A Model-based
Approach for
Developmg 3D User
Interfaces

By Juan Manuel Gonzalez Calleros

A dissertation submitted in fulfillment of the requirements for
the degree of

Certificate of in-Depth Studies (DEA)
in Management Sciences

Option “Information Systems”

of the Université catholique de Louvain

Committee in charge:
Prof. Jean Vanderdonckt, Advisor

Prof. Karin Coninx, Examiner
Prof. Jaime Munoz Arteaga, Examiner

Summer 2006

Table of Contents

TABLE OF CONTENTS ..ot 3
ACKNOWLEDGEMENT ... 9
ABSTRACT L 11
CHAPTER 1 INTRODUCTION oottt 13
1.1 RESEARCH MOTIVATION ..c.oiuiiiiiiirietinieienieie sttt sne bt anes e 14
1.2 THE SCOPE OF THE RESEARCHcciitiiiiitiniinieie ittt see et 17
1.2.1 HUMAN COMPUTER INTERACTIONcviteiattresieseetesistesesiese e e bbb seene s 17
1.2.2 MODEL DRIVEN ARCHITECTURE DEVELOPMENTcoiviieiinieirieiinieiesieesieieeae 17
1.2.3 VIRTUAL REALITY oottt ettt 19
1.3 RESEARCH GOALS ..ottt sttt sttt 20
1.4 RESEARCH BENEFICIARIESccueiuiiiiieiiaiesiesie e este sttt st s ene e 21
141 SOFTWARE MAINTENANCEcouiiiiitiriiteietesesieseetesesieseste bbb b e seene e 21
1.4.2 SOFTWARE DESIGNERcutuiitiuiieiisietirisiesisie sttt sttt sbe e 22
1.4.3 SOFTWARE DEVELOPERccueiitiiirietinieiesiett sttt sne et anese e 22
1.4.4 END USERS OF THREE-DIMENSIONAL USER INTERFACES........cccoseviniereinienenne 22
1.5 THESIS ittt bbbt bttt bbbt bbbt 23
1.6 READING MAP.....co ittt ettt 24
CHAPTER 2 STATEOFTHEART ...coccoiiiiiiiiiiiiiesctittsieie 25
2.1 DESCRIPTION OF 2D USER INTERFACE DEVELOPMENTccotiiniiirieinieienieen, 25
2.1.1 EXPLORATORY APPROACH.......ctittiitiiiiteniitet sttt et nnebe et snene e 26
2.1.2 PROGRAMMATIC APPROACHcoviuiitirieitesiesiesietesiestesbe st see et st steseesbesessensens 26
2.1.3 SPECIFICATION-BASED APPROACHcitiueiirieieeiesiesiesteneeessesiestesteseesiesessensens 27
2.2 CURRENT APPROACHES IN 3D USER INTERFACES DEVELOPMENT 29
2.2.1 PROGRAMMATIC APPROACHcoitiuiiiiiiiteiniesiateesieestese st e et it snesesnesesneneneas 29
2.2.0.8 OPENGL ... 29
2210 BlIZ .ot 30
2.2.1.c Multi Content Natural LanQUAGE.........eouererriririerenienieieiee sttt 31

2.2.0.0 VRML oot 32

2.2.2 MARKUP LANGUAGESceiittiiiiiniiiaiteiee sttt ettt snee b b ne s 37

2.2.2.8° X3BD ittt bbbt 37
2220 XVRML .ottt 38
2.2.2.0 VRIXML ..ottt st st 39
2.2.2.0 INTIML ittt ettt et bbb 41
2.2.3 TOOLKIT PROGRAMMINGc.cveuiiinitesistenestetsteiesiesesiesesessesneiesnetesnesesneseseesennas 43
2.2.3.8 OPEN INVENTOT ...ttt st st sb e b 43
2.2.3.b Alambik SOFtWAre SUILEccovveiriiiieiieere e 43
2.2.3.c Crazy Eddie's GUI SYSIEIMccoiiiiiiiiiieesene et 44
2.2.3.0d MJDBWOITA ..o s 45
2.2.3.6 Autodesk FAMIlY®ccccoviieieiiisise e 46
2.2.3.F ANArK SEUIOceeiieiiiieec e 49
2.2.3.0 MAaPIBL ..o e 51
2.2.3.0 AICE ottt e ere s 52
2.2.4 RENDERING ENGINES......ciutttiiueistiistesestesesteeateesaeestssesessessesesaesessasessssessasaneas 54
2.2.4.a AlMDIK® VIBWET ..ottt s 54
2.2.4.b Object-Oriented Graphics Rendering Engine (OGRE)cccccovivveivivriennen, 54
2.2.5 3D DESKTOP SYSTEMS ...cuvitiiiieniitinisteitarestssetsreessee st st snese st snese s snesenas 56
2.2.5.:8 ClAIA oo bbbt a e et 56
2250 SPNEIEXP ..o s 57
2.2.5.C BDINA Lottt b e bbbt bbb e e 58
2.2.5.0 LOOKING GIASS ...veveveerieiiiiiiiie ittt eneene s 60
2.2.6 MODEL-BASED 3D USER INTERFACE APPROACHEScctreiieiiriaienieieniaiennas 61
2.2.6.a Web & Information System Engineering Lab..........ccccceoviriniinnncnninincns 62
2.2.6.0 COGENIVE ...ttt et 63
2.2.6.c Interaction Techniques Markup Language........ccoeveverenienenvenesneniesesnenes 65
P X T 0o o1 T - PSSR 66
2.2.7 COMPARISON ON DEVELOPMENTSveutiteriitiniiteieniesenteiesresesnese st snesesnesesnesenas 68
2.2.7.a Comparison on Model-based Developments.........c.ccoeveriininineneseieennens 68
2.2.7.b Comparison 0N TOOIKILSccoiiiiiiiiiiiiic s 69
2.3 CONCLUSION .cttuiitteetetete et sesie sttt st st be et e et e et e st sb e st seebe bt e sbenesbenesneneeas 72
2.3.1 OBSERVATIONS ..utiitiieterieteesteststetstese st ettt sbe st ebesee st et bbb besbesesnene e 73
2.3.2 SHORTCOMINGS. ...c.vittrtetetateeatesiatestssese st st ab ettt sb ettt bt nr et bbb b b nnene e 75
2.3.3 ONTOLOGICAL REQUIREMENTS ...ueuttiriateristesiateresiesesseseseesesseseseesessesessesesssseneas 76
2.3.4 METHODOLOGICAL REQUIREMENTSctiuitiniiteienienesisiesessesesiesietesissesessesnsseeas 77

CHAPTER 3 THREE DIMENSIONAL USER INTERFACES TAXONOMY 79

3.1 INTRODUGCTION ..iiiiiiiiiiiiatee ittt sttt ettt sttt ettt e et e b e snbeenbe e b s 79

3.2 INTERACTION TECHNIQUES TAXONOMYcocuiiiiiiieiieniiesire et esiee e eeees 80

3.21 METAPHORS TAXONOMY ...ocoiiiiiiiiiiiiiiiiisi s 80
3.2.2 3D WIDGETS TAXONOMY ...ociiiiiiiiriiniiiiisisis s 81
3.2.3 MIXED REALITY CONTINUUM TAXONOMYcooviiiiiiiiiiiiniiiisieene e 81
3.3 ATAXONOMY FOR 3D USER INTERFACES: EXTENSION OF THE VIRTUAL

CONTINUUM .ottt b bbb bbb bbb bbb 83
3.3.1 PURE REALITY it 84
3.3.2 AUGMENTED REALITY w.oiiiiiiiiiiiiiiin i 85
3.3.3 AUGMENTED VIRTUALITY ..coooiiiitiiiiiiiiitice et 86
3.34 VIRTUAL 3D GUI ...ciiiiiiiiii s 87
3.35 DIGITAL3D GUI ..o 88
3.3.6 3D RENDERING OF 2D GULL.....cociiiiiiiiiiiiiii s 89
337 2D GUI it 90
3.4 THE DEVELOPMENT OF A INTERNET RADIO PLAYER......ccccoitmminiiitiennniinns 92
341 PURE REALITY .ot 92
3.4.2 AUGMENTED REALITY ..ot 92
3.4.3 AUGMENTED VIRTUALITY ..ooviiiiiiiiiniiiiii s 93
344 VIRTUAL 3D GUI ..ocuiiiiiiiiiniiii e 94
345 DIGITAL3D GUI ..o 95
3.4.6 3D RENDERING OF 2D GULL......ccuiiiiiiiiinii s 96
AT 2D GUL o 97
3.5 CONCLUSION ...ttt bbb 98

CHAPTER4 MODEL-BASED DEVELOPMENT OF THREE

DIMENSIONAL USER INTERFACES... ..ottt 99
4.1 INTRODUCTION ..cutiitiniiteniatesestesestenessesessesesessessasessesessasessssessssesessesessesessesessesensas 99
4.2 ONTOLOGY FOR THREE DIMENSIONAL USER INTERFACE SPECIFICATION 102
4.2.1 ACTION TYPES FOR TASK MODELcccciiviierieieristesiesiesiesieseeeseseseesseseeseesens 102
4.2.2 THREE DIMENSIONAL TASK PATTERNS ...ccooiviierieiisiesiesieieseeresesseseesseseeneesens 110
4.2.2.a Navigation PAtterNcccceiiiiiiiieee e 110
4220 Travel PALErNco i 111
4.2.2.C WaYTINAING ...oiiiiiiieie et 112
4.2.2.d SElECE PAtEIN....c.eciiiececce e 112
4.2.2.e Manipulation PAtTENc.cccevverieiiesise e 114
4.2.2.F System control PAtternccccoveiiiiiece e 115
4.3 THREE DIMENSIONAL EXTENSION TO THE CONCRETE USER INTERFACE

V[0] =1 SRS 116

4.3.2 3D CONTAINERSoeceiriirieeesresiee st sn et nne e nr e nne e 124

4.3.3 THREE DIMENSIONAL GRAPHICAL INDIVIDUAL COMPONENTSc.ccevvruenns 127
4.3.3.8 BUTON ..ot 127
4.3.30 TOQGIE BULON.cuiiiiiiiiiesie et e 128
4.3.3.C TeXt COMPONENTciiiiiitie ettt st e e bt e e ie e neenbeens 130
0 o B O] (o) gl = ot 2T RS SRSSSN 132
4.3.3.8 RAAIO BULION.....c.ooiiiieisiecc e 134
4.3.3.F CHECK BOXuuuiiiiiiiiiiiieiiieie ettt 136
4.3.3.0 SHUEE et 137
T o T O] 7] ¢ 0] =10) GRS 139
A.3.30 TBIM bbbt 140
4.3.3.] LISEBOX ..ttt 140
4.3.4 CONTEXT MODEL REVIEWcoiiiiiiiiiiiiiieiiiet sttt 142
4.4 ABSTRACT SYNTAX: GRAPHS AS UNDERLYING FORMALISM.......ccccccervrvrrennns 144
4.5 CONCRETE SYNTAX: A VISUAL AND TEXTUAL SYNTAX....ceireririeerieereeennas 144
4.8 IMAPPINGS. ... ettt ettt sttt sttt sttt etk ettt b ettt sttt et e b ene e 148
4.6.1 AN INTRODUCTION TO GRAPH GRAMMARSc.ootiirieinieniatenentenesienesiesessenennas 151
4.7 METHOD FOR DEVELOPING 3D USER: ARCHITECTURE CONTINUUM 152
4.8 CONCLUSION ..otitititeteeteteseetestete s testateseesesseseseesesesteestesssteseatessatesessesessessssenesses 154
CHAPTERS5 CASE STUDIES ..ottt 155
5.1 INTRODUCTION ...oittiitiieteiesteestesesteesteseste e sbesesbesessssessesestaseseesesaesesessesessesessans 155
5.2 STUDY CASE 1: THE VIRTUAL POLLING SYSTEM ...c.coiiriiiiiaieninienenienenie e 156
5.2.1 STEP 1: THE TASK AND DOMAIN MODELSc.citeiirieiiiareniaienieiesieienesseseenenennens 156
5.2.2 STEP 2: FROM THE TASK AND DOMAIN MODELS TO ABSTRACT MODEL 158
5.2.2.a ldentification of abstract Ul structure for AUI “A” ... 159
5.2.2.0 Selection Of AlC ... e 161
5.2.2.c Spatio-Temporal arrangement of abstract interaction objects..................... 162
5.2.2.d Definition of abstract dialog controlc.ccccovvivvivrineneice e 164
5.2.2.e Derivation of AUI to domain Mappings.........ccccceveeieeveiesiieseseeie e 164
5.2.2.f Resulting SPeCifiCation...........coceriiiriiii i 164
5.2.2.g Identification of abstract Ul structure for AUl “B”cccocevviiiiiiiniinnnnns 165
5.2.3 STEP 3: FROM ABSTRACT MODEL TO CONCRETE USER INTERFACE MODEL..171
5.2.3.a Reification 0f AC N0 CC...ocooveviiciie e 172
5.2.3.0 SeleCtion Of CICScviiiiiiciiisiesie e 173
5.2.3.C CIC PIaCEMENL.......c.eiiiiiiiitiiee e 174
5.2.3.d Navigation definitioncccccviiiiiiiiiiniic e 174

5.2.3.e Resulting SPECITICAtIONccceverieiciie e 174

5.2.4 STEP 4: FROM CONCRETE MODEL TO FINAL USER INTERFACE...........cccvuvnne. 180

5.2.4.a Sub-Step: From Concrete to a High Level EAitorccccccoveevvvvvicicienenn, 185
5.2.4.b Sub-Step: From High Level Editor to FUL........c.cccooviiiiiiiiieiccieciee 186
5.2.5 RECONSTRUCTION OF THE CASE STUDY INJAVA 3D ...ccccovvivrieireniee e 186
5.2.6 RECONSTRUCTION OF THE CASE STUDY FOR THE 3D RENDERING OF ITS

CORRESPONDING 2DULL....oiuiiiiiiiiiiiisieieie sttt 188
5.3 CASE STUDY 2: THE VIRTUAL INTERACTIVE OFFICEccevvrirerieienercnenieens 190
5.3.1 STEP 3: FROM ABSTRACT MODEL TO CONCRETE USER INTERFACE MODEL..191
5.3.2 STEP 4: FROM CONCRETE MODEL TO FINAL USER INTERFACE........cc.ceenenen. 193
5.4 CONCLUSION ...ttt sttt teie st e et se e e st e e sbesete e ssaseseneseasesenas 198
CHAPTER 6 VALIDATION oottt 199
6.1 EXTERNAL VALIDATION.....ctiiitiueeeitreeteiestreseeteseseseseesesesesessesesesessssesesessssssens 199
6.2 INTERNAL VALIDATION....cotutiititeteitntatetestrestetesesesessesesesesessesesesesessesesesssssnenes 199
6.2.1 METHODOLOGICAL REQUIREMENTScueiiitereierietetenenesteieresenesnesesesesesnenas 200
CHAPTER 7 CONCLUSION ..ottt 203
7.1 CONTEXT OF THISWORKoovitiiiiiiinienisienisteesteseseeesiete st seese st sessesessesessens 203
7.2 CONTENT OF THIS DISSERTATIONcuittttiirieteierereneetesesesessesesesesesnesesesessssenas 204
7.3 SUMMARY OF CONTRIBUTIONS ...oeviiiteieieriateeeneneseetesesesessssesesesesessesensssssenas 205
T4 FUTURE WORKS......cuttiiiaieteiitstetete ettt sttt st sesse et st seabesese s snsnesenessanenenas 205
REFERENCES ..ottt 207
ANNEX A. LOTOS OPERATORS ..ottt 223
ANNEX B. GRAPH DEFINITIONS ..ot 227
CATEGORY THEORY AND GRAPHS MORPHISMS.........creiinieieiereneniereresesesissesesesennenas 228
IDENTIFIED GRAPHSooutiiiiteieiiseeieteesesesieie et stese e sessesese e seesese e e esenese e s eseseneneseees 229
LABELED GRAPHS.cututiiteteteeresteteseseses bttt sttt se sttt s et e ebeb et sttt e etete e e nees 230
CONSTRAINED GRAPHSoctiuiiieteiiestetete et sttt sttt st se sttt sesbe s sessssesesesnanenas 231
TYPED GRAPHSctititertetetesteseseetestetesea e stateseeseseesessesessete e atessabe st eteseatessaseeeteessenesens 232
IDENTIFIED, LABELED, CONSTRAINED AND TYPED GRAPH......ccotriieirerieeeeiaerieneens 233

AN IMPROVED TYPING FUNCTIONttitiiiiiiiie ittt ettt 234

ANNEX C. TRANSFORMATIONAL RULES ... 238

1. BASIC NODES CAPABILITIESoivuiveieeieeiesesssiesssssessessssessesssssssssesseneenessessenes 238
NODE CREATIONvovaeevesteseseesessesseseesesssssiessss s ssssess s sessassss st nsnsessnssnsenesnsasenes 238
NODE MODIFICATION (IDENTIFIED INSTANCE) w....ovevertceesessesesesssssesssssssssessenesssanens 238
NODE MODIFICATION (UNIDENTIFIED INSTANCE) «...vuvuierevesieesseesesisesssesesssssssssenss 239
NEGATIVE APPLICATION CONDITION (1) w..ovueveeecenrisicieeeesessiseeesesssesssseesessesesssanens 239
NEGATIVE APPLICATION CONDITION FOR ITERATIVE EXECUTION OF RULES (2)........ 240
RULE WITH VARIABLE AND VARIABLE CONDITION AS POSITIVE APPLICATION

ote] N[0 o] N FES OO 241
TRANSFER OF AN ATTRIBUTE VALUE......c.vuiveriereeessessestesessssessesessessessenessessessessssessens 241
EDGE CREATION......couctierestestseesessessessessssssessessesessssessassesssssssssasssssssssessessssnsansassnss 242
[NTo] oY= o1 = o) NPT 242
2. FROM CONCRETE USER INTERFACE TO CODE RULES.........coevvreerrerirrinesnenes 251
3. REVERSE ENGINEERING RULES.......cceevvvueveeseiieeesessossesissessessessssessensnsessssensos 251
4. ADAPTATION TO CONTEXT CHANGEcvieirerrrtiressessssenessesessesessessessensasensens 252
STEP: FROM ABSTRACT USER INTERFACE TO ABSTRACT USER INTERFACE 253
STEP: FROM CONCRETE USER INTERFACE TO CONCRETE USER INTERFACE.............. 254
5. SUB-STEP: CONCRETE CONTAINER RE-FORMATIONc.covververirenreninsinennennes 254
6. SUB-STEP: CONCRETE INDIVIDUAL COMPONENT RE-SELECTIONcc........ 256
7. SUB-STEP: LAYOUT RE-SHUFFLINGc.evvvveeriesiseesessssenessessssensssessensnsessasenses 256

.. 257
1. TASKIMODEL ..ottt 259
2. DOMAIN MODEL ..ottt s 261
3. ABSTRACT USER INTERFACE MODELcccooiiiiiiiiiiii i 263
4. CONCRETE USER INTERFACE MODELcccooiviiiiiiiniiinnnic s 265
5. CONTEXT MODEL ...octiiiiiiiiiiiiiiniiisis it 273
6. INTER-MODEL RELATIONSHIPS.......cccootiiiiiiiiiisietc it 275

Acknowledgement

I would like to express my thanks to:

— My advisor, Professor Jean Vanderdonckt, for his constant support and
enthusiasm regarding my work.

— Professors Karin Coninx and Jaime Mufioz Arteaga for accepting to
participate to the jury of this dissertation.

— My family who encourage me every day.
— My friends who always believe in me.

— My wife, Josefina Guerrero Garcia and our child, who has been a constant
sustain in this adventure.

This dissertation was supported by:
- The Program Alf3an, a high level scholarship program specifically addressed to

Latin America.
- The Mexican scholarship program CONACYT to support studies abroad.

Abstract

Three-dimensional (3D) interaction is an exciting field of research. Today, the
development life cycle of 3D user interfaces (Uls) mostly remains an art more
than a principled-based approach. Several methods have been introduced to
decompose this life cycle but rarely provide the design knowledge that should be
typically used for achieving each life cycle step. In addition, the development life
cycle is more focusing directly on the programming issues than on the design.
Model-driven development is a development paradigm that relies on model
engineering i.e., in the power of models to build computer systems. This thesis
applies such approach to develop 3D Uls to cover the lack of methodologies in
this domain. First on the transformational development paradigm that consists in
the progressive refinement of abstract models into concrete models, until
program code, we propose an ontology of concepts defining various viewpoints
that can be maintained on a 3D UI system. Viewpoints are hierarchically
structured depending on their level of abstraction. They describe user tasks,
classes of objects, presentational and behavioral aspects of Uls, context of use,
and a set of mappings between these representations. The underlying
mathematical formalism, is a graph structure (directed, identified, labeled,
constrained, and typed graphs) that transform one viewpoint into another by the
application of conditional graph rewriting rules gathered in graph grammars.
These enable expressing a wide variety of transformational heuristics so as to be
able to express multiple development paths, in which we include the 3D Uls path.
Our proposal extends UsiXML (User interface eXtensible Markup Language),
which already covers 2D and vocal Uls. Ontologies and transformations may be
stored in an XML format, called UsiXML, that will be transformed to code for
3D Uls.

1. Introduction

Chapter1 Introduction

Nowadays, software development is evolving exponentially, with the hand of
hardware and technological innovations. New languages or paradigms are required
to provide solutions to those new technologies. This contributes to frequent
changes in focus and as result of new areas of deployment, [Khaz00].

The Computer Human Interaction (CHI) field studies how to evaluate, analyze,
design and develop usable and useful software. CHI field is supported by many
disciplines such as: psychology, sociology, cognitive disciplines, among others.
One of the concerns in this discipline is the development of User Interfaces (UI)

Uls development for software developers, designers and maintainers is a complex
activity. Each time that a technological innovation appears they have to learn new
skills that could be: a new programming language, the manipulation of new
hardware architectures or new design methodologies.

With the hand of the innovations we found a new emerging approach: 3-
dimensional User Interfaces (3DUI). Nowadays, many resources exist as 3-
dimensional virtual reality scenes or wotlds for informational, public, pedagogical,
and rehabilitation purposes. Normally those wotlds ate devoted to show virtual
environments, sophisticated animations, games, but not User Interfaces, which
traditionally are developed in 2-dimensions.

Three-dimensional (3D) interaction is an exciting field of research that promises
to allow users to perform tasks freely in three dimensions rather than being
limited by the 2-dimensional (2D) desktop metaphor of conventional graphical
interfaces. For some computer-based tasks, pure 3D representations are clearly
helpful and have become major industries: medical imagery, architectural drawing,

1. Introduction

computer-assisted design and scientific simulations, (Shneiderman, 2003). Those
systems traditionally are associated to complex and expensive technologies.
Games industry is leading the market and showing the potential of rendering 3D
graphics in a desktop computer.

1.1 Research Motivation

Several methods [Bowm04, Cele01, FencOl, Geig0l, Neal01] have been
introduced to decompose this life cycle into steps and sub-steps, but these
methods rarely provide the design knowledge that should be typically used for
achieving each step. In addition, the development life cycle is more focusing
directly on the programming issues than on the design and analysis phases. This is
sometimes reinforced by the fact that available tools for 3D Uls are toolkits,
interface builders, rendering engines, etc. When there is such a development life
cycle defined, it is typically structured into the following set of activities:

e The conceptual phase is characterized by the identification of the
content and interaction requests. The meta-author discusses with the
interface designer to take advantage of the current interaction technology.
The interface designer receives information about the content. The result
of this phase is the production of UI schemes (e.g., written sentences,
visual schemes on paper) for defining classes of interactive experiences
(e.g. class Guided tour). Conceptual schemes are produced both for the
final users and the authors. The meta-author has a deep knowledge of the
content domain and didactic skills too. He/she communicates with the
final user too, in order to focus on didactic aspects of interaction.

e In the implementation phase, the Ul designer builds the final user
interface and the author interface on the basis of the Ul schemes. The
results of this phase are available as tools for the authors, which can be
manipulated without a deep knowledge of computer science world. It is
important to note that this implementation phase can be a personalization
or a sub-setting of existing tools, rather than a development from scratch.

e In the content development phase, authors choose among the available
classes of interactive experiences and instantiate the one that fits their
particular needs (e.g. Guided tour, paths). The take advantage of a
number of complementary subjects: editors (writer, 2D graphic artist), 3D
modeler, wotld builder.

1. Introduction

e In the final user interaction phase, the final user interacts with the
contents of the 3d world, composed by the author, through the interface
implemented by the interface designer. The final user interaction is
monitored in order to improve both the usability of the interface and the
effectiveness of content communication.

As opposed to a content-centric approach, some other authors advocate a user-
centered approach; hence, involvement of users in the requirements analysis and
evaluation are essential for achieving a usable product. They also argue for
separating the conceptual part from the rest of the life cycle to identify and
manage the Computing-Independent Models (CIM as defined in the Model-
Driven Engineering -MDE) from the Computing-Dependent part. This part is in
turn typically decomposed into issues that are relevant only to one particular
development environment (Platform-Specific Models —PSM) as opposed to those
issues which remain independent from any undetlying software (Platform-
Independent Models—PIM). In the MDE paradigm promoted by the Object
Management Group (www.omg.org), it is expected that any development method
is able to apply this principle of separation of concerns, is able to capture various
aspects of the problem through models, and is capable of progressing moving
from the abstract models (CIM and PIM) to the more concrete models (PSM and
final code). The goal of this dissertation is to demonstrate the feasibility of a
MDE-compliant method that is user-centered as opposed to contents-centric for
developing 3D Uls.

What is more, it is necessary to clearly identify which are the problems related to
3D solutions. The question for some authors is whether doing 3D software
development or not? This Shakespearian dilemma deals with the design decision
of presenting 3D User Interfaces because is necessary or just because is attractive.
[CockO1] tried to distinguish between the real necessity of wusing 3D
representations and the overuse of this kind of user interfaces development just
because they are in vogue. In [Shne(02] the same subject was discussed, for general
purpose applications. Both surveys concluded that 3D presentation is not just
more attractive for the users but also provide a best option for developers to
manage the information visualization issue. In their review of applications,
[Cock01] offer some examples of user performance in 3D applications. They
found that user preferences are on the use of 3D systems, as users found them
more natural to use. Also, that 3D user interfaces are better to use for cognitive
reasons, as it exploits the spatial memory and cognition of humans.

1. Introduction

Even so, we consider that we need, clear guidelines for designing 3DUI in a
coherent way. Some advises to choose the appropriate representation for the
problem instead of adapting an existing solution to the problem. In this concern,
the user task plays an important role, as they are helpful to identify the true nature
of the task, so, identify if its 3D in nature or not. Task models are not considered
during the design phase of 3DUL

Similarly, user performance in 3D is an important aspect to evaluate. Until now
the vast majority of 3D applications were created for a specific group of users and
specific application domains; for instance, for psychological therapy, airplane and
car training, natural science simulations, among others. In all these tools it is
possible to measure the user performance in front of the system by analyzing
some attributes such as: time to learn its use, speed of performance, rate of
human errors, and human retention over time. Even that the previous variables
could be measured with experiments, modern Ul development require to take
into account the system context of use, whether social, organizational and cultural,
so as to consider individual differences among potential users, [Shne02].

Actually, the common attitude for 3DUI development is to start from scratch
rather than reuse components, as is the common way to generate 2D software,
[Poup00]. Some problems on the usability field; are provoked by the lack of
methodologies to evaluate (quasi)automatically the developments. The acceptance
of virtual environments (VE) technology requires scrupulous optimization of the
most basic interactions in order to maximize user petrformance and provide
efficient and enjoyable virtual interfaces. There is a need for a methodology that
could help also to evaluate the development of 3DUL

In addition to the problems above described, our last motivation for conducting
this research is the lack of a software tool, toolkit, for developing 3DUI. Different
toolkits exits to create 2D user interfaces that help developers in doing this task
casier, the counterpart in 3D exist but not for the purpose of creating UL So we
need a software Framework capable to group the solution of the described
problems, so as to be easy to use.

1. Introduction

1.2 The scope of the research

1.2.1 Human Computer Interaction

This research is located in the Information Systems Management area, in particular in
the discipline of Eungineering for Computer-Human Interaction (CHI). This
discipline is the crossroad of software engineering (the application of a systematic,
disciplined, quantifiable approach to develop, operate, and maintain software; the
application of engineering to software) and CHI (concerned with the design,
evaluation and implementation of interactive computing systems for human use
and with the study of major phenomena surrounding them), [Hewe92].

The User interface (Ul) is the aggregate of means by which people (the users)
interact with a particular machine, device, computer program or other complex
tool (the system). The user interface provides means of: Input, allowing the users
to control the system, Output, allowing the system to inform the users (also
referred to as feedback), [Wiki05], see in Figure 1-1 a 3DUI which a special case
of UL

oo

Figure 1-0-1 Windows 3DNA environment

1.2.2 Model Driven Architecture Development

Model-driven development is a development paradigm that relies on model
engineering i.e., in the power of models to build computer systems. It advocates
that software development should be guided as much as possible by the
construction, and refinement of software models at various levels of abstraction.
Most of current development methodologies have been influenced by, can be
affiliated to, or are totally in debt with, this paradigm, for instance: object-oriented
methodologies, database engineering, or agent-oriented methodologies.

1. Introduction

Model-based design purpose is to identify high-level models that allow designers to
specify and analyze interactive software applications from a more semantic-
oriented level rather than directly pass to the implementation level.

More recently, along with the Model/ Driven Architecture (MD.A) proposal [MillO3],
model processing and transformation have gained particular importance in the
software engineering literature, [Limb0O4c]. The main motivation of these works is
to tackle the problem of computing platform heterogeneousness. For this purpose
MDA defines a set of abstraction layers able to factor out specificities of
implementation platforms. In this context, explicit model-to-model
transformations enable the realization of the development process.

The software engineering transformational development, a paradigm consisting in the
progressive refinement of abstract models into concrete models, until program
code [Somm99]. This research expects to apply transformational development
concepts until code for 3D User Interfaces (3DUIs), enlarging the 2D Ontology
already specified in UsiXML..

UsiXML. (which stands for USer Interface eXtensible Markup Language) is a
XML-compliant markup language that describes the Ul for multiple contexts of
use such as Concrete User Interfaces (CUIs), Graphical User Interfaces (GUIs),
Auditory User Interfaces, and Multimodal User Interfaces. In other words,
interactive applications with different types of interaction techniques, modalities
of use, and computing platforms can be described in a way that preserves the
design independently from peculiar characteristics of physical computing platform

[Limb04a].

An engineering approach for model-based design should address at least four main
issues. First, support to flexible and expressive notations. Second, build systematic
methods to support the specification during the design. Third, it must give
support to reuse the models. Finally, support to add or remove detail from the
task model during the designing phase [Pate00].

Model generation, in software development different kinds of models could be used.
However, two categories have been identified to abstract user interfaces, the
design centered on the user and the design centered on the environment. In
general, the common mistake is that developers design software based on the
target or the environment, rather than taking into account the user as the center

1. Introduction

of the design. This shortcoming creates problems of usability of the software and

low performance of the users.

Different kinds of models imply different representations as they have different
points of view and analysis. Task models are centered on the user an help
developers to understand the main activities of an application (domain model),
represent the agreement between all the agents involved in the development
(users, designers, etc), design based on the user (conceptual model), is useful to
evaluate the usability of the system and gives support to generate help bars or
tools based on the task. In other words, task model is useful for both designers
and final users. But task model is just the starting point for the design.

1.2.3 Virtual Reality

Virtual reality describes an environment that is simulated by a computer. Most
virtual reality environments are primarily visual experiences, displayed either on a
computer screen or through special stereoscopic displays, but some simulations
include additional sensory information, such as sound through speakers or
headphones. Some advanced and experimental systems have included limited
tactile feedback. Similarly, [Krei01] defines virtual reality as a kind of reality that is
computer-generated, and at least at present consist in replacing the normal
sensory environment by another environment that mimics as closely as possible
the normal sensory environment without being the normal sensory environment.

1. Introduction

1.3 Research Goals

The goals of this research consist in specifying, designing, and developing a
Model-Based Approach for Developing 3D User Interfaces (3DUI), a software
environment aimed at:

1) Provide the developer the chance to describe a 3DUI in a XML-based
language, UsiXML.

2) Help the developer to create a 3DUI in a graphic editor or using as a
starting point a UsiXML file description and render it in the tool.

3) Contribute to the creation of 3DUI instead of traditional 2D, easily.

4) Provide developers a set of predefined 3D widgets that helps them to
create the UL

5) Testing the usability and the accessibility of virtual reality worlds
contained in Web sites or stand-alone against empirically validated
guidelines and design rules.

6) Providing developers with assistance in improving detected usability
and accessibility deviations while designing.

7) Repairing deviations under the supervision of the developer with a
mixed-initiative process.

8) Enhancing the world by adding hooks and hints for supporting the
navigation in the world through multiple and alternate sensory modalities
for disabled people. Such modalities should foster feeling, sensing, and
hearing the world through appropriate interaction devices. For example,
the tool should prepare the world for screen sonification to facilitate
navigation.

By improving and ensuring the quality of virtual reality worlds, it is expected that
A Model-based approach for developing 3D user interfaces will contribute to a
social goal of making worlds more usable for traditional visitors and more
accessible for disabled ones. Three-dimensional environments are greatly
appreciated by some users and are helpful for some tasks. They have the potential
for novel social, scientific, and commercial applications.

1. Introduction

1.4 Research Beneficiaries

Software development in its last phase, which is implementation, could be divided
in two sub-phases, the Ul programming (static part) and system functionality
programming (dynamic part). Considering some studies, that have revealed that
the time devoted to create User Interface is around 44% [Boch88] and 48%
[Myer92] of the total time required in the implementation phase, we notice that
UI development is not just a complex task but also time consuming. We identified
four actors of the software development cycle that would be benefited with this
research: the software maintenance, the developer, the designer and the user of
3DUL

1.4.1 Software Maintenance

Software maintenance refers to the process of enhancing and optimizing deployed
software (software release), as well as remedying defects. Updating the Ul is a
mandatory task when new requirements appear. Requirements are linked with the
organizations necessities, and the organizations are constantly changing, in
structure, in the way they process their products, in the hardware or software that
they used, etc. As a consequence, they “change user’s requirements”, software
maintenance is required. Actually, the dynamicity of the development of UI
represents difficulties when the same User Interface should be developed for
multiple contexts of use such as multiple categories of users (e.g., having different
preferences, speaking different native languages, potentially suffering from
disabilities), different computing platforms (e.g., a mobile phone, a Pocket PC, an
interactive kiosk, a laptop, a wall screen), and various working environments (e.g.,
stationatry, mobile).

Updating the UI becomes so hard, as previous specifications could not be applied
to the new context, and the time required to do that becomes a constraint.
Maintainers using this approach will have the support required to facilitate their
work when they need to change the Ul Actually, UsiXML language support
multi-context, multi-platform, multi-device and multi-modal software
development. Our research would increment the capacity of the language to
3DUL

1. Introduction

1.4.2 Software Designer

Software Designers are in charge on designing the system structure. With the lack
of methodologies for design 3DUI, Designers will be benefited with this research
as we will provide a Framework with models and guidelines that will support their
task of designing solutions in 3D.

1.4.3 Software Developer

Software Developers are sometimes called programmer and are concerned with
the implementation part in the software development process. It would help
developers to be mere productive but it won’t eliminate them from the software
development process. They would be able use their time better, to use their
creativity in other issues but not the 3DUI development. Developers would have
productivity gains, so as the enterprise in which they work.

1.4.4 End Users of three-Dimensional User Interfaces

The last, but not less important, beneficiary of this work is the user. Considering
the key role that the user played in the success or failure of software programs,
developers, designer and software maintainers have to think carefully on the user.
This aspect is covered by this research, as the development of Ul starts from
specifying the user task so as the domain in which the task is done. The user will
be benefited if the development, the design or the maintenance of Ul is done
following our methodology, as the results will be based on how the user task is
done actually. If our guidelines cover the enhancing of the world by adding hooks
and hints for supporting the navigation in the world through multiple and
alternate sensory modalities for disabled people. Such modalities should foster
feeling, sensing, and hearing the wotld through appropriate interaction devices.
For example, the tool should prepare the world for screen sonification to facilitate
navigation. This will benefit the disabled people so as the common users.

However, this work does not ensure the complete satisfaction of users, as the
functionality of the systems is not accomplished by the methodology. Users could
be happy with the presentation, i.e. the 3DUI, but not with the functionality,
phase two of the implementation step, that is straightforward of our work.

1. Introduction

1.5 Thesis

Thesis statement

This dissertation addresses the shortcomings previously outlined for achieving
transformation-driven development of 3D user interface. This dissertation
provides an:

(1) ontological framework based on an explicit and rigorous representation of
concepts relevant to 3DUI development.

(2) methodological framework based on the ontological framework previously
introduced. This methodological framework introduces a new paradigm for 3DUI
development called model-based approach for the development of 3DUIs
that is characterized by the following principles:

Transformation driven: a development method is composed of development stages.
A development step is a transition from one stage to another one. Development
steps trely on explicit and rigorous transformation catalogs.

Multiple-path: The context of development projects may involve variable
arrangements of development steps. A development path refers to a particular
arrangement of steps. Multi-path development refers to the capacity of a method
to accommodate to various development paths.

Validation

Two kinds of validation are provided to assess the validity of this thesis. Firstly, an
internal Validation which includes: a) theoretical validation that confronts the
methodological framework introduced by this thesis to the requirements identified
after a state of the art of existing transformation-driven development methods; b)
a practical validation is provided by illustrating how the methodological
framework can be instantiated on two case studies. Secondly, an external
validation, where the system developed would be evaluated either with end users,
testers.

1. Introduction

1.6 Reading Map

In addition to the introduction and the conclusion, this dissertation is organized in
four chapters.

Chapter 2 reports on some significant pieces of related work to the paradigm of
model-based development and 3D applications. We identify the different
approaches to the development of 3D User Interfaces. A set of observations and
shortcomings is raised in conclusion of a comparative analysis. From these
observations, we establish a list of requirements for addressing the observed
shortcomings. This list of requirements will help us to assess the appropriateness
of our solution.

Chapter 3 introduces a Taxonomy of 3D User Interfaces. With this taxonomy we
identify the different components used in virtual application, the context of use,
the nature of the task.

Chapter 4 presents a structuring of concepts identified in viewpoints, capturing
various levels of abstraction that can be maintained on a 3DUIL. After that, we
present the abstract syntax that has been used to represent our concepts, namely:
directed, identified, labeled, and typed graphs. We present two concrete syntaxes
(i.e., graphical and textual) used to represent our concepts. Finally, we introduce
the supporting software tool for this research

Chapter 5 illustrates the principles of model-based transformational development
for one case study. The first one concerns the development of an on-line polling
system. We conclude this chapter by an evaluation of the three case studies.

Chapter 6 concludes by discussing the validation and appropriateness of the
solution proposed in this dissertation. Our contributions are summarized and
future works are proposed.

2. State of the Art

Chapter 2 State of the Art

2.1 Description of 2D User Interface development

Two elements define the smallest common denominator of what a User Interface
(U]) is [LimbO4c], whether 2D or 3D: the presentation or look, and the dialog or feel.
In the context of 2D U, various approaches have been followed to develop UL

Diana methodology [Bart88] characterizes these approaches in: internal view, what

is relevant for the Ul developer; the external view, the Ul perceived by the end user;

and the conceptual view, what is relevant for the Ul in designer.

Starting with UI models to discuss
with the End User

2

Interpret/Render code External/End User Produce a Ul view of the

into UI Perspective

Generate Code

from the UL Transform the Ul

into abstract
terms

Transform code in

abstract terms

COﬂCCptS
Starting :> Internal/ D.evelop Conceptual./ Design
with Code er Perspective er Perspective
generation

Starting with
<:| Abstract
specification

Produce code from the
concepts

Figure 2-1 Development of 2D Uls

25

2. State of the Art

These three views define three possible points where the process of Ul
construction can be initiated, internal, external and conceptual, see Figure 2-1.

2.1.1 Exploratory Approach

In the exploratory approach, a developer firstly provides an external representation of
the Ul (e.g., with a graphical editor like those found in Integrated Development
Environments like Visual Basic, or Visual C++, or a mock-up produced by a
drawing tool such as Microsoft Visio) [Limb04c]|, the result is expected that will
be analyzed the end-user.

The mock-up is traditionally used, consists of either a hand-drawing or a mock-up
constructing of the UI, software tools for this purpose are: Corel Draw, Microsoft
PowerPoint, Visio.

An easy way to show a Ul is using Zsual Programming, which is typically based on
UI toolkits. Visual programming is the most popular way to construct a Ul
because is easy and ready to be discussed with end-users.

2.1.2 Programmatic Approach

Interface development practices have significantly evolved with programming
languages development. In the programmatic approach the internal representation is
obtained by directly coding the Ul in its target computer language, e.g., HTML
for a markup language or Basic, Pascal for imperative languages and Java as
object-oriented language [Limb04c].

Traditionally two levels are found in the literature for programming languages,
Low level programming that consists in providing instructions in machine or assembly
language, requires a high computing knowledge, advanced programming skills and
is time consuming; and High-level programming that develops a Ul faster than low
level programming [Limb04c].

With the improvement of high-level programming, Toolkits, which are UI program
libraries, contain common widgets used to build the interface. They also provide
support functions for manipulating widget like events and I/O handling. The
main advantage of toolkits is that they provide a great flexibility and an improved
control over the Ul elements while maintaining a relative ease of use [Limb0O4c].

26

2. State of the Art

Finally, Mark-up languages [Luyt04] are at the edge of programming approach and
specification-based approach; see more detail in next section. Mark-up languages
are declarative languages. They describe what a Ul is rather than what to do to
produce it and are generally complemented with scripting languages [Limb04c].

2.1.3 Specification-Based Approach

In software engineering, specification-based (or model-driven) approach relies in
the power of models to construct and reason about software systems. This
development approach starts with an abstract representation of a Ul (i.e., any Ul
model) [Limb04c]. In this approach models are the basic element.

A model is a simplified and intentional view of real-world things. Real world
concepts can be abstracted away in different ways. In other words, modeling is
not a deterministic process resulting from observation of the real world

[Limb04c].

The goal of specification-based or wmuodel-based approach, for user interface
development is to propose a set of abstractions, development processes and tools
enabling a engineering approach of wuser interface development. The
characteristics of an engineering approach are its systematic (development based
of rational principles), its reproducibility, its orientation towards quality criteria

[Limb04c].
The components required to adopt this approach are the following:

e Abstractions. [Limb0O4c] found three abstractions related to the Ul
development: Computing-independent abstractions that encompass task models and
domain models; UI focused abstractions that are gathered in two models: a
presentation model and a dialog model; finally, the Context of use abstractions
that are abstractions corresponding to the context model or a user model.

e Task Model. A task model is often defined as a description of an interactive
task to be performed by the user of an application through the application’s
user interface. They are also used to achieve a range of objectives [Boms98,
Boms99a]: to inform designers about potential usability problems, as in HTA
[Anne67]; to evaluate human performance, as in GOMS [Card83]; to support
design by providing a detailed task model describing task hierarchy, objects
used, and knowledge structures exploited while interacting, as in TKS
[John92] or CTT [Pate00].

27

2. State of the Art

e Domain Model. Domain modeling comes from software engineering
[Dsou99)]. It represents an essential ingredient to Ul engineering methods as it
describes its informational content. The domain model is usually developed
by software engineers e.g., Ewntity-Relationship-Attribute model (ERA), which
secks to represent real-world objects as entities equipped with attributes. A
second example is a class diagram that is an extension of ERA model in the
context of Object-Oriented (OO).

e User Interface Model. The real-world objects abstracted away in this case
concern all manifestations of a Ul in the real world i.e., Ul appearance (i.e.,
presentation model) and behavior (i.e., dialog model) [LimbO4c]. Three /fvels of
abstraction, and corresponding model, are recurrently mentioned in the
literature: abstract Ul model, concrete Ul model and final UI (also called
implementation or code level) [Limb04c]. A fina/ Ul is composed of two sub-
levels. The rendering level and the code level. This implementation is realized using
a programming language. This implementation could be zolkit dependent or
independent specification [Limb04c].

e Presentation model. A presentation model is a desctiption of the appearance
of a user interface [LimbO4c|. Most presentation models found in the
literature concern graphical, 2-D, widget-based Uls that is to say WIMP
interfaces (Windows, Icons, Menus and Pointing device). Type of elements in the
scope of the model. Layout mechanism exploited. They bring the advantage of a
precise interpretation as they are totally unambiguous while omitting any
reference to absolute coordinates i.e., the layout declaration stays logical.

e Dialog model. Dialog models enable to reason about the behavior of a UL
system. Backus-Naur Form (BNF) grammars are typically used to specify
command languages. State Transition Diagrams like statecharts provide a mean
for specifying the dynamic behavior of the interface. S7atecharts, similar to state
transition diagrams, support a graphical representation of dynamic aspects of
systems. Pe#ri Nets is a graphical formalism associated with a formal notation.
Petri nets are best suited to represent concurrency aspects in software
systems. Event-Response Langnages treat input stream as a set of events. Events
are addressed to event handlers. Fach handler responds to a specific type of
event when activated.

28

2. State of the Art

2.2 Current approaches in 3D user interfaces
development

Different categories of software exist to support the rendering of 3D Uls ranging
from the physical level to the logical level. At the lowest level are located APIs
such as OpenGL, Direct3D, Glide, and QuickDraw3D, which provide the
primitives for producing 3D objects and behaviors. They offer a set of powerful
primitives for creating, manipulating 3D objects, but these primitives are located
at a level that does not allow any straightforward use for rendering higher level
widgets. Several 3D desktop replacements for Microsoft Windows XP exist taking
the known concept of three-dimensional desktops to its own level.

We will review the low level of developing 3D UIS which is the programmatic
one in section 2.2.1; then we review the toolkit approach in section 2.2.2, followed
by the render engines which support many of the results generated by the
programming languages or the toolkits in section 2.2.3, ending with the
Specification based approach which involves methodological alternatives for
developing 3D Uls in section 2.2.4.

2.2.1 Programmatic approach

Some hints could be taken from the game industry that is leading the 3d industry
[Shne03]. Most games will be written in C++ although, some may use C to try to
get even more speed (at the cost of not having built in Object Oriented support)
[BekeO6a]. Therefore languages such as Java, C#, Basic, and Managed C++ are
not used for mainstream games because they tend to run slower. This may
possibly change in the future and factors like development time and the ability
manage complexity may become more important. However, at the moment, there
is not really a viable alternative to C++ for writing high speed games.

2.2.1.a OpenGL

On the other hand OpenGL [Open04], the premier environment for developing
portable, interactive 2D and 3D graphics applications, has become the industry's
most widely used and supported 2D and 3D graphics application programming
interface (API). Developers can leverage the power of OpenGL across all popular
desktop and workstation platforms, ensuring wide application deployment.

29

2. State of the Art

2.2.1.b Blitz

Blitz Research Ltd [Blit06a] is a software development company dedicated to
develop game creation tools and utilities. Three programming tools based on
visual basic programming is their offer:

e BlitzPlus for simpler 2D game and application programming.

e Blitz3D provides a simple yet powerful environment for game creation -
simple, because it is based around the popular and easy to use BASIC
programming language; and powerful, thanks to a highly optimized underlying
2D/3D engine [BlitO6b].

e BlitzMax, a cross platform programming language based on BASIC, but with
many weird and wonderful additions [BlitO6¢]. In this tool Linux and MacOS
are supported apart from Windows system. Even that keeps BASIC
programming; there is also the possibility to program directly in OpenGL.

B E

[X nain I TSk 13018

Figure 2-2 BlitzMax Software development editor

In Figure 2-2, we could see the Blitz editor which is similar in all their tools. In
this case it corresponds to BlitzMax. In Table 2-1 mjbWorld Supporting
typesTable 2-1 are summarized their main characteristics.

BlitzMax Characteristics
openGL Yes
Basic Yes

30

2. State of the Art

DirectX Yes
Modularity Yes
Reuse of Components Yes
MacOS Yes
Windows Yes

Linux Yes

Table 2-1 mjbWorld Supporting types

2.2.1.c Multi Content Natural Language

Multi Content Natural Language (MCNL), known as Alambik Script [Alam02a],
was developed to provide an indispensable resource for producers of digital
interactive content working on a wide variety of electronic media. MCNL
combines a complete set of text-based programming instructions with a wide
collection of text-based audiovisual commands (video, audio, 3D, 2D, etc.). These
two worlds, once distinct, are united synergistically under Alambik within a
simple, uniform programming environment that functions in real-time [Alam02b].

