
Revista Română de Interacţiune Om-Calculator 6 (3) 2013, 211-248 © MatrixRom

A Unified Model for Context-aware Adaptation of
User Interfaces

Vivian Genaro Motti, Jean Vanderdonckt
Louvain Interaction Laboratory - Université catholique de Louvain
Place des Doyens, 1, 1348, Louvain la Neuve
E-mail: vivian.genaromotti@uclouvain.be

Abstract. The variety of contexts of use in which the interaction takes place nowadays is a
challenge for both stakeholders for the development and end users for the interaction.
Stakeholders either ignore the exponential amount of information coming from the context
of use, adopting the inaccessible approach of one-size-fits-all, or they must dedicate a
significant effort to carefully consider context differences while designing several different
versions of the same user interface. For end users, web pages that are not adapted become
often inaccessible in non-conventional contexts of use, with mobile devices, as smart
phones and tablet PCs. In order to leverage such efforts, we propose in this paper a meta-
model that by means of a unified view supports all phases of the implementation of
context-aware adaptation for user interfaces. With such a formal abstraction of an
interactive system, stakeholders can generate different instantiations with more concrete
UI’s that can properly handle and adapt accordingly to the different constraints and
characteristics of different contexts of use. We present CAMM, a meta-model for context-
aware adaptation covering different application domains and also a complete adaptation
lifecycle. Moreover we also present various instantiations of such a model for different
scenarios of a car rental example.

Keywords: modeling, context-awareness, adaptation, user interfaces.

1. Introduction
Users interact from different environments, using different platforms and
devices, and have also different profiles. This multitude of scenarios in
which the interaction takes place poses a challenge not only for developers
but also for end users. Developers are not always aware about how to handle
such differences properly, then they do not know how to prioritize the
possible contexts, moreover implementing one single version of each
system UI for each specific context is nor feasible neither scalable. However
if such constraints and characteristics are ignored while implementing
applications, it is likely that the end users access will be reduced, hindered

 Vivian Genaro Motti, Jean Vanderdonckt 212

or even prevented. In order to support stakeholders in the development of
UI’s that are able to adapt themselves properly, we propose the adoption of
a unified model, i.e. by starting from a formal abstraction of interactive
systems that support adaptation, the navigation, presentation and contents of
system can be adapted. A model-based approach enables the generation of
different versions of the same application, in an automatic or semi-
automatic manner, properly accommodating the different requirements
imposed by different interaction scenarios. For instance the same
application for renting a car can be used in a smartphone, a tablet PC or a
Desktop, by a young or an elderly user. The work presented in this paper
relies on the assumption that in spite of the requirements required in
different contexts vary, a model-based approach can efficiently leverage the
efforts needed to generate adapted versions of a system.

2. Background Information
This section presents the fundamental concepts that are the basis of this
work.

Context-aware Adaptation
Context-aware Adaptation (CAA) involves the identification of the relevant
context information that surrounds the user during her interaction in order to
properly adapt elements of an interactive system aiming at enhancing the
end user interaction. The main goals of CAA are improving the usability
levels of the system by using the relevant information of the user context to
properly transform a system.

Figure 1 illustrates the 7 phases of an adaptation lifecycle (according to
Norman’s theory of action (Norman, 1986) relating it to its 4 core
components (adapter, context, models and rules) and respective reference
information (who, to what, why, what, when, where and how) (Motti &
Vanderdonckt, 2013). On the top of the cycle the adapter (who), i.e. the
agent responsible for triggering or deciding the adaptation, has a goal and an
intention in mind. Based on this information (why) and in what (to what)
context information that surrounds the interaction moment, the system, by
means of rules, can specify the actions that will change (how) one or more

213 A Unified Model for Context-aware Adaptation of User Interfaces
elements (what) of the interactive system, at design or run time (when), at
the client, server or proxy (where). A transition can be then used to present
the results of the adaptation in the models to the end user. Such results will
be finally interpreted and evaluated by the agent (i.e. the end user, the
system, or a third party). Depending on the evaluation given, the adaptation
cycle can be concluded (if satisfactory results have been obtained), or
continue (until satisfactory results are reached).

Figure 1. Adaptation lifecycle structured according to: its four core components (Adapter, Context,
Models and Rules), seven reference information (who, to what, why, what, when, where, and how)
[Motti, 2013] and seven phases (goal, intention, specification, action, transition, interpretation and

evaluation) according to Norman’s theory of action [Norman, 1986]

Although CAA aims at better usability levels and at improving the user
experience, many drawbacks can be foreseen, e.g. (i) there are sets of
contextual information that surround the user and it is hard to select or
prioritize the most relevant ones, (ii) the processing of the adaptation may
have a cost, so the benefits of its results must be greater to compensate for
it, (iii) the UI and system changes, however the user should not feel
confused, lost or out of control during her interaction, (iv) CAA involves
several variables it is up to the designer to define the adaptation with an
optimal (and not maximum) amount of information available about the user
context, (v) the contexts evolve dynamically, posing a continuous challenge
for developers to keep themselves updated regarding novel technologies that
may rise and potential approaches to handle them. Furthermore, there is no

 Vivian Genaro Motti, Jean Vanderdonckt 214

single approach or ready-to-use solution about CAA, so developers must
dedicate a significant effort to search for and retrieve important information
about CAA.

Models
Models aim at simplifying, abstracting and formalizing systems concepts,
including their properties, methods, relationships, cardinalities and
constraints. A model is a simplification of reality, i.e. a semantically close
abstraction of a system, the objective being to better understand the system
being created (Koch, 2000). On one hand they provide a version of the
system to be that is sufficiently complete to comprehend the system goals,
on the other hand by being a simplified version of the reality, system models
may lack important details about the concepts of interest. Humans adopt
models to better deal with complex information and processes, and also to
simplify the reality in a way that it can be better handled or processed. We
propose a unified model for CAA because so far there is no work that
covers at once all its essential concepts and its complete lifecycle. A meta-
model can serve as a basis for developers to instantiate their own
applications following a consistent structure. The resulting applications may
be also more compatible, extensible and flexible due to the fact that
different applications will comply with consistent definitions. Besides this, a
meta-model enables a (semi)automatic generation of an application,
reducing development efforts, time to market, inconsistent results, and
facilitating the reuse. The next section summarizes the state-of-the-art of
CAA models.

2 Related Works
Due to the wide range of application domains, aspects and contexts of use, it
is not scalable for the human programmers to create UI versions for each
CAA scenario. Instead, an automated solution is necessary. In this sense,
different models have already been proposed to facilitate the design,
implementation, execution and evaluation of CAA. This section exemplifies
models that support CAA, and that inspired the design decisions and
requirements for creating CAMM.

215 A Unified Model for Context-aware Adaptation of User Interfaces

Models and Meta-models

Models abstract system concepts and their relationships. In the domain of
CAA, models have been used to represent: context information, adaptation
rules, and multimodal properties. This section briefly summarizes, in a
chronological order, a selection of seven models that support specific
concepts of adaptation.

