
UNIVERSITE CATHOLIQUE DE LOUVAIN

FACULTE DES SCIENCES APPLIQUEES

DÉPARTEMENT D'INGÉNIERIE INFORMATIQUE

Development of multimodal user interfaces by
interpretation and by compiled components :

a comparative analysis between InterpiXML and
OpenInterface.

Mémoire présenté en vue
de l'obtention du grade

Promoteur : Jean Vanderdonckt de Licencié
en Informatique

par :
- Goffette Yann
- Louvigny Henri

Louvain-la-Neuve
Année académique 2006-2007

UNIVERSITE CATHOLIQUE DE LOUVAIN

FACULTE DES SCIENCES APPLIQUEES

DÉPARTEMENT D'INGÉNIERIE INFORMATIQUE

Development of multimodal user interfaces by
interpretation and by compiled components :

a comparative analysis between InterpiXML and
OpenInterface.

Mémoire présenté en vue
de l'obtention du grade

Promoteur : Jean Vanderdonckt de Licencié
en Informatique

par :
- Goffette Yann
- Louvigny Henri

Louvain-la-Neuve
Année académique 2006-2007

Acknowledgements

We first would like to thank, Mister
Vanderdonckt, our supervisor, for his support and his
help during all the development of this thesis : it was
absolutely invaluable. We would also thanks him to give
us the opportunity to participate at the eNTERFACE 2007
workshop. This workshop was a particularly great and
rich experience both for ourself and for the fulfilment of
this thesis.

About this workshop we thank Lionel Lawson and
Marcos Serrano for their help on the Open Interface
platform.

Obviously we thank all volunteers who
participated to our tests.

Finally We would like to thank our families and
friends for their support and encouragement during the
year it took us to realize this work and write this thesis.

Henri would like to give a special thanks to his
parents André and Josiane to his family Emilie and Anne-
Catherine, his flatmates Valérie, Tristan and Vincent and
all his friends.

Yann would like to give a special thanks to his
parents, Marie, and his flatmates and friends : Bossic,
Bernard and Cyril.

Table of contents

1. Introduction.. 12
1.1 Context...12

1.1.1 Man-machine interfaces... 13
1.1.2 Multimodality...13

Advantages of multimodality... 15
Multimodal Systems are more robust.. 15
Multi-modal communication is often more simple... 15
Multimodal Systems are more flexible..16

1.1.3 The CARE properties...16
Equivalence... 17
Assignment.. 17
Redundancy... 18
Complementarity... 18

1.1.4 CARE-Like properties of the user... 18
1.1.5 CARE properties and CARE-like properties : Conclusion.. 19
1.1.6 Gesture... 19

Pen-based gesture.. 19
Hand-based gesture..20

1.1.7 Gesture recognition.. 20
1.2 Motivations.. 21

1.2.1 Potential commercial issue...21
1.3 Goals.. 22
1.4 Reading plan.. 23

2. State of the art...24
2.1 The current existing gestures... 24

2.1.1 Pen Based Gesture... 24
All in one gesture plug in for Firefox...24
Matis system...25
Handwriting recognition...26
Operating Systems..26

2.1.2 Hand Gestures.. 26
2.2 Gestures Qualities.. 28

2.2.1 Pen based gestures qualities... 28
Iconicity..28
Learnability.. 29
Gesture recognizer recognizability...29
 Compatibility and coherence...29

2.2.2 Hand based gestures qualities.. 30
Iconicity..30
Learnability.. 30
Gesture recognizer recognizability...31
Compatibility and coherence..31

2.3 Actions set on interfaces.. 31
Windows managing actions..31
Browsability actions... 32
Validations actions... 32
Characters and numbers .. 32

2.4 Existing Toolkits..32
2.4.1 Pen-based Toolkits... 32

PenBuilder... 32
Microsoft XP tablet Edition development kit..33

2.4.2 Hand-based Toolkits.. 33
Isight Sony... 33
Georgia Tech Gesture Toolkit (GT2K)... 34

2.5 Quill Toolkit.. 34
Introduction.. 34
General principle.. 34
Rubine's algorithm..35
Advantages of Quill..36
Satin..38

2.6 HandVu Toolkit... 39
Camera..39
Hand detection..39
Hand tracking... 40
Posture recognition...40

2.7 Specification language choice... 42
2.7.1 UsiXML... 42

The language.. 42
The interpreter : InterpiXML... 44

2.8 OpenInterface...45
Introduction.. 45
OpenInterface architecture... 46
General Principle..47

a) The component CIDL description... 47
b) The pipeline PDCL description...48

Similar project.. 48
eNTERFACE workshop...49

3. Design of multimodal interfaces.. 51
3.1 Multimodal architectures... 51

a) MVC architecture...52
b) ARCH architecture...54

3.2 Pen-based gestures...56
Windows managing actions..56
Browsability actions... 57
Validation actions...58
Characters gestures..58

3.3 Hand gestures ..60
Windows managing actions..60
Validations actions... 62

4. InterpiXML Development.. 63
From InterpiXML v1.0 to v1.1.. 63

Adaptation to UsiXML v1.8.0.. 64
Adaptation to multimodality... 64
Architecture...67

4.1 InterpiXML and hand-based recognition...72
4.1.1 Architecture..72
4.1.2 Implementation.. 72
4.1.3 Examples.. 74
4.1.4 Evaluation.. 74

4.2 InterpiXML and pen-based recognition...75
4.2.1 Architecture..75
4.2.2 Implementation.. 75
4.2.3 Examples.. 77
4.2.4 Evaluation.. 77
4.3.1 Examples.. 78
4.3.2 Evaluation.. 78

4.4 General evaluation... 79

5. OpenInterface integration... 80
5.1 OpenInterface and hand-based recognition... 83

5.1.2 Implementation.. 84
5.1.3 Examples.. 84
5.1.4 Evaluation... 85

5.2 OpenInterface and pen-based recognition... 85
5.2.1 Architecture..86
5.2.2 Implementation.. 86
5.2.3 Examples.. 87
5.2.4 Evaluation.. 87

5.3 OpenInterface with hand and pen-based recognition.. 88
5.3.1 Architecture..88
5.3.4 Evaluation.. 89

5.4 General evaluation... 89
5.5 InterpiXML integration to OpenInterface..90

5.5.1 Architecture..90
5.5.2 Implementation.. 91
5.5.3 Example... 91
5.5.4 Evaluation.. 92

6. Tests..93
The goals.. 93
The experiment itself..93
The experiment protocol.. 95
The experiment conditions... 96
The evaluation forms..96
The pre-test...97
The participants.. 97
Hypothesis.. 97
The Results and conclusions.. 97

1) Volunteers don't see the differences between OpenInterface and InterpiXML.......... 97
 2) Volunteers should prefer tablet to webcam...99

3) Webcam accuracy may disappoint users...100
4) Volunteers don't use the 2 modalities simultaneously.. 100
5) Experimented users of tablet should accomplish task more rapidly......................... 100
6) Learning is quiet important for both modalities..101
Other conclusions and interesting results.. 103

Conclusions.. 104

Bibliography... 106
Books, periodics et papers... 106
Web links... 108

Appendix.. 109
Demographic forms... 110
Evaluation forms..111
CD Content.. 114

Figures index
Figure 1: The Put That There system : Bolt 1980.. 14
Figure 2: Pen-based gesture..19
Figure 3: Hand-gesture... 19
Figure 4: Wii plateform.. 20
Figure 5: Wii wheel controleur...20
Figure 6: Gartner Hype Cycle 2006 [Gar 06]...21
Figure 7: Gartner Hype Cycle 2006 [Gar 06]...22
Figure 8: Set of possible actions with gesture mousse with All in one gesture plug in for Firefox ..25
Figure 9: The MATIS application.. 25
Figure 10: Graffiti alphabet.. 26
Figure 11: Hand Gestures illustration...27
Figure 12: Hand gesture recognition system for replacing a mouse.. 28
Figure 13: Delete and Copy iconic gestures...29
Figure 14: u and v different design...29
Figure 15: Example of gesture coherence.. 30
Figure 16: Thumb up for Ok.. 30
Figure 17: One information to learn to do four actions (Up, Down, Left, Right).............................. 31
Figure 18: Quill illustration : ...35
Figure 19: Aspect feature... 37
Figure 20: Curviness feature.. 37
Figure 21: Rondaboutness feature.. 37
Figure 22: Density feature.. 38
Figure 23: Posture for hand detection.. 39
Figure 24: Recognized postures... 41
Figure 25: The Cameleon reference framework for multi-target UIs.. 42
Figure 26: Explorer InterpiXML v1.0.. 44
Figure 27: OpenInterface Logo.. 45
Figure 28: OpenInterface currents components... 45
Figure 29: OpenInterface architecture..46
Figure 30: Similar logo...48
Figure 31: Similar context.. 49
Figure 32: Bogaziçi university... 50
Figure 33: Typical information processing flow in a multimodal architecture designed for speech
and gesture..52
Figure 34: MVC architecture..53
Figure 35: The ARCH model... 54
Figure 36: ARCH architecture for dialogue oriented systems... 55
Figure 37: Windows managing actions pen gestures... 55
Figure 38: Browsability actions pen gestures...56
Figure 39: Validation actions pen gestures.. 57
Figure 40: Characters pen gestures...58
Figure 41: Numbers pen gestures.. 59
Figure 42: Windows managing hand gestures..59
Figure 43: Browsability actions hand gestures...60
Figure 44: Validation action hand gestures.. 61
Figure 45: Reading plan for implementation chapters... 62
Figure 46: First step in the modality – interfaces communication... 64
Figure 47: Second step in the modality – interfaces communication...64
Figure 48: Third step in the modality – interfaces communication..65
Figure 49: InterpiXML ARCH architecture... 66

Figure 50: InterpiXML architecture... 67
Figure 51: Package be.ac.ucl.isys.InterpiXML.multiModale...68
Figure 52: handVu package..69
Figure 53: quill package... 69
Figure 54: Typical execution between HandVu software and interfaces produce by InterpiXML... 70
Figure 55: Gesture name - message posted - action associations...72
Figure 56: InterpiXML with hand recognition modality..73
Figure 57: Gesture name – Message posted – action associations... 75
Figure 58: Screenshot pen-based modality and InterpiXML... 76
Figure 59: The QuillModality Keyboard..76
Figure 60: Both modality connected to InterpiXML..77
Figure 61: Mapping Component.. 80
Figure 62: HandVu component pipe in OpenInterface.. 83
Figure 63: HandVu and a GUI with OpenInterface print screen..84
Figure 64: Quill-ImageViewer pipeline... 85
Figure 65: Pen based Recognition on OpenInterface... 86
Figure 66: Pipeline pen-based and hand recognition on OpenInterface...87
Figure 67: Pen-based and hand recognition on OpenInterface.. 88
Figure 68: Pipe for InterpiXML and both modalities...89
Figure 69: InterpiXML - OpenInterface connection with 2 modalities... 91
Figure 70: Task model for test interface...93
Figure 71: French fries order form .. 93
Figure 72: The learning Interface.. 94
Figure 73: The experiment room..95
Figure 74: InterpiXML and OpenInterface Users comparaison...97
Figure 75: Appreciation..98
Figure 76: Modality used when choice offered.. 99
Figure 77: Time to accomplish the task... 101
Figure 78: Task achieving.. 101

Code index
Code 1: Interface reaction to event implementation...72
Code 2: Code For the command and charcter recognizers...75
Code 3: CIDL factory code for the Mapping Component factory... 80
Code 4: CIDL Sink code for the Mapping Component..81
Code 5: CIDL Source code for the Mapping Component.. 81
Code 6: HandVuMapping.txt : Translation file for HandVu... 81

1.Introduction

1. Introduction

1. Introduction
The last ten years, the man machine interface have known a very important evolution. In

the 50's, it was necessary to resort to plug boards, on which one plugged in cables connecting two
operators to program mathematical operations on the electromechanical tabulators, remote
ancestors of our programmable calculators. In the 60's, systems became able to interpret a line of
order : the keyboard was essential, accompanied soon by the screen. As this time, more convivial
modes of interaction with the machines were searched in particular at the Xerox Palo Alto
Research Center. In 1964, Douglas C. Engelbart had conceived the principles of the modern
graphic interface : instead of posting lines of orders the ones following the others, the screen could
accomodate windows in which menus were posted, which one could reach by moving a pointer
with a two metal wheels mouse.

Screen, keyboard, mouse : the three fundamental elements of the interface of our computers
were joined together. In 1979 after the visit at the Alto Research Center of a young man called
Steve Jobs, the invention had spread for personal use. The young employer of Apple was going to
equip the first Macintosh, launched in 1984, of a graphic interface and a mouse.

The interface man machine hardly moved since, at least for the private individual. But
today things seems to get in move, the multimodality is now getting present. What it is and how
does it works, that's our challenge to explain you in this thesis.

1.1 Context
The context of this thesis is then the man-machine interfaces, especially the study and the

implementation of the multimodal interfaces. Nowadays this recent field of studies contribute a lot
in the man-machine interfaces study. But before starting out, let's define some important concepts.

12

1.Introduction

1.1.1 Man-machine interfaces
« Il serait sot de nier l'importance de la communication efficace entre l'homme et la
machine, aussi bien que l'inverse. Ma prévision est toutefois que la vraie révolution des
prochaines décennies viendra davantage encore de ce que les hommes ont à se dire par
l'intermédiaire des machines » : James Cannavino

Definition :

The quotation of the strategic director of IBM gives us a idea of in what consist in the man-
machines interfaces. But we should give more precises définitions.

« It means the aggregate of interaction human-machine, man-machine interface (MMI)
studies the ways humans interacts with computers or between themselves with the help
of the computers, but also the way to develop computer-systems which are ergonomic, it
means effective, and easy to use or more generally, adapted to their context of use.»

So if we had to summarize, we would say that it consist in a set of device and softwares
allowing a user to communicate easily with the computer. So it consists in :

 A mean of communication between humans and machine in general (a modality).

 A field of study having the objective to make this communication transparent, natural,
efficient and effective.

1.1.2 Multimodality
What does means multimodal ? The Etymology of this word, informs us that the prefix

multi comes from the Latin multos : many and the suffix modal is the adjective of the word “mode”
which mean the particular way an action is done. So the definition of a multimodal interface could
be :

« Interface which propose to his users, an numerous different interactions mode.» but also :

Multimodal interfaces process two or more combined user input modes— such as speech,
pen, touch, manual gestures, gaze, and head and body movements— in a coordinated manner
with multimedia system output. They are a new class of interfaces that aim to recognize naturally
occurring forms of human language and behaviour, and which incorporate one or more
recognition-based technologies (e.g., speech, pen, vision).[OVIA 02]

13

1.Introduction

In fact, we don't have to confuse mode and modality. The mode is an abstract way to
interact with the computer by using one of the sense of human body while a modality is the
realisation of the communication mode. For example, we use the modality speech recognition for
the vocal mode. We can also have more than one modality for a mode for example touch mode can
achieve the mouse and a pen-based gesture recognition.

The first real multimodal system was the «put that there» system which combined the
manipulation of graphical object and the speech recognition [BOLT 80]. This «put that there»
system, in figure 1, was then combining two interaction mode. An interaction modality is a
manner of communicating with the machine and a way for the machine to communicate with the
user. Screen, keyboard and mousse are the most famous interaction modality. Nowadays, an huge
number of modalities are flourishing : cameras, varying minces, touchable screens, pen tablets,
speech recognition,... In short, users have the choice. So the user should be able to choose the way
he wants to interact with their computers. Nonetheless, the large part of applications only deals
with two inputs modalities which are mainly the mouse and the keyboard.

In fact, if software engineers set the speech recognition as the main modality, users will be
probably disappointed by the accuracy of the speech recognizer if the environment is noisy. That's
where multimodality becomes interesting. Instead of having only the speech recognition as input
we could have also a lips reader input. The user has now the choice between speaking or lips
reading or even both. Then in a noisy place, lips reading will provide another input to speech
recognition that will hep the speech recognition in his work. This is one of the advantage provided
by the multimodality. The next section is covering all the advantages of the multimodality.

Humans also are communicating multimodaly. In fact, to increase the listener's
understanding the speaker often use his hands or expressions on his face or even body gestures.
It's then obvious to provide to computer's users a more natural way to communicate with
computer. Providing either a more intuitive way of communication for the user and increase the
computer's understanding of the users queries.

14

Figure 1: The Put That There system :
Bolt 1980

1.Introduction

Advantages of multimodality

Multimodal Systems are more robust:

As we saw in the introduction, lips reading combined with speech recognition provide
another input stream that can support the speech recognition in the noisy environment. If the
speech recognition is hesitating between the word «tough» and «thought», as the figure of the
mouth is completely different the system will achieve the right command. Ambiguities are
resolved due to multimodality. In this case, we are talking about «mutual disambiguity» [OVIA
02]. This shows that multimodal systems are more robust than unimodal systems. The weaknesses
of an interaction mode (depending on the current environment or not) are overcome by the
strengths of the other modalities [OVIA 02]. But those systems are not robust only due to mutual
disambiguity but also due to users. First it's because users will select the input mode that they
judge less error-prone. Secondly, users language is more simple (see next advantages of
multimodality). And finally, users tend to switch from interaction mode after system recognition
errors. This facilitate error recovery [OVIA 02].

In two recent studies involving 4600 multimodal commands, a multimodal it has been
found that mutual disambiguity and error suppression was about from 19 to 41 %. (compared to
unimodal systems) [OVIA 02]. Mutual disambiguation involves disambiguation of signal or
semantic-level information in one error-prone input mode from partial information supplied by
another. Mutual disambiguation can occur in a multimodal architecture with two or more
semantically rich recognition-based input modes. It leads to recovery from unimodal recognition
errors within a multi-modal architecture, with the net effect of suppressing errors experienced by
the user [OVIA 02].