Consider its basic structure: every Alambik instruction starts with the name of an
object and ends with an action to be petformed on that object. The object is
always a noun, the action always a verb [AlamO2b]. For instance, to convert a
numerical value into text:

String = Text.convert (Number)
Or the traditionally used in programming languages
String = Str (Number)

Sometimes a third word (adjective, noun, or verb,) can be inserted between the
object and its action, and specifies a property for the object, keeping this

structure:

Variable = Object.Property.Action (Parameters)
picture.position.set (@ObjectID,0,0)

31

2. State of the Art

This basic structure aside, all Alambik instructions end in parentheses () in order
to provide space for the passing of parameters. Multiple parameters for a single
instruction must be separated by commas [Alam02b].

2.21.d VRML

The Virtual Reality Modeling Language (VRML) is neither virtual reality nor a
modeling language, [Care97]. On the one hand, virtual reality (VR) is assumed that
at some level refers to immersive environment, VRML neither requires nor
precludes immersion, is just that is not something mandatory, so this is way can
be consider the language as a 3D representation language. On the other hand a
modeling language should have a robust set of geometric modeling features but
VRML just provides a bare minimum of geometric modeling features.

Even that its name maybe does not correspond exactly with its meaning, the
purpose of the language have been achieve. Accordingly to [W3C95] is the
intention of its designers to develop VRML as the standard language for
interactive simulation within the World Wide Web.

So, as a W3C recommendation several efforts has been done around the language
such as plug-ins to the most used and commercial modeling engines such as:
Maya, Max 3D, CAD, among many others. Also some plug-ins has been
developed for internet browsers which let developers to have to create Web
content for the Internet but also for standalone applications.

VRML is not a programming library for application developers. Since VRML is
based on the Open Inventor [SiliO3] file format. VRML is an extended subset of
Open Inventor's file format and does not define an application programmer
interface (API), [Care97]. Even, that VRML includes scripting language, this is for
authors who need more power or integration.

We show an example of a button, Figure 2-3, in VRML. This button then can be
reused in a Menu, Figure 2-4. Both examples are rendered using the Cortona
player of parallel graphics, available at
http://www.parallelgraphics.com/products/cortona/.

32

2. State of the Art

This first section of the code corresponds to the button shape.
DEF Menu Transform {

children |
DEF Menul Transform {
children [
DEF switchMenu Switch { whichChoice 0
choice|
Shape {
appearance Appearance {
material Material {
ambientIntensity 0.15
shininess 0.20
diffuseColor 0.20 0.20 0.20
emissiveColor 0.2 0.2 0.2
specularColor 0.2 0.2 0.2
transparency 0.2

}#End Material

}

geometry Box {size 21 0.1}
}
Shape {
appearance Appearance {
material Material {
ambientIntensity 0.15
shininess 0.20
diffuseColor 0.5 0.5 0.5
emissiveColor 0.2 0.2 0.2
specularColor 0.2 0.2 0.2
transparency 0.2
}#End Material
i
geometry Box {size 21 0.1}
}#End Shape Square Menul
]#end choice
}#tend Switch
]#End Children Menul
} #Menul

We used a switch grouping node for the button, with the switch different shapes
can be defined and on run time select the one desired. In this case we can use this
mechanism to easily provide the user a feedback when the pointer is over the
button, i.e. change the color, similarly as buttons react on 2D UI This can be

33

2. State of the Art

done with a sensor on the shape and making a called to the function isOver,
which sends an event each time that the mouse pointer is over the shape and
when is not. So the method defined below shows how to do a script in VRML for
such definition.

DEF PassOn TouchSensor { }
DEF script Script {
eventln SFBool isOver
field SFBool enabled FALSE
eventOut SFBool onOff_changed
eventOut SFInt32 which_changed
url "javascript:
function initialize() {
// Initialize to off state.
onOff_changed = false;
}
function isOver(value) {
enabled = lenabled;
onOff_changed = enabled;
which_changed = enabled;
3

ROUTE PassOn.isOver TO script.isOver
ROUTE script.which_changed TO switchMenu.whichChoice

Routing the sensor, PassOn event isOver to the script of the shape method will
modify the variable which_changed, which has been defined as a output event, so
each time this variable is modified it will launch an event, that is connected to the
switchMenu, which is our button, so each time that which_changed change the
switch choice will change.

Finally The code corresponding to the text is divided in two parts, the first, shown
above for the word “Virtual” and the second for the word “3D GUI”, in VRML
as in any 3D toolkit, text is one of the most complicated to handle and to situate
in the virtual space. Apart from the string there is also a need to translate the text,
for the second string the translation values are -0.8 -0.35 0.055.

#text definition for the menu Agmented Reality
DEF Textl Transform {
children [
Shape {
appearance Appearance {

material Material {

34

2. State of the Art

ambientIntensity 0.15
shininess 0.20
diffuseColor 0.0 0.0 0.0
emissiveColor 0.0 0.0 0.0
specularColor 0.0 0.0 0.0
transparency 0
}#End Material

}

geometry Text {

length ||

maxExtent (

string ["Virtual"]

}

-

]

translation -0.7 0.1 0.055

scale 0.5 0.5 0.5

-

Figure 2-3 VRML Virtual GUI Button rendered in Cortona

35

2. State of the Art

Iigh | & Augmented| Augmented| Virtual Digital |31 Rendering
& Reality |Virtality | 3D GUI | 3D GUI | ef2D GLI

Pure | Auzmented| Avgmented| Virlual Digilal | 3D Renderivg 5 Gl
i Reality | Reahty |Virtuality | 3D GUI | 3D GLIT | of 20 GLI =

@ 1@ 1@

e Q) en Q -© — (=]

Figure 2-4 Menu using buttons in VRML

36

2. State of the Art

2.2.2 Markup Languages

Nowadays, XML-based languages are used in a variety of applications. The
description of virtual applications is not the exception. As a XML-based language
could represent anything, a wide quantity of solutions has been proposed to 3D
development, such as: X3D the VRML evolution. Even that there are more
XML-based languages such as: InTML to describe virtual reality interaction
techniques or VRIXML to define 3D UI, we prefer to describe them in section
2.2.4, as they more than a XML-based language they represent a methodology to
produce 3D UL

2.2.2.a X3D

X3D [Web304b] is an open standard for 3D content delivery. It is not a
programming API. Combines both geometry and runtime behavioral descriptions
into a single file that has a number of different file formats available for it,
including the Extensible Markup Language (XML). It is the next revision of the
VRMLI7 ISO specification, incorporating the latest advances in commercial
graphics hardware features as well as architectural improvements based on years
of feedback from the VRMLI7 development community.

As X3D is one of the recommendations standards there are many modeling tools,
such as 3DMax, Maya or a CAD, with VRML97 or X3D exporter available. Many
of these are still based on early versions of X3D or write invalid VRML97. To
rectify this problem, the Source Working Group is in the process of
writing/rewriting exporters for the most popular of the modeling packages

[Web304b).

Technologies and effort of the W3D consortium tends to use X3D and not
VRML anymore. However there is a lot of work to do. Browsers for X3D, such
as XJ3D (http://www.xj3d.org/), Dynamic 3D (http://www.3d-online.com/),
OpenVRML (http:/ /www.openvrml.org/) or Carina
(http://ariadne.iz.net/~entigo/carina/), all of them are under development. The

most advanced is X]J3D, but there is still to much work to do. Similarly as open

source efforts, private companies have developed plug-ins for the internet explore
browser and Mozilla. Another disadvantage of this language is the lack of input
devices support, just the mouse or keyboard are used actually.

37

2. State of the Art

The tendency, also, is to handle with more input/output devices. As, the most
used languages in the web nowadays is VRML, X3D as its predecessor is expected
to take its place. The future could be developing using this language to define 3D
applications. X3D is broking down into profiles, including interchange,
interactive, immersive and full. The interactive profile provides basic interaction
with a 3D environment though various sensor nodes for user navigation and
interaction, enhanced timing, and additional lighting [Grac05].

2.2.2.b XVRML

The Extended Virtual Reality Modeling Language (xVRML) Project is focused on
evolving VRML into a more modern approach based on using an XMIL-based
notation and an XML Schema -based definition. An example code is shown
below related to a red box. We compare to the right how the VRML code would
be for the same example.

<?xml version="1.0" encoding="UTF-8"?>
<World xmins="http://www.xvrml.net/schemas/core"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"
xsi:schemalocation="http://www.xvrml.net/schemas/core

#VRML V2.0 utf8

http://www.xvrml.net/schemas/xVRML.xsd"> WorldInfo {
<WorldInfo>
<title>A Glowing Red Box</title>
<info>A simple demo file</info> title "A Glowing Red Box"
</WorldInfo>
<children> }
<Shape> Shape {
<appearance>
<Mate|'ia|> appearance Appearance {
<emissiveColor red="1.0"/> material Material {
</Material>
</appearance> emissiveColor 1.0 0 0
<geometry> }
<Box/>
</geometry> }
</Shape>
</children>
</World> size222

info "A simple demo file"

geometry Box {

XVRML files can be open using the Carina viewer
(http://ariadne.iz.net/~entigo/carina/). Carina is an open source viewer for the
xVRML format. It includes the Carina application to load files, a library to be
used by other applications to load files, and command-line tools convert between
formats, it’s available for Mac, Windows and Linux. The result of the above red
cube Example rendered in Carina in shown in Figure 2-5.

38

2. State of the Art

¥ A Glowing Red Box - Carina

File Yiew Help

Location |file:/C:/Documents and Settingz/Juan/Deskiop./exampleB o el

T

| zom || sin || P |

Figure 2-5 Carina Viewer rendering a XVRML file

2.2.2.c VRIXML

Virtual Reality Interaction XML (VRIXML) [Cupp04] is part of the VR-Demo
(Virtual Reality: Conceptual descriptions and Models for the Realization of virtual
Environments). VRIXML is a User Interface Description Language (UIDL) used
to describe the User Interface of virtual application. The framework can be used
not just to create the appearance but also to connect the 3D widgets to the
functionality of the system.

VRIXML uses the look and functionality 2D widgets, so as the interaction was
thought in 2D because the wser takes advantage of the skills assumed of
manipulating 2D Ul and, even that the language support the use of different
input devices, such as speech, 3D trackers, spacemouse, they rely in haptic
interaction in 2D.

The set of 2D widgets proposed by them has 3 containers, menu, toolbar and a
dialog. The dialog can render all the controls that VRIXML provides and the
menu and toolbar are just composed of string and buttons respectively, both with
the capability of triggering actions, as much they could open a submenu or a sub
dialog. Figure 2-5 shows a dialog to control object appearance.

39

2. State of the Art

The new syntax proposed by them was conceived, contrary as others, to describe
not just the static part of the 3D UI but also the behavior. The main reason of
creating a new language is because the others were conceived in a context of work
which is not similar, secondly because of the lack of strict parsing (UIML
vocabulary can not be validated against its UIML file), [Cupp04].

From [Cupp04] the code description corresponding to the dialog box of Figure
2-0, is described below. Notice that each widget has its own tag and also is
composed of several sub tags representing the attributes of the widgets.

Each dialog has some sub-tags to | <V!Dialog>
o . <Texture >
define its title, a texture for the title <Name> tex_Properties .png </ Name >
bar <Color R="1.0" G="1.0" B="1.0"/>
)) </ Texture >
Followed by one or more dialog <Title >Object Properties </ Title >
. . . <Dialogltem >
items. This contains a group of <UIGroup >
items and has a relative position to <Groupltem >
he dial <UlStatic >
the dialog. <Text >Diffuse Color
</ Text >
. </ UlStatic >
Grouping elements that are related <Position >
is good not just for visual purposes /P<X?1-0 <IX><Y>0.0 </Y>
. </ Position >
but also for code generation and </ Groupltem >
event handling. <Groupltem >
<UlStatic >
<Text >R</ Text >
When an event is trigger the items </ UlStatic >
. <Position >
that are in a group are analyzed to <X>0.0 </X><Y>1.85 </Y>
; </ Position >
see if they ha\.fe the any response to </ Groupltem >
the event trigger in any of the <Groupltem >
. : <UlSlider paramID ="10">
members of tbe group. This option <value min ="0"
even that is good for code max="255"/>
. . . <Tickstyle
generation purposes in run time orientation =" horizontal "
could produce a slow performance, position =" both "
. . frequency ="16"/>
as there is no need to iterate among < U|S|iderq> Y
all the items always each time that <P05|U0n(>) , ,
. . <X>1.0 </X><Y>1.5 </Y>
one of them is triggered. </ Position >
</ Groupltem >
<Event >14 </ Event >
</ UIGroup >
<Position >
<X>0.0 </X><Y>0.0 </Y>

40

2. State of the Art

</ Position >
</ Dialogltem >
<Position >
<X>0.0 </X><Y>0.0 </Y><Z>-20.0 </Z>
</ Position >
<Metrics Horizontal =" middle "
Vertical =" middle "/>

</ UlDialog >

Figure 2-6 VRIXML object property dialog. Source [Cupp04]

VRIXML imitate the 2D UL, as they try to take advance of this well know by
computers users representation. They claim that some others UIDL are specific
purpose and are difficult to adapt for their goals. Similarly, they fell in the same
problem, as they are not proposing a general UIDL as the attributes and the way
they handle the events. We classify this solution as a 3D rendering of 2D UL

2.22.d InTML

Interaction Techniques Markup Language (InTML) of [Figu02] is a XMI.-based
language for defining VR content, especially for Interactions Techniques. He
consider a VR application a dataflow of interconnected filters, which are the
building blocks that describe the standard connections for any of the following
entities: input or output devices, interaction techniques, object behavior,
animations, geometric objects, and other media objects [Figu02]. InTML is a

41

2. State of the Art

black box for details about gathering information from devices or about object
behavior, as is “described” with code of programming languages. Also, geometry
or other media types related to VR objects are produced in any of the available
tools for that purpose, such as Maya, 3D Max, or Blender.

“InTml is then an integration language for all elements involved in V'R applications. It enables

the designer to concentrate on the architecture of the application, without dealing with too many
details”. [Figu04]

As an example, while dataflow—based languages such as VRML focuses on
description of geometry and animation, InTml focuses on the integration of
application—specific behavior, object behavior and events from input devices,
which is a tedious task in VRML, less complicated actually in X3D, see section
2.2.2b. Geometry is something that is described at a lower level, in a loadable
format, and InTml refers to it as a reference to an object. The same can be
applied to sound or haptic content.

42

2. State of the Art

2.2.3 Toolkit Programming

Toolkit programming is one of the most used mechanisms used to develop 2D
UL with interface builders. We will refer to a toolkit as the set of basic building
elements for graphical User Interfaces that can be implemented whether in a
library, such as Open Inventor, or an application framework such as Alice.

2.2.3.a Open Inventor

Open Inventor is built on top of OpenGL [Open04]. Open Inventor [Sili03] is an
object-oriented 3D toolkit offering a comprehensive solution to interactive
graphics programming problems. It presents a programming model based on a
3D scene database that dramatically simplifies graphics programming. It includes
a rich set of objects such as cubes, polygons, text, materials, cameras, lights,
trackballs, handle boxes, 3D viewers, and editors that speed up your programming
time and extend your 3D programming capabilities. This toolkit has been used to
develop the Virtual Reality Modeling Language (VRML).

2.2.3.b Alambik Software Suite

Alambik technology is simple and coherent, fast, secure, open, modular, and
scaled to evolve. It gives you the opportunity to distribute your audiovisual
productions to multiple platforms and over different kinds of networks, without
the need to rewrite or port your project [Alam02b].

43

2. State of the Art

My Computer
") My Documerts
%) My Network Plac: screen.resolution.set (352,288)

Fcamera=camera.create (400,150,-200,0,-30,25)
@vievport=viewport.creats ()
viewport.camera.set (Gviewport,fcamera)
@scene=scene.create ()

scene.viewport.set (@scene,@vievport)
mesh.color.stack (COLOR RED)
Fmeshi=mesh.cube.create (100)
mesh.position.set (gmeshl,-150,0,0)
scene.mesh.assign (@s +Gmeshi1)

mesh.color.stack (COLOR EN)
gmeshz=mesh.oylinder. (100,0,100,4)
mesh.position.set (gmeshz,0,0,0)
scene.mesh.assign (gscene, fmeshz)
mesh.color.stack (COLOR_BLUE)
gmesh3=mesh.sphere.create (75,8,8)
mesh.position.set (gmesh2,150,0,0)

scene.mesh.assign (@scene, Emesh3)

scene.display (@scens)
viewport.display (gviewport)

keyboard.wait (KEY ESCAPE)

seript.stop ()

s i<

- RegisterPlugin : C:\Program Files\Alambikilambik Viewer'systemistdplugshTvT vt tvo

- RegisterPlugin: C:\Program FileshAlambikialambik ViewsrisysterstdplugshT viater tvo

- RegisterPlugin : C\Program FilestAlambikilambik ViewsrisystemstdplugshTvwindaws. tvo
- RegisterPlugin : C:\Program FilestAlambikilambik YiewsrisystematdplugshTviml tva

Figure 2-7 Alambik Script Editor

In Figure 2-7 the toolkit ABC from the Alambik Script Editors’ family. Work to
produce and publishes on the Internet: 2D, 3D, Vectorial, audio, and keyframed
animation. Its core is the MNCL syntax [Alam02a], enriched with instructions to
publish on Internet. To view the results on the web it is necessary a plug-in for
browsers or a viewer for desktop applications.

2.2.3.c Crazy Eddie's GUI System

Crazy Eddie's GUI (CEGUI) System is a free library providing windowing and
widgets for graphics APIs / engines where such functionality is not natively
available, or severely lacking. The library is object orientated, written in C++, and
targeted at games developers who should be spending their time creating great
games, not building GUI sub-systems [Craz00].

The GUI toolkit is composed by: button, checkbox, combobox, editBox,
Framewindow, listHeader, ListHeaderSegment, multiColumList,
MultiLineEditbox, ProgressBar, PushButton, radioButton, ScrollablePane,
Scrollbar, ScrolledContainer, Slider, Staticlmage, StaticText, ListBox, Thumb,

44

2. State of the Art

TitleBar, tooltip and window [Craz05]. An example of a game UI generated with
Crazy Eddie’s toolkit is shown in Figure 2-8. Notice that the Ul is presented in
2D instead of 3D.

Demo 6 - Control Panel

|| Column Control
ID Code: Width Caption

ID Code
Delete Column

Row Control
Col ID: Item Text:

Row [dx:
Delete Row

Itemn Modification
|| Row Idx: Col ID: Item Text

Current Row Count:
Current Column Count
Current Selected Count:

G S 7 QR Skl SEN Sruhy
Worst FPS: 33,206 5304 ms f = N
st FPS: 284.198 3 ms \ Quit This Demal,
Triangle Count: 582

Figure 2-8 Game user interface created with Crazy Eddies’ toolkit

2.2.3.d mjbWorld

mjbWorld [Bake06a] is an open source 3D toolkit which aim is to build a open
and free program to build 3D worlds. Alongside this, it would also be good to
work with others to agree free and open standards which would allow similar
programs to interchange data. [BakeO6a] I would like the program to be able to:
Interactively and graphically build 3D models, Display them, Store them and read
them in standard formats (VRML, X3D, Java3D), Simulate Newtonian physics so
that objects move realistically and collide and interact propetly.

45

2. State of the Art

File Edit tools VYiew Timeline Help

OB ¢/d B % 0" +|X WErelin

[wee view s o g B4 [properties view i of o AW ¢
mm@w select a node in the tree window and S
o uparrow its properties will be displayed here

- sidearrow

o outarrow

L backg_3
- g4

Loaded /home/martin/workspacef box.wrl

Figure 2-9 mjbworld Environment

With this toolkit three of the most used languages for web 3D programming, i.c.
VRML, X3D and Java 3D are used. It allows to model dynamically the content of
the worlds and then to export/import them to the standard languages.
Summarized in the Table 2-2:

file type |extension import |export
file type | import_exp
‘X?)D x3d - or Yes Yes
xml
VRML2 |wrl Yes Yes
‘\X/avefront ‘.obj ‘Yes ‘Yes
}J;Zlaici Java ‘No Yes
‘C Source ‘.c ‘No ‘Yes

Table 2-2 mjbWorld characteristics

2.2.3.e Autodesk Family®

Autodesk® family of software tools for 3D development includes several toolkits
for 3d development. This family of software is powerful for designing:
Manufacturing solutions, Infrastructure (Civil Engineering & Construction,
Electric Utilities, Emergency Response, Mapping & GIS, Public Works, and

46

2. State of the Art

Transportation) and Building [Auto06a]. The advantage of using this software is
that with the plug-ins they provide, it is possible to import / export files from
most commercial web 3D languages, such as Java3D, X3D, VRML.

In Autodesk family of software, among the variety of tools, Autodesk inventor®
helps designers to pass 2D designs to 3D models, this software is very powerful
and provides the possibility to create dynamic animations. The software is more
dedicated to expand AutoCAD® users transitioning to 3D [Auto06a]. The two
more oriented tools to design Web 3D are: Maya ® and 3D Studio Max ®, both
are considered the world's most powerfully integrated 3D modeling, animation,

effects and rendering solutions [Auto0G6b].

R v|l-u}|m;§u'+v\+;ua|t;_ [t & Mﬁ?*‘ % OO EE || e

General | Curves | Sutaces | Polygons | Subdivs | Defomation | Arimation Dynsmics | Fiendering | PaintEtfects | Cloth | Fluids | Fur | Hair | Custom |

H’&ﬁ‘b‘l‘@m“\ﬁééﬂr eV BEHER b TR

List Selecked Focus Attributes Help

View Shading Lighting Show Panels

blin2sG binri2 |

|
e [Binn2 — 8 e |
7I}J Fresets

Material Sample n

i Color Chooser

N T

|~ Common Mal

Irrr
Transg Z—-

Ambie | Wheel

Incande!
Bump
Trans|
Translucsnc
Notes: blinn2
| Sliders :I

s | e e
‘ 10 20 30 0 50 50 70 80 90 100 10
: 1 I i} | | | | dccept | Resst | Cancel [T

;1.uu [1o0 [] i Tmu—pmu—!pvmmr—il

b

18 £

Select

Figure 2-10 Maya 6.5 environment

Maya, see Figure 2-10, originally created by Alias, recently merged to Autodesk,
Figure 2-11, typically has been used widely to create movies, while Max to design
games. Both have a lot of open source work around them, in plug-ins that make
these software compatibles with many formats, Table 2-3 summarize their
capabilities for open source formats.

47

2. State of the Art

Max Maya

file type Extension | Import | Export |Import | Export
x3d .x3d or .xml Yes Yes Yes Yes
VRML 2 wil Yes Yes Yes Yes
Wavefront .obj Yes Yes
Java3d Source java Yes Yes No No
C Source .c Yes Yes No No
Alambik .snc Yes Yes No No
Blitz3D .b3d No Yes No No
Anark Yes Yes No No

Table 2-3 Max & Maya Supporting types

In [BakeOGb] there is a complete list of the plug-ins that Max provides, not just
for open source software but also for commercial ones, such as Alambik, Anark,
etc. The disadvantage of using this software is its cost which could be a restriction
for some users. Secondly, it seems that in the near future Maya will no longer
exist, as Autodesk could merge it in Max 3D.

48

2. State of the Art

Figure 2-11 Max 3D environment

2.2.3.f Anark Studio

Anark Studio is the application authoring tool for creating interactive 3D content.
The product is oriented to design, training and marketing when interactive 3D is
needed.

In [AnarO6a] the key features of this software are summarized, among others, the
key aspects that are interested are: it run 3D presentations on over 90% of
existing computers, author drag-and-drop custom widgets such as menus,
buttons, and more, Text Object provides crisp, professional and full-featured text
that integrates seamlessly with 3D scenes, even text display text data from external
sources like XML.

The 3DUI behavior it is possible to add to the animations. The system has a set
of actions and events that allows to program interactivity without scripting, as is
necessary in VRML or X3D, see in Figue 2-12 a predefined behavior is selected to
be added to the button. Scripting with any script language is possible in Anark
studio, theoretically, as any script language can be configured to be used.
However, just Lua (www.lua.org) scripting is used.

49

2. State of the Art

J Untitled - Anark Studio M|[=1 %]
File Edt View Seript Timelne Help
DEH s BE o Hav (RR(|EUE e (& Bmm | EE

x

® Scere
o]]
& Leave Master

Storage: x

Storage | Basio Objects | Library ‘ m

L1 Sample sssets
Po] ameface Samples
[Building a Basic Button

W [Behaviors 2
’ P £ Animation =
¥ [Interactive
T = [for Components
[#58 B utton Control.bys
b Keyboard Button Control.bus
L Keyboard Control.bws F

Action | Inspector | &
Text Text 1
¥ Basic Properiss

Ted Type e [3]

Render Style

A

rspective | 3]

Text Stiing BUTTON

x
Timeline | S

(® Soenz @lide?) : () Button Gompanent (Master)
omoo|2le/a&ll® . s oz % . 4 . s . e . 7

Figue 2-12 Anark Studio adding behavior to a Button

A dynamic UI - by its very nature - cannot be fully and explicitly designed by the
artist, programming skills should be added [AnarO6b].

The XML support is not just on Text components but also it is possible to load
arbitrary XML data from an external file and then reference that data using the
Anark scripting engine. The content could be integrated into Web-based systems;
also, it provides the possibility to dynamically generate complex Anark Web sites.

Finally, reusability is possible from existing tools, with the import options for 3D
models, images, sounds, video and more, so as any existing data in Anark

presentations. Integrate Anark content into your existing authoring tools, such as
3D Studio Max.

Anark
file type |Extension Import Export
3ds Max 3ds Yes Yes
Maya .mb No Yes
Lightwave LW No Yes
Cinema 4D .C4D No Yes

Table 2-4 Anark Supporting types

50

2. State of the Art

2.2.3.g Maplet

Maplet is a 'Constructive Solid Geometry' based modeler, this means, that instead
of modeling with polygons, vertices and so on, all modeling is performed with
solid 'primitives' [Blit06d]. Using operations such as 'carve' and 'fill', solid
primitives are combined together to create models.

Maplet features a WYSIWYG (what you see is what you get) editor that
guarantees the production of geometrically 'correct' models which is very
important for precise collision detection and optimal rendering [BlitO6d]. InFigure
2-13, Maplet environment is shown. All editing is performed in full 3D, using a
'reference plane' which can easily be moved up or down.

file type |extension [import |export
.B3D No Yes
X No Yes

Table 2-5 Maplet Supporting types

CEIT T =l x|

File Edit Options Texture Tools

Figure 2-13 Maplet Environment

51

2. State of the Art

2.2.3.h Alice

Alice [Carn06] is an open source toolkit for defining 3D content based on
predefined sets of objects. Is a funny way to learn about object oriented
programming so as to handle with VR. Alice is based in Java 3D, and has and
exported to generate content in Java 3D, which can be seeing in a browser with
the java 3D virtual machine installed.

In Figure 2-14 the Alice environment, which is divided in four main sections. The
scene tree in the top left, in which all the objects attached to the virtual world.
Behind, the left bottom, three tabs to display the properties, methods and
functions related to the object selected in the world tree. In the top center the
preview of the world. On the top right the event handler editor and on the
bottom right the method and function editor. Both editors work with a drag and
drop of properties and a predefined set of events (such as onclick, when world
starts) and of control sentences (such as loops, conditionals).

All the predefined set of behaviors that provide Alice let the developers design
the content and animates it through easy drag and drop operations. However
when a specific behavior is desired and was not considered in Alice it is possible
to define it in their editor. For instance, the method editor (right bottom) in
Figure 2-14 shows the code corresponding to select the gender, whether
Masculine M or Feminine F. The method shown here is for the click on the Male
option, as the object man is selected in the world tree. Using a state variable,
called world.Genderv, we ask if is not already picked, as the event will be trigger
each time that the mouse click on the man character. Then, using a predefined
method called all together that is useful for animations that you want to occur at
the same time, the five next lines corresponds to assign the selected value to the
state variable world.Genderv, the following second and third lines corresponds to
rise the hand for the man and down the hand for the woman, finishing with the
modification of the text objects IF and M, changing their color to white and yellow
respectively.

52

2. State of the Art

&) Alice (2.0 04/05/2005) - F:\UCL Mesis\My Working, papers\Examples\Polling system\Alicelnterfaz.a?w [Modified]

File Edit Tools Help

Events W

_ \ihen the world starts, do world.my first method

BE onoman)

=
]
[leftieg (e i wwhen < is clicked on randomGuy2 — ,
[y rightLey ‘ ! © do “randomGuy2.UpHand —
%uppeanﬂy ;
@ skatersirl
___%nge Category
=

Fore luestiors »> e wmen is clicked on skaterGirl — |,

katerGirl.UpHand —

@ randomGuy2.UpHand

y2.UpHand o

create new method
=l not world.Gendery = | —

* randomGuy? move Do together

“ randomGuy2 | turn : world.Genderv — set value to true — more.. —
roll skaterGirl.upperBodw.rightArm — roll right — 0.5 revolutions -~ more...
resize randomGuy2.upperBody.rightArm — roll right — 0.5 revolutions — more... —
F - set color to © more..
say

. M set color to © more..
think

hiay sound . . y = =
Doinorder - Dotogether “HEISe ‘Loop “While “For allinorder -For alltogether

mave to i

Figure 2-14 Alice Environment

Alice is an easy to use toolkit very useful for academic purposes, its main goal is
to teach how to program object oriented applications. Also, covering VR
spectrum apparently it looks that it catch the attention of major industries, as the
creators of Sim City, the famous real life simulation game, will donate their
characters, which look so realistic to enhance the presentation of Alice.
Apparently there will be more news about Alice in the near future.

53

2. State of the Art

2.2.4 Rendering engines

Rendering engines are the solution that many of the projects described before in
this section provide to render stand-alone 3D applications.

2.2.4.a Alambik® Viewer

Alambik technology is simple and coherent, fast, secure, open, modular, and
scaled to evolve. It gives you the opportunity to distribute your audiovisual
productions to multiple platforms and over different kinds of networks, without
the need to rewtrite or port yout project [Alam02b]. Alambik® Viewer developed
from the porting of Alambik® Script 4.0. Alambik viewer could work under the
Windows operating systems and is compatible with Netscape 4+, Internet
Explorer 4+, Opera 6 and Mozilla [Alam03]. The Alambik viewer is shown in
Figure 2-15.

& Alambik Yiewer

Figure 2-15 Alambik Viewer

2.2.4.b Object-Oriented Graphics Rendering Engine (OGRE)

OGRE (Object-Oriented Graphics Rendering Engine) is a scene-oriented, 3D
engine written in C++. The class library abstracts all the details of using the
underlying system libraries like Direct3D and OpenGL and provides an interface
based on world objects and other intuitive classes [Ogre05].

OGRE just provides a world-class graphics solution; for other features like sound,
networking, Al, collision, physics etc, other libraries are required. Many

54

2. State of the Art

experienced game developers have expressed their approval of this approach,
because there are no inbuilt constraints, [Ogre05].

The Ogre source is made available under the GNU Lesser General Public License
(LGPL). In Figure 2-16, an example of the rendering made with OGRE, notice
that the components regarding the User Interface remains in 2D.

Figure 2-16 OGRE rendering

55

2. State of the Art

2.2.5 3D Desktop Systems

Several 3D desktop replacements for Microsoft Windows XP exist such as

Microsoft Task Gallery (http://research.microsoft.com/adapt/TaskGallery/), the
Infinite3D Cube (http://www.infinite-3d.com/), SphereXP (http://www.ha

mar.sk/sphere/) which is taking the known concept of three-dimensional
desktops to its own level. Similarly, SUN has initiated the Looking Glass Project
(http:// wwws.sun.com/software/looking_glass/index.html) as a 3D desktop
environment for Linux workstations. These environments are very powerful for
their manipulation of windows in 3D, but they are not intended to render 2D Uls
with 3D effects.

2.2.5.a Clara
Clara (http://www.spatialknowledge.com/projects/clara/) is a 3D web browser

that lets walk, fly, or jump through a virtual world where all the objects are usable,
interactive web-page. In Clara it is possible to read the pages as traditionally
interacting in 2D, i.e. scrolling, clicking, or hearing is possible. The screenshot of
Figure 2-17 shows the presentation of Clara rendering multiple pages at once.
Clara is implemented as a Windows program in versions for 3D boards running
OpenGL or DirectX. Clara realy offers not just a fancy new way of interacting
when browsing web sites but also is based on the spatial knowledge, the intuitive
knowledge of humans about their three-dimensional environment [Wiki06], in
others worlds, the picture about the organization of our surrounding. Clara is a
work still under construction at the time this thesis is written.

56

2. State of the Art

|- T T alni=l]
e st L |

Figure 2-17 Clara Web Browser

2.2.5.b SphereXP
SphereXP (http://www.hamar.sk/sphere/) which is taking the known concept of

three-dimensional desktops to its own level. It offers a new way to organize
objects on the desktop such as icons and applications. SphereXP, like other
similar environments, are usually limited to presenting existing interactive
applications and their Uls in a flat 2D way, even if they are working in a 3D world
(see Figure 2-18)

The Sphere is in theory a 3D workspace represented by a sphere. The user is
exactly in the middle of it. All objects are situated around them. They can easily
turn around and manipulate everything. Objects can be moved around the sphere
according to some rules. It is possible to bring objects closer to the view port or
send them back. The theory can be applied to almost any known program,
starting with the desktop interface. Notice that they assume this potential of the
sphere. However the truth is that they do not have control on all Windows
applications even for the desktop. More than this, another problem that they will
tind always is that as new windows applications emerge there will always be a
necessity to adapt then to use them in the sphere.

57

2. State of the Art

Figure 2-18 SphereXP three dimensional desktop

2.2.5.c 3DNA

The 3DNA Desktop also intends to improve the way we work with Windows and
the Web. This effort offer different world views called, add-ons that the user can
interchange. 3DNA provide an easier ways to organize files, folders, and
applications-direct access, in different objects such as the wall or drawers. Also
provides unique capabilities that are not possible in a 2D Windows interface such
as the ability to speed-surf dozens of websites at a time. The favorites section has
a screenshot of the web site, which we can zoom in/out, this offers the user more
means to remember a booked page.

The User experience is enhanced with unlimited customization possibilities,
integrated 3D games, and an ever growing collection of great-looking Add-on
Wortlds. Since the 3DNA Desktop does not replace Windows, the Start Menu, or
the Task Bar, users can easily use the new 3D interface immediately. The
movement and navigation within a 3DNA Desktop is identical to a 3D video
game and is also fully customizable by the user (short cuts can be easily specified
to a specific place in the wotld).

58

2. State of the Art

Drag and drop
content from
Windows

Decorate your
waorld with your
own pictures m

1 files, play
and games

Change new themes

or craate your own

Launch applications,

Speed-surf
dozens of sites

Figure 2-19 3DNA Desktop, source http://www.3dna.net/products/desktop.htm

3DNA just intend to replace the desktop as shown in Figure 2-19, not to change
the way windows UI looks. In screenshot of Figure 2-20 we show the 2D dialog
shown when clicking on the 3D game control. So there is no possibility to interact
directly with the objects in the world.

Figure 2-20 3DNA Desktop, soutce http://www.3dna.net/products/desktop.htm

59

2. State of the Art

2.2.5.d Looking Glass
Similarly to the described efforts, SUN has initiated the Looking Glass Project

(http://wwws.sun.com/software/looking glass/index.html) as a 3D desktop
environment for Linux workstations. It is an open source development project
that supports running unmodified existing applications in a 3D space, as well as
APIs for 3D window manager and application development. At the moment,
existing application integration is supported for Solaris x86 and Linux platforms.
The library for 3D application development is available for Linux, Solaris and
Windows.

Figure 2-21 Looking glass Desktop

In the screenshot of Figure 2-21, rotate the windows to shows information on the
back of screens is one of the options provided by the tool making the user
experience more intuitive. Similarly the screenshot shows two different desktops
rendered in the same screen, depicted with the windows and the task bars.

60

2. State of the Art

2.2.6 Model-Based 3D User Interface Approaches

In software engineering, specification-based (or model-driven) approach relies in
the power of models to construct and reason about software systems. This
approach is based on models. To generate them we need to identify the main
properties of real life objects. To do so some kind of judgment is required. In
[Limb04c] we identify the goal of model-based approach:

“The goal of specification-based, or model-based approach, for user interface development is to
propose a set of abstractions, development processes and tools enabling a engineering approach of
user interface development. The characteristics of an engineering approach are its systematic
(development based of rational principles), its reproducibility, its orientation towards quality
criteria’

Analogous to section 2.1.3, our approach considers various levels of abstraction
and types of concerns for the development of 3D User interfaces. These
abstractions levels are: Task & Concepts, Abstract UI, Concrete Ul, Final UI, and
the Context of use. More detail on the contents and descriptions will be provided
in next chapter.

A great effort has been conducted in 2D Model-based user Interface development
[Limb04c]. However such kind of effort has not been done for 3D Ul Today,
the development life cycle of 3D user interfaces (Uls) mostly remains an art more
than a principled-based approach. Several methods [Bowm04, Cele01, FencO1,
Geig01, NealO1] have been introduced to decompose this life cycle into steps and
sub-steps, but these methods rarely provide the design knowledge that should be
typically used for achieving each step. In addition, the development life cycle is
more focusing directly on the programming issues than on the design and analysis
phases. This is sometimes reinforced by the fact that available tools for 3D Uls
are toolkits, interface builders, rendering engines, etc.

In this section we present some work related to model-based development for 3D
Uls. We rely on the models described at the beginning of this chapter to analyze
the methodologies, which are: Task, Domain, Abstract, Concrete, and Final User
Interface models. A unified iconographic representation is used to present
development processes (Figure 2-22). Each symbol represents a type of models.
Note that the difference between “interactor-type independent” and “toolkit
independent” representation is stressed by two different icons associated with
abstract UL. A dialog model is also represented as a sepatrated entity when the

61

2. State of the Art

dialog model is substantially important in the development process. Solid arrows
represent the derivation of one model from one or several other ones. Dashed
arrows represent a significant knowledge adjunction in the design process (e.g., a
designer manually determines a layout; a template is chosen to drive the

@ = Domain Model Dialog = Dialog Model
ki

.
R

derivation).

if

Task = Task Model Context = Context Model

= Abstract Ul Model User = User Model

(interactor-type independent)

ur

Abstract | = Abstract Ul Model Final UT = Final Ul
ur (toolkit independent)

. — = Derivation

Concrete |=Concrete Ul Model > _ o
ur = Knowledge Injection

Figure 2-22 Symbols used for the state of the art on CADUI tools

N +
g
3
8
~

2.2.6.a Web & Information System Engineering Lab

The virtual reality Web & Information System Engineering (VR-Wise) [PellO5b]
project looks for conceptual modeling of Virtual environments. Starting from web
design methods and design methods for Virtual Reality. WISE Lab has three main
project aimed at designing and specifying Virtual (Web) Environments in a
systematic way and that can be supported by design methodologies and tools.

They have developed models for virtual objects in what they called OntoWeb tool
[PellO4a], part of the OntoBasis project. They called their models ontologies and
with them they look for Foundations, Construction, Services and Applications.
Their approach is base don the idea that as a Virtual Environment is composed of
objects it may be possible to extract properties of these objects and their
relationships in the Virtual Environment from available ontologies covering the
domain under consideration.

62

2. State of the Art

From the ontologies they build virtual correspondences mapping the ontologies
concepts one-to-one to virtual properties, which is a good first step to design
Virtual worlds. Considering our methodological development path we place this
approach at the Content description for UI, in which objects/content are
described in models that correspond to a specific platform. They generate a direct
mapping from the concepts described in the domain model to virtual objects
VRML or X3D.

Domarn

Fhaal U

Figure 2-23 OntoBasis development steps

2.2.6.b CoGenlVE

The code generation for interactive virtual environments (CoGenlIVE) [Cupp05]
method is a way to developed, as its name state, interactive virtual environment
following a model based approach. This work is linked with the VRIXML
language [Cupp04], already reviewed in this chapter, section 2.2.2.c. The VR-Wise
approach and CoGenlVE are linked in the IWT SBO VR-DeMo project

As stated before, VRIXML support several input/output devices. Apatt from the
devices the framework contains 2D /3D hybrid UI widgets, and example is shown
in Figure 2-6.

Apart from this concrete level of description, CoGenlVE considers task and
dialog models [Cupp05]. The dialog is visualized as a state chart, so the designer
can specify the different states of the user interaction, see Figure 2-24, so as the
certain task and events are predefined.

63

2. State of the Art

(TR R

DesignMode

Figure 2-24 CoGenlVE StateChart

An interesting feature of this tool is that considers the reverse engineering process
and is actually implemented. Any change that is done in the FUI by hand is
tracked the way back to its abstract representation and vice versa, any change
made in the models respects the changes made manually. In Figure 2-25 the
methodology is described. The arrow depict that the process of abstraction is
possible when the models

Tonsi Dining

Figure 2-25 CoGenlIVE development process

64

2. State of the Art

As stated in [Cupp05] task, dialog and objects are specified and then Ul code is
generated with its functionality. The concrete level, depicts the Ul models.

2.2.6.c Interaction Techniques Markup Language

Previously reviewed in this chapter as XMI-based language for developing 3D
Ul, the Interaction Techniques Markup Language (InTML) is more than just a
way of representing the UL

Related to the methodology proposed by [Figu0O4] that is aimed to design VR
applications d in VR applications. It enables the designer to concentrate on the
architecture of the application, without dealing with too many details. The
ontology proposed is shown Figure 2-26.

COEpRTEWHE
Constant 14 Info ~ _belm=To Type Object kxsCua, rplzcas ObjectHaldar
- BasMary wfasTe Application
has m_. - .
changes EaiMiny
- ‘hasMany sntt hasMany : Scene changes
ComposedFilter - Application - ObjectHolder Graph ratargetedTo 2
Hoda) .
cortamsDas - Commection by ComposedFilter
isA hasMany | BasMamy adds,
Dece sy y ——
. =
Port dastinztion o
A .
) Dhysical Filter OFert IPam
Object isA Filter hasMany Device
collacts | | qemscates B)
. OPort A
isd s Fills Type smfarcas
Behavior Devica Info - Pott
‘et

Figure 2-26 Entities and Relationships of InNTML. Source [Figu04]

In the center of the left square is the filter entity, the abstract building block of
InTML that can be any device, interaction technique, behavior, or content in a
VR application. Its interface is defined in terms of input and output ports (IPort
and OPort), 28 events are handled or defined for them.

The behavior description correspond to the dialog specification, objects and
devices models are part of a concrete model, because it is independent of
implementation, at first view, assuming that there is no direct relation between
those components and the implementation. The mechanism of InTML start with
the specification of the goal of the projects, with the definition of the main tasks,
everything is documented in InTML documents, which are refined though the

65

2. State of the Art

process [Figu04]. However, this task in done manually without following nor a
standard, neither with a set of concepts. For this reason task is something that
injects knowledge but not derivate, curve arrow in Figure 2-27.

Biakog ﬂwlé}ﬂm

Fier

Fhef L

Figure 2-27 InTML. Development Process

Similarly as tasks, the code generation for the FUI is straight forward of InTML
methodology.

2.2.6.d Contigra

COmponent-orieNted Three-dimensional Interactive GRaphical Applications
(CONTIGRA) project CONTIGRA [Dach02] is a XML application on top of
X3D that give users components for interaction techniques and control widgets.
The project has models for behavior, Behavior3D [Dach03]. Below an extract of
Behavior 3D, that is a XMI.-based, in fact correlated to X3D format.

<TouchSensor DEF="LCD_Sensor"/>
<TouchSensor DEF="Keyboard_Sensor"/>
<StateMachine stateCount="3" transitions="1 2 LCD_Sensor.touchTime OpenLaptop.startTime,
2 1 LCD_Sensor.touchTime CloseLaptop.startTime,
2 3 Keyboard_Sensor.touchTime OpenKeyboard.startTime,
3 2 Keyboard_Sensor.touchTime CloseKeyboard.startTime"/>

<AnimateRotation key="0 1" t0o="1 000, 1 0 0 -1.7" cyclelnterval="2" DEF="Openlaptop "/>
<AnimateRotation key="0 1" to="100-1.7,1 00 0" cycleInterval="2" DEF="CloseLaptop"/>
<Sequential DEF="OpenKeyboard">
<AnimateTranslation key="0 1" to="0 0 0, 0 0.05 0" cyclelnterval="1" />
<AnimateRotation key="0 1"t0="1 000, 1 0 0 -1.5" cyclelnterval="1" />
</Sequential>

<Sequential DEF="CloseKeyboard">

<AnimateRotation key="0 1" to="1 00 -1.5, 1 0 0 0" cyclelnterval="1" />
<AnimateTranslation key="0 1" to="0 0.05 0, 0 0 0" cyclelnterval="1" />

66

2. State of the Art

</Sequential>

Two X3D touch sensors trigger the animation of a laptop. A state machine node
in Behavior3D defines the possible transitions between states one to three.
Sensor connections are established also for the animation, defined for opening
and closing the keyboard.

The core concepts in Behavior3D are animations, sequences of actions, and state
machines. On top of them, other behaviors can be defined. Behavior3D targets
3D applications running over the web, in standard PCs, due the intrinsic
characteristics of X3D and its interaction model, [Figu04].

Tasks XML Schemas CONTIGRA Documents Cther Resources
Sreng CONTIGRA =CoApplications
Integrafian Application 30 Seene Descripion
= —"[E Edtors ppay
Des-:.lr',m'h_.'? =CoSeensComponents . Gomponents
Configuralien CONTIGRA 1 =
Assmbly - SeeneComponent Compenent Interface Document ,E,. lean %
Linkang -
Y ... XiDProfiss
é:GNTg;R'aL <CoSceneGraph= | | [Audo i ’FI_J
ceneGrap - —————— Sournd
Impinmentalion Shel : ?‘Wh g E =
IR Graph i , Behanior 4._4 |_—L']f JAR,
XE_ID. Integration and | ! poreh i _# Scriphs
Audio3D, Linking ~ —f—+—1 __ Ry _._.@ Video,
Behavior3D | i ey || : Images

Figure 2-28 Contigra Architecture. Source Contigra Web site

Part of the Contigra project, see Figure 2-28, Audio3D [Hoff03] is a solution of
offered to describe 3D applications with audio that allows the description of
complex acoustic environments but is still suitable for efficient real time sound
rendering with 3D sound APIs. Similar to X3D a hierarchical, acyclic scene graph
is used in Audio3D to organize nodes in groups and subgroups.

Contigra concepts are mapped directly to a FUI, as they are desctibed using X3D
profiles. So Contigra development process is composed of dialog (Behavior 3D),
Concrete Ul (Models involved for defining the Ul) and Final User Interface is
generated automatically.

67

2. State of the Art

Censreie)
T Diriog

rier

Fhaf

Figure 2-29 Contigra Development Process

2.2.7 Comparison on Developments

The present section gives a synthetic overview of: i) Model-based surveyed in this

chapter and ii) for the software tools. For this purpose, two families of properties

are segregated: properties regarding conceptual content of methodologies, and

properties regarding the model transformations underlying these methodologies.

2.2.7.a Comparison on Model-based Developments

Table 2-6 sum up this comparative analysis of model-based approaches reviewed.

The properties analyzed in the comparison are coherent to those used in
[Limb04c], which are:

e Models manipulated by the methodology.

e Inter-mode linking. Three object were chosen to depict the different

relationships:

(0]

0}
0}

(A, ..., B) indicates A, ..., B are grouped models that are done at
the same level.

A+©B indicates A derivates B and B reengineered A

A—B indicates A derivates B

A= B indicates that model A concepts could be manually linked
to model concepts B and B can be manually reengineered to A.
A=—B indicates that model A concepts could be manually linked
to model concepts B. This means that the rules and the models
exist but not a tool to support the automatic transformation.

e Target Languages designate the languages of the Ul to produce. the CUI
model to FUI (code). But the theory and the rules required so as the

68

2. State of the Art

corresponding code exists.When Manually

e Availability of models (Avl. Mod.) refers to the possibility for an external tool

to process the manipulated models. Possible values:

(0]

0]

X: models are stored in an internal format not made explicit e.g.,
models are tightly coupled with the tools.

: means that an external format for models exists e.g. models are
available under a machine understandable format. A typical form
is an XML language.

e Extensibility of models definition (Ext.Mod.): refers to the possibility of
extending definitions of models with new elements.