Munich. a reference model defines techniques for designing adaptive
hypermedia applications. The domain model requires a conceptual design of
the problem domain, which evolves into a navigation and presentation
model. The user model defines attributes and relationships with the domain
model. The adaptation model specifies domain and user elements, the set of
acquiring and adaptation rules and their collaborations (Koch, 2000).

Customization Model. Kappel et al. (2002) model the customization
according to context regarding user profile, network and location. For them
context provides relevant information about an interactive application and
the environment. Context influences requirements elicitation and triggers
customization according to context changes.

ADAPTS. explicitly models task, domain and users, in an integrated
manner aiming to support the adaptation according to the context. A
diagnostic engine employs the user and expert models to update the
navigation selecting the most appropriate tasks for the user based on pre-
defined weights (Brusilovsky and Cooper, 2002).

Adaptation Model. Vrieze et al. (2004) base on dynamic behaviors of
the user to handling events and use ECA rules to pull and push adaptations
in a more flexible fashion. It focuses on hypermedia systems.

Context Information. Fuchs et al. (2005) created a meta-model that
defines context information and its associations. The main concepts
considered include: devices and persons, their properties, e.g.: mobile
phone, phone number, gender, and their relationships, e.g.: is located
nearby, has phone number, has last name or is supervised by.

Comets. Calvary et al. (2005) state that an adaptation model specifies
evolution and transition rules to be applied if the context changes. They
propose adaptation models for defining tasks, abstract, concrete and final
UIs and widgets extensions, always considering plasticity as the main
principle. They remark the benefits of using model-based approaches to
implement CAA, and they also emphasize the adoption of certain principles,
namely: plasticity and continuity.

 Vivian Genaro Motti, Jean Vanderdonckt 216

CAWAR. Fahrmair et al. (2005) proposed a calibrateable context
adaptation model for ubiquitous applications. It includes the context
sensors, interpreters and also actuators.

User Model. Kobsa (2007) identified required characteristics for a user
model for adaptation. They include domain independence, inference and
reasoning capabilities, support for quick adaptation, extensibility, and
privacy support. As future trends for this domain they remark ubiquitous
and mobile computing, and smart appliances.

Mobile Applications. Farias et al. (2007) defined a MOF1-model for
context-aware mobile applications. The concepts considered are abstract
and include: classifier, attribute, entity, contents, associations,
dependencies, groups and constraints.

Adaptation Rules. Ganneau et al. (2007) and Sottet et al. (2007) created
a meta-model that defines adaptation rules, targeting at plasticity as a goal
for ubiquitous applications. This meta-model helps designers to take
decisions and to implement CAA considering three phases: the context
perception, the reaction, and the learning. The rules respect the ECA
structure (i.e., on event if condition do action). After the adaptation is
defined, the users are able to request, accept or reject it.

Adaptation Rules. López-Jaquero et al. (2008) represented adaptation
rules by means of a meta-model that includes concepts as: preconditions,
events, sensors, data, transformation and transformation rules.

UsiXML. supports an MDE approach to cover all models required for
user interface analysis and design, targeting the context of use, a dynamic
entity, whose models are usually subject to continuous changes (Luyten et
al., 2010). Mainly the platform is taken into account, information considered
include: the type of hardware (e.g. colors, sound output, text input, touch
screen, keyboard), the network characteristics (e.g. capacity), browser type
(e.g.name, version, html support), and the software type (e.g. handwriting
recognition, and audio input encoder) (Limbourg et al, 2005).

Context of Use. A generic model for context was created for Morfeo
project. This model represents elements, properties, entities, aspects,

1 MOF stands for Meta-Object Facility, it is a standard from the Object Management Group (OMG) for model-driven engineering, designed as a four-

layered architecture. Each layer corresponds to a specific abstraction level, ranging from a meta-meta-model (M3) to an instance of the objects (M0)

217 A Unified Model for Context-aware Adaptation of User Interfaces
components, characteristics, descriptions of environment and user (Morfeo,
2012).

The models briefly presented in this session were selected based on their
similarity with the topic of interest for this work, i.e. modeling CAA. Once
they target at specific concepts of CAA, they complement or specialize each
other in a certain way. For instance, the meta-model of Farias et al. (2007)
can be seen as a specialization of the work of Fuchs et al. (2005), Calvary et
al. (2005) and (Morfeo, 2012). Although the works of Ganneau et al.
(2007), Sottet (2007) and López-Jaquero et al. (2008) all focuses on CAA
rules, the formers are more specific, respectively targeting at the adoption of
principles and at the user feedback.

Table 1. Meta-models for CAA and their main focus

Meta-Model Focus
Munich Reference
Model [Koc00]

User models (preferences, tasks, goals, experience) for adaptation,
includes also rules.

Customization
[Kap02] User profile, network and locations.

ADAPTS [Bru02] Task, domain and users. Tasks are then selected based on the user model.
Adaptation Model
[Vri04]

Focuses on hypermedia systems, considers user models and ECA rules to
pull and push adaptations.

Context Information
[Fuc05]

Defines rules, context in terms of device and person, quality and
associations.

CAWAR [Fah05] Models the adaptation in terms of context interpreters, sensors and
actuators, focusing on ubiquitous computing.

Comets [Cal05] Context-aware adaptation and MBUI oriented to the plasticity of
interactive systems.

Generic User Models
[Kob07]

User modeling systems characteristics of architectures, requirements and
trends.

Mobile [Far07] Context-aware mobile applications.

Rules [Sot07, Gan07] Evolution and transition rules based on context’s changes. Adaptation
rules for ubiquitous computing.

Rules [Lop08] Rules in terms of conditions and transformations.
UsiXML [Lim05,
Luy10]

Considers the context as a dynamic entity and the platform characteristics
mainly.

MORFEO [Mor12] Context-awareness and the users’ profile.

Table 1 summarizes the works presented above and highlights their

focus. They can be broadly organized in two groups: while Vrieze et al,
(2011), Ganneau et al (2007) and Lopez-Jaquero (2008) focus on rules,
Kapperl et al. (2002), Calvary et al, 2005, Fuchs et al (2005), Fahrmeier et
al. (2005), and Morfeo (2012) focus on context. More specifically Koch
(2000), Brusilovsky and Cooper (002), and Kobsa (2007) focus on user

 Vivian Genaro Motti, Jean Vanderdonckt 218

models, Limbourg et al (2005) on platform models and Farias et al (2007)
targets at mobile devices. Such works are relevant to define essential
concepts for adaptation; however by being specialized they provide a
narrowed view of the adaptation lifecycle, i.e. by focusing in one specific
part of the process, a global definition is still missing.