Multi-modal communication is often more simple:

As we said in the previous section the communication provided by the multimodal systems
is more natural and intuitive. In fact, some commands are easily expressed multimodaly. For
example, when interacting with spacial stuffs such as graphical objects users do prefer say «move
this here» and point the object to move with a pointing device instead of saying «put the red cross
next to highest red building» [OVIA 02]. However using a pointing device add some cognitive
workload to the user [RUGE 03J. This example is showing an important characteristic of an
interface, the accessibility. The accessibility is defined by the easiness with which the users can use
the functions of an interface independently of their constraints. A user suffering from blindness
could fill the a form with vocal recognition as input and sound as output instead of using
keyboard and not see the results on the screen.

15

1.Introduction

Multimodal Systems are more flexible:

Multimodal systems are more flexible according to the fact that user are choosing their
interaction mode. We can here introduce the notion of utilisability. The utilisability characterize
the easiness to use the interface. For example, if we use a palm an we wish to fill a form on a web
page it will be easier to fill the different widgets with speech recognition instead of drawing the
different signs representing the different characters. In contrast with an unimodal system where
user has only to deal with pen.

«With eight tentacles and the ability to shift colours rapidly, the intelligent octopus
is a master at learning, adapting to, and controlling its environment. To improve
their coverage, reliability and usability, multi-modal interfaces likewise are being
designed that can automatically learn and adapt to important user, task, and
environmental parameters.» [OVIA 04]

 The goal of the multimodality is then to extend their utility to more challenging mobile
environment and larger group of users. The multimodality can then adapt to his environment, in a
noisy place, instead of a speech recognition we can use a mouth-listening recognition as input and
as output, a sound by bright weather and a light in dark ones. But also will enable us to provide
more robust and flexible systems.

1.1.3 The CARE properties
The care properties have been designed to evaluate and characterize the aspect of any

multi-modal interaction that may occurs between the interaction techniques available in a multi-
modal user interface. Those properties are : The complementarity, the assignment, the redundancy
and the equivalence. CARE properties have been designed by Amodeus European project in 1995
but are mainly the work of Laurence Nigay [NIGA 95a].

Multi-modal user interfaces support interaction techniques which may be used sequentially
or concurrently and independently or combined synergically [NIGA 95a]. That's why current
evaluation techniques such as consistency, observability and pre-emptiveness are not sufficient.

The formal expression of the CARE properties relies on the notions of state, goal, modality,
and temporal relationships. The explanation of the CARE properties are taken from [NIGA 95a].

A state is a vector of observables, that is, a set of properties that can be measured at a
particular time to characterise a situation. A goal is a state that an agent intends to reach. An agent,
e.g., a user, or the system, or a component of the system, is an entity capable of initiating the
performance of actions. A modality is an interaction method that an agent can use to reach a goal.
To model the expressive power of a modality m, that is, its capacity to allow an agent to reach state
s' from state s in one step, we use the function Reach(s,!m,!s'). A sequence of successive steps (or
states) is called an interaction trajectory. This generic definition of a modality can be interpreted at
different levels of refinement. For example, a modality could be specified in general terms as
‘using speech’, or more specifically as ‘using a microphone’. Both of these interpretations are valid.

16

1.Introduction

A temporal relationship characterises the use over time of a set of modalities. The use of these
modalities may occur simultaneously or in sequence within a temporal window , that is, a time
interval. Alternatively, only one modality from a set may be used. Let Pick(s,!m,!s'). be a predicate
that expresses the use of m among a set of modalities to reach s' from s. Modalities of a set M are
used simultaneously (or in parallel) if, within a temporal window, they happen to be active at the
same time. Let Active (m, t) be a predicate to express that modality m is being used at some instant t.
The simultaneous use of modalities of a set M over a finite temporal window tw can be formally
defined as:

Parallel (M, tw) (⇔ Card (M) > 1) ∧ (Duration(tw) ≠ ∞) (∧ ∃t∈tw · ∀m∈M · Active (m, t))

where Card (M) is the number of modalities in set M, and Duration(tw) is the duration of the time
interval tw.

Sequential events may have to occur within a temporal window to be interpreted as
temporally related. If they occur outside this window, then they may be interpreted differently.
Modalities are used sequentially within a temporal window if there is at most one modality active
at a time, and if all of the modalities in the set are used within the temporal window:

Sequential (M, tw) (⇔ Card (M) >1) ∧ (Duration (tw)) (≠∞ ∧ ∀t∈tw · (∀m, m'∈M · Active(m, t) ⇒ ¬Active(m', t)) ∧
(∀m∈M · ∃t∈tw · Active(m, t))

Equivalence

We say two modalities are equivalent if separately those two modalities are necessary and
sufficient for reaching a state. Equivalence express then the choice of the modality to reach a
certain state.

Equivalence (s, M, s') (⇔ Card(M) >1) ∧ (∀m ∈ M Reach (s, m, s'))

Assignment

We are talking about assignment when to reach a certain state, the user has not the choice
of choosing the way he wants to interact. A modality is assigned to a state s to reach a state s' if no
other modality can reach s' from s. In contrast to equivalence, assignment expresses the absence of
choice: either there is no choice at all to get from one state to another, or there is a choice but the
agent always opts for the same modality to get between these two states. Thus we can define two
types of assignment:

StrictAssignment (s, m, s') ⇔ Reach (s, m, s') ∧ (∀m' ∈ M. Reach(s, m',s') ⇒ m'=m)

AgentAssignment (s, m, M, s') ⇔ (Card(M) >1) ∧ (∀m' ∈ M. (Reach (s, m', s') ∧ (Pick (s, m', s')) ⇒
m'=m))

Equivalence and assignment both measure the choice available at some point in the
interaction trajectory. Redundancy and complementarity go one step further by considering the
combined use of multiple modalities under temporal constraints.

17

1.Introduction

Redundancy

We talk about redundancy if to reach a state, two or more modality must be used almost
simultaneously to reach a state. We have to notice that if two inputs are using the same human
ressources, redundancy is impossible. And most of the time complicated due to the cognitive
workload.

Redundancy (s, M, s', tw) ⇔ Equivalence (s, M, s') ∧ (Sequential (M, tw) ∨ Parallel (M, tw))

This means that two modalities can be used at the same time in order to increase the
« understanding » of the system.

Complementarity

We say that an interaction is complementary if two or more modality must be use in a
complementary way to reach a state. For example, if we'd like to do the action times 2. Operator
times can be specified by hand gesture and operand 2 by pen. Function and arguments have to be
specified by different modalities

Complementarity (s, M, s', tw) ⇔ (Card(M) >1) ∧ (Duration(tw)≠ ∞) ∧ (∀M' ∈ P M (M'≠M ⇒ ¬REACH
(s, M', s'))) ∧ REACH (s, M, s')∧ (Sequential (M, tw) ∨ Parallel (M, tw))

1.1.4 CARE-Like properties of the user
A great advantage of multimodality as we talked before, is that the user can choose the

modality he wants to use to communicate with the computer. If for example the user is occupied
with his hand he would prefer use speech to communicate. We refer those preferences as U-
preferences [NIGA 95a].

If only one modality is acceptable to the user, or if he has a strong preference for one
particular modality, then we have a case of U-assignment. If there exists a subset of the possible
modalities which he prefers to all others, but between which he is indifferent, then we have a case
of U-equivalence. If the user prefers to employ two or more means of communication to convey the
same information, then we have a case of U-redundancy. and if the user’s preference is choose one
modality for one aspect of the task and another modality for another aspect, then we have a case of
U-complementarity.

The goal is to have a compatibility between the system and the user-preference (U-CARE
properties). It should exist at least one modality which is acceptable for the user and the system.
Then we pose the condition of a fitting between the system and the user expectations.

 For U-assignment : The system should have the same modality as the user wishes.

 For U-equivalence : The set of modality of the system should encompasses at least the
modality with the one the user wants to interact.

 For U-Redundancy : the conditions are the same as U-equivalence.

 For U-Complementarity : Actions on which complementarity are possible as to work with
same modalities as user wants to interact.

18

Figure 2: Pen-based
gesture

Figure 3:
Hand-gesture

1.Introduction

1.1.5 CARE properties and CARE-like properties : Conclusion
An important conclusion is that neither the properties of the system alone, nor those of the

user alone, determine usability. System modelling can determine the properties of the system, but
to understand those of the user, and hence usability, we need to turn to user modelling. It's then
important to have both the informations about user preferences and system constraints. Firstly for
not developing modalities that won't be used and secondly to avoid being in front of unavoidable
constraints for the system.

The current definitions of the CARE properties provide a formal framework for reasoning
about the design of multimodals systems.

1.1.6 Gesture
Definition :

The gesture term evoke the term of movement. But more specificity the movement of the
above members : hand or head in order to execute a task or express a emotional state [BOUI 02].

According to this definition, the main purpose of a gesture, is to achieve a certain task. This
is exactly what we will try to accomplish in this thesis : allowing users to make gestures which will
be interpreted by the computer that will accomplish the corresponding tasks. This will be
accomplished with the help of two gesture recognizer : Quill and HandVu whom the explanations
will be provided on chapter 2. Two kind of gestures will be interpreted in this thesis : pen-based
gestures and hand-based gestures.

Pen-based gesture :

We define the pen-based gesture, the marks entered with a stylus or a mouse to invoke
commands. We are using here, only single strokes gestures. It means that the stylus is never lifted
up from the table to invoke a simple command. A single-stroke gesture is a single-path gesture
that is one stroke. Thus drawing “L” is a single-stroke gesture, while “X” is not [RUBI 91]. So we
use a graphical tablet to catch all the incoming gestures invoking commands. How we recognize
and process them will be discussed in the following chapters.

19

1.Introduction

Hand-based gesture :

An even more natural modality is to show to a camera a gesture especially done with the
right hand. The different positions of the hand and the fingers will imply to invoke different
commands. Here is an interesting comment from the biologist community about why hand gesture
is one principal communication way.

« People frequently use gestures to communicate. Gestures are used for everything
from pointing at a person to get their attention to conveying information about
space and temporal characteristics [KEND 90]. Evidence indicates that gesturing
does not simply embellish spoken language, but is part of the language generation
process [MCNE 82].» [NetLink01]

Here we can find that principal language mode are obviously the spoken language but also
the hands language, and that's why this two modalities appear as a good communication way
with the computer. In this work we only developed gesture recognition without glove or any
special devices, only the right hand. How we recognize those gestures and how we process them
will be discussed in the following chapters.

1.1.7 Gesture recognition
Definition :

Gesture recognition involves determining the movement of a user's hand, arm, head or
body through the use of a camera, or through a device with embedded sensors that may be worn,
held or body-mounted [GART 06].

Due to gesture recognizers interacting more naturally with the interfaces is now possible. A
short state of the art can show the Nintendo Wii.

The gestures recognizers we used to accomplish multimodality are Quill and HandVu.
Specifications of those recognizers are provided on chapter 2.5 and 2.6

20

Figure 5: Wii wheel
controleur

Figure 4: Wii plateform

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/COHEN/gesture_overview.html#Kendon 90
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/COHEN/gesture_overview.html#McNeill 82

1.Introduction

1.2 Motivations
Our motivations for developing multimodal interfaces are double. Firstly, there's a

potential commercial issue and secondly, multimodal interfaces should contribute to increase the
accessibility, the usability and the robustness of any computer interfaces.

1.2.1 Potential commercial issue
According to Gartner Inc. Figure 6 and Figure 7 [GART 05][GART 06], gesture recognition

could have a bright future. Gartner Inc. developed the «Hype cycle» which characterise any
technological invention in terms of potential industrialisation. Before reaching an industrialisation
state, a new technology has to step different phases which bring them closer to the market. The
first step of this hype cycle is called «Technology Trigger» which is : the technology trigger, or
breakthrough, product launch or other event that generates significant press and interest. Gesture
recognition are now close to the end of this phase which is quiet motivating because in that same
report of last year, gesture recognition were at the beginning of that phase. The following phase of
this cycle is the «peak of inflated expectations» which is a phase during which a lot of expectations
and frenzy of publicity tend to imagine unrealistic expectations but successful applications can be
developed even if most of the time failure occurs. This means that work which has been done for
the gesture recognizers have not been abandoned. Tough market adoption of this technologies is in
5 to 10 years and market intrusion are about 1 % of the target audience, this technology is still
considerable. So we can think that this field of study will keep on interesting industries and
research.

21

Figure 6: Gartner Hype Cycle 2006 [Gar 06]

1.Introduction

1.2.2 Considerable ameliorations of interfaces
Most people who interact with computers spend most of their time entering information

[CARD 80]. Due to this input bottleneck, the total time to do many tasks would hardly improve
even if computers became infinitely fast. Thus, improvements in input technology are a major
factor in improving the productivity of computer users in general [RUBI 91].

The communication between man an machine will become more and more present in the
future, the need to reduce the complexity and to increase the naturally of this communication is
real. Introducing and combining new inputs technologies would increase the computer interfaces
usability, accessibility and efficiency.

Allowing computer to understand more concise and more powerful information due to a
better understanding provided by any user would increase the efficiency while providing choices
of modality would improves accessibility and usability.

1.3 Goals
The final goal of this thesis is to integrate the multimodality on two platforms. Our

modalities will be the pen-based gesture and hand-based camera recognition. We will then realize
a comparative study between these two platforms.

More precisely, Our goals are to integrate this multimodality on two platforms, InterpiXML
and OpenInterface that we will introduce in the following chapters. We will integrate both
modalities on both platforms.

22

Figure 7: Gartner Hype Cycle 2006 [Gar 06]

1.Introduction

To achieve this we will modify the InterpiXML architecture to be aware of pen-based
gesture and of natural hand gestures.

For OpenInterface, we will develop two generic components, one for the pen-based gesture
recognition and one for the hand gesture recognition. This genericity will enable OpenInterface to
reuse those components for any application.

When those modalities will be integrated, we will evaluate the two platforms and compare
them. This comparaison will be assessed in terms of CARE properties but also in terms of
utilisability based on the IBM forms. For reaching this final goals we will introduce an experiment
we performed.

1.4 Reading plan
After this introduction, where we introduced the multimodal interfaces, their advantages

and defined the main concepts of the present thesis we will introduce the skeleton of this thesis.

Chapters 2 will focus on the state of the art of this field of study of the human-computer
interaction. First, we introduce the current existing gestures for pen and hand-based recognition
(2.1). Then we discuss about the gestures qualities (2.2). Section 2.3 present actions set on
interfaces. In section 2.4, we present some existing toolkits for pen and hand gestures and
introduce in section 2.5 and 2.6 toolkits that we have chosen and explain why we choose them.
After talking about the specification language choice : UsiXML (2.7), we will finally introduce one
existing multimodal platform named OpenInterface (2.8).

The chapter 3 will last on the conception itself. We present there all our design choices.

The chapter 4 focus on the integration of multimodality to InterpiXML platform.
Integration of the pen-based recognizer and hand gestures recognizer. We will explain the
architecture and implementation for each modality and show an example and provide an
evaluation of InterpiXML upgraded with multimodality.

Chapter 5 focus on the development of components for OpenInterface. Those components
are a gesture pen-based recognizer and a gesture camera recognizer. We will also explain how it
works and show example and provide an evaluation as we did for InterpiXML.

Chapter 6 will provide the evaluation of the experiment we made in order to compare
OpenInterface and InterpiXML platforms and also a comparaison of the integrated modalities. The
results should provide good advices for future work.

We will finish with conclusion where we show all work that we done, and give idea for
future work.

Thanks for your active reading.

23

2.State of the art

2. State of the art

2. State of the art
Here we will introduce to different softwares, environments and techniques used or re-

used during conception and implementation. We first present the current existing pen and hand-
based gestures. Then we will define the gesture qualities. Section 2.3 will focus on actions set on
interfaces. Then we will give some existing toolkits and chapters 2.5 and 2.6 will describe the
specific toolkits we choose. After we will discuss about the specification language choice and
finally describe the OpenInterface platform on chapter 2.8.

2.1 The current existing gestures
Here we will present some applications which use pen based gestures or hand camera

based gestures. This is a short state of the art which show how gestures recognition is present and
could be more present in our every day life. But user have to keep in mind the different field
where pen-based is present such as such as text editing, sketch, modelling, UI design, 3D
manipulation and navigation, etc.

2.1.1 Pen Based Gesture :

All in one gesture plug in for Firefox :

The all in one gesture plug-in for Firefox enable to use different mouse gestures in order to
invoke commands. Those commands are numerous it goes from going to the previous page to
open all links in pages and navigate between tabs. Those kind of mouse gestures showed an
improvement of the speed navigation and a great satisfaction of the users [MOYL 02]. you can find
all the possible actions here : [NetLink02] and a video here showing the plug-in in action
[NetLink03].

24

2.State of the art

Matis system :

MATIS is a multimodal system of information on air transports. It provides, in response to
requests of the user, informations on the flights between two cities. The system was developed on
NeXT machine with the system of voice recognition Sphinx. MATIS authorizes statements of
orders such as the sentence known as “I would like a U.S. air flight from this city to this city”
combined with two selection-mice to specify the towns of departure and arrival. MATIS allowed a
study on the software architecture of the multimodal systems like on the integration of the
methods: mechanism of fusion of the multimode events and references. [NIGA 95b].

25

Figure 9: The MATIS application

Figure 8: Set of possible actions with gesture mousse with All in
one gesture plug in for Firefox

2.State of the art

Handwriting recognition.

Handwriting recognition system such as graffiti is also an application of pen-based
gestures. The graffiti alphabet has been developed for the PALM platform for recognizing gesture
as characters or numbers. Graffiti alphabet is composed only with one-stroke gestures.
[NetLink04]. In fact Graffiti's gesture are used with the specific recognizer which recognize up to
97 % of the gesture after a few training test of the user [MACK 97].

Operating Systems :

The accomplishment of all the previous applications are now integrated to Operating
systems. For instance both of the OS leader Microsoft and Apple provided their OS developed for
pen recognition. With the Microsoft Windows XP tablet PC edition [NetLink05] and the Mac OS X
Tiger[NetLink06]. This is the accomplishment of pen based application. But our goal is not the
integration of a single component such as the pen-based application. Our goal is to provide multi
modality as we said before.