0]

Orig.: means that models were intended to be extensible, but only
by the originator of the methodology. This guarantees some
interoperability of tools around a language.

Design: means that models are extensible and the designer (e.g.,
the tool user) is responsible for this extension.

X : means that no mechanism supports model extension e.g., the
system is bundled with a particular set of model definitions.

2.2.7.b Comparison on Toolkits

Table 2-7 sum up a comparative analysis of Toolkits reviewed. The properties

analyzed in the comparison are:

e Models manipulated by the toolkit, if any.
e Inter-mode linking. Three object were chosen to depict the different

relationships:

o

(0]

(0]

(0]

(0]

(A, ..., B) indicates A, ..., B are grouped models that are done at
the same level.

A®©B indicates A derivates B and B reengineered A

A—B indicates A derivates B

A= B indicates that model A concepts could be manually linked
to model concepts B and B can be manually reengineered to A.
A=—B indicates that model A concepts could be manually linked
to model concepts B.

e Target Languages designate the languages of the Ul to produce.
e Availability of toolkits (Avl. Mod.) Refers to the possibility for an external
tool to process the manipulated the software. Possible values:

0}
0}

X: not available.
: open source or available at certain level.

69

2. State of the Art

Models Inter Model Transformation FUI target languages Avl Ext.
t= task, Do = Domain o Bidirectional derivation Mod. Mod
Di = dialog — Derivation link
AUI=abstract presentation =— Manual Derivation
CUI=concrete user interface | = “*Manual Bidirectional der.
U = user, C = context. FUI = Final User Interface
VR-Wise CUI CUI — FUI VRML, X3D \ Orig.
CoGenlVE T, Di, CUI ('T,Di, CUI) < FUI C++ \ Orig.
InTML Di, CUL T =— (Di, CUI), N Orig,
(Di, CUI) ®— FUI
Contigra CUIL, Di (CUI, Di) — FUI X3D, Behavior3D, Audio3D \ Orig.
Our T, Do, C, AUL CUI T © Do, T © AUL AUI © CUL | Java, XHTML, Flash, HTML, N Orig,
methodology CUI & AUIL, T < CUL (T, | Voice XML, Java 3D, X3D, VRML.

Do,AULCUI © C, CUIR— FUI

Table 2-6 Model-based methodologies comparison

70

2. State of the Art

Models Inter Model Transformation Platforms FUI target languages Avl
C = concrete Mod.
A = Abstract
BlitzMax c C— FUI Mac, Windows, Linux openGL, Basic, DirectX X
Cari C C — FUI dows. i N
arna Mac, Windows, Linux <VRML
Alambik C C — FUI Windows MNCL X
CI'Q.ZY Eddie CUI CUI — FUI Windows C++, OGRE \/
mjb\X/orld C C— FUI Windows X3D, VRML, Java 3D, ¢, Wave Front \/
l\h'ya CA C— FUIL, A— FUI Mac, Windows, Linux X3D, VRML, Wave Front X
Max 3D CA C— FUI, A— FUI Mac, Windows, Linux X3D, VRML, Wave Front, C, Alambik, Blitz3D, Anark X
Anark C, A, Di C, Di)— FUI :

: EA, Di§—> FUI Windows Lua script, anark, Maya, Max 3D, Cinema 4D, Light Wave *
Maplet C C— FUI Windows B3d \/
Alice C, A, Di (C, Di)— FUI Mac. Windows N

(A, Di)—> FUI Java 3D, HTML
VR-Wise CUI CUI — FUI VRML, X3D X
CoGenlVE T, Di, CUIL (T,Di1, CUI) « FUI C++ X
Contigra CUI, Di (CUI, Di) — FUI X3D, Behavior3D, Audio3D X
Our T,Do, C, AUL,CUL | T Do, T ¢ AUL AUI < CUI, N
methodology CUI & AUI, T < CUL (T, Java 3D, X3D, VRML.

Do,AULCUD © C

Table 2-7 Toolkits comparison

71

2. State of the Art

2.3 Conclusion

We review in this state of the art, briefly the development of 2D UI, passing
directly in deep to the 3D UI development approaches. Four 3D UI development
approaches were considered in this state of the art:

A programming approach allows a straightforward implementation of a final interface.
In terms of quality criteria, these approaches vary depending on the degree of
portability, the resource consumption (expressed in time units, monetary units,
lines of code, etc), and the ease of use (which depends on provided tool support,
intuitiveness of the concepts, legibility of the code, etc). The languages reviewed
include XML-based, which are extremely linked with a methodology and
represent concepts. However, this phase of development alone does not assure
the quality of the result. Programming (and maintaining) a 3D UI without any
method can be a chaotic activity. It gives no guarantee for regularity. There are no
evaluation criteria to consider. “rush to code” without any structure favors a “trial
and error” method. The result of such a work will highly depend on contingency
factors such as the developet's experience or the development context, [Limb04c].
Finally, the communication channel between developers and the Final users does
not exit. So, the programming approach should be taken as it is. Programming an
interface is not engineering it [Limb04c].

A toolkit approach, similarly, allows a straightforward implementation of a final
interface. In this case using predefined set of objects that help developers in their
programming task. The toolkits reviewed here in some cases, Contigra,
CoGenlVE, correspond not just to a toolkit to help developers in their
programming task but also considers the methodological process proposed in the
projects. In some cases a toolkit can be part of the engineering process, this
depend on the context.

Rendering engines allow 3D programming languages to be visualized. In some of the
reviewed tools there is a need for a specific render engine as they do not use a
standard programming language. These render engines in some case has their own
API to render sophisticated graphics. Render engines linked to a programming
languages or a toolkit can produce fancy 3DUIL A render engine is just a required
complement but is not part of the engineering process.

72

2. State of the Art

A specification-based approach provides us with means to specify relevant properties
of a 3D UI at various levels of abstraction. This approach has many benefits
notably of being reproducible and allowing high level reasoning.

To conclude on these approaches, similarly as [LimbO4c], we operate a three step
analysis:

First, a set of selected observations is provided. An observation is a synthetic and
descriptive assessment (as opposed to a normative assessment) that is made
regarding properties of surveyed transformational methodologies.

Second, shortcomings are outlined from observations. A shortcoming is a normative
assessment that is made regarding a property of surveyed transformational
methodologies. A shortcoming is normative in the sense that it positions the state
of the art with respect to ideal properties identified in the software engineering
literature.

Third, a set of requirements for a solution to overcome the above mentioned
shortcomings is identified. The internal validity of the solution proposed in this
dissertation will be assessed with respect to this set of requirements.

2.3.1 Observations

Observation 1: Methodological diversity. Surveyed tools can be categorized
into different categories depending on their main goal. While some are interested
in Interaction techniques, InNTML, other just in the 3D UI description and its
behavior, CoGenlVE, Contigra, others in world content, VR-Wise. A method
that covers almost the whole path, starting with goal-oriented task models,
followed by exploration and navigation descriptions, finishing with interaction in
response to system initiative. Each stage of the model is associated with generic
design properties. Even that this method is tool independent, it is sometimes
difficult to map the recommendations to physical actions in the tool.

Observation 2: Inter-method conceptual similarities. The Concrete Ul (VR-

Wise and Contigra) and the behavior (Contigra, CoGenlVE) are to of the most
common models shared by the applications.

73

2. State of the Art

Observation 3: Inter-method conceptual dissimilarities. Of course as there
are similarities, of course there dissimilatities between methods. Fach method
follows its own perspective and it is difficult to have a single one. Users-tasks are
not considered. There is a common intention in including this model, for instance
[CuppO05]. The rest considers interaction techniques, INTML, other just in the 3D
UI description and its behavior, CoGenlVE, Contigra, others in world content,
VR-Wise.

Observation 4: Conceptual openness. Method seems to have a particular
concern for extension possibilities of their underlying ontology.

Observation 5: A focus on not just on the graphical modality. All
environments deal at the first place with graphical modality but also include
models of inputs devices; CoGenlVE emphasizes the haptic modality but is not
limited to it; InTML interaction techniques also consider the input/output
channels. In 3D applications this is very useful.

Observation 6: Standards do not deal with multimodal interaction. VRML
and its predecessor X3D, so as Java 3D, are widely used in Web applications but
Input modalities different from the mouse and keyboard are still straightforward.
Solutions that deals with haptic interaction are build in C, CoGenIVE.

Observation 7: Transformations are not first class citizens. Transformations
are in most methods hidden to the designer (i.e., built-in), untraceable and, not
modifiable. In some environments, though, rules can be parameterized by dialog
wizards (CoGenlVE). In no method a designer is provided with a stand-alone
language allowing her to define custom transformation rules.

Observation 8: Single entry point, single exit point. Methods define their
development process with one single entry point (i.e., the development process
starts from an imposed artifact) and one single exit point (i.e., the artifact resulting
from the development cycle is fixed by the method).

Observation 9: No complete Life-cycle development methodologies. The
development life cycle of 3D user interfaces (Uls) mostly remains an art more
than a principled-based approach. The methods reviewed rarely provide the
design knowledge that should be typically used for achieving each step. InTML
describe requirements in informal document with out any standard format, user
task is still not considered. CoGenIVE has considered task models but without

74

2. State of the Art

tool support. The VR-Wise and Contigra projects do not consider task models. In
addition, the development life cycle is more focusing directly on the programming
issues than on the design and analysis phases, examples of this are still CoGenlVE
and Contigra. This is sometimes reinforced by the fact that available tools for 3D
Uls are toolkits, interface builders, rendering engines, etc, all the toolkits reviewed
have that purpose.

Observation 10: No user task formalization. The toolkits followed a content-
centric approach, instead of a user-centered approach; hence, involvement of
users in the requirements analysis and evaluation are not formally part of the
methodology.

Observation 11: Lack of reusability from one language to other. The
reviewed methods are usually restricted to only one programming or markup
language and do not allow easy porting of code from one platform to another.
For instance VRIWML is a Markup language for CoGenlVE, VR-Wise has their
own language, Contigra extends X3D for their Behavior3D language.

2.3.2 Shortcomings

From these observations, we can conclude by presenting several shortcomings.
All of them accordingly to the methodological aspect, these shortcomings concern
the way existing approaches concretize transformational development with the
definition of methodological stages, steps (i.e., transitions between stages), and
transformation catalogs to perform these steps [Limb0O4c|. These shortcomings
lead us to conclude that transformational development of user interfaces can be
improved along several dimensions. The list of shortcoming is as follows:

Shortcoming 1: Lack of a methodology for developing 3D Ul -
Methodologies to cover the life—cycle development process is still needed. The
novel scenario of using 3D Ul is putting the effort more on the content rather
than on models or methods. (Observation 1, 2, 3, 10).

Shortcoming 2: Lack of a User task models — The user task is not formally
represented in any model as a starting point for the 3D UI development. When

considered, the user tasks are described in documents, InTML

Shortcoming 3: Lack of Abstract models — There is no abstract level of
specification, apart from the idea proposed in InNTML of an abstract object that is

75

2. State of the Art

independent of modality, called filter. Any definition is clearly linked with its final
representation. So, any task can not be easily such as user task is not formally
represented in any model as a starting point for the 3D UI development. When
considered, the user tasks are described in documents, InTML

Shortcoming 4: Lack of transformational flexibility — Almost all methods are
correlated to their final presentation, as their input is mapped one to one to the
output.

Shortcoming 5: Lack of 3D UI toolkits — The toolkits are intended to help
developers in Virtual reality content and the User Interface is not considered is
this efforts. In some cases it is possible to write a script, as in Maya, Alambik.
Then the file is exported in a format that the script handles, such as VRML,
X3D. However there are no 3D Ul models that can be reused to control the Ul,
such as buttons, menus, etc. There is always a need to start from scratch.

Shortcoming 6: Lack of Standardization — Apart from VRML, X3D and Java
3D, there area several languages that that intend to represent VR applications but
they are following their own description and can not be interoperable.

Shortcoming 7: Lack of genuine 3D UI — When they exist, models of 3D Ul
are similarly to their counter part in 2D. In the worse case, java applets are used
to interact with virtual world, this distupting the Virtual navigation. When
controls are rendered in the virtual space, even that they are rendered in the
virtual space they mimic their counter part in 2D UI, there is no fancy
representation taking advantage of the 3D space.

2.3.3 Ontological Requirements

We provide a list of requirement we seek to address with this dissertation. Some
of these requirements are motivated by the above observations and shortcomings,
some are desirable properties found in the literature that apply on any
methodology. We want to introduce a 3D Ul specification language which:

Requirement 1: Expressivity — means that a conceptual frameworkshould
provide enough details to address problems that motivated the elicitation of its
constituent concepts. In our context models should, at least, provide enough
details to allow an implementation of the system it describes. This essential
requirement is not fulfilled by many formal methods, for instance those focusing

76

2. State of the Art

on verifying state properties of the system that is being built (Motivation: general
principle in software engineering, Obs. 6).

Requirement 2: Machine processable — states that the proposed ontology
should be legible by a machine. To allow the transformational approach.

Requirement 3: Human readable — means that the provided ontology should
be proposed in a format that enables its legibility by a human agent. Such efforts
are done in InTML, CoGenlIVE, VR-WISE and Contigra. Although the main
concern is on machine processable.

Requirement 4: Standards — states that the expression means used to represent
our ontology should rely on well accepted standards in the software engineering
community, maybe using X3D as target language.

2.3.4 Methodological Requirements

Requirement 5: Methodological explicitness — states that the constituent steps
of our methodology should be defined in a way that facilitates the comprehension
of its internal logic and its application.

Requirement 6: Methodological flexibility — refers to the ability to initiate the
development from any development stage (i.e., multiple entry points) and to
terminate it at any development stage (i.e., multiple exit points).

Requirement 7: Executability — states that development steps should be
expressed in such a level of accuracy that it is possible to execute them by an
automaton.

Requirement 8: Methodological separation of concern. — refers to a
partitioning of methodological steps according to the process types they realize

(general principle in software engineering).

Requirement 9: Methodological extendibility — refers to the ability left to the
designer to extend the development steps proposed in a methodology.

Requirement 10: Methodological Homogeneity — refers to the property of
methodological steps of being defined using a common syntax. All transformation

77

2. State of the Art

steps should be described in a single formalism that facilitates their understanding
and processing,.

Requirement 11: Methodological reuse — refers to the possibility in a

methodology to capitalize on the knowledge defined by designers to perform
development steps and re-using this knowledge for other developments.

78

3. Three Dimensional User Interfaces Taxonomy

Chapter 3 Three Dimensional
User Interfaces Taxonomy

3.1 Introduction

Computational models are used in a wide range of application in exact sciences, so
as in social and economical sciences [Robe83]. Two tasks are required to construct
models. Firstly, the conceptual aspect that involves: problem definition, system
conceptualization and representation of the model. Second, the technical aspect
that involves: the behavior of the model, the evaluation and the policy of analysis
and use of the model. To generate 3DUI models we have to evaluate and analyze
3DUI in the literature to extract the relevant characteristics of present
developments.

For this purpose, taxonomy the applications will be necessary. This will be useful
to identify the context of use of such applications. Also, will help us to understand
the task in a more detailed level and how certain techniques address the task
[BowmO0]. With taxonomies and implemented tools, hybrid models could be
created or tested. New possibilities could be explored.

Several taxonomies have been proposed for 3D UI based on different
characteristics, such as: interaction techniques [Poup98], metaphors [Bowm00],
and 3D widgets [Dach02]. In our research we are proposing a new taxonomy that
extends Milgram and Kishino continuum of mixed reality, [Milg94]. To introduce
and define a wider spectrum of such interfaces while offering different basic or
advanced mechanisms and techniques for virtualizing a user interface, we have
extended this continuum by adding a more continuous range of Uls in the virtual
part since it can be a 2D UL, a 3D rendering of a 2D UI, a genuine 3D UI
manipulating 3D objects, and so forth. Moreover, a second dimension has been

79

3. Three Dimensional User Interfaces Taxonomy

added to represent the degree of immersion that is allowed at each step: low and
high immersion.

3.2 Interaction Techniques Taxonomy

Four are the main 3D interaction tasks that could be found in most complex 3D
applications. In [BowmO1a] they are described as:

1. Navigation the most common VE task and is subdivided in two tasks,
which are:
a. Travel refers to the physical movement from place to place.
b. Wayfinding the cognitive or decision-making component of
navigation, and it asks the questions, “where am I?”, “where do 1
2. Selection is the picking of an object or a set of objects for some purpose.
3. Manipulation refers to the specification of object properties, such as: position
and Orientation.
4. System Control is the task of changing the system state or the mode of
interaction. Examples in 2D that do this are menus or command-line

interfaces.
a. Implicit
b. Explicit

3.2.1 Metaphors Taxonomy

In a task model tree view [Pate97] we show the metaphors taxonomy for the
manipulation task, inspired in [Poup98] metaphor taxonomy. The user has several
means to achieve its manipulation task.

_),I‘ 0 sl
Tl e Metaphor nhiric Me r

ﬁ—ﬂ—ﬁ—ﬂ—ﬁ virtual Handetaphar

Warld in Miniature Scaled-wod Grab YooDoo Dalls

R e R

Clasical Virtual Hand Go-go Ray-Casting Aperture FlashLight Image Plane

Figure 3-1 Taxonomy of virtual metaphors.

80

3. Three Dimensional User Interfaces Taxonomy

A metaphor in a VE is not an “atomic” but rather a “composed” interaction
technique, which makes it harder to model. Leafs of the task model, presented in
Figure 3-1, correspond to an Interaction technique itself.

3.2.2 3D Widgets taxonomy

Another important Taxonomy to consider is Contigra [Dach02], whose objectives
not only include the standardization of a repertoire of 3D widgets, but also
metaphors and interaction techniques, everything structured in the form a
hierarchy. Among those widgets, the repertoire includes some of the elements that
are used in almost every 2D and 3D application, such as the button and the toggle
button, but also other widgets that are only specific to 3D environments, such as
the ring menu. The disadvantage is that many of the widgets of this hierarchy
have not been developed or are not publicly available yet, which limits its
adoption as a standard in the field.

3.2.3 Mixed reality continuum Taxonomy

Milgram and Kishino continuum of mixed reality [Milg94] defines a continuum of
real-to-virtual environments between Mixed Reality (MR). Their objective was the
concept of having both “virtual space” on the one hand and “reality” on the other
available within the same visual display environment.

The concept of a “virtuality continuum” relates to the mixture of classes of
objects presented in any particular display situation, as illustrated in Figure 3-2,
where real environments, are shown at one end of the continuum, and virtual
environments, at the opposite extremum.

Mixed Reality (MR)

e -
Real Angmented Augmented Virtual
Environment Reality (AR} Virtuality (AW Environment

Virtuality Continuum (V' C)

Figure 3-2 Simplified representation of a "virtuality continuum"

Milgram and Kishino differentiate their continuum based on the devices that
render the projection of the virtual world. The diversification of devices produce
the different sensation of immersion, six displays were described: (1) monitor
based (non-immersive) video displays, (2) the same video displays but using a

81

3. Three Dimensional User Interfaces Taxonomy

head mounted display (HMD) rather than monitors, (3) HMD equipped with see
through capability, (4) The same as 3 but using a video display of the real world,
(5) completely graphic display environments, completely immersive, partially
immersive or otherwise, to which video reality is added, and finally, (6) completely
graphic but partially immersive environments.

Their taxonomy helps to distinguish among the various technological
requirements necessary for realizing and researching MR displays, with no
restrictions on whether the environment is supposedly immersive (HMD based)
or not. To do so, they propose three questions that should be solved, See Figure
3-3.

How much do we know about the world being displayed?. The answer is what
they called Extent of World Knowledge. On the left extreme no information is
known about the wotld to be displayed, on the other extreme, complete
information is known. In the middle of the two poles there are three scenarios,
the system will identify where are the objects but not what are they, second the
system knows what are the objects but no where they are, and the last one, the
system knows both where the objects are and what are they.

A
. honitor Large ,
Degree of Based (A0 Soreen HMD's _
immersion] i
Wonoscodic puliscopic L pancramic — Surogate Fealime
Imaging Imagng Imaging Trawel Imagng
Extent of Presence Metaphor (EPM)
Convenfonal e X High
NOSCORIC] Coiiour E0SCORC Definition
Degree of M eeorc) Video video Victon 3D HDTV
-
presentation Smpee visible Shaing, Ray Real-tme,
Wireframes Surace Texture, Tracing, Hi-ficlelity,
Imaging Transparency — Radosity 2D Anirration
Reproduction Fidelity (RF)
Where
Degree of B Wnere /What +What _
=
knowledge] World world
Unmodelled L—— world Partially Modelled ——— Completely
elled
Extent of World Knowletge (EWK)

Mixed Reality (MR)

_‘Real Augmen ted Augmented Virtual
Environment Reality (AR} Virludity (AYY Environment

Virtuality Continuum (¥ C)

Figure 3-3 Extended representation of a "virtuality continuum"

82

3. Three Dimensional User Interfaces Taxonomy

How realistically are we able to display the world? the Reproduction Fidelity. This
dimension deals with realism of the projection on the display, in terms of image
quality and in terms of immersion, or presence, within the display. This
differentiation is based on the device that is used to render the images.

What is the extent of the illusion that the observer is present within that world?
They called this the Presence Metaphor. This element refers to the degree of
immersion, which range from non-immersive (exocentric environment) to the
high-level of immersion (egocentric environments).

In the above description of the continuum, summarized in Figure 3-3, the x axis
denote the different level of mixed reality and the y axis denote all the elements
the application should accomplished. For instance, if we consider a virtual
environment, the there values for it are: 1) the maximum for degree of knowledge
(full information of the model to be rendered), the highest quality for the
presentation (i.e. Real-time hi fidelity, 3D animation, etc.), and finally (3) the
highest possible degree of immersion (real time imaging).

3.3 A Taxonomy for 3D User Interfaces: Extension of
the virtual continuum

Milgram and Kishino continuum of mixed reality [Milg94] just point to MR
applications but actually the diversification of virtual worlds has more varieties
than just MR. Our goal is to explore how we can expand, refine these
specification to reach a wider spectrum of 3D user interfaces (Uls) rather than
just MR applications. This offers a wide set of options for new developers to
identify the type of application that they want to develop.

To introduce and define a wider spectrum of such interfaces while offering
different basic or advanced mechanisms and techniques for virtualizing a user
interface, we have extended the mixed reality continuum by adding a more
continuous range of Uls in the virtual part (Figure 3-4) since it can be a 2D UI, a
3D rendering of a 2D UI (whether genuine as in our work or simulated), a
genuine 3D Ul manipulating 3D objects, and so forth. Moreover, we keep the
idea of having dimensions to represent the degree of immersion. We propose just
two levels: Desktop immersion (exocentric worlds) when the user is only looking
at the screen (desktop virtual UI) or high when the user is really immersed in the

83

3. Three Dimensional User Interfaces Taxonomy

system CAVE, HMD in a physical space (egocentric worlds) , similarly to
[Poup98] for their interaction techniques taxonomy.

From the left to the right of Figure 3-4, we have respectively; a detailed
description of each level of the taxonomy is presented bellow.

4 Degree
of
immersion

High | 6@@
| —
Low 1 GG\\,

L L | L L L
P'ure Augm'ented Augménted Virt'ual Dibital 3D ren;jering 2D'GUI

reality reality virtuality 3D GUI 3D GUI of 2D GUI
N)

~
Virtuality / digitality

Figure 3-4 An extended continuum of user interfaces

3.3.1 Pure Reality

All the kind of displays listed above clearly share the common feature of
juxtaposing “real” entities together with “virtual” ones. To differentiate between
the two terms they proposed the following description, the “real” object is one
that has an actual objective existence, an image that looks real, even could be
generated by a computer (non-direct viewing of the object) and is presented in a
display or is shown through a HMD, also, a real object has luminosity in its
location. On the contrary, a “virtual” object exist in essence or effect but not
formally or actually, it can not be sampled directly and thus it can only be
synthesized, this means that an object even that could look real it is not, to clarify
this the luminosity of objects do not exist, so the presentation is similar to
holograms and mirror luminosity images. More clearly, a “virtual” image of an
object is one which appears transparent, that is, does not occlude other objects
located behind it.

84

3. Three Dimensional User Interfaces Taxonomy

Pure reality refers to real-world objects of hardware with which we interact, for
instance, the stereo system in Figure 3-4. In pure reality objects we identify the
source of motivation for the development of software interfaces, the innovation
of applications, the born of new metaphors. As in 3D we have less restrictions of
space as in traditional 2D desktop applications it is possible to create sophisticated
applications that normally are inspired in a pure-reality objects. Several examples
have been developed in this sense; see in Figure 3-5 the rotational menu presented

in [Wang05].

Figure 3-5 3D Carousels in daily life and computer interfaces

3.3.2 Augmented Reality

[Milg94] define augmented reality (AR) as “any case in which an otherwise real
environment is augmented by means of virtual”. AR interfaces allow users to
effectively interact with augmented virtual objects as well as share them with each
other in a simple and efficient manner, just as we do it with everyday physical
objects. AR is quite appropriate for describing the essence of computer graphic
enhancement of video images of real scenes.

In AR applications there are some kinds of Ubiquitous Computing, which change
the way in which users interact with computers by providing (virtually) ubiquitous
access to services and applications through a large number of cooperating devices.
Also, the use of HMD applications are good examples of augmented reality when
the see through capability is enabled. Figure 3-6 shows an example of an
augmented non-immersive application. The real world reminds but through a
HMD certain information appears in this case referent to the description of
journals that are in a bookcase.

85

3. Three Dimensional User Interfaces Taxonomy

& Today's New Journals:
AL Presence
. ACM Multimedia Systems
‘EP IEEE Software
AL

gy, Tk

Figure 3-6 Rekimoto’s NaviCam system and augmented Interaction 1995

On the immersive-degree of immersion case, the situation changes in the felling
of the immersion but the user still interact with physical objects, in this category,
we could classify the graspable interfaces, term introduced by Fitzmaurice 1995,
[Fitz95]. This kind of applications refers to the projection of user interfaces that
use of physical artifacts to control, organize and manipulate digital information.
[Reki99] work (Figure 3-7), is an example of augmented reality with a high degree
of immersion. Images are projected on a table and there is a tracking on the
markers so the interaction of the world is tangible, physical interfaces +
augmented reality interaction with computing devices.

Figure 3-7 Rekimoto’s Augmented Surfaces

3.3.3 Augmented Virtuality

A virtual word is one that is generated primarily by computer; those represent the
augmented virtuality (AV) unlike virtual reality that replaces the physical world,
AV enhances the physical reality by integrating virtual objects into the physical

86

3. Three Dimensional User Interfaces Taxonomy

world which become in a sense an equal part of our natural environment. The low
degree scenario of augmented virtuality is a virtual representation of a user
interface that interacts with a physical device. We could use the interface displayed
on a screen, on a wall, etc. and using an input device the user is capable to directly
operate on the device through the interface as a remote control.

An example of augmented virtuality with high degree of immersion is the work of
[Kiyo00] (Figure 3-8). The user is surrounded by a virtual representation that is
projected through the HMD devices, but they also could see and interact with the
real-world, as the see through capability is enabled.

Figure 3-8 Kiyokawa et al. 2000

3.3.4 Virtual 3D GUI

A graphical user interface (GUI) is a program interface that takes advantage of the
computer's graphics capabilities to make the program easier to use, generally are
related to control programs on the computer. This is one of the extensions that
we propose to the original continuum. We think that with the development of
computer graphics, virtual desktop applications are more frequently used. This is
what we called virtual 3D GUI. Notice that all what the user see is generated by
the computer and there is no interaction with real world things.

A purely virtual 3D GUI, i.e. with low degree of immersion, consists of a world
where virtual objects mimic their real-world counterparts, but displayed on the
user’s screen. All objects of the UI are virtual and directly operated by direct
manipulation of them. The magic mirror of [Gros99] is an example of the use of a
mirror metaphor to help the user to see what is occulted in the virtual world.

87

3. Three Dimensional User Interfaces Taxonomy

Figure 3-9 Magic Mirror

The high degree of immersion virtual 3D GUI is a graphical representation on a
different display, not mandatory, than the traditional screen, a Cave environment
could be an option. The interaction with the objects projected in the display is
with the user’s hands, but they could wear a HMD that recreates their hand. The
image plane of [Pier97] (Figure 3-10) is an example of this type of applications.
The user selects objects projected in a wall with his hand.

Figure 3-10 Image Plane

3.3.5 Digital 3D GUI

The digital 3D GUI is a 3D UI where 3D objects correspond to the tasks (e.g., a
sphere to trigger the “Play” function) and the elements (e.g., a cone representing
the current volume). The 3D objects used, not necessarily correspond to known
or traditional metaphors. The differentiation with the previous definition is that
objects are spatial, this means, they are not necessarily attached to a wall, a table or
anything in the virtual world. To differentiate the degree of immersion, the only
difference is the type of display used to render de virtual world, this means, low
degree is the presentation on a screen, and high degree is the presentation on a
Cave display.

88

3. Three Dimensional User Interfaces Taxonomy

In this category we also identify innovation, such as that done by [Dach01] with
their Collapsible Cylindrical Trees (Figure 3-11), an innovative way to present
menus in 3D.

Figure 3-11 Collapsible Cylindrical Trees

3.3.6 3D rendering of 2D GUI

A 3D rendering of a 2D GUI in a virtual environment is typically a 3D desktop
such as Task Gallery, Windows 3DNA (www.3dna.net), Figure 3-12, where
traditional windows are manipulated in a virtual environment. To differentiate the
degree of immersion, the only difference is the type of display use to render de
virtual world, this means, low degree is the presentation on a screen, and high
degree is the presentation on a CAVE-based UI where the classical 2D Uls are
projected and manipulated by glove and hand recognition techniques.

[Moli05] proposed the VUIToolkit, a set of widget prototypes implemented in
both VRML97 and X3D versions that makes possible to map interface elements
described at the CUI (Concrete User Interface) level of UsiXML and those that
have been included in the toolkit to allow the generation of a FUI (Final User
Interface) in a VRML97 or X3D-based 3D environment. This toolkit quickly
produces 2D GUIs rendered in a 3D environment, based on UsiXML language
(www.usixml.org). The final result of their applications is shown below (Figure
3-13), and is in X3D and VRML format. One of the remarkable characteristics of
this toolkit is that it transforms the standard plain 2D widgets into a truly 3D
representation, not as in 3DNA, see Figure 3-12, in which dialog boxes are exactly
the same as 2D GUL

89

3. Three Dimensional User Interfaces Taxonomy

WORLD OPTIONS

clickt |y

Theme Chooser

Select Theme:

C|
I~ Randam Theme

Automatically change to a Random Theme on
start up.

Download more Themes at wwaw DRA net

Cancel

Figure 3-12 3DNA desktop application

~ ParallelGraphics Cortona Control

Figure 3-13 The virtual laptop with the rendered in VRML97

3.3.7 2D GUI

A traditional GUI is projected in 2D, there a lot of examples, such as: Windows,
Microsoft Office, Internet Explorer, etc. Also, there a lot of programs, such as

90

3. Three Dimensional User Interfaces Taxonomy

visual studio (Figure 3-14), Delphi, JBuilder, that are 2D GUI based that serve to
develop new 2D GUI Applications.

2 Clasadverage - Wicrossit Vel llsic LT {desigs] - Clashvmrage v6 [Design]
Do [yem Pt BA Dt Des [k Pgbf Ende b
fEERNLALS RS,

B L SREE-,

f-n-Fe

Leli=

2 B cutpe [T

Bty

Figure 3-14 Visual Studio software tool to develop 2D GUI applications

91

3. Three Dimensional User Interfaces Taxonomy

3.4 The development of a internet radio player

In section 3.3 a Taxonomy were introduced. Now following this approach we
would like to introduce an example to show the presentation of the same case
study and how the different blocks could be covered. The Internet radio player,
introduced in [Moli05], is an application to reproduce music.

3.4.1 Pure Reality

The true radio player as a physical device is shown in Figure 3-15.

HEEE] oo E e -
e CCOC @ een

Figure 3-15 A stereo system that reproduce music

3.4.2 Augmented Reality

A tangible Ul, similar to the depicted in Figure 3-7, where physical objects are
attached to the player functions (e.g., a physical cube for the “Play” function and a
series of graduations for representing the volume of the loudspeakers). A camera
captures the movements of the user and interprets them in the same way as is
performing in another virtual Ul, except that all operations are performed in the
real wortld, with an effect in the virtual world, see Figure 3-16, which sketches this
view. On the top Cell of this virtual room the user movements on the physical
devices on the table are tracked, the buttons on the table could be manipulated by
different users. The virtual view of the radio player could be seen either on the
table or on the back wall, and on the left the real object is affected by this
manipulation. The real player could be also manipulated affecting the visual
presentation.

92

3. Three Dimensional User Interfaces Taxonomy

This draw is just even that is in 3D is just imitating the real environment, so it
shows the low level of immersion. However, if we imaging that the user is wearing
a HMD an the user is looking at the same physical place, everything could change
an looks as in the Figure 3-16, that is the augmented reality with a high level of
immersion. Another feature that could be provided at this level of immersion is to
provide information to the user when looking at the radio player, such as the
volume, the song data, etc.

You are fistening to...
Internet radio station no.1

] S|] ——]

Sewwr [| Gene Pop v v;-;m

eanel 0 Sa00n 1.1
This basd bternet raia station
Buper ratia satian

iy tom hits radic statien

Figure 3-16 An Augmented Reality stereo system that reproduce music simulation

3.4.3 Augmented Virtuality

In the augmented virtuality there is no direct manipulation of physical object but
still we could affect the real objects. Following the same example of the radio
player, a virtual representation of the radio player, but with the incorporation of
the true physical loudspeakers to directly operate on them through the interface as
a remote control. Figure 3-17 also depicts an example of such an augmented
reality UL Virtually we will see a complete player but in reality there will be just
the speakers connected to the computer. The view of the Figure 3-17 corresponds
to the high level of immersion, as we could see everything as a whole in virtual
reality. Also we could imagine not just the use of a HMD to display and see the
player but also the user could be immersed in a CAVE and a user equipped with
HMD and a glove can directly interact with these objects.

93

3. Three Dimensional User Interfaces Taxonomy

The opposite case as the presented above, low level of immersion could be as
shown in Figure 3-4, in which a laptop renders the virtual projection of the radio
player and is in there where we manipulate the speakers by manipulating the
volume of the virtual player.

Figure 3-17 An example of augmented virtuality for the case study

3.4.4 Virtual 3D GUI

A purely virtual 3D GUI consisting of a world where virtual objects mimic their
real counterparts, but displayed on the user’s screen. All objects of the Ul are
virtual and directly operated by ditect manipulation of them. Similar as the
previous example, Figure 3-17, the difference relies on the speakers are also
recreated virtually. In 3DNA (http://www.3dna.net/) desktop application they
have a low level of immersion example of the radio player, Figure 3-18, scattered
in the Ul The speakers are controlled either by double clicking either the virtual
representation of them or the sound console next to the virtual representation of
the player, which is behind the help label. The controls of the player are on top of
the help label, and corresponds to the traditionally used for operation such as start
or play, pause, etc. A CAVE-based UI, where the radio player is directly
represented by its virtual scene. A glove similarly manipulates the user’s hand to
mimic the real world’s operations.

One could say that the use of mouse and keyboard are physical inputs and as a
consequence the augmented reality / virtuality is the same than the virtual 3D.
Notice that in this case, the operations are performed in the virtual world as
opposed in the real world in the tangible U, presented in previous section. The
main difference between them is the absence or presence and manipulation of

94

3. Three Dimensional User Interfaces Taxonomy

physical objects to interact with the virtual world, so as the feedback that we can
verify in the view over the physical device after an operation.

N/ - | < s,
FileCon . u ﬂP ‘
v‘r!er'ter - Oxford

EditiX

>

/ G 1 1 I] ﬂ

[\ ORE Microsoft ‘ |‘ “ ’ ‘i “ 'I - Ii »l I L
4 -""\'\ A - T A '5"_‘ NEL s ’

Visual Studio

R N,

G -
TR -

HEDTH

| [Right Click we]

Figure 3-18 An example of augmented virtuality for the case study

3.4.5 Digital 3D GUI

A 3D UI where 3D objects correspond to the tasks (e.g., a sphere to trigger the
“Play” function) and the elements (e.g., a cone representing the current volume).
Figure 3-19 also depicts an example of such a 3D UI where all objects are really
spatial. The rendering, whether using the screen or a CAVE-based display a
HMD, etc., as in previous sections defines the level of immersion for this
representation.

This approach promises and offers a wide option to designers as we could
imagine an infinite range of option to represent in different ways what
traditionally has been represented either in 2D UI or by imitating as “it is” the real
wotld. We identify that at this level the potential of development has not been
quite explored and bring us the goal of producing, what we called “genuine virtual

95

3. Three Dimensional User Interfaces Taxonomy

representations” of the UIL. We argue that the most different, special and attractive
we made the 3D UI the most the Ul will enjoy it. Of course this is a merely
supposition that we will prove not in this dissertation but will be part of the future
work.

Figure 3-19 An example of a genuine 3D UI for the case study

3.4.6 3D rendering of 2D GUI

The VUIToolkit, introduced in [Moli05], is a rendering engine for 3D Uls
specified in UsiXML in VRML97/X3D. In the screenshot of the Figure 3-20, we
show the result of using the Toolkit that generates the 3D rendering of the 2D
internet radio player. In this toolkit the 2D components have been enriched with
volumes. As 3D widgets are rendered in a way that remains similar to the “Look
& Feel” of 2D widgets, except that the “Feel” is a genuine 3D behavior, [Moli05]
called this FUI “3D rendering of 2D Uls”. This approach provides an option to
the use of Java applets Uls to manipulate virtual applications in the Web, instead,
the use of the VUIToolkit would not disrupt the 3D “look™ as Applets does for
web applications.

96

3. Three Dimensional User Interfaces Taxonomy

885 Gods & ol

Youmm’“'""vra
Tt‘ebwlmemradnsm
mmmh————:;'_]mg
Soachi (oo | Gews 1= ¥ tpew

Inbeeed rad: shargon o |

m
Tha bl Iosernet s s
|Supar radc valo

|ty tp bes redio amca

e

™ FErs

Figure 3-20 An example of the 3D rendering of a 2D GUI

As in the previous section the high level of immersion can be achieved with a
CAVE-based Ul

3.4.7 2D GUI

A classical 2D form-based GUI made in Visual Basic for the radio player is shown
in Figure 3-21.

ﬂg Internet Radio Player, g@@
You are listening fo ...

The best internet Radio Player

Flay | Stop | Rev | Fwd |
|
/J
| i |
Search: | The best of Genre: |Spanish Rock -
The best of Jaguares Val
The best of Cafe tacuba olume
The best of Enanitos Yerdes 45%

The best of Enrique Bumbury
The best of el Tri ‘

:

[~ ute

Figure 3-21 A 2D GUI of the radio player case study

97

3. Three Dimensional User Interfaces Taxonomy

3.5 Conclusion

In this chapter we propose an extension of [Milg94] that corresponds not just to
more than mixed reality applications but also to a new reality of Web-based virtual
applications.

We identify that referring to the digital 3D GUI has not been well exploited as the
relevant issues for designers are always on VR content rather than on the controls.

We will work in the future of this dissertation to provide a solution to this lack of
digital 3D GUI.

The taxonomy proposed tries to cover not just the types of VR applications but
also two of the most important sources of inspiration. One of the goals of this
taxonomy is to provide design ideas when a certain kind of control want to be
developed in a specific type of VR, then designers could see how have been done,
if there is a solution, or, if not, how at other levels of the taxonomy authors
solved the problem. Ideally a software tool with a repository of solutions that can
be reused can be the best but the work to do that is really considerable. First,
because of the hardware required to manipulate the VR application, second
because of the programming language used, and third because of the information
sharing, most solutions described in papers are not open source so there is no way
to have access to their code. As a consequence, there is a need to start from
scratch.

As taxonomies are the results of the impression of their authors, researchers agree
that there is no better or bad taxonomy, this depends on what they study,
[BowmOO]. Taxonomies could be used to generate a particular classification, as we
do. Also, is useful to understand the task in a more detailed level; understand how
certain techniques address the task [BowmO0O0]. In our case the generation of the
taxonomies allows us to identify the basic components to create a model-based
approach for the 3D user interfaces, as is a way to capture the technical aspects.

98

4. Model-Based Development of Three Dimensional User Interfaces

Chapter 4 Model-Based
Development of Three
Dimensional User Interfaces

4.1 Introduction

This chapter addresses the ontological shortcomings and requirements of Chapter
2 and 3 by defining an original ontology aimed at describing various concepts
relevant to 3DUI development.

The word "ontology" seems to generate a lot of controversy. It has a long history
in philosophy, in which it refers to the subject of existence. It is also often
confused with epistemology, which is about knowledge and knowing. In the
context of information sciences, an ontology is a formal specification of a
conceptualization [Grub93].

“A conceptualization is a simplified representation of the world produced for some purpose. An
ontology is, thus, a set of descriptions of the concepts and relationships within a field of knowledge
used among a community of agents (bumans or computers). Ontologies constrain the
interpretation of concepts within a domain” [Limb04c].

Notice that to create the ontology we could have two views of the world whether
is objective or subjective. When we refer to concepts that are shared by a
community of agents we refer to a subjective view of the world, as the concepts
could differ from one research group to another. The advantage of such a view is
that there is no wrong or correct ontology but a suitable one for the purpose that

99

4. Model-Based Development of Three Dimensional User Interfaces

the research is looking for. With the time and its use ontologies could become a
standard but then again this doesn’t mean that is would be the only way to see this
reality.

Several ontologies have been developed defining concepts related to 3DUI, for
interaction techniques [Figu02], behavior in 3d [Pell05a] and mixed reality
applications [Figu06]. Our ontology is inspired in the ontology specified in
[Limb04c]. While defining ontologies we need to take care on how and what names
are selected to define concepts. The most basic (abstract) foundational concepts
and distinctions must be defined and specified. Again subjective views emerge at
this step, as we can not assure that we already cover all the possibilities of
concepts in a problem. This work requires several iterations which implies the
reviewing of literature in order to enrich as much as possible the ontology,
finishing when no changes could be done to it while reviewing more literature.
One last step when defining ontologies is the definition of the presentation of the
ontology, i.e., the meaning in real world terms of it.

As we said we rely in the framework proposed by [Limb04c]. In Figure 4-1 three
essential components introduces any ontology: a conceptual content (i.e., abstract
concepts), the formal foundations used to represent the ontology (i.e., abstract
syntax), and the definition of the appearance of the ontology (i.e., concrete
syntax). The structure of this chapter reflects these three aspects.

Abstract Concepts

Model description
Section 4.3.2

A

A 4

Abstract Syntax

Identified, Labelled, Typed, constrained —
Graphs
Section 4.3.3
A

\ 4

Concrete Syntax

AGG Visual Notattion + UsiXML
Section 4.3.4

Figure 4-1 Limbourg language structure. Source [Limb04c]

100

4. Model-Based Development of Three Dimensional User Interfaces

In section 4.2 UML class diagrams for the ontology description along with
definitions in natural language, the mathematical structures underlying this
ontology, i.e., its abstract syntax described in [Limb04c], can be found complete in
Annex A for the graphs definitions and Annex B for transformational rules. The
notion of “directed, identified, labeled typed graph” is introduced, motivated and
exposed, finishing with the concrete syntax of the language, which are: the visual
(i.e., graphical) and a textual one (i.e., an XML language called UsiXML).

Section 4-3 presents the conceptual content of the extension to this language,
which has been created considering just a general perspective of 3DUI, in UML
class diagrams. The three layers will be completed in this section to clearly
separate what it was done.

101

4. Model-Based Development of Three Dimensional User Interfaces

4.2 Ontology for Three Dimensional User Interface
Specification

Every person in charge of the development of 3D Computer-Human Interfaces
(BDCHI) will confront the necessity to find the set of elements that compose
them. As we show in chapter 3 the vatiety of 3DUI options can be divided in five
categories with two levels of immersion. However in each level several solutions
have been proposed. This chapter is designed to show all the abstract concepts of
such solutions in ontology that extends the Limbourg [Limb0O4c]| ontology that do
not consider 3DUI in deep, as is considering in detail 2D and multimodal UL

4.2.1 Action types for Task Model

A task model describes the various tasks to be carried out by a user in interaction
with an interactive system. The task model used in this methodology is similar as
the proposed in [USIXO06], which is an extended version of ConcurTaskTree
(CTT) [Pate97], selected as it represents user’s tasks along with their logical and
temporal ordering, see Appendix D for more detail.

One of the attributes which is relevant for future transformation are the user
actions. Several approaches have been used to user actions, for input device
[Bles90], for 2D UI [Cons03], or for web searching engines [Jans06]. For abstract
tasks that are independent of modality [Limb04c| rely on [Cons03], to define a
user action as a tuple formed with: Action type and action item. This expression
qualify a Ul in terms of abstract actions it supports, a verb describes the type of
activity at hand; an expression designates the type of object on which the action is
operated. By combining these two dimensions a derivation of interaction objects
supposed to support a task becomes possible.

However the set of interactive functions provided by [Cons03] did not express
neither the set of tasks that actually users can not perform with information
systems, nor the abstraction level required for task models that should be
independent of modality and platform. For instance the view task assumes a
graphical modality. The actual version, extracted from [USIX06], of action types
for tasks is shown in Table 4-1.

102

4. Model-Based Development of Three Dimensional User Interfaces

actionType Definition
start/go Specifies that the ATO triggers an action
stop/exit Specifies that the AIO puts an end to an action
select Specifies that the ATO allows a selection action over multiple options
create Specifies that the ATO is creating an item
delete The AIO is dedicated to the deletion of items
modify The AIO is dedicated to the modification of items
Move The AIO allows the movement of an item
Duplicate The AIO allows the creation of copies of an item
Toggle The AIO specifies the existence of two different states of an item
View The AIO allows to display an item using the graphical modality

Table 4-1 Action Types

Similarly as proposed by [Cons02] user action is composed of both elements of

the action the type and the item required in the action. The set of items is listed in
Table 4-2.

actionItem Definition
Element Specifies that the item has a single characteristic
Container Specifies that the item is an aggregation of elements
Operation Specifies that the item is a function
collection of elements Specifies that the item is composed of a list of elements
collection of containers Specifies that an item is composed of a list of containers

Table 4-2 Action Items

We would like to extend this description of action types by separating, first, task
that are user type and secondly system type. Task models do not just model user
interaction with the system but also action that the system performs. This
separation of concepts will help designers in their task. Secondly, keeping the
abstract specification as a basic description will be useful for the future
transformation into an Abstract User Interface, but allowing the designer
describing the task as “it is” and not in an abstract way. The task themselves
belongs to an abstract category, so designers will not take care on understanding
this abstract levels, also maybe they are not interested in developing a
multiplatform — multimodal UL. However our action types categories will allow
them to define a task that could be dependent of modality, does not limit the
capability of the task model to be transferred to a different platform or modality

103

4. Model-Based Development of Three Dimensional User Interfaces

of use. With the abstract types, it would be possible to switch between platforms
and modalities. For instance, the task rotate object, clearly imply manipulation of
object in 3D but if we just refer to and abstract task called “manipulate” or
“move”, in the virtual space it is quite ambiguous, as it can means a translation or
a rotation, so we lost information with the use of an abstraction.

Our work, see Figure 4-2, is inspired in the user task taxonomies proposed by
[Leno84], [Fole84], input devices [Gree88], haptic interaction [Hutc89], [Calh84],
[Bles90] and [USIXO00].

= AbetractU ser
Create
Indicate

b iy
Terminate

+-E-E- [

Toogle
+- Trigaer

+- Communicate

- AbstractSystem
Trigager
tediate
Perceive

¥
¥
¥
+|- Communicate

Figure 4-2 A Taxonomy of Action Types

The property #pe of the task normally is enough to infer to what type of user we
refer. However, we prefer to continue with this distinction as the communication
action of view (user action) is different to show (system action). So if just say that
we have the communicate action and that inside this action we can view or show
something, normally a document, if we are on the graphic modality, or say or
describe in the vocal modality. The user can Create, Indicate, Modify, Move,
Terminate, Toggle, trigger or communicate to the system and the system can
perform some actions that are transparent to the user, as stated by [Leno84], the
system mediate, perceive and communicate user actions, these actions are
transparent for the user, for instance in a ATM transaction the user provides their
code, and the system process it, check it and provide the user what they want but
all these task are hidden to him. The provide code task generates system task,
Figure 4-2. The description of the abstract action types is in Error! Reference
source not found..