Table 1 presents an overview of the main targets, goals and focus of the
related works analyzed. To identify which are the relevant concepts to
compose the common ground for generating the CAMM (context-aware
meta-model) the works reported here were analyzed in depth and the results
obtained with such an analysis are presented in Table 2.

Table 2 lists which are the concepts concerning specially: (i) Adapters
(system, third-party, user), (ii) Context (user, platform, environment,
application domain), (iii) Rules (justification, event, condition, action), and
(iv) Models (task and domain, abstract, concrete, final) that have already
been explicitly covered by previous works while modeling context-aware
adaptation.

Table 2. Comparison of meta-models for adaptation according to their concepts covered
specifically (marked with check signs ‘ ’) or generically (grey background). The headers

are composed as follows: Adapter (System, Third-Party and User), Context (User,
Platform, Environment and Application Domain, and Models (Task – Domain, Abstract,

Concrete, Final)

 Adapter Context Rules Models
 S TP U U P E AD J E C A T D A C F

Koch, 2000 ✔ ✔ ✔ ✔ ✔ ✔

Kappel, 2002 ✔ ✔ ✔ ✔ ✔

Fuchs, 2005 ✔ ✔ ✔

Fahrair, 2005 ✔

Calvary, 2005 ✔ ✔ ✔ ✔ ✔ ✔ ✔

Sottet, 2007 ✔ ✔ ✔

Farias, 2007

Lopez, 2008 ✔ ✔

MORFEU, 2010 ✔ ✔ ✔

219 A Unified Model for Context-aware Adaptation of User Interfaces

UsiXML, 2010 ✔ ✔

The works on ADAPTS (Brusilovsky and Cooper, 2002), Generic

Adaptivity Model (Vrieze et al, 2011), and Generic User Models (Kobsa,
2007) have not been included in the Table 2 since they do not provide a
meta-model of the process itself (Kobsa, 2007) but task, domain and user
models (Brusilovsky and Cooper, 2002), or an overview of the architectural
structure (Vrieze et al, 2011).

The check signs (✔) indicate when the concept has been explicitly
presented as a class in the respective model, and the gray background
indicates concepts that are expressed by a generic class, instead of
representing all internal components.

By analyzing Table 2 we notice that most of the works targeted at
modeling context-aware adaptation covers mainly context and rules,
however the adapters, i.e. who is responsible for the adaptation is often
omitted and the resulting models of the adaptation are also often neglected.

To cover the adaptation lifecycle in a more complete fashion, we propose
a Context-aware Meta-model, named CAMM, that explicitly includes all the
concepts introduced in the previous sections. The description of CAMM and
its internal components are presented in Section 4.

3 Context-aware Meta-model for CAA (CAMM)
The CAMM meta-model has been developed in an attempt to cover the
complete adaptation lifecycle, since gathering context information until the
generation of the user interfaces (UI’s) in a model-based approach. Four
main parts compose the diagram: the context, the agents, the adaptation
process and the generation of the UI’s.

The concepts defined were selected based on the review of the related
literature and by checking whether different instantiations could be
supported and expressed by this model, independently of their domains and
contexts. This meta-model is composed by 4 main concepts that can be
organized as packages. The Adapter i.e. the agent responsible for the
adaptation process. The context i.e. all relevant information for adapting the
system. The rules that associate the contextual information with the
techniques for adaptation. And the models that are subject to the changes
applied by the rules. Figure 2 illustrates the main relationships between such
concepts.

 Vivian Genaro Motti, Jean Vanderdonckt 220

Figure 2. CAMM Packages: Adapters controls the Rules, that are instantiated by the Context and

when applied modify the Models

Aiming to formalize the most essential concepts that are necessary to
implement and execute CAA, a meta-model was created; it is illustrated by
Figure . This meta-model, named CAMM, uses the OMG notation for UML
Class diagrams: MetaObject Facility (MOF). In this notation the
associations are represented by named lines (e.g., triggers), aggregations
represented by open diamonds (e.g., resource property), and compositions
represented by closed diamonds (e.g., User). This meta-model covers the
complete adaptation process; it abstracts the necessary concepts, establishes
their relationships and defines their properties. Besides this, additional
information, such as constraints and cardinality of the relations, are also
specified.

The CAMM was created based on the analysis of the systematic review
results. Four colors were applied in the meta-model in order to separate
concepts belonging to distinct domains. Therefore, the classes represented
by red blocks refer to the adaptation agents, the ones represented by green
classes refer to the context of use, the yellow classes refer to the core of the
adaptation process, and purple classes refer to the model generation.

This MOF-based meta model diagram, as Figure illustrates, shows with
the red blocks three possible agents to trigger an adaptation process: the
system, the end user or a third party. These agents are abstracted as
‘Adapter’. Considering that an adaptation process may be composed by
several phases, different agents can be responsible for each of them
[Hor99]. For instance, the end user may start an adaptation process, and the

221 A Unified Model for Context-aware Adaptation of User Interfaces
system decides which is the most appropriate method among the available
ones.

Besides, the agent roles can be further refined according to their specific
characteristics and interrelationships, which permits collaboration and
hierarchies. When a group of users is responsible for the adaptation, a
crowd-sourced adaptation takes place [Neb11].

A CAA process can also be triggered by a change in the context of use.
The green classes in the meta-model diagram represent concepts related to
the context information. The context defines the adaptation rules since it
provides information to instantiate them. For instance, when the user
changes the orientation of the device, a technique like ‘change the UI
orientation’ must be applied, rotating the content of the UI according to the
new device position (information gathered for instance by a sensor).

As the context is a composition of information gathered from different
dimensions, there are sets of rules that can be simultaneously applied. An
adaptation process is then governed by one or more rule. Rules, represented
in the meta-model diagram by the yellow classes, can be syntactically
structured in the form of ECA rules (event, condition and actions) [Dit95],
instantiated and triggered by context information. Event-Condition-Action
(ECA) is commonly used and adopted in several workflow prototypes as a
modeling tool. The limitation of capturing rules evaluation context in ECA
rules leads to the usage of JECA rules where justification (J) provides a
reasoning context for evaluations of ECA rules in order to support context
dependent reasoning processes in dealing with uncertainties [Ngeow et al.,
2007]. Due to the fact that more than one rule is normally applied
simultaneously, conflicts may appear. In order to solve them, priorities must
be assigned for certain contexts: adaptation techniques may be abstracted in
policies (meta-rules) that can also be further abstracted as strategies (meta
meta-rules)2. An extension of ECA rules that includes also Justification can
be applied.

CAA results can be presented to the end user with different methods to
prevent the end user disruption that is commonly caused by significant
differences existing between the original UI and the adapted one. Animation
is one possible method that can be applied in this sense. By using animation,

2 [Cal05] also describes strategies and polices, however such concepts are not composed by
abstractions of adaptation techniques, they work as a classification or restrictions to the
techniques.