2.1.2 Hand Gestures
Hand gestures can take a lot a different positions. To try to characterize each positions,

some language description have been realized. A well-known is described on [MONE 06].
Language describe the hand position and the features of each finger. Another system is to realize
gesture sample where each hand gestures is named. The following gestures are currently defined
(right hand shown) :

Fist Index finger point Up Yours (Middle
finger point)

Two fingers point

26

Figure 10: Graffiti alphabet

2.State of the art

Ring finger point Ring-index finger point Ring-middle finger
point

Three finger point (or
not little finger point)

Little finger point Howzit (index and
little finger point)

Little-middle finger
point

Not ring finger point

Little-ring finger point Not up yours Not index finger point Flash hand
Figure 11: Hand Gestures illustration

We see with this tab that some gestures are really hard to do. For example, the Ring finger
point need practise to realize it correctly.

At the moment no much professional software really use hand gesture recognition for
industrial applications. Specially in our case of 2D real-time recognition software for only one
hand. But some researcher works on this to try to improve hand tracking and gesture recognition.

One of the best has been developed at the School of Computing in Dublin City University,
Ireland. This is a hand gesture recognition system for replacing the mouse. So you can move the
cursor across the screen and realize right and left click only with the index finger. Other toolkits
recognizer will be presented on section 2.3.

27

Figure 12: Hand gesture recognition system for
replacing a mouse

2.State of the art

2.2 Gestures Qualities
Gestures are not only unspecified marks or insignificant hand gestures. Good gestures need

to have some properties. Although both pen based and camera based gestures need to meet some
some qualities we will separate the explanation of those qualities in different points. A lot of
experiments ([LONG 99][TIAN 06][LONG 01][LONG 99b]) have been made to find how to design
better and to find what are the factors increasing the quality of those gestures.

2.2.1 Pen based gestures qualities

Iconicity

When humans are communicating, they are using gestures to increase the understanding of
the listener and obviously, the gesture usually means what the speaker is saying. Iconicity
principle is based on this. It means that gestures that are designed are close to the interpretation of
this reality.

Iconicity : «memorable because the shape of the gesture correspond with is operation» [LONG 01b].

For example, Figure 13 represent the action of delete because it represent a pair of scissors
and the action of copy because de «C» stands for Copy.

28

2.State of the art

Figure 13: Delete and Copy iconic gestures

Learnability

Another important gesture quality is its learnability. Users sometimes forget gestures
because they are numerous or because they are complex or even because they are not iconic. 90%
and more participants held that pen gestures with visual meaningful related to commands are easy
to be remembered and learned.[TIAN 06]. An alternative taught by Tian [TIAN 06] to increase the
rememberability of the users was to represent gesture as the first character of the command name
(i.e a c for copy). It could be an alternative but you can't then have any characters in your
application except if for example only characters are possible in some areas of the application. If
users spend their time for checking which gesture is convenient for executing a command in the
manual, user will get bored soon. So gestures have to be easily remembered.

Gesture recognizer recognizability

This paragraph is an non-sense if the recognizer as been created for recognize some specific
gesture. But in this thesis we will use a toolkit named Quill which recognize gestures which are
created for any applications. Naive gestures designers often created gestures that the computer
viewed as similar and thus were difficult to recognize [LONG 01b]. Sometimes, there is a trade-off
between improving the gesture recognizability for the gesture recognizer and decreasing the
recognizability for the user. See on figure 14 left, this kind of gestures can easily be confused by the
recognizer. But on figure 14 right, the recognizer will increase the recognizability. So we have to
found a balance both for the user and recognizer.

Figure 14: u and v different design

 Compatibility and coherence

Gestures also are better learned and better used when they are compatible and coherent
Gestures are best perceived when they are introduced in a uniformed and stable way. See in figure
15, it's implicit for the user if the left direction is go to the left that the right direction will be go to
the right. This is an illustration of coherence and compatibility.

29

2.State of the art

Figure 15: Example of gesture coherence.

If the first gesture means «going to the right» it's implicit for the user that the second
gesture will mean «going to the left» just as if the third gesture means «going down», the fourth
means «going up».

2.2.2 Hand based gestures qualities :
We will here evaluate the hand gestures qualities on the four same criterion as upside and

try to characterize what's a good hand gesture.

Iconicity

For hand gestures, it's used to find gesture which reflects action associated. For example, a
closed hand to close a frame. Or as in this example a thumb up signify a validation action.
Everybody agree that this gesture means an agreement.

Learnability

A good iconicity gesture is also good for the learnability. It's easier to remember gesture
that we know before use the modality and which have same sense that in life. To expand the
capacity that people have to learn gestures, it's a good things to have opposite gestures for
opposite actions or similar gestures for similar actions. As for indicate direction, if the person
know that the direction have to be indicated with the thumb (One information to learn), the person
can easily do four actions (Up, Down, Left, Right).

30

Figure 16: Thumb up for Ok

2.State of the art

Figure 17: One information to learn to do four actions (Up, Down, Left, Right)

Gesture recognizer recognizability

To easily recognize hand gesture by specific software it's better to have gestures very
different. But with the hand it's not very easy to change the hand morphology. You can rotate the
hand, close some fingers, ... but it appear quickly that the number of different postures are limited
or begins to be too similar and the recognizer begins to have poor recognition rate. So Limited
number of different gestures is a way to improve the recognizer recognition rate.

Compatibility and coherence

As explain a few in the iconicity and learnability sections, similar gestures have to be
chosen to do similar actions and opposite gestures for opposite actions. The previous example with
direction gestures is also a good example of compatibility and coherence. The hand doesn't change
because it's the same action (indicate a direction), the hand just turn to indicate the specific
direction with the thumb.

2.3 Actions set on interfaces
We divided into four main parts the different actions we found. In this dissertation, we will

only interest in those actions : The Windows managing actions, the browsability or navigation
actions, the validations actions and the characters and numbers insertion. We will introduce here
the commands we will use in this dissertation.

Windows managing actions

Represent typical actions for close, reduce or minimize/maximize a windows. These actions
have their representations in the high-right corner of almost all windows using Microsoft
Windows.

31

Figure 14: Graphical window managing
actions representation

2.State of the art

 Close : Close the window (Alt+F4)

 Reduction : Reduce window in the task bar. (Alt+SpaceBar then u)

 Minimization/Maximization : Minimize the window if it's in full screen. Maximize it in full
screen otherwise (Alt+SpaceBar then r and Alt+SpaceBar then n).

Browsability actions

 Next item : Put focus on next item in the current window (Tab)

 Previous item : Put focus on previous item in the current window (Shift+Tab)

 Up : Select item upside, if possible. Different behaviours depends on item type (upArrow)

 Down : Select item downside, if possible. Different behaviours depends on item type
(DownArrow)

 Right : Select item rightside, if possible. Different behaviours depends on item type
(RightArrow)

 Left : Select item leftside, if possible. Different behaviours depends on item type (LeftArrow)

Validations actions

 Selection : Select the current item or click on button (SpaceBar)

 Reset : Reset the current item if that's a text field

Characters and numbers

Filling fields is also possible with insertion actions.

 Characters : We also integrated for pen-gesture the characters from a to z.

 Numbers : We also integrated for pen-gesture the characters from 0 to 9.

2.4 Existing Toolkits
We will here present some existing toolkits for pen and then hand gesture recognitions. We

will then describe and argue in the two next chapters (2.5 an 2.6) why we decided to use Quill and
HandVu toolkits for our developments.

2.4.1 Pen-based Toolkits

PenBuilder

PenBuilder is a toolkit for developing pen-based user interfaces. This toolkit employs Pen-
UI orientated event model, rendering model and interaction semantic model. The attributes of
ubiquitous computing and using ink as a first-class data type were addressed in the design of this
toolkit.

32

2.State of the art

PenBuilder provides both hierarchical and flat structures for manage graphical objects.
Both heavyweight and lightweight components are enabled for simplifying developing interface
and for improving performance. An event parse tree is devised for parsing low-level pen input
and generating high-level interaction events for applications. Some facilities for ink manipulation
and rendering were avoided. The first version of this toolkit was built in 1999

Disadvantage of this is there we didn't found any documentation or sources of this toolkit.

Microsoft XP tablet Edition development kit

The Windows XP Tablet PC Edition Software Development Kit facilitates building ink-
enabled applications for Tablet PC. The combination of software and hardware in a Tablet PC
enables these methods of user interaction and allows for a rich, interactive, and productive
computing experience for users.

The Tablet PC platform encompasses Windows XP and its extensions that enable input and
output of handwriting and speech data on a Tablet PC as well as interchange of this data with
other computers. The Windows XP Tablet PC Edition Software Development Kit (SDK) enables
you to build ink-enabled, pen-enabled, and speech-enabled applications and supporting hardware
for the Tablet PC.

However, this only works with Microsoft XP tablet edition and more we can't define our
gestures. It could have been useful for character recognition.[NetLink07]

2.4.2 Hand-based Toolkits
Minority Report movie inspired few developer in the hand gesture recognizer research. The

movie show Tom Cruise who move pictures displayed on a screen only by hands moving. We
describe here some existing system for hand-computer communication through camera or
webcam. Our final choice is the HandVu software developed on the University of Santa Barbara .
And we will describe why we choose this toolkit on section 2.5.

Isight Sony

The latest Apple laptops and iMacs have another hardware feature that could be used as an
human interface device: their built in iSight camera. Rather than simply monitoring light levels,
the iSight creates high resolution video information that software can analyze for movement, such
as hand gestures. The idea isn't new. In 2003, Sony released a camera unit for the PlayStation 2
called EyeToy that detects colour and movement to involve players in a game. Players stand in the
active area in front of the camera, and jump, kick, and punch to trigger actions in the game. Games
range from Groove, a dancing game that helps burn the calories off fat kids, to Operation Spy and
other interactive games that simulate moves from karate, bowling or volleyball.

A common problem related to the Sony EyeSight involves inadequate lighting in the play
area. MacBook and iMac users are illuminated by their display, and will generally be sitting closer
and centered in front of the camera, making it easier to develop a standard set of gestures that are
easy to recognize. Another problem is that this toolkit is not open Source and furthermore not free.

33

http://www.losowsky.com/weblog/archives/009045.html
http://en.wikipedia.org/wiki/EyeToy:_Operation_Spy
http://en.wikipedia.org/wiki/EyeToy:_Groove
http://en.wikipedia.org/wiki/EyeToy

2.State of the art

Georgia Tech Gesture Toolkit (GT2K)

The Georgia Tech Gesture Toolkit (GT2k) provides a publicly available toolkit for
developing gesture-based recognition systems. The Georgia Tech Gesture Toolkit GT2k leverages
Cambridge University's speech recognition toolkit, HTK, to provide tools that support gesture
recognition research. GT2k provides capabilities for training models and allows for both real-time
and off-line recognition [WEST 03].

2.5 Quill Toolkit

Introduction

Quill is a toolkit created to help designers of pen-based user interfaces to create better
gestures. Quill is based on Rubine algorithm that we will briefly introduce in this chapter. It has
been developed by Allan Chris Long for his Phd Thesis in computer science for Berkley in 2001
[LONG 01b]. [NetLink08]

General principle

To use the Quill toolkit, first you have to draw into different gesture category all the
gestures you want to get recognized in the future. In fact, a gesture category is a set of same
gestures. The idea of the gesture category is to gather informations about a same gesture which
can't be drawn exactly twice the same. So that, you have to draw the same gesture a few into each
gesture categories (10 to 15 times). During this phase called «learning phase», the great advantage
of Quill take place. In fact, Quill informs the user instantaneously of the possible similarity of the
new drawn gesture category and the existing gesture categories. This similarity is computed either
for the recognizer, we mean for avoiding the bad recognition, than for the supposed human
perception and give also advices on how to recover from those eventual problems. They mean by
human perception, the facility to remain the gesture and not confuse them with another gesture.

When the gesture has to get recognized, the recognizer is called and compute once again
the specific features of the drawn gesture and compare them with the values of the features of the
«learned gestures». The recognizer returns the list of all the gesture following a decreasing order of
an indice of similarity. The first item in this order is then the more-look-like gesture based on the
proximity of the features values.

34

2.State of the art

We see on the left the set of gestures, above the metric of the recognizer potential recognition (here 997) and
the human perception of similarity (1000). Also on the right, the gesture design.

Rubine's algorithm :

As we said, Quill toolkit is based on the Rubine algorithm which has been developed by
[LONG 01b] for his Phd Thesis. Rubine's is what we call a feature-based algorithm. In the field of
pen based gestures recognition, it also exists algorithms based on neuronal networks those two
algorithms are the most commons. According to [LONG 99], neuronal-networks algorithms have a
high recognition rate but need a long training time while feature-based algorithms have a lower
recognition rate but have more advantages : the number of training examples is small (10 to 15),
easy to implement and others system using it has been successful [CHAT 96][FRAN 95]. The fact
that it only require few drawing example is considerable because as we will design our gestures,
we don't want to spend our time in drawing.

The principle of a feature-based algorithm is that some features (11 in Rubine's algorithm
and 16 in Quill) will be computed (for exemple the distance between the beginning and the end of
the gesture) for each gesture. During this learning phase, when a new gesture is drawn, the
algorithm will compute the average value of that gesture in term of feature (taking into account
the uniform distribution of this feature). So each group of gesture (for example all the gestures
representing a “c”) will have a value for each feature. When a gesture has to get recognized, the
algorithm compute the same features for the new drawn gesture and recognize it has the gesture
category having the nearest values for those features.

35

Figure 18: Quill illustration :

2.State of the art

The specifics features :

The features for Quill are computed are listed below :

 Bounding box. The bounding box for a gesture is the smallest upright rectangle that
encloses the gesture.

 Cosine of the initial angle

 Sine of the initial angle

 Bounds size. This feature is the length of the bounding box diagonal.

 Bounds angle. This feature is the angle that the bounding box diagonal makes with the
bottom of the bounding box.

 Ends distance. This feature is the distance between the first and last points of the

 Ends angle cosine.

 Ends angle sine.

 Total length of the gesture.

 Total angle. This feature is the total amount of counter-clockwise turning. It is negative for
clockwise turning.

 Total absolute angle. This feature is the total amount of turning that the gesture does in
either direction.

 Sharpness. This feature is intuitively how sharp, or pointy, the gesture is. A gesture with
many sharp corners will have a high sharpness. A gesture with smooth, gentle curves ill
have a low sharpness. A gesture with no turns or corners will have the lowest sharpness.

Advantages of Quill

May be we could have used other toolkits such as gdt, wich is the ancestor of Quill, or
Agate [LAND 93] but we will try to explain here why we choose Quill regarding to his advantages.

Quill enable us to define our gesture. It means that it's not only a gesture recognizer but
also a tool for design gesture that will be later recognized by Quill. This is an important point
because the application on which we will add pen-based recognition use action that are not all
defined in the literature (for example reseting the content of a text field).

Quill is a tool that prevent user from designing wrong gesture at 2 sights. In fact, when the
user is designing gesture during the learning phase, Quill automatically compute a recognition
rate (recognizer goodness) which inform the designer of potential misrecognition if that value is
too low (1000 is maximum).

Moreover information about potential misrecognition Quill also provide an estimation
about the quality of the gesture in term of human learnability and similarity for humans (human
goodness) that correlate with 0.56 [LONG 01] of the results.

36

2.State of the art

Features for estimating this criteria are :

Aspect
This feature is the extent to which the bounding box differs from a square. A an example

with a square has bounding box aspect of zero.

Curviness

This feature is how curvy, as opposed to straight, the gesture is. Gesture with many curved
lines have high curviness while ones composed of straight lines have low curviness.

A gesture with no curves has zero curviness. There is no upper limit on curviness.

Roundaboutness

This feature is the length of the gesture divided by its endpoint distance.

37

Figure 19: Aspect feature

Figure 20: Curviness feature

Figure 21: Rondaboutness feature

http://quill.sourceforge.net/reference.html#EndsDistance
http://quill.sourceforge.net/reference.html#Bounding box
http://quill.sourceforge.net/reference.html#Bounding box

2.State of the art

Density

This feature is how intuitively dense the lines in the gesture are. Formally, it is the length
divided by the size of the bounding box.

The lowest value it can have is 1. There is no upper limit.

Those features are responsible for the potential similarity for humans. So when a new
gesture category is drawn we have an immediate estimation about the human recognizability. The
metric used is the human goodness metric which goes to 1000. It's then up to the gesture designer
to define a level of human goodness for his gestures.

Another advantage of using Quill is also that for avoiding misrecognition, we can accept
the gesture recognition only if this indice of recognition is above a certain value. We can define a
level of similarity which prevent us from misreconizing a gesture which is we think a key point in
some critical jobs. We could even think of defining a level of similarity for some interpreted
gestures and not for all the gestures. For example, closing a window is a more critical action than
reducing the window (all the informations contained in the window would be lost). By this way,
the user has just to do a kind of confirmation for this critical action.

Moreover, some other advantages where that it was really easy to integrate (due to a .jar
file), the short tutorial we found on sourceforge is well done and easy to understand. But we have to
remark that to be integrated to for example a Java application, we need another toolkit called Satin
on wich we will talk a few in the next section.

Satin

Our use of Satin was very poor so we will be short about it. It's a toolkit developed by the
university of Berkley in 2002. Satin has been created for making effective pen-based application
easier. The two facets of SATIN we used are :

 The integration of pen input with interpreters.

 The libraries for manipulating ink strokes.

So we've created a SATIN sheet on which the user can draw the gestures which are
interpreted with the libraries that can handle the ink strokes. Then the interpreter is the one we
described into the Quill section. SATIN then get back the recognized gesture of Quill. The
advantage of such manipulation is that we can define has much interpreters as we want.

38

Figure 22: Density feature

2.State of the art

2.6 HandVu Toolkit
Why did we choose the HandVu hand-gesture recognition software ?

Obviously more that one hand gesture recognition software exist. If we took it, it's because
it has been recommend by many subject specialists. HandVu is a research work developed in the
University of California (Santa Barbara) and is completely free and open-source. Its principal
advantages are :

 It works in real-time and without need for camera or user calibration.

 It's nearly not sensible to hand size and background.

 It works under Windows and Linux like InterpiXML and OpenInterface.

 It doesn't require other specific materials than a computer and a webcam (for example no
color gloves).

