
Towards Canonical Task Types for User Interface Design

Juan Manuel González-Calleros

Josefina Guerrero-García
Jean Vanderdonckt

Université catholique de Louvain
Place des Doyens, 1 – B-1348

Louvain-la-Neuve, Belgium {josefina.guerrero,
juan.m.gonzalez, jean.vanderdonckt}@uclouvain.be

Jaime Muñoz-Arteaga

Sistemas de Información
Universidad Autónoma de Aguascalientes

Av. Universidad No. 940, Col. Bosques, 20100
Aguascalientes, Aguascalientes (México)

jmunozar@correo.uaa.mx
CENIDET, Internado Palmira S/N, Col. Palmira, C.P.

62490, Cuernavaca,
Morelos. México

Abstract— Task models are the cornerstone of user-centred
design methodologies for user interface design. Therefore,
they deserve attention in order to produce them effectively
and efficiently, while guaranteeing the reproducibility of a
task model: different persons should in principle obtain the
same task model, or a similar one, for the same problem. In
order to provide user interface designers with some guidance
for task modelling, a list of canonical task types is proposed
that offers a unified definition of frequently used tasks types
in a consistent way. Each task type consists of a a task action
coupled with a task object, each of them being written
according to design guidelines. This list provides the
following benefits: tasks are modelled in a more consistent
way, their definition is more communicable and shared, task
models can be efficiently used for model-driven engineering
of user interfaces.

Keywords: User interfaces, User Interface Description
Language, task types, task model, Model-Based User
Interface development.

I. INTRODUCTION

The task model is today a cornerstone of many activities
carried out during the User Interface (UI) development
life cycle, such as, but not limited to: user-centred design,
task analysis and task modelling, model-driven eng-
ineering of user interfaces, human activity analysis, safety
critical systems, and real-time systems. Modelling a task
based on well-defined semantics and using a well-
understood notation are key aspects, but the many degrees
of freedom offered by task modelling should not let us to
forget the quality of the resulting task model. Over time,
we observed the following forms of laxism:
 Incompleteness: labels, definitions, goals, and properties

used for a task suffer from many drawbacks such as
short name, name without action verb or without object
(and therefore non-compliant with the traditional
interaction paradigm of action+object), name that is
incompatible with its definition, no usage of standard
classification.

 Inconsistency: labels, definitions, goals, and properties
used for a task do not have unique names (e.g., a label, a
goal is duplicated), there are some homonyms; there are
some synonyms (e.g., tasks having the same semantics
but wearing different names).

 Incorrectness: labels, definitions, goals, and properties
used for a task violate some of Meyer’s seven sins of
specification (i.e., noise, silence, surspecification,
contradiction, ambiguity, forward reference, and
suroptimism).

 Not only those forms of laxism are observed during the
activity of task modelling itself, but they are then
propagated, if not amplified, in the rest of the UI
development life cycle since this rest is effectively based
on the task model. The damages are even more important
until they reach the stage of the final UI.
 In this paper a list of canonical task types is proposed
that addresses the aforementioned concerns of task
modelling. With this list our goal is to provide
methodological means to systematically derive UI. For
that purpose the list provides information that can be used
for concretization of the task in a UI, for instance, widget
selection or dialog specification. The list is just about the
name of the task and not its structure, thus remaining
flexible for task modelling. In practice, this work is
illustrated in a real life case study.

II. STATE OF THE ART

The UI interaction is composed of two elements: (1) the
task type, in the literature sometimes referred as UI action
or activity; and (2) the task item that is manipulated or
required in the UI interaction [4]. Both attributes are
relevant to design interactive systems using task models.
In HCI several works [6][17][18][20] rely on task to
derive UIs. However, most of their decision for UI
generation is more intuitive rather than systematic. When
heuristics are used for the selection, researchers based this
decision on specific attributes of the task model, such as
the task type [17], [20].

2009 Latin American Web Congress

978-0-7695-3856-3/09 $26.00 © 2009 IEEE

DOI 10.1109/LA-WEB.2009.33

63

2009 Latin American Web Congress

978-0-7695-3856-3/09 $26.00 © 2009 IEEE

DOI 10.1109/LA-WEB.2009.33

63

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:28 from IEEE Xplore. Restrictions apply.