 Vivian Genaro Motti, Jean Vanderdonckt 222

the intermediary steps of a transition are explicitly presented to the end user,
permitting her to intuitively comprehend sequential changes (Dessart eta al,
2011).

As consequences of the actions performed by rules, models for SFE are
generated. In the meta-model diagram, the models are represented by purple
classes. Following the principles of the model driven approach, the models
range from task and concept level, abstract level, to concrete level and then
final level (Calvary, 2005). While a task model specifies the tasks and
subtasks involved to accomplish a specific user goal, the final UI level
specifies the layout issues (assuming a GUI), e.g. style, alignment, and
colors.

CAMM is composed by 34 classes organized in 4 main packages, 3
enumerations, which are defined in Figure 2.

Adapters
The Adapters, represented by red classes in Figures 1 and 2, refers to the
agent or the set of agents that is responsible for triggering or supporting the
decisions for the adaptation phases, they are defined as follows:

Adapter
• Definition: the agent or the set of agents that is responsible for

triggering or supporting the decisions for each of the adaptation
phases;

• Examples: the end user that customize the interactive system;
• Attributes: id (the identifier of the adapter, a unique value), name

(the name associated to the adapter), and priority (could be in a
qualitative approach a value like low, medium, or high according to the
priority associated to the adapter);

• Methods: get() and set() (generic functions used to retrieve the
information about the adapters available in a given moment and to
associate it to the attribute values, instantiating the adapter);

• Relationships: is_composed_by one or a set of User, System, and
Third-Party, and triggers an AdaptationProcess

223 A Unified Model for Context-aware Adaptation of User Interfaces

System
• Definition: the computational application (e.g. a function, a

program or an API) that interacts directly with the system;
• Examples: a web service;
• Attributes: id (the identifier of the system, a unique value),

name (the name associated to the system) and its description (a
summary of its definition and goals);

• Methods:
• Relationships: composes one or a set of Adapter

Third-Party
• Definition: an external agent able to intervene in the adaptation

process;
• Examples: an agent;
• Attributes: id (the identifier of the third-party, a unique value),

name (the name associated to the third-party) and its description
(a summary of its definition and goals);

• Methods:
• Relationships: composes one or a set of Adapter

User
• Definition: the end user that is interacting with a system in a given

moment, a human user;
• Examples: John Doe is the end user interacting with the system, his

description includes his personal information, impairments (cognitive,
motor, visual, etc.), and preferences;

• Attributes: id (the identifier of the user, a unique value) and its
description (a summary of its definition and goals);

• Methods:
• Relationships: can compose one or a set of Adapter and also one or a

set of Context

 Vivian Genaro Motti, Jean Vanderdonckt 224

Figure 3. Context-aware Adaptation Meta-model (CAMM)

 A Unified Model for Context-aware Adaptation of User Interfaces 225

When several users are considered in the decision, the adaptation is
classified as crowd sourced [Neb11], and a mixed approach occurs when a
combination of agents collaborate to take the adaptation decisions [Hor99].
The user is part of both Adapter and Context, first as the agent responsible
for taking adaptation decision and then its description is also relevant to
composed contextual information.

 Context
The context, represented by green classes in Figure 2 and Figure , refers to
all the information that characterizes the context of use, the interaction
scenario and that can be relevant for defining and executing the adaptation.
It is defined mainly in terms of:

Context
• Definition: all the information that characterizes the context of use,

the interaction scenario and that can be relevant for defining the
adaptation lifecycle;

• Examples: the user John Doe interacting with a tablet PC in a train;
• Attributes: id (a unique identifier value for that context), and a

priority value (if in a qualitative approach could be high, medium,
low levels, this information is useful to solve potential conflicts
between adaptation techniques)

• Methods: get() (to retrieve information about the context, coming
for instance from sensors in the environment), set() (function to
instantiate the values for the context, such values can be treated and
processed beforehand if necessary, e.g. to convert units),
isAvailable() (to check whether there is information to be retrieved),
isDynamic() (to check whether the information varies along the
time), isValid() (to check whether the information is still holding);

• Relationships: is_composed_by at least one but not necessarily all
User, Platform, Environment and Application, aggregates a Quality,
an Element, a Property, and instantiates a Justification, an Event and
a ContextInformation

226 Vivian Genaro Motti, Jean Vanderdonckt

User (see previous definition at Section 4.1 for information)

Platform
• Definition: the device or set of devices used to interact, and all their

relevant characteristics as accessories available, connections,
technologies supported;

• Examples: a tabletPC with Android, specification about the
connections, ports, compatibility, drivers, etc;

• Attributes: id (unique identifier associated to the platform) and its
description (a brief summary of the devices available and their
characteristics);

• Methods:
• Relationships: a set of Platform can compose a set of Contexts;

Environment
• Definition: the scenario in which the interaction takes place, defined

for instance in terms of light level, noise level, stability level,
location, etc;

• Examples: a train, with medium noise, light and stability level;
• Attributes: id (unique identifier associated to a given environment)

and a description (a brief summary of the devices available and their
characteristics);

• Methods:
• Relationships: composes Context;

Application
• Definition: the description of the interactive system and its domain,

described by (domain and data) models, (functional and non-
functional) requirements, task tree, etc;

• Examples: a safety-critical system, a medical system;

 A Unified Model for Context-aware Adaptation of User Interfaces 227

• Attributes: id (unique identifier associated to the environment) and
its description (a brief summary of the characteristics of the
environment);

• Methods: is_contained_by Context and is_associated_with
Resources (the components of the UI’s of the interactive system)

• Relationships: composes Context and has Resources;

Quality
• Definition: a qualitative value used to evaluate certain

characteristics of the context information (e.g. its validity,
availability, precision);

• Examples: the information has a high level of precision (adopting a
qualitative approach for implementation);

• Attributes: name (associated name with the quality, e.g. precision)
and level (associated to the degree in which the quality is provided);

• Methods:
• Relationships: is_aggregated_in Context

Element
• Definition: one specific object of the context (i.e. the name of a

context information);
• Examples: user;
• Attributes: name (the name given to the properties of the contextual

information) and description (a brief summary explaining the name
of the element);

• Methods:
• Relationships: is_aggregated_in Context

Property
• Definition: one specific attribute that characterizes one element of

the context;
• Examples: the birthdate of the user;

228 Vivian Genaro Motti, Jean Vanderdonckt

• Attributes: name (the name given to the properties of the contextual
information) and description (a short explanation about the property
of the element);

• Methods:
• Relationships: is_aggregated_in Context

Adaptation Core
The adaptation core involves the design decisions taken based on the
processing of the contextual information available. This core includes
inference and reasoning on top of the context in order to select and prioritize
adaptation rules and their respective actions, completing a set of activities
and functions performed to adapt some element of the interactive system;