 It's still improved by group of people. Next improvement announced will be : Tracking
with higher frame rates on Linux – More recognized postures (picking posture) - High-
precision pointing, tracking (same spot on hand across recognitions).

First HandVu detects the hand in a standard posture (close position) and then track it and
recognize key postures. We show here principal key features (extract from software website
[NetLink09]).

Camera :

HandVu work with a camera that views the space in front of a sitting or standing person
from a top-down view. It should deliver at least a 320x240 resolution.

Hand detection :

The hand is detected only in a standard posture and orientation entirely with respect to the
camera, called the closed posture: recognized postures. This is necessary to avoid inadvertent
gesture commands and to speed the image processing.

39

Figure 23: Posture for hand detection

http://www.movesinstitute.org/~kolsch/HandVu/doc/HandVu_Postures.pdf

2.State of the art

Hand tracking :

Once the hand has been detected, you can move the hand around in any posture. The better
the lighting conditions are (uniform without harsh shadows) and the less brightness variation
exists in the background, the better tracking will work. Avoid all too rapid movements or quick
posture changes if you experience problems.

Posture recognition :

All of the six recognized postures can be performed at any time during tracking and they
will be recognized. Note that all postures are to be performed in a plane parallel to the imaging
plane, facing upwards in the image, and with no more than 15 degrees counter-clockwise rotation
(to the left). You will have to practice the gestures a few times until you achieve a good recognition
rate.

Name Posture

closed

Lback

open

40

http://www.movesinstitute.org/~kolsch/HandVu/doc/HandVu_Postures.pdf

2.State of the art

victory

Lpalm

sidepoint

Figure 24: Recognized postures

Functionality :

 A "GestureServer" is automatically started ans accepts TCP/IP connections on port 7045 and
write GestureEvents in ASCII format when gesture is recognized.

 The key shortcuts 0,1,2,3 select different verbosity levels. If you are experiencing trouble
with the recognition, please select level 3. The white rectangle is the initial detection area.

 Pressing "r" restarts the detection in the initial area.

41

2.State of the art

2.7 Specification language choice
To develop multimodal interfaces we first need to choose a specification language for these

interfaces. A lot of languages has been conceived with conciousness to easily develop new
interfaces. Here we can talk about ximl, uiml or XISL. To conceive multimodal interfaces we need
to decide which language to use to specify these interfaces. As first we decided to provide
multimodality on the InterpiXML interpreter, we thus choose as work hypothesis to use UsiXML
language to describe our future multimodal interfaces. We insist on fact that we here choose
UsiXML as a work hypothesis. We will next present the language and its associated interpreter.

2.7.1 UsiXML

The language

Here we consider UsiXML (USer Interface eXtensible Markup Language), a User Interface
Description Language that allows the specification of various types of user interfaces. According to
[STAN 07] UsiXML has been selected due to the following motivations:

● UsiXML is structured according to the four basic levels of abstraction (Figure 25)
defined by the Cameleon reference framework identified in [CALV 03]. This framework
is a reference for classifying UIs supporting multiple target platforms or multiple
contexts of use in the field of context-aware computing and structures the development
life cycle into four levels of abstraction: task and concepts, abstract UI, concrete UI and
final UI. The identification of the four levels and their hierarchical organization is built
on their independence with respect to the context in which the final software system is
used. Thus, the Task and Concepts levels is computation independent, the Abstract UI
level is modality independent and the Concrete UI level is toolkit independent.

42

Figure 25: The Cameleon reference framework
for multi-target UIs

2.State of the art

● UsiXML relies on a transformational approach that progressively moves from the Task
and Concept level to the Final User Interface

● The steps of the transformational approach define in a comprehensive way their logic
and application [LIMB 04] (Requirement 9. Method explicitness).

● The transformational methodology of UsiXML allows the introduction of new
development sub-steps, thus ensuring the possibility to explore alternatives for each
sub-step and to add new ones (Requirement 10. Method extendibility)

● UsiXML has an underlying unique formalism represented under the form of a graph-
based syntax. (Requirement 6. Ontology homogeneity)

● UsiXML allows reusing elements previously described in anterior UIs to compose a UI
in new applications. This facility is provided by the underlying XML syntax of UsiXML
which allows the exchange of any specification. Moreover, the ability of transforming
these specifications with a set of transformation rules increases the possibilities for
reusing them

● The progressive development of UsiXML levels is based on a transformational
approach represented under the form of a graph-based graphical syntax. This syntax
proved to be efficient for specifying transformation rules and an appropriate formalism
for human use (Requirement 7. Human readability)

● UsiXML supports modality independence as UIs can be described at the Abstract UI
level in a way that remains independent of any interaction modality such as graphical
interaction, vocal interaction or 3D interaction (Requirement 4. Ability of modeling a UI
independent of any modality)

● UsiXML supports the incorporation of new interaction modalities thanks to the
modularity of the framework where each model is defined independently of the others
and to the structured character of the models ensured by the underlying graph
formalism (Requirement 5. Extendibility to new modalities)

● UsiXML is supported by a collection of tools that allow processing its format
(Requirement 11. Machine processability of involved models)

● UsiXML allows cross-toolkit development of interactive application thanks to its
common UI description format (Requirement 12. Support for toolkit interoperability).

43

2.State of the art

The interpreter : InterpiXML

InterpiXML is a runtime UsiXML interpreter for a Computer context of use. It works under
Windows, Linux and Mac OS platform. It generate a Java Swing interpretation of user interface
described in the UsiXML file. It encompasses an explorer where user can find his folder and
UsiXML files.

When we began development on it, it supported version 1.6.4 of UsiXML language. The
different functionalities that it offers are :

 Interpret a UsiXML file with a double-click on in the explorer or with the open
functionality on the File menu

 Register UsiXML file in the explorer

 List the preferred languages for interface rendering

 Change the presentation look&feel dynamically

 Choose the interface language (« Option Language UsiXML ») if language is described in the
UsiXML file

44

Figure 26: Explorer InterpiXML v1.0

2.State of the art

2.8 OpenInterface

Introduction :

OpenInterface is a project that take his origin in the Similar Network of Excellence. The
platform has many objectives that we will list below. The project started now 3 years ago.

The main goal of the OpenInterface project, is to design and develop an open source
platform for the rapid development of multimodal interactive systems as a central tool for an
iterative user-centred design process. With the objective to integrate any component developed
either with Java, C++ or Matlab to any application easily. The platform if therefore turned to the
multimodal environment as it process signals and merge or filter them.

Nowadays, OpenInterface has some component such as illustrated in the figure . New
components will be integrated after the eNTERFACE 2007 such as head-tracker, OSC Connector
component and the ones we are developing in this thesis (pen-based tablet recognition component,
hand gestures recognition, String-to-String mapping component). But currently only the
components on the figure are available on the OpenInterface Strep web-site. As we can see, there
is a Speech Recognition component, a mouse component and two applications ImageReader which
enable to put an image on the Byte array and ImageViewer which enable to navigate (zoom and
translate) in an image.

45

Figure 27: OpenInterface
Logo

Figure 28: OpenInterface currents components

2.State of the art

OpenInterface architecture :

OpenInterface can be seen as a large jigsaw. In the platform, the heterogeneous components
are like pieces of a jigsaw that can be registered as reusable and inter-connectible components.
Each heterogeneous component is described in XML according to the CIDL – Components
Interface Description Language. Each heterogeneous component is encapsulated within a C++
proxy and registered as a plug-in. Components are retrieved through the Graphic Editor by the
user who can then edit the components properties and compose the execution pipeline of a
multimodal application (in fact this graphical editor is not yet finished). This execution pipeline is
sent interpreted by the OpenInterface Kernel (C/C++) to run the application. While designing
multimodal applications, the designer needs to specify the multimodal interaction dedicated to a
given task of the interactive system under development. To handle multi-modal inputs/outputs
issues OpenInterface integrates the concepts proposed in ICARE platform. Two kinds of
components are considered: (1) elementary components that enable the designer to define “pure
interaction modality” and (2) generic composition components that enable the designer to specify
combined usage of modalities.

OpenInterface is therefore based on 2 main concepts :

components: A bundled piece of software that provides a set of services/functionalities. The
provided software can do anything, ranging from input devices driver, signal-treatment algorithm,
network module, graphical interface, etc. A public repository of components has been set up to
centralize all existing software and enforce easy reuse of components written by other people.

46

Figure 29: OpenInterface architecture

http://iihm.imag.fr/icare/
http://forge.openinterface.org/frs/download.php/16/DL_spec.pdf

2.State of the art

pipeline of components: It is the interconnection schema of a set of components. It describes
and set up the communication channel between the components. An application is then described
by a pipeline interconnecting a set of components.

General Principle :

The OpenInterface platform is then connecting different components. How do the platform
connects the application and interacting components is the tricky thing about OpenInterface. Let
us explain how components are integrated to the platform. Each new components has to have is
own CIDL (Component Interface Description Language) which is an .xml file describing the
component. In this file, there's nested mark-up which define different stuffs. After describing the
components and the CIDL description of the application, components and application are
connected into another XML file called pipeline. Pipelines are also an .xml file called PDCL
(Pipeline Description and Configuration Language) which define how components and
application (which is a component-like) are communicating. We only listed here the main mark-
ups, but you can have the complete definition of CIDL and PDCL on [LAWS 06].

a) The component CIDL description:

The CIDL has for objectives to define the component in terms of instantiation and
communication interfaces. The most important mark-up of this file are (the complete CIDL of our
components are given in annexes) :

– <Component> is the first mark-up of the file. All others mark-ups are nested in
Component.

– <Container> inside this mark-up, we define the name, the location, and the
programmation language of the component.

– Then, comes the Mark-up which encompasses the most importants Mark-ups of the file,
<Facet>. The Facet element is used to describe logical unit inside a component. It will
provide a description of the binaries trough <Bin>. The <Factory> Mark-up define how
component are initialised. The <Sink> and <Source> Markup which enable the
component to communicate with other components.

– <Factory> is important because as we said, it's where the component is instantiated. The
interface (i.e. The constructor or factory function to call) of the factory and the format of
the created facets must be known. The <interface> gives, the signature and return type
of a factory function or constructor to call for the creation of the facet.

– <Sink> and <Source> represent ways for components to exchange data. A sink pin is a
way for the component to receive data and source pin a way to send them. Something
specific about source pin, is the callback setter attribute. A callback is the way for a
component to send asynchronous events. That is similar to call a function the
component doesn’t know at compilation time. For instance, a mouse driver component
would expose a callback for notifying about the current mouse position and buttons
states. A callback setter will then be called to register the external function. So instead of
polling the mouse component for its state, the user will be notified by the registered

47

2.State of the art

function only when the state has changed. So it means, that once the event is in the
source, the source knows only at execution time where it have to send the result and the
setter gives the opportunity to others component to register to those events.

b) The pipeline PDCL description:

As we said before, the pipeline file is also an .xml file which define how components (and
applications which are also considered as components) are communicating. This communication is
done by plug in the different source and sink between each others. As the component, we will
explain the main Mark-ups of the PDCL file :

– <ComponentList> in this mark-up, all the component that will be used are listed.

– Then <FacetList> where for each component we list the facet that will be used. Notice
that some component need to be initialised with a parameter, you define here a Factory
mark-up.

– Then come the most importants Mark-up of the pipeline file. <PinList> we will list here
the sinks and sources we defined in the CIDL file of each component. It's therefore the
list of the communication interface.

– After defining those Pins, we introduce the <Pipe> mark-up which in fact is the
«connection manager» for each communication from a component to another, you
declare a <plug source= « x » target= « y »>. This means that data will go from x to y
where x and y are the pins defined above. You also have specified which argument you
want to send and receive according to the others components CIDL.

So we see it's quiet easy to connect components. With a little practice, programmers should
be able to develop and connect components.

Furthermore, OpenInterface Strep is developing others tools which should make
integration of components for OpenInterface easier. In fact, two projects are in development. The
first aim to auto-generate the pipeline between any number of components you like and the
second is aiming at auto-generating the CIDL of a component. With those 2 comings tools,
OpenInterface will be an easy tool for integrating any modality.

Similar project

OpenInterface is a part of the Similar project. Similar, a program support by the European
commission, describe itself as : « The European task force creating human-machine interface SIMILAR to
human-human communication ». [NetLink10] Similar works on research about multimodal interfaces
to provide computer capacity to communicate as a human with different kind of modality such as
speech, gestures, vision, haptics and direct brain connections modalities.

48

Figure 30: Similar logo

2.State of the art

As presented on the similar website the european project Similar vision are:

● SIMILAR will create an integrated task force on multi-modal interfaces that respond
efficiently to speech, gestures, vision, haptics and direct brain connections by merging into
a single research group excellent European laboratories in Human-Computer Interaction
(HCI) and Signal Processing.

● SIMILAR will develop a common theoretical framework for fusion and fission of multi-
modal information using the most advanced Signal Processing tools constrained by Human
Computer Interaction rules.

● SIMILAR will develop a network of usability test facilities and establish an assessment
methodology.

● SIMILAR will develop a common distributed software platform available for researchers
and the public at large through www.openinterface.org.

● SIMILAR will establish a scientific foundation which will manage an International Journal,
Special Sessions in existing conferences, organise summer schools, interact with key
European industrial partners and promote new research activities at the European level.

● SIMILAR will address a series of great challenges in the field of edutainment, interfaces for
disabled people and interfaces for medical applications. Natural immersive interfaces for
education purposes and interfaces for environments where the user is unable to use his
hands and a keyboard (like Surgical Operation Rooms, or cars) will be dealt with a stronger
focus.

eNTERFACE workshop

Thanks to our supervisor, Jean Vanderdonckt, and the Similar network we had the
opportunity to participate to eNTERFACE workshop 07 at the Bogaziçi University in Istanbul from
4th to 11th of Augustus. During this week we participated on the OpenInterface project and worked
with Lionel Lawson and Marcos Serrano on the integration of our both modalities to the
OpenInterface platform.

49

Figure 31: Similar context

http://www.openinterface.org/

2.State of the art

« The eNTERFACE summer workshops, organized by the SIMILAR European Network of
Excellence, are a new type of European workshops. They aim at establishing a tradition of
collaborative, localized research and development work by gathering, in a single place, a
group of senior project leaders, researchers, and (undergraduate) students, working together
on a pre-specified list of challenges, for 4 weeks. Participants are organized in teams,
attached to specific projects related to multi-modal interfaces, working on free software.
eNTERFACE'05 was held at Faculté Polytechnique de Mons, Belgium, in July-August
2005. The eNTERFACE'06 workshop will be organized in Dubrovnik, Croatia, in July-
August 2006 ». [NetLink11]

As you can imagine this workshop were above all for us a invaluable human experience,
working with the best European researchers of the multimodality field, working directly with the
OpenInterface developer for our specific work and obviously living one week in this large and
splendid city of Istanbul along the Bosphorus. This week also permit us to work effectively on our
OpenInterface part presented in chapter 5. Nearly all the implementation was made during this
worhshop and we discover, during discussions, a way to go further in this work as explain later in
this paper.

50

Figure 32: Bogaziçi university

3.Design of multimodal interfaces

3. Design of multimodal interfaces

3. Design of multimodal interfaces
In this chapter we will explain all the current existing design of multimodal interfaces. We

will therefore introduce the most known architecture for achieving multimodal interfaces. As we
have introduced the different gestures we can recognize with the help of Quill and HandVu, we
will show and justify the choice we made for each gesture corresponding to an action both for pen
and hand gestures.

3.1 Multimodal architectures
Multimodal architectures and more generally interactive systems architecture differs a few

from classical architectures. Here on figure 33 is an architecture for processing pointing device and
speech recognition. This architecture is quiet easy to understand except context management and
multimodal integration which are specific to multimodal architecture.

51

3.Design of multimodal interfaces

Figure 33 illustrates two input modes (e.g., speech and manual or pen-based gestures)
recognized in parallel and processed by an understanding component. The results involve partial
meaning representations that are fused by the multi-modal integration component, which also is
influenced by the system’s dialogue management and interpretation of current context. During the
integration process, alternative lexical candidates for the final multi-modal interpretation are
ranked according to their probability estimates on an n-best list. The best-ranked multimodal
interpretation then is sent to the application invocation and control component, which transforms
this information into a series of commands to one or more back-end application systems.[OVIA 02]

a) MVC architecture :

MVC is the most known architecture. M stands for model, V for view and C for controller.
Model represents the behaviour of the application, data-processing etc... The view renders the
model into a form suitable for interaction, typically a user interface element. And the controller
processes and responds to events, typically user actions, and may invoke changes on the model.

52

Figure 33: Typical information processing flow in a multimodal architecture designed for speech
and gesture.

http://en.wikipedia.org/wiki/User_interface

3.Design of multimodal interfaces

Typically, it works as follow :

The user interacts with the user interface in some way (e.g., presses a button).

1. A controller handles the input event from the user interface, often via a registered handler
or callback.

2. The controller accesses the model, possibly updating it in a way appropriate to the user's
action (e.g. : controller updates user's shopping cart).

3. A view uses the model to generate an appropriate user interface (e.g. : the view produces a
screen listing the shopping cart contents). The view gets its own data from the model. The
model has no direct knowledge of the view.

4. The user interface waits for further user interactions, which begins the cycle anew.

However, MVC architecture have drawbacks, the controller and view are not completely
independent of the data representations. Furthermore, there's a direct connection between model
and view, that the controller don't see. That's why MVC doesn't really fit to multimodal or
generally speaking interactive systems. We need another architecture where interaction
components are more independent. Let's have a look to the Arch model.

53

Figure 34: MVC architecture

http://en.wikipedia.org/wiki/Shopping_cart
http://en.wikipedia.org/wiki/Callback_(computer_science)
http://en.wikipedia.org/wiki/Event_handler
http://en.wikipedia.org/wiki/User_interface

3.Design of multimodal interfaces

b) ARCH architecture:

The idea of the ARCH architecture, is that when developing the architecture of the system,
engineers decide the criteria they want to met such as system runtime performance or any other
criteria they are judging useful. In the paper of the UIMS [UIMS 92], they show that one
architecture is impossible for meeting all the criterions at a same time. So the designers have to
make trade-off between for example the criteria of not suffering from the effect of a changing
technology and improving the system runtime performance.