104

4. Model-Based Development of Three Dimensional User Interfaces

actionType Definition
Trigger Specifies the triggers of an action
Terminate Specifies the end to an action
Indicate Specifies some sort of indication
Create Specifies the creation an item
Modify An action of modifying an item
Toggle The existence of two different states of an item
Communicate The action to communicate the user to the system or vice versa
Mediate The action of mediate user actions
Perceive The action of identifying any user action

Table 4-3 Action types

In Error! Reference source not found. we show the sublevels of abstraction for

the Create user action type. That is composed of Associate that involves Name
and Group items that intend to create associations such as radio groups.

= ActionT ypes
= Abstractl ser

- Bzzociate
Mame
Group
= Introduce
Inzert
- Aezemble
Aggreqate
Dverlay
= Duplicate
Inztance
Copy
+- Indicate
b iy
+- Terminate
Toogle
+- Trigger
+- Communicate
—|- AbstractSystem
+- Trigger
+- Mediate
+- Perceive
+- Communicate

Figure 4-3 The Create Action Types Taxonomy

105

4. Model-Based Development of Three Dimensional User Interfaces

The action types describe until here are still independent of modality and
platform. This change in the Indicate taxonomy, Error! Reference source not
found., because there are actions that are dependent on the input devices used
and on the modality. The user can indicate abstract actions such as: position (even
talking), reference, selection of any item, focus on any item, reach any item (even a
position), locate an item, quantify. However, when referring to indicate by means
of pointing, skezhing to indicate some item, indicate a scale value, to indicate a #race,
to indicate with the speech. One can say that, as input modalities, our senses are
not actions but means to achieve those actions; we agree with that. However,
touch any item to indicate some sort of select path, orientation, route, etc. For
instance, if a text box can be filled: typing, speaking, or sketching the name. A
further work for this proposal can be to identify the modality or platform that
involves the action types. The different modalities (haptic, vocal, 2D and 3D
graphic, and all sorts of body tracking: eyes, head, hands, arms, feet, even brain
waves) can be the solution for grouping the actions. The context model, section
4.3.4, considers the input/output hardware channels used.

= ActionT ypes
—|- &bstractl ser
+- Create

Reference
Position
Select
See
Focus
Reach
Touch
Push
Tvpe
Speach
Drraw
Trace
Path
—I- Orient
To
Point
Stretch
Sketch
Quantify
Scale
Locate
Route
+|- Modify
+- Teminate
Toogle
+- Trigger
+- Communicate
+- AbstractSystern

Figure 4-4 The indicate Action Types Taxonomy.

106

4. Model-Based Development of Three Dimensional User Interfaces

Through the transformational approach that we follow, attributes, such as the
action type, consolidate final instances of the models when reifying (concretize an
abstract model) them. Patterns of design and patterns of Uls can be used to
identify and generate the FUIL The Modify action type, Error! Reference source
not found., refers to task related to change in some way the current state of an
item.

= ActionT ppes
—|- Abztractlser
+- Create
+- Indicate
=l i odify
Manipulate
—|- Tranzform
Scale
Fotate
Orientation
Resize
Expand
Ingert
Remove
Update
= Move
at speed
To
Toward
Ausnay
Drag
Reach
Releaze
Rotate
Levitate
Travel
= Turh
ToFace
at Speed
Rall
Say
Think,
+- Temminate
Toogle
+- Trigger
+- Cammunicates
+- hztractS pstem

Figure 4-5 The Modify Action Types Taxonomy

The sub-actions considered again in some cases are abstract enough to be
independent of modality, such as resize, expand, insert, remove, update. However
the rotate operation does not have sense at least in 2D Uls.

The remain action types are in Figure 4-6. The Terminate action involves all sort

of action that refers to end, finish, cancel, close, complete, etc. the Toggle action
remains alone, just representing a two state item and the user action that

107

4. Model-Based Development of Three Dimensional User Interfaces

manipulates this item by toggling it. The Trigger action refers to user action that
launch or as its name says “triggers”, traditionally system functionalities, it can be
play an audio/video file, perform any action, function or method. The user to
visualize information requires the communication action.

= ActionT ypes = ActionT ypes
= dbstractl zer = Abstractllzer

+- Create +- Create

+- Indicate +- Indicate

+- Modify +- Modify

=R Terminate * Iermilnate

oogle
o -
Complete play
Delete sGtzrt
Disablg Action =) ActionTypes
Dedctivate Perfarm —|- AbstractUzer
En.d Operation +- Create
Exit Open + Indigate
Release Erecute +- Modify
Stop Activate +- Terminate
Toogle Function . l:ji;gg:
#- Trigger Method = Communicate
+- Communicate +- Communicate Wigw
+- AbgtractSpztem +- AbstractSpztem +- hstractSpstem

Figure 4-6 The Move, Terminate Toggle and Communicate Action Types Taxonomy

System action types, Figure 4-7, are normally triggered by the system by a direct or
indirect user interaction. With direct user interaction, the user triggers an action
that generates a system action. On the other hand the precondition attribute of
the temporal relationships is used to specify a task that the system triggers with
out any user interaction, for instance: backup the data base each 2 hours. In any
case the system actions are transparent to the user [Leno84].

108

4. Model-Based Development of Three Dimensional User Interfaces

=I- Action Types
= Action Types +- Abstract User
+|- Abstractser —1- Abstract System
—|- Abstract System +- Trigger
—1- Trigger +- Mediate
piy -
= =1 Acquire - Action Types
—I- Analize Detect 5. Abstract Usar
Categorize Search ~}. AbstractSystem
Calculate Scan)
ltemize Stract +- Trigger
Tabulate Cross-Reference +- Mediate
= Synthetize Track +- Perceive
Estimate =1 Identify S
Interpolate Discriminate Transmit
Translate =I- Recognize Call
Integrate Grasp Knowledge
Formulate Move Respond
Project/Extrapolate Speach Suggest
- Assess Gesture Diroct
Compare Limps Inf
Evaluate Eyes S
Decide Head Instruct
+- Perceive Fest Request
+- Communicate Interprete Receive
+- Communicate Show

Figure 4-7 System Action Types Taxonomy

We keep the abstract categories proposed by [Leno84], so as some of its
categories, which are convenient, the system needs to analyze, synthesize, assess
and decide when the system Mediate. Actions inside each category are still
independent of modality, which is logic as they normally deal with data not with
the U, even that a feedback of such actions could be provided to the user. This
task is done by the system action Communicate. Finally, the Perceive action
refers to the event handling, so as input devices recognition, which in its sublevel
is clearly modality dependant.

Finally, the abstract types of item that the abstract task can manipulate are

described in table 4-4.

actionItem Definition
Element Specifies that the item has a single characteristic
Container Specifies that the item is an aggregation of elements or collection of elements
Operation Specifies that the item is a function

Data

Specifies that the item is any data value

collection of elements

Specifies that the item is composed of a list of elements

collection of containers

Specifies that an item is composed of a list of containers

Table 4-4 Action Items

109

4. Model-Based Development of Three Dimensional User Interfaces

4.2.2 Three Dimensional Task Patterns

In software engineering, a design pattern is a general repeatable solution to a
commonly-occurring problem in software design [Gamm95]. A design pattern
isn't a finished design that can be transformed directly into code; it is a description
or template for how to solve a problem that can be used in many different
situations. Imagine a task that involves classical data base operations, insert,
delete, modify, locate, we can imagine a predefined UI to handle this in different
modalities, even code can be automatically generated so as the data base, using the
domain model. However the current state of our methodology does not consider
task patterns. In this section we refer to task patterns identified in the literature
for common 3D User task, such as: navigation, selection, control, manipulation.
These tasks not also have different tasks to achieve them but also interaction
techniques. These patterns will help designers in their task when designating an
application in general. As this idea of task patterns have several contexts such as:
the organizational task patterns (ongoing work), data base task patterns,
audio/video handling. Ideally those patterns should be used in a softwate tool,
such as Ideal XML [Mont05], that provide designers.

Anther advantage of such patterns is not just at the task design level, with the
reification between models, it can be possible to derive a Ul following a well
know pattern. GraphiXMIL, a graphical tool to draw 2D user interfaces, uses a set
of predefined menus that corresponds to common user tasks, such as editing, file,
view, format, etc. Such kind of help when designing would reduce the time
designated to this task.

From [BowmO1a] we summarize the Universal 3D interaction tasks: Navigation,
Selection, Manipulation refers to the specification of object properties (most
often position and orientation, but also other attributes)., System Control is the
task of changing the system state or the mode of interaction. We introduce some
task patterns in the next sections identified, these a preliminary work that will be
complemented in the future. Details on the implementation can be found in
Siggraph (http://people.cs.vt.edu/~bowman/3dui.org/course notes.html) courses.

4.2.2.a Navigation pattern

In [BowmO1la] navigation is defined as the composition of two concurrent tasks:
travel and Wayfinding. Similarly [Tan01] define three tasks which are: knowledge
(wayfinding), search (travel) and inspect (system control). We consider the
proposal of [BowmOla], as system control in our opinion is not part of the

110

4. Model-Based Development of Three Dimensional User Interfaces

navigation task itself. The user can navigate thought controls that can be defined
in the travel task.

Trawel Wayfinding

Figure 4-8 Navigation pattern

4.2.2.b Travel pattern

Travel is the motor component of navigation and just refers to the physical
movement from place to place. The described Interaction techniques in
[BowmO1a] for traveling are:
e Gaze-directed steering using head tracking [Mine95]
O Indicate direction
= User move head toward the desired direction
= System track direction
0 Translate to view point selected
e DPointing using hand tracking [Mine95], [Bowm97b]
O Indicate direction
= User move arm toward the desired direction
= System track direction
O Translate to view point selected
e Map-based [Bowm98]
O Indicate direction
= Select icon
®= Dragicon
= Release icon
0 Translate to view point selected
e Grabbing the air [Mape95].
0 Indicate direction
= Select position (pinch or click on it)
0 Translate to view point selected
O Stop selection
® Release button or stop pitching

111

4. Model-Based Development of Three Dimensional User Interfaces

The pattern for traveling is depicted in Figure 4-9. As explained above, several
interaction techniques allows the travel task but all of them considers indicate
position and to translate the view.

o

v

E_:ﬁf == I!.E

Indicate Translate

Figure 4-9 Travel Pattern

4.2.2.c Wayfinding

Wayfinding is one of the two pillars when navigating [Krui00], represent the
cognitive or the decision-making component for user to define their path through
the virtual world. [KruiO0] identify different Wayfinding tasks:

= Extract Information
O User position

* Build up spatial knowledge
0 World structure

® The user uses the spatial knowledge to make a decision

L] I - —

Determine User Position Determine World Structure Make Decision

Figure 4-10 Wayfinding Pattern

4.2.2.d Select Pattern

The Select task is simply the specification of an object or a set of objects for some
purpose. In [Bowm01a] four interaction techniques are defined to do this task in
3D, they are:

112

4. Model-Based Development of Three Dimensional User Interfaces

* Virtual Hand. The most common technique is the virtual hand metaphor that
is the representation of the hand to touch objects as we do in the real world.
There are two varieties exist, with augmented virtuality (without haptic
feedback) or augmented reality (with haptic feedback).

O Indicate position

= Move hand
O Identify Intersect/ Collision

= Hand position with objects
0 If any intersection then Select

= Ray-Casting is another common technique that uses the metaphor of a laser

pointer, an infinite ray extending from the virtual hand [Mine95].
O Indicate position
= User Move hand
= System Determine Ray Direction
O Identify Intersect/ Collision
O If any intersection then Se/ect
= Sticky finger [Pier97] is a technique that considers the occluded objects, with
the virtual hand, that users want to reach.
O Indicate position
= User Move head
= User Move hand
= System Determine Ray position by subtracting hand position
O Identify Intersect/ Collision
0 If any intersection then Select

Go-go. The go-go interaction technique [Poup96], inspired in inspector
gadget ability to extend its arm to reach objects, introduces a non-linear
mapping between arm extension and virtual hand position.
O Indicate position
= User Move hand
= System Determine hand position based on its extension
O Identify Intersect/ Collision
O If any intersection then Se/ect

The select pattern is shown in Figure 4-11. Notice that the pattern consider the
abstract task of indicate, several means can be used to do so, as pointed in this
section by means of virtual hands for immersive VR applications, but is general
enough to let open the possibility that a 2D based menu can be use to indicate the
object. Information passes from this task to the system that has to identify if there

113

4. Model-Based Development of Three Dimensional User Interfaces

is an object that collides with the indication made by the user, if so it will, mark

the object.

elec
L
@ 0=> gz
Ceflisimn * Mark Chject(s)
BH—r—X
Indicate ldentify collision

Figure 4-11 Select Pattern

4.2.2.e Manipulation pattern

There is a

string link between the manipulation task and the selection. An object

can not be manipulated if in some way has not been previously indicated. The
manipulation task is, in some cases, linked with the selection technique. Special

care must

be considered when an object is released, what is going to be its

position, when using a technique, such as go-go. In [BowmO1a] four techniques
are described, which are:

e The virtual hand, used in all the family of hand techniques (go-go, ray-casting,
any arm extension).

(0]

0}
0}
o

Select Object
Attached object to the hand
Transform object

Release object, depending on the technique the position of the object
will be calculated.

e The Hand-centered Object Manipulation Extending Ray-Casting (Homer)
technique [Bowm97a).

O Select using ray-casting
O Translate the hand to the selected object
O Transform object
O Release object.
* Translate the hand back to its normal position
e Scaled-world grab is a technique that is related to the occlusion techniques for
selecting.
O Select using occlusion technique
O Transiate the user or world to the selected object
O Transform object
O Release object.

114

4. Model-Based Development of Three Dimensional User Interfaces

* Translate the user or world to their previous position
e World-in-miniature (WIM) technique [Stoa95; Paus95] uses a small “doll
house” version of the world that allows the user to do indirect manipulation.
O Select Object using any virtual hand technique
» Attached mini-object to the hand
O Transform object
O Relkease object, depending on the technique the position of the object
will be calculated.

+@—u}}—§_‘f—u}}—ﬁi‘f

Select Transform Felease

Figure 4-12 Manipulation Pattern

In Figure 4-12 we show the manipulation pattern.

4.2.2.f System control pattern

This pattern is quite complex as there are a wide range of operation that deals
with system control. Deals with menus, buttons, speech, tracking, input devices
known and new ones. Normally these techniques involve a sort of selection
technique [BownO1la], but contrary to the select objects when a system control is
selected some kind of feed back must be provided to the user. In Figure 4-13 we
show a simplified system control pattern. Further investigation will be conducted.

o)

Syst cantral
|
+ @ 0== g
Select Feedback

Figure 4-13 System Control Pattern

115

4. Model-Based Development of Three Dimensional User Interfaces

4.3 Three Dimensional Extension to the Concrete User
Interface Model

The actual CUI do not consider components in the virtual space. As presented in
our taxonomy (Chapter 3), we identify seven different categories of 3D user
interfaces. We are neither interested in the physical Uls, nor in the 2D GUIs, as
these are already described in the CUI meta-model. The remaining five categories
(augmented reality/virtuality, virtual/digital 3D GUI, and 3D rendering of 2D UI)
can be grouped, as for augmented reality and virtual reality the main difference
between them are the input devices used to manipulate the Uls. For the 3D
rendering of 2D GUI [Moli05] proposed the inheritance of the actual
specification of 2D Uls (Figure D-6 and D-7 in appendix D) by adding new
attributes (Figure 4-14) for the components described in the toolkit. Notice that
this specialization of the model.

The main characteristics added to the components are references to position: top
and left and to its size: width and height. As the 3d rendering of 2D GUIs are just
imitating how 2D GUISs are, there is no need to include new attributes in general
but just the correspondent to its size and position, similar approach is follow in
[Cupp04] with the VRIXML that has its attribute position.

Another important feature of this approach is that labels for buttons, windows,
checkboxes, combo box items are not anymore attributes of the components but
components. The outputText component is specialized for such presentation.
Even that this approach is inspired in the VUIToolkit [USIX06] the components
are still abstract an independent of implementation; one can consider a
transformation from this CUI model to different implementations such as:
VRIXML, Contigra.

A second approach to extend the CUI model is to separate the graphical
individual components in two groups: 2D based and 3D based (Figure 4-15). We
assume that even that they have similarities, sometimes in behavior, presentation
and characteristics; there are components and attributes in 2D that do not have
sense in 3D and vice versa. In our proposal, similarly as in the 2D description, we
separate in two groups our 3D Graphical Concrete Interactive Objects
(BDGCIO), 3DContainers (3DC) and 3DGraphicallndividnalComponents (3DGIC).
The 3DGCIOs are more specialized than their counter part in 2D this is depicted

116

4. Model-Based Development of Three Dimensional User Interfaces

in Figure 4-16. As an infinite variety of graphical presentations can be proposed
for both, 3DCs and 3DGICs a meta-object is proposed for generating 3DGCIOs.

sliderul

sting

0.1

utputT VUl

1

o.

28 H

HEEE | S

HEIEE

B

ddd]
N

Figure 4-14 Concrete User Interface model extension to 3D rendering of 2D Uls

117

4. Model-Based Development of Three Dimensional User Interfaces

The attributes inherited from the CIO class, are relevant and have different
representations. For instance labels on objects are depicted with the
defaultContent attribute. An icon can be translated into a character or any object
referred in the hyperlink.

cio
Syid : string
"Jnaun_— : string
Sicon : uri
Scontent : uri
Q}defsultf.:‘ntem : string or uri

‘Jui:laultHE—lp: uri
‘JI elp : string
Scumentalue : string
‘;:.. T : string

- ok : string
Mizhandstory : bool

f

3DgraphicalCic
Q}is\!isible : boolean
&}isEnsblc—d : boclean

2DgraphicalCic
Q)isVisiblE : boolean
Q)isEnsbll:—d : boclean
SostatusBarContent : uri
‘J—uc.au" tatusBarContent : string
S¥fgColar : string
=
a
a

grbgColor : string

rborderWidth : integer
¢rborderType © integer
BpborderTitle - Sting
BpdefaultBorderTitls : String
Q)barderT itleAlign : String
BobarderColor : String
q}‘l:anipDEfaultC:}ntc—nt : string
Q}taanipC:}nt{:—nt :uri

- 2DIndividualComponents
SytransparencyRate : integer 2DCaontainers Sysclid : SFBool

Figure 4-15 Three Dimensional CUI base classes

This CUI extension is based on the characteristics of: VRML, X3D languages and
Maya, Blender and RawKee, software tools for modeling 3D, and Studierstube
[Stud] and their set of 3D widgets [Maqu04]. Our meta-object 3DGCIO can be
composed of a series of elements (sensors, appearance, grouping components and
an abstract object SFNode). The model is depicted in Figure 4-16, which is
coherent with [Web304a] standard abstract definition for the language X3D. The
X3D abstract specification focus on abstract specifications of 3D content. The
simplified model is shown in Figure 4-16, there are more grouping models, so as

118

4. Model-Based Development of Three Dimensional User Interfaces

sensors, here we just show those used in our case studies, further diagramming

will be provide as implementations an examples are developed following this

standard proposal.

X3DSensorNode

[Eflenabled : SFBool
B5id : string

Mi<<out>> isActive : SFBool()

1

TimeSensor

X3DPointingDeviceSensorNode

: SFTime

SFBool

BfcycleTime : SFTime

|- fraction_changed : SFFloat
Efitime : SFTime

[Efidescription : SFString

M<<out>> isOver : SFBool()

X3DTouchSensorNode

Bi<<out>> touchTime : SFTime

1

3DgraphicalCio

D

Efisvisible : boolean

TouchSensor

M <<out>> hit_Normal_changed()
Mi<<out>> hitTexCoord_changed : SFVec2f()
M<<out>> hitPoint_changed : SFVec3f()

: boolean |~

Switch Group

[Eficenter : SFVec3f
. ——
BBwichChoice : SFInt32 | —— N .

1.n

GroupingNode

M<<in>> addChildren : MFNode()

M<<in>> removecChildren : MFNode()

1

Appearance

Efiname : String
&Hid : String

Geometry

BHid : String (id)
EHiname : String (id)
=

Transform

I | Bfiscale SFVec3f

EfiscaleOrientation : SFRotation

: SFVec3f

Figure 4-16 3DGCIO meta-aggregation relationships

string

The 3DGCIO can be composed of several SENodes, which can be: predefined
3DGCIOs or any geometry, this class depicts any shape (cube, sphere, and

polygons). With these capabilities, we can design any imaginable object for

containers and individual components, apart from a set of predefined ones. The

rest of the characteristics are described bellow.

Grouping nodes, which contain children nodes, are the basis for all aggregation.
Several types of groping elements are defined for VRML and X3D. Among other

groups we show just the implemented ones.

e Group. A Group node contains children nodes without introducing a

new transformation. It is equivalent to a Transform node containing an

identity transform.

119

4. Model-Based Development of Three Dimensional User Interfaces

e Transform. The Transform node is a grouping node that defines a
coordinate system for its children that is relative to the coordinate
systems of its ancestors. The translation, rotation, scale, scaleOrientation
and center fields define a geometric 3D transformation consisting of (in
order):a (possibly) non-uniform scale about an arbitrary point; a rotation
about an arbitrary point and axis; a translation.

e Switch. The Switch grouping node traverses zero or one of the nodes
specified in the choice field.

X3DSensorNode. This abstract node type is the base type for all sensors. For
instance the touch sensor (for the click on the triggers) and the time sensor (for
the rotations).

Appearance. The Appearance node specifies the visual properties of geometry.
The value for each of the fields in this node may be NULL. However, if the field
is non-NULL, it shall contain one node of the appropriate type. The Appearance
element as defined in Figure 4-17 is composed by five elements (Material,
Texture, texture transform, fill Properties and line properties).

Material properties ate related to light and color, whose attributes defined in

[Web304a] are:

e Transparency. Defines how clear is the object, with a range of values
[0.0(completely opaque), 1.0(completely transparent)].

e DiffusseColor. The color reflected by the object, this means, the color of the

object.

SpecularColor. The shiny color, this means, the shiny spots on the apple.

Ambientlntensity. A double value that indicates the reflection of light from
the object.
EmissiveColor. This is useful for shining objects.

Shininess. Combined with the specular color produce the shine effects, a low
value produce soft glows, while higher results in sharper

120

4. Model-Based Development of Three Dimensional User Interfaces

Er——— FillProperties
: Siilled : SFBool
g:zi;ii ssi?:lzlz HhatchColor : SFColor
SFBool
[EinewidthScaleFactor : SFFloat SFInt32

B

TextureTransiorm2DNode ‘
é 1

Ecenter : s;\é;cztl 1
: SFFloat
Appearance Bikcale : SFvecaf MultiTextureTransform

Q_name : String SFvec2t
Bhid : string o

1
i ~——{TextureNode

Material

: SFFloat

olor : SFColor
olor : SFColor

SFFloat

olor : SFColor SoundSourceNode
SFFloat [: SFString
Texture2DNode E8pitch : SFFloat
Biepeats : Boolean [Bi<<out>> duration_changed : SFTime
B¥epeatT : Boolean
MultiTexture A
BHalpha : SFFloat
Eicolor : SFColor
: MFString
E5imode : MFString
Bisource : MFString
ImageT exture PixelTexture
BfimageURL : url ESimageURL : String

MovieT exture
B8 oop : SFBooI
Time : SFTime
EpauseTime : SFTime
Bspeed : SFFloat
EiistartTime : SFTime
=

=

SistopTime : SFTime

url | MFString

o elapsedTime : SFTime
isActive : SFBool

> isPaused : SFBool

Figure 4-17 Appearance meta-model

The LineProperties node specifies additional properties to be applied to all line
geometry. The Jnetype and linewidth shall only be applied when the applied field has
value TRUE. When the value of the applied field is FALSE, a solid line of
nominal width shall be produced. The color of the line is specified by the
associated Material node. The FillProperties node specifies additional properties
to be applied to all polygonal areas on top of whatever appearance is specified by
the other fields of the respective Appearance node. Thus, hatches are applied on
top of the already rendered appearance of the node. Hatches are not affected by
lighting.

The Texture abstract node type is the base type for all node types which specify

sources for texture images. Two are the types of textures that can be applied to
objects, multi texture and 2d texture. The 2D texture defines ImageTexture,

121

4. Model-Based Development of Three Dimensional User Interfaces

MovieTexture or PixelTexture, for each of them new attributes are defined.
Further information about their properties can be found in [Web304a]. The
MultiTexture enables the application of several individual textures to a 3D object
to achieve a more complex visual effect. The texture transform specifies how the
texture is applied to the object, as two type of texture exists; two texture
transformations are required for 2D and for multi texture.

The meta-model for 3D containers and GCIOs is shown in Figure 4-18. More
objects than those shown in the UML diagram has been analyzed but there is no
implementation related.

We consider as much literature as we can covered to see the different possible
presentations of these two GCIOs. As we pointed in chapter 3, by using our
taxonomy we cover not just the potential implementations but also, if we did not
find any, we offer to designers some clues of how the object has been developed,
so they can imitate similar implementations.

3DgraphicalCio

Bisvisible : boolean
BisEnabled : boolean

3DIndividualComponents|
3DContainers

BPsolid : SFBool
1 o.n

A

N 3DRadioButton
3DTriggers
= Prism Polygon Text EPdefaultState : boolean
size : SFVec3F ctions:: int :
Do - me Bise i Bllength : SFFloat ®onClick) &groupName : string
3 Bspans: in EjmaxExtent : SFFloat
{&5solid : boolean | |&Htexture : string (bool)

SiisSelected()

®rotation() 1
Stranslation()

1 sphereTrigger ‘ arroanggerH button ‘

Fontstyle BBradious : SFloat | [——— Textual
Bfamily : MFString —
BHhorizontal : SFBool
B ustify : MFString 3DinputText 3DoutputText|
&languaje : SFString [|
i —— 1
%\gfnoRumh : SFBool SisActive(
&size : SFFloat
Bspacing : SFFloat
EBstyle : SFString
&topToBottom : SFBool

SisEnabled()
SikeyDown()
SitextChanged()

Figure 4-18 3D Concrete User Interface Meta-model

Ideally in the virtual space we could imagine an infinity set of objects that could
be used as containers. The virtual space itself is the basic container for all the

122

4. Model-Based Development of Three Dimensional User Interfaces

concrete interface objects (CIO), ie., entities that users can perceive and/or
manipulate. So we could have 2D renders such as Polygons, irregular or regular, n-
sized; 3D renders such as: polyhedrons, which involves prisms, parallelepipeds,
pyramids, cones, spheres; also we consider the fact that any combination of
shapes can be used, as shapes could be created and function as a container, even,
as shown in used in several examples shown in the state of the art, 2D container,
such as windows, menu bars, are also considered as containers.

Two sets of object are described in this section, 3D Containers and 3D Concrete
interactive objects. The set of Containers identified in 3D applications for the
Mapping are:

Scene: 'This is the counter part to the window in 2D. The Scene is the virtual
environment, so any object could be placed in the scene by just specify the x, y, z
position.

4.3.1 2D renders

Pohygons, regular polygons, n-sized:

Plane: the plane is a rectangle with height and width, text, graphics and many other
objects could be attached to a plane; also different colors could be assigned to the

plane to offer some syntactical related information. See Figure 4-19 below, in
which several planes are use to render the windows in a 3D Sphere [Sphe05].

Figure 4-19 Scene with several planes that contains the windows of a Windows’ system

123

4. Model-Based Development of Three Dimensional User Interfaces

4.3.2 3D Containers

Polybedron is a three-dimensional shape that is made up of a finite number of
polygonal faces [Wiki05]:

Figure 4-20 Polyhedron

There are different categories of polyhedrons that could be used as 3D Containers
that are:

Prism is a n-sided polyhedron made of an n-sided polygonal base, a translated
copy, and n faces joining corresponding sides [Wiki05].

va e

Regular Right prisms

Figure 4-21 Regular Prism

A Wall is a rectangular prism, from a rectangle. The wall offers a more realistic 3D
container compared to the plane, see Figure 4-19. The values of width, height and
deep offer the possibility to create different objects, such as cubes. Also different
effects could be possible to add to each side of the wall, such as color,
transparency, see Figure 4-22 [Park98].

"

Figure 4-22 Wall Container with transparency

124

4. Model-Based Development of Three Dimensional User Interfaces

Considering that the prism use a regular polygon as its base even that the size
could be n, notice in Table 1 that the increment in the number of sizes produce a
figure close to a circle. I think that the 10-Sized polygon decagon, could be the as
much the size.

> OO OO

3-Sides 4-Sides >-Sides O-Sides 7-Sides
8-Sides 9-Sides 10-Sides 11-Sides 12-Sides
13-Sides 14-Sides 15-Sides 16-Sides 17-Sides

Table 4-5 Polygons approximation to a circle

The relevant aspect of considering the number of sides of the polygon is that it is
expected that on each side of the polygon it could be possible to attached objects,
so as the number of sides is incremented, the area to attach objects is reduced,
there is a direct relation on this.

Parallelepiped or parallelopipedon is a three-dimensional figure like a cube, except that
its faces are not squares but parallelograms [Wiki05].

Figure 4-23 Parallelepiped

125

4. Model-Based Development of Three Dimensional User Interfaces

Pyramid is a polyhedron formed by connecting an #-sided polygonal base and a
point [Wiki05].

Figure 4-24 Pyramid

Cone is a solid object obtained by rotating a right triangle around one of its two

short sides [WikiO5].

Figure 4-25 Pyramid

Sphere: A sphere is a perfectly symmetrical geometrical object. In mathematics, the
term refers to the surface or boundary of a ball, but in non-mathematical usage,
the term is used to refer either to a three-dimensional ball or to its surface
[Wiki05]. The surface of the sphere could be used to attach objects but also
Similar to the wall but instead a sphere could be used as a container, see Figure
4-26.

Figure 4-26 Sphere Container [Fair93]

126

4. Model-Based Development of Three Dimensional User Interfaces

4.3.3 Three Dimensional Graphical Individual Components

This section is based on examples developed in the Toolkits review in the state of
the art, and the examples shown in the case study, so as some shown inside the
taxonomy. The use of the taxonomy provides hints to actual solutions for
designers. More important is the fact that there can be more than the examples
shown in each level, further investigation can fill the gaps or add more examples
to the existing levels.

4.3.3.a Button

Definition : is a alternatively called trigger button as its aim is to trigger any kind of
action available in the system [USIXO0G].

Abstract attributes:

defaultContent : the text component string that defines the text displayed on the
button.

surroundedColor : the Appearance attribute that define the color and texture of
the button around the button, see the black color described in Contigra.
centerColor : the Appearance attribute that define the color and texture of the
button in the center of the button.

Abstract events:
click : the user clicks on the button.

Button

Non-Immersive

Pure Reality Buttons from a remote control

Augmented
reality

Bioelectric Control

Augmented
Virtuali

127

4. Model-Based Development of Three Dimensional User Interfaces

Virtual 3D GUI

Representation in Contigra

Digital 3D GUI

3D rendering of
2D GUI

YOU ars fistening g,

Internet radio station ng

Intermnet radio station na. 1
The best Internet radic station
Super radio station

Only top hits radio statian

i

Ulrase

4.3.3.b Toggle Button

Definition : enables a Boolean choice by pushing a multi states button [USIX06]

Abstract attributes:

defaultContent : the text component string that defines the text displayed on the
button. (Label attribute Inherit in Studierstube)

surroundedColor : the Appearance attribute that define the color and texture of
the button around the button, see the black color described in Contigra.
centerColor : the Appearance attribute that define the color and texture of the
button in the center of the button.

secundaryColor : the Appearance attribute that define the color and texture of the
button when the button change the state.

defaultState : Indicates a default state for a toggleButton := TRUE FALSE.
[USIX00]

128

4. Model-Based Development of Three Dimensional User Interfaces

Abstract events:
EVT_TBT_click : the user clicks on the button.

Toggle Button

Non-Immertsive

Light interrupters

Augment
ed reality

129

4. Model-Based Development of Three Dimensional User Interfaces

Unselected Selected

3D
rendering
of 2D
GUI

You are Hstem'hg-fo,.

Internet radio station nG.1

Intemet radio station no.1
The best Internet radie station

Super radio station
Only top hits radio station

Toggle buttons of word

4.3.3.c Text Component

Definition : textual sentence that is placed in different components of 3D words or
by itself on the space. It is useful to explain the use of components, to define type
or units of measure, to set tittles.

Abstract attributes:

defaultContent : the vector of characters that compose the text of the text
component. The text could be divided in different substrings and each one is
place in one location of the vector, the purpose of doing this is to replace the use
of the return character. [USIX06]

maxLenght : define the size of the space where the text is displayed (the size is
vertical or horizontal depending on the orientation of the text) := [0.0 (any
length) ...). [USIX06] (maxExtent in VRML)

maxLength : a vector that specifies the length of each substring of the text in the
local coordinate system := [0.0 (any length) ... 00). [USIX06] (Lengt in VRML)

130

4. Model-Based Development of Three Dimensional User Interfaces

textFont : define the family of the label (times, serif, ...). [USIX006] (FontFamily
in VRML)

orientation : whether the text advance horizontally or vertically := horizontal,
vertical.

advancing : define whether the text is written left to right or vice versa in the case
of horizontal orientation, or top to bottom or vice versa in the case of vertical
orientation := leftToRight, rightToLeft, bottomUp, topDown.

justification : determine alighment of the text := left, right and center.

style : specifies the style of the text := PLAIN, BOLD, ITALIC, BOLDITALIC.
(isBold is Italic in [USIX00])

textSize : specifies the high of the text : = [0.0 (no size) ... ©) [USIX06] (Size in
VRML).

spacing : determine the line spacing between adjacent lines of text, this means,
when more than one line of text compose the text displayed := [0.0 (no size)
...0),

language : define the value of the language tag that is based on ISO 639:1988 :=
‘zh’ for Chinese, ‘jp’ Japanese, ‘sc’ for Swedish.

defaultHyperlinkTarget : define a uri target := uri [USIXO06].

Text Component

Non-Immersive
Pure Reality weos FrincmanAdchie

Text is everywhere in our life in any of its

representations, as a string of characters,

graphics or as spaces destined to write
something

Augmented
reality

Group of label is Studierstube on the left of
the column

Augmented
Virtuali

131

4. Model-Based Development of Three Dimensional User Interfaces

Virtual 3D GUI

Label with an hyperlink connection

Feedback of the same label with the mouse on
it

Digital 3D GUI
3D rendering of
2D GUI

You are listening to...

Internet radio station no.1

Labels
el FFFG
F«m&mm— m——

e besst Inberrt radie stadon Text box
upar radio station
nly iog hits radia stabon _J

Search:

Label in Visual Basic

4.3.3.d Color Picker
Definition : Enables to choose a color within a palette. [USIX06].

Abstract attributes:
color : a 3D color selected := <red> <green> <blue> the three values are

double.

Color Picker

[Tmmersive | Non-Immersive

132

4. Model-Based Development of Three Dimensional User Interfaces

Pure Reality

A AT e [

23 e e o
[T -
From the "98 3 series covps brochuze
- T
&

e

stanzan

s [rerr—

Color catalog from a paint shop

Augmented
reali

Augmented
Virtuality

Virtual 3D GUI

133

4. Model-Based Development of Three Dimensional User Interfaces

Digital 3D GUI

3D rendering of
2D GUI

Ul el 0

4.3.3.e Radio Button
Definition : Enables a Boolean choice by checking a circle aside of a label. An

optionButton may be differentiated from a checkBox by the fact that when
grouped optionButton selection is mutually exclusive while checkBox allows
multiple choices. [USIX00]

Abstract attributes:
defaultState : Indicates a default state for a toggleButton := TRUE FALSE

[USIXO006]
groupName : Is the name of the := String [USIX00]

134

4. Model-Based Development of Three Dimensional User Interfaces

Radio Button

.
Non-Immersive
Pure Reali —_—rr—— - e
ty R Fmmer |(Gll)] | GUESHSLAND UNTVERSTTY, OF TECHNOLOGY.
s TEST ANSWER SHEET.
s v Y | s Sl WRIER % W AL G THES 501
I
TimsEemLmImy @ =1 1 Eheon o dbaos a n & o dfocd
= H=o =L =k w dbaom ndbscs adbos
o - Ba B
= B xg vhboca uddasn m‘-':.{-uacll
i il B | =B aa
s e 238 B { =P {&\%I-.ﬂ.'l Haﬂ\".‘:\'..ﬂ NéEOI'}’I II!Pﬂ"QPﬁ‘J
Crmemng B Befiit s 2 |
aokd= =20 = {—L3 B U:\SI:\.'?:' 3 N&':C'-IF L IS‘I:%U
=5 = = i)] I |
sQr@cEomen B w ddoc u &doos
oo @ & o z
P L@eE (=R OOCD I OoDoa
B B
S =1 (= AL :P':‘Wﬂ'ﬂ a :T'H.!."FQ.-.‘ N éj‘:‘::ﬂ
B e
g B:a & »dfpon »dbzes wdlaon
) B e
£t mam = wiboon »dfoca »dfoon e dlcon
g Q_g : B # &dnon - n Sfonn
il Brmrgr ks i | m dboen o dfoon
g o B v
o e e ndfoca o dlocd »dEoca udfoon
o | | dibora (wdboca n dEoos uEicoa
G T | I
e mem e i WEDTD & QCOCo 1 OCOCD (B8 OOOno
e bgu b al - :'A?.‘;JI:EI ™ '._!'E 0D (e &ﬁn:ln
STl "
3 2ATh 4T €D m gamor_'ea L &.EJCD&
e 2
TREETE u Sfcon
Rt 2l i
a=-0=g » COOOHD
T m s aahla
iEpEEEEERRER
Multiple choice exams ate a good real representation where we have to chose just
one option between different possibilities
Augmented
reality
Augmented
Virtuali
Virtual 3D
GUI

Digital 3D GUI
3D rendering
of 2D GUI
2D GUI

i R a
‘our Favourite
" Red
" Green
" Elue
" Pink
- Orange
 vellow

" Gther

button example

color:

135

4. Model-Based Development of Three Dimensional User Interfaces

4.3.3.f Check Box

Definition : Enables a boolean choice by checking a square box aside of a label. A
checkBox may be differentiated from a radio button (optionButton) by the fact
that when grouped checkBoxes allow multiple choices while (optionButton)
selection is mutually exclusive. [USIX06].

Abstract attributes:
defaultState : Indicates a default state for a check box := TRUE FALSE
[USIX06]

groupName : Is the name of the group := String [USIX06]

Check Box

Non-Immersive

Pure Reality

A checklist in a inventory of a factory

Augmented
reali

Augmented
Virtuality

Virtual 3D GUI | Blue light

[X]Green light

[|Red light

3Drendering of
2D GUI

Mute

You are listening g,
Internet radio station ng.q

Search T g

Intemet tadio stationno1 3
The best Internet radio station .,

Super radio station

Only top hits radia station

136

4. Model-Based Development of Three Dimensional User Interfaces

Select the office components you
want ta install:

Install? | Description
Word processor
Spreadsheet

[0 Presentation designer
Email client

[0 Drawing editor

Components selected: 3

4.3.3.g Slider

Definition : Allows a selection of one or two integer value(s) over a set of ordered
integers [USIX06]

Abstract attributes:

minValue : Is the lower bound of slider values := integer [USIX06] idem
Studierstube

maxValue : Is the upper bound of slider value := integer [USIX06] idem
Studierstube

step : is to precise intermediate slider values between minValue and maxValue :=
integer [USIXO06]

orientation : define the orientation of the slider := string equals vertical or
horizontal [USIX06]

cursorPosition : Indicates a default value for a cutsor, that allows to choose a
value on a slider := integer [USIXO00)]

defaultContent : the text component string that defines the text displayed on the
slider. [USIXO06]

increment : define how much the increment or decrement buttons will move the
slider := double value (Attribute in Studierstube)

Slider

Non-Immersive
Pure Reality k4 -

137

4. Model-Based Development of Three Dimensional User Interfaces

Augmented
reality

Augmented
Virtuality

Virtual 3D
GUI

rizontal Vertical

138

4. Model-Based Development of Three Dimensional User Interfaces

Digital 3D
GUIL
3D rendering
of 2D GUI

& i %

[Intemet Tadio station no.1
The best Internet radio station s
[Super radio statian

Only top hits radio statian

i s

—

Slider in Visual Basic

4.3.3.h ComboBox

Definition : Enables a direct selection over a collection of sequentially ordered
items. [USIX06]

Abstract attributes:

isEditable : Specifies if the content of the textbox (composing a comboBox) is
editable or not:= TRUE or FALSE [USIX06]

maxLineVisible : Indicates the number of visible lines := integer [USIX06]

items : Indicate de content of the combo Box := item object [USIX06]

ComboBox

Non-Immersive
Pure Reali

139

4. Model-Based Development of Three Dimensional User Interfaces

Augmented
reali

Augmented

Virtuali
Virtual 3D
GUIL
Digital 3D
GUIL
3D rendering
of 2D GUI

Pop W

Classic
Pop
Rock W

Ynu“gmf:ﬁménifﬁg-td“
Internet r-;aﬂicffstatiaanm

e]

‘Eaarq{jg_ — Genre: ,JPE_: .

Internet radic station no.1 3
IThe best Internst radio station

[Super radio station

[Only top hits radio stalion

Select Genre ;I
Combo Box

4.3.3.i Item
Definition : Specifies an item populating. [USIXO00]

4.3.3.j ListBox
Definition : . [USIXO06]

Abstract attributes:

isEditable : Specifies if the content of the listBox is editable or not:= TRUE or
FALSE [USIX06]

maxLineVisible : Indicates the number of visible lines := integer [USIX06]

items : Indicate de content of the list Box := item object [USIX06]

List Box

Non-Immersive

Augmented
reali

140

4. Model-Based Development of Three Dimensional User Interfaces

Augmented

Virtuali
Virtual 3D

GUI
Digital 3D

GUI
3D rendering nternet radio station no.1
of 2D GUI he best Internet radic station

Super radic station
Fnly top hits radio station

ListBox

[Super radio station
|Only top hits radio station

2D GUI The: best of Jaguaies

The best of Cafe lacuba
The best of Enanitos Yerdes
The best of Enrique Bumbury
The best of el Tri

List box in visual Basic

141

4. Model-Based Development of Three Dimensional User Interfaces

4.3.4 Context Model Review

A reviewed version of the model corresponding to the definition of the
environmental model, which is responsible for describing the world in which any
3D UI could be rendered. In [Moli06] the improvement of the model is presented
(Figure 4-27). The physical environment is expanded with surfaces (walls, the

table, etc.). The interactive surface is the father of the hardware platform

Shape
&5id : string
&name : string
E8Position : VEC3F
Bsize : Vec3F
&Geometry: String

environment
B&type : string
:string

&iname : string
BisNoisy : boolean
ESlightingLevel : string
s Stressing : boolean

0.n
0.n

1
Surface

[&5id : String (id)

xPosition : SFFloat (id)
yPosition : SFFloat (id)
zPosition : SFFloat (id)
eight : SFFloat
material : Material
exture : Texture2DNode

yOrientation : SFFloat(id)
zOrientation : SFFloat (id)
ngleOrientation : float (id)
op : SFFloat (id)

igth : fixed (id)

BSwidth : SFFloat (id)

f [—

InteractiveSurface

BisGraspable : boolean (id)
isRotable (id)

Platform
B5id : string
B¥name : string

.1
0.n \fx

Location

ESxPositionSurface : SFFloat (id)
BSyPositionSurface : SFFloat (id)
&zPositionSurface : SFFloat (id)

hardwarePlatform
Bcategory : string
BcolorCapability : integer
B¥cpu : string

simageCapable : boolean

BfinputCharSet : string
Bkeyboard : string
B¥maxScreenChar : integer
B¥model : string
BHoutputCharSet : string
BSpointingDevice : string
B¥pointingResolution : string
B¥screenWidth : string
B3screenHeight : integer
&screenSizeChar : integer
sSoftkKeyCapable : boolean
[Blis SoundOutputCapable : boolean
B¥storageCapacity : string
Blis TestinputCapable : boolean
BShasTouchScreen : boolean
[B8lis VoicelnputCapable : boolean
Bvendor : string

Figure 4-27 Environmental Model

142

4. Model-Based Development of Three Dimensional User Interfaces

However reviewed meta-model do not consider the separation of physical space
and the same representation in the virtual space. It considers that the physical
devices used for interacting with virtual reality applications, by using graspable,
rotable, fluid or rigid surfaces. In our opinion, a separation of concerns must be
used, to differentiate between virtual objects and physical ones, as the virtual
environment can be the only visual context for the user when interacting to the
UL The required extension, Figure 4-28, considers a virtual environment that is
aggregated by view points for the navigation of users, lights and virtual objects
(SFNode). The physical environment corresponds to the described above in
Figure 4-27, in which hardware, platforms, surfaces, etc, are part of it.

Environment
EHitype : sting
BHid : sting
BBname : string
BHisNoisy : boolean
evel : string

boolean

SFFloat
B¥icolor : SFColor
SFFloat
B5on : SFBool
ViewPoint 4
HcenterOfRotation : SFVec3f |
SFStiing
EifieldOfView : SFFloat . 1 DirectionalLigth PointLight SpotLight
[E5jump : SFBool o e — [SFvecar| | SFVecaf : SFVecaf
" t \] EHlocation : SFVec3f SFFloat
I ;
SFVecaf [Eliradious : SFFloat EHicutoffAngle : SFFloat
0.n SFVecaf
SFNode @radius : SFFloat
—
— SFVec3f

Figure 4-28 Environmental Model extension

143

4. Model-Based Development of Three Dimensional User Interfaces

4.4 Abstract Syntax: graphs as underlying formalism

The abstract syntax is defined as the hidden structure of a language, its
mathematical background [Meye90]. Inspired in the mechanism followed by
[Limb04c] and that is the basis of the development followed in [USIXO06], this
research uses as abstract syntax “enriched” directed graph. That is to say an identified,
labeled, typed, constrained graph. A graph structure naturally describes a set of
concepts and their relationships; it is strongly correlated to the concept of
ontology [JohnO1]. The graphs will define what to do with our ontology.

Graph structures are appropriate when the number of relationships among the
concepts of an ontology become too large to represent them with another
mathematical structure (e.g., lists, trees, sets). As argued by [Sowa92] graphs atre
logically precise, humanly readable (even that not necessarily understood), and
computationally tractable. They have been used, for instance, to represent artifacts
like code structures, system requirements, expert knowledge, causal systems,
probabilistic systems, social structures [Limb0O4c]. We summarize the graph
definitions in appendix B.

4.5 Concrete Syntax: a visual and textual syntax

A concrete syntax is an external appearance. Describing a concrete syntax
something consists of describing formally the arrangements to describe it. As
proposed in [USIX06] we use two types of syntax for methodology, one visual
and another textual.

The visual syntax consists of boxes and arrows, a somewhat classic
representation for a graphical structure. This visual syntax is mainly used to depict
almost all the models defined in the ontology; there is a graphical representation
for: the task model, the abstract models, graph declarations and transformation
rules. The main diagrammatic characteristic so as the software tools that support
them, are shown in table 4-5.

144

4. Model-Based Development of Three Dimensional User Interfaces

Model

Task

Domain

Abstract

Graphs

Transfor-
mational
Rules

Concrete

Final
User
Interface

Visual presentation

Tasks
NN

Abstract, Interactive, System, User Cooperative

Task operators

L0] W]] 1>] >>us]) T
Choice, order independency, concurrent, concurrent with
information exchange, disabling, suspend | resume, enabling,
enabling with information passing, optional task, iterative task.

Class, dependency, generalization, association, aggregation,
composition.

| Container, component.
Components facets

P input
..EH_ oukput
% navigation
-‘5,? control
Edge
Node Edge type (Attribute,value)
Node type (Attribute,value)
v
isPartOf
player entryDate="0504/02" e
=2 P recruiter="Emile" |ig="a3
name="Jonvonderdong” A name="The Broken Arms"
salary=2500 city="Louvain-la-Meuve"
A.‘ H
H Edge
Node

Similar notation as for graphs. The set of rules is in appendix C

The concrete user interface does not have actually a graphical
representation.