Table 1: List of Canonical User Interface Action task types

Action
Type

Task name Definition Examples

Convey Communicate, Transmit,
Call, Acknowledge,
Respond, Answer,
Suggest, Direct, Instruct,
Request

The action to
exchange
information

Show details

Switch to summary

Create Input, Encode, Enter,
Associate, Name,
Introduce, Insert,
Assemble, Aggregate,
Add

Specifies the
creation of an
item instance

New customer,
blank slide

Delete Eliminate, Remove, Cut,
Ungroup, Disassociate

The action of
deleting an item

Break connection,
Delete file/slide

Duplica
te

Copy Specifies the
copy of an item

copy address,
duplicate slide

Filter Segregate, Set aside The action of
filtering an item

Filter email,
segregate any
modification on a
data base when
backing up

Mediate Analyze, Synthesize,
Compare, Evaluate,
Decide

The action of
intercede task
items

Compare products
characteristics on a
online store

Modify Change, Alter,
Transform, Tuning,
Rename, Segregate,
Resize, Collapse, Expand

An action of
modifying an
item

Change shipping
address, Tuning
volume

Move Relocate, Hide, Show,
Position, Orient, Path,
Travel

the action to
change the
location of an
item

Put into address list,
move up/ down?

Navigat
ion

Go to the action to find
the way through
containers

Navigation bar on a
web browser

Perceiv
e

Acquire, Detect, Search,
Scan, Extract, Identify,
Discriminate, Recognize,
Locate, Examine,
Monitor, Scan, Detect,

The action of
identifying items
and/or
information
from the items

Locate a destination
in a map, observe
the status bar while
installing

Reinitia
lize

Wipe out, Clear, Erase The action of
cleaning an item

Clear form,

Select Pick, Choose selection
between items

group member
picker, object
selector

Trigger Initiate/Start, Play,
Search, Active, Execute,
Function, Record,
Purchase

Specifies the
beginning of an
operation

Play audio/video
file

Stop End, Finish, Exit,
Suspend, Complete,
Terminate, Cancel

Specifies the end
of an action

Stop
searching/playing,
cancel register

Toggle

Activate, Deactivate,
Switch

The existence of
two different
states of an item

Bold on/off,
encrypted mode,

 Naming task types using a restricted set of names has
been proposed for different application domains: GUI [4],
web interaction [12], input devices [9], multimodal
interaction [1][2][11] [15]. Still the names are dependent
on the interaction technique to be used and are not generic
enough and independent of the implementation (a
characteristic that must be accomplished by definition in
task modelling). Not everything is lost and few attempts
propose canonical description of task types [5][13],
however, they suffer from not being wide enough in order
to cope a more general set of task types rather than being
too concrete with a limited set of values.
Lenorovitz et al. on his review of human computer
interaction ended with a list of frequent tasks interactive
[14] separated the task categories into: user interactive
actions, user actions and system actions. In this review
user actions are more related to cognitive issues. User
interactive actions correspond to the tangible
manipulation of the system. System actions normally are
transparent to the user, they user do not know what is
happening at the system level. Constantine proposes a list
of canonical Action types and action items, enabling a
refined expression of the nature of leaf tasks (sometimes
called action tasks or leaf tasks) [4]. This expression
qualifies a UI in terms of abstract actions it supports. The
list is twofold: a verb describes the type of activity at
hand; an expression designates the type of object on
which the action is operated. By combining these two
dimensions a derivation of interaction objects supposed to
support a task becomes possible.
There is a lot of work on HCI patterns
(www.hcipatterns.org). More particularly, patterns for
task modelling. Even that the pattern-based approach
seems interesting it is out of the scope of this paper to
review HCI patterns literature exhaustively. There is no
need to do that as patterns are contradictory to model-
driven (MD) paradigm that is followed in the context of
this paper. While MD methods are structured is a
common way, patterns are poorly structured or are
structured in different ways, thus, leading to inconsistency
when relying on them. Of course, the use of our work can
lead to task patterns, similarly to those presented in [7],
but we are not proposing a set of patterns.