ARCH architecture insist on the minimizing effort due to changing technology. (e.g. :
buffering the remainder of the system from the effects of evolving Interaction Toolkits). As we can
see on figure 35, this architecture looks like an arch. The advantage of such an architecture, is that
we define an architecture which minimize the future effects of changing technology. That is if new
modal devices are created the ARCH architecture should give us the opportunity to integrate them
easily.

For example Dialogue-oriented that is system that have extensive capabilities for mapping
user actions into the behaviour of the interface - managing windows, controlling appearance,
choosing different techniques for representing the same information, etc. have an arch more
oriented on dialogue and presentation component See on figure 36.

54

Figure 35: The ARCH model

3.Design of multimodal interfaces

ARCH model give then more independence to interaction component by providing more
effort in developing independent component to the dialogue.

3.2 Pen-based gestures
In the previous chapter we defined the qualities of a good gesture. We focused on the iconic

quality, as we could design our gestures thanks to Quill. But also thanks Quill we had an
immediate feedback about the gesture similarity for human perception and for the gesture
recognizer. We tried to trade-off between both in order to get the satisfaction of both.

Remark that the point on the gestures images are representing the beginning of the
gestures.

Windows managing actions

Action Gesture Justification

Close 2 gestures are possible for this action.
This is representing the cross on the
right corner of most of the commons

interfaces. We privileged the iconicity

Minimization/

Maximization
Same justification as above

Reduction Same justification as above

Figure 37: Windows managing actions pen gestures

55

Figure 36: ARCH architecture for
dialogue oriented systems

3.Design of multimodal interfaces

Browsability actions

Action Gesture Justification

Next item It's a metaphor for going to the
futur to what's coming next. The

arrow is pointing to the right.

Previous item
Same justification as above

Up
The gesture starts from the

bottom to the head.

Down

Same justification as above

Left Same justification as above

Right Same justification as above

Back This gesture is maybe less iconic
but we had to find a gesture that
mean the same as the return key
and as left gesture was already

token we choose this.

Figure 38: Browsability actions pen gestures

56

3.Design of multimodal interfaces

Validation actions

Action Gesture Justification

Selection The V of victory is often use as a
validation action. It's almost the

same as OK.

Reinitialisation It's maybe the most complicated
gesture for the commands
actions. But it reminds the

« phi » greek letters meaning
nothing. This action is reseting

the content of a text field. Setting
it as default.

Figure 39: Validation actions pen gestures

Characters gestures.

Concerning the choice of the Characters and numbers gestures, we inspired us from
Graffiti, then we customized some letters in order that Quill recognize them better. Some letters
are more iconic than others but we had to make a trade-off between effective recognition and
learnability.

Letter Gesture Letter Gesture Letter Gesture
A B C D E F

G H I J K L

57

3.Design of multimodal interfaces

M N O P Q R

S T U V W X

Y Z space

Figure 40: Characters pen gestures

Number Gestures :

Number Gesture Number Gesture
0 1 2 3

4 5 6 7

58

3.Design of multimodal interfaces

8 9

Figure 41: Numbers pen gestures

3.3 Hand gestures
As explain in section 2.6 the hand gesture recognition software we choose for

implementation can only recognize six different gestures. More gestures are currently in
development by a developer's community. We thus present here hand gestures associated to each
action even if we know that it won't be possible to entirely implement them.

Comment : As for pen gesture, here something with a right direction symbolize a forward
movement, a progression and on the opposite with a left gesture a return or a backward
movement.

Windows managing actions

Action Gesture Justification

Close

A close hand for a close action.

Reduction Symbolise take the windows whit the
little finger (auricular) and put it down
in the task bar symbolize by the thumb

Minimization/

Maximization

Victory gesture can represent the
action to realize something great, so to

put maximize

Figure 42: Windows managing hand gestures

59

3.Design of multimodal interfaces

Browsability actions

Action Gesture Justification

Next item The index finger up and the thumb on
the right to indicate the direction to

continue something, so to pass to next
ones

Previous item The same but with the thumb left to
indicate the return, the previous ones

Up The hand close and the thumb open
indicate the a direction, so here up

Down Here bottom

Right Here right

Left And here left

Figure 43: Browsability actions hand gestures

60

3.Design of multimodal interfaces

Validations actions

Action Gesture Justification

Selection
An open hand in front of the webcam

symbolize a strong action as a
selection, a click on a button, ...

Reset A shaped hand symbolize with the fact
that's open on left, a return also. But

here a reset.

Figure 44: Validation action hand gestures

Each gestures is relatively easy to do, except this one for reduction which need a few
training. Gestures for next and previous item are sometimes associate with a zoom actions. But
there here associated with browsability actions because there are very complementary. We need
only to return the hand to go from next to previous item.

61

4.InterpiXML Development

4. InterpiXML Development

4. InterpiXML Development

Because our development is based on 2 modalities (hand and pen) and on a combination of
those 2 modalities but also based on 2 platforms (OpenInterface and InterpiXML) we will expose
in this two next chapters the development of each modality in each environment.

We can represent that like this (Numbers are chapters numbers) :

But before explaining directly how we added hand recognition on InterpiXML, we will
define some change we had to perform on the platform.

From InterpiXML v1.0 to v1.1
InterpiXML v1.1 is different from previous version in two things. First because it has been

upgraded to version 1.8.0 of UsiXML language. This new version permit to specify multimodal
interfaces. Second because it add concept of multimodality interaction to interfaces with a new
architecture to easily adapt new modalities.

62

Figure 45: Reading plan for implementation chapters

4.InterpiXML Development

Adaptation to UsiXML v1.8.0
Before beginning to add multimodality to InterpiXML we need first to adapt it from

UsiXML language version 1.6.4 to version 1.8.0. To permit to specify multimodal interfaces as say
on the website. «The UsiXML language is currently evolving in order to encompass full multi-modal user
interfaces so that they are compliant with the tools produced by the OpenInterface platform and to go beyond
multi-modal web user interfaces which have been addressed so far». [NetLink12]

We present here principal changes with previous version. To be conform with new version
we used to :

 add new Layout as BorderLayout, GridLayout and FlowLayout which were not described
in previous language version.

 replace previous TextComponent to new objects described in new language version :
InputText and OutputText.

 add the possibility to insert images in the interfaces. Images as text can be relative to a
ContextModel and then can be different according to the language choose for rendering.
Images can have :

 relative adresses (« Tests\LogosGoogle\logoIt.gif »)

 absolute adresses (« C:\LogosGoogle\logoIt.gif »)

 or url adresses (« http://www.google.it/intl/it_it/images/logo.gif »)

and other possibilities as to choose a background color for each component, ...

Adaptation to multimodality
We will first explain the adaptation of InterpiXML architecture to accept any kind of new

interaction modality. At the beginning, InterpiXML produced interfaces which support only
keyboard and mouse interaction, as any other interfaces.

The approach is that any modality which want to interact with interface can do this by one
local port. Modality write on a local port what it wants to communicate to InterpiXML. Then
InterpiXML examine message and transmit it by posting it on a event bus. All interfaces read what
is posted on this bus. If several interface are open, only this which get the focus interpret and react
to this message.

So, we added a new component in InterpiXML which is a kind of middleware between the
modality and the event bus. The goal of this package is to provide an easy way for InterpiXML to
read messages on local port and write them on event bus.

We will here explain the four steps used to communicate from an event (e.g. : Gesture
detection) detected by the modality to the action done on the interface.

63

http://www.google.it/intl/it_it/images/logo.gif

4.InterpiXML Development

1st step :

Each recognition software work with his own modality and detect gesture from this one.
InterpiXML is not in charge of this part. The recognition software must be adapted to write
messages on a specified local port. Messages are probably composed of gestures recognized. In
this first step package InterpiXML.multiModality is here to read messages on this different ports.
The package is in charge of several other things in the second step.

2nd step :

64

Figure 47: Second step in the modality – interfaces
communication

Figure 46: First step in the modality – interfaces communication

4.InterpiXML Development

The second role of the package is to explore the received messages, get the significant
informations and transform it into events which will be comprehensive for interfaces. After this
the package post this new event on the bus event. Two different messages can come from different
modalities but represent the same action for interfaces. So messages from software recognition are
independent.

3th step :

In this third step, the event will be posted to each interfaces which had previously
subscribe to receive this event type.

Event bus work like this : Each component can post events on bus (here only classes from
InterpiXML.multiModality package do it). And then, only components which have subscribed to
receive specific type of event will indeed received them. In our case at the construction, each
interfaces subscribe to all events known by InterpiXML.

4th step :

When one interface received one event, it first ask if it get the focus. If not, it do nothing. If
it's case, it will react to the event depending on the event type.

65

Figure 48: Third step in the modality – interfaces communication

4.InterpiXML Development

Architecture
To better understand the new InterpiXML architecture and how these components works

together we will present the new classes added to the interpreter for the multi-modality and a
typical sequence diagram. First we show the ARCH architecture we adapted to InterpiXML
according to the definitions given in the third section and a levels-based architecture which is not
very formal but permit to better see connections and relations between each components.

Arch architecture :

As we discussed on chapter 3, the ARCH architecture insists on dialogue and presentation.
It means the shifting between the input mode (webcam, tablet) and the interpretation of the
commands. As we can see inserting a new modality in this architecture is quiet easy since we only
have to integrate another device reader into the presentation layer. However this architecture don't
support fusion of data for achieving this, we had to add a layer called multimodal fusion for
example after the device reader and realise this fusion. How we could implement this fusion is
discussed in section 4.4.

66

Figure 49: InterpiXML ARCH architecture

4.InterpiXML Development

Levels-based architecture

This need some explanations. If we begin with the bottom that we call level 0 : We
represent the hardware components, the webcam and the graphical tablet. We decide to not put all
the hardware components (computer, screen, ...) to simplify the figure. Then the two hardware
components are used by their respective software recognizer (HandVu and Quill) at levels 1 which
contains all external resources to InterpiXML and where we decide to integrate also the UsiXML
files.

If we decide here to cut vertically the figure in two. You can see on the left the traditional
InterpiXML v1.0 architecture which get as input a UsiXML file, interpret it and produce as output
a Java swing interface.

67

Figure 50: InterpiXML architecture

4.InterpiXML Development

The more interesting, in case of this thesis, stand on the right. The two software
recognitions communicate with local TCP connection on port 7045 and 7046 with the new specific
InterpiXML component (locate in package be.ac.ucl.isys.InterpiXML.multiModale) on level 2 and
stand inside InterpiXML v1.1. This component check messages received from levels 1 and if
messages represent actions for interfaces, it post event corresponding to this actions on the
eventBus. The event can be HandVuEvent event or QuillEvent event. Now the eventBus need only
to send this event to all interfaces which have subscribed at their creation to received this kind of
event. Finally only interface which get the focus react to this event by the associate action.

Class diagram

Here is the principal package add to the new InterpiXML version to take into account the
multimodality. There are a class InterpiSocket which provides services to connect and read
messages on a specific port and two package HandVu and Quill which will be explain later.

Here is the HandVu package with its class HandVuReader which provides services to analyse
messages which come from its InterpiSocket on local port 7045. And if this message contains
interesting gestures for interfaces, it post an HandVuEvent on the eventBus. The package Quill
provides the same services but with different event post follow the messages received on local port
7046.

68

Figure 51: Package
be.ac.ucl.isys.InterpiXML.multiModale

4.InterpiXML Development

Sequence diagram

On figure 54 you can find a typical running example. InterpiXML, and the HandVuReader
starts first and HandVu software later, but it can be in the other way. Every interface interpreted
subscribe to the eventBus to received HandVuEvent. Then when the connexion is ok between
HandVu software and the HandVuReader (or InterpiXML) messages can ben received by the
interpreter. When a gesture is recognized a corresponding HandVuEvent is posted on the
eventBus which send it to all interfaces which have subscribed. If no gesture recognized in the
message HandVuReader do nothing and wait for next message. Finally, there is no importance if
that is the HandVu software or InterpiXML which decide to stop its execution first. The connexion
just stop and one of the two components (HandVu or InterpiXML) can continue to work without
the other. For Quill this is just the same but with QuillReader and QuillEvent post on the bus.

69

Figure 53: quill package

Figure 52: handVu package

4.InterpiXML Development

70

Figure 54: Typical execution between HandVu software and interfaces produce by
InterpiXML

4.InterpiXML Development

This architecture permit to easily add or retrieve modality in the future. The addition can
be very easy. Three things must be modified :

1. Modify the software recognition modality to write its messages on specific port.

2. Add a new class in the package InterpiXML.multiModality which manage connection
between the modality and the event bus.

3. And then modify the interfaces to subscribe to event from this new modality and to
interpret and react correctly to the message received from the event bus.

4.1 InterpiXML and hand-based recognition

4.1.1 Architecture
As show in previous section in the architecture presentation, we then use the

InterpiXML.multiModality package to add our new component.

4.1.2 Implementation
For HandVu, no much change were necessary. When you install and run HandVu beta 3 on

a windows platform, it already write its results on a local port (7045). However under Linux its not
case, so it need to download special version with the GestureServer added to write on this port.
And then you can run it normally before or after that InterpiXML started. Gesture will be
recognized by the software as usually and results written on local port 7045. You can verify that
with a telnet on this port and then see messages that HandVu write.

It's now to InterpiXML to read this messages and send it to interfaces. All this problematic
will be contained in the new specific package.

When InterpiXML is starting, it also start a thread to instantiate the class HandVuReader.
This object, from class locate in InterpiXML.MultiModale.HandVu package, try to connect to local
port 7045 every ten seconds. When connection established it begin to read message from this port,
convert them in specific format for interfaces and then post it on the event bus.

This specific format encapsulated in a HandVuEvent class. It compose of two parts separate
by a colon. First part described the message type and the second part represent the message itself.

We present in next tab different gestures recognition which can come from HandVu
messages, their HandVuEvent messages associated posted on event bus and their actions
associated.

71

4.InterpiXML Development

HandVu gesture name Message posted Action

open Command:Select Selection

Lpalm Command:Next Next item

Lback Command:Previous Previous item

closed Command:Close Close

victory Command:MiniMaxi Minimization/
Maximization

sidepoint Command:Reduce Reduction

Figure 55: Gesture name - message posted - action associations

Because the close command is relatively destructive, it post only if it read (recognized)
three consecutive times. It's now to interfaces to receive these messages a react to them. During the
interfaces construction, each of them subscribe to receive HandVuEvent event. Then, all messages
posted on event bus will call the onEvent(Object e) of each interface. They only need now to react
correctly to each event received by this method. Here is a sample of this method :

72

public void onEvent(Object e) {
String type="",evt="",from="";
// If HandVuEvent
if(e instanceof HandVuEvent){

HandVuEvent hvEvent = (HandVuEvent)e;
type = hvEvent.getEventType();
evt = hvEvent.getEvent();
from="HandVu";

}
// Si la fenetre contient le focus
if(this.isFocused()){

// Si c'est une commande
if(type.compareTo("Command") == 0){

// Close
if(evt.compareTo("Close") == 0){

this.dispose();
}
// Next item
else if(this.getFocusOwner()!=null &
evt.compareTo("Next") == 0){

this.getFocusOwner().transferFocus();
}

 ...
}

}
}

Code 1: Interface reaction to event implementation

4.InterpiXML Development

First, interfaces cast the received event to see if it's really a HandVuEvent and then get the
type and the event itself. Interfaces react to event only if it's the focus owner and then process
normally the message.

4.1.3 Examples
Here is a typical example of a utilisation case with one interface open. InterpiXML on the

left have a label to inform the user about HandVu connection. On the right there is the HandVu
software. The green rectangle inform that a gesture is recognized. On the interface that work on is
this one which get the focus on the bottom.

You can go from item to item, select radio button or check box, click on button and also
close, reduce or minimize/maximize the windows only from the webcam. And all that without
change in the UsiXML source files.

4.1.4 Evaluation
Except the sidepoint gesture which is not good recognized by HandVu, all other gestures

works fine. With a few training it's relatively easy to work like this. The other problem is that is not
possible to enter text in these interfaces. So the interfaces must be specific to work only with this
modality, without keyboard and mouse. The last problem is located in HandVu which need
sometimes to restart the tracking because it loose the hand (possible to force the reset by pressing
the r key).

73

Figure 56: InterpiXML with hand recognition modality

4.InterpiXML Development

4.2 InterpiXML and pen-based recognition
The pen-based recognition modality implementation is very easy because exactly similar

and symmetric to the hand-based recognition modality implementation. The only change is that
the software recognition, Quill, can recognize much more gestures and so can provide more
different actions to interfaces, that's why we could integrate the numbers and characters gestures.

4.2.1 Architecture
Nothing really specific for Quill which like Hand Vu use InterpiXML.MultiModale package

to communicate with interfaces. We just have to notice here that after defining all the gesture in
Quill, we save it in a .gsa file. This file contains features which are essential Quill's recognizer. This
file has to be putted in the «Data» directory and this directory has to be put were the .class of the
recognizer will be executed. We didn't found any possibility to parametrize the path of this file.

4.2.2 Implementation
About the software recognition, we need here to adapt it to write messages (compose of

gesture recognized) on a specific port. So we did a second version of Quill names QuillTCP which
resolves this problem and write it result on local port 7044.

As before, a new thread start which instantiate an object from QuillReader class at the
beginning of InterpiXML which listen every ten seconds on local port 7044 and try to connect to
QuillTCP. When a connection established, the object is in charge to read messages and post them
on event bus. Here that the same message which come from QuillTCPReader and is posted on
event bus under a QuillEvent object. In this next tab we present messages received by the
QuillReader object, the messages that the object post on event bus and the action associated.

QuillReader gesture name Message posted Action

Command:Select Command:Select Selection

Command:Next Command:Next Next item

Command:Previous Command:Previous Previous item

Command:Close Command:Close Close

Command:MiniMaxi Command:MiniMaxi Minimization/

Maximization

Command:Reduce Command:Reduce Reduction

Command:Reset Command:Reset Reset

Command:Up Command:Up Up

74

4.InterpiXML Development

Command:Down Command:Down Down

Command:Left Command:Left Left

Command:Right Command:Right Right

Command:Return Command:Return Back space

Character:C Character:C Insert character C

Figure 57: Gesture name – Message posted – action associations

Two last commands are special from Quill and are not declare in possible action on
interfaces. From last command, names Character type it's possible to insert character from 'a' to 'z'
in and numbers from '0' to '9'.