Table 4-6 Tools to support our approach

145

Tools
[USIX06]
IdealXML..
Model editot:
Task &

Domain, AUI,
inter-model
relationships

AGG
Transformation
General
purpose tool
for graph

transformation

Maya Editor
Alice Editor
VRML

Java 3D

4. Model-Based Development of Three Dimensional User Interfaces

Similatly, the textual syntax is described using an XMI.-based language, called
USer Interface XML (UsiXML). This User Interface Description Language
(UIDL) was chosen, among other reasons, because it allows describing the
complete development cycle described in this dissertation. Another important
reason is the context of such approaches that differs from our needs. From
[Guer00], extended with [Cupp04], the following table 4-6 summarizes some

common UIDLs.
Criteria 3D
Models Tool | Available Context Extensible | Description
Language support Support
XIML Abstract | Yes No Any Yes No
Concrete
Task and
domain
UIML Abstract | Yes +/- Any Yes No
Concrete
Task and
domain
XUL Abstract | Yes No Web No No
Concrete content
Browser
AUIML Abstract No Yes No
Concrete
UsiXML Abstract Yes Yes Any Yes Partial
Concrete
Task and
domain
VRIXML Concrete Yes No Haptic Yes Yes
interaction
InTML Dialog No Yes Interaction Yes Yes
techniques

From the table we summarize the main problems identified in the UIDLs. XIML
[Puer02] is available via a non-commercial research license. UIML [Abra99], as
pointed in [Cupp04] is to large and very abstract, the effort required to extend it
to 3D is considerable and not compatible in a XML based complaint, UIML

146

Table 4-7 User Interface Description Languages Comparison

4. Model-Based Development of Three Dimensional User Interfaces

extensions are towards mappings to the FUI and not to the CUIL XUL [Bosw(2]
is specific for web content. AUIML [Azev00] among other problems it do not
cover the entire path that we need, secondly, apart from the traditional UIDLs, do
not define the interface from its appearance but from user interactions. VRIXML
[Cupp04] and INTML [Figu02] are so specific, to the concrete presentation of the
UI and to the interaction techniques, respectively.

Due to the availability of UsiXML and all the advantages that it has, we select to
be our textual syntax. This UIDL is characterized by the following principles:

ol Expressiveness of Ul: any Ul is expressed depending on the context of use
thanks to a suite of models that are analyzable, editable, and manipulable
by a software agent.

" Central storage of models: each model is stored in a model repository where all
UI models are expressed similarly.

" Transformational approach: each model stored in the model repository may
be subject to one or many transformations supporting various
development steps. Each transformation is itself specified thanks to
UsiXML [USIXO06].

Also, UsiXML is able to specify various Uls with the five modalities of

interaction. For this purpose, UsiXML is structured according to four basic levels
of abstractions defined by the Cameleon reference framework.

147

4. Model-Based Development of Three Dimensional User Interfaces

4.6 Mappings

So far, we have introduced concepts for the syntactic representation 3D Uls
(Ontology) and a way to group them (taxonomy); the stylistics: textual (UsiXML)
and graphical (AGG, IdealXML). Also we briefly introduce the mapping from
objects from the ontology to directed graphs with direct mapping, i.e. a task is
mapped to a task node, and task attributes are mapped to node attributes.
However, there is still a lack to define the model-based development for 3D Uls,
until now just the models and its representations have been introduced, in this
section we desctibe the transformational process, the semantic level, required to
pass from model to model.

As stated in section 4-2, we rely in the Chameleon reference framework
introduced by [Calv03]. This framework defines transitions between different
models. Theses transitions are called development steps (each occurrence of a
numbered arrow of Figure 4-29). The transformational process transforms an
instance of a source model into another instance of a target model where source
and target models types are directly adjacent (this is the desired path but
theoretically if appropriate rules are defined transformations between non
adjacent models are possible) in the development process.

Figure 4-29 Transformation between viewpoints (left, mid.) & chapter reading map (right)

148

4. Model-Based Development of Three Dimensional User Interfaces

From [Limb04c] the definition of the development steps as follows:

Reification (1,2 in Figure 4-29) is a transformation of a high-level
requirement into a form that is appropriate for low-level analysis or design.
Abstraction (5,6 in Figure 4-29) is a transformation of a low level
specification into a high-level specification

Translation (7,8,9 in Figure 4-29) is a transformation of a Ul specification to
adapt this specification to the constraints imposed by a new context of use.
The context of use is defined after [Thev01] as a triple of the form (¢, p, #)
where ¢ is a possible or actual environments considered for a software system,
P s a possible or actual target platform, # is a user stereotype.

Code generation (3 in Figure 4-29) is a process of transforming a concrete
UI model into a compilable or interpretable code.

Code reverse engineering (4 in Figure 4-29) is the inverse process of code
generation i.e., it retrieves a concrete Ul specification from a coded artifact.

Different types of development paths have been identified in [USIXO06]:

Forward engineering (or requirement derivation) is “the traditional
process of moving from high-level abstractions and logical,
implementation-independent designs to the physical implementation”
[Chik90, Byrne92]. In this dissertation forward engineering can be viewed
as a composition of reifications and code generation enabling a transformation
of a high-level viewpoint into a lower level viewpoint.

Reverse engineering is “the process of analyzing a subject system to
()identify the system's components and their interrelationships and
(ii)create representations of the system in another form or a higher level of
abstraction” [Chik90, Byrne92]. In this dissertation reverse engineering
can be seen as a composition of abstractions and code reverse engineering
enabling a transformation of a low-level viewpoint into a higher level
viewpoint.

Context (of use) adaptation is the process of adapting a UI specification
for another context from the one it was designed for. Context adaptation
can be obtained from a #ranslation of a Ul model at any level.

149

4. Model-Based Development of Three Dimensional User Interfaces

Other development paths like:

Retargeting. This transition is useful in processes where an existing
system should be retargeted, that is migrated from one source computing
platform to another target computing platform that poses different
constraints. Retargeting can be composition of reverse engineering,
context adaptation and forward engineering. In other words a Ul code is
abstracted away into a CUI (or an AUI). This CUI (or AUI) is reshuffled
according to specific adaptation heuristics. From this reshuffled CUI (or
AUI) a new interface code is created along a forward engineering process.

Middle-Out development is a term coined by [Luo95]. It refers to a
situation where a developer starts a development by a specification of the
UI (no task or concept specification is priory built). Several contributions
have shown that, in reality, a development cycle is rarely sequential and
even rarely begins by a task and domain specification. The literature in
rapid prototyping converges with similar observations. Middle-out
development shows a development path starting in the middle of the
development cycle e.g., by the creation of a CUI or AUI model. After
several iteration at this level (more likely until customer’s satisfaction is
reached) a specification is reverse engineered. From this specification the
forward engineering path is followed.

Leapfrog development refers to the situation where an intermediary
viewpoint is bypassed in the transformation process. In our framework
for instance, it might not be needed to define an AUI if only one
modality is targeted.

Development steps may be decomposed into development sub-steps. Some of these

activities have been identified by [Luo95]. It can consist, for instance, of the

selection of concrete interaction objects, the definition of the navigation, the

definition of the container structure. In appendix C the set of sub-steps associated

to each development step are described. All of them described in terms of

directed graph transformational rules. In this section we show the required rules

for such transformation from the concrete model to the abstract model. As the

definition of development sub-steps may depend on the designer’s practice, the

organization rules, the type of artifact that is built, etc, there are not good, bad,

better or worse rules, just appropriate ones for our purposes.

150

4. Model-Based Development of Three Dimensional User Interfaces

4.6.1 An introduction to graph grammars

Graph grammars provide us with an intuitive formalism for manipulating graph
structures. A graph grammar is a set of graph rewriting rules (called in this work
graph transformation rules), a graph to transform (called host graph or initial graph) and
a set of parameters (called embed) defining how to apply the rules on the host

graph.

Three are the components of graph grammars, assuming that the have a graph
source §, the result of applying such transformational rules (graph grammars) will
end on a target graph 7 that corresponds to the desired resulting model. The
transformational rules are composed of three elements:

11 Left hand side (LHS). It expresses a graph pattern that, if it matches in the
source graph s, it will modify the target graph # where the patter is matched. A
LHS may be seen as a condition under which a transformation rule is
applicable.

21 Right hand side (RHS). Express how the target graph 7 will change when the
condition LHS is matched.

8] Negative application pre-conditions (NAP), also called forbidden contexts, are
assertions that have to hold false before the application of a rule. Indeed this
group of graph avoids the infinite repetition of graph transformation, or the
execution of the transformation on a specific instance.

A complete description of graph definitions can be found in appendix B. The
important components for the transformational rules are described above.

Graph transformations are used to perform model-to-model transformations i.e.,
reifications, abstractions and translations (see Figure 4-29). We transform a Ul
specification with a set of transformation rules taken from a transformation
catalog (for 2D GUIs see the catalog in appendix C). In the next section through
a case study, some of the transformational rules are shown. All examples use the
graphical formalism of the graph transformation tool AGG [Ehri99] presented
hereafter. Graph grammars provide us with an intuitive formalism for
manipulating graph structures. A graph grammar is a set of graph rewriting rules
(called in this work graph transformation rules), a graph to transform (called host
graph or initial graph) and a set of parameters (called embed) defining how to
apply the rules on the host graph.

151

4. Model-Based Development of Three Dimensional User Interfaces

4.7 Method for developing 3d user: Architecture
continuum

Several tools have been exploited or developed in the context of [USIX06]. They
all play a certain role in making model-based development (MDE) a reality. They
were briefly showed in table 4-5. There is still an extension to the actual effort to
support 3D development. Since the method should be compliant with MDE and
its principle of separation of concerns, the method (see Figure 4-30) is itself
decomposed into a sequence of four steps.

AUI: Ul definition Abstract Ul
independent of any

modality of interaction e e e = —
Abstract user Abstract user Abstract user

interface #1 interface #2 interface #n

CUL: concretizes an AUl Concrete Ul
into CIOs (widget sets
found in popular graphical

and vocal toolkits) 3D Concrete [l 3D Concrete [l 3D Concrete
User Interface [User Interface 8 User Interface Development

#1 (UsiXML) W #2 (Java3D) #3 (MEL) environment

CUI production (TransformixXML)

FUI: operational Ul
that runs on a

. - H
particular platform either =7 S VRML97I Step 4
by interpretation or by code code X3D code
execution

VUIToolkit

HTML browser HTML browser HTML browser
with Cortona player with Cortona player with Cortona player

Figure 4-30 Outline of the method for developing 3D user interfaces

From step one to three there are two tools used to design task and concepts
(domain model) and generate its UsiXML corresponding code, using Ideal XML
[Mont05]. Similarly, IdealXML is used to define the concrete user interface in an
editor. Ideally this transformation should be done automatically through the
application of transformation rules to graph definitions for task and concepts.
This step is under development, the transformation engine for graphs just works
manually, using AGG editor. For this reason the building block for
TransformiXML is still undone. Even so, as stated before, AGG graph can be

152

4. Model-Based Development of Three Dimensional User Interfaces

used to test the feasibility of the approach and the test of the transformational
rules.

In step three, our need is on a software tool that could support the design and
manipulation of 3D Uls, for this purpose we proposed the use on Maya software,
which is a very powerful commercial editor for 3D content. A concrete Ul can be
exported from its definition in UsiXML and imported to Maya, or any other
toolkit, Anark, Max 3D, or a non-commercial, such as Blender. In the review of
the state of the art we identify that the two most advanced and extended toolkits
are Max 3D and Maya, as they have too many plug-ins for importing / exporting
in several formats, some of them of our interest for web content, such as VRML
and X3D.

Actually we draw our 3D Uls in Maya then we export them to VRML and X3D
(the plug-in produces low results for complex interfaces). Then using an editor we
add the behavior to the interfaces. This is a tedious task, as you will see in next
chapter, our example has more than 30 thousand code lines, and it is difficult to
identify shapes and add behavior in VRML. As our CUI model is based is the
abstract of X3D, an XSLT transformation can be applied to our UsiXML
description of the CUI model and pass it to X3D, then this definition can be
imported in a high level editor, such as Maya. The designer will be able then to
organize the user interface is different position, adjust the size of shapes, change
the colots, etc.

A second high level toolkit that we used to model the Uls is Alice that generates
Java 3D content. Import and export to Alice is still a job undone. We need to
explore how the Java 3D API is structured and how Alice format is structured.
The advantage of Alice is that they do not just have primitive objects but also a
Gallery of predefined objects. Unfortunately, Alice have a reduce set of objects
dedicated to the UI control, button, switch, text and no more.

Finally, the last toolkit that we used to generate the FUI is the VUIToolkit
[MoliO5]. This library of widgets does not have neither an editor to design the 3D
Ul, nor an automatic generation from the concrete model to the FUI in VUI
components.

153

4. Model-Based Development of Three Dimensional User Interfaces

4.8 Conclusion

In this chapter, a model-based development method based on graph
transformation has been introduced, defined and illustrated. The method
extends an already defined methodology [USIX06] that considers the
development of Uls in 2D and vocal. We propose an extension of such approach
that implies new features at all levels of the methodology.

The ontology was extended in all the levels

e Task Model, new action task definitions were added. Some task patterns for
the most common User task in virtual environments.

e Concrete Model, the definition of new classes for concrete interaction objects,
dividing the actual definition in 2D CIOs and 3D CIOs. The specification of a
meta-model for 3D Uls.

e Context model, a new environmental model was introduced accordingly not
just to the physical space but to the virtual space also.

The mapping to achieve an Abstract model to 3D Concrete model transformation
was also introduced. The software tool requirements for doing such
transformation automatically were discussed. In next chapter we will prove the
feasibility of following our method.

154

5. Case Studies

Chapter 5 Case Studies

5.1 Introduction

This chapter applies multi-path development of user interface to two different
case studies. The two cases are progressive in terms of complexity. Their
presentation relies on a series of illustrations showing how artifacts are
progressively transformed according to various development sub-steps, steps, and
paths.

The process adopted to develop the case studies of this chapter consists of: (1)
Building initial models. Such models have been edited with their associated editing
tool. For instance, Ideal XML [Mont04] has been used to edit the task and domain
model. Most of the rules have been elicited prior to realizing these case studies by
a theoretical analysis of development sub-steps as illustrated in Chapter 4. (2)
Exporting resulting models to UsiXML and illustration.

The first case study is devoted to the development of an opinion polling system, a
reasonable scaled example of a typical information system. A forward engineering
path is applied that starts from the definition of the task and domain models to
produce both an AUI and a CUL The CUI is reshuffled by hand in Maya editor;
these modifications do not change the AUIL

155

5. Case Studies

5.2 Study Case 1: The virtual polling system

This case study is devoted to the development of an opinion polling system, a
reasonable scaled example of a typical information system. The development
scenario is the following: a forward engineering path is applied from a definition
of the task and domain viewpoint to produce both an AUI and a CUL

5.2.1 Step 1: The task and domain models

The task model, the domain model, and the mappings between, are all graphically
described using IdealXML tool [Mont05], an Interface Development
Environment for Applications specified in UsiXMIL. Figure 5-1 depicts the
domain model of our Ul as produced by a software engineer. A participant
participates to a questionnaire. A questionnaire is made of several questions. A
question is attached to a series of answers. The domain model has the appearance
of a class diagram.

£ Ideal{ML: Interface Development Environment for AppLications specified ... E|@|E

concrete UT model final UL model
domain model | task model

Erex® [R] 8 1§71«

Participation) N
Questionnaire Question Answer
rivate String ham| i i
private int zipCode privats String s, private Sring e, private String Hie;
q’privata String gend = [O— private int percent;
privats String age pUblic void sendd! f pUblic int calcuiate]
. S 4
d] | I [+
dea erface Developme 1] e 0 PP a pe ed L
domain model | task model | abstract U model mappifhg model cohgrete UT model final U mode]
[Task | Relationships
coRnm B =

k’ﬁr— =
Insert persanal data Answer question® Send quastisnnaire
ﬁ-r == .
Insertname Insertzip sode Seleot gender Selest age categary Show question Selest anamer
| [Tl [Ir]

Figure 5-1 Mapping between domain concepts and task model

The Figure 5-1 illustrates a CTT representation of the task model envisioned for
the future system. The root task consists of participating to an opinion poll. In
order to do this, the user has to provide the system with personal data. After that,

156

5. Case Studies

the user iteratively answers some questions. Answering a question is composed of
a system task showing the title of the question and of an interactive task
consisting in selecting one answer among several proposed ones. Once the
questions are answered, the questionnaire is sent back to its initiator. All temporal
relationships are enabling which means that the source task has to terminate
before the target task can be initiated.

The dashed arrows between the two models in Figure 5-1 depict the model
mappings, such as manipulates relationships between the task and the domain
model as dashed arrows. Provide Personal Data is mapped onto Participant
class. Show Question is mapped onto the attribute title of class Question. The
task Select Answer is mapped onto the attribute title of the class Answer.
Finally, the task Send Questionnaire is mapped onto the method
sendQuestionnaire of the class Questionnaire. The initial task may be
considered as not precise enough to perform transformations. Indeed, the task
Provide Personal Data is an interactive task consisting in creating instances of
Participant. In reality, this task will consist in providing a value for each attribute
of Participant. This could mean that the task model is not detailed up to the
required level of decomposition.

Rule 5-1 is applied to the task and domain models. The Left-Hand Side (LHS)
contains an interactive task (1) where the user action required to perform the
task is of type create. This task manipulates a class from the domain model (2),
which is composed, of an attribute that takes the value of a variable x. The
Negative Application Condition (NAC) specifies that a task manipulates an
attribute (3) whose name is stored in the same variable x. The Right Hand Side
(RHS) specifies the decomposition of the task described in LHS (1) into an
interactive task (2), which requires a user action of type create. Note the way they
are named using a post-condition on their name attribute. The mappings between
nodes and between edges belonging to the three components of a rule (NAC,
LHS, RHS) are specified by attached numbers. The application of this rule on the
task and domain model represented in the form of a graph G is the following:
when the LHS matches into G and the NAC does not match into G, the LHS is
replaced by the RHS, resulting a transformed graph G’. Therefore, Rule 5-1
decomposes the task Provide Personal Data into four new sub-tasks, each of
them manipulating an attribute of class Participant.

157

5. Case Studies

1ask 4:manipulates
type="intaraciive” 2domainClass
1:las|f __ 4manipulales userAction="create"
type= m.teractwe Tdomanclass taskltem=z
manifulates userAction="create" _
taskitem=z — ecomposition
SisConmposedOf SisCorpposecCt
Jattribute v 3
name=x task
Seaiiibul name=create’ s x| Manipulates —X
name=x . Jattribute
type="interactive' e
userAction="creats" -
taskitermn=z

Rule 5-1. Consolidation of the task model

Consequently, to the execution of this rule, four new tasks are created: create
name, create zipCode, create ageCategory and create gender. Figure 5-1 shows the
mapping model containing the mappings between the refined task model and the
domain model of the opinion polling system. Each of the four new sub-tasks will
be mapped on the corresponding attribute of the class Participant, the rest of the
mappings remaining the same. Due to the fact that “create” is a very general
action type and that both ageCategory and gender attributes hold an
enumerated domain, “create” can be specialized into “select”. Rule 5-2 is applied
in order to achieve this goal. Rule 5-3 provides a default temporal relationship (set
to enabling) when two sister tasks have no temporal relationship.

1135k 4manipulates

1125k 4manipul ates
type="infaractive" 2 attribute = — =
£ _ tyoe="intaractivs 74 3. -
USEIALTION="Crests" Zatiibuts

userAclion="selzct’

5:isComposedOf SisComposeddi

L4

¥
JenumeratzcValuz Fenumaratzdvalue

Rule 5-2. Specializing a user action.

5.2.2 Step 2: From The task and domain models to Abstract
Model

The actual development path follwoed in [USIX06] consider a one-to-one
mapping from model to model. However for this dissertation there is a need to
clearly distinguish (see figure 5-2) between an abstract description for the 3D
Rendering of 2D Uls, which is quite similar to the followed actually, and for a
genuine 3D UL

158

5. Case Studies

We have three different objective Concrete Uls, which are organized differently
physically. In figure 5-2 we show the different paths (a and b) that we could
follow. Due to the constraints that we could find in future transformation by

keeping one single AUI and then from it derivate several CUIs, we select path b.

> VRML

I—’ Java 3D

> VUIToolkit

'—} VRML

|—> Jave3D

CUI > FUI
a) Task & »| AUI | H
Concepts ” Cul FUI
| CUI > FUI
Va cul '—>I FUI
/A AUI
b) Task & " cu '—>I FUI
Concepts
AUL —>| cul l—>| FUI

l—} VUIToolkit

Figure 5-2 Development Paths

5.2.2.a Identification of abstract Ul structure for AUI “A”

The identification of AUI, from [Limb0O4c] structure is ensured by applying Rule
5-3, Rule 5-4, Rule 5-5, Rule 5-6, and Rule 5-7. These rules essentially recreate the
task model structure by a hierarchical decomposition of abstract containers and

abstract individual components.

NAC

1taslk

isExedutedin

¥

abstractContainer

LHS

S:.decomposition

f.decomposition

RHS

isExecutedin

h 4 Y

2task abstractContainer

Rule 5-3 Create an AC for task that has task children

159

5. Case Studies

NAC LHS RHS

isExedutedin Jp— isExedutedin

abstractindividualComponent

abstractContainer

Rule 5-4 Create an AIC for leaf tasks

NAC LHS RHS
Stemporal 5 tEmIJUl?L
xsi_type="*" HSI_type=

ve—

.

4lisExerutedin

Rule 5-5 Iterative tasks are mapped onto repetitive AC

NAC 1HS RES

T:decomposition T:decomposition

abstractContainment

2:abstmctoontainer}—D-{3:abstrac100ntmnm‘| gisExatutedin

'/ gisExegutedin gisExekutedin

9isExeputedin

abstractContainment

2ZabstractContainer JabstractContainer

2:nbstmct00ntninm" JabstractContainer |

Rule 5-6 Reconstruct containment relationships between AC

160

5. Case Studies

NAC LHS RHS

T.decomposition T.decomposition

J:abstractContainer

abstractCgntainment

S:isExefutedin SisExeputedin

G:isExeputedin g

GrisExeputedin

v
4:abstractlnclivicIuaIComponent|

J:abstractContainer 3:abstractContainer

|4 abstractindividualComponent

|4:abstractlnclivimmICompunent|

|

Rule 5-7 Reconstruct containment relationships between AIC

5.2.2.b Selection of AIC

Each AIC can be equipped with facets describing its main purpose/functionality.
As explained in Chapter 4, these facets are derived from the combination of the
task model, the domain model, and the mappings between them. The mappings
between the task and the domain models have been described above. We illustrate
some of the rules applicable to the present case study. From these mappings it can
be derived that:

= AICs create name and create zipCode are equipped with an input facet of type
“create attribute value”.

= AICs select sex and select ageCategory are equipped with an input facet of
type “select attribute value”. The enumerated values associated to the attribute
are transferred as selection value of the facet from the domain model.

= AIC Show Question is equipped with an output facet of type “output attribute
value” (i.e., the question title).

= AIC Select Answer is equipped with an input facet of type “select attribute
value”. It is also set to repetitive as the amount of instances of answer is only
known at run-time: no enumerated values ate provided nor attribute instances.

= AIC Send Questionnaire is equipped with a facet control that references the
name of the method on which it is associated, here sendQuestionnaire

161

5. Case Studies

NAC

|1 abstractindividualComponent

LHS

2task

4:manipulates

userAction="create"
taskltem="element’

RHS

2dask

A:manipulates

userAction=x
taskitern="glement’

Juattribute

isComposedOf oo — &isExecutedin

.
r

|1 :abstractindividualCompanent

SlisExpcutedin

1:abstractindividualComponent isComposedOf

facet

actionType="creats"
actionltem="attribute value"
type="input'

Rule 5-8 Create an input facet to AICs that realize creation tasks

5.2.2.c Spatio-Temporal arrangement of abstract interaction objects

We apply Rule 5-6 (reproduced as Rule 5-9Rule 5-), Rule 5-10, Rule 5-11, Rule 5-
12. These rules reveal how implementing hierarchical rules in AGG could be
repetitive: one rule should be introduced for each possible couple with AC and
AIC as elements, that is a total of four rules.

NAC LHS RHS
Ttempaoral 7iemporal
Xsi_type="s>" xsi_type="=>

1:task 2itask 1:task 2task

3:abstractindividualComponent

abstractAdjacency 5isEjecutedin e 5lisEpecutedin

GisEfecutedin GiisEjecutedin

4:abstractlndividualcomponent‘

h 4 h 4
|3'ahstractlndividualCnmpnnem‘ ‘3'ahstract\nd\vidualcnmpnnent|

abstractAdjacency
v y

|=1 abstractindividualComponent

[#:abstractindividual Component]

Rule 5-9 Deriving abstract adjacency for <AIC,AIC> couple

162

5. Case Studies

NAC LHS RHS
Ttemporal Titemporal
xsi_type="=="

xsi_type=">>"

8:ahstractContainer

abstractAdjacency xecutedin

Yiskxecutedin

r
4'ahstractlndividuaICnmpnnent|

BlisExpeutedin

GiisExpcutedin

8:abstractContainer

abstractAdjacency

S:ahstractContainer

L d

‘4.ahslracllndividualCumpunem

r
|d'ahstract\ndiwdua\Cnmpnnent‘

Rule 5-10 Deriving abstract adjacency for <AC,AIC> couple

NAC LHS RHS

Ttemporal

Ttemporal - —
[rare—— xsi_type=">>

XSi_type=">>"

3:abstractindividualCompanent

abstractAdjacency

B SisExcutedin

5isExecutedin Siskxecutedin

Y Siskxecutedin

S:ahstractContainer

Y
[3:abstractindivieualComponent|

v
|3 ahstracﬂndividualCumpUnem|

ahstractAdjacency

8:abstractContainer

B:abstractContainer

Rule 5-11 Deriving abstract adjacency for <AIC,AC> couple

NAC LHS RHS

Titemporal Titemporal
¥Si_type="=>" ¥Si_type="=>"

S:abstractContainer

abstractAdjacency 10:is 11:sEgecutadin 10:is 11:isExecutedin
v
S:abstractContainer
|8:abstract00ntamer| |9:abstractCuntainer Siabstractoontainerl—ﬂB.abslraciCUmainer
abstractAdjacency

Rule 5-12 Deriving abstract adjacency for <AC,AC> couple

163

5. Case Studies

5.2.2.d Definition of abstract dialog control

We apply Rule 4-9 and the like to realize this sub-step. Similarly to the previous
step, a rule is defined for each combination of couple with AC and AIC as
elements.

5.2.2.e Derivation of AUI to domain mappings

Rule 4-10 is one of the rules applied in this sub-step. Rule 5-15 is another rule
that is applicable to our case. It creates an updates relationship between the input
facet of an AIC and the attribute manipulated by its associated task.

NAC LHS RHS
8:manipulates g:manipulates
— 2 attri 4task Sattribute
[4:task——»]s5:athibute D_m

TiisExeputedin DAL

.
updates I e Y
= ‘ 3:abstractlncliviclualComponent| updates
FahstractindividualGComponent

GisComposedOf

2facet BisComposedof
type=input .
Y 2facet
2facet type=input
type=input

Rule 5-13 Derivation of the updates relationship for an input facet

5.2.2.f Resulting specification

Following the same mechanism of rule transformation, an abstract individual
component (AIC) is created for every leaf task found the task model, insert name,
insert zip code, select gender, select age category, show question, select answer
and send questionnaire. Each AIC can be equipped with facets describing its main
purpose/functionality. These facets are derived from the combination of task
model, domain model and the mappings between them. Task definitions have
information that is relevant for the mappings, such as: userAction, which could
be: create, delete, modify, among others. According to these mappings it can be
derived that AICs create name and create zipCode ate equipped with an input
facet of type “create attribute value”. The generated abstract user interface is
shown in Figure 5-3.

164

5. Case Studies

"5,‘3 =end Questionnaire @

=3 Send gquestionnaire [~

% Input gender @‘

= 5 = Answer question
i? select ageCategory (! & 9
<1 Input ageCategory (/)
i# Provide personal data [v]
i§% Participate to opinion poll ()

Figure 5-3 IdealXML Mapping from Task and Domain model to Abstract Model A

5.2.2.g Identification of abstract Ul structure for AUI “B”

Two new rules are required to generate a different version for the In 3d there is
clearly a new for navigation between containers, as our approach considers, we
propose rule 5-14 to create abstract individual components for each abstract
container, with navigation facet on it.

We need to consider three cases for the navigation the containers in the middle
that could need forward and backward navigation, the last one will need just one
navigation and the first one is a special case, that we propose will need both
navigations, so as the introduction of a new task that will start the application.
The LHS for intermediate tasks is below, notice that we are not interested in the
relation between them but to the fact that their correspondent containers are
related, this means that that are related in some way. If so, and a task is in the
middle as task 8 The RHS rule extends the source graph by adding the task
facets, adjacencies, etc.

165

5. Case Studies

35:AbstractAdjacency 33:AbstractAdjacency

|34:abstractcuntainer|—b—|31 :abstractwntainer|—b-|32:abstractcuntainer|
k.

3A7:1sExecutedin 39 1sExedutedin 41 |sExecutedin

40:task

A7.decomposition

LHS Rule for creating navigation facet for abstract containers

The RHS rule considers also, the connection between the new tasks and any of
the subtask of task (38), depicted as task (55:1) in the rule, AGG engine will
match the first task non deterministically. The RHS will connect the new
navigation tasks to the task (55:1).

33AbstractAdjacency

35.AbstractAdjacency
|34:abstrac1wntainer|—b—|31 :abstractcnmainer|—>~|32:abstractcuntainer|
ITIsEgecutedin 39:IsExedutadin 41 IsExecutedin

-~

decomposition -~ | "
' 7 AT.degomposition
)

decomposition

- i
-~ 1| S, Py

independentCoRtumrency w-_l-:p-:n-_I:ntd-_-nmu EBMCES

i task task

551 ask _.-userActinn:“Navigatinn" userAction="MNavigation"

IsExecutedin
sExecutedin

|abstractlndividualCumpunent| |abSTFaCﬂﬂdiVidUGlCUmDDﬂEﬂi

ﬁsCDmstedOf isComposedOf

facet facet
actionType="Mavigation" actionType="Mavigation"

RHS Rule for creating navigation facet for abstract containers

The NAC for this transformation rule, points to avoid the repetition of the same
transformation. Below the NAC in which we avoid the repetition of such
transformation when the same pattern of transformation is matched.

166

5. Case Studies

33 AbstractAdjacency
35 AbstractAdjacency
|34:abstractcnntainer|—b—|31 :abstractcnntainer|—D-|32:abstractcnntainer|
37:IsEqecutedin 39:IsExedutedin 41:1sExecutedin

— |
a - | a
decomposition e S A decomposition
SEeEEEEE " &T:decomposition S
P I-Ih ""'m__‘...
____/' N
Lt temparal w temporal ' .=

-k Type="l" |tagk Type="I" (task
99:11ask > userAction="Mavigation"

userAction="Mavigation"

NAC for creating navigation facet for abstract containers

Analogous to this step is the correspondent to the last container, with the
difference just on the adding and comparing, we just need two abstract containers
and an adjacency between them. Identifying not just the last but also the first
requires the same LHS condition but different NAC. More clearly, the LHS rule
below we show the requirement to identify either the first or the last abstract
container in a task tree. When an abstract container (2) with abstract adjacency (5)
to another abstract container (3) an related with an abstract containment (7) with
an upper level abstract container.

1:ahstractcontainer

TahstractContaimep

ZabstractContaiment

AAhstractAdjacenc

2:abstractcontainer Jabstractcontainer

LHS Rule for creating navigation facet for the first abstract container

This initial state can be then compare to the left to check if there is no more
abstract containers related to the abstract container (2). A second NAC required is
to check if the abstract container (1) is the root of abstract containers.

167

5. Case Studies

abstractcontainer

abstractContaiment
AbstractAdjacency 4

abstractcontainer 2:abstractcontainer 1:abstractcontainer

NAC for creating navigation facet for the first abstract containers

1:ahstractcontainer

TabstractContaiment

The RHS rule to generate the navigation component is as follows

1:abstractcontainer

T.abstractContaime

abstractcontainer 2:abstractcontainer J:abstracicontainer

AbstractAdjacency S:AbstractAdjacency

g.abstractContaiment

isComposedOf IsExecutedin

facet task
actionType="Mavigation"| |userAction="Navigation"

RHS Rule for creating navigation facet for the first abstract container

Notice that the creation of this rule requires the creation of a new NAC, if not,
infinitely the system could generate abstract containers for the new task created.
Flags can be generated for this purpose, dummy nodes that are not related to the
system but just to control the flow can be added and/or removed. So the
appropriate RHS is below. Finally the new NAC required is [Firstrask]

1:abstractcontainer

abstractClontaiment

T:abstractContaime

abstractcontainer 2:abstractcnntainer|—b~|3:abstractcnntainer

AhbstractAdjacency S:AbstractAdjacency

8 abstractContaiment

isComposedOf IsExecutedin

facet task
actionType="Mavigation" | |userAction="Mavigation"

RHS Rule for creating navigation facet for the first abstract container

168

5. Case Studies

Analogous to the first task, to create navigation for the last task, we will need the
almost the same LHS rule, but some differences are required, such as to identify
the task that is executed in the abstract container (2) to connect it to the new
navigation task.

4:ahstractcnmainer|

AabstractContaime G.abstractContaiment

J:AbstractAdjacen

1 :abstractcnntainer|—H2:abstractcnntainer|
N 3 TsExecutedin

T4 decomposition

Ttask
LHS Rule for creating navigation facet for the last abstract container
The RHS applied to the above LHS rule, we assume in this case that the last task

is decomposed in at least two other subtasks, and we are just interested in linking
our new navigation task to any sub-task (9). The three NAC are listed below.

|4:abstractcnntainer|

A-abstractContaime G.abstractContaiment

JAbstractAdjacen

|1 :abstractmntainer|—>-|2:ahstractcnntainer|
i 3 1sExecutedin

decomposition 14:decomposition
-

-~

tEIanl:lr&al\‘:--
task s
—T Tiask
userAction="Mavigation" Type="TI

RHS Rule for creating navigation facet for the last abstract container

169

5. Case Studies

Abstractddjacency -
abstractcontainer
2:abstractcontainer abstractcontainer

pbstractContaiment

Y
- 4:abstractcontainer

NAC for creating navigation facet for the last abstract containers

The generated abstract user interface B is shown in Figure 5-4.

6:9 nput Hame

i@ Facel (/] 3} BackFacel ()] 3 HextFace2 &
< BackFacel [v] 4] HextFace2
5;4';, Provide Personal Data @

w Output Question

%l Select Answer

ria BackFace3 @)
4] BackFace3 @

r&? send Questionnairg))]

4 Send questionnaire &

3 BackFace2 & A HextFaced @)

4 BackFacez @) |@ HextFaces [v]
5;4',, Facel @
§ Cube 9

354';, Faced @

Figure 5-4 IdealXML Mapping from Task and Domain model to Abstract Model B

The corresponding UsiXML specifications, generated in IdealXML, correspond to
the AIO decomposition.

<abstractContainer id="idao0" name="Cube" splittability="true">
<abstractContainer id="idaol" name="Facel">
<abstractindividualComponent id="idao5" name="Title">
<output id="idao6" name="Title" outputContent="Welcome to the Virtual Polling system" />
</abstractindividualComponent>
<abstractindividualComponent id="idao7" name="Start Questionnaire">
<control id="idao8" name="Start Questionnaire" actionType="interaction"
event="startQuestionnaire " />
</abstractindividualComponent>
</abstractContainer>
<abstractContainer id="idao2" name="Provide Personal Data">

170

5. Case Studies

<abstractindividualComponent id="idao9" name="Input Zip Code">
<input id="idao15" name="input zip code" actionType="interaction" dataType="String"
attributeDomainCharacterization="zipCode" />
</abstractindividualComponent>
<abstractindividualComponent id="idao10" name="Input Name">
<input id="idao14" name="input Name" actionType="interaction" dataType="String"
attributeDomainCharacterization="name" />
</abstractindividualComponent>
<abstractindividualComponent id="idao11" name="input gender">
<input id="idao16" name="Select gender" actionType="interaction" dataType="String"
attributeDomainCharacterization="gender" />
</abstractindividualComponent>
<abstractindividualComponent id="idao12" name="input age cathegory">
<input id="idao17" name="input ageCategory" actionType="interaction" dataType="String"
attributeDomainCharacterization="ageCategory" />
</abstractindividualComponent>
<abstractindividualComponent id="idao13" name="BackFacel">
<navigation id="idao18" name="BackFacel" actionType="interaction" />
</abstractindividualComponent>
<abstractindividualComponent id="idao19" name="NextFace2">
<navigation id="ida0o20" name="NextFace2" actionType="interaction" />
</abstractindividualComponent>
</abstractContainer>
<abstractContainer id="idao3" name="Face3">
<abstractindividualComponent id="idao26" name="Output Question">
<output id="idao29" name="Output Questions" actionType="interaction"
outputContent="Questions" />
</abstractindividualComponent>
<abstractindividualComponent id="idao27" name="Select Answer">
<input id="ida028" name="Select Answer" actionType="interaction" dataType="String"
attributeDomainCharacterization="answer" />
</abstractindividualComponent>
<abstractindividualComponent id="idao31" name="BackFace2">
<navigation id="idao34" name="BackFace2" actionType="interaction" />
</abstractindividualComponent>
<abstractindividualComponent id="idao32" name="NextFace4">
<navigation id="idao33" name="NextFace4" actionType="interaction" />
</abstractindividualComponent>
</abstractContainer>
<abstractContainer id="idao4" name="Face4">
<abstractindividualComponent id="idao22" hame="Send questionnaire">
<control id="ida023" name="send Questionnaire" actionType="interaction"
event="sendQuestionnaire" />
</abstractindividualComponent>
<abstractindividualComponent id="idao24" name="BackFace3">
<navigation id="idao25" name="BackFace3" actionType="interaction" />
</abstractindividualComponent>
</abstractContainer>

</abstractContainer>

5.2.3 Step 3: From Abstract model to Concrete User Interface
model

The third step implies a transformational system that is composed of necessary
rules for realizing the transition from AUI to CUIs. For this purpose, other design

171

5. Case Studies

rules could be encoded in UsiXML so as to transform the AUI into different CUI
depending the options decided. Since the AUI model is a CIM, it is supposed to
remain independent of any implementation. However, when it comes to
transform this AUI into a corresponding CUI or several vatiants of it, platform
concerns come into consideration. For this purpose, several design rules exist that
transform the AUI into CUIs with different design options that will then be
turned into final code when generated.

5.2.3.a Reification of AC into CC

The simple heuristic in 2D solving the current problem consists of representing
all tasks into one single window. Each abstract container becomes a prism face or
any surface but the top level could become the virtual environment (used for the
variant in which objects will be floating in the space) or any other container such a
prisms (the quantity of sides for the prisms would be based on the sublevel of
containers required). Each abstract container at level “leaf-1” is transformed into a
prism face. The main container is mapped to a prism based on a square, in this
case a predefined cube (accordingly to the fact that at least four containers are
required). This could be change in run time, as we will show but this consequently
will increase the amount of prim faces and as a consequence the polygon-based
number of sizes. First, we create the rule 5-14 to create the counter for the prism
sizes. If the is no counter, create it an initialize it to 0

NAC LHS RHS
= Counter
Sizes=0

Rule 5-14 Derivation of the updates relationship for an input facet

Then we mapped to a prism face each container at level “leaf-1” with rule 5-15.
We count also the number of AC to determine at the

- - IsReifiedBy
2:abstractcontainer 1:abstractcontainer T 1:abstractcontainer
abstractContaiment J:abstractContaiment FabstractContaiment

v
— t‘ — r : 4counter
abstracteontainer 2-abstractcontainer 2:abstractcontainer Sizes=x+1
4:counter
Sizes=x

Rule 5-15 A creation of Prism face derived from containment relationships at the abstract

172

5. Case Studies

level

There is also a need to add a similar rule but for AIC which, as in our example the

first task to start the application, will be in a last face but is executed in an AIC

and not in a AC. The rule 5-16 solves this problem.

NAC

pbstractContaiment

1:abstractcontainer

LHS

1:abstractcontainer

G:abstractContaiment

[5:abstractindividualComponent|

1:abstractcontainer

G:abstractContaiment

RHS

|5:abstractlndividualComponent|

4:counter

Sizes=x+1

IsReifiedBy

PrismFace

Rule 5-16 A creation of Prism face derived from containment relationships at the abstract

level
Finally we create a prism with x sizes.
NAC NAC LHS RHS

1:abstractcontainer

phstractContaiment

JabstractContaiment

r
2:abstractcontainer

4
Sizes=x

- Prism
- >
1:abstractcontainer “lsizes=x

J:abstractContaiment

4:counter

r
2:abstractcontainer 2
Sizes=x

Rule 5-17 A creation of Prism face derived from containment relationships at the abstract

level

5.2.3.b Selection of CICs

This sub-step involves the highest number of rules of all transformation sets as
the different combinations of facet types, data types, cardinalities,..., are
numerous. Table 5-1 provides the subset of rules applied in this case study. The

designer can choose among the different alternatives provided by these rules.

Abstract Interaction Facet Information to take into Possible
Component Specification account Concrete
Interaction
Component
“start” Control Feedback A trigger
“create name” and | Create attribute | Data domain | A text output

173

5. Case Studies

“create zipCode” value characteristics with a text input
associated to it
“select gender and | Select attribute | Data type, domain | A dropdown list
select ageCategory” value + selection | characteristics, selection |, a group of
values known values radio buttons
textual or
characters.
“Show Output (value | Attribute, data type, | An output text
Questionnaire” unknown) domain characteristics
“Select Answet” Select attribute | Data type, domain | A dropdown list,
value + repetitive | characteristics a group of
(selection values option buttons
not known)
“Send Questionnaire” | Control Feedback A trigger
“Navigation” Navigation Feedback A trigger

Table 5-1 Correspondence between AIO types and CIO types

5.2.3.c CIC placement

Physical constraints related to the size of the container and 3DCIC are
considered. Fach face of the cube could have just as much a pair of CIC at the
same level, consequently this depends on the size of the components. In the case
of text component this also depends on the size of the string that will display.

5.2.3.d Navigation definition

Navigation specifies how the visibility property of CCs is set and, consequently,
defines transitions between them. Since all elements are not presented
simultaneously into the same prism face, there is a particular need to define a
sophisticated navigation scheme. Some schemes can be added for this purpose, so
we identify that for any prism there is a need to add triggers that allows
navigation, i.e. go back and forward to each face of the prism (this will be
restricted depending on the navigation info from the task model, maybe certain
information could not be accessible while other is accessed). In this particular case
just the fourth faces allows navigation.

5.2.3.e Resulting specification

The resulting specifications are obtained by realizing the above development sub-
steps. Figure 5-5 presents a mock-up of the graphical Ul For the section start one
face of the cube will launch this task, the second face corresponds to the provide

174

5. Case Studies

personal data task. In this part the rectangles next to the name and zip code,
corresponds to the surface zone that will render the input text. The arrows for

navigation are shown in the bottom of faces two-four.

A global view of the UsiXML mapping could be secen below, the cube as the
container is divided in 6 faces but the top and the bottom are useless in this case.
Each of the fourth faces of the fourth sized prism (cube) has a purpose that is to
render each of the 3D graphical individual components (3DGIO). As four AC
were required the cube cleatly works as an option to render each AC in each of its
four faces. Later we will show another option to render the same problem so as to
increment the quantity of question to use another shape instead of the cube.

> XL
« Cube
=id oy
= name CubePale
= defaultContent “irtual Polling System
= size 20,2020
= solid true
= isVisible true
= isEnabled true
Group
> CubeFace id=C1
> CubeFace id=C2
> CubeFace id=C3
| > CubeFace id=C4

The UsiXML resulting from this process is the following:

<?xml version="1.0" encoding="UTF-8"?>

<Cube id="C1" name="CubePole" defaultContent="Virtual Polling System" size="2.0, 2.0, 2.0"

solid="true" isVisible="true" isEnabled="true">
<Group>

<CubeFace id="C1">

<SphereTrigger defaultContent="Start" radious="1.5" solid="True" isVisible="true"

isEnabled="true">
<Transform scale="8.23 8.23 8.23" translation="0.27 12.14 18.30"/>
<TouchSensor id="TS1" enabled="True"/>
<Appearance name="ButtonAppe" id="Appl">
<Material diffuseColor="0.8 0.8 0.0" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
</SphereTrigger>
</CubeFace>
<CubeFace id="C2">
<Outputtext3D defaultContent="Name" id="T1">
<Appearance name="ArrowAppe3" id="Back3">
<Material diffuseColor="0.8 0.8 0.0" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<Transform translation="-1.51 -0.11 0.19"/>

175

5. Case Studies

</Outputtext3D>
<Inputtext3D defaultContent=""id="IT1">
<Transform translation="0.025 -0.11 0.19"/>
<Appearance name="ArrowAppe3" id="Back3">
<Material diffuseColor="0.8 0.8 0.0" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TST1" enabled="True"/>
</Inputtext3D>
<Outputtext3D defaultContent="Zip Code" id="T2">
<Transform translation="-1.39 -0.22 0.02"/>
<Appearance name="ArrowAppe3" id="Back3">
<Material diffuseColor="0.8 0.8 0.0" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
</Outputtext3D>
<Inputtext3D defaultContent=""id="IT1">
<Transform translation="0.09 -0.22 0.02"/>
<Appearance name="ArrowAppe3" id="Back3">
<Material diffuseColor="0.8 0.8 0.0" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TST2" enabled="True"/>
</Inputtext3D>
<Outputtext3D defaultContent="Gender" id="T3">
<Transform translation="-1.60 -0.33 0.0"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
</Outputtext3D>
<radioButton id="" defaultContent="M" solid="True" isVisible="true" isEnabled="true"
defaultState="True" groupName="Gender"/>
<Transform translation="-.60 -0.33 0.0"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TSRB1" enabled="True"/>
<radioButton/>
<radioButton id="" defaultContent="F" solid="True" isVisible="true" isEnabled="true"
defaultState="False" groupName="Gender"/>
<Transform translation="0.0 -0.33 0.0"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TSRB2" enabled="True"/>
<radioButton/>
<Outputtext3D defaultContent="Age" id="T4">
<Transform translation="-1.6 -.44 0.0"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
</Outputtext3D>
<radioButton id="" defaultContent="18-25" solid="True" isVisible="true" isEnabled="true"
defaultState="True" groupName="Age"/>
<Transform translation="-.60 -0.44 0.0"/>
<Appearance name="TEXT" id="TEXT">

176

5. Case Studies

<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TSRB1" enabled="True"/>
<radioButton/>
<radioButton id="" defaultContent="25-45" solid="True" isVisible="true" isEnabled="true"
defaultState="False" groupName="Age"/>
<Transform translation="0.0 -0.44 0.0"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TSRB1" enabled="True"/>
<radioButton/>
<radioButton id="" defaultContent="45+" solid="True" isVisible="true" isEnabled="true"
defaultState="False" groupName="Age"/>
<Transform translation="0.6 -0.44 0.0"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TSRB1" enabled="True"/>
<radioButton/>
<ArrowTrigger id="A1" defaultContent="Back" solid="True" isVisible="true"
isEnabled="true">
<Transform scale="0.76 0.18 1.0" translation="17.3 5.9 7.08" rotation="0.0 1.0 0.0
1.570796"/>
<TouchSensor id="TS2" enabled="True"/>
<Appearance name="ArrowAppel" id="Backl1">
<Material diffuseColor="0.8 0.8 0.0" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
</ArrowTrigger>
<ArrowTrigger id="A2" defaultContent="Next" solid="True" isVisible="true"
isEnabled="true">
<Transform scale="8.23 8.23 8.23" translation="-18.6 5.4 7.5"/>
<TouchSensor id="TS3" enabled="True"/>
<Appearance name="ArrowAppe2" id="App2">
<Material diffuseColor="0.8 0.0 0.0" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
</ArrowTrigger>
</CubeFace>
<CubeFace id="C3">
<Outputtext3D defaultContent="The professor teach what it was expected?" id="T4">
<Transform translation="-0.62 0.0 -0.52"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
</Outputtext3D>
<radioButton id="" defaultContent="Yes" solid="True" isVisible="true" isEnabled="true"
defaultState="True" groupName="YesNo1"/>
<Transform translation="0.0 -0.5 0.0"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TSRB1" enabled="True"/>
<radioButton/>

177

5. Case Studies

<radioButton id="" defaultContent="No" solid="True" isVisible="true" isEnabled="true"
defaultState="False" groupName="YesNo1"/>
<Transform translation="0.5 -0.5 0.0"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TSRB2" enabled="True"/>
<radioButton/>
<Outputtext3D defaultContent="Did you like the course?" id="T4">
<Transform translation="-0.62 -1.0 -0.52"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
</Outputtext3D>
<radioButton id="" defaultContent="Yes" solid="True" isVisible="true" isEnabled="true"
defaultState="True" groupName="YesNo2"/>
<Transform translation="0.0 -1.5 -0.52"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TSRB3" enabled="True"/>
<radioButton/>
<radioButton id="" defaultContent="No" solid="True" isVisible="true" isEnabled="true"
defaultState="False" groupName="YesNo2"/>
<Transform translation="0.5 -1.5 -0.52"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TSRB4" enabled="True"/>
<radioButton/>
<ArrowTrigger id="A3" defaultContent="Back" solid="True" isVisible="true"
isEnabled="true">
<Transform scale="0.76 0.18 1.0" translation="3.46 5.27 -19.06" rotation="0.0 1.0
0.0 1.570796"/>
<TouchSensor id="TS4" enabled="True"/>
<Appearance name="ArrowAppe2" id="Back2">
<Material diffuseColor="0.8 0.8 0.0" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
</ArrowTrigger>
<ArrowTrigger id="A4" defaultContent="Next" solid="True" isVisible="true"
isEnabled="true">
<Transform scale="8.23 8.23 8.23" translation="-18.6 5.4 7.5"/>
<TouchSensor id="TS5" enabled="True"/>
<Appearance name="ArrowAppe2" id="App2">
<Material diffuseColor="0.8 0.0 0.0" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
</ArrowTrigger>
</CubeFace>
<CubeFace id="C4">
<Outputtext3D defaultContent="Did you enjoy the course?" id="T4">
<Transform translation="-1.60 -0.33 0.0"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>

178

5. Case Studies

</Appearance>
</Outputtext3D>
<radioButton id="" defaultContent="Yes" solid="True" isVisible="true" isEnabled="true"
defaultState="True" groupName="YesNo3"/>
<Transform translation="-.60 -0.33 0.0"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TSRB5" enabled="True"/>
<radioButton/>
<radioButton id="" defaultContent="No" solid="True" isVisible="true" isEnabled="true"
defaultState="False" groupName="YesNo3"/>
<Transform translation="0.0 -0.33 0.0"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TSRB6" enabled="True"/>
<radioButton/>
<ArrowTrigger id="A5" defaultContent="Back" solid="True" isVisible="true"
isEnabled="true">
<Transform scale="0.76 0.18 1.0" translation="-19.15 5.3 -6.5" rotation="0.0 1.0 0.0
1.570796"/>
<TouchSensor id="TS6" enabled="True"/>
<Appearance name="ArrowAppe3" id="Back3">
<Material diffuseColor="0.8 0.8 0.0" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
</ArrowTrigger>
<SphereTrigger id="B2" defaultContent="Send" radious="1.5" solid="True"
isVisible="true" isEnabled="true">
<Transform scale="8.23 8.23 8.23" translation="-18.6 5.4 7.5"/>
<TouchSensor id="TS7" enabled="True"/>
<Appearance name="ButtonAppe2" id="App2">
<Material diffuseColor="0.8 0.0 0.0" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
</SphereTrigger>
</CubeFace>
</Group>
</Cube>

How each face could look in a 2D view is shown below. The arrows show the
need for navigation.