III. CANONICAL TASK TYPES

Looking at the previous work, from which more than two
hundred names were identified, and based on task models
found in the literature and done in HCI courses, an
agreement was found that: it is not feasible to include all
possible names for the task type. Something is needed to
reduce the name-space if further transformations are
expected from this attribute. From the literature
[2][8][10][16][17][18][19] it is clear that the task type is
used in further transformations to generate UIs from task
models. Then a list of canonical task types is needed.

6464

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:28 from IEEE Xplore. Restrictions apply.

 Based on existing list of action types [1][2][4][5]
[9][11][12][13][14][15], a comparison of names, meaning
and domain applicability was done where common task
types were grouped (second column in Table 1). While
looking at the examples and the definition it was clear that
they belong to the same category. From there the most
abstract or modality and platform independent name was
chosen.
In next section the applicability of the action types is
shown along with a method to develop UIs from task
models [9]. Notice that this set of task types is just a
recommendation to be followed but designers could chose
any other name that fits better its own purpose.

IV. APPLICABILITY OF TASK TYPES

In this section a set of guidelines to write task models is
proposed. That is later used in the context of a Model-
Based development method for UI development.

A. Task name

Our empirical experience, from courses and literature
review, reveals that authors normally end in similar
structures of the task model with minimal variations.
However, the way authors name tasks varies considerably.
While authors can select tasks’ names without following
any basis, automatic transformation of task models to User
Interfaces becomes almost impossible considering the
infinite variety of names that authors can choose for the
task. From Table 1 the list we propose a set of names (the
task type, synonyms and sub-types) for naming tasks.
Ideally a task should be named with two elements: task
type and the object they manipulate, see Figure 1, and
authors should use for the task type any action from the
list. Even, with the names are not considered correct or
representative to the task, authors will not be force to use
this methodological guidance to name the tasks, they
might add new names. Our goal is to at least keep
homogeneity for the set of action types.

Figure 1 Guideline for task naming

B. Task models attributes: task type and task item

A UI action type is the result of a combination of Action
types and action items. So far, action types have been
discussed in the canonical list proposed. Once the author
name the task using the previous guideline the next step is
to set two attributes of the task: the action type and action
item (Figure 2). The action type can be automatically
assigned from the task type if authors chose any abstract
value (first column in Table 1) of the action types. When it

is not the case but an optional name (second column in
Table 1) is used instead, the corresponding action type for
that synonym must be assigned. Regarding the task item,
the decision of which value must be assigned is based on
the value the task manipulates. In this case we refer to the
domain model of the problem and we have to look the
class(es) the task manipulates, so as the variables and
methods it manipulates. The assignation of this parameter
is as follow:
 Operation if the task manipulates a method.
 Element specifies that the item has a single

characteristic, normally associated to a variable in a
class, for instance the name of a person.

 Container specifies that the item is an aggregation of
elements, normally variables member of the same class.
For instance, the attributes describing a book might be
contained together.

 Collection of elements specifies that the item is
composed of a list of elements or containers. For
instance, customer registration container (name,
address) and the shopping list containing: items
descriptions.

Figure 2 Guideline for task type naming

C. Combining User Interface Actions Types with User
Categories

The combination of task categories and UI Action types
(Action type and action item) provides extra information
for UI generation. To understand the mean of the
combinations between task item and user categories, an
analysis was conducted for each abstract task type
included in Table 1. As an example of the way task types
have been investigated, Table 2 and Table 3 illustrate tasks
categories for reinitializing, selecting and mediate. For
each task there is a different meaning while being
combined with different user’s categories so as the task
item they manipulate. The combination of these elements
is useful for further concretization of the task.