In order not closing the window by error, we defined for this gesture, as Quill give an
estimation of the recognition, a rate of 95%, It means that Quill must recognize this gesture with a
rate above 95%. This is because it's a critical action which is irreversible. Something other which is
also to notice is that we have two recognizer one for the commands action and the other for
characters and and numerical digits. It implies that for designing characters or numerical digit the
button of the pen has to be pressed so the QuillModality know which recognizer to call. See on
code 2.

Interfaces subscribe to receive QuillEvent event and react to each event received if they are
the focus owner ones.

75

MultiInterpreter mult=new
DefaultMultiInterpreterImpl();

 Interpreter intrp = new
StandardGestureInterpreter2(SOCKET,"commandes.gsa");

 intrp.setAcceptLeftButton(true);
 intrp.setAcceptRightButton(false);
 mult.add(intrp);
 Interpreter intrp2 = new

StandardGestureInterpreter2(SOCKET,"caracteres.gsa")
;

 intrp2.setAcceptLeftButton(false);
 intrp2.setAcceptRightButton(true);

 mult.add(intrp2);
 s.setAddLeftButtonStrokes(false);
 s.setAddRightButtonStrokes(false);
 s.setGestureInterpreter(mult);

Code 2: Code For the command and charcter recognizers.

4.InterpiXML Development

4.2.3 Examples
The example is very similar to the previous one. A label inform you about the InterpiXML-

Quill connection. The Quill panel stand on the right with a selection gesture and just below you
can find the interface.

4.2.4 Evaluation
This part of the software is working nicely. Gestures commands are well recognized due to

Quill. The misrecognition rate is quiet low. However, for the characters, this misrecognition rate is
more high because gesture are more complex for recognizer to recognize. As it was not the
purpose of this thesis (designing good gesture) we did not spent lot of time on it. But we followed
a few the advice given by Quill as we mentioned before. To face the problem of misrecognition
rate for characters, we designed a virtual keyboard to help new users in inserting characters. See
on figure 59 this keyboard. Note that characters and numbers are drawn by drawing while
pushing the button of the stylus.

76

Figure 58: Screenshot pen-based modality and InterpiXML

Figure 59: The QuillModality Keyboard.

4.InterpiXML Development

4.3 InterpiXML with hand and pen-based recognition
Because the two previous modalities are completely independent, the integration of the two

ones at the same time is not more difficult to implement. So we won't explain here a new
architecture or implementation. You can use no modality, one of two modalities or the two ones in
the same times without any change. You just need to start the gesture recognition software and
InterpiXML is take in care of the communication between gestures recognizer and interfaces. To
add new modality, you just need to do as before for hand or pen gesture modality.

4.3.1 Examples
We present here a example with the two modalities and two interfaces.

4.3.2 Evaluation
The previous example work fine, the only difficulty is to manage with the tablet and the

hand in the same time. It's almost impossible to manage executing both modalities at the same
time, because you should need your best hand for the two modalities. However it's possible to
alternate from modality.

77

Figure 60: Both modality connected to InterpiXML

4.InterpiXML Development

4.4 General evaluation
To make a general evaluation of our work concerning InterpiXML, we can first evaluate the

new InterpiXML with the CARE properties.

Assignation : Since characters and numbers actions are only possible with the tablet we
have here the Assignation property for characters and numbers actions specification. As we said
before, some commands are not possible to do with the camera (return, reset) those commands are
also Assignation for the pen-based modality.

Equivalence : For all the other commands we can either specify them by pen gesture or
hand gesture. The user has the choice we are then talking about equivalence.

Concerning Complementarity and Redundancy, we did not integrated them in InterpiXML
for some reasons. First of all our modalities, hand webcam recognition and pen based recognition
are not usable for one person at a time. Because the user has to drop the stylus and show is hand or
conversely. Secondly, no actions should use complementarity in InterpiXML at the current state of
InterpiXML.

However, integrating Complementarity and Redundancy are not so complicated. For
Redundancy : a way for doing this is to have a stack on which commands are pushed. To each
command is associated a timer determining if we wait for another modality. When another
modality command of the same meaning is pushed on the stack the timer could be restarted. When
the timer run out of the time, the action is executed and the stack filled out. But this timer as to be
very short. In fact, if this timer is too long, user maybe specifying another command and not
providing an additional input for the original command.

For Complementary we also would use a stack. If it's a command which needs arguments,
we would wait for this argument to come. But, to get exact definition of complementarity, we
would check that argument is coming from another modality. When the command gets his
arguments, the stack is filed out.

After that we can add more general evaluation about the new multi-modal InterpiXML
platform. Strength of this upgraded platform is that the UsiXML file writer which want to realize
his interfaces doesn't need to take into account about the modalities which will be plugged at the
interpretation time of his UsiXML file and nothing need to be specified in the file. The
disadvantage of this new platform is that to add new modality, the developer need to change the
core of the platform and be able to change and add new class in. In the next chapter we will work
with a platform which prevent this where it's possible to add or delete component and modality
easily without need to change core code. Let's see to OpenInterface.

78

5.OpenInterface integration

5. OpenInterface integration

5. OpenInterface integration
The second part of our work was to integrate new modality components to the

OpenInterface platform. We will present in this chapter how we did it. First how we add the hand
gesture recognition (with HandVu), then the pen gestures recognition (with Quill) and finally both
on the same application.

All examples are based on a simple interface : an image viewer. This interface can receive 6
commands : Next to see next image, Previous to see previous image, Close to close the interface,
MiniMaxi, to put frame in its normal or maximum size, Reduce to inconify the frame and Modify
to choose if the text field display the received commands or the images path. So our application
has an interface which interpret strings such as Command:Next.

However, some component don't want to change their implementation only to fit the
specifications of an application. For example, the HandVu system returns String like «Lpalm»
which mean nothing for our ImageViewer application. Actually, we decided that «Lpalm» would
mean Command:Next.

To achieve this mapping of Strings, we developed a new component we called Mapping.
The way it works is very easy once the HandVu component is plugged to the mapping component,
the mapping component read a file (coma-dot separated) wich gives to the component the
mapping of the String. For example Lpalm;Command:Next. For sure we could develop another
mapping component which could map for example integer to String or whatever. But since our
component (HandVu and Quill) didn't return any other types than String there was no need for
doing those components. You can see a graphical illustration of this component on figure 61.

The goal of this mapping component is then to provide independence between messages
that a component can send and message that another component can receive.

Before explaining how we integrated our component to OpenInterface, we will briefly
define this mapping component :

79

5.OpenInterface integration

MappingComponent :

We are describing here the CIDL file of the MappingComponent. CIDL explanations were
given in the section 2.8 or in [LAWS 06].

● The component own one factory where we can pass the translation file path:

<Factory>
<Interface type="function">

<Name value="MappingComponent"/>
<Argument>

<Param name="file">
 <PrimitiveType name="string"/>

</Param>
</Argument>

</Interface>
 </Factory>

Code 3: CIDL factory code for the Mapping Component factory

● And 2 pins : One to received input String (the sink) :

<Sink id="InputString_Manager">
<Interface type="function">

<Name value="inputString"/>
<Argument>

<Param name="inputString">
<PrimitiveType name="string"/>

</Param>
</Argument>

80

Figure 61: Mapping Component

5.OpenInterface integration

</Interface>
</Sink>

Code 4: CIDL Sink code for the Mapping Component.

● And another to realize the callback (the source):

<Source id="OutputString_Manager">
 <Callback>

<Interface type="function">
 <Name value="newEvent"/>
 <Argument>
 <Param name="outputString">
 <Descr>Output String</Descr>
 <PrimitiveType name="string"/>
 </Param>
 </Argument>
</Interface>
<Setter>
 <Interface type="function">
 <Name value="setMappingEventListener"/>
 <Argument>
 <Param name="cback">

<Descr>Listener interface</Descr>
<CustomType type="javaclass"

name="mappingManager.MappingEventListener"/>
 </Param>
 </Argument>
 </Interface>
</Setter>

 </Callback>
 </Source>

Code 5: CIDL Source code for the Mapping Component.

● Translation file have to look like this :

<InputString>;<OutputString>

And the component send OutputString corresponding to InputString

open;Command:Select
Lpalm;Command:Next
Lback;Command:Previous
closed;Command:CloseHandVu
victory;Command:MiniMaxi
sidepoint;Command:Reduce

Code 6: HandVuMapping.txt : Translation file for HandVu

81

5.OpenInterface integration

5.1 OpenInterface and hand-based recognition
As for InterpiXML we use the HandVu features to write its results on a local port. So the

new components need only to read messages from HandVu software on a specific port and then
any else component can come to subscribe to a callback (as explain in section 2.8) to receive this
gesture event under string type.

The advantages of this method (to work by local port between the recognition software and
OpenInterface) is that the modality can begin before or after the OpenInterface components, can
stop during execution and restart later without problem. So the modality is independent from
OpenInterface.

The disadvantages is that modality doesn't start automatically with the OpenInterface
component.

5.1.1 Architecture
In fact it's not really good to talk about architecture in the case of OpenInterface. In fact we

have created a specific architecture but we defined the CIDL and a PDCL for the interconnexions
of the different components.

The «architecture» is then composed by 3 components :

● The final interface (ImageViewer) which have one sink to received String messages which
represent a command as input.

● The HandRec component which read messages from HandVu and have callback to
subscribe to received these gestures as String.

● The Mapping component which translate the words of the HandRec component to be
understandable to the ImageViewer component. This translation is contained into a file.

82

5.OpenInterface integration

The MappingComponent do a callback to HandRec to received gestures when they
appears. And the GUI do the same to the MappingComponent to receive the translated gesture
and then react to it.

5.1.2 Implementation
The implementation consist only in the HandRec component which is in charge to manage

connection to the HandVu software, and generate event with the gesture when one is recognized.
The GUI component is not specific to our work and will not explain. It just react correctly to String
passed to it.

After we need only to write the CIDL files to describe each components and a PDCL file to
build the pipe between each of them. All this files are presented in the appendix. Languages
description can be found in [LAWS 06].

5.1.3 Examples
Examples in this chapter are based on an interface which is an image viewer. This image

viewer has been developed during the eNTERFACE workshop and will be available on the
OpenInterface website. [NetLink13]

Possibilities are to see next or previous image (duck), to choose to display file path or
command on the bottom label (here the path file) and as usually to minimize-maximize, to inconify
or to close the frame. On this example the HandVu software recognize the previous gesture and
the image viewer will display the previous duck images.

83

Figure 62: HandVu component
pipe in OpenInterface

5.OpenInterface integration

5.1.4 Evaluation
The evaluation of the hand based gestures recognition in OpenInterface looks like the

evaluation of the same modality in InterpiXML because for user except the way to start the
modality and the interface, system behaviour is just similar. We will test in next chapter if people
seems difference between these two platforms.

5.2 OpenInterface and pen-based recognition
Conversely to what we did in InterpiXML, we didn't use any socket to communicate

between the QuillRecognizer and the final application. Actually we are using all the power of the
OpenInterface. Once a gesture is recognized into the TableRec component, a String representing
the gesture is sent directly to the connected component, due to a Callback mechanism, here the
mapping Component.

Also conversely to what we did in the hand camera recognizer for OpenInterface, the
HandRec component is starting when we start the OpenInterface. But the corresponding
disadvantage is that if we close this modality (it not means that we don't use it), all the platform
closes.

84

Figure 63: HandVu and a GUI with OpenInterface print screen

5.OpenInterface integration

5.2.1 Architecture
The principle of architecture is almost the same as hand-based recognition. There here

neither to talk about architecture but we do prefer talking about «pipelines».

As we can see on figure 64 the way information is exchanged is quiete simple. This
pipeline is composed by 3 components.

The first one is tabletRec. This component is where the recognition of the pen gesture are
recognized. Once the recognition of the gesture is done (this is very fast) the mappingComponent
receives the String corresponding to the gesture due to a Callback mechanism. When the
translation of the mapping component as done the translation of the input String, mapping
Component send directly to the application the corresponding String to the final application.
Finally, the application receive a String which corresponds to a command that it can interpret.

5.2.2 Implementation
The implementation consisted in writing the CIDL and PDCL files. In fact, we already had

our Recognizers we just had to write a HandRec Class which is sending events when pen-based
gestures are recognized. As we explained in Chapter 2.8 the CIDL and PDCL we will only put the
code of our CIDL and pipeline in the appendix since there's nothing really specific.

85

Figure 64: Quill-
ImageViewer pipeline

5.OpenInterface integration

5.2.3 Examples
Here with the same image viewer interface, the previous pen gesture will display previous

duck images on the interface.

5.2.4 Evaluation
As say previous for the hand gestures section. System behaviour is just same as for

InterpiXML. The only advantages of the OpenInterface platform is that when you construct the
pipe (« buildPipe pipe_name »), it's OpenInterface which start the application and their
modalities. For this example just this line : buildPipe pipe_Tablet_Mapping_ImageViewer.xml
will launch the ImageViewer and the Tablet Modality.

86

Figure 65: Pen based Recognition on OpenInterface

5.OpenInterface integration

5.3 OpenInterface with hand and pen-based recognition
We want here to develop a real multi-modal application with ImageViewer. And add the

two modalities together to work with the application.

And that's very easy because it just need to modify a few the two previous integrations.
The hand and the pen based modality are here totally independent.

5.3.1 Architecture

As previous we use here a MappingComponent for each modality to translate gestures
from the recognition component to comprehensible gestures for the ImageViewer. These two
MappingComponent give their result to the same sink on ImageViewer.

5.3.2 Implementation
It need here just to create a new pipe from a PDCL file which is just compose of the two

previous pipe for the hand and the pen pipe.

5.3.3 Example
We present here the image viewer interface with the two modalities. Only HandVu

software recognize a gesture which have as effect to change the label text on the interface bottom

87

Figure 66: Pipeline pen-based and hand
recognition on OpenInterface

5.OpenInterface integration

5.3.4 Evaluation
Here again, nothing really new appear. As said before to work with the two modalities is

not easy except maybe for left-handed. We will see that in next chapter.

5.4 General evaluation

As for the general evaluation of InterpiXML on section 4.4 we can evaluate the CARE
properties. CARE properties are fulfilled as InterpiXML that is Assignation and Equivalence since
it's the same application, redundancy and complementarity doesn't take sense in this application.
However, OpenInterface can produce complementarity.

When programmers describe the pipeline components, they only have to specify after the
Mark-up <filter> the order of the parameters are specified.

This can be achieved by describing a more complex pipeline. In fact, the users have to
specify for each function requiring parameters a <pin> mark-up. And then connecting the pins and
filtering the orders of parameters received. This have already been accomplished for example the
ImageNavigation_gesture_voice which can be found on the OpenInterface web site.

88

Figure 67: Pen-based and hand recognition on OpenInterface

5.OpenInterface integration

Concerning Redundancy, it's difficult since all inputs have to send the information at the
same time and should provide a degree of confidence of their signals. There's here a trade-off
between the good interpretation and the rapidity of the response. Because if system is waiting for 2
seconds in order to have another input signal meaning the same as the first signal despite the fact
that user try to execute another command. Redundancy should concern some specific application
requiring all the inputs at the same time.

5.5 InterpiXML integration to OpenInterface
Here come an extra section not pland at the beginning of our work. During the

eNTERFACE workshop in Istanbul, we discussed a lot with the OpenInterface platform developer
about their platform but also explained how the InterpiXML platform works. And during last days
we had the idea to integrate InterpiXML as a simple OpenInterface component as any other
modality or interface. We implemented this solutions during last Friday of the workshop and
when we came back in Belgium that worked. We will explain here how does it work, first describe
pipeline for the architecture of these components. Then we explain the very little change that
InterpiXML has been subject in the implementation section and finally give an example with a
print screen to show now to final version of InterpiXML for this thesis.

5.5.1 Architecture
InterpiXML is just considered here as any other interfaces which provide a sink to receive

data from other modalities. The hand and pen modalities are each plug to a MappingComponent
to translate string from modality to InterpiXML. And each of these MappingComponent are plug
to InterpiXML to send translation command when gesture are recognized by one modality. Here
are the pipe architecture.

89

Figure 68: Pipe for InterpiXML and both modalities

5.OpenInterface integration

5.5.2 Implementation

We need only to add two things to InterpiXML to implement a sink reachable from other
OpenInterface components. First a factory, to build InterpiXML from the pipe :

public static Main init()

This method return a Main class which is class were InterpiXML is started. If InterpiXML is started
from this method it will not start two threads to listen on both port 7045 and 7046. It will only
listen event from the OpenInterface platform which can communicate from the method :

public void setCommand(String cmd)

OpenInterface modality can send String to this function. When the function is called with a
string which is the command to send to the interface, a new Object named OIEvent is posted on
the eventBus. All interfaces created have subscribed to receive this kind of event. So the eventBus
will send this event to all interfaces and this one which have the focus will react to the command
encapsulated in the OIEvent Object that it received. Command have to have same features than
explain previously for the InterpiXML generated interfaces (in section 4.1.2).

5.5.3 Example
The example is started by command line buildPipe pipe_InterpiXML.xml. InterpiXML

inform user on the bottom label that OpenInterface is connected. Here both modalities can
communicate with all interfaces generated by InterpiXML. All works as previously for standard
InterpiXML release except that here the pipe run automatically the tablet modality. And if you
close the tablet modality, InterpiXML stop also and if you close InterpiXML, tablet modality stop.

90

5.OpenInterface integration

5.5.4 Evaluation

This version present a great advantages for developer because now you can add modality
only by modify the pipe (pipe_InterpiXML.xml). It's for example very easy to add the speech
recognizer with a MappingComponent between it and InterpiXML.

No test has been realised on this « multi-platform » but we think that user will not see
differences between this and previous release where modality was added in the InterpiXML code
itself.

