
UsiComp: an Extensible Model-Driven Composer

Alfonso Garcı́a Frey1, Eric Céret2, Sophie Dupuy-Chessa3,
Gaëlle Calvary4, Yoann Gabillon5

UJF1,2, UPMF3, Grenoble INP4, CNRS1,2,3,4, LIG1,2,3,4, UVHC5

41 rue des mathmatiques, 38400 Saint Martin d’Hres, France1,2,3,4

Univ. Lille Nord de France, F-59000 Lille, France, LAMIH, F-59313 Valenciennes, France5

{Alfonso.Garcia-Frey, Eric.Ceret, Sophie.Dupuy, Gaelle.Calvary}@imag.fr,
yoann.gabillon@univ-valenciennes.fr

ABSTRACT
Modern User Interfaces need to dynamically adapt to their
context of use, i.e. mainly to the changes that occur in the
environment or in the platform. Model-Driven Engineering
offers powerful solutions to handle the design and the imple-
mentation of such UIs. However this approach requires the
creation of an important amount of models and transforma-
tions, each of them in turn requiring specific knowledge and
competencies. This leads to the need of an adapted tool sus-
taining the designers’ work.

This paper introduces UsiComp, an integrated and open frame-
work that allows designers to create models and modify them
at design time as well as at runtime. UsiComp relies on a
service-based architecture. It offers two modules, for design
and execution. The implementation has been made using
OSGi services offering dynamic possibilities for using and
extending the tool. This paper describes the architecture and
shows the extension capacities of the framework through two
running examples.

Author Keywords
Model-Driven Engineering; User Interfaces; Design Tools.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces – theory and methods.: D.2.2.Software Engineering:
Design Tools and Techniques – user interfaces.

General Terms
Design, Human Factors.

PROBLEM AND MOTIVATION
With the increasing amount of platforms and devices as well
as of the new expectations of users, designers need to create
User Interfaces (UIs) that are able to adapt to their context

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’12, June 25-26, 2012, Copenhagen, Denmark.
Copyright 2012 ACM 978-1-4503-1168-7/12/06...$10.00.

of use, i.e. to the changes that occur in the environment, the
platform and/or the user profile.

However, the huge amount of possible combinations of these
context elements makes it no longer possible to anticipate and
predefine all the eventual situations at design time. Systems
have to be designed to be able to adapt themselves to their
context of use while preserving usability [2]. Model Driven
Engineering (MDE), which is based on the generation of ap-
plications from models, provides powerful solutions for the
creation of such UIs. In this paradigm the models repre-
sent the different facets of the system to be created. These
models are successively transformed and combined to finally
generate the code. This opens possibilities like easier evo-
lutions and reuse [6], dynamic adaptation to the context of
use, greater quality, early detection of defects and inclusion
of knowledge in executable models [11].

However, creating all the models and all the transformations
for an application is a long and complicated work: the de-
signer has to understand the underlying meta-models, write
the models that conform to these meta-models and elaborate
some transformations. Then, the designer needs to create a
system that runs the transformations and generates the final
code. This is why several studies have been driven to cre-
ate frameworks to manage these stages and handle models at
runtime.

This paper introduces UsiComp, a tool for creating a com-
plete set of models (Tasks, Abstract UI, Concrete UI, Do-
main, Context, Mapping, Quality) and simplifying the cre-
ation of transformations. UsiComp’s design and execution
modules, relying on an extensible service-based architecture,
include an easy graphical interface that offers an efficient way
of creating models by drawing them or by combining prede-
fined components, permitting fast prototyping possibilities.
This makes it a powerful and innovative tool for designing a
system with an MDE approach. This paper first relates the
state of the art in the field. Then it presents UsiComp’s archi-
tecture and exemplifies its extensibility on two running exem-
ples.

RELATED WORKS
Several MDE frameworks have been proposed in academic
or commercial projects. For instance, UsiXML [9] offers
a rich set of tools like SketchiXML [3], IdealXML [12] or

Figure 1. UsiComp software architecture: meta-models, models and transformations at the heart of both design time (IDE for designers) and runtime
(FUIs for end-users).

GraphiXML [10]. This series of tools aim at covering the
different phases of the development process while comply-
ing with the separation of concerns principle. Altogether,
they support flexibility in the sense that they make it possi-
ble to forward and reverse engineer sketches as well as final
UIs. However, in practice, effort still needs to be put on their
methodological integration so that to guide the designer in
selecting the right set of tools according to his needs and sit-
uation.