Adaptation Process
• Definition: is the set of steps necessary to perform the adaptation,

i.e. an adaptation lifecycle;
• Examples: given a specific context, the UI elements change, and are

presented in a certain approach to the end user
• Attributes: id (a unique identifier associated to an adaptation

process)
• Methods: start() (to begin the adaptation process), pause() (to

temporarily terminate the process), and stop() (to terminate the
process);

• Relationships: is_triggered_by an Adapter, is_composed_by one or
more AdaptationRules

Adaptation Rule
• Definition: is a formal association connecting the context with the

adaptation techniques, specifying how the system dynamically
adapts according to the context [Koc00]. It can be structure
according to the JECA approach [Ngeow et al., 2007], defined as
follows;

 A Unified Model for Context-aware Adaptation of User Interfaces 229

• Examples: if the user is dyslexic, then change the font type of the
text;

• Attributes: id (a unique identifier associated to an adaptation rule),
name (a unique name that characterizes the rule)

• Methods: calculatePriority() (to calculate the weight of the rule,
based on context information provided) and apply() (to execute the
rule in a given application);

• Relationships: composes AdaptationProcess, is_composed_by
Justification, Event, Condition, and Action, and can be part_of one
or several Policy

Justification
• Definition: a reason associated to the context, that provides a

rationale, and aids to prioritize the adaptation and to justify with
qualitative or quantitative information the selection of one specific
action, it forms the reasoning context in which evaluation of the
specific JECA rule to be performed [Ngeow et al., 2007];

• Examples: there is no information available about the environment
(then a default scenario must be considered);

• Attributes: id (a unique identifier for the justification), weight,
priority, argument (associated values to support reasoning);

• Methods: check() (verifies whether there is a justification available
for a given instance of the context);

• Relationships: composes an AdaptationRule and is_instantiated_by
the Context

Event
• Definition: a specific status or change of status regarding the

system, the user interaction or the context that supports specific
actions;

• Examples: when the device is rotated;

230 Vivian Genaro Motti, Jean Vanderdonckt

• Attributes: id (a unique identifier to the event), name (a word or
statement to qualitatively identify the event) and description (a brief
description that characterizes the event);

• Methods: detect() (the event is listened and detected by the
application);

• Relationships: composes an AdaptationRule and is_instantiated_by
an instance of the Context

Condition
• Definition: an association between a given element and a given

instance by means of an operator (e.g. equal, greater than) that
enables comparison and evaluation (an enumeration named
OperatorType provides possible instances for the operators);

• Examples: the user visual impairment is colour blindness;
• Attributes: id (a unique identifier for the given condition);
• Methods: evaluate() (function to check whether the condition is

valid or not)
• Relationships: composes one or several AdaptationRules and it

aggregates Value, Operator (specified by the enumeration
OperatorType) and ContextInformation

Value
• Definition: the actual value that comes from the context of use, can

be processed if needed (e.g. treated, converted), and verified
according to the rule specification;

• Examples: 50;
• Attributes: name (a name associated to the value);
• Methods: process() (function to refine the value if needed, e.g.

convert to a given unit or treat the information as necessary);
• Relationships: is_aggregated_with a Condition and instantiates a

Technique

 A Unified Model for Context-aware Adaptation of User Interfaces 231

Operator
• Definition: the operator that permits a comparison between values;
• Examples: equal, greater than, different;
• Attributes: Type (an enumeration of possible instances is provided

including equal, notequal, and, or, lessthan, greaterthan,
lessthanorequal, greaterthanorequal);

• Methods:
• Relationships: is_aggregated_with a Condition and is_related_to a

Technique

ContextInformation
• Definition: an element of the context that can be retrieved and

evaluated;
• Examples: the list of visual impairments associated to the given

user;
• Attributes: id (a unique identifier associated to the contextual

information of interest);
• Methods: retrieves() (function to associate a value with the element)
• Relationships: is_aggregated_with a Condition, is_related_to a

Technique and is_instantiated_by the Context

Action
• Definition: a function that defines and activates the execution of the

adaptation;
• Examples: change the font size to 12;
• Attributes: name (the name of the action);
• Methods: execute() (function that performs a given action) and

cancel() (to interrupt the execution of the action);
• Relationships: composes one AdaptationRule, generalizes a

Technique, is_presented_by a specific PresentationMethod, modifies
a given Model, and aggregates a Method, a Classifier, a Resource,
and a Parameter

232 Vivian Genaro Motti, Jean Vanderdonckt

Technique
• Definition: an operation that specifies a change in the system or in

one or more properties of the system in order to adapt it;
• Examples: increase the font size;
• Attributes: id (a unique identifier associated with the technique),

name (a name that characterizes the technique), reference (sources
that define the technique, authors), description (a brief summary
explaining it), rationale (steps needed to accomplish it), example
(illustrative uses for the technique), context (context associated with
it), advantages (qualities that are enhanced when applying it),
disadvantages (qualities that are hindered while applying it), sample
(a piece of code that implements it, e.g. an URL linking to web
service that implements the technique), images (illustrative pictures
of its application), observation (commentaries and notes about it),
categories (tags to classify it);

• Methods:
• Relationships: is_associated_with Value, Operator, and

ContextInformation and is generalized_by an Action

Policy
• Definition: an abstraction of a technique that governs it;
• Examples: if the user has low vision, but also a screen augmenter

(as assistive device), there is no sense in augmenting the font size;
• Attributes: id (a unique identifier associated to the policy);
• Methods:
• Relationships: is_associated_with AdaptationRules and is_part_of

Strategy;

Strategy
• Definition: an abstraction of a policy that governs it based on

inferences performed with several contextual information;

 A Unified Model for Context-aware Adaptation of User Interfaces 233

• Examples: a combination of two or more given policies;
• Attributes: id (a unique identifier associated to the strategy);
• Methods: apply() (a function to activate a given strategy);
• Relationships: is_associated_with one or more given Policy

Method
• Definition: one specific function applied to change an element of

the interactive system;
• Examples: re-size;
• Attributes: name (a given name associated with the method);
• Methods: execute() (function to apply a given method);
• Relationships: is_aggregated_with an Action

Classifier
• Definition: a definition of amount (subset, union, intersection or

complement);
• Examples: all, any;
• Attributes: type (a given name that characterizes the classifier);
• Methods: set() (a function to associate a classifier with a given

action);
• Relationships: is_aggregated_with an Action

Resource
• Definition: a component of the UI or the system that can be subject

to adaptation, different granularity levels are considered, e.g.
navigation, UI images, tables, their rows, columns or cells;

• Examples: image;
• Attributes: type (the name of the given resource defining the UI

element);
• Methods: set() (a function to associate a given resource with an

action)
• Relationships: is_aggregated_with an Action

Resource Property

234 Vivian Genaro Motti, Jean Vanderdonckt

• Definition: a specific characteristic or attribute of a resource;
• Examples: width of a table;
• Attributes: name (a characterization of the resource property);
• Methods:
• Relationships: belongs_to Resource