The reinitialize task refers to an item that either erases
or cleans certain fields (text field in the graphical
modality) in a UI. This is the result on the visual part but
this action might have impact as well at the data level,
section E provides some hints for the dialog generation. At
the data level it implies to restore the default value.
Reinitialize an element, a collection or a container on a UI
represents almost the same. However, the executor of the
task, the user interacting with the system, the system or the
cognitive decision making of the user, has different
interpretations. While system and user categories might

6565

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:28 from IEEE Xplore. Restrictions apply.

have, in principle, no representation in the UI. When the
task is interactive, the user might need an explicit
mechanism to execute the reinitialize task item, i.e. an
abstract interaction object (AIO), concept introduced in [2]
will be concretized in further steps. In some cases the
reinitialize task is implicit to the nature some other task
types, for instance, in a mailing website creating a new
user account normally implies the use of a form where
users fill a set of fields with personal data. Each element
on the UI, unless something else is predefined, can be
reinitialized by the user without the use of a reinitialize
task for each element. It is always possible to erase an
entry in a form and this does not mean that for each entry
there will be a need for a supplementary task to specify
that it can be reinitialized. This is something that at the
implementation level is assumed.

Table 2 Reinitialize User Interface actions examples

Task Type Task

Item

User category

Interactive

System

User

Reinitialize

Collection

All the customer
registration
elements (name,
address) are set to
their default values

A system
response to
restore a task
item to its
default value.

Make the
decision of
reinitializing
a task item

Container

A button that clear a
form or restore to
the default values

Element

Erasing a text field

Operation

Pressing a button to
restore a variable to
its default value

D. User Interface Concretization of the task

Designers can be benefit from the list as the design space
of UI actions is reduced to a set that is easier to handle.
During a second phase of the process of developing UIs
the task action can be mapped to a correspondent UI. The
method proposed relies on the User Interface Description
Language (UIDL) UsiXML [15]. Composed of the
following models: Task Model that represents user’s tasks
along with their logical and temporal ordering; Domain
Model with concepts as classes, attributes, methods,
objects and domain relationships; Abstract User Interface
Model (AUI) that represents a canonical expression of the
rendering and manipulation of the domain concepts and
functions in a way that is as independent as possible from
modalities and computing platform specificities; Concrete
User Interface Model (CUI), a UI model allowing a
specification of an appearance and behavior of a UI with
elements that can be perceived by users; Context Model, a
model describing the three aspects of a context of use in

which an end user is carrying out an interactive task with
a specific computing platform in a given surrounding
environment; Inter-Model Relationships (i.e. mapping
model), model integration is a well-known issue in
transformation driven development of UI; Final User
Interface (FUI) that Corresponds to the code generation
for common languages such as: Java, Flash, HTML or
even for Three-dimensional UIs [8]. As in the task model,
the AUI model uses the same attributes to specify the UI
action: action type and task item. In addition, the abstract
level incorporates the facet concept.

Table 3 Mediate User Interface actions examples

Task
Type

Task

Item

User category

Interactive System

User

Mediate

Collection

Compare products
by price

Google search
evaluating the best
ranked pages to
present the results
of a query.

Analyze the
data details
(author,
name,
publisher, …)
of a book

Container

Compare side by
side documents in
word

Decide the layout
of a slide when
creating a new
one

Compare a
list of books

Element

Evaluate a video
watched on
YouTube

Evaluate the
security risk of a
password

Determine the
date of a trip

Operation

Decide which
operation to apply
to a combination of
CTRL keys.

Propose different
arrangement of
the results of a
query.

Decide which
operation will
be used with
a special key
on a joystick

The action Type attribute of a facet enables the

specification of the type of action an Abstract Individual
Component (AIC) allows to perform. The action Item
attribute characterizes the item that is manipulated by the
AIC. The AUI Model as well as the Task Model is
independent of any modality of interaction. The set of
possible AUI facets are:
 An input facet describes the input action supported by an

AIC.
 An output facet describes what data may be presented to

the user by an AIC.
 A navigation facet describes the possible container

transition, a particular AIC may enable.
 A control facet describes the links between an AIC and

system functions, i.e., methods from the domain model
when existing.

6666

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:28 from IEEE Xplore. Restrictions apply.