179

5. Case Studies

Virtual Polling system

Name:[]
Zip Code: 1]
Gender: M F

Age : 18-25 25-45 45+

A 4

A

A 4

A

Questions

Answers

Figure 5-5 Mock-up of the Ul

5.2.4 Step 4: From Concrete model to Final User Interface

The fourth step involves the transformation from CUI to FUI In screenshot of
Figure 5-0, the decomposition of ACs (option B) is fine-grained: the information
related to the person are first acquired in a rotating cube (which was selected as
the container), then each pair of questions is presented at a time with the facilities
of going forward or backward like a wizard (using arrow triggers). Since only 3
questions and one set of person information are considered, a cube is selected to
present each of the fourth part. If for any reason, more questions were defined, let

us say 5, a regular volume with 6 faces would be generated instead.

180

5. Case Studies

M F

18-25 2545 45+
 Eacy =

o-0

Figure 5-6 Polling system rendered in VRML

Each face of the cube is mapped to each of the ACs. The first face of the cube for
the default content of the cube (i.c., the title) and the start button, see Figure 5-7:

Figure 5-7 Polling system rendered in VRML

Below we show the UsiXML code generated for the CUI, corresponding to the
first AC, that just have one AIC, which is mapped to a SphereTrigger. The cube
as the principal container has its title, the attribute defaultContent (inherited from
CIO model). This title is part of the first face of the cube. The second cube
attribute is its size.

<Cube id="C1" name="CubePole" defaultContent="Virtual Polling System" size="2.0, 2.0, 2.0"
solid="true" isVisible="true" isEnabled="true">

181

5. Case Studies

<Group>
<CubeFace id="C1">
<SphereTrigger defaultContent="Start" radius="1.5" solid="True" isVisible="true"
isEnabled="true">
<Transform scale="8.23 8.23 8.23" translation="0.27 12.14 18.30"/>
<TouchSensor id="TS1" enabled="True"/>
<Appearance name="ButtonAppe" id="Appl">
<Material diffuseColor="0.8 0.8 0.0" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
</SphereTrigger>
</CubeFace>
<CubeFace id="C2">
<CubeFace id="C3">
<CubeFace id="C4">
</Group>
</Cube>

Continuing with the example, the second AC is mapped to the second face of the
cube; Figure 5-8 shows the FUI resulting.

JOSEFINA GUERKR

1348

M F

18-25 25-45 45+

Figure 5-8 Appearance meta-model

As in this example we have three different groups of CIO, which are:
1. A text output and a text input for the create name and zip code tasks.

2. A text output and a group of radio buttons for the select gender and age
category tasks.

3. Arrow triggers for navigation.

We show The CUI UsiXML code related to each of the above two situations but
showing just one of its two cases. Below the section that corresponds to the name
creation. OutputText (specialized in any kind of output text) and InputText
(specialized in any kind of input text) ate two components from the 3DGIC. For

182

5. Case Studies

an InputText there is a need to declare a sensor (similar than registering the event
handlers in java) to listen to events that could be triggered by the InputText. Such
events could be, is Over (the pointer is on the input text), key Down (to identify
the key pressed from the keyboard). The rest of the code describes the appearance
for the text and its position (transform).

<Outputtext3D defaultContent="Name" id="T1">
<Appearance name="ArrowAppe3" id="Back3">
<Material diffuseColor="0.8 0.8 0.0" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<Transform translation="-1.51 -0.11 0.19"/>
</Outputtext3D>
<Inputtext3D defaultContent=""id="IT1">
<Transform translation="0.025 -0.11 0.19"/>
<Appearance name="ArrowAppe3" id="Back3">
<Material diffuseColor="0.8 0.8 0.0" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TST1" enabled="True"/>
</Inputtext3D>

The second part of the face shows an output text followed by a radio buttons
group. Below the code related to the radio buttons group. We use the same
attributes that are described in UsiXML for this component, as in 3D there is no
difference. We need a radio group name, a default state (whether is selected or
not). The rest of the code describes the appearance for the text and its position
(transform).

<radioButton id="" defaultContent="Yes" solid="True" isVisible="true" isEnabled="true"
defaultState="True" groupName="YesNol1"/>
<Transform translation="0.0 -0.5 0.0"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TSRB1" enabled="True"/>
<radioButton/>
<radioButton id="" defaultContent="No" solid="True" isVisible="true" isEnabled="true"
defaultState="False" groupName="YesNol"/>
<Transform translation="0.5 -0.5 0.0"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TSRB2" enabled="True"/>
<radioButton/>

Finally the arrow triggers used for navigation purposes. The default content of the
trigger defines the text attached to them. The rest of the code describes the
appearance and its position (transform). There is a need for a sensor to trigger an

183

5. Case Studies

action, in this case will be the translation of the cube +- 90 digress related to Y
axis.

<ArrowTrigger id="A1" defaultContent="Back" solid="True" isVisible="true"
isEnabled="true">
<Transform scale="0.76 0.18 1.0" translation="17.3 5.9 7.08" rotation="0.0 1.0 0.0
1.570796"/>
<TouchSensor id="TS2" enabled="True"/>
<Appearance name="ArrowAppel" id="Backl1">
<Material diffuseColor="0.8 0.8 0.0" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
</ArrowTrigger>
<ArrowTrigger id="A2" defaultContent="Next" solid="True" isVisible="true"
isEnabled="true">
<Transform scale="8.23 8.23 8.23" translation="-18.6 5.4 7.5"/>
<TouchSensor id="TS3" enabled="True"/>
<Appearance name="ArrowAppe2" id="App2">
<Material diffuseColor="0.8 0.0 0.0" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
</ArrowTrigger>

The third and four faces for the cube, do not have any different object that could
be interesting to describe, just output text, radio buttons groups and a Sphere
trigger, see Figure 5-9. What is relevant is just that the mapping to each FUI, in
this case in VRML corresponds to the CUI model, describe in UsiXML.

Figure 5-9 Faces 3 and 4

If the set of questions could be more extended, automatically the sides of the
prism are expanded. In the example above, the cube fits the necessities of a pool
of questions. In Figure 5-10 a 6-sizes prism serves as container instead of the
cube. The path through obtain the six-sizes shape is analogous to the previous
one, the difference is the quantity of questions at the when generating the final
user interface. In this second scenario, instead of four containers there is a need
for 2 more, as four more questions were added to the pool. As a consequence the
shape required to handle this information varies.

184

5. Case Studies

Figure 5-10 Hexahedron Polling System

5.2.4.a Sub-Step: From Concrete to a High Level Editor

The UsiXML description of the UI is not enough; we need an editor to
manipulate the 3D objects easily with an automatic feedback of the modifications
done by the user, related to the position in the virtual space of the CUIL A high
level editor could be used for this purpose, so instead of transforming a UsiXML
CUI description directly to its FUI representation we propose to transform it to
code corresponding to high level editor than allows a WYSWYG (what you see is
what you get) visualization. In the chapter 2 we discussed some of the editors that
allows this kind of manipulation, so as we analyzed which could be more suitable
for import/export operations to the most used 3D languages, such as: Java3D,
VRML, or X3D.

We found Maya ASCII file one option. The files is opened in the Maya editor,
objects could be manipulated, and finally exported, Figure 5-11,. Maya plug-ins

offers, among others exporters, RawKee (http://rawkee.sourceforge.net/), an
open source (LGPL) X3D plug-in, that exports Maya's 3D data as an X3D or
VRML file with support for scripting.

185

5. Case Studies

-".' ! Mbaya 5 FMICL ey Worrbchog, g oo s e o g, syt Wy fo i mgSorstem 2. ma

ipmEl R R|Er L2 eH 07 AaR|{BRS DO |00 L | @IS i

qul&mlwmllwlswdowmlm Dymamics | Rerderna | ParsEtivcts | Coth | Fhsds | Fur | Hae | Cuvtom | ﬂ

kl\ﬁ‘b?ﬁm%ﬁ!@ @ﬁﬁ"’%sﬂﬂll METE LY P

<7 Expert All Options

Y
i
‘ Hano o ok -VRNL 57 leasidor @ Enabied
- ol |y e —
P =
S TH —
Frames pe cec |30 0000 N —_—
Aneeale F Viemeas W Tranm

W Maish W Lights ™ Camaar
Fapliarme wang. ¥ Arem Curves
_=| Expont Options
Himranchy:. © warld st * X

Erport A1 gy Cloge: I

=l

[=1
g fas

=

o Jo0 0 0 10 M0 AfEm elna] |4 P |
EI'NII | - - _! 150.00 250 00 wr |Ho Charackes Sot -0
il

Figure 5-11 Edition of the 3DUI in Maya

5.2.4.b Sub-Step: From High Level Editor to FUI

Once edited in Maya the User Interface can be exported to VRML or X3D. There
will be a need to do reverse engineering so the coordinates specified at the CUI
level could correspond to the new specification done in Maya. The FUI produced
by Maya generates more than 30 thousand lines of code. There is a final need to
add some script coding to add the behavior to the example such as rotating when
clicking on the arrows for the navigation.

5.2.5 Reconstruction of the case study in Java 3D

The scenario proposed in the previous example uses containers to render the
information that will be shown in the virtual space. Normally controls and any
CIO of the Ul in 2D are attached to any kind of container. In virtual space the
counter part of the window is the virtual space itself. So, object could be rendered
in the virtual space, floating, with out any need of containers.

Designers are allowed to decide whether they prefer to use containers (as we did
in the face of the prism) or attach directly the components to the virtual space.
This design decision should be taken when passing from the Abstract model to
the concrete model. We could decide whether container contained in the main
container (the virtual space in 3D) will be attached to a surface that then will

186

5. Case Studies

corresponds to a prism or will be attached directly to the virtual space. The
second option will be used to show the results of this kind of decision.

If we do not mapped the containers to surfaces then there will not be a final
instance of any kind of prism to render each surface that serves as container. The
virtual space will render all the content of the container describe in the CUI
model.

In Figure 5-12, the screenshot reproduces the worlds generated in Java3D where
each AC (provision personal data and answer question) is mapped onto the virtual
space. All AICs belonging to each AC are then mapped recursively onto Java3D
widgets depending on their data type. In this particular case, the designer selected
also the graphical representation if any, along with the textual representing. In this
visualization, we propose another way to represent the category selection. Instead
of using a comboBox, or the traditional view of icons attached to radio button, we
proposed the use of 3D personages instead of icons. This 3D graphic
representation of the option could reinforce the understanding, notice that we
keep the text below the personages.

- Juan Manuel Gonzalez
g

- B-1348

i T
More Duestions > [8-35 30db 45+

Figure 5-12 Edition of the 3DUI in Maya

To obtain this result there is a need to have a look at the CUI model. Each
3DCIO has an attribute called icon. This icon in 2D generally corresponds to a
bitmap image that is attached to the controls in a UL In 3D we propose that icons
could be any shape, so in this case we use the same definition as in the previous

187

5. Case Studies

example to define radio button but adding the url corresponding to each radio
button. The code could be seen as follows:

<radioButton id="" defaultContent="18-35" solid="True" isVisible="true" isEnabled="true"
defaultState="True" groupName="YesNol" icon="youngMan.java"/>
<Transform translation="0.0 -0.5 0.0"/>
<Appearance name="TEXT" id="TEXT">
<Material diffuseColor="0.3 0.3 0.3" specularColor="0.11 0.11 0.11"
emissiveColor="0.0 0.0 0.0" shininess="0.3"/>
</Appearance>
<TouchSensor id="TSRB1" enabled="True"/>
<radioButton/>

5.2.6 Reconstruction of the case study for the 3D rendering of
its corresponding 2DUI

The UsiXML specifications at the CUI could also be interpreted in VUIToolkit, a
rendering engine for 3D Uls specified in UsiXML in VRML97/X3D. In the
screenshot of the Figure 5-13, we show the result of using the Toolkit that
generates the 3D rendering of how our polling system could look in a 2D user
interface. The 2D components have been enriched with volumes. One can discuss
that the components are rendered as 3D widgets in a way that remains similar to
the “Look & Feel” of 2D widgets, except that the “Feel” is a genuine 3D
behavior. According to this view, this kind of FUI can be interpreted only as a 3D
rendering of 2D Uls, even if their specifications are toolkit-independent [Moli05].
This approach provides an option to the use of Java applets Uls to manipulate
virtual applications in the Web, instead, the use of the VUIToolkit would not
disrupt the 3D “look”.

188

5. Case Studies

Hama; [1ar WA
2pcoss| 14 Gemre: plac
Cumessnary

D4 You B the course?

il v cunlard L with yeur wieciations?
il wroa profusor faach whia it wk epend

Ol you @k heto 1 e asststant
ERST—————

Figure 5-13 Three-D rendering of the 2D interface for the polling system

189

5. Case Studies

5.3 Case Study 2: the Virtual interactive Office

This case study refers to a virtual interactive environment that corresponds to the
description of virtual objects (chairs, table, walls, and doors) and interactive
objects for the 3D UL The user task, depicted in Figure 5-14, that the user can
interact with a table, navigate through the room and interact with a screen. For
the navigate room, the task model uses the identified task pattern (section
4.3.1.b) travel and Wayfinding (which can be seen as a hidden task when the
implementation do not considers virtual environment contents control, for
instance internet plug-in for browser already control the system tasks for
wayfinding). The interact with big Screen indicate as the interact with screen
task refers to a turn on/off a screen than renders video or images.

T @
Interactwith Tahle* W
g o —I—
S 1 ; > ® .
g) I |,> 9 n g) tramel Wayfinding & 1> —E;
intaractwith Scraen Interactwith Screen Interactzith Screen interactwith Screen togale Big Screen Uptiate Big Screen
Ly
E] I (] Indicate path Translate,
=
Control Screen Update Screen
] [| I 8
Determine User Position Determing world Structure wake Decision
L] I i
Select Scrgen Mode Toogle Screen
H—1—9 —1—9-1-%9

Toggle Low Toggle Mid {oggle High toogle 30

Figure 5-14 Virtual Office task Model

The task model is reified into the CUI model, using Ideal XML, the rules ate
similar as in the previous example so there is no need to explain the internal
process of the tool. What is relevant is to notice, that even that we put in the task
model the make decision task for wayfinding, at the CUI model this kind of task
do not appear, as they are not part of the Ul

190

5. Case Studies

E,, Interact with Screen @] [m‘;, interact with Streen@] [g:, interact with Screen @] @ toggle @

i show @ ‘

< toggle Big Sereen (B | ¥ Update Big Screen (&)

i@ Interact with Big Screen [~]
[a) toggle G & toggle @) @& Determine
[¢51 toggle High & [-zgl toggle 30)
lf% Select Screen Mode
[Control Sereen [~]
|#% Interact with Screen [~
[Interact with Table* [~
@ travel
i@ Interactive Room i@ MNavigate room* [~])

Figure 5-15 Virtual Office Concrete Model

5.3.1 Step 3: From Abstract model to Concrete User Interface
model

The third step implies a transformational system that is composed of necessary
rules for realizing the transition from AUI to CUIs. We won’t consider in this
example the attachment of objects to any surface, we just create a direct mapping,
for each component and then in the high level editor each component is put in
the corresponding shape.

This sub-step involves the highest number of rules of all transformation sets as
the different combinations of facet types, data types, cardinalities,..., are
numerous. Table 5-2 provides the subset of rules applied in this case study. The
designer can choose among the different alternatives provided by the rules.

Abstract Interaction Facet Information to take into Possible
Component Specification account Concrete
Interaction
Component
“Navigation” Navigation The platform wused, an | There is no need
internet Browser with any | for any
pug-in, concretization of

this task or any
subtask

Interact with big | Toggle + Element | The big screen reacts on | Toggle button,
screen/ Screen (Screen/Button) touch, the small screen | touch screen
react with a toggle button.

191

5. Case Studies

This is also a design rule.

“select screen mode”

Select attribute
value + selection
values known

The set of possible values
are in subtask instead of a
domain list of values.

A group of
button
acting as a radio

group.

toggle

(Show) + Element
(Image or video)

domain characteristics

“Toggle Toggle + element Toggle button
Low/Mid/High/3D”
“Update Screen” Communicate Attribute, data type, | An image

component ot
video
component

Table 5-2 correspondence between AIO types and CIO types

Physical constraints related to the size of the container and 3DCIC are considered

with default values. Remember that if we could pass this specification to a high

level editor allows us to arrange manually the objects. Ideally we expect to expand

a virtual environment, such as Maya, in order to have import/ exports to our

format, so; in this sense changes made in the toolkit can be track in the CUI

model and backward, to have a consistent model at all the levels.

The resulting specifications are obtained by realizing the above transformational
development sub-steps. Figure 5-16, 5-17, 5-18 present a mock-up of the

graphical Ul

Screen
Low Mid
On/
Off
High 3D

Figure 5-16 Mock-up of the Control Screen Ul

192

5. Case Studies

Figure 5-17 Mock-up of the Interact with table UI

S5S HED

Big Screen
| | |
e e

Figure 5-18 Mock-up of the Control Screen UI

5.3.2 Step 4: From Concrete model to Final User Interface

In screenshot of Figure 5-19, the Big screen is shown, in Figure 5-20 the control
screen and interact with table in Figure 5-21, 5-22, each figure shows alone each
FUI corresponding to each task. All the components together are in the
screenshot of Figure 5-24 and 5-25, that is composed of 4 screenshots of the
virtual office, in which the top left image cotresponds to the hall and the entry to
the virtual Room. All the content was specified manually in VRML, reusing
components such as chairs, tables, etc. The navigation task is controlled by the
Cortona player plug-in., which support the navigation with the mouse and
keyboard, as input devices, the user just decide where to go. In figure 5-26, we
introduce a new task, which is the virtual polling system (Case study 1). Notice
that we can place this task anywhere in the virtual space, in this example the cube
is on the table in the back of the room.

193

5. Case Studies

@ O o -0 e @ 0

Figure 5-19 Big Screen rendered in VRML

© o O ©«© e @ ~Q

Figure 5-20 Control Screen rendered in VRML

194

5. Case Studies

Figure 5-22 Top View of the virtual table rendered in VRML

195

5. Case Studies

Figure 5-23 Hall Virtual Office

US'IXML :

Figure 5-24 Entry view of the Virtual Office

196

5. Case Studies

PlLE JOSEFINA

Zip Code
e Gender M F
Age 18-25 2545 45+

Figure 5-26 Virtual Office

197

5. Case Studies

5.4 Conclusion

In this chapter we introduce two case studies to show the feasibility of the
method proposed for the development of 3D Uls. The two case studies show
how model-based development applies to two low-complex examples.

To solve these case studies we have followed the following procedure: (1)
Building initial models. Such models have been edited with their associated editing
tool. (2) Editing and debugging of rules within the AGG. (3) Importing initial
models into the AGG graphical environment. (4) Selecting a transformation set
and firing the rules contained in this set. (5) Generate UsiXML specifications and
(6) generate 3D Uls.

This process led us to deduce the following conclusions regarding the strengths
and weaknesses of our method.

Our case studies showed the feasibility of developing a 3D UI in a model-based
relying on explicit transformation catalogs at any time. The diversity of
development paths that have been presented highlight the possibility of
manipulating 3D Uls related artifacts according to different development
scenarios and pave the way to consider multiple other alternatives. The reuse of
transformations and components has been illustrated when transformation
systems have been straightforwardly reused from one case study to another one.

The feasibility of the approach is much depending on the amount and the quality
of the design rules that are also encoded in UsiXML. If a reasonably extensive set
of rules is used, the generated results are usable. If this is not the case, the model
resulting from the transformation could be considered as underspecified. It is then
required to manually edit within a XML-compliant editor. Future work will
therefore be dedicated to exploring more design options and encode them in
UsiXML so as to serve better transformations. This does not mean that a
generated 3D Ul is as usable or more usable than a manually-produced one, but at
least it could be obtained in a very fast way. Moreover, the exploration of
alternative design options could be facilitated since they are operated at a higher
level of abstraction than the code level.

198

6. Validation

Chapter 6 Validation

6.1 External Validation

External validation is realized by the application of our method on case studies.
The main goal of these case studies is to show the feasibility i.e., the capability to
solve the problems raised by the presented case studies.

Our case studies showed the feasibility of developing a 3D UI in a model-based
relying on explicit transformation catalogs at any time. The diversity of
development paths that have been presented highlicht the possibility of
manipulating 3D Uls related artifacts according to different development
scenarios and pave the way to consider multiple other alternatives. The reuse of
transformations and components has been illustrated when transformation
systems have been straightforwardly reused from one case study to another one.

Further evaluation can be done related to the external evaluation such as usability
test, questionnaires applied to domain experts or any other source of external
feedback that could enlarge the quality of the results provided here.

6.2 Internal Validation

The internal validation of a methodology consists in assessing its characteristics
against a set of selected criteria. The relevant criteria, called requirements, for our
methodology have been elicited and motivated after the state of the art of Chapter
2. This section proposes a discussion for each of these requirements.

Requirement 1: Expressivity — means that a conceptual framework should
provide enough details to address problems that motivated the elicitation of its
constituent concepts. In our context models should, at least, provide enough
details to allow an implementation of the system it describes. This essential
requirement is not fulfilled by many formal methods, for instance those focusing
on verifying state properties of the system that is being built (Motivation: general
principle in software engineering, Obs. 6).

199

6. Validation

Comment. This requirement was partially achieve with the ontology of concepts.
Further descriptions and components need to be added to enrich the expressivity
regarding 3D Uls.

Requirement 2: Machine processable — states that the proposed ontology
should be legible by a machine. To allow the transformational approach.

Comment. AGG tool and IdealXML, are both computer programs which are the
base of the method.

Requirement 3: Human readable — means that the provided ontology should
be proposed in a format that enables its legibility by a human agent. Such efforts

are done in InTML, CoGenlIVE, VR-WISE and Contigra. Although the main
concern is on machine processable.

Comment. Graphs when rules are applied are almost impossible to track by the
human. UsiXML specifications are based on concepts that are easily to
understand. However the abstraction level used, sometimes could difficult to
understand the method.

Requirement 4: Standards — states that the expression means used to represent
our ontology should rely on well accepted standards in the software engineering
community, maybe using X3D as target language.

Comment. The use of standards in 3D is complicated as there is no one. Efforts to
develop a standard was done with VRML, and when a lot of work had been done
related to VRML, its predecessor X3D was not compatible with the tools
developed. A great effort has been dedicated to enlarge the capabilities of X3D
but yet there is no better or worse approach until now for not just the FUI level
but for the rest of the models also.

6.2.1 Methodological Requirements

Requirement 5: Methodological explicitness — states that the constituent steps
of our methodology should be defined in a way that facilitates the comprehension
of its internal logic and its application.

Comment. In chapter 4 a clear an complete description of concepts is provided.

200

6. Validation

Requirement 6: Methodological flexibility — refers to the ability to initiate the
development from any development stage (i.e., multiple entry points) and to
terminate it at any development stage (i.e., multiple exit points).

Comment. Even that we just consider forward engineering we describe the need in
the case study for reverse engineering path, when a FUI is modified using a high
level editor, such as Maya, in order to have a CUI description that is consistent
with the FUI. Such kind of work is done in the CoGenlVE tool for the VRIXML.

Requirement 7: Executability — states that development steps should be
expressed in such a level of accuracy that it is possible to execute them by an
automaton.

Comment. This is done with the graphs.

Requirement 8: Methodological separation of concern. — refers to a
partitioning of methodological steps according to the process types they realize
(general principle in software engineering).

Comment. In chapter 4 a clear an complete description of concepts is provided.

Requirement 9: Methodological extendibility — refers to the ability left to the
designer to extend the development steps proposed in a methodology.

Comment. This can be done, as the set of transformational rules is not fix or closed,
there is always a way to change the rules, the path, etc. also it is possible to
extends this methodology, as we are already extending it to 3D Uls.

Requirement 10: Methodological Homogeneity — refers to the property of
methodological steps of being defined using a common syntax. All transformation
steps should be described in a single formalism that facilitates their understanding
and processing,.

Comment. By expressing every step in terms of UsiXML and graph nodes we
achieve this homogeneity of term at all level of the methodology.

Requitement 11: Methodological reuse — refers to the possibility in a

methodology to capitalize on the knowledge defined by designers to perform
development steps and re-using this knowledge for other developments.

201

6. Validation

Comment. Task patterns is an example of how knowledge about the 3D Uls can be
reused once encoded in the model.

202

Chapter 7. Conclusion

Chapter 7 Conclusion

7.1 Context of This Work

Transformational development is one of the answers provided by the Software
Engineering (SE) community to tackle the problem of building software in a
systematic and principle-based way.

Transformational development in SE defines the development of software as a
progressive refinement of abstract models into concrete models, until program
code [Somm99]. This transformational development relies on catalogs of
transformations able to (semi-)automatically perform model-to-model and model-
to-code transformations.

Transformational -~ development —of user-interfaces (I'DUI) specializes principles of
transformational development in the context of UI development. By analogy with
transformational development in SE, it defines the development of user interface
systems as a successive application of transformations to an initial representation.
This generally implies a progressive refinement of an abstract model into a
concrete model, until program (here UI) code, or vice versa.

Not enough effort has been conducted to the development of 3D Uls as to its

counter part in 2D. Such lack of methodologies so as the fact that actual software
tool are more dedicated to design virtual content rather than 3DUIs.

203

Chapter 7. Conclusion

UsiXML is a markup language that describes the User Interface at many levels,
task, abstract, concrete, and consider concepts relevant to Ul such as the context
of use, the domain, the dialog.

7.2 Content of This Dissertation

The state of the art of Chapter 2 reveals a series of shortcomings in existing
approaches for achieving transformational development of 3D Uls. Also the
languages, toolkits, and render engines were examined. The shortcomings
delineated our problem space. These shortcomings lead us to conclude that we
can be improved the way 3D Uls is done along several dimensions.

Chapter 3 presents a taxonomy of 3D Uls that covers actual ways to generate 3D
Uls and that serves as a container way to organize examples found in the literature
an then to generate the ontology of 3D Uls.

Chapter 4. Provides the solution to the shortcoming identified in chapter 2. For
this purpose, this dissertation proposes (1) an ontological framework extending
the actual description that considers just 2D Uls (2) a methodological framework,
called model-based development, based on the ontological framework previously
introduced. This methodological framework introduces a new paradigm for 3D
UI development.

This development method decomposes any development activity (e, a
development scenario) in a series of development steps consisting in the
transformation of the artifact(s) in the scope of a development stage (here referred as
viewpoin?) into other development artifacts. In this context, a development path is
defined as an archetypal composition of development steps. We identified two
development paths: forward engineering, reverse engineering, even that we just
show how to achieve one of those.

Chapter 5 introduces two case studies that showed the feasibility of developing a
3D Ul in a model-based relying on explicit transformation catalogs at any time.

204

Chapter 7. Conclusion

7.3 Summary of Contributions

A model-based development method for 3D Uls. The method based on graph
transformation has been introduced, defined and illustrated. The ontology was
extended in all the levels

e Task Model, new action task definitions were added. Some task patterns for
the most common User task in virtual environments.

e 3D Uls Concrete Model, the definition of new classes for concrete
interaction objects, dividing the actual definition in 2D CIOs and 3D CIOs.
The specification of a meta-model for 3D Uls.

e Context model, a new environmental model was introduced accordingly not
just to the physical space but to the virtual space also.

The mapping to achieve an Abstract model to 3D Concrete model
transformation was also introduced.

A 3D Uls Taxonomy. We propose a taxonomy that corresponds not just to
more than mixed reality applications but also to a new reality of Web-based virtual
applications, including the real world and 2D GUIs. The taxonomy proposed tries
to cover not just the types of VR applications but also two of the most important
sources of inspiration. One of the goals of this taxonomy is to provide design
ideas when a certain kind of control want to be developed in a specific type of
VR, then designers could see how have been done, if there is a solution, or, if not,
how at other levels of the taxonomy authors solved the problem. Ideally a
software tool with a repository of solutions that can be reused can be the best but
the work to do that is really considerable. First, because of the hardware required
to manipulate the VR application, second because of the programming language
used, and third because of the information sharing, most solutions described in
papets are not open source so there is no way to have access to their code. As a
consequence, there is a need to start from scratch.

7.4 Future works

A lot of things remain to be done around the framework presented in this
dissertation. We point out the following things as the most interesting issues for

us:

205

Chapter 7. Conclusion

= Extend the set of 3D Uls components. The actual description cover a small
set of 3D widgets, we need not just to have the implementation but also
explore more genuine objects, which is one of our goals.

* Define, develop, design and implement a transformation engine that support
the whole path, and includes the mappings from CUI model to a high level
virtual content editor.

® Design evaluation strategies based on the concepts managed by the
methodology. It can be more easily to identify ergonomic rules, at a high level
of the methodological path than on code.

* The interaction modeling (such as details of navigation and manipulation
metaphors) is beyond the context of your current study. It

Dear reader, thank you very much for reading this dissertation.

206

References

References

A

[Abrag9]
Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S., and Shuster, J. “UIML: An
appliance-independent XM user interface language”. In Proceedings of 8™ International World-
Wide Web Conference WWWs, pp. 661-665, 1999.

[Anar06a]
Anark Corporation. “Products: Anark Studio”. Available on:
http://www.anark.com/products/products_studio.as

[Anar06b]
Anark Corporation. “Anark Gameface Evalnation Supplement”. Available on:
http://update.anark.com/Gameface/EvaluationSupplement.html#examples
[Anne67]

Annett J., and Duncan K., Task analysis and training design in Occupational Psychology, 41,
1967, pp. 211-227.

[Alam02a]
Alambik © 1994 - 2002 ALAMBIK Ltd. “Welcome-Introduction”. Available on:

http://www.alambik.com/site

[Alam02b]
Alambik © 1994 - 2002 ALAMBIK Ltd. “What is Alambik?’. Available on:

http://www.web-language.com
[Alam03]
Alambik © 1994 - 2003 ALAMBIK Ltd. “Alambik net viewer”. Available on:

http://www.net-viewer.com

[Auto06a]
Autodesk, Inc. “Autodesk Inventor Series”. 2006. Available on:
http://usa.autodesk.com/adsk/setrvlet/item?siteID=123112&id=5182857

[Auto06b]
Autodesk, Inc. “Autodesk Maya”. 2006. Available on:
http://usa.autodesk.com/adsk/servlet/index?id=6871843&site]lD=123112

[Auto06c]
Autodesk, Inc. “Auntodesk Maya”. 2006. Available on:
http://usa.autodesk.com/adsk/servlet/index?id=6871843&site]lD=123112

[Azev00]
Azevedo, P., Merrick, P., and Roberts, D. “OVID fto AUIML user oriented interface

modeling’. In Proceedings of 1st International Workshop Towards a UML Profile for
Interactive Systems Development TUPIS00. York, October 2000.

B

[BakeO06a]
Baker, M., J. “EuclideanSpace - building a 3D world’. 2006. Available on :

http://www.euclideanspace.com

207

References

[BakeOGb)]
Baker, D. “The database for freeware Max RS plug-ins’. 2000-2006. Available on:
http://www.maxplugins.de/max8.ph

[Balz95]
Balzert, H., From OOA to GUI - The [ANUS-System, in Nordbyn, K., Helmersen, P.H.,
Gilmore, D J., Arnesen, S.A. (Eds.), Proceedings of the Fifth IFIP TC13 Conference on
Human-Computer Interaction INTERACT’95 (Lillechammer, June 25-29, 1995),
Chapman & Hall, London, 1995, pp. 319-324.

[Bart88]
M.-F. BARTHET, “Logiciels interactifs et ergonomie’*, Dunod Informatique, Paris, 1988

[Bles90]
Bleser, Teresa W. & Sibert, John.” Tozo: a tool for selecting interaction technigues”. In: Proceedings
of user interface sofhware and technology (Snowbird, Utah, Oct.3-5,1990) . New York: ACM,
1990, pp. 135-142.

[BlitO6a]
Blitz Research Ltd. “Blitz Research Home page”. Available online:
http://www.blitzbasic.com/Home/ index .php.

[BlitO6b]
Blitz Research Ltd. “About Blitz3D”. Available online:
http://www.blitzbasic.com/Products/blitz3d.php.

[BlitO6c]
Blitz Research Ltd. “About BlitzMax”. Available online:
http://www.blitzbasic.com/Products/blitzmax.php.

[Blit06d]
Blitz Research Ltd. “Maple?’. Available online:
http://www.blitzbasic.com/Products/maplet.php

[Boda95]
Bodart F., Hennebert A., Lheureux J., Provot 1., Sacré B., and Vanderdonckt J.,
“Towards a systematic building of software architecture: The TRIDENT methodological guide”. In
Proceedings of 1st Eurographics Workshop on Design, Specification, Verification of
Interactive Systems DSV-IS'95 (Vienna), Springer Vetlag, 1995.

[Boeh88]
Boehm, B. "A Spiral Model of Software Development and Enhancement." 1EEE
Communications 21, 5 (May 1988): 61-72

[Boms98]
Bomsdorf B. and Szwillus G., “From task to dialogne: Task-based user interface design”. In
SIGCHI Bulletin 30, 1998, pp- 40-42. Available online:
http://www.acm.org/sigchi/bulletin/ 1998.4/szwillus.html.

[Boms99]
Bomsdortf, B., and Szwillus, G., “Too/ support for task-based user interface design”. In SIGCHI
Bulletin, 31(4), 1999, pp. 27-29. Available online: http://www.uni-paderborn.de/cs/ag-
szwillus/chi99/ws/

[Bori97]
Boritz, J. and Booth, k. "A study of interactive 3D point location in a computer simulated virtnal
environment", In Proceedings of VRST'97, pp. 181-187, 1997.

[Bosw02]
Boswell, D., King, B., Oeschger, 1., Collins, P., and Murphy, E. “Introduction to XUL". In
“Creating Applications with Mozilla”, O’Reilly, Sebastopol, September 2002.

208

References

[Boui04]
Bouillon, L., Vanderdonckt, J., and Chow, K.C., Flexible Re-engineering of Web Sites in
Proceedings of 8th ACM Int. Conf. on Intelligent User Interfaces IUT'2004 (Funchal,
Portugal, 13-16 January 2004), ACM Press, New York, 2004, pp. 132-139.

[Bowm97a]
Bowman D. and Hodges L. "An evaluation of technigues for grabbing and manipulating remote
objects in immersive virtual environments", In Proceedings of Symposium on Interactive 3D

Graphics, pp. 35-38, 1997.

[Bowm97b]
Bowman D. Koller, D., and Hodges L. "Travel in Immersive Virtnal Environments: an
Evalution of Viewpoint Motion Control Techniques", In Proceedings of Virtual Reality Annual
International Symposium, 1997.

[Bowm98§]
Bowman D. Wineman, J., Hodges L., and Allison, D. " Desogning Animal Habitats Within an
Immersive 1VE". IEEE Computer Graphics and Applications, 18(5), 9-13. 1998.

[Bowm00]
Bowman D. “The Science of Interaction Design”, In Doug Bowman, Ernst Kruijff, Joseph
LaViola, Ivan Poupyrev, and Mark Mine, SIGGRAPH 2000 Course 3D User Interface
Design: Fundamental Techniques, Theory, and Practice, 2000.

[BowmO1a]
Bowman D. “Basic 3D Interaction Technignes”, In Doug Bowman, Ernst Kruijff, Joseph
LaViola, Ivan Poupyrev, and Mark Mine, SIGGRAPH 2001 Course Advanced Topics in
3D User Interface Design, 2001.

[Bowm04]
D.A. Bowman, E. Kruijff, J. LaViola, and 1. Poupyrev. “3D User Interfaces: Theory and
Practice’, Addison Wesley, Boston, July 2004.

[Bull03]
Bullard L., “Extensible 3D: XML Meets T'RML”, August 06, 2003, available on
http://www.xml.com/pub/a/2003/08/06/x3d.html.

[Byrne92 |
Byrne E. J. “A conceptual foundation for software re-engineering”. In Proceedings of the

Conference on Software Maintenance, IEEE Computer Society Press, November 1992
pages 216--235.

C

[Calh84]
Calhoun, G. C,; Arbak, C. L. & Boff, K. R. “Eye-controlled switching for crew station
design”. In: Proceedings of the Human Factors Society 28th annnal meeting, Santa Monica (CA):
Human Factors Society, 1984, pp. 258-262.

[Calv03]
G. Calvaty,]J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J. Vanderdonckt. “A
Unifying Reference Framework for Multi-Target User Interfaces”. Interacting with Computers,
15(3): 289-308, 2003.

[Card83]
Card SK., Moran T.P., and Newell A., The Psychology of Human-Computer Interaction,
Lawrence Etlbaum Associates, New York, 1983.

[Care97]

209

References

Carey R., Bell G., “The annotated VRMI. 2.0 Reference Manual’, available on
http://accad.osu.edu/~pgerstma/class/vnv/resources/info/ AnnotatedVrmlRef/Book.h
tml, (1997).

[Carn06]
Carnegie Mellon University. “Alice: Learn to Program Interactive 3D Graphics”. Available on:
http:/ /www.alice.org/

[Cele01]
A. Celentano and F. Pittarello (2001). “/A content centered methodology for anthoring 3d interactive
worlds for cultural beritage’. D Bearman, F Garzotto, Eds., International Cultural Heritage
Informatics Meeting, ICHIM, Cultural Heritage and Technologies in the Third
Millennium, Mildn, 3-7 September 2001, Vol. 2 pp. 315-324, Politecnico di Milano, Italia
y Archives & Museum Informatics, Pittsburgh, PA, USA, Italia, 2001.

[Chap05]
O. Chapuis and N. Roussel. “Metisse is not a 3D desktop”. In Proc. of ACM Conf. on User
Interface Software Technology UIST’2005 (October 2005). ACM Press, New York,
2005.

[Chik90]
Chikofsky E.J. and Cross J.H., Reverse Engineering and Design Recovery: A Taxonomy in IEEE
Software, 1(7), January 1990, pp. 13-17.

[Cock00]
Cockburn, A. and McKenzie, B. “An evaluation of cone trees”. In People and Computers XV
(Proceedings of the 2000 British Computer Society Conference on Human-Computer
Interaction.), University of Sunderland, September 2000, Springer-Verlag, In Press.

[CockO1]
Cockburn, A. and McKenzie. “3D or not 3D? Evaluating the Effect of the Third Dimension in a
Document Management Systens”. In Proceedings of the SIGCHI conference on Human
factors in computing systems. Seattle, Washington, United States. Pages: 434 — 441, 2001.

Available on: http://www.cosc.canterbury.ac.nz/andrew.cockburn/papers/chi01DM.pdf
[Conn92|

DB Conner, SS Snibbe, KP Herndon, DC Robbins, RC Zeleznik, A van Dam. “Three-

Dimensional Widgets”. Special Issue of Computer Graphics (Proceedings of the 1992

Symposium on Interactive 3D Graphics), pages 183-188. ACM Press.

[Cons03]
Constantine L. L., “Canonical Abstract Prototypes for Abstract Visnal and Interaction”. In
Proceedings of the 10% International workshop on Design, Specification and Evaluation
of Interactive Systems DSV-IS 2003 (june 11-13 2003, Funchal, Portugal), LNCS 2844,
Springer Verlag, Berlin, 2003, pp. 1-15.

[Cort97]
Corradini, Ehrig H., Heckel R., Kotff M., Léwe M., Ribeiro L., and Wagner A.,
Algebraic approaches to graph transformation - part I: Single pushout approach and comparison with
double pushout approach, in Rozenberg G. (Ed.), Handbook of Graph Grammars and
Computing by Graph Transformation. Vol. I: Foundations, World Scientific,1997, pp.
247-312.

[Craz05]
Crazy Eddies wiky page. “Cragy Eddie’s GUI System Namespace List’. 2005. Available on:

http://www.cegui.org.uk/api reference/namespaces.html

[Craz006]
Crazy Eddies web site. “Wekome to Crazgy Eddie’s GUI Systens’. 2006. Available on:
http://www.cegui.org.uk/wiki/index.php/Main Page

210

References

[Cupp04]
E. Cuppens, Ch. Raymackers, and K. Coninx. “V7ixmil: A User Interface Description
Langnage for Virtnal Environments”. In Proc. of the 1st ACM AVI’2004 Workshop
“Developing User Interfaces with XML: Advances on User Interface Desctiption
Languages” UIXML 2004 (Gallipoli, May 25, 2004), pages 111-118, 2004.

[Cupp05]
E. Cuppens, and K. Coninx. “CoGenlV'E: Code Generation for Virtual Environments”. In
Proc. of the the Future of User Interface Design Tools, workshop of ACM Conference
on Human Factors in Computing Systems (CHI 2005) (Portland, Apr 04, 2005).

[Czar00]
Czarnecki, K., and Eisenecker, UN., “Generative Programming: Methods, Tools, and
Applications”. In Addison-Wesley, Reading, 2000.

D

[Dach01]
Dachselt, R., Ebert, J. “Collapsible Cylindrical Trees: A Fast Hierarchical Navigation Technigue”,
infovis, vol. 00, no., p.79, IEEE 2001.

[Dach02]
Dachselt, R., Hinz, M. and MeiB3ner, K. 2002. CONTIGRA: “An XMI -Based Architecture
Sfor Component-Oriented 3D Applications”. In Proceedings of 7th International Conference on
3D Web Technology Web3D’2002 (Tempe, February 24-28, 2002). ACM Press, New
York, 155-163.

[Dach03]
Dachselt, R. and Rukzio, E. ,,Bebavior3d: an xmi-based framework for 3d graphics behavior”. In
Proceeding of the eighth international conference on 3D web technology, pages 101—ff.
ACM Press, 2003.

[Diet01]
Diettrich O. “Virtual Reality and cognitive process”. In: Riegler, A., Peschl, M., Edlinger, K.,
Fleck, G. & Feigl, W. (eds.) Virtual Reality: Cognitive Foundations, Technological Issues
& Philosophical Implications. Frankfurt am Main: Peter Lang. 2001.
[Dijk70]
Dijkstra, E. W., The discipline of programming, Prentice Hall, Engelwood Cliffs, NJ, 1976.
[Dsou99]
D'Souza, D.F., and Wills, A.C. “Obyects, Components and Frameworks with UML.: The Catalysis
Approach”. Addison-Wesley, Reading, 1999.

E

[EdIi01]
Edlinger K. “Virtual Reality, Cyberspace and Living Organisms. Towards a new understanding of
perception and cognition?’. In: Riegler, A., Peschl, M., Edlinger, K., Fleck, G. & Feigl, W.
(eds.) Virtual Reality: Cognitive Foundations, Technological Issues & Philosophical
Implications. Frankfurt am Main: Peter Lang. 2001.

[Ehti99]
Ehrig, H., Engels, G., Kreowski, H-J., and Rozenbetg, G. (eds.), Handbook of Graph
Grammars and Computing by Graph Transformation, Application, Languages and Tools, Vol. 2,
World Scientific, Singapore, 1999.

211

References

[Eise01]
Eisenstein, J., Vanderdonckt, J., and Puerta, A. “Model-based User-Interface Development
Techniques for Mobile Computing’. In Proc. of 5th ACM Int. Conf. on Intelligent User
Interfaces IUI’2001. (Santa Fe, 14-17 January 2001), ACM Press, New York, 2001, pp.
69-76.

F

[Fair93]
Fairchild, K.M. “Information Management Using Virtnal Reality-Based Visualizations”. In
Virtual Reality: Applicationsand Explorations", Alan Wexelblat (ed.), Academic Press
Professional, Cambridge, MA, pp. 45-74, 1993.

[Fenc99]
C Fencott (1999) “Towards a Design Methodology for Virtual Environments”. User Centered
Design and Implementation of Virtual Environments (UCDIVE) Workshop. University
of York, 30 September 1999.

[Fenc01]
C Fencott y] Isdale (2001) “Design Issues for Virtnal Environments”. International
Workshop on Structured Design of Virtual Environments and 3D-Components at athe
Web3D 2001 Conference. Paderborn, Alemania, 19 Febrero 2001.

[Figu02]
Figueroa, P.; Green, M.; Hoover, H. J. “InTml: A Description Language for V'R Applications”.
Web3D'02, February 24-28, 2002. Tempe, Atizona, USA.

[Figu04]
Figueroa, P. “Retargeting of Virtual Reality Applications”. PH. D. Thesis. University of
Alberta Canada, 2004.

[Figu06]
Figueroa, P., Dachselt, R., Lindt, I. “A Uniform Specification of Mixed Reality Interface
Components”. Proceedings of the IEEE Virtual Reality Conference 2006, March 25-29,
2006, Alexandria (Virginia, USA), pp. 289-290.

[Fitz95]
Fitzmaurice, G. W.,, Ishii, H., Buxton, W., “Bricks : Laying the Fundations for Graspable User
Interfaces”. In Proceedings of CHI'95 Conference on human Factors in Computing
Systems, 442-449, New York, ACM, 1995.

[Fole84]
Foley, V. Wallace and V. Chan, "The human factors of computer graphics interaction techniques",
In IEEE Computer Graphics & Applications, (4), pp. 13-48 (1984).

[Fokk92]
Fokkinga M.M,. “A gentle introduction to category theory: the calenlational approach”. In Lecture
Notes of the STOP 1992 Summerschool on Constructive Algorithmics, University of
Utrecht, September 1992, pp. 1-72.

G

[Gamm95]
Gamma E., Helm R., Johnson R., Vlissides]. and Booch G. “Design Patterns : Elements of
Reusable Object-Oriented Software”, Addison-Wesley Professional Computing (1995).