MARA [16] is both an architecture and a tool for managing
UIs through models at runtime. Like UsiXML, MARA im-
plements a transformation sequence starting from the Task
model to successively generate the Abstract UI (AUI), Con-
crete UI (CUI) and Final UI (FUI). MARA supports the dy-
namic selection of models, meta-models and transformation.
However, MARA neither includes a models editor nor does
it support multiple entry points: the designer has to start with
the Task model and then to implement all the predefined set
of models.

Leonardi is a commercial software with two versions: a free
version available on the Internet1, and a retail version2. The
free version requires that the designer starts from a mockup of
the UI, while the full version adds the possibility of starting
from a workflow. Leonardi offers a direct transformation of
the UI prototype into code that is interpreted at runtime. The

1http://www.leonardi-free.org
2http://www.w4.eu

two versions rely on a fixed set of models with a proprietary
format.

Blumendorf et al. [1] have also proposed a framework that
makes it possible to manage and to extend the calls to the ser-
vices of the functional core. However, the editor is the stan-
dard Eclipse Modeling Framework which offers poor specific
help for designing models and transformations. In addition,
the transformation sequence starts at the Task model only.

MARIA [15] introduces a rich event manager and supports
design and runtime for creating applications that use the func-
tionalities offered by Web services. These services are anno-
tated with hints helping the generation of UIs. However, this
language (and the associated tool) does not allow the designer
to extend the set of models.

SOFTWARE ARCHITECTURE
The software architecture of UsiComp relies on services. The
term service refers to “a set of related software functionali-
ties that can be reused for different purposes, together with
the policies that should control its usage” [18]. These ser-
vices are implemented according to the OSGi specification
[13]. The main service is the Controller Service (figure 1).
The Controller Service is in charge of orchestrating the whole
process in which a UI is generated by successive transforma-
tions. Transformations may be reifications or abstractions [2].
Reification (respectively Abstraction) lowers (respectively in-
creases) the level of abstraction of a model. Currently, only

http://www.leonardi-free.org
http://www.w4.eu
admin
Machine à écrire

reifications have been implemented and integrated into Usi-
Comp. However, the architecture is fully generic, and so ca-
pable of integrating abstractions as well.

UsiComp (figure 1) is made of two modules: one for de-
sign, another one for runtime. They share common resources:
meta-models, models and transformations.

Design Module
The design module includes a visual editor (figure 2) for de-
signing and prototyping UIs. The UsiComp editor offers the
following functionalities:

• It allows designers to define all the models and transfor-
mations needed to produce a UI. The UI of the UsiComp
editor is divided into three different areas (figure 2): 1) a
toolbar with the most common actions, 2) the workspace
presenting graphical representations of the models, and 3)
the right panel which provides access to the different el-
ements of each meta-model. Designers can create models
by picking up the needed components and combining them.
For instance, figure 2 shows the UsiComp editor and three
models with their respective transformations. The model at
the top of the figure is a task model, represented with the
CTT notation [14]. This task model is transformed into an
AUI model represented with blue boxes. These blue boxes
show different Abstract Interaction Units and their arrange-
ment. The AUI model is in turn transformed into a graphi-
cal CUI model that UsiComp represents with a mock-up.

• Transformations between models are composed of rules. A
rule specifies how one specific set of elements of a source
model is transformed into a set of target model elements.
Designers can select what rules they want to apply to a
given model, and the system will automatically compose
the resulting transformation. These rules are represented
by arrows from the source element to the target. Most com-
mon rules are already available in the system, but design-
ers are free to add other rules if needed. Transformations
and rules are written in the Atlas Transformation Language
(ATL) [8].

• The UsiComp editor verifies that the designed models com-
ply with their corresponding meta-models. For instance, a
binary operator in the task model must link two different
tasks. The UsiComp editor also composes and compiles
the transformations and rules thanks to an integrated ATL
compiler.

• The resulting Final UI, which is the code of the UI, can
be directly executed from the IDE (green play button on
the toolbar) giving designers the opportunity to preview the
generated UI.