Parameter
• Definition: a value related to a given unit that specifies a parameter

for the adaptation technique;
• Examples: +50%;
• Attributes: specification (a given value that characterizes the

action);
• Methods: set() (a function to associate a given parameter to the

action);
• Relationships: is_aggregated_with an Action

Presentation Method
• Definition: a explicit manner of presenting the adaptation to the end

user aiming at avoiding disruption, possible types are listed as
enumeration;

• Examples: an animation to present the re-sizing of an edit box;
• Attributes: id (a unique identifier associated with the presentation

method), name (a short descriptive name associated with the
presentation), and type (a characterization of the presentation);

• Methods: play() (a function to activate the execution of an
presentation method), stop() (a function to stop the presentation
method), pause() (a function to pause the presentation method),
checkCompatibility() (a function to check whether the action is
compatible with a given presentation method);

• Relationships: presents an Action;
• Enumeration: possible presentation types include animation,

brighten, blind, bounce, clip, cross fade, collapse, dim, drop, expand,
explode, fade, fade in, fade out, fold, highlight, morph, plug in, plug

 A Unified Model for Context-aware Adaptation of User Interfaces 235

out, progressive rendering, puf, pulsate, scale, self healing, shake,
size, slide, spotlight, transfer.

 Model-based Approach
An abstract representation of the reality (of the system, its different
perspectives and the UI) that by means of reification or specialization is
transformed from one abstraction level to another:

Model
• Definition: a formal definition of an interactive system, that can be

decomposed in different abstraction levels, and complemented by
different views, commonly expressed by means of a given notation
(e.g. UML, XML, CTT);

• Examples: a UsiXML model specifying an interactive system;
• Attributes: id (a unique identifier of the model) and a description

(the model definition);
• Methods: reify() (an specialization of a model to make it more

concrete) and abstract() (transformation to a higher abstraction
level);

• Relationships: is_composed_by one or several models of a Task,
AUI, CUI and FUI and is_modified_by an Action

Task
• Definition: a set of actions and activities to be executed according to

given constraints, as ordering, to achieve a specific goal while
interacting with the system;

• Examples: an CTT or an HTA task tree;
• Attributes: id (a unique identifier associated to the task tree) and

description (a definition of the task tree: nodes, relationships,
properties, etc.);

• Methods: reify() (function to transform a task tree into an AUI
model);

• Relationships: composes one or several Models

236 Vivian Genaro Motti, Jean Vanderdonckt

AUI (Abstract User Interface)
• Definition: the abstract definition of the system and its UI that is

domain and platform-independent;
• Examples: a UsiXML model expressing an AUI model;
• Attributes: id (a unique identifier associated to the AUI model) and

description (a definition of the AUI components);
• Methods: reify() (function to transform an AUI model into a more

concrete definition, i.e. a CUI model) and abstract() (function to
transform an AUI model into a more abstract definition, i.e. a Task
Tree);

• Relationships: composes one or several Models

CUI (Concrete User Interface)
• Definition: a more concrete definition of the system, its UI and its

components;
• Examples: a UsiXML model expressing a CUI model;
• Attributes: id (a unique identifier associated to the CUI model) and

description (a definition of the CUI components);
• Methods: reify() (function to transform an CUI model into a more

concrete definition, i.e. a FUI model) and abstract() (function to
transform an CUI model into a more abstract definition, i.e. an AUI
model);

• Relationships: composes one or several Models

FUI (Final User Interface)
• Definition: the (graphical) user interface to be presented and/or

rendered to the end user;
• Examples: a running application;
• Attributes: id (a unique identifier associated to the FUI model) and

description (a definition of the FUI components);

 A Unified Model for Context-aware Adaptation of User Interfaces 237

• Methods: abstract() (function to transform an FUI model into a
more abstract definition, i.e. an CUI model);

• Relationships: composes one or several Models

4 Applying CAMM
The approach adopted to validate CAMM in this paper is two-fold: first the
concepts of related works were analyzed and the common and the
complementary definitions were extracted, then the model proposed has
been applied and three different case studies to verify whether the concepts
encompassed were enough complete to support the whole development
lifecycle of CAA. As such we defined as case study for instantiating
CAMM, a car rental scenario. It has been instantiated according to the
definitions associated with the meta-model proposed in the Section 4 for
three different scenarios of usage that lead to three different
implementations of the model.

Documentation
To formalize the definitions of the case study and to ensure more consistent
instantiations, a common documentation for the case study has been
defined. It includes a use case diagram (Figure 4), a domain model (Figure)
and a task tree (Figure).

Figure 4. Use Cases for the Car Rental example

238 Vivian Genaro Motti, Jean Vanderdonckt

Use Cases. For all the three instantiations the main goal of the end user is
to rent a car. To do so first the user set the preferences of the car (choosing
one among the list of option available), then the location for picking up and
returning the car is defined, as well as the period of interest. The car is
selected and the payment information is provided. This definition (Figure 4)
is specified in a high level of abstraction, to leave room for different design
decisions for the adaptation ensuring as such that the model can indeed
cover a generic-purpose.

Domain Model. The car rental task involves three main concepts: the
customer, the car and the reservation. The customer is the person who will
rent the car and the reservation includes information about the car itself (e.g.
name, type and extras), information about the location (pickup and return
place) and the period (pickup and return dates). Alternative definitions and
further refinements can be used to specify the same case study, in our
approach (Figure) we opt for a concise definition aiming simplification, and
also leaving enough room for different adaptations to be applied.

Figure 5. Domain model for the Car Rental example: the customer rents a car through a reservation

that comprises its location (pickup and return place) and also its period (pickup and return dates)

Task Tree. The task model (Figure) is structured in 5 main hierarchical
levels and encompasses 15 elementary tasks. It provides a generic
representation of the essential tasks and it enables other adaptations
according to the context of use.

 A Unified Model for Context-aware Adaptation of User Interfaces 239

Figure 6. Generic Task Tree for the Car Rental example (in HTA notation)

5.1.1 First Scenario
The first implementation of the car rental example takes into account the

platform of the user, i.e. an Android tablet was adopted as platform, the user
profile (level of experience in the domain of interest) and environment. Two
specific contexts of use were envisaged:

a. Users with low experience in car rental systems, medium experience in
mobile applications, using a tablet device as a platform, and located in a
calm environment (i.e. no loud noises, stable, enough free time);

b. Users with high experience in car rental systems, and in mobile
applications, using an Android tablet device as platform, located in a
stressful environment and with a short time to conclude the task.
The design decisions concerning the specification of the platform are the

same for both contexts, as such they can be considered for implementing the
meta-rules for CAA, mainly an Android tablet has limited screen
dimensions and input controls. Android guidelines must be first respected,
e.g.: highlighting the selections in a touch-screen interface (thus providing
immediate feedback of the users’ actions). More specific CAA rules that
consider the context of use A include:

• If the user is a beginner, then
o all interaction steps must be clear in the UI and next possible steps

must be clearly indicated;

o the amount of information displayed in the UI must be low, aiming
to reduce the cognitive load;

o UI elements must be intuitive and simpler;
• If the environment is calm, then

240 Vivian Genaro Motti, Jean Vanderdonckt

o detailed information about each interaction step can be provided;
o the main task can be split in several sub-tasks, and the respective

UIs dedicated to more specific actions;
Given that the task tree is affected by the adaptation, we illustrate

different versions showing the adaptations performed in Figure and in
Figure 88, such trees are based on the original task tree provided in Figure9.
They were adapted according to the constraints imposed by the contexts of
use in scenarios a and b, i.e. users in a relaxed situation and with low level
of expertize in the domain should have more detailed information and the
task should be split in several sub-tasks that are more specific, while more
experienced users in a stressful environment must have higher
performances, thus the interaction tasks provided can be quickly concluded.