[GeigO1]

212

References

Geiger, C., Paclke, V., Reimann, C. C., and Rosenbach, W. “Stuctured Design of Interactive
Virtual and Augmented Reality Content”. International Workshop on Structured Design of
Virtual Environments and 3D-Components at the Web3D 2001 Conference. Paderborn,
Alemania, 19 February 2001.

[Geno04]
Genova development Environment, Genera, Trondheim, Norway, 2004. Available online:
http:/ /www.genera.no.

[Glas84]
Glasersfeld, E. v. “An introduction to radical constructivisn?”. In P. Watzlawick (Ed.), The
Invented Reality, pp. 17-40. New York: Norton, 1984.

[Glas91]
Glasersfeld, E. v. “Knowing without metaphysics. Aspects of the radical constructivism Position”. In
F. Steier (Ed.), Research reflexivity, pp. 12-29. London; Newburry patk, CA: SAGE
Publishers. 1991.

[Glas95]
Glasersfeld, E. v. “Radical constructivism: a way of knowing and learning’. London: Falmer
Press. 1995.

[Glas03]
Glasersfeld, E. v. “An Exposition of Constructivism: Why Some Like it Radical”. In the internet
encyclopedia of personal construct psychology of the Scientific Reasoning Research
Institute. 2003 Available on http://www.oikos.org/constructivism.htm.

[G6be96]
Gobel 1996, M. Gébel, “Industrial Applications of VVEs”, IEEE computer graphics and
applications, 16(1), pp 10-13, 1996.

[Gome04]
Gomes de Sousa, L., and Leite,].C. “XICL- An Extensible Mark-up Language for Developing

User Interface and Components”. In Proceedings of the Fifth International Conference on
Computer-Aided Design of User Interface CADUT’2004.

[Grac05]
D. Gracanin and J. Ying, “An approach to formal description of user interfaces based on X3D
contenf’. In Advances in Virtual Environments Technology: Musings on Design,
Evaluation, & Applications (K. Stanney and M. Zyda, eds.), Human Factos/Ergonomics
Series, Lawrence Erlbaum Associates, 2005.

[Gree88]
Greenstein, Joel S. & Arnaut, Lynn Y. “Input devices”. In: M. Helander, (Ed.), Handbook
of Human-Computer Interaction, Amsterdam: North-Holland, 1988, pp. 495-519.

[Gros99]
Grosjean, J. - Coquillart, S. “The Magic Mirror: A Metaphor for Assisting the Exploration of
Virtual Worlds”. Pp. 125-129 in Proceedings of 15th Spring Conference on Computer
Graphics. Bratislava: Comenius University 1999.
[Grub93]
Gruber T. R., A translation Approach to Portable Ontologies, in Knowledge Acquisition, 5(2),
1993, pp. 199-220.
[Guet00]
Guerrero Garcia, J. “Conseptual Modeling of User Information systems of Workflow Information
Systems”. In depth studies thesis. University Catholic of Louvain, 2006.

[Guil95]

213

References

Guillen, M. “Five equations that change the world: the power and Poetry of
Mathematics”. New York: hyperion, 1995.

H

[Heck02]
Heckel, R., Kuster, J.M., Taenzer, G., Confluence of Typed Attributed Graph
Transformation Systems, in [Cort02], pp. 161-176.

[Heim93]
Heim M. “The Metaphysics of Virtnal Reality”’. Oxford press, 1993.

[Hewe92]
Hewett, Baecker, Card, Carey, Gasen, Mantei, Perlman, Strong and Verplank, “ACM
SIGCHI Curricnla for Human-Computer Interaction”. 1992,1996 ACM SIGCHI

[Hirs89]
Hirschheim, R., Klein, H. K. “Four Paradigms of Information Systems Developmen?’. In Rob
Kling (ed), Social Aspects of Computing. Communications of the ACM, volume 32, issue
10. October 1989.

[Heyl93]
Heylighen, F. “Epistemology, introduction. Principia Cybernetica®, 1993. Available on
http://pespmecl.vub.ac.be/EPISTEMLhtml.

[Hoff03]
Hoffmann, H.; Dachselt, R.; MeiBner, K.: “An Independent Declarative 3D Audio Format on
the Basis of XML”. In Proceedings of the 2003 International Conference on Auditory
Display, Boston, MA, USA, 6-9 July 2003

[Hutc89]
Hutchinson, Thomas E.; White, Jr., K.Preston; Martin, Worthy N.; Reichert, Kelly N. &
Frey, Lisa A. “Human-Computer Interaction Using Eye-Gage Inpuf’. IEEE Transactions on
systems, man, and cybernetics, 19(6), 1989, p. 1527-1533.

[John92]
Johnson P., Markopoulos P., and Johnson H., ”Task knowledge structures: A specification of
user task models and interaction dialogues”. In Proceedings of Task Analysis in Human-
Computer Interaction, 11th Int. Workshop on Informatics and Psychology (Schraeding,
June 9-11), 1992.

[JohnO1]
Johnson M., and Dampney, O. “ategory theory as a (meta) ontology for information systems”. In
Proceedings of the international conference on Formal Ontology in Information Systems
FOIS 01 (Ogunquit, Maine, USA), 2001, pp. 59-69.

[Jorg99]
Jorgensen, Charles, Kevin Wheeler, and Slawomir Stepniewski. “Bigelectric Control of a 757
Class High Fidelity Aireraft Simulation”. Available on:
http:/ /ic.atc.nasa.gov/publications/index.html, 1999.

214

References

[Kats03]
K. Katsurada, Y. Nakamura, H. Yamada, and T. Nitta. XISL: A Lan-guage for
Describing Multimodal Interaction Scenatios. In Proc. of 5th Int. Conf. on Multimodal
Interfaces ICMI’2003 (Vancouvet, 5-7 November 2003), ACM Press, New York, pages
281-284, 2003.

[Khaz00]
Khazanchi D., Munkvold B. E. “Is Information Systems a Science? An Inquitry into the
Nature of the Information Systems Discipline”. The DATA 24 BASE for Advances in
Information Systems. (Vol. 31, No. 3). Summer, 2000.

[Kiyo00]
Kiyokawa, K., Takemura, H., Yokoya, N., “Seamless Design for 3D object creation”. IEEE
multimedia, pp. 22-33, 2000.

[KreiO1]
Kreitler, S. “Psychological Perspective on Virtual Reality”. In: Riegler, A., Peschl, M.,
Edlinger, K., Fleck, G. & Feigl, W. (eds.) Virtual Reality: Cognitive Foundations,
Technological Issues & Philosophical Implications. Frankfurt am Main: Peter Lang. 2001.

[Ktui00]
Kruijff, E. “Wayfinding’. In Doug Bowman, Ernst Kruijff, Joseph ILaViola, Ivan
Poupyrev, and Mark Mine, SIGGRAPH 2000 Course 3D User Interface Design:
Fundamental Techniques, Theory, and Practice, 2000.

L

[Lati03]
D. Larimer and D. Bowman. Vewl: A Framework for Building a Windowing Interface in
a Virtual Environment. In Proc. of IFIP TC13 Int. Conf. on Human-Computer
Interaction Interact’2003 (Zirich, Sept. 1-5, 2003), IOS Press, Amsterdam, pages 809—
812, 2003.

[Leno84]
Lenorovitz, D.R.; Phillips, M.D.; Ardrey, R.S. & Kloster, G.V. “A taxonomic approach to
characterizing buman-computer interaction”. In: G. Salvendy (Ed.), Human-Computer
Interaction. Amsterdam: Elsevier Science Publishers, 1984, pp.111-116.

[Limb04a]

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez, V., “USIXML: a
Langnage Supporting Multi-Patlh Development of User Interfaces”. In Proceedings of 9th IFIP
Working Conference on Engineering for Human-Computer Interaction jointly with 11th
Int. Workshop on Design, Specification, and Verification of Interactive Systems EHCI-
DSVIS2004 (Hamburg, July 11-13, 2004). Kluwer Academic Press, Dordrecht, 2004.
[Limb04b]

Limbourg, Q., Vanderdonckt, J., UsiXML: A User Interface Description Language
Supporting Multiple Levels of Independence, in Matera, M., Comai, S. (Eds.),
«Engineering Advanced Web Apphcatlons» Rinton Press Paramus 2004, pp. 325 338.

Available on
JWE2004.pdf
[Limb04c]
Limbourg, Q., “Multi-Path Development of User Interfaces”. PhD thesis, University Catholic

of Louvam Louvain- la Neuve Belgique. 2004 Available on:

215

References

[Luo95]
Luo, P., “A Human-Computer Collaboration Paradigm for Bridging Design Conceptualization and
Implementation”. In Paterno F. (Ed.), Interactive Systems: Design, Specification, and
Verification, Proc. of the 1st Eurographics Workshop on Design, Specification, and
Verification of Interactive Systems DSV-IS94, (Bocca di Magra, June 8-10, 1994),
Springer-Verlag, Berlin, pp. 129-147.

[LuytO4]
Luyten, K., Abrams, M., Limbourg, Q., Vanderdonckt, J., Proceedings of the ACM
AVI'2004 Workshop "Developing User Interfaces with XML: Advances on User
Interface Description Languages" UIXML'04 (Gallipoli, May 25, 2004), Gallipoli, 2004.

M

[Mape95]
Mapes, D. and Moshell,]. “A Two-Handed Interface for Object Manipulation in virtual
Environments”. In Proc. Presence: Teleoperators and Virtual Environments, 4(4), 403-
426.1995.

[Maqu04]
Maquil, V. “Automatic Generation of Graphical User Interfaces in Studierstube”. Bachelor thesis.
Interactive Media Systems Group, Institute for Software Technology and Interactive
Systems, Vienna University of Technology, 2004. Available on
https://www.ims.tuwien.ac.at/media/documents/publications/MaquilBachelorThesis.p
df.

[Marq97]

Marquis J.-P., Stanford encyclopedia of philosophy: Category theory, 1997. Available online:
http://plato.stanford.edu/entries/ category-theory/.
[Meye97]
Meyer B., Object-Oriented Software Construction, Prentice Hall, Upper Saddle River, New
Jersey, 2nd edition, 1997.

[Mens99]
Mens T., A Formal Foundation for Object-Oriented Software Ewvolution, PhD thesis, Vrije
Universiteit Brussel, 1999.

[Mile79]
Miles, M., B., “Qualitative Data as an Attractive Nuisance: The Problem of Analysis”. In
Administrative Science Quarterly, vol. 24, no. 4, Qualitative Methodology. pp. 590-601.
1979.

[Milg94]
Milgram, P. and Kishino, F. “A Taxonomy of Mixed-Reality V'isual Displays”. In IEICE
Transactions on Informations Systems, vol. E77-D, no. 12. Available on:
http://vetred.rose.utoronto.ca/people/paul dir/IEICE94/icice.html.

[Mill03]
Miller, J., Mukerij J., ”’MD.A Guide version 1.0.7”, 2003. Available online : www.omg.org.

[Mine95]
Mine M., "Virtnal environment interaction technigues", UNC Chapel Hill CS Dept., Technical
Report TR95-018, 1995.

[Moli02]
Molina, P.J., Melia, S., Pastot, O,. ”Just-UI: A User Interface Specification Mode!”, in: Kolski
C., Vanderdonckt J. (Eds.), Computer-Aided Design of User Interfaces III, Kluwer
Academic Publishers, Dordrecht, 2002, pp. 63-74.

[Moli05]

216

References

Molina Massé J.P., Vanderdonckt J., Montero Simarro F., Gonzalez Lopez P. “Towards
Virtualization of User Interfaces based on UsiXMI>. Proceedings of Web3D 2005
Symposium, 10th International Conference on 3D Web Technology (March 29 — April
2005, University of Wales, Bangor, UK). A publication of ACM SIGGRAPH, ACM
ISBN: 1-59593-012-4. Pp. 169-179, 2005.

[Moli006]
Molina Massé J.P., Vanderdonckt J., Gonzalez Loépez P., Fernandez Caballero, A,
Lozano Pérez, D. “Rapid Prototyping of Distributed User Interfaces”. Chapter 12, in G. Calvary,
C. Pribeanu, G. Santucci, J. Vanderdonckt (eds.), "Computer-Aided Design of User
Interfaces V", Proc. of 6th Int. Conf. on Computer-Aided Design of User Intetfaces
CADUI'2006 (Bucharest, 6-8 June 20006), Information Systems Series, Springer-Verlag,
Betlin, 2006, pp. 85-100.

[Mont70]
Montanari, U.G., Separable Graphs, planar Graphs and Web Grammars, in Inf. Contr., 16,
1970, pp. 243-267.

[Mont05]
F. Montero, V. Lopez-Jaquero, J. Vanderdonckt, P. Gonzalez, and M.D. Lozano. Solving
the Mapping Problem in User Interface Design by Seamless Integration in IdealXML. In
Proc. of 12th Int. Workshop on Design, Specification, and Verification of Interactive
Systems DSVIS’2005 (Newcastle upon Tyne, July 13—15, 2005), Springer-Verlag, Berlin,
2005, to appeat.

[Murp97]
Murphy E., “Constructivism from Philosophy to Practice”. 1997. Available on
http:/ /www.cdli.ca/~elmurphy/emurphy/cle. html.

[Myer92]
Myets, B., Rosson, M. "Swurvey on User Interface Programming". Proceedings CHI'92, New
York, ACM, 1992, pag. 195-202.

N

[Nade97]
Nadeau, D. R. Introduction to VRML 97. Eurographics 97, tutorial notes sections, 1997.
[NealO1]
H Neale and S Nichols (2001) Designing and developing Virtual Environments: methods
and applications. Visualization and Virtual Environments Community Club (VVECC)
Workshop, Designing of Virtual Environments. 2001.
[Niga95]
Nigay L., Coutaz J., A Generic Platform for Addressing the Multimodal Challenge, in Proceedings
of CHI’95, ACM Press, New York, 1995, pp. 98-105.

(6]

[Ogre05]

217

References

OpenGL The industry standard for 2D and 3D Graphics. “OpenGL Overvien”. 2004.
Available on: http:/ /www.opengl.org/about/overview.html

P

[Pate97]
Paterno F., Mancini C., and Meniconi S., “ConcurTaskTree: A diagrammatic notation for
specifying task models’. In Howard S., Hammond J., and Lindgaard G. (Eds.),
Proceedings of IFIP TC 13 International Conference on Human-
Computer Interaction Interact'97 (Sydney, July 14-18, 1997), Kluwer
Academic Publishers, Boston, 1997, pp. 362-369.

[Pate00]
Paterno F. “Model-Based Design and Evalution of Interactive Applications”, Applied computing,
Springer, 2000.

[Paus95]

Pausch, R., T. Burnette, D. Brockway and M.E. Weiblen. “Navigation and locomotion in
virtual worlds via flight into hand-held miniatures.”” In Proceedings of SIGGRAPH 95, Los
Angeles, CA, ACM: 399-400.

[Park98]
Parker, G., Franck, G. and Ware, C. “IZsualization of Large Nested Graphs in 3D: Navigation
and Interaction”. In J. Visual Languages and Computing, 9(3):299--317, 1998.

[Pell05a]

Pellens, B. Olga De Troyer, Wesley Bille, Frederic Kleinermann, Raul Romero. “A»n
Ontology-Driven Approach for Modeling Behavior in Virtnal Environments”. OTM Workshops
2005: 1215-1224

[PellO5b]
Pellens, B., Bille, W., De Troyer, O., Kleinermann, F.: "IVR-WISE: A Conceptnal Modelling
Approach For Virtual Environments", In CD-ROM Proceedings of the Methods and Tools
for Virtual Reality (MeTo-VR 2005) workshop, Ghent, Belgium (2005)

[PescO1a]
Peschl M. F., Riegler A. “Virtual Science. Virtuality and knowledge acquisition in science and
cognition”. In: Riegler, A., Peschl, M., Edlinger, K., Fleck, G. & Feigl, W. (eds.) Virtual
Reality: Cognitive Foundations, Technological Issues & Philosophical Implications.
Frankfurt am Main: Peter Lang. 2001.

[Peschlb]
Peschl M. F. “Constructivism, Cognition, and Science-An Investigation of its Links and
Possible Shortcomings”. In: Riegler (ed.) Foundations of Science, special issue on “The
impact of Radical Constructivism on Science”. Vol 6, no. 1-3: 125-161. 2001.

[Pier97]
Pierce, J. S., Forsberg, A. S., Conway, M.]. “Image Plane Interaction Techniques in 3D
Immersive Environments”. In Proceedings of the 1997 symposium on Interactive 3D
graphics, pp. 39-ff, 1997.

[Poup96]
Poupyrev, 1., Billinghurst, M., Weghorst, S., Ichikawa, T. “The Go-Go Interaction Technique:
NonLinear Mapping for Direct Manipulation in 1’R”. In Proc. UIST'96, pp. 79--80.

[Poup98]

218

References

Poupyrev, 1., Weghorst, S., Billinghurst, M., Ichikawa, T., “Egocentric Object Manipulation in
Viirtual Environments : Empirical evaluation of Interaction Techniques”. In EUROGRAPHICS’
98, vol 17, no. 3, 1998.

[Poup00]
Poupyrev 1. “3D Manipulation Techniques”, In Doug Bowman, Ernst Kruijff, Joseph
LaViola, Ivan Poupyrev, and Mark Mine, 3D UI Course Notes, 2000.

[Poup01]
Poupyrev, 1. “3D Interaction Techniques and Metaphors” In Doug Bowman, Ernst Kruijff,
Joseph LaViola, Ivan Poupyrev, and Mark Mine, 3D UI Course Notes, 2001.

[Puet97]
Puerta, AR., A Model-Based Interface Development Environment, in IEEE Software 14(4),

1997, pp. 41-47. Available online: http://www.atpuerta. com/pubs/ieee97.htm

[Puer02]
Puerta, A., and Eisenstein, J. XIML: “A common representation for interaction data”. In
Proceedings of the 7th International Conference on Intelligent User Interfaces, pp. 69-
76. ACM Press, January 2002.

R

[Raut00]
Rauterberg G. W. M. “How to characterige a research line for user-system interaction”. In IPO
Annual Progress Report 35, 2000.

[Reki95]
Rekimoto, J., Nagao, K., “The World through the Computer: Computer Augmented Interaction with
Real World Environments”. In Proceedings of IUST?95. ACM, pp. 29-36, 1995.

[Reki99]
Rekimoto, J., Saitoh, M., “Augmented surfaces: A spatially continnons work space for hybrid
computing environments”. In Proceedings of CHI'99. 1999. ACM. pp. 378-385.

[Robe83]
Roberts N., Andersen D., Deal R., Garet M., and Shaffer W. “Introduction to Computer
Simulation, a system dynamics modeling approach”. Productivity press. 1983.

S

[Shne02)
Shneiderman B. “3D or Not 3D: When and Why Does it Work?’. Human-Computer
Interaction Laboratory & Department of Computer Science University of Maryland. Talk
in Web3D. Phonix, February 26, 2002.

[Shne03]
Shneiderman B. “Why Not Make Interfaces Better than 3D Reality’. Virtualization
Viewpoints. Editor: Theresa-Matie Rhyme, November-December, 2003.

[Sili03]
Silicon Graphics. “Open Inventor — web sit?’. 2003. Available on:
http://oss.sgi.com/projects/inventor

[Somm99]
Sommerville, 1. “Software Engineering”, 5th edition, Addisson Wesley, 1999.

219

References

[Souc03]
Souchon, N. and Vanderdonckt, J. “A review of XMI -compliant user interface description
langnages”. DSV-152003, 2003.

[Sowa92]
Sowa J. F., “Conceptual Graphs Summary”, in Eklund P., Nagle T., Nagle J., and Gerholz L.
(Eds.), Conceptual Structures: Current Research and Practice, Ellis Horwood, 1992, pp.
3-52.

[Spai9l]
Spain E., Holzhauzen K. "Stereoscopic versus orthogonal view displays for performance of a remote
manipulation task", Proceedings of Stereoscopic Displays and Applications II, SPIE, pp.
103-110. 1991.

[Sphe05]
Sphere site. Available at: http://www.spheresite.com

[Stoa95]
Stoakley, R., M.]. Conway and R. Pausch. “Virtual Reality on a WIM: Interactive Worlds in
Miniature.” Proceedings of CHI 95, Denver, CO, ACM: 265-272. 1995.

[Stan06]
Stanciulescu, A. “A Transformational approach for developing multimodal web interfaces”. Master
Thesis, University catholic of Louvain, 2006. To appear.

[Stre86]
Streibel, M. J. “A critical analysis of the use of computers in education”. Educational
Communications and Technology Journal, 34 (3), 1986.

[Stud]
Studierstube Augmented Reality Project, http://www.studierstube.org/.

[Sutc03]
A Sutcliffe. “Multimedia and Virtual Reality: Designing Multisensory User Interfaces”. Lawrence
Etlbaum Associates, 2003.

[Sun05]
Sun Micro systems. “The Java™ tutorial: Listeners Supported by Swing Components”. Available

on:
http://java.sun.com/docs/books/tutorial /uiswing/events/eventsandcomponents.html

T

[TanO1]
D. S. Tan, G. G. Robertson, and M. Czerwinski, "Exploring 3D navigation: Combining speed-
conpled flying with orbiting". In Conference on Human Factors in Computing Systems CHI
2001.

[Teor86]
Teory T.J., Yang D., Fry J.P. “A Logical Design Methodology for Relational Databases using the
Extended Entity-Relationship Model”, ACM computing surveys 18(2), june 1986, pp. 197-
222,

[ThevO01]
Thevenin, D. ”Adaptation en Interaction Homme-Machine: le cas de la Plasticit¢’, Ph.D. thesis,
Universit¢é ~ Joseph Fourrier, Grenoble, France, 2001. Available online:
http://iihm.imag.fr/publs/2001.

[Thié03]

220

References

Thiétart, R.A. et coll. ”Méthodes de Recherche en Managemen?”’ . Dunod, Patis. 2003.

U

[Unde98]
Underkoffler, J., Ishii, H., “Iluminating light: an optical design tool with a luminous-tangible
interface”. In Proceedings of CHI'98. ACM. pp. 542-549, 1998.

[USIX06]
UsiXML Consortium. UsiXML, a General Purpose XML Compliant User Interface
Description Language, UsiXML V1.6.4, 1 March 2006. Available at
http:/ /www.usixml.org/index.phprview=page&idpage=6

v

[Verj95]
Vertjans, S. “State-of-the-art for Input Modalities”. Esprit BRA AMODEUS-II Working Paper
TM-WP20. 1995. Available on http://perswww.kuleuven.be/~u0003438/.

[vonGO03]
von Glasersfeld, E. “An Exposition of Constructivism: Why Some Like it Radical’. In the
internet encyclopedia of personal construct psychology of the Scientific Reasoning
Research Institute. 2003 Available on http://www.oikos.otg/constructivism.htm

W

[W3C95]
W3C consortium, “VRML Virtual Reality Modeling Langnage”, 17 April 1995. Available at
http://www.w3.otg/MarkUp/VRML/

[Wals95a]
Walsham, G. “Interpretive Case Studies in 1S Research: Nature and Method’. European Journal
of Information Systems, Vol. 4, pp. 74-81, 1995.

[Wals95b]

Walsham, G. “The Emergence of Interpretivism in 1S Research” Information Systems Research,
Vol. 6, No.4, pp. 376-394, 1995b.

[Wang05]
Wang, S., Poturalski, M., Vronay, D., “Designing a Generalized 3D Carousel View”. In CHI
2005, april 2-7, Portland, Oregon, USA, 2005.

[Wate93]
J.A. Waterworth and L. Serra, “IVR Management Tools: Beyond Spatial Presence”. In Proc. of
ACM Conf. on Human Aspects in Computing Systems Interchi’93 (Amsterdam, April
24-29, 1993), Addison-Wesley, Reading, pages 319-320, 1993.

[Web304a]
Web3D Consottium. “Information technology — Computer graphics and image processing —
Extensible 3D (X3D)”. Available on http://www.web3d.org/x3d/specifications /ISO-
1IEC-19775-X3D AbstractSpecification

[Web304b]

Web3D Consottium. “X3D Frequently Asked Questions”. Available on
http://www.web3d.org/x3d/faq/

[Wiki05]

221

References

Wikipedia the free encyclopedia available on http://en.wikipedia.otg/wiki/Main_Page
(Accessed August 11, 2005).
[Wils78]
Wilson, E. O. “On Human hature”. Cambridge, MA: Harvard University Press. 1978.
[Wils97]
Wilson, B. “The postmodern paradign/’. In C. R. Dills and A. Romiszowski (Eds.),
Instructional development paradigms. Englewood Cliffs NJ: Educational Technology
Publications, 1997. Also available on:
http:/ /www.cudenver.edu/~bwilson/postmodern.html.

[Zaki]
Zakiul, S. “Week 15 report on Project 6”, Available on:

http://www.public.asu.edu/~zakiul/vrml/week15 /week15.htm

222

Annex A. Lotos Operators

Annex A. Lotos Operatots

Concur task tree CTT combines hierarchical structuring of tasks to temporal
ordering of elements with a subset of LOTOS operators. LOTOS is a grounded
formal notation in software engineering for specifying the ordering of processes
in time [Pate97].

As proposed in [USIX00] we use LOTOS operators for concrete user interface
dialog control. For each operator [Limb04c| defined what a task requires to be
initiated and what it ensures. A termination condition is also provided for each
operator. This condition tells when two temporally related tasks can be considered
as terminated.

e Enabling (T'1 has to be finished in order to initiate T2)

T1 T1 Requires: ¢
>> Ensures: ?
T2
T2 Requires: T1.Termination
Ensures : ?
Termination ‘ T1.Termination AND T2.Termination

= Non-deterministic choice (Once one task is finished the other cannot be
accomplished anymore)

T1 T1 Requires: NOT (T2.Termination)
n Ensures: ?
T2
T2 Requires: NOT (T'1.Termination)
Ensures : ?
Termination | T1. Termination XOR T2.Termination

® Deterministic Choice (Once one task is initiated, the other cannot be
accomplished anymore)

223

Annex A. Lotos Operators

T1 T1 Requires: NOT (T2.Initiation)
[] Ensures: ?
T2
T2 Requires: NOT (T'1.Initiation)
Ensures: ?
Termination ‘ T1. Termination XOR T2.Termination

= Parallelism (T1 is interleaved with T2)

T1 T1 Requires: ¢
|11 Ensures: ?
T2
T2 Requires: @
Ensures : ?
Termination ‘ T1.Termination AND T2.Termination

= Sequential independence (Is equivalent to (T1>>T2) OR (T2 >>T1))

T1 T1 Requires: NOT(T2.Initiation) XOR T2.Termination
|=| Ensures: ?
T2
T2 Requires: NOT(T1.Initiation) XOR T1.Termintaion
Ensures : ?
Termination T1.Termination AND T2.Termination

224

Annex A. Lotos Operators

= Deactivation (T2 may interrupt T1 before the termination of T1;. T1 cannot be
resumed after T2 has terminated.)

T1 T1 Requires:)
[> Ensutes: O
T2
T2 Requires: T'1.Initiation AND NOT(T'1.Termination)
Ensures: ?
Termination ‘ Termination XOR T2. Termination

* Suspend/Resume (T2 may interrupt T1 before the termination of T1. Once
T2 is finished, T1 may be resumed.)

T1 T1 Requires: ¢
| > Ensures: ?
T2
T2 Requires: T1.initiation
Ensures: ?
Termination T1.termination OR T2.Termination

e Enabling with information passing (I'l has to be finished in order to initiate
T2 and T2 is synchronized with T1 on some piece of data)

T1 T1 Requires: ¢
>> Ensures: ?
T2
T2 Requires: T'1.termination and dataSynchronized
Ensures : ?
Termination ‘ T1.termination AND T2.Termination

e Parallelism with information passing (T is interleaved with T2 while they
synchronize on some data)

225

Annex A. Lotos Operators

T1

|01
T2

T1 Requires: NOT (T2.initiated) OR dataSynchronized
Ensures: ?

T2 Requires: NOT(T'l.initiated) OR dataSynchronized
Ensures : ?

Termination ‘ T1.termination AND T2.Termination

e T* (Iteration). T can be iterated an infinite number of times

e T(n) (Finite Iteration). T can be iterated n times

e [T] (optional). T is optional

226

Annex B. Graph Definitions

Annex B. Graph Definitions

Definition 1. A graph g is defined by a quadruple (V, E ,source ,target,)
such that:

1.V, is a finite set of vertices (or nodes);

2. E, is a finite set of edges (or arcs);

3. source;: E — V., is an injective function that assigns a source
to each edge of E;

4. target;: E — V,is an injective function that assigns a target to
cach edge of E.

Definition 2. g is said to directed iff
veeEg,3lv,v; eV, |source(e) =V, ntarget(e) =V,

Notation 1. Implicit graph reference. The notation [SetName]; (e.g. V) or
[FunctionName], (e.g. source,) will be replaced by [SetName] (e.g. V') or

[FunctionName] (e.g. source) if no confusion is possible (i.e. only one graph
is concerned).

Notation 2. Graph component or element. The expression graph
component or element refers undiscernibly to vertex or edges.

Notation 3. Implicit function reference. Let X stand for a graph
component, [FunctionName](x) denotes a function applied to X. In case of

ambiguity : [FunctionName], (x) = o, [FunctionName](x) and
[FunctionName], (x) = o,_c[FunctionName](x)

227

Annex B. Graph Definitions

Category Theory and Graphs Morphisms

Category theory is a generalized mathematical theory of structures. One of its
goals is to reveal the universal properties of structures of a given kind via their
relationships with one another [Marq97].

A category describes a set of objects that have an identical mathematical structure,
and for which there exists morphisms between those objects and preserving this
structure [Fokk92]. The major benefit of working with categories is that any
property established for a category can established for any structure of this
category.

Graphs are objects of a category of graphs with morphisms as structure
preserving mappings between them.

Definition 3. Let g = (Vg, Eg,targetg,sourceg) and h =
(V,, E;,target, ,source,) be two Graphs; a graph motphism from g to h is a
pair m=(m,,m,) of mappings m, :V, —»V,,m :E; — E,, such that:
1. VeeE,,source, (m,)=m,(source,(e)) (source nodes are preserved);
2. VeeE, target,(m,) =m,(target, (€)) (target nodes are preserved).

Other properties of interest of graphs morphisms are :

Definition 4. Interesting graphs morphisms properties:

1. If m, and m, are injective (resp. surjective)m is injective (resp.
surjective).

2. If m is injective and surjective (i.e. bijective), m is said to be isomorphic
(written m:G = H orsimply Gz H).

3. If m,, m, are total functions, Mis said to be a total graph morphism.
Otherwise M is said to be a partial graph morphism.

Thanks to morphisms, our initial graph definition (definition 1) will be extended
with several features (i.c., identifies, label, type, constraints) while being sure to
benefit of all theoretical results provided for the graph category. All features are

228

Annex B. Graph Definitions

then consolidated into a single graph definition to form the mathematical basis of
our language. Such a way to proceed is found in [Mens99].

Identified Graphs

An identification function is introduced in order to univocally identify each node
or edge of a graph. This function is useful as it allows differentiating instances of a
same node that would be considered identical without this identifier.

Definition 5. Let L = (Nodeld, Edgeld) be a pair of disjoint and finite sets of
predefined labels. ¢ is said to be a (I)-graph iff g is a tuple (g, Id) such that:
1. g isa graph (see definitionl);
2. Id is a pair of bijective functions, Id=(ld,ld,) where
Id, :V — Nodeld and Id, : E — Edgeld .

Definition 6. Let g and h be two (I)-Graphs; Let M be a pair m=(m,,m,)
of mappings m,:V, ->V,,m,:E, = E_; m is an identifier preserving (I)-
Graph morphism if:

1. VeeE,,source,(m,)=m,(source,(e)) (source nodes are preserved);

2. VeeEtarget,(m,) =m,(target, (€)) (target nodes are preserved);

3. 1d,(g)=1d,(g)em, (nodes Id are preserved);

4. 1d,(g)=1d.(g)om, (edges Id are preserved).

From definition 5 and 0, it can be said that (I)-Graph is a category with (I)-Graphs
as objects and identifier preserving morphisms as morphisms.

Note that Id, and ld, are bijective functions. Two nodes or edges cannot share
the same identifier and for each identifier is univocally mapped onto an identifier.
In mathematical term this can be expressed as follows:

vx,ye(VUE), ld(x)=1d(y) = x=Yy (Id is injective).
vy € Nodeld U Edgeld,3x e (V WE) | Id(x) =y (Id is a sutjection).

229

Annex B. Graph Definitions

Labeled Graphs

A label attached to each node and edge is introduced in order to label graph
components with a name.

Definition 7. Let L. = (NodelLabel, Edgel abel) be a pair of disjoint and finite
sets of predefined labels. g is said to be a (L)-graph iff g is a tuple (g, Label)
such that:
1. gisa graph (see definition 1) ;
2. Label is a pair of functions, Labe/ = (Label,,Label,) where
Label, :V — NodeLabel and Label, : E — EdgeLabel .

Definition 8. Let g and h be two (L)-Graphs; Let M be a pair m=(m,,m,)
of mappings m, :Vg —->V,,m,: Eg — E,; m is an label preserving (L)-
Graph morphism if:

1. VeeE,,source,(m,)=m,(source,(e)) (source nodes are preserved);

2. VeeE,,target,(m,) =m,(target, (€)) (target nodes are preserved);

3. Label,(g) = Label,(g)om, (node labels are preserved);

4. Label,(g) = Label,(g)om, (edge labels are preserved).

From definition 7 and 8, it can be deduced that (L)-Graph is a category with (L)-
Graphs as objects and label preserving morphisms as morphisms.

An important discussion on the nature of labeling functions is to be made.
Indeed, the property of this function varies following the level of abstraction on
which it is defined.

When our graph structure is exploited to describe a meta-model, a labeling
functions Label, and Label, is totally bijective. This property can be
mathematically expressed as follows:

VX, y € (V UE), Label(x) = Label(y) = x=y (Label is injective).
Vy € NodeLabel U EdgeLabel,3x e (V UE) | Label(x)=y (Label is a

surjection).

230

Annex B. Graph Definitions

This means that each graph component is univocally associated with a label and
that each label is associated with a graph component. At this level identification
and labeling functions are partly redundant.

But our graph language is supposed to describe meta-types as well as their
instances (these instances being UI models). In this case the labeling functions
Label, and Label, are only partial functions. This means that two UI model
elements may share a same label.

Another important remark to be made is that the label is not used to specify a
graph component type. An additional typing mechanism is introduced for this
purpose.

Constrained Graphs

Constraining functions that operate on nodes or edges allow us to attach to any
node or edge an arbitrary number of constraints. Constraints can consist in the
expression of cardinality constraints, restrictions on the domain or the co-domain
of certain functions, etc. It is proposed to express these constraints with first
order logic expressions.

Definition 9. Let C = (NodeConstraint, EdgeConstraint) be a pair of disjoint and
finite sets of node constraints and edge constraints. g is said to be a (C)-

graph iif ¢ is a tuple (g,C0) such that:

1. g is a graph (see definition 1);
2. Co is a pair of sufjective functions, Co = (Co,,Co0,) where
Co, :V — NodeConstraint and Co, : E — EdgeConstraint.

231

Annex B. Graph Definitions

Definition 10. ILet g and h be two (C)-Graphs; Let m be a pair
m=(m,,m,) of mappings m, :V, =>V,,m :E, > E; m is an constraint
preserving (C)-Graph morphism if:

1. VeeE,,source,(m,) =m,(source,(e)) (source nodes are preserved);

2. VeekE,,target,(m,) =m,(target, (€)) (target nodes are preserved);

3. Co,(g)=Co,(h)om, (nodes constraints are preserved);

4. Co,(g)=Co,(g)om, (edges constraints are preserved).

From definition 9 and 10, it can be deduced that a (C)-Graph is a category with
(C)-graphs as objects and constraint preserving morphisms as morphisms.

Typed Graphs

Typing allows classifying nodes and edges by attaching types to them. Attaching
several nodes (or edges) to the same types indicates a commonality in terms of
properties between these nodes (or edges).

Definition 11. Let TY = (NodeIlype, EdgeType) be a pair of disjoint and finite
sets of predefined types. ¢ is said to be a (TY)-graph iff ¢ is a pair (g,TYy)
such that :
1. g =isagraph (see definition 1);
2. Ty is a pair of total functions attaching a type to each node and
edge of the graph. Type = (Ty,,Ty,) whete Ty, :V — NodeType

and Ty, : E — EdgeType.

Definition 12. TLet g and h be two (TY)-Graphs; Let M be a pair
m=(m,m,) of mappings m, :V, >V, ,m:E, —>E; m is an type
preserving (TY)-Graph morphism if:

1. VeeE,source, (m,) =m,(source,(e)) (source nodes are

preserved);
2. VeeE,target,(m,) =m,(target, (e)) (target nodes are

preserved);

Ty, (9) =Ty, (g) em, (nodes types are preserved);
4. Ty, (9) =Ty, (g)om, (edges types are preserved).

232

Annex B. Graph Definitions

From definition 11 and 12, it can be deduced that a (I)-Graph is a category with
(I)-graphs as objects and type preserving morphisms as morphisms.

The typing functions introduced here are total. This means that for all graph
component there is a corresponding type. A same type may be assigned to several
elements. A type may have no graph component of its type. This is
mathematically expressed as follows:

Vvx e (V UE),3y € NodeType U EdgeType | Type(x) =y

Identified, Labeled, Constrained and Typed graph

All features defined above can be consolidated in a single graph category called
(Identified, Labeled, Constrained, Typed)-Graphs (in short: (IL,C,TY)-Graphs).
Note that this consolidation could be modularized that is to say that features
presented above can be consolidated "a la carte".

Definition 13. g is an (Identified,Labelled,Constrained, Typed)-graph iff:
1. gisa graph (see definition 1)

g is an identified graph (see definition 6)

g is a labeled graph (see definition 8)

g is a constrained graph (see definition 10)

AN

g is a typed graph (see definition 12).

Definition 14. Let g and h be two (LL,C,TY)-Graphs; Let M be a pair
m=(m,,m,) of mappings m,:V, ->V,,m :E, —E ; m is an identifier,
label, constraint, and type preserving (I,L,C,TY)-Graph morphism iff:

1. m is a graph morphism (definition 5)

2. m is an identifier preserving morphism (definition 7)
3. m is alabel preserving morphism (definition 9)

4. m is a constraint preserving morphism (definition 11)
5. M is a type preserving morphism (definition 13).

From definition 13 and 14, it can be deduced that (I,L,C,TY)-Graph is a category
with (I,L,C,TY)-graph as objects and (I,L,C,TY)-Graph morphism as morphisms.

233

Annex B. Graph Definitions

This consolidation has the advantage of being modular. This means that features
presented above can be consolidated in an "a la carte" way to form other
categories.

An Improved Typing Function

We want to have a better control on the typing mechanism. Graph types are
introduced for this purpose ([Mont70, Corr97, Heck02]). Graph types contain all
"type information" that is used to type the model level.

Types that are returned by the functions Ty, and Ty, (see definition 11) belong
to two type sets (NodeType, EdgeType). These sets contain possible types.

The main idea with graph types is to replace type sets by graphs. In order to
support this, the typing mechanism of definition 11 has to be slightly adapted.

Definition 15. Let Type = (NodeType, EdgeType) be a pair of disjoint and
finite sets of types. Let TG be a fixed (L,C)-graph (T'G is called a #pe graph). g
is said to be a (I,L,C,TY) TG-Typed graph iff g is a pair (g,Ty'°) where:

1. gisa (LL,C,TY,N)-graph (see definition 10).

2. Ty"™®:g —>TG such that type is a total (I.,C)-graph morphism.

The above definition asserts that there must be a correspondence between, on the
one hand, node and edge type at the model level and, on the second hand, node
and edge labels at the meta-level. Furthermore, constraints defined on labels in
TG are applicable to types in ¢ . This situation is expressed in Fig. 3-17.

234

Annex B. Graph Definitions

Type Graph TG

* IsOf
Artist Records 0. > Track | cooo- >

TG-Typed Graph

A NN
I
I
I
I
I
I
I
I
i
I
I
I
I
I
I
I
]
I
I
I

(n45)M. Davis !
: Artist \ (n53)In a Silent Way
! Wy : Track
(n46)C. Corea
(e17) €: Accompanies : Artist

Figure C-1. Typed Graph and its Graph Type

In addition the following graph morphisms can be defined:

Definition 16. ILet g and h be two (LL,C,TY) TG-Typed Graphs;
m:g — h isa (LL,C,TY) TG-Type preserving graph morphism iff:

1. f isa (LL,C,TY) graph morphism (see definition 17)

2. Vxedom(m):type(h)o f =type(g).

From definition 15 and 16 it can be said that (L,C)-Graph is a category with (L,C)-
graphs as objects and nesting preserving morphisms as morphisms.

From definition 15 and 16, it can be asserted that constraints defined in a type
graph TG can also constrain the corresponding TG-Typed graph. For instance, a
cardinality constraint on an edge between two types in a TG graph is effective on
the TG-Typed graph. This could be expressed mathematically as follows:

Vv eV, ifTy(v) ="tutorial"= 3E'cE A
E'={e < E|Label(e) ="isGivenBy"A source(e) =v}A (L<|E"|<3)

In the above expression we define a cardinality constraint between a node
representing an entity labeled "tutorial" and another entity labeled "speaker". The
expressed constraint says that a tutorial cannot be given by more than three
speakers.

235

Annex B. Graph Definitions

Other constraints can limit the domain or the co-domain of source and target
functions in order to avoid or force the use of certain type of edges with certain
type of nodes. For instance an edge with the label "Is Husband Of" can only
occur between two nodes with label "man" and "woman" (not the case anymore
in Belgium). This example is mathematically expressed as follows:

Ve € E, label(e) ="isHusbandOf ",3v,,v, eV |source(e) = v, A
target(e) = v, = Label(v,) ="man"A Label(v,) ="woman"

The reader may have noticed that examples of constraints have been defined on
labels and not on types. Indeed, these examples are expressed at the concept level.
They will be enforced at the model level. As labels at the concept level are types at
the model level it is normal to express constraints on labels at the meta-level. In
the second example, the "translation" of the constraint at the model level gives:

Ve € E,Type(e) ="isHusbandOf ",3v,,v, €V | source(e) A
target(e) = v, = Type(v,) ="man"AType(v,) ="woman"

In order, to simplify the expression of type graphs, types can be structured into
partial orders. Organizing nodes and edges of the type graph into a partial order
(see definition 18) presents the advantage of propagating constraints i.e.,
constraints applicable to one type can be directly inherited by all subtypes of this

type.

Definition 17. A (L,C)-type graph TG is said to be (<,,<,)-ordered graph if

—v> —e

(NodelLabel, <) and (EdgeLabel,<,) are partial order.

Definition 18. 'The set of NodeLabel (see definition 8) is a partial order if
3<,e E, such that:

1. Reflexivity: Vnodelabel € NodeLabel = nodelabel <, nodelabel
2. Antisymmetry:
Vnodelabel;, nodelabel; € NodeLabel,ifnodelabel, <, nodelabel,
Anodelabel; <, nodelabel; = nodelabel; = nodelabel;

j—=v
3. Transitivity:

Vnodelabel;, nodelabel;, nodelabel, € NodeLabel, if nodelabel; <,
nodelabel; A nodelabel; <, nodelabel, = nodelabel; <, nodelabel,

236

Annex B. Graph Definitions

Definition 19. The set of EdgelLabel (see definition 8) is a partial order if
3<,eE, such that:

1. Reflexivity: Vedgelabel € EdgeLabel = edgelabel <, n

2. Antisymmetry:
Vedgelabel,,edgelabel; € EdgeLabel, ifedgelabel; <, edgelabel; A
edgelabel; <, edgelabel, = edgelabel, = edgelabel

3. Transitivity:
Vedgelabel,,edgelabel ;, edgelabel, € EdgeLabel, ifedgelabel; <,
edgelabel; A edgelabel; <, edgelabel, = edgelabel; <, edgelabel,

[

As said above the definition of type graphs can be exploited to propagate

constraints among types. Such a propagation mechanism is expressed in definition
20.

Definition 20. If T is partial-ordered type graph then the following
inheritance mechanisms must be defined:

1. Vv,weV, :ifvlabel(v) <, vlabel (w) then

veonstraints(w) c veonstraints(v) (constraints of supertypes are
inherited from subtypes)

VeekE, :Vs,s,,t,t, €V, :if source(e) =s, Atarget(e) =t A
viabel(s,) < vlabel(s;) A vlabel(t,) <, vlabel(t)) =

3f € E, |source(f)=s, ntarget(f)=t, A

elabel (f) = elabel (e) A econstraints(f) = econstraints(e)

(edge constraints between supertypes are inherited by edges among

subtypes).

237

Annex C. Transformational Rules

Annex C. Transformational
Rules

1. Basic nodes capabilities

Node creation

Figure C-1 represents the emptiness of the left hand side providing that no
condition is necessary to create the node described in the right hand side.

LHS RHS
player
— ld="12"
e name="Jovonderdong"
salary="1000"

Figure C-1. Creation of a node with attributes

Node modification (identified instance)

Figure C-2 shows a rule selecting a specific node on the base of its id attribute and
assigns to this node a specific attribute value.

LHS RHS

1:player 1:player

lo="1 2" = ld="12"
salan="1500"

Figure C-2 Node modification (identified instance)

238

Annex C. Transformational Rules

Node modification (unidentified instance)

Figure C-3 shows a rule that could be expressed as follows: “for all players that
played the match on the 04/06/04, align their salary to 2000”.

LHS RHS
T player g:played rl T'm‘a_tlllth _ 1:player 8:played o|7:match
i date="04/06/04 salary="2000" date="04/06/04"
BiisPRMOT n= giisFartor

L]

L A
2iteam Tteam
Al L E WL name="Louvain United”

Figure C-3 Node modification unidentified instance

Negative application condition (1)

A negative application condition could be added to the preceding rule (Figure C-
4). This negative application condition transforms the meaning of the rule into:
“for all players that played the match on the 04/06/04, raise their salary to 2000
unless they played the match of the 10/10/03” (this last match was a very bad
onel).

NAC LHS RHS
N fomer] E9refrmain
_ b o |T:maich salary="2000" date="04/06/04"
1:player " |date="04/06/04"
GrisPartof

plajed f— [

A

2team

mateh Zteam
date="10/10/03" nama="Louvain Unitad”

Figure C-4 Negative application condition

name="Louvain United"

239

Annex C. Transformational Rules

Negative application condition for iterative execution of rules (2)

Rules that detect patterns on a graph structure and make appropriate
modifications depending on the presence of this pattern, is possible for the
system that search iteratively for the left hand side. Consequently, there is a risk
that the pattern matching algorithm will match several times on the same
instances leading to an infinite looping of the execution of the rule. For this
purpose a special negative application condition has to be introduced. “NAC2” in
Figure C-5, is such an example. It says that the rule should not be applied if the
salary of the player equals already “2000”.

1 H
| i
i i
NACI | NAC2 LHS RHS
i i
i i
rpe— i i ’T‘ 8:played [7maten 1:player G:played o :match
| i H E o000 — 0
: | ‘playery Jate="04/0E04" salary="2000 date="04/06/04
! 1.player ! e
plajed i [salan="2000"] | GisPhrof (L BiisPartof

1 1 [B
i |
i |

Ej | — ;

match i |

—— | ! 1 [2Zteam 2team

date="10/10/03 E ' [name="Couvain Uniled® name="Louvain Unitzd"
1 |
i i

Figure C-5 Negative Application Condition (2)

240

Annex C. Transformational Rules

Rule with variable and variable condition as positive application condition

Figure C-6 could be expressed as follows: “raise by 500 the salary of all players
that played the match of the 04/06/04 only if their salary was inferior to 3000”.
This rule illustrates two different mechanisms. A first one consists in the use of a
variable in the left hand side, this variable is incremented by a constant in the right
hand side (“x:=x+500”). A second one consists in the use of a positive application
condition that compares the value of a variable with a constant (note that x could
have been compared with another variable).

PAC LHS RHS
1:player aplayed | Tmatch 1:player Siplayed N 3Imatch
salan=x " | date="04/06/04" salary=x+500 date="04/06/04"
“X < 3000 - e s P B
4isPartof 4isFanof

Y

gisam Tteam

name="Louvain United"

name="Louvain United"

Figure C-6 Rule with variable and positive application condition

Transfer of an attribute value

Figure C-7 illustrates a very altruistic rule, which may be expressed as follows: “If
two players of a same team are friends and one earns more than the other, then
align their salaries”. Here the value of a variable is transferred from one node (the
richest player) to another one (the poor friend).