Figure 3 Meta-model of the AUI Model

Unfortunately, it is not enough while the action type
and action item combined with the facet to properly select
the AIO. An example can be used to clarify this situation.
Assuming that the user interface action type corresponds
to a select of a collection of elements, then, several are the
potential AIOs that can be used such as: combo box, radio
button group, text fields, etc. The problem became then on
deciding the appropriate AIO depending on the context of
use, the type of value to be selected, and the domain. For
that purpose, the rest of UsiXML meta-models can be
used. While models already exist and have been discussed
in other papers [8] [10] [15] [19] [20], the scope of this
paper is on how to use them and to provide guidelines on
the proper selection of AIOs.

Table 4 Simple selection interactive objects. Source [2]

Number of
values

Known Domain Mixed Domain Unknown domain

[2, 3]

[4, 7]

[8, 50]

[50, ∞]

Some heuristics has been described in [16] for the

mapping of abstract description of the UI to a real
implementation, still, a complete set of abstract
descriptors, what we called task types, is not yet available.
Moreover, the possible mappings and guidelines to support
the correct transfer from task model to UI widgets, as
shown in [2] [13], is also relevant. Because it is not
enough just to use arbitrarily a combo box for selecting a
value, as Bodart and Vanderdonckt [2] proposes the
concretization of the selected task must be based of the
number of values to be selected, see Table 4. While this

characteristics are relevant in further transformations,
following model-driven methods to derive UIs [15] [16]
[17] [18] [20], describing the task types using a good
characterization of user interface actions provides good
basis for the concretization of the UI. For instance, the
selection of a simple value can be mapped to a radio
button group or a list box, the difference relies on the
number of possible values to select. This characteristic
could be part of the design, as used in [15] and described
in detail in [19], the domain model in combination with the
task model provide semantic information that can be
further used on the specification of an abstract User
Interface.

E. Some Hints to Derive the Dialog

The task reinitialize in a UI implies some other
modifications such as erase or clean certain fields (text
field in the graphical modality). At the data level it implies
to restore the default value. In some cases the task type is
implicit in some other task types, for instance, when
creating a new account there are fields to fill,
independently on the modality, it is always possible to
erase an entry. This do not means that for each entry there
will be a need for a supplementary task to specify that it
can be reinitialized. This is something that at the
implementation level is assumed. On the contrary, when
we reinitialize a collection this has a dipper and more
general impact. The key issue is to identify at the task
level what concepts will be reinitialized if a task is set as
reinitialize. Assuming that in the task three structures a
reinitialize task is found then all the siblings of that task
will be affected by the operation.

V. CASE STUDY: THREE DIMENSIONAL UI

GENERATION FOR WORKFLOW INFORMATION SYSTEMS

So far, the applicability of the canonical list of task types
has been illustrated in the context of a Model-Based
approach for developing UIs. In this section the feasibility
of this method is shown. The problem description and the
design space of the solution are captured in a workflow
diagram [10] using Petri-nets graphical notation. A
workflow model [10] is composed in process, which are
then decomposed in tasks. Tasks are object of
transformation to derive UIs, as described in section IV.D.
The CUI representation of that task, as supported in
UsiXML [20], could be a GUI, Three-Dimensional UI
(3DUI) [8], vocal UI, and haptic. For this example the
3DUI was selected but any other solution could be
obtained similarly. Notice that the transformational
approach required has been reported in previous works [8]
[19][20][15] and it is out of the scope of this paper.
 Organizing a trip, a travel agency executes several
tasks. When a customer arrives, first task is registered the
customer’s data in the system; then an employee searches
for opportunities which are communicated to the customer.
It is possible to search by different options as price, hotel
or airline. Then the customer will be contacted to find out

6767

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:28 from IEEE Xplore. Restrictions apply.

whether she or he is still interested in the trip and whether
more alternatives are desired. There are three possibilities:
(1) the customer is not interested at all, (2) the customer
would like to see more alternatives, and (3) the customer
selects an opportunity. If the customer selects a trip, then it
is booked. At the same time, one or two types of insurance
are prepared if they are desired. A customer can take
insurance for trip cancellation or/and for baggage loss.
Note that a customer can decide not to take any insurance,
just trip cancellation insurance, just baggage loss
insurance, or both types of insurance. Two weeks before
the start date of the trip, the documents are sent to the
customer by e-mail. A trip can be cancelled at any time
after completing the make reservation task (including the
insurance) and before the start date. Notice that customers
without insurance for trip cancellation can cancel the trip
but will get no refund. Based on this informal description,
the following models were generated:
 A process model to represent the general view of the

example
 Tasks models to represent how the process is developing
 A Table 5 using task types, task items and identify the

user category.