91

Figure 69: InterpiXML - OpenInterface connection with 2 modalities

6.Tests

6. Tests

6. Tests
After developing our modalities and tested them on experimented people (us) we did an

experiment to confort what we said. To have a real and objective evaluation, we did a short
experiment on few volunteers.

The goals :

The goals of the experiment was to evaluate the utilisability. We evaluated the usability of
our modalities that's pen-based gesture and hand camera gesture and then tested if there was a
impact depending on platform that is InterpiXML and OpenInterface.

To evaluate utilisability, we will measure some criterion like time to execute a task, the
fulfilment of the task and user evaluation after using the two devices. Those evaluations are done
for both platforms. To evaluate our modalities we will draw Likert squale on different criterion.

The experiment itself :

The experiment consist for users to fill a simple form by using pen-based gesture and hand-
based gestures. The task is to insert «joel» for name, to select “Mayonnaise”, to select “Moyenne”
and finish with a click on ”Ok” button. Here you can see on figure 70 the task model of the
interface produced with Ideal2W tool. And then on figure 71 the interface itself.

92

6.Tests

93

Figure 71: French fries order form

Figure 70: Task model for test interface

6.Tests

The experiment protocol :

The experiment orders at follow. First volunteers are welcomed and they fill a demographic
form (shown on appendix) and then receive a primary informations about the topic of the
experiment. They also receive some informations about gestures. We insisted on the fact that if the
system doesn't work it's system's fault not their fault. They are informed how will the experiment
be carried on.

After, this short explanation, volunteers see the devices and try gesture for 10 minutes on
another interface see figure for the learning interface. In fact 5 minutes for each devices. The
gestures are shown on the wall where they do the test see installation on figure 73 The test is
recorded with a digital camera.

In fact we can divide the test in two parts. First, the test is done with InterpiXML platform.
Users have to fill the form presented on figure 71 only with the hand-based gesture (without
having to fill the field name) when it's done, we restart a new form that they only have to fill with
pen-based gesture (here they must fill the name with «joel») and finally when finished, they have
to fill once again the form with the modality they want to use including the use of both modalities
or not (here again they have to fill the name with «joel» value).

After those tests on InterpiXML the set of form filling is re-done but using OpenInterface.
Some stuffs has to be noticed is that if the users takes more than 5 minutes to fill a form or do any
wrong operation that make the system exit, then they are stopped and have to carry on to the
following test. When users have completely finished the test, the fill a form for evaluating the
modalities and their degree of satisfaction. Then, they are thanked and receive a chocolate.

94

Figure 72: The learning Interface

6.Tests

The experiment conditions :

On figure 73, we can have a look at the room where experiment held. As we can see the
user sit in front of a 19'' screen on which interfaces are projected. The laptop on the right is
commanded by an supervisor to launch various interfaces. We have also set a «device» for helping
users not to lost themselves in space for the hand position. Pictograms representing gestures are
also put in front of users because as the purpose of this experiment is not to define whether
gestures are well-designed or not, we don't evaluate the learning of gestures themselves. The
temperature room was a bit too warm.

The evaluation forms:

The forms users had to fill before and after the test are given in annexes. After the tests we
first evaluate modalities concerning 4 criterion. The general appreciation, the ability to move into
the interface, the ability to select an item and finally only for pen-based gesture, the ability to insert
text. Those questions are evaluated from 1 to 7. 7 being the best result. Then the form asks
questions about general questions in parallel for both systems like the ability to finish the tasks, the
learning evaluation etc. (see appendix for complete questions).

95

Figure 73: The experiment room

6.Tests

The forms we distributed to the volunteers are forms which has been developed by IBM.
Those form are quiet reliable to evaluate the usability of an interface since those after scenarios
questionaire has excellent internal consistency, with coefficient alphas across a set of scenarios
ranging from 0,9 to 0,96. [NetLink14]

The pre-test:

We achieved a pre-test on a volunteer to affine our protocol. In fact we saw that we had to
show to volunteers how to use hand-recognition and show an example what we haven't done for
the first volunteer. We also defined a maximum time of 5 minutes per interfaces instead of the 10
estimated. Volunteers are getting bored if after 5 minutes they don't achieve their tasks.

The participants :

We gathered a sum of 14 participants. We collected 11 man and 3 women. Average age is
24,4 but extremes are 19 and 37. Most part of them are used to computer and evaluate there ability
to manage the mousse on 6,14 on a level from 1 to 7. Concerning the tablet and the camera ability,
respectively 2,36 and 1,54 which means that those users are not used to those devices.

Hypothesis :

Before achieving the evaluation campaign on our volunteers, we thought about some
hypothesis :

1. Volunteers should not see the differences between OpenInterface test interface and
InterpiXML interface. As those interfaces are exactly similar and users won't be able to feel
any differences (those differences are only at an implementation sight).

2. Tablet should be preferred to webcam because stylus is more like mouse and users have the
habit to use this device.

3. Webcam accuracy may disappoint users. In fact HandVu library use to take some time to
recognize the hand. Once this hand is recognized, it's quite fast to recognize gesture.

4. Due to our modalities no users will use simultaneously both modalities.

5. Experimented users of tablet should accomplish task more rapidly.

6. Learning is very important for the both modalities.

The Results and conclusions :

We will compare the results we got in comparison with our hypothesis.

1) Volunteers don't see the differences between OpenInterface and InterpiXML

To evaluate if OpenInterface platform and InterpiXML were perceived the same by user,
we realised with R (powerful statistical tool) [NetLink15] a chart-box comparing the answers of the
volunteers for InterpiXML and OpenInterface. We took into account the generals questions (those
in the second part of the form, see appendix).

96

6.Tests

The result of this box-charts are shown on figure 74. What can be interpreted from this
chart, is that as we expected users don't seems to see any differences between the two platforms.
We can see in blue the answers to questions for InterpiXML and in yellow to OpenInterface. We
see that 50 % of the users answered the same results for OpenInterface and InterpiXML excepted
for questions D and E where users slightly prefers OpenInterface. Maybe we can interpret those
results as a learning effect from the users since OpenInterface was done at the second phase of the
test. Seeing those results, we conclude that there is no significant differences between the 2
platforms.

97

 A B C D E F G H I J

Figure 74: InterpiXML and OpenInterface Users comparaison

A: En général, je suis satisfait(e) de la facilité d'utilisation de ce système.
B : Ce système est simple à utiliser.
C : J'ai complété mon travail correctement en utilisant ce système.
D : J'ai été en mesure de compléter rapidement ma tache avec ce système.
E : J'ai complété mon travail éfficacement en utilisant ce système.
F : Je me sens à l'aise avec ce système.
G : J'ai eu de la facilité à apprendre comment utiliser ce système.
H : Je crois être devenu(e) rapidement efficace en utilisant ce système.
I : Ce système possède toutes les fonctions et le potentiel correspondant à mes attentes.
J : En général, je suis satisfait(e) de ce système.

6.Tests

2) Volunteers should prefer tablet to webcam

Tablet is a more common device since it emulates a bit the mouse device. Take a look at the
figure 75, yellow boxes represents the tablet, blues boxes the webcam and finally greens boxes the
both modality together. We see that tablet is effectively preferred to the camera since almost all the
yellows boxes are above the blues ones. But what is really interesting here is that when users have
the choice of the modality, the global appreciation joins the evaluation of the tablet. This means
that tablet is playing the role of a moderator. Tablet is moderating the depreciation of webcam. As
we said in the introduction, the weakness of a modality are overcomes by another modality. This
can be explained by the fact that when volunteers have the choice of modality, 46 % of them
choose to only use the tablet and 50 % of them use both and 4% uses only camera (see on figure
76). So the preference increase as they are using tablet or combining tablet with camera.

98

 A B C D E F G H I

Figure 75: Appreciation

A : Comment avez-vous apprécié ? Webcam
B : Comment avez-vous apprécié ? Tablette
C : Comment avez-vous apprécié ? Les 2 modalités ensemble
D : Comment évaluez-vous la manière de se déplacer dans l'interface ? Webcam
E : Comment évaluez-vous la manière de se déplacer dans l'interface ? Tablette
F : Comment évaluez-vous la manière de se déplacer dans l'interface ? Les 2 modalités
G :Comment évaluez-vous la manière de sélectionner un élément ? Webcam
H : Comment évaluez-vous la manière de sélectionner un élément ? Tablette
I :Comment évaluez-vous la manière de sélectionner un élément ? Les 2 modalités

6.Tests

3) Webcam accuracy may disappoint users

The only proof of this hypothesis is the comments users made at the end of the form. 50 %
of the volunteers were disappointed not be the webcam itself the but by the time the webcam take
to focus on the hand.

4) Volunteers don't use the 2 modalities simultaneously

As we shown in the point 2, 50 % of users are using both modality but not exactly at the
same time. They have to put the stylus done or take off the hand of the camera to take the stylus in
order to use the other device. Although, we had the very interesting case of a user who was left
handler and could manage simultaneously both modalities (see video “test06.wmv” on joint CD).
He navigates on the interface with the camera and selected items with the tablet. But it represent
only one person on 14 an only ¼ of the left-handed persons who passed the test. We should have a
larger number of left-handed persons to validate or invalidate this hypothesis.

5) Experimented users of tablet should accomplish task more rapidly

To answer this hypothesis, we performed a correlation test using the Spearman statistics
with the help of R. This tests informed us that there was no correlation between the habit of the
tablet and the speed that the task have been performed for the first and the second time. Results
are :

99

Figure 76: Modality used when choice offered

6.Tests

Use of tablet and time to accomplish First task

> cor.test(corr[,1],corr[,3])

 Pearson's product-moment correlation

data: corr[, 1] and corr[, 3]

t = -0.231, df = 11, p-value = 0.8216

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

 -0.5975848 0.5006762

sample estimates:

 cor

-0.06947484

Use of tablet and time to accomplish 2nd task

> cor.test(corr[,2],corr[,3])

 Pearson's product-moment correlation

data: corr[, 2] and corr[, 3]

t = -0.1444, df = 11, p-value = 0.8878

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

 -0.5805775 0.5199393

sample estimates:

 cor

- 0.04351092

This hypothesis is not quiet reliable since the number of persons estimating they use
frequently a tablet is poor. However those results would lead in the fact that any users even not
using often a graphical tablet could accomplish the task. Moreover, our hypothesis was false,
expert tablet users are not advantaged to new users.

6) Learning is quiet important for both modalities

We taught that it may have some learning effect for the two modalities. In fact we drawn
the time for achieving the tasks see in figure . If we compare the time required to accomplish the
task, we see that the time required for InterpiXML is much higher than the one for OpenInterface.
Actually when users are doing the test on the OpenInterface platform, they are experienced so they
achieve faster there tasks. Time reducing goes from 30 % for the camera to 50 % for the tablet. As
we can see on figure 77. Task achieving have also an impact after some learning (see figure 78). We
can effectively say that learning effect is well present for both modalities.

100

6.Tests

101

Figure 78: Task achieving

Figure 77: Time to accomplish the task

Ligne 35
0

20

40

60

80

100

120

140

160

180

200

InterpiXML Camera
OpenInterface
Camera
InterpiXML tablette
OpenInterface tab-
lette
InterpiXML Camera
et Tablette
OpenInterface
Camera et tablette

modality

se
co

nd
s

6.Tests

Other conclusions and interesting results

We found some other interesting conclusions by achieving this experiment. First of all users
are in average more than 85 % able to finish their task in between 80 and 120 seconds. This is quiet
encouraging because it works and users seems to be pleased to use new interacting devices.

Secondly, there's no need for users to know how to use device to perform the task and the
learning effect is present since the time to accomplish the task is decreasing fast and
accomplishment rate high.

Thirdly, tablet if preferred to webcam and is more fast but we think that is only because
tablet is a more natural device (emulate mouse) and because response time of webcam is low
because time is needed to recognize gestures.

Fourthly, another conclusion is that it's almost impossible to use both modalities at the
same time except for left-handed since both modalities require right hand.

Another conclusion is that during our experimentation we confirmed firmly what shanon
Oviatt told in this paper [OVIA 02]. Especially what said in section where we explained the
advantages of multimodality section 1.1.2. “When theory is joining practice...”

 Gestures were sometimes confused both for camera and pen-based gestures. Mainly, two
gestures were confused with camera recognition open and Lplam gesture. This confusion
depended on the position of the auricular finger. Pen based gestures characters were confused and,
depending on the users, were difficult to draw. In fact the result provided by the evaluation form
told that users found at 40 % the insertion of text easy so were a bit disappointed.

Others things we have to notice is that some gestures leads to problems. Actually
sometimes the validation gesture of the tablet were interpreted as a close action. Maybe this
gesture should have been design with more care even if the major responsibility is to the Quill
recognizer. Another gesture leaded to problems the closed hand gesture has 2 meanings. In fact, it
serves to recognize the hand and close the windows. However to avoid those problems we took
our precautions. The close hand gesture had to be recognized three times before executing the
closing of the window and the close gesture with the tablet had to be recognized with a confidence
degree more than 95%. However this not look sufficient.

102

Conclusions

Conclusions

Conclusions
Time as come to conclude this whole thesis. As you can see, the chapter 2 enabled to inform

us about the current state-of-the-art to find the best toolkits and best gestures for achieving our
implementation. During the following phase we reflected about the possible architectures for
multimodal platforms and designed all the different pen and hand-based gestures we need for our
work. The key-part of this work was then to integrate both modalities on both platforms as
described on chapter 4 and 5. Chapter 4 explain our architecture design choice to upgrade
InterpiXML for multimodality. This work finish with a comparative analysis of the two platforms.
If we had to sum our work we could say that we traversed the whole lifecycle of the software
crossing design, implementation, test and evaluation.

The final evaluation we performed on the last chapter gave us the opportunity to evaluate
the strengths and weaknesses of our different implementations. Our main weakness was that some
gestures were either difficult to realise for new users nor were not in adequation with the action
they were representing. More precisely, this implied problems to learn or to execute those gestures
both for pen and hand gestures. Designing pen-based gestures was not that easy even with a tool
like Quill and we could not add other gestures to HandVu at the moment. Despite this weakness,
we hadn't at any time have to change our architecture. Furthermore, the way this architecture is
done enable to add new modalities to InterpiXML easily. However the complete achievement of
this thesis is introduced in section 5.5, we integrated InterpiXML as a component of OpenInterface.
This way, any new modality can be used in InterpiXML by the use of OpenInterface.

The work which has been accomplished can be improved by adding new modalities to
InterpiXML, to OpenInterface or the easiest : to InterpiXML plugged on OpenInterface because it
only consist in describing a new pipeline. Obviously future work can also consist in developing
more efficient toolkits for gesture recognition. We hope that this work will respond to the
expectations of the readers and could provide any help to developer of this exciting research field
that is multimodality .

103

Bibliography :

Bibliography :

Books, periodics et papers :
[BOLT 80] BOLT R. A., "Put-that-there": Voice and gesture at the graphics interface," in 7th
annual International Conference on Computer Graphics and Interactive Techniques,
Seattle, United States, 1980, pp. 262 – 270

[BOUI 02] BOUISSET S., Biomécanique et physiologie du mouvement, Mason Paris, 2002.

[CARD 80] CARD S. K., MORAN T. P., and NEWELL A., The keystroke-level model for user
performance time with interactive systems. Communications of the ACM, 23(7):601–613, 1980.

[CHAT 98] CHATTY S. and LECOANET P., Pen computing for air traffic control. In Human
Factors in Computing Systems, (SIGCHI Proceedings), pages 87-94. ACM, Addison-Wesley,
April 1996.

[COUT 93] COUTAZ J, NIGAY L., SALBER D., BLANDFORD A., MAY J. and YOUNG R. ,
Four Easy Pieces for Assessing the Usability of Multimodal Interaction : The CARE properties,
Proceedings of Interact’95, K. Nordby, P.H. Helmersen, D.J. Gilmore and S. Arenesen eds,
Chapman&Hall, Norway, p 115-120.

[FRAN 95] FRANKISH C., HULL R., and MORGAN P., Recognition accuracy and user
acceptance of pen interfaces. In Human Factors in Computing Systems, SIGCHI Proceedings,
pages 503-510. ACM, Addison-Wesley, April 1995.

[GART 05] GARTNER inc., Hype Cycle for computer interaction, 2005

[GART 06] GARTNER inc., Hype Cycle for computer interaction, 2006

[KEND 90] KENDON A., Conducting Interaction: Patterns of behavior in focused encounters.
Cambridge University Press, Cambridge, 1990.

[KOLS 04] KÖLSCH M., Vision Based Hand Gesture Interfaces for Wearable Computing and
Virtual Environments. Ph. D. Dissertation, August 2004.

[LAND 93] LANDAY J. and MYERS B., Extending an existing user interface toolkit to support
gesture recognition. Proceedings of INTERCHI '93 : Human Factors in Computing Systems,
pages 24-29. ACM, Addison Wesley, April 1993.

[LAWS 06] LAWSON L., User Manual : OpenInterface CIDL and PDCL Specification, TELE,
Université catholique de Louvain, Belgium, July 2006.
[LIMB 04a] LIMBOURG Q., VANDERDONCKT J., Transformational Development of User
Interfaces with Graph Transformations, in Proceedings of the 5th International Conference on
Computer-Aided Design of User Interfaces CADUI’2004, Madeira, January, 14-16, 2004,
Kluwer Academics Publishers, Dordrecht, 2004.

[LIMB 04b] LIMBOURG Q., Multi-Path Development of User Interfaces, PhD thesis, University
of Louvain, November, 2004.

105

Bibliography :

[LONG 98] LONG A. C. Jr., LANDAY J. A., and ROWE L. A., PDA and Gesture Use in
Practice: Insights for Designers of Pen-Based User Interfaces, CSD-97-976, EECS Department, CS
Division, University of California, Berkeley, January 1998

[LONG 99] LONG A. C., LANDAY J. A , ROWE L. A., Implications for a gesture design tool,
Electrical Engineering and Computer Science Department, University of California at
Berkeley, Berkeley, 1999

[LONG 99b] LONG A. C., LANDAY J. A., ROWE L. A. and MICHIELS J., Visual Similarity
of Pen Gestures, EECS Department University of California, Berkeley Technical Report No.
UCB/CSD-99-1069, 1999.