Runtime Module
The UsiComp runtime infrastructure is built on OSGi services
[13]. It works as follows:

• Once a new device becomes available to the framework (a
specific client is installed into the device for this purpose),
UsiComp identifies its specific platform model containing

Figure 2. UsiComp Development Environment. From Top to Bottom:
Task model, AUI model, CUI model. Transformations are represented
by arrows.

the platform details. The current version of UsiComp con-
tains platform models specified by hand.

• The Transformer Service (Figure 1) is a generic transfor-
mation service that can apply any transformation to any
model or models, producing models or text as output.

• To produce the UI, the Controller Service manages the trans-
formations, their order of execution and their related mod-
els and meta-models, calling to the Transformer Service as
many times as needed. The platform model is considered
in the transformation process to produce an adapted UI.

• In the transformation process, the Controller weaves the
functional core of the application into the UI, embedding
the calls from and to the UI.

The models, meta-models and transformations involved in the
generation are directly accessed by the Controller Service,
which is also responsible of linking the application logic from
the functional core to the UI and viceversa.

UsiComp has been entirely implemented in Java, EMF [17]
and ATL [8]. The development environment can be launched
as a normal Desktop application or as a Web application em-
bedded in an applet. Thanks to the OSGi services, it is pos-
sible to dynamically update the editor without stopping the
application. For instance, updating a service or replacing the
transformation language for another one can be dynamically
achieved.

Code Generation
UsiComp currently supports the generation of Java code. The
Java code is directly generated from CUI models with an ATL
transformation. ATL supports not only model to model trans-
formations, but also model to ”primitive value” transforma-
tions. This last type of transformations is called queries. They
can be used to generate text from models. In this particular
case, the primitive value is a String data type containing all
the generated code of the UI.

The code generation is directly done by transformation in-
stead of using external tools for several reasons. First, most of
the technologies that already exist focus on one language only
(as for instance JaMoPP [7] for Java), or only one program-
ming paradigm, mainly imperative in most of the cases. As
the generated UI must be platform independent, the code gen-
eration cannot rely on only one specific language or paradigm.
For instance, we would like to generate GTK UIs in the future
for a functional language such as Haskell. Not all the lan-
guages and paradigms are supported by external generators,
so integrate an external tool each time is not always possible.

Technically, the code generation is done by parsing the CUI
model with a Depth First Search algorithm, i.e., translating
the first element of the CUI model (at the top of the model,
for instance, the main window) and exploring/transforming as
far as possible along each branch before backtracking. This
is possible because the CUI metamodel forces a free loops
tree-like CUI models.

EXTENSION ABILITIES
UsiComp has extension abilities that are illustrated in the two
following examples. Both extensions are summarized in fig-
ure 3. Figure 4 shows the classical transformation sequence
and its related models and transformations, and how the ex-
amples extend UsiComp at different levels. These extensions
are Compose for the task model generation and Balsamic
Mockup for the CUI model generation. They are integrated
at the Tasks and CUI levels respectively.

Example 1: Find a Doctor
This first example shows how to integrate an external and in-
dependent tool into UsiComp. The goal is to produce a Final

Figure 3. Two examples of the UsiComp extensibility.

UI from classical UI models in a top-down transformation
process, starting from the task model and ending with the gen-
eration of the code. To show the versatility of UsiComp we
extend the tool with task model generation capabilities, i.e.
the task model is not created by a designer at design time as
done in traditional Model-Based Design approaches, but pro-
duced with another tool called Compose. Compose [4] is a
framework that generates a task model according to a specific
goal. This goal can be expressed by the end-user or, as in our
case, by the designer. A video showing the global process and
the generation of different user interfaces from the same goal
is provided with this paper and available online3.

The generation of the task model is made by automated plan-
ning algorithms [5]. Compose relies on a set of possible ab-
stract or concrete actions described by predicates. The com-
bination of these predicates make the goal achievable (or not).
For instance, the action “find a possible route” with the help
of a map needs an Internet access (described by the predicate
“internet”, which is a logical condition that can be true or
false). When this action is executed, the map is displayed if a
map widget is available (described by the predicate “map”).

The output of Compose is a task model that fulfils the goal.
This task model uses a specific Compose notation. To gen-
erate a UI for this task model, we first need to integrate the
model into the UsiComp transformation chain. To this end,
we have written an ATL transformation rule that converts the
task model produced by Compose from its specific format to
the UsiXML format, which is understandable by UsiComp.