PAC

ux > Yn

4:friend

Figure C-7 Transfer of an attribute value

241

Annex C. Transformational Rules

Edge creation

Figure C-8 illustrates a rule that could be expressed as follows “All players of
Louvain United with a salary greater than 3000 should be assigned to the match of
the 04/06/04” (It will be a tough match !)

PAC NAC THS RES
1:player Imatch Tplayer | 3Si0ned [3match
salan=x date="04/06/04" salary=x| |date="04708107" |
“ ’ i e T
X > 3000 assigned isPhrtof — e e
A
Imateh 4 1
|date="D406104" | [2team | -
name="Louvain United" name="Lowvain Unitad"

Figure C-8 Edge creation

Node deletion

Figure C-9 shows the most delicate operations of all: node deletion. Indeed, the
problem with node deletion is that they raise the question of dangling edges. We
adopt a very clear policy regarding this problem: all edges pointing to or
originating from a deleted node should be erased. In other words, no dangling
edges are allowed.

LHS RHS

played

o] F:match
" |date="04/06/04"

d:match
date="04/06/04"

2team
name="Louvain United"

2iteam
name="Louvain United"

Figure C-9 Node deletion

242

Annex C. Transformational Rules

Rule 1: For each leaf task of a task tree, create an Abstract Individual
Component. For each task, parent of a leaf task, create an Abstract Container.
Link the abstract container and the Abstract Individual Element by a containment

relationship.
Fdecomposition
1ask Iﬁf‘rﬂ
name=x
decomyosition &decormposition = isExequtedin isExequtedin
abstractContainment .
abstractindividualCormponsnt}# abstraciContainer
ask name=x

Rule 1 Creation of abstract individual components derived from task model leaves

Rule 2: Create an Abstract Container structure parallel to the task

decomposition structure.

A
abstractContainer

(lecomposition
Jtask Jtask N
name=x name=x
isExecitedin 4isExeputedin

ZabstractContainer

RES
Ttask decomposition
name=x
o T 4isExefutedin
A abstractContainment
Egﬁ?;:c)zountainer ® ZabstractContainer

Rule 2 Creation of abstract containers derived from task model structure

243

Annex C. Transformational Rules

Rule 3: for each abstract individual element mapped onto a task such that
the tasks nature consists of the activation of a method and this task is mapped
onto a class, assign to the abstract individual component an action facet that
activates the mapped method.

s 4manipulates 4manipulates
fask 4:manipulate: : Ttask I 11ask P
action="start/go" lz.met\lm\ action="starigo" mi””:"sf‘mﬂﬂ"_) P
element="operation" IEMESE ‘ element="operation" element="operation
SisExefutedin SisExetutedin SisExeputedin
b
FabstractindiiduzlComponent| isRepresantedBy = JahstactindiidualComponent| isReprespntedsy
isComposedf JabstracindividualComponent IsComgosed0f
facet
type="control"
action=x

Rule 3 Creation of a facet for an abstract individual component derived from task action

type

Rule 4: for every couple of AIC mapped onto sister tasks that are sequential
“>>”_ create a relationship of type “abstractAdjacence” between these AIOs.

NAC LHS RHS

Ttemporal

Tdemporal
pe=">>"

10:abstractindividualComponent

abstractadjacence 13iskxecutedin

13isExgcutedin 14isExgeutedin
14isExgoutadin

abstractAdjacence
|1 0 absnnctlnt\|\r|t|uaIComuonem}—>|11 abstractindividualComponent

‘10 abshncNntIMtlualComponem‘ |11 aDstl‘acnnt\|\ntlua\00m|mnem‘

T1:ahstractindividualComponent

Rule 4 A sequentialisation of abstract individual component derived from task temporal

relationships

244

Annex C. Transformational Rules

Rule 5: for each couple of sister tasks mapped onto AICs, define a dialog
control relationship between these AIC that has the same semantic as the
temporal relationship.

NAC LHS RHS

8temporal

Sitemporal
type=x

3:abstractindividualComponent

SiisExeputedin
fiisExeputedin

auiDialogControl

3:abstractindividualComponent

GisExeputedin

3:abstractindividualCompanent

GrisExefutedin

4.:|bsl|aclln[liw[\ua\CUmpuﬂem| auiDialogControl

symbol =x

4:abstractindividual Component

4:abstractindividualComponent

Rule 5 Abstract Dialog Derivation from Task Model

Rule 6: for each task that manipulates a method, the AIC that represents this
task triggers the method.

NAC IHS RHS

S:manipulates Smanipulates

2Zimethod

triggefs 4isExegutedin

4iisExeputedin friggers

3:abstmct\nchviclualcumuunent|

JabstractindividualComponent

JrabstractindividualComponent

Rule 6 Deriving triggering relationships from task domain mappings

245

Annex C. Transformational Rules

Rule 7: if two sister tasks manipulate a same attribute and are temporally
constrained with a “sequence with information passing” relationship, each of
these tasks being mapped onto an AIC, then the AIC that is mapped with the
first task updates the attribute manipulated by the tasks. The second AIC observes
this attribute.

NAC

updates ohseves

T'ahstmctln[IiwtlualCnmpnnent| ‘S:abstractlncIivicILmIComponent

LHS RHS

4temporal 4temporal
type="[==" EE

G:impipulates Simanipks

SisExeputedin 10:isExgcutedin

SrisExefputedin 10:isExgcutedin

1:attribute 1:attribute

updates

b d

|?:abstractlntliviclua\Component| |8 abstractindividualComponent |T_'JL]sha[;[I|1[|ivi[lualoumpunem| |8:abstractlntIi\riclua\Component

Rule 7 Derivation of Updates and observes structure on the base of a task relationship of

sequential information passing

246

Annex C. Transformational Rules

Rule 8: if two sister tasks manipulate a same attribute and are temporally
constrained with a “concurrent information passing” relationship, and each of
these tasks is mapped onto an AIC, then both AIC observe and update the
attribute that is manipulated by the tasks.

NAC

updates 1:attribute

updates

T.C-IIJSUC-ICtlI]EIiViEILICIICEII11|JEII1E!m|

gabstractindividualComponent

dtemporal
4temporal type="[01"
o e— 2task »3task
; type="10r :
2itask »
Sfapipulates G:manipdlates
Srapipulates G:manipHates Jp—
e SrisExecutedin 10jsExecutadin

QisExegutedin 10iisExgcutedin
F upilates
Updates 1:attribute

1:attribute

v observes

T.c-lbstluctln[Ii\ritlualounnmnenl|

ohserves

8:abstractindividualComponent

r
g:abstractindividualComponent

7 alJstmctlncIiviclualcammnent|

Rule 8 Derivation of Updates and Observes structure on the basis of a task relationship of

concurrent information passing

Rule 9: Each abstract container at level “leaf-1” is transformed into a
window. Note that an abstract container is always reified into a, so called, box at
the concrete level. This box is then embedded into a window.

abstractContainment
Z:abstractContainer 1:abstractContainer ZabstractContainer 1:abstractContainer

abstractCqntainment abstractContainment

isReiiedBy

abstractContainer

ZabstractContaines graphicalContainer| 97PhicalContainment g2 nicalContainer

si_fype="window" " isi_type="main hox"

Rule 9 A creation of windows derived from containment relationships at the abstract level

247

Annex C. Transformational Rules

Rule 10: each abstract container contained into an abstract container that was

reified into a window is transformed into an horizontal box and embedded into
the window.

NAC 1HS RES

SabstractContainment

5abstractC ZabstractContainer,

|3 abstractcomqma‘ ‘2 abstractContainer JabstractContainer

isReifizdBy 41sReffiedBy|

abstractContainer

HisReffiedBy

L, .

graphicalContainer T:graphicalContainer b
Xsi_type="main hox"

graphicalGpntainment

¥si_type="horizontal box"

Rule 10 A generation of window structure derived from containment relationship at the

abstract level

Rule 11: each input facet of an abstract individual component is reified by a
graphical individual component (a type of concrete individual component) of type
“editable text component” (i.e., a text box).

NAC IHS RHS

Tabstractc

JuabstractContainer 1:abstractindividualComponent
1-ahstractindividualComper u| ‘S'vh hwﬂ"nnhmm‘

5 FisComposedOf
7:abstractContainment
5isComposed0f A
2facet
isReifiedBy GisReffiedBy 1:abstractindividualComponent BisRelfiedBy type="input’
put

GisComposedOf — isRelfedBy
.
Y k.
2facet araphicalC - n
4:graphicalContainer e - - i T MAner
graphicalindividualCornponent fype="input’ d:graphicalContainer xsi_type="textComponent
isEditahle="ts"

Rule 11 Creation of an editable text component (i.e., an input field) derived from facets

type of abstract components

248

Annex C. Transformational Rules

Rule 12: for each couple of abstract individual components related by an
“abstractAjacency” relationship and reified into concrete individual components,
generate a “concreteAdjacency” relationship between the concrete individual

components.

NAC ILHS RHS

AabstractAdjacency H:ahstractAdjacency

I:graphicallndividualComponent |1 abst\acﬂn(||w(|Um()gmpgngm'—b{]:t\\ r\mpgngm‘ ‘1 -hstractndividual Compor ‘»Hz bstraetindividualComponent

graphicalAdjacency isReifiedBy isRefiedey U= isReifiedBy isRelfiadBy

|4 ray lualComp ‘ ‘3;.” phic r\m;mnmw}—blaru'mhir omponent

A |
4g\a\Jhica\In[liwdua\CumpuHem‘ |3 hicallndividual t

graphicalAdjacency

Rule 12 A placement of graphical individual components derived from spatio-temporal

relationships at the abstract level

Rule 13: for each container related to another container belonging to different
windows, and their respective abstract container being related by a “is before
relationship”, generate a navigation button in source container pointing to the

window of target container.

abstractAdjacency
abstractAdjacency 1:abstractContainer }—Fl? abstractContainer
SuraphicalContainer G:graphicalContainer ‘1 abstractContainer }—b|2:abstmctcunmnel' .
si_fype=window si_ype="window’ | TisRelfidBy FisReffiedBy
TiisReffiedBy BisReffiedBy
graphicalCpntainment graphicalTransition o L,
transitionType="open" e ‘3.(J|aumca\0m1|amew| ‘4g\aphim\commnel‘
h
k. ‘S:Q\aumcnlcontnme\| ‘4gra|3|1|ca\comaum" _ _
graphicalindividualComponent] @graphicalCpntainment 10:graphicalfzontainment
xsi_type="button" o .
J:graphicalGonta 1ra
Ggraphicalgontainment 10 ‘5.(J|m3h\ca\0m1lamew| ‘ﬁ.qm|3mm\0m1mmew|
[xsi_pe="window" | [xsi_ype="window" |
- graphicalCpntainment
[5:araphicalContainer| [E:araphicalcontainer] graphichITransition
[rsi_tpe="window” | [si_type="window"_| v transitignType="open"
graphicallndividualComponent

xsi_type="hutton"

Rule 13 A window navigation definition derived from container adjacency relationships

249

Annex C. Transformational Rules

Rule 14: for each couple of abstract container with a dialog control relationship,
transpose this relationship to the couple of concrete containers that reify them.

3:auiDialogControl J:auiDialogControl
symbol=x symbol=x
4:graphical Container |1'nhstmctCnntninm '—D-{Z:abstractContamer 1 abstmctContainer}—ﬂQ abstractContainer
cuiDialogControl 6iisRefliedBy T-sRalfiedBy = GiisReffiedBy TiisReffiedBy

cuiDialogControl
symbol=x »
‘4.[J\11|JhiC'JICUHIGIiI1E\ }—b-|5 graphicalContainer

h | k.
5:gra|3h\calCuntainel| |4:gra|3h\calComamer| ‘S:tJmphicalCuntainer‘

Rule 14 Derivation of the concrete dialog from abstract dialog

Rule 15: for each AIC updating a domain concept, if a CIC reifies this AIC then
the CIC updates this same domain concept.

2atibute
.
2:attribute
d:updates 4:updates
updates
updates FabstractindvidualComponent] o FabstractindividualComponent
SisReffieds - i
1:glaphica\Inclivic\ua\Componem‘ i R
Y

|1 ‘graphicalindividualCompaonent 1:graphicalindividual Component

Rule 15 Transposition of update relationship

250

Annex C. Transformational Rules

2. From Concrete User Interface to Code Rules

Step T3 consists in code generation from a CUIL Code generation techniques for
Uls is a very well known topic. [Czat00] presents a state-of-the art of model to
code techniques (e.g., visitor-based approach and template based approach).
Scientific results for this transformation have been shown in systems issued from
research like: Janus [Balze95], Trident [Boda95], Modi-D [Puer97] or from
commercial world e.g., Genova [Geno04] or Oliva Nova [Moli02]. The present
work does not particulatly contribute to this area although several tools have been
developed to provide code generation support from the concrete user interface
level.

3. Reverse Engineering Rules

Rule 16: for each editable graphical individual component, create an abstract
individual component equipped with an input facet.

NAC IHS RES

ahstractContainment

HraphicalindividualComponent 2ahstractContainer T:abstractContainer ahstractindividualComponent
xsi_type="tedComponent’ 3
isEditable="true" SisAbstractedinto
GisAbstractedinto ‘
isAbstraptedinto = SqraphicalContainer IsCompgsedor
J.graphicalContainer @@l
5:graphicalContainment 4:graphicalGontainment

facet

ype=input 0 3 isAbstractediito
4:graphicalindividualComponent JaraphicallndividualComponent [
xsi_type="tetComponent' xsi_type="textComponent' » ype=input
isEditable="true" isEditable="true"

Rule 16 Creation of a facet at the abstract level derived from a type analysis of graphical

individual components

251

Annex C. Transformational Rules

Rule 17: for each abstract individual component equipped with a navigation facet
create a task with action type “start/go” on an item of type “element”.

NAC LHS RHS

Jitask decomposition task
3

action="start/go"
TisAbstrpctedinto

itern="tontainer"
1:abstractContainer
isAbstragtedinto |:|

S:abstractContainment

isAbstractedinto
e st
5abstractindividualComponent
type="navigation" :I : 1
10isCon{posedor Grabstractindividual Component

X
o |9facet
type="navigation"

TisAbstrjctedinto

T:ahstractContainer

B:abstractContainment

Ofacet 10:isComposedOf

type="navigation"

Rule 17 Definition of task action types derived from an analysis of facets at the abstract

level
4. Adaptation to context change

Rule 18: (1) erases each intermediary task (i.e., non-leaf and non-root tasks). (2)
attaches every leaf task to the root.

NAC IS RES

11task

decomposition decomyposition
decomposition

A
Jtask

Rule 18 Flattening of a task tree structure

252

Annex C. Transformational Rules

Rule 19: for each sister tasks change their temporal relationship into concurrent.

NAC ILHS RES

Gtemporal
type="II"

1task

Jask

Gtemporal
type="||I"

Rule 19 Transforming all temporal relationship to concurrent

Step: From Abstract User Interface to Abstract User Interface

Rule 20: for each pair of abstract individual component mapped onto concurrent
tasks, transfer all facets of the abstract individual component that is mapped onto
the task target of the concurrency relationship, to the other abstract individual

component.

NAC 1S RES

Itemporal
type="lI"

Jtemporal

type="ll"
decomposiion ~ decomppsition o
isReifiedB)
¥ IsReifiedBy sReffiedBy sReifiedBy
k.
‘4 por m‘ |5 nmuunem‘ ‘4:\\\ tractindividualCompor w‘ ‘51‘. frac mponent
isCompfsedQf isComposedQf

3
Afacet 0facet

Rule 20 A merging of facets of abstract individual components

Rule 21: erase all abstract individual components that have no facets left.

‘3 abst\actlnt\ivitlualCmmJunem‘ |3:nbstract\nthwt\un\Cmmmnem v—
isComposedOf @

Rule 21 Erasing abstract individual components with no facets left

253

Annex C. Transformational Rules

Step: From Concrete User Interface to Concrete User Interface

Adaptation at the concrete level is illustrated by several development sub-steps:
container type modification (called concrete container re-formation), modification
of the types of concrete individual components (called concrete individual
components re-selection), layout modification (layout re-shuffling), or navigation
re-definition. Examples for these first three adaptation types are given hereafter.

5. Sub-step: Concrete container re-formation

Concrete container Re-Formation may cover situations like container type
transformation (e.g., a window is transformed into a tabbed dialog box), container
system modification (e.g., a system of windows is merged into a single window).

Rule 22: each window is selected and mapped onto a newly created tabbed dialog
box.

T.graphicalContainer
usi_type="window" inAdaptedinto
1:graphicalContainer e— graphicalContainer 4| draphicalContainer
inAdapgedinto xsi_type="window" e Xsi_type="window" xsi_type="tahbedDialogBoy"
Y

graphicalContainer

xsi_fype="tabbedDialogBox"

Rule 22 Initializing of the adaptation process by creating graphical component to adapt

into

254

Annex C. Transformational Rules

Rule 23: transfers every first level box of the window to adapt it into a tabbed

item composing a tabbed dialog box.

1S RES

4:graphicalContainment

digraphicalContainment 1:graphicalContainer ZgraphicalContainer
1:graphicalContainer o/ 2:0raphicalContainer xsi_iype="window’ rsi_ype="main boy*
si_type="window" xsi_type="main box' TinAdaptedinto
TinAdaptedinto) A P S v
B graphicalCpntainment T
G:graphicalContainer

xsi_type="tabhedDialogBox'

BigraphicalContainer FgraphicalContainer) .
xsi_tpe="tabbzdDialogBox rsi_type="box srepniale malnmeﬂTﬁ|Jhicq|Cunhinmem
graphicalContainer | :0raphicalContainer
vsi_type="tahbedltem" " Jesi_type="main box"

Rule 23 Creation of a tabbed item and transfer of the content of the adapted window

Rule 254: cleans up the specification of remaining empty main boxes.

graphicalContainment
w ‘1 Umulmalcoma\new‘ _|2'grmlmca\onnmmer|
xsi_fype="main box" i = 0 » 5 5
= [xsi_tye="window | [siywe="mainho | ,, —
graphicalCpntainment SinAdaptedinto GinAdaptedinto
Y
|g\aph\ca\Comainer| ‘d'glnphlca\Cnmnmer .
[rsi_ype="box” | isi_type="tabbedDialogBox’| ksi_ype="tahhedDialogBox

Rule 24 Deletion of unnecessary containers

255

Annex C. Transformational Rules

6. Sub-step: Concrete individual component re-selection

Re-selection transformations adapt individual component into other individual
components.

Rule 25: for each couple of adjacent editable text component and non-editable
text component. Erase the editable text component and transfer its content into
the non-editable text component (unless a content has already been transferred).

4araphicalindividualComponent d:graphicalindividualComponent
ZoraphicalindividuzlComponent isAdjpcent isAdjacent
xsi_type="tetCompanent' ¥ n—= Y
_wntgm:x L 2 i NN o Aot 2Z.graphicalindividualComponent
isEditable="trug [xsi_type="tetComponent' Ja N ;‘HE‘:'““‘ . ! ¥si_type="textComponent'

content=x bl e—— content=x

isEditahle="false" iSEdiablcSie isEdif

L £ isEditable="true"

Rule 25 Merging of a non-editable text component (e.g., a label) and an editable text

component (e.g., an input field) into one single editable text component

7. Sub-step: Layout re-shuffling

A layout at the concrete level is specified with horizontal and vertical boxes. An
elements contained into a box may be glued to an edge of this box.

Rule 26: cach box is transformed into a vertical box and every individual
component is glued to left.

1.g|a|3m_c:nICo_ma|newI LgraphicalGontainer LgraphicalContainer
¥si_type="vertical hox’ si_ype="bor si_type="vetical hox"
J.graphicalGontainment Taraphicalcontainment e JgraphicalContainment
k y
ZgraphicalindividualComponent - ;
glueHorizontal="left |2 graphicalindividualComponent 2_g|aph\.calln[\wl|‘[\ua|ICmn|mnent
glueHorizontal="left’

Rule 26 Squeezing of a layout structure to display vertically

256

Annex D. UsiXML Ontology of User Interfaces

Annex D. UsiXML Ontology for
User Interface Specification

The first description of Limbourg [Limb04c] refers to the separation of concerns,
inspired by Dijkstra [Dijk70]:

“This principle states that the different aspects of a problem should be isolated from one to each
other. Separation of concerns allows studying fractions of a matter in an independent manner
while modularizing this matter. A concern gathers properties relevant to one perspective that can

be maintained on an artifact’

In [Limb04b] they introduce UsiXML language to handle the concepts defined in
their ontology of Uls. This language is structured according to four basic levels of
abstractions defined by the Cameleon reference framework [Calv03] (see Figure
D-1).

‘ Task & Concepts ‘\

‘ Abstract User Interface ‘

l

‘ Concrete User Interface ‘

]

‘ Final User Interface ‘/

/ Context of use \

Figure D-1 The Cameleon reference framework for multi-target Uls.

The description of four levels of their approach is described as follows:

257

Annex D. UsiXML Ontology of User Interfaces

e At the top level is the Task & Concepts level that describes the various
interactive tasks to be carried out by the end user and the domain objects that
are manipulated by these tasks. These objects are considered as instances of
classes representing the concepts.

e An Abstract UI (AUI) provides a Ul definition that is independent of any
modality of interaction (e.g., graphical interaction, vocal interaction, etc.).

e As an AUI does not refer to any particular modality, we do not know yet how
this abstract description will be concretized: graphical, vocal or multimodal.
This is achieved in the next level.

e The Concrete UI (CUI) concretizes an AUI for a given context of use into
Concrete Interaction Objects (C1Os) so as to define layout and/or interface
navigation of 2D graphical widgets and/or vocal widgets. Any CUI is
composed of ClIOs, which realize an abstraction of widgets sets found in
popular graphical and vocal toolkits. A CIO is defined as an entity that users
can petceive and/or manipulate (e.g., push button, text field, check box, vocal
output, vocal input, vocal menu). The CUI abstracts a Final Ul in a definition
that is independent of programming toolkit peculiarities.

e The Final UI (FUI) is the operational Ul i.e. any Ul running on a particular
computing platform either by interpretation (e.g. through a Web browser) or
by execution (e.g., after the compilation of code in an interactive development
environment).

As depicted in Figure D-1, the Context of use surrounds the different levels.
This context of use describes all the entities that may influence how the user’s task
is carrying out with the future UL It takes into account three relevant aspects,
each aspect having its own associated attributes contained in a separate model: user
hpe (e.g., experience with device and/or system, task motivation), computing platform
Hpe (e.g., desktop, PocketPC, PDA, GSM), and physical environment type (e.g.,
lighting level, stress level, noise level). These attributes initiate transformations
that are applicable depending on the current context of use.

Finally, in order to map different elements belonging to the models described

above, UsiXML provides the designer with a set of pre-defined relationships
called mappings.

258

Annex D. UsiXML Ontology of User Interfaces

1. Task Model

A task model describes the various tasks to be carried out by a user in interaction
with an interactive system. The task model used in this methodology is similar as
the proposed in [USIXO06], which is an extended version of ConcurTaskTree
(CTT) [Pate97], selected as it represents user’s tasks along with their logical and
temporal ordering.

taskModel
—.

1
sk
i - strng 1-n
S - lteger
Simporance - hkeger
SpainutEtonlevel - teger
e RByLlevel: nteger e
e er t
= cent 1 Tolargetld ;sThg
Stz sting
gJaer&..m smg EskRelationship C/
sEEkEm srhg
z i -string
Sprame - smg 1 1n Eaee
Tesourczid - sTing

temporal
decomposRion Zpsmbol siing
¥ shing

b

piraryRetonship

unafRelationship

[I T
[enaving || aisaving | | [suspemmesume | omerezpghoene TiEteain
[it | | — Ty EtonNumber - mieger
[conmmecpimnnmatonpassing || PdepencentConcumengy || enzbingWminbmatonpassng |
I I I |
[i |

deterministicCholee undetenm lnisticCholoe

Figure D-2 Conceptual view on the task model

The proposed task model is composed of zasks and task relationships, see Figure D-
2. A task frequency attribute is an assessment of the relative frequency of execution
of a task. Task frequency is evaluated on a scale from 1 to 5. A task zmportance
attribute assesses the relative importance of a task with respect to main user’s
goals. Task importance is evaluated on a scale from 1 to 5. A value of 1 means
that a task has a low importance, 5 means that a task is very important. Tasks have
been described with a name, and a #pe. Task #ype, similarly as propose by [Pate97],
may be:

259

Annex D. UsiXML Ontology of User Interfaces

User tasks are notably useful to predict a task execution time, as is the user
responsible on executing them. A user task refers to a cognitive action
like taking a decision, or acquiring information.

An interactive task involves an active interaction of the user with the system
(e.g., selecting a value, browsing a collection of items).

A gystem task is an action that is performed by the system (e.g., check a
credit card number, display a banner).

An abstract task is an intermediary construct allowing a grouping of tasks
of different types.

Task relationships are:

e Enabling (T'1 has to be finished in order to initiate T2)
e Non-deterministic choice (Once one task is finished the other cannot

be accomplished anymore)

e Deterministic Choice (Once one task is initiated, the other cannot be

accomplished anymore)

e Parallelism (T1 is interleaved with T2).
e Sequential independence (Is equivalent to (T1>>T2) OR (T2 >>T1))
e Deactivation (T2 may interrupt T1 before the termination of T1;. T1

cannot be resumed after T2 has terminated.)

e Suspend/Resume (T2 may interrupt T1 before the termination of T1.

Once T2 is finished, T1 may be resumed.)

e FEnabling with information passing. Task T1 has to be finished in

order to initiate task T2 and T2 is synchronized with T1 on some
piece of data.

e Parallelism with information passing. Task T1 is interleaved with task

T2 while they synchronize on some data.

e Task Iteration (*|n). Task T can be iterated an infinite number of times *,

of n times

e Optional tasks. Task T is optional.

Several additional constraints may be formulated on the consistency of a task

model:

e There exists a maximum of one binary (ie, temporal or

decomposition) relationship between two tasks.

e If a task is decomposed into another task then this last task must have

a brother task.

260

Annex D. UsiXML Ontology of User Interfaces

e There is only one root task. This means that there is only one element
with no decomposition relationship pointing to it.

2. Domain Model

A domain model desctribes the real-world concepts, and their interactions as
understood by users and the operations that are possible on these concepts
[DSou99]. We selected UML class diagrams as the basis of expression for our
domain model. We considered UML class diagrams as Extended Entity
Relationship model (EER) [Teor86]. The main reason for this choice is that UML
has become a lingua franca in the domain of software engineering and is widely
used in industrial practice [Limb04c].

We rely on [USIX06] domain meta-model, shown in Figure D-3. This UML class
diagram shows the features added to the initial UML standard in order to better
tackle the problem of transformational development of Uls. For instance, the
domain n of values attached to attributes is described with a richer precision in
order to allow widget selection (e.g., enumerated domains can be described
extensively).

From [USIX06] Domain model concepts are:

o domainClass. Classes describe the characteristics (attributes and methods.)
of a set of objects sharing a set of common properties.

o Atribute. Attributes enable a description of a particular feature of a class.

e The #pe of an attribute refers to common data types found in most
programming language i.e., Boolean, char, string, integer, float. The type
attribute may also make reference to an object type, such as the vector
required to denote a 3D color.

e ‘The cardinality of an attribute indicates the number of values an attribute
may be associated with. The cardinality can be specified by providing two
integers: a minimal cardinality and a maximal cardinality.

An original typology allows characterizing a type of domain for an attribute.
Indeed, attributeDomainCharacterization takes the value of: interval, continuous
interval, discrete interval, linear interval, circular interval, set[n] (where n is the
number of possible values in an attribute domain). When used in combination
with a task model, this typology helps to map domain attributes to a type of

261

Annex D. UsiXML Ontology of User Interfaces

interaction object by which it will be rendered [Limb04c]. For instance, a “choose
element” task on an attribute with a circular interval enables the derivation of a
(multi-state) toggle button.

Methods (in this context) are presences which are called either by objects of the
domain or by user interface components. Methods manipulate object’s attributes.
Methods are, here, described with their signature i.e., with their name, type, and
parameters.

Objects are instances of a class. An object is composed of attribute instances which
may have values and define the state of an object.

domain class relationships describe various types of relationships between classes.
They can be classified in three types: generalization, aggregation, usage, materialization,
instanciation and ad hoc. Class relationships are described with several attributes
enabling the specification of role names and cardinalities.

uilodel
atiributelnstance &creationDate - string
&value - String %schema\f’ersion stri...
1
0.n
ohject
&id - string 1
domainModel
name ° string - EONITE
&sclassname : stri..| 0.0 1.n |&sourceld - strit
1 1 0.n
domainRelationship 1
domainClass [4 n Eoid =trin
&id: string Gonare . oring [———— 1 [target
&name : strir..| : 1 Etargetid - strir
1 T Q
0n /D \:K[] n ‘ ‘
attribute method e
r d "
id : string &id - string aggregation
name : string &@name - strit SoRoleAName s usage &roleAName : “is_compost.
& attributeDataType - string Q)ugagg‘rypg stril @roleACardMin integer
Eyattribute CardMin integer 1 l%rmeACarﬂMax'lmeger
&attributeCardMax : integer &roleBName : "composes”
&vattributeDomainCharacterization : st SroleBCardiin : integer
adHoc @roleBCardMax : integer
0.n
1 GroleAName : string
i @roleACardMin : integer
0.n Gid - st
id ” string @roleACardMax - integer
enumeratedyalue &pdataType : string @roleBName - string materialization
&name : string @name : string) &roleBCardMin : integer
SparamType : string &roleBCardMax : integer instanciation
@passingType : {oyRef, byV: SproleAlnstantiatedCard : inte....
SproleBinstantiatedCard : inte

Figure D-3 Conceptual model for a domain model

262

Annex D. UsiXML Ontology of User Interfaces

3. Abstract User Interface Model

From [Limb0O4c] Abstract User Interface (AUI) model is defined as “a wuser interface
model that represents a canonical expression of the renderings and manipulation of the domain
concepts and functions in a way that is as independent as possible from modalities and computing

platform specificities”.

We rely to a similar AUI (Figure 4-17). The AUI is populated by Abstract Interaction
Objects (ALO) and abstract user interface relationships. These concepts constitute a
vocabulary that is independent of the modality and the computing resources for
which a system is targeted at.

A modality (also called interaction technique) can be defined more precisely, after
[Niga95], as the coupling of a physical device d with an interaction language L.:
<d, L>. Our language supports, at the concrete level, two modalities: speech (i.e.
anditory) input and output and graphic (i.e., graphical) input and output. This
support will be extended at the graphical level that considered 2D UL

Abstract Interaction Object (AIO) may be of two types Abstract Individnal
Components (A1C) and Abstract Containers (AC).

263

Annex D. UsiXML Ontology of User Interfaces

uiModel
BcreationDate : string
&jschemaVersion : string

aio source

0.n
B5id: string 1n auiRelationship . ﬁ Bsourceld : string
&5name : string &5id: string >
&5name : string 1
é target
Bhtargetid : string
abstractContainer |
BorderType : string 1 1.n | abstractindividualC

Bsplitiability : boolean <>

omponent ‘
1 spatioTemporal auibialog Control abstractContainment

Bsymbol : string

& - integer
0.1 0.n o.n Bdimension2 : integer

facet

B5id: string abstractAdjacency
B%name : string

&

&

actionType : string
Flactionltem : string

)

v —— event : string
EJinputDataType : string [action : string

&inputCardMin : string
jinputCardMax: string
inputCharacterization : string output

B outputContent : uri
1
T 0.n

selectionValue
Bname : string

BcontrolPriority integer
Binitiative : {system, user}
SterminationValue : string

B 8 B |

Figure D-4 Concept model for abstract user interfaces

An Abstract Individnal Component (AIC) is an abstraction that allows the description
of interaction objects in a way that is independent of the modality in which it will
be rendered in the physical world. An AIC may be composed of multiple facets.
Each facet describes a particular function an AIC may endorse in the physical
world. Four main facets are identified:

An input facet describes the input action supported by an AIC.

An output facet describes what data may be presented to the user by an AIC.

A navigation facet describes the possible container transition a particular AIC may
enable.

A control facet describes the links between an AIC and system functions i.e.,
methods from the domain model when existing.

A single AIC may assume several facets at the same time. The AIO that reifies
this multi-facetted AIO will assume all those ‘functionalities’. For instance, a CIO

264

Annex D. UsiXML Ontology of User Interfaces

may display an output while accepting an input from a user, ensure a transition
between windows and trigger a method defined in the domain model.

An Abstract Container (AC) is an entity allowing a logical grouping of other abstract
containers or abstract individual components. AC are said to support the
execution of a set of logically/semantically connected tasks. Actually AC may be
reified, at the concrete level, into one or more graphical containers like windows,
dialog boxes, layout boxes or time slots in the case of auditory user interfaces.
However there is no concretization of these objects for 3D Uls.

Abstract User Interface Relationships (AUI relationship) are relationships that can be
drawn between abstract interaction objects of all kinds.

Five types of abstract relationships may be defined at this level:

Decomposition relationship allows specifying a hierarchical structure of abstract
containers and abstract individual components.

AbstractAdjacency relationship indicates that two AIO are logically adjacent.
Spatio-temporal relationship allows a specification of a very precise layout in time or
space in a way that is independent of any modality.

Dialog control relationship allows a specification of a flow of control between the
abstract interaction objects.

Mutnal emphasis relationship allows specifying that two components should be
somehow differentiated at the concrete level. This relationship may be useful in a
user interface where the probability of confusing two UI elements is high (e.g., in
an airplane cockpit, a field displaying the angular speed and the absolute speed).

4. Concrete User Interface Model

The Concrete User Interface Model (CUI) represents a concretization of an AUI
model. A CULI is populated by Concrete Interaction Objects and Concrete User
Interface relationships between them, figure 4-18. The CUI model is a UI model
allowing a specification of an appearance and behavior of a UI with elements that
can be perceived by users. The actual [USIXO00] specification just considers 2D
Uls (Figure 4-19 and 4-20) and vocal Uls (Figure 4-21).

By definition, a CUI is modality dependent as any CUI instance refers to the
interaction modalities that have been selected for this Ul In contrast to its

265

Annex D. UsiXML Ontology of User Interfaces

modality dependence, a CUI remains toolkit independent as no CUI instance does
refer to any physical element (i.e., toolkit elements or widget) of the computing
platform. Nonetheless, a CUI description can be detailed enough to allow a
complete rendering of a user interface [Limb04c].

A CUI model (Figure 4-18) is composed of Concrete Interaction Objects (C1O) and cui
relationships.

Figure D-5 Root elements of the concrete user interface model

A Concrete Interaction Object (CIO) is defined as an entity that users can
petceive and/or manipulate (e.g., 2 push button, a list box, a check box, a sound).
The actual specification realizes an abstraction of widget sets found in popular
toolkits: 2D graphical (Java Swing, HTML 4.01, Flash) and auditory (earcons and
VoiceXML 2.0). In other words, CIOs allows an expression of Ul elements that is
independent of their actual rendering. Our target is to extend this representation
to 3D Uls, including languages such VRML, X3D or JAVA 3D.

Graphical and auditory CIOs are further decomposed into containers and
individual components. We have just summarized the main characteristics of the
actual model more information can be found in the [USIX06] documentation.
More emphasis will be dedicated on the extension.

266

Annex D. UsiXML Ontology of User Interfaces

graphicalContainer
@Bvidth : integer
BEheigth : integer

uri
| SOnTop : boolean

0.1 integer
i : boolean
e

—— sFloat : bool
=3 | [Femane weican
EBSize : sring [diatogBox| —
B8y Size : sring
MenuBar flowBox Besize :sting | B
[BBallign : string window
/] 0.1 o-n [EBvindowL eftMargin : integer
7 @windowTopMargin : integer
cel -] boolean
MenuPopU
Elows : integer Eindex : integer
box BEcols: integer Ezindex : integer
Eitype : stiing |7} boolean
integer sFooter : boolean
ght : integer @kspan : integer
: boolean &8/Span : integer
booolean EfSpan : integer
boolean

boolean

< integer
ght : integer borderBox
boolean

Figure D-6 2D Graphical containers

Graphical containers (GC) are detailed in Fig. 4-20 and corresponds to classical
and common 2D Uls containers. Attributes used are as abstract as possible in
order to respect the independence on implementation.

Graphical Individual Components (GIC) are detailed in Figure 4-20. Text
components are differentiated in two types, for input (an input field, a password
field, a multi-line input field) and output (a label, a complex textual output as a rtf
file) purposes.

Vocal Concrete interaction objects are represented in Figure 4-21. [Vocal Containers
represent a logical grouping of other auditory containers or auditory individual
components. Vocal individual components are of five types: auditory output which
may consist in music, voice or a simple “earcon” (i.e., an auditory icon), auditory
input which is a mere time slot allowing the user to provide an auditory input
using her voice, or any other physical device able to produce sound, vocal
navigation (Specifies a transition to another vocalForm), break (Interrupts the
execution of the current vocalContainer) and exit (Terminates the execution of
the vocal interface).

267

Annex D. UsiXML Ontology of User Interfaces

menu
1

menultem

listhiox

2 8la:
L g g2
2 £ o> o
2 i
[
g
:

inputText

EnumbeOiLines

Efiter : uii

stiing

boolean

Figure D-7 Graphical Individual Components Types

268

Annex D. UsiXML Ontology of User Interfaces

CUI relationships are exposed in Fig. 4-23. Similarly to Concrete Interaction
Objects they are divided into vocal relationships and graphical relationships. Dialog control
relationship can be defined between both types of interaction objects [USIX06].

Vocal relationships are of three types: vocal transition that enables to specify a
transition between two auditory containers; vocalAdjacency that indicates a time
adjacency between two auditory components; and vocal/Containment that allows
adding or deleting vocallndividualComponets trom a vocalContainer.

Graphical relationships are of five types: Graphical transition specifies navigation
links between the different containers populating the UL, a/jgnment that may also
be specified among any individual component belonging to the same window,
adjacency indicates that two components are topologically adjacent, esphasis enables
to specify that two or more graphicallndividualComponents must be
differentiated in some way (e.g., with different color attributes) and containment
analog to the vocal containment, allows to specify that a graphicalContainer
embeds one or more graphicalContainers or one or more
graphicallndividual Components.

Dialog control allows a specification of a flow of control between the concrete
interaction objects. As so a dialog control may be specified independently of a
task model. LOTOS (see Appendix A) operators are used for this purpose. For
instance a relationship CIC1.EnterCountry [|> CIC2.EnterProvince, indicates that
CIC2 cannot be initiated while CIC1 is not terminated and that CIC1 has provided
a value for the data on which the two component synchronize with.

269

Annex D. UsiXML Ontology of User Interfaces

target

BBtargetld : string|
1.n

cuiRelationship| L
BHid : string
Giname : string -,
:
 —
==
 —|

graphicalEmphasis
—

vocalAdjacency vocalTransition
[BHdelay Time : integer ‘ Ty pe SIv:ng
fect : sti.

vocalContainment o g i | graphicalContainment
0 —————

EBtransitionTy pe : string 5i Y an]
BfransitionEf fect : str SBisRightCentralLeft : sti.
isUpDown : string

Figure D-8 Relationships ate the concrete user interface level

Any CIO may be associated with any number of bebaviors (see Fig. 4-24). A bebavior
is the description of an event-response mechanism that results in a system state
change. The specification of a behavior may be decomposed into three types of
elements: an event, a condition, and an action [USIX00].

An event is a description of a run-time occurrence that triggers an action. They
consist of any system event (i.c., issued from a process belonging to the domain),
user interface event (i.e., issued in the context of the user interface). A limitation
on the events is that they cannot make any reference to coordinates, which is
imperative in 3D event handling. Events can be composed into more complex
event expressions using a subset of the LOTOS operators introduced eatlier.
However, as it is not part of the language, the behavior description is
straightforward from the actual [USIX00] specification.

A condition is the expression of a state that has to hold true before (pre-condition)
or after (post-condition) an action is performed. A condition may be positive or
negative. An action is a process that results in a state change in the system. An
action can be of three types: a method call, a transformation system, ot a transition.

A method call is a call to a method that is external to the Ul If a domain model

exists, all method calls must reference a method belonging to this model. A
method call is normally specified with the name of the method (under the form

270

Annex D. UsiXML Ontology of User Interfaces

Class.methodName), but other referencing techniques are not forbidden. The
method call parameters can be specified by making a reference to the value of a
property of an object belonging to the CUIL

A transformation system is the expression of any property change at the Ul level. We
use a mechanism to specify property changes on the UL This mechanism is
similar to the one that will be introduced in Chapter 4. To avoid too much
forward reference, it can be said that a transformation system can be explained as
follows: when a pattern is found in CUI specification, changes should occur on
the elements matching the pattern. A transformation system might be, for
instance, “when a green button is found in the specification, change the color
property of this button to red” or “For all text components belonging to the main
window, increase their font by a factor of 2”.

A transition, also called navigation, is a description of a change in the container’s
visibility property of a user interface system. A transition has a source (a
navigation individual component) and a target (generally a container). Depending
on the type of modality, transitions may be of different types (see above in this
Section).

271

Annex D. UsiXML Ontology of User Interfaces

uesl00q : KiorepuensifE
Buws : yoeqpas i
Buwis : sonafg

BuLls : anjeAIuaLNIGE
ws : dioufg
un : digHine jopig | T

un : uoone joplg [~

un 1o Buins : a0 Ne JBpEE
un : uauodfE

un : uoolfg

Buws : sweufEg

Buwns : Pl

uoneuwis)

uoneniur

Buws : prabreifs
s : uoissaidxofE s ¢ prooinosil

uonipuoJRINGLIE

Buus : uonduosapRg

Bus : anfeAwnaIRg Buns - oureuf

Buins : AuadoidiuauodwoofE
Bus : jaypnusuodwoofl
weredieopotiew

BuLS : S NpoyIa W

IIEOPOUIBN

Buis : awarelswiolgE
R S

{1sod*aud} : ad ALuoNIpUOSEE
uea|00q : & AnEBaNSIRE
ueaj00q : 8 ANISOLSIEE u

T

"IN "HOX "HO ANV} : anre g
101es8dO[Ea160]

)= 1 lI<<) ¢ anre AR

Joresadofeiodwa)

Figure D-9 Behavioral specification at the concrete level

272

Annex D. UsiXML Ontology of User Interfaces

5. Context Model

A context model (Figure 4-36) is a model describing the three aspects of a context
of use in which an end user is carrying out an interactive task with a specific
computing platform in a given surrounding environment [Thev01]. In [USIXO006]
the context model is composed of context and the plasticity model set. The context is
defined as a triple of the form <e, p, #> where ¢ is an element of the environments
set considered for the interactive system, p is an element of the platforms set
considered for the interactive system and # is an element of the users set for the
interactive system. The plasticity model set composed of plasticity domains, which
defines a sub-area in a specified context (itself included in the physical space: user,
environment, platform) where a specified AIO/CIO will be represented such as a
specified form. Details of the model can be found in [USIX06] documentation.

The environmental model, which is part of the context model, relies on the
assumption that the user interact in the physical world. The actual describes any
property of interest of the “physical” environment where the user is using the Ul
on the computing platform to accomplish her interactive tasks. Such attributes
may be physical (e.g., lighting conditions), psychological (e.g., level of stress), and
organizational (e.g., location and role definition in the organization chart).

273

Annex D. UsiXML Ontology of User Interfaces

[esa1 : sainpo iy X
[eIa1 : uosIAIuNY R
uesjoog : siqedessaiqe 1sRg
jesai : uosionduosereriEg

uesjoog

Buws : adeusEl
So1eUIPI00 40 165 : SIaUI0NRY
SBuus 10 195 : suoneladopamo| g

1905Y2ISUBBIS S—- |

uesjoog : pajqeuzia|ddyeners:
je1a) : UOBISAIWIHE
uesjoog : ajqedeosaues g

Buws © o

I Buss : sapoouzindulolpndRg

(Beq) e1an : UOKIBAIL wiojie|daremos

(6eq) [eson

(Beq) jesa1r : sauRIqITIdL |
19quINN : 9219001 WWRE [esa)1T : B LIddS0RE
112117 : sse[020maqdem@g | | jesayr : swnjopiadIsoRE
(Beq) jeiain : 19SWeiB0IdpauoddnsiE Joquiny : Aioedeog
ode] OHomau
u-g uro

Buuss : ppuswoinusfig

buus : g

Buus : pladfioaiersiesnigg

buus : g

Buuss : plulojie|
Buuss : p

urewog urewoq; duuope|d
0 0 0 Buws : uonenoppsefig
Buyss : 2ousuBdx30 ISP Buus : aweuRE
p . 7 Buus : aousuack WA Buuss : piRg|

Buuss : sousuadxPefig
Buus : swenadAossasg

Buus : pg

uT 10

Buus - oweg |

Buus : plg

Xa1u0d

[CECNTS) u'T

Jasurewog/ippseld

Buus : uosIaABWURE

Buus : arequoneaifiy

wawuoIAUS

wiojie|daremprey

uesiooq : Bussanss |
Buws : [ana1BunydI |
ueajooq : As1oNsHgg|

Buus : owelg

Buus
Buus : adk

Figure D-10 Context model

274

Annex D. UsiXML Ontology of User Interfaces

6. Inter-Model Relationships

The concepts described in the ontology require a way to be interconnected. Model
integration is a well-known issue in transformation driven development of UI
[Puer99]. This problem was sorted with the creation of a set of pre-defined
relationships allowing a mapping of elements from heterogeneous models and
viewpoints (Figure 4-39). Several advantages where identify in [Limb04c] such as:
the derivation of the system architecture (mappings between domain and
CUI/AUI models), for traceability in the development cycle (reification,
abstraction and translation), for addressing context sensitive issues (has context),
for dialog control issues, for improving the preciseness of model derivation
heuristics.

uiModel

reationDate : string
chemaVersion : string

source
Id : str
A L [EBsourceld: sting
interModelRelati | 1 —
1n onship z;/
Model | = /[@jd: string 1
—— ! Brame:sting [~ ———_Ln target
Eiargetld : string

lmggersl 1 obsevvesl I updalesl I y] | | | [t | | [hascontet | [isShapedFor |
| |]]

Figure D-11 Inter-Model Mappings

The intermodel relationship is any type of relationship established between one or
many source models and one or many target models [USIX06]. A typical
interModelRelationship is established between one source model and one target
model, but it can be easily imagined that such a relationship can start from one
source model to many target models, but from many source models to many
target models.

An interModelRelationship is the super class of all possible relationships between
models and elements of models. Consists of: one to many soutces, one to many

targets and the source should not necessarily be different from the target.

Several relationships [USIX06] can be defined to explicit the relationships
between the domain model and the UI models (both abstract and concrete):

275

Annex D. UsiXML Ontology of User Interfaces

Observes is a mapping between any Ul component (at abstract or concrete
level) and a domain attribute or instantiated attribute (at run time). Observes
enables to specify that a Ul component observes a value from the related
domain concept. This mapping may be interpreted as follows: the content of a
UI object must be synchronized when:

- A mapped attribute is modified. The new state resulting from this
modification should be presented on the UI (the notion of view could
be of interest here).

- A mapped method is executed. Its output parameters are displayed on
the UL

Updates is a mapping between any Ul component (at abstract or concrete
level) and a domain attribute or instantiated attribute (at run time). Updates
enable to specify that a Ul component provides a value for the related domain
concept.

Triggers indicates a connection between a method of the domain model and a
Ul individual component (either at the abstract or at the concrete level)

Some other mappings are related to assure the transformations in order to achieve

multi-path development of user interfaces. Traceability mappings are helpful for

keeping a trace of the execution of the transformations. For instance it may be

interesting to know which concrete object reifies which abstract object, or vice
versa, which abstract object is an abstraction of which concrete object.

Is Excecuted In maps a task to one or several AUI or CUI elements.

Is Reified By indicates that a concrete object is the reification of an abstract one
through a reification transformation.

Is Abstracted Into indicates that an abstract object is the reification of a concrete
one through an abstraction transformation.

Is transiated Into enables to provide a trace of the adaptation of one component
in another, the transformation called translation.

Other useful mappings are:

Manipulates maps a task to a domain concept. It may be an attribute, a set of
attributes, a class (or an object), or a set of classes (or a set of objects). This
relationship is useful when it comes to find the most appropriate interaction
object to support a specific task.

Has Context maps any model element to one or several contexts of use.
IsShapedFor allows to associate a plasticity domain to a CUL

276