Respecting the adapted task trees, UIs were generated to enable users to
perform the car rental task. The Figure and Figure 10 illustrate respectively
such UIs.

Figure 7. Task Tree adapted for Context of Use a (using CTT notation)

The later UI also provides auto-completing features, e.g. the calendar for
the period and the possible office locations. Although these features
improve the users’ performance (in case of experienced users), they can
cause cognitive overload for beginners, thus in these examples just users
with time constraints and high experience levels interact with these features.

 A Unified Model for Context-aware Adaptation of User Interfaces 241

Figure 8. Task Tree adapted for Context of Use b (using CTT notation)

While in the former 4 interaction steps were envisaged, in the later just 2
interaction steps were defined to accomplish the main task.

Figure 9. Car Rental Example UIs for Android Tablet Context A: 4 interaction steps are available

(Location, Car Type, Options, Personal Info), the UIs are simple and intuitive

242 Vivian Genaro Motti, Jean Vanderdonckt

5.1.2 Second Scenario

For the second implementation the specificities in the context for the car
rental example take into account the screen dimensions and resolution. The
layout of the web page is adapted automatically and progressively to fit the
contents in all space available and therefore minimize scrolling.

Figure 10. Car Rental Example UIs for Android Tablet Context B: 2 interaction steps are available

(Reservation, Personal Info), users have auto-complete features included

jQuery Masonry is a plugin of jQuery that arrange the UI components
according to the re-size of the browser. Each UI component is treated
individually, and moves to another column (or row) of the layout to fit
accordingly in the new browser window size. Thresholds are used to assure
the balance of the layout, avoiding unnecessary scrolling. The drawback of
this solution is that developers must organize the components of the page in

 A Unified Model for Context-aware Adaptation of User Interfaces 243

logical units. Once it is done, the re-organization is automatically and
progressively performed.

Figure 11. Car rental website adapted examples: (A) Horizontally aligned (e.g. for super wide

screens); (B) Balanced Layout (e.g. for a tablet pc); (C) Vertically aligned (e.g. for vertically-oriented
screens)

Any screen dimension can be considered, because the fine-grained
adjustment of the layout is done based on the progressive re-sizing of the
browser. Three types of adaptation techniques were adopted to compose the
CAA rules:

• Resizing elements: scaling font size, UI elements as videos and images;

• Reorganizing elements: changing the position of the components
horizontally and vertically to assure a balanced layout;

244 Vivian Genaro Motti, Jean Vanderdonckt

• Mixed approach: a combination of resizing and reorganizing.
The instantiation of the conditions of the CAA rules vary proportionally

according to the re-size of the browser window, i.e. the bigger the window,
the bigger the UI elements and amount of columns and rows of layout.

Figure 12. Adapted UIs for car rental according to three different contexts of use: (1) user

impairments (colour-blindness); (2) battery level; and (3) static device capabilities, i.e. device type
(tablet or smart phone)

The car rental example comprehends three main interaction tasks: first
users authenticate themselves, then they provide personal information, and
finally they select the car and period of the rental. To enable users to
accomplish these three tasks, seven logical units were defined (Figure):

 A Unified Model for Context-aware Adaptation of User Interfaces 245

personal information, address, car type, car specification, period of the
rental, additional specifications, and comments. Figure illustrates three
adaptation examples, in A a horizontally-oriented alignment is displayed,
e.g. for a super-wide screen all UI components can be co-located, in B a
balanced UI layout is presented, both horizontal and vertical alignments are
considered, and in C a vertical alignment is considered, i.e. the UI
components are displayed one above the other. Once only the screen
properties and the UI components (size and position) are considered in this
ex-ample, further rules with more specific CAA can be adopted extending it.

5.1.3 Third Scenario

The car rental example was also applied in a third scenario of CAA
according to: the user visual impairment (color blindness), the platform type
(mobile phone, tablet device), its battery level, and user preferences (set in
the system). Six adaptation techniques were chosen and implemented (e.g.:
changing the modality and the image colors), aiming at assuring good
usability and accessibility levels, by adapting the presentation (e.g. menu
elements), and the content (images and text). The CAA was collaboratively
decided by: the user, the system and the developer, and it was executed in
the server during both: run time and design time.

Contexts, as different platforms and user profiles, were considered and
developed using different technologies. The adapted UIs consider
respectively: the color-blindness of the user, the battery level and the static
capabilities of the device (tablet or smartphone).

Figure illustrates the adapted UIs of the car rental application, in 1 the
adaptation according to the user visual impairment (color-blind), in 2
according to the device capabilities (battery level) and in 3 static capabilities
of the device (tablet or mobile).

Discussion
Implementing the case study for different scenarios of context proved to be
feasible by adopting the concepts as defined in CAMM. As adapters both
system and end user have been considered. As contexts information from
users, platforms and environments have been used. Different rules
composed the adaptation processes, matching context information with
appropriate adaptation techniques. The results applied in the task tree were
presented to the end user in the final user interface.

246 Vivian Genaro Motti, Jean Vanderdonckt

The implementations were built with different technologies, for different
contexts and comprising a significant set of rules. The meta-model showed
to be enough generic and also complete enough to accommodate all steps
and all concepts needed for these adaptation scenarios.

5 Final Remarks
Adaptation has continuously raised awareness since the early 90’s. With

the growth in the amount and variety of technology, in terms of both
applications and devices, it became impossible for stakeholders to properly
develop systems that are adapted to single contexts. Several attempts have
been done to leverage the development process of context-aware adaptation.
However there is not yet an easy-to-use, unified and widespread solution
that properly supports all the development lifecycle.

In this sense, by means of a meta-model proposed in this work, we aim at
providing a unified description for the complete adaptation lifecycle that
properly support developers in all development phases. Although the
context evolves dynamically, being continuously subject to changes,
CAMM covers an abstraction level capable of supporting further extensions
whenever needed. The main contributions of this model are: (i) defining a
standard approach able to accommodate several instances of adaptation
independently of the context, application domain and complexity level; (ii)
providing a unified methodology, terminology and structure for context-
aware adaptation in both semantic and syntactical aspects; and (iii) enabling
validation by means of a Schema definition.

