholique de Louvain, Louvain-la-
Neuve, 1 September 2006.

45. Vanderdonckt, J., A Small Knowledge-Based System
for Selecting Interaction Styles, Proc. of Int. Work-
shop on Tools for Working with Guidelines
(TFWWG'2000), Biarritz (France), 7-8 October 2000,
Springer-Verlag, London, 2000, pp. 247-262.

46. Vanderdonckt, J., Model-Driven Engineering of User
Interfaces: Promises, Successes, and Failures, Proc. of
5th Annual Romanian Conf. on Human-Computer In-
teraction (ROCHI’2008), Iasi (Romania), 18-19 Sep-
tember 2008, S. Buraga, I. Juvina (Eds.), Matrix
ROM, Bucarest, 2008, pp. 1-10. ISSN 1843-4460