The process has a place which serves as the start
condition and a place which serves as the end condition.
First, the tasks Register data, Search for a trip, and Send to
customer are executed sequentially. This last task has an
OR-split with three possible outcomes: (1) the customer is
not interested in any opportunity, (2) the customer would
like to see more options, or (3) the customer selects an
opportunity. Task cancel is an explicit OR-join; it can only
be executed after Make reservation and before Start trip
task. Now, we can divide each task in several sub-tasks
with task models, so we have the total collection of task
that are involve in this example.

Register data is composed of three tasks: Fill out form,
Clear form and Confirm data. With Fill out form task it is

possible to get personal data of customer as name, zip
code, gender, and age. Clear form task is useful if for any
reason the employee decide to eliminate the data that
already were typing. After typing the customer’s data, the
employee can verify the correct filling out of the form and
send the data to a data base. Search for a trip task is split
in Type trip data, Show opportunities and Choose
opportunities tasks. First is necessary to introduce some
references of the trip as destination city, trip dates, number
of passengers, etc. Also is necessary to choose how many
rooms and what kind of rooms. Then, the system will
search for options considering the previous parameters.
Finally, the employee could analyze the opportunities that
the system found. Before select one or more options, the
employee can make a new search in two ways; try to find a
new option or just to change one parameter. The next task
is Send to customer by e-mail the opportunities that are
appropriate for her or him. If the customer decide to take
an opportunity, then next task is Make a reservation. Make
a reservation task is divided in Book a trip and Offer
insurance tasks. Booking a trip needs additional
passengers’ information as name, age (to separate adults,
children and babies), and the identification number. After
send these data, the system makes the reservation and
display a reservation number and the invoice, which will
be send to the customer. As we can see on the description
of the example, the customer can take insurance for trip
cancellation or for baggage loss, not to take any insurance,
or both types of insurance. After Make reservation, the
next task is the payment. Pay invoice task is out of this
example because the tasks that need to be developed to
pay could be different for each customer. Once customer
pays, the system notify to the employee in order that she or
he can confirm the trip and send e-tickets to the customer.
Customer can cancel the trip after she or he made the
reservation and until the trip starts. The employee needs to
verify the reservation conditions to know if the customer
buys some insurance or not.

Figure 4 Organize a trip Process mode

For each task in the process a task model details the
steps needed to accomplish it. In Table 5, some sub-tasks
from task models are listed with the purpose to show the
use of task types, combined with task items and user
categories. First, the user interacts with the system
(Interactive-user category) to type its user data. This task
includes the manipulation of the user data (name, zip code,

gender, age) one by one (element-task item). A couple of
cognitive tasks (decide to remove data and Check data)
which indicate for our system to be aware of the feedback
provided by the system during the interaction. If after
deciding to remove data the user performs the action clear
data then this interactive action should be reflected as a
service available in the UI and associated to a function

6868

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:28 from IEEE Xplore. Restrictions apply.

corresponding to the clear form behaviour. The rest of the
table is part of other task models. Notice the combination
of the three attributes (task type, task action and user
category) as later on this information is relevant for the
concretization of the task in a UI.

Table 5 Excerpt from the task types categorization for the organize a trip
case study

Task name Task Type Task Item User category

Type user
data

Create Element
Interactive

Decide to
remove data

Delete Collection
User

Clear data Delete Collection Interactive

Check data Mediate Collection User

Send data Communicate Collection Interactive

Store data Create Collection System

Search
options

Trigger Element
System

Display
options

Communicate Collection
System

Analyze
opportunities

Mediate Collection
User

Display
information

Communicate Collection
System

Cancel Stop Element Interactive

 The concretization for type user data task is shown in
Figure 5. For instance, in Table 6 the list of possible
concretizations for the task type user is described.