The instantiations presented in this paper proved the model to be enough
generic (accommodating different contexts), enough complete (covering all
phases of CAA) and also flexible (leaving room for specific design
decisions, implementation approaches and different technologies.

As a future work the definitions provided by this meta-model, including
syntactic and semantic aspects, can also be applied to generate a specific
adaptation language.

References
P. Brusilovsky and D. W. Cooper, “Domain, task, and user models for an adaptive

 A Unified Model for Context-aware Adaptation of User Interfaces 247

hypermedia performance support system,” In: Proc. of the 7th int. conference on
Intelligent user interfaces. ACM, p. 23-30, 2002

G. Calvary, O. Daassi, J. Coutaz, and A. Demeure, “Des widgets aux comets pour la
Plasticité des Systèmes Interactifs,” Revue d'Interaction Homme-Machine, v. 6, n. 1, p.
33-53, 2005.

Ch.-E. Dessart, V. G. Motti and J. Vanderdonckt, J, “Showing User Interface Adaptivity by
Animated Transitions” In Proc. of 3rd ACM Symp. on Eng. Interactive Comp. Sys.
EICS’2011. ACM, NY, 95-104.

Dittrich, K.R., Gatziu, S., Geppert, A. The Active Database Management System
Manifesto: A Rule- base of ADBMS Features. In Proceedings of the 2nd International
Workshop on Rules in Database Systems, Vol. 985, Springer-Verlag, 1995, pp. 3-20.

Fahrmair, M., Sitou, W., Spanfelner, B. 2005. An engineering approach to adaptation and
calibration. In Proceedings of the Second international conference on Modeling and
Retrieval of Context (MRC'05), Thomas R. Roth-Berghofer, Stefan Schulz, and David
B. Leake (Eds.). Springer-Verlag, Berlin, Heidelberg, 134-147.
DOI=10.1007/11740674_9 http://dx.doi.org/10.1007/11740674_9

C. R. G. de Farias, M. M. Leite, C. Z. Calvi, R. M. Pessoa, and J. G. Pereira Filho, “A MOF
metamodel for the development of context-aware mobile applications,” In: Proceedings
of the 2007 ACM symposium on Applied computing. ACM, 2007. p. 947-952.

F. Fuchs, I. Hochstatter, M. Krause, and M. Berger, “A metamodel approach to context
information,” In: Pervasive Computing and Communications Workshops, 2005. PerCom
2005 Workshops. Third IEEE International Conference on. IEEE, 2005. p. 8-14.

V. Ganneau, G. Calvary, and R. Demumieux, “Métamodèle de règles d'adaptation pour la
plasticité des interfaces homme-machine,” In: Proceedings of the 19th International
Conference of the Association Francophone d'Interaction Homme-Machine. ACM, p.
91-98, 2007.

Horvitz, E.: Principles of Mixed-Initiative User Interfaces. Proc. of ACM Conf. on Human
Aspects in Computing Systems CHI 1999, ACM Press, New York, 1999, pp. 159-166.

Kappel, T.G., Retschitzegger, W., Kimmerstorfer, E., Proll B., Schwinger, W., Hofer, T.
Towards a Generic Customisation Model for Ubiquitous Web Applications. In
Proceedings of the Second Int. Workshop on Web-Oriented Software Technology
(IWWOST’02), 79-104, Malaga, Spain, June 2002. ISBN: 84-931538-9-3.

Kobsa A. 2007, Generic User Modeling Systems. In The Adaptive Web (LNCS), Vol.
4321, 136-154.

N. P. D. Koch, “Software engineering for adaptive hypermedia systems and development
process,” 2000. PhD Thesis

V. López-Jaquero, J. Vanderdonckt, F. Montero, P. González, “Towards an extended model
of user interface adaptation: the ISATINE framework,” In: Engineering Interactive
Systems. Springer Berlin Heidelberg, 2008. p. 374-392.

Limbourg, Quentin, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon, and Víctor
López-Jaquero. "USIXML: A language supporting multi-path development of user
interfaces." In Engineering human computer interaction and interactive systems, pp.

248 Vivian Genaro Motti, Jean Vanderdonckt

200-220. Springer Berlin Heidelberg, 2005.
Luyten, K., Haesen, M., Ostrowski, D., Coninx, K., Degrandsart, S., Demeyer, S.:

Storyboard creation as an entry point for model-based interface development with
UsiXML. In: UsiXML, pp. 1–8 (2010)

Morfeo Project, (2012) Context of Use Meta model. Available online at:
http://forge.morfeo-project.org/wiki_en/index.php/Context_Of_Use_
Metamodel#Introduction.

Motti, V. G., Vanderdonckt, J. A Computational Framework for Context-aware Adaptation
of User Interfaces, In Proc. of the Seventh IEEE International Conference on Research
Challenges in Information Science (2013)

Nebeling, M. Context-Aware and Adaptive Web Applications: A Crowdsourcing
Approach, In Proc of ICWE, 2011.

Ngeow, Y.C., Mustapha, A.K., Goh, E., Low, H.K.: Context-aware Workflow Management
Engine for Networked Devices. International Journal of Multimedia and Ubiquitous
Engineering (IJMUE) 2(3), 33-47 (2007).

Norman, D.A.:1986, Cognitive Engineering. In: Norman, D.A., Draper, S.W. (Eds.): User
Centered System Design. Lawrence Erlbaum Associates, Hillsdale, pp. 31–61.

Sottet, Jean-Sébastien, Vincent Ganneau, Gaëlle Calvary, Joëlle Coutaz, Alexandre
Demeure, Jean-Marie Favre, and Rachel Demumieux. "Model-driven adaptation for
plastic user interfaces." In Human-Computer Interaction–INTERACT 2007, pp. 397-
410. Springer Berlin Heidelberg, 2007.

UsiXML Specification. Available at: usixml.org
Vanderdonckt, J., Limbourg, Q., Michotte, B., Bouillon, L., Trevisan, D., Florins, M.,

UsiXML: a User Interface Description Language for Specifying Multimodal User
Interfaces, in Proc. of W3C Workshop on Multimodal Interaction WMI'2004 (Sophia
Antipolis, 19-20 July 2004).

de Vrieze, Paul, Patrick van Bommel, and Theo van der Weide. "A generic adaptivity
model in adaptive hypermedia." In Adaptive Hypermedia and Adaptive Web-Based
Systems, pp. 344-347. Springer Berlin Heidelberg, 2004.Walsh, S.P., White, K.M., Cox,
S., Young, R.M. (2011) Keeping in constant touch: The predictors of young Australians’
mobile phone involvement. Computers in Human Behavior 27 (1), 333-342.