[LONG 01] LONG A. C., LANDAY J. A., ROWE L. A., Those look similar!, issues in
automating gesture design advice, Proceedings of the 2001 workshop on Perceptive user
interfaces PUI '01, November 2001

[LONG 01b] LONG A. C., Quill: A gesture design tool for pen-based user interfaces, Ph.D.
Thesis, Berkeley: University of California, 2001.

[MACK 97] MACKENZIE I. S. and ZHANG S., The immediate usability of Graffiti,
Proceedings of Graphics Interface '97, pp. 129-137. Toronto: Canadian Information
Processing Society, 1997.

[MCNE 82] McNEILL D. and LEVY E., Conceptual Representations in Language Activity and
Gesture, pages 271-295. John Wiley and Sons Ltd, 1982.

[MONE 06] MO Z., NEUMANN U., Lexical gesture interface, CGIT Lab, University of
Southern California, 2006

[MOYL 05] The design and evaluation of a flick gesture for 'back' and 'forward' in web browsers
February 2003 Proceedings of the Fourth Australasian user interface conference on User
interfaces 2003 - Volume 18 AUIC '03

[NIGA 95a] NIGAY L., COUTAZ J., SALBER D., BLANDFORD A., MAY J., YOUNG R. M.,
Four easy pieces for assessing the usability of multimodal interaction: the CARE propertie,
INTERACT 95, 1995

[NIGA 95b] NIGAY L., MATIS : un système multimodal d'information sur les transports aériens,
1995

[OVIA 02] OVIATT S. L., Breaking the Robustness Barrier: Recent Progress on the Design of
Robust Multimodal Systems, in Advances in Computers, vol. 56, M. Zelkowitz, Ed.,
Academic Press, 2002

[OVIA 04] OVIATT S. , SENEFF S., Introduction to mobile and adaptive conversational interfaces,
ACM Transactions on Computer-Human Interaction (TOCHI), v.11 n.3, p.237-240,
September 2004

[RUBI 91] RUBINE D., The Automatic Recognition of Gestures. PhD thesis, School of
Computer Science, Carnegie Mellon University, CMU-CS-9 1-202 1991. 660, 1991

[RUGE 03J. RUGELBAK and HAMNES K., Multimodal Interaction – Will Users Tap and Speak
Simultaneously?, Telektronikk, 2003

106

http://portal.acm.org/citation.cfm?id=1017495&dl=ACM&coll=ACM&CFID=30527504&CFTOKEN=57113256
http://portal.acm.org/citation.cfm?id=1017495&dl=ACM&coll=ACM&CFID=30527504&CFTOKEN=57113256
http://portal.acm.org/citation.cfm?id=1017495&dl=ACM&coll=ACM&CFID=30527504&CFTOKEN=57113256
http://portal.acm.org/citation.cfm?id=1017495&dl=ACM&coll=ACM&CFID=30527504&CFTOKEN=57113256
http://portal.acm.org/citation.cfm?id=1017495&dl=ACM&coll=ACM&CFID=30527504&CFTOKEN=57113256
http://www.informatik.uni-trier.de/~ley/db/conf/interact/interact1995.html#CoutazNSBMY95
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Young:Richard_M=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/May:Jon.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Blandford:Ann.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Salber:Daniel.html
http://portal.acm.org/citation.cfm?id=971510&coll=Portal&dl=GUIDE&CFID=30505652&CFTOKEN=23375147
http://portal.acm.org/citation.cfm?id=971510&coll=Portal&dl=GUIDE&CFID=30505652&CFTOKEN=23375147
http://portal.acm.org/citation.cfm?id=971510&coll=Portal&dl=GUIDE&CFID=30505652&CFTOKEN=23375147
http://portal.acm.org/citation.cfm?id=971510&coll=Portal&dl=GUIDE&CFID=30505652&CFTOKEN=23375147
http://portal.acm.org/results.cfm?query=author%3ALawrence A. Rowe&querydisp=author%3ALawrence A. Rowe&coll=GUIDE&dl=GUIDE&CFID=30600711&CFTOKEN=44707310
http://portal.acm.org/results.cfm?query=author%3ALawrence A. Rowe&querydisp=author%3ALawrence A. Rowe&coll=GUIDE&dl=GUIDE&CFID=30600711&CFTOKEN=44707310
http://portal.acm.org/results.cfm?query=author%3ALawrence A. Rowe&querydisp=author%3ALawrence A. Rowe&coll=GUIDE&dl=GUIDE&CFID=30600711&CFTOKEN=44707310
http://portal.acm.org/results.cfm?query=author%3AAllan Christian Long%2C Jr.&querydisp=author%3AAllan Christian Long%2C Jr.&coll=GUIDE&dl=GUIDE&CFID=30600711&CFTOKEN=44707310
http://portal.acm.org/results.cfm?query=author%3AAllan Christian Long%2C Jr.&querydisp=author%3AAllan Christian Long%2C Jr.&coll=GUIDE&dl=GUIDE&CFID=30600711&CFTOKEN=44707310

Bibliography :

[STAN 07] STANCIULESCU A., A Design Space for Developing Multi modal User Interfaces of
Information Systems, PhD thesis, University of Louvain, June, 2007

[TIAN 06] TIAN F., CHENG T., WANG H., DAI G., Research on User-Centered Design and
Recognition Pen Gestures, Computer Graphics International 2006: 312-323, 2006

[UIMS 92] The UIMS Tool Developers Workshop, A metamodel for the runtime architecture of
an interactive system, SIGCHI Bulletin, January 1992

[WEST 03] WESTEYN T., BRASHEAR H., ATRASH A., and STARRNER T. , « Georgia Tech
Gesture Toolkit: Supporting Experiments in Gesture Recognition », College of Computing,
Georgia Institute of Technology

Web links :

• [NetLink01]
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/COHEN/gesture_overview.h
tml

• [NetLink02] http://optimoz.mozdev.org/gestures/defaultmappings.html

• [NetLink03] http://www.youtube.com/watch?v=kKvoFeGFOOQ

• [NetLink04] http://www.omniglot.com/writing/graffiti.htm

• [NetLink05]
http://www.microsoft.com/france/windows/xp/tabletpc/images/doc/part2_autodemo.swf

• [NetLink06] http://www.apple.com/fr/macosx/overview.

• [NetLink07] http://www.microsoft.com/downloads/details.aspx?FamilyId=B46D4B83-
A821-40BC-AA85-C9EE3D6E9699&displaylang=en

• [NetLink08] http://Quill.sourceforge.net/

• [NetLink09] http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html

• [NetLink10] http://www.similar.cc

• [NetLink11] http://www.enterface.net/whatare.html

• [NetLink12] http://www.usixml.org/index.php5?mod=pages&id=8

• [NetLink13] http://www.openinterface.org

• [NetLink14] http://www.acm.org/perlman/question.cgi?form=CSUQ)

• [NetLink15] http://www.r-project.org

107

http://www.r-project.org/
http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html
http://www.acm.org/perlman/question.cgi?form=CSUQ
http://www.openinterface.org/
http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html
http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html
http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html
http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html
http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html
http://quill.sourceforge.net/
http://www.microsoft.com/downloads/details.aspx?FamilyId=B46D4B83-A821-40BC-AA85-C9EE3D6E9699&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=B46D4B83-A821-40BC-AA85-C9EE3D6E9699&displaylang=en
http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html
http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html
http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html
http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html
http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html
http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html
http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html
http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html
http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html
http://www.movesinstitute.org/~kolsch/HandVu/HandVu.html
http://www.informatik.uni-trier.de/~ley/db/conf/cgi/cgi2006.html#TianCWD06
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wang:Hongan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cheng:Tiegang.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tian:Feng.html

Appendix

Appendix

Appendix

108

Appendix

Demographic forms

Formulaire d'enquête
Données personnelles :
Code Personnel (initiales) :

Sexe : Homme Femme

Age : ans

Profession :
 Etudiant Ouvrier
 Cadre Profession libérale
 Sans emploi Employé
 Indépendant Retraité
 Autre : …………….

Domaine d'activité : ...

Enquête :
J'utilise un ordinateur : Jamais 1 2 3 4 5 6 7 Tous les jours

J'utilise un ordinateur avec le système : Windows

 Linux

 Mac OS

 Autre ...

J'utilise la souris d'une manière : Imparfaite 1 2 3 4 5 6 7 Parfaite

J'utilise une webcam : Jamais 1 2 3 4 5 6 7 Souvent

J'utilise une tablette graphique : Jamais 1 2 3 4 5 6 7 Souvent

J'utilise d’autres périphériques :

…………………. Jamais 1 2 3 4 5 6 7 Souvent

…………………. Jamais 1 2 3 4 5 6 7 Souvent

…………………. Jamais 1 2 3 4 5 6 7 Souvent

Les informations recueillies lors de cette expérimentation seront anonymisées, exclusivement
utilisées dans le cadre de cette étude et ne seront, en aucun cas, divulguées à d'autres fins.

Signature :

109

Appendix

Evaluation forms

Debriefing

Code Personnel (initiales) :

Sélectionnez un nombre entre 1 (très bon) à 7 (très mauvais) pour répondre à
chaque question.

Comment avez-vous apprécié ?
Très mauvais Très bon

InterpiXML

Webcam : 1 2 3 4 5 6 7

Tablette graphique : 1 2 3 4 5 6 7

Les deux : 1 2 3 4 5 6 7

Open
Interface

Webcam : 1 2 3 4 5 6 7

Tablette graphique : 1 2 3 4 5 6 7

Les deux : 1 2 3 4 5 6 7

Très mauvais Très bon

InterpiXML

Webcam : 1 2 3 4 5 6 7

Tablette graphique : 1 2 3 4 5 6 7

Les deux : 1 2 3 4 5 6 7

Open
Interface

Webcam : 1 2 3 4 5 6 7

Tablette graphique : 1 2 3 4 5 6 7

Les deux : 1 2 3 4 5 6 7

Comment évaluez-vous la manière de sélectionner un élément ?

Très mauvais Très bon

InterpiXML

Webcam : 1 2 3 4 5 6 7

Tablette graphique : 1 2 3 4 5 6 7

Les deux : 1 2 3 4 5 6 7

110

Appendix

Open
Interface

Webcam : 1 2 3 4 5 6 7

Tablette graphique : 1 2 3 4 5 6 7

Les deux : 1 2 3 4 5 6 7

Comment évaluez-vous la manière d'insérer du texte ?
Très mauvais Très bon

InterpiXML Tablette graphique : 1 2 3 4 5 6 7

Open
Interface

Tablette graphique : 1 2 3 4 5 6 7

Questions sur l'évaluation globale :

Selectionnez un nombre suivant une échelle de réponse allant de 1 signifiant le
désaccord total à 7 signifiant l'accord parfait :

Désaccord 1 2 3 4 5 6 7 Accord

InterpiXML Open Interface

1. En général, je suis satisfait(e) de la
facilité d'utilisation de ce système.

1 2 3 4 5 6 7 1 2 3 4 5 6 7

2. Ce système est simple à utiliser 1 2 3 4 5 6 7 1 2 3 4 5 6 7

3. J'ai complété mon travail correctement
en utilisant ce système.

1 2 3 4 5 6 7 1 2 3 4 5 6 7

4. J'ai été en mesure de compléter
rapidement ma tache avec ce système

1 2 3 4 5 6 7 1 2 3 4 5 6 7

5. J'ai complété mon travail éfficacement
en utilisant ce système

1 2 3 4 5 6 7 1 2 3 4 5 6 7

6. Je me sens à l'aise avec ce système 1 2 3 4 5 6 7 1 2 3 4 5 6 7

7. J'ai eu de la facilité à apprendre
comment utiliser ce système

1 2 3 4 5 6 7 1 2 3 4 5 6 7

111

Appendix

8. Je crois être devenu(e) rapidement
efficace en utilisant ce système

1 2 3 4 5 6 7 1 2 3 4 5 6 7

9. Ce système possède toutes les
fonctions et le potentiel correspondant
à mes attentes

1 2 3 4 5 6 7 1 2 3 4 5 6 7

10. En général, je suis satisfait(e) de ce
système

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Questions générale :

Qu'avez-vous apprécié le plus : ...
...
...

Qu'avez-vous apprécié le moins : ...
...
...

Merci d'avoir participé à ce test

112

Appendix

CD Content :

All tests, tests results, deliveries and source code files are available on this CD.

Hierachy :

Deliveries

Modalities

HandVu

HandVu for Windows

HandVu_beta3_Setup.msi

README.txt

HandVu for Linux

handvu-beta3

README.txt

Quill

Quill for InterpiXML

Quill for OpenInterface

InterpiXML

UsiXML example files

InterpiXML source code

OpenInterface

component_repository

java

frenchFriesPackage

handGesture_recognition

OI_Tablet

113

Appendix

mappingComponent

interpiXML

viewerPackage

installed_components

pipeline

Experiment

Forms

Demographic form.pdf

Evaluation form.pdf

Videos

test01.wmv

...

test14.wmv

results.xls

text.pdf

114

	1.	Introduction
	1.	Introduction
	1.1	Context
	1.1.1	Man-machine interfaces
	1.1.2	Multimodality
	Advantages of multimodality
	Multimodal Systems are more robust:
	Multi-modal communication is often more simple:
	Multimodal Systems are more flexible:

	1.1.3	The CARE properties
	Equivalence
	Assignment
	Redundancy
	Complementarity

	1.1.4	CARE-Like properties of the user
	1.1.5	CARE properties and CARE-like properties : Conclusion
	1.1.6	Gesture
	Pen-based gesture :
	Hand-based gesture :

	1.1.7	Gesture recognition

	1.2	Motivations
	1.2.1	Potential commercial issue

	1.3	Goals
	1.4	Reading plan

	2.	State of the art
	2.	State of the art
	2.1	The current existing gestures
	2.1.1	Pen Based Gesture :
	All in one gesture plug in for Firefox :
	Matis system :
	Handwriting recognition.
	Operating Systems :

	2.1.2	Hand Gestures

	2.2	Gestures Qualities
	2.2.1	Pen based gestures qualities
	Iconicity
	Learnability
	Gesture recognizer recognizability
	 Compatibility and coherence

	2.2.2 Hand based gestures qualities :
	Iconicity
	Learnability
	Gesture recognizer recognizability
	Compatibility and coherence

	2.3	Actions set on interfaces
	Windows managing actions
	Browsability actions
	Validations actions
	Characters and numbers

	2.4	Existing Toolkits
	2.4.1	Pen-based Toolkits
	PenBuilder
	Microsoft XP tablet Edition development kit

	2.4.2	Hand-based Toolkits
	Isight Sony
	Georgia Tech Gesture Toolkit (GT2K)

	2.5	Quill Toolkit
	Introduction
	General principle
	Rubine's algorithm :
	Advantages of Quill
	Satin

	2.6	HandVu Toolkit
	Camera :
	Hand detection :
	Hand tracking :
	Posture recognition :

	2.7	Specification language choice
	2.7.1	UsiXML
	The language
	The interpreter : InterpiXML

	2.8	OpenInterface
	Introduction :
	OpenInterface architecture :
	General Principle :
	a) The component CIDL description:
	b) The pipeline PDCL description:

	Similar project
	eNTERFACE workshop

	3.	Design of multimodal interfaces
	3.	Design of multimodal interfaces
	3.1	Multimodal architectures
	a) MVC architecture :
	b) ARCH architecture:

	3.2	Pen-based gestures
	Windows managing actions
	Browsability actions
	Validation actions
	Characters gestures.

	3.3	Hand gestures
	Windows managing actions
	Validations actions

	4.	InterpiXML Development
	4.	InterpiXML Development
	From InterpiXML v1.0 to v1.1
	Adaptation to UsiXML v1.8.0
	Adaptation to multimodality
	Architecture

	4.1	InterpiXML and hand-based recognition
	4.1.1	Architecture
	4.1.2	Implementation
	4.1.3	Examples
	4.1.4 Evaluation

	4.2	InterpiXML and pen-based recognition
	4.2.1	Architecture
	4.2.2	Implementation
	4.2.3	Examples
	4.2.4	Evaluation
	4.3.1	Examples
	4.3.2 Evaluation

	4.4	General evaluation

	5.	OpenInterface integration
	5.	OpenInterface integration
	5.1	OpenInterface and hand-based recognition
	5.1.2	Implementation
	5.1.3	Examples
	5.1.4 	Evaluation

	5.2	OpenInterface and pen-based recognition
	5.2.1	Architecture
	5.2.2	Implementation
	5.2.3	Examples
	5.2.4 Evaluation

	5.3	OpenInterface with hand and pen-based recognition
	5.3.1	Architecture
	5.3.4 Evaluation

	5.4	General evaluation
	5.5	InterpiXML integration to OpenInterface
	5.5.1	Architecture
	5.5.2	Implementation
	5.5.3	Example
	5.5.4	Evaluation

	6.	Tests
	6.	Tests
	The goals :
	The experiment itself :
	The experiment protocol :
	The experiment conditions :
	The evaluation forms:
	The pre-test:
	The participants :
	Hypothesis :
	The Results and conclusions :
	1) Volunteers don't see the differences between OpenInterface and InterpiXML

	2) Volunteers should prefer tablet to webcam
	3) Webcam accuracy may disappoint users
	4) Volunteers don't use the 2 modalities simultaneously
	5) Experimented users of tablet should accomplish task more rapidly
	6) Learning is quiet important for both modalities
	Other conclusions and interesting results

	Conclusions
	Conclusions
	Bibliography :
	Books, periodics et papers :
	Web links :

	Appendix
	Appendix
	Demographic forms
	Formulaire d'enquête
	Profession :
	Evaluation forms
	CD Content :

	CaseACocher1: Off
	CaseACocher11: Off
	Check14: Off
	Check15: Off
	Check16: Off
	Check17: Off
	Check18: Off
	Check19: Off
	Check20: Off
	Check21: Off
	Check201: Off
	CaseACocher12: Off
	CaseACocher13: Off
	CaseACocher14: Off
	CaseACocher15: Off