Table 6 Abstract Interaction Component selection from the User
Interface Action types

User Interface
Action Types

Facet
Specification

Information to
take into
account

Possible
Abstract
Interaction
Component

“create name” and
“create zip Code”

Create
attribute value

Data type,
domain
characteristics

A text output
with a text input
associated to it

“select gender and
select age
Category”

Select
attribute value
+ selection
values known

Data type,
domain
characteristics,
selection values

A dropdown list,
a group of radio
buttons textual or
characters.

The next step is the appropriate selection of graphical

elements. The selection of graphical elements is based on
ergonomic rules and guidelines. While for creating name
and zip code there is no other option than text inputs and
outputs. For selecting the category and the gender the
option is a radio button accordingly to the guideline
described in Table 4.

Figure 5 Concrete User interface view of the type user data task

A 3DUI is used for the final rendering for no particular
reasons. The screenshot B (Figure 6) reproduces the
worlds generated in Java3D where each container (type
user data) is mapped onto the virtual space. All objects are
then mapped recursively onto Java3D widgets depending
on their data type. In this particular case, the designer
selected also the graphical representation if any, along
with the textual representing. In this visualization, we
propose another way to represent the category selection
the use of 3D personages instead of icons. This 3D graphic
representation of the option could reinforce the
understanding, notice that we keep the text below the
personages. The screenshot A (Figure 6) illustrates the
same UI but rendered in VRML. The difference is the
absence of icons on the radio buttons. Notice in both cases
the traditional view of a radio button was not used but the
principle was kept.

Figure 6 The type user data task rendered in VRML and Java3D

VI. CONCLUSION

In this paper a list of canonical UI task action types
associated to task models is presented. The list is dual: a

A

B

6969

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:28 from IEEE Xplore. Restrictions apply.

verb describes the type of activity at hand; an expression
designates the type of object on which the action is
operated. By combining these two dimensions a derivation
of interaction objects supposed to support a task becomes
possible. In addition, task types provide some hints of the
implementation of the system and in some cases the dialog
of the application could be automatically generated when
some patterns are identified. The remaining work must be
towards a profound evaluation of this technique, whether
is useful or not, or if provides advantages confronted to
existing methods. Graphical UI (GUI) generation from
task models is a recurrent solution in the literature
[8][15][19][20]. Such solutions, target their solution to
multi-device and multiplatform implementations. Then,
this emphasizes the potential of relying on a structured
approach in order to reach a UI that could be trace along
with the models that specify it. Our future direction is on
evaluating the possible volumes that can be used as
widgets if the concretization of the User Interface is not
restricted to two dimensions but extended to the third
dimension. Finally, in this paper we have discussed
properties of task without considering relationships among
tasks, this has been previously reported in [10].

Acknowledgments We gratefully acknowledge the

support of the SIMILAR network of excellence
(http://www.similar.cc), the European research task force
creating human-machine interfaces similar to human-
human communication of the European Sixth Framework
Programme (FP6-2002-IST1-507609), the Alban program
supported by European Commission and the CONACYT
program supported by the Mexican government.

REFERENCES
[1] Bleser, T.W. & Sibert, John.”Toto: a tool for selecting interaction

techniques”. In: Proceedings of user interface software and
technology (Snowbird, Utah, Oct.3-5,1990) . New York: ACM,
1990, pp. 135-142.

[2] Bodart, F., Vanderdonckt, J., On the Problem of Selecting
Interaction Objects, Proc. of BCS Conf. HCI’94 "People and
Computers IX" (Glasgow, 23-26 August 1994), G. Cockton, S.W.
Draper, G.R.S. Weir (eds.), Cambridge University Press,
Cambridge, 1994, pp. 163-178.

[3] Calhoun, G. C.; Arbak, C. L. & Boff, K. R. “Eye-controlled
switching for crew station design”. In: Proceedings of the Human
Factors Society 28th annual meeting, Santa Monica (CA): Human
Factors Society, 1984, pp. 258-262.

[4] Constantine L. L., “Canonical Abstract Prototypes for Abstract
Visual and Interaction”. In Proceedings of the 10th International
workshop on Design, Specification and Evaluation of Interactive
Systems DSV-IS 2003 (june 11-13 2003, Funchal, Portugal),
LNCS 2844, Springer Verlag, Berlin, 2003, pp. 1-15.

[5] Foley, V. Wallace and V. Chan, "The human factors of computer
graphics interaction techniques", In IEEE Computer Graphics &
Applications, (4), pp. 13-48 (1984).

[6] Frank, M. and Foley, J. Model-based user interface design by
example and by answering questions. In Proc. INTERCHI, ACM
Conference on Human Factors in Computing Systems, (1993),
161-162.

[7] Gaffar, A., Sinnig, D., Seffah, A., and Forbrig, P. 2004. Modeling
patterns for task models. In Proceedings of the 3rd Annual
Conference on Task Models and Diagrams (Prague, Czech
Republic, November 15 - 16, 2004). TAMODIA '04, vol. 86.
ACM, New York, NY, 99-104.

[8] Gonzalez Calleros, J.M., Vanderdonckt, J. and J. Muñoz Arteaga,
“A Method for Developing 3D User Interfaces of Information
Systems”, in Proc. of 6th Int. Conf. on Computer-Aided Design of
User Interfaces CA-DUI’2006, Springer-Verlag, Bucharest,
Rumania, 6-8 June 2006, pp. 85-100.

[9] Greenstein, Joel S. & Arnaut, Lynn Y. “Input devices”. In: M.
Helander, (Ed.), Handbook of Human-Computer Interaction,
Amsterdam: North-Holland, 1988, pp. 495-519.

[10] Guerrero, J., Vanderdonckt, J.Gonzalez, J.M., FlowiXML: a Step
towards Designing Workflow Management Systems, Journal of
Web Engineering, 2008, to appear.

[11] Hutchinson, Thomas E.; White, Jr., K.Preston; Martin, Worthy N.;
Reichert, Kelly N. & Frey, Lisa A. “Human-Computer Interaction
Using Eye-Gaze Input”. IEEE Transactions on systems, man, and
cybernetics, 19(6), 1989, p. 1527-1533.

[12] Jansen, B. J. “Using Temporal Patterns of Interaction to Design
Effective Automated Searching engines”. Communications of the
ACM. Vol. 49, No.4. pp. 72-74. April 2006.

[13] Johnsgard, T.J., Page, S., R., Wilson, R.D., Zeno, R., J., A
Comparison of Graphical User Interface Widgets for Various
Tasks, Proceedings of the Human Factors & Ergonomics Society -
39th Annual Meeting, Human Factors and Ergonomics Society,
octobre 1995., pp. 287-291.

[14] Lenorovitz, D.R.; Phillips, M.D.; Ardrey, R.S. & Kloster, G.V. “A
taxonomic approach to characterizing human-computer
interaction”. In: G. Salvendy (Ed.), Human-Computer Interaction.
Amsterdam: Elsevier Science Publishers, 1984, pp.111-116.

[15] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez,
V.: UsiXML: a Language Supporting Multi-Path Development of
User Interfaces. In: Bastide, R., Palanque, P., Roth, J. (eds.)
Engineering Human Computer Interaction and Interactive Systems.
LNCS, vol. 3425, pp. 200–220. Springer, Heidelberg (2005).

[16] Paternò, F., Santoro, C., One Model, Many Interfaces, in Proc. of
CADUI'2002, pp. 143--154.

[17] Paternò, F. Model-based design and evaluation of interactive
applications. Applied Computing, Springer. 1999

[18] Puerta, A.R. A Model-Based Interface Development Environment.
IEEE Software 14, 4 (1997), pp. 41-47.

[19] Stanciulescu, A., Limbourg, Q. Vanderdonckt, J., Michotte, B. and
Montero, F.: A transformational approach for multimodal web user
interfaces based on UsiXML. ICMI (2005), 259-266.

[20] Vanderdonckt, J.: A MDA-Compliant Environment for Developing
User Interfaces of Information Systems. In: Pastor, Ó., Falcão e
Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 16–31.
Springer, Heidelberg (2005).

7070

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:28 from IEEE Xplore. Restrictions apply.