The UsiComp editor produces UIs that are adapted to dif-
ferent platforms. These platforms are described through a
platform model, which includes platform features such as the
number of screens, their resolutions, the operating system of
the platform, the available technologies and their versions,
etc. For instance, if we want to generate Java code for the UI
we would like to know if there is a Java support on the target
platform, and what the current version of the available Java

3http://youtu.be/Q_Ub3XHQxck

http://youtu.be/Q_Ub3XHQxck

Figure 4. Two UIs generated from the same task model. The UI in the background has been generated for a PC screen with higher resolution that the
UI for the mobile phone in front of the figure.

Virtual Machine is. Two different platform models are cur-
rently available in the tool, a PC platform and a mobile phone
platform. The video shows how to use the editor for changing
from one platform to another, and (re)generate the UI in a few
clicks. Figure 4 shows the two different UIs that are produced
for these two platforms. In the background, we can see the UI
adapted to the screen of the PC platform. In the front, the two
tabs of the generated UI for the mobile platform are shown.
Some of the adaptations being performed in the process are
also visible. Among others, the original screen from the PC
platform has been split into two tabs due to the small resolu-
tion of the mobile phone screen. The zoom controller of the
map widget has been removed as well.

Example 2: Balsamiq Mockups
The UsiComp classical transformation sequence has also been
extended to integrate a UI mockup at the CUI level. This pos-
sibility refers to the situation in which a designer has a very
precise idea of the UI he wants to implement. Indeed, the
successive transformations do not guaranty that the result-
ing UI will match the precise picture of the designer. With
this extension, the designer can draw a mockup of the desired
UI using an external tool, like Balsamiq Mockup. Balsamiq
Mockup4 is an online tool offering a sketching service for UI
prototyping. The UI produced with Balsamiq Mockup can be
exported to a XML file. This file is integrated into UsiComp
transformation sequence and converted into a CUI via a sup-
plementary transformation (see Code 1 for an excerpt). In
order to indicate where this CUI has to be considered in the
4http://www.balsamiq.com

transformation process, a task node is decorated to indicate
that it will be defined at a more concrete level.

1 −− Concrete Containers
2

3 rule Control2Window {
4 from
5 s : BalsamiqModel!Control (
6 s.isAWindow()
7)
8 to
9 t : CUI!Window (

10 Title <− s.controlProperties.text.regexReplaceAll(’%20’, ’ ’),
11 WindowComposedOfMenuBar <− s.WindowComposedOfMenuBar(),
12 WindowComposedOfPanels <− s.WindowComposedOfPanels()
13)
14 }
15

16 rule Control2MenuBar {
17 from
18 s : BalsamiqModel!Control (
19 s.isAMenuBar()
20)
21 to t : CUI!MenuBar (
22 MenuBarComposedOfButtons <− s.MenuBarComposedOfButtons()
23 −>collect(e | thisModule.String2Button(e))
24)
25 }

Code 1. Excerpt of the ATL transformation from Balsamiq Mockup to
the CUI.

CONCLUSIONS AND PERSPECTIVES
This paper presents UsiComp, a UI development and exe-
cution environment based on UsiXML. The underlying ar-
chitecture is composed of a design module which includes
an integrated editor for designing purposes, and a runtime

http://www.balsamiq.com

module, responsible for generating the UI, weaving it with
the functional core, and keeping the target platform in the
loop. The open architecture of UsiComp allows us to in-
tegrate new (meta-)models and transformations, such as the
Compose task model. This model is integrated into the Usi-
Comp generation process via a supplementary transforma-
tion.

In future work we plan to add more (meta-)models to Usi-
Comp, including one Transformation meta-model so we can
model transformations as well. We plan to add more trans-
formation rules in two specific areas of UsiComp. First, en-
riching the current repository of transformations from the task
model to AUI and from AUI to CUI will help the management
of sophisticated UIs. Second, improving the code generation
for supporting new languages and programming paradigms.

We are planning to evaluate UsiComp with an industrial project
implementation in order to measure the usefulness, the ease
of use and the completeness of the tool. The usefulness will
be measured according to the possibilities for designers to
produce the expected UIs. The ease of use and completeness
will be evaluated with questionnaires about users’ satisfac-
tion.

ACKNOWLEDGMENTS
This work is funded by the european ITEA UsiXML project.

REFERENCES
1. Blumendorf, M., Lehmann, G., Feuerstack, S., and

Albayrak, S. Executable models for human-computer
interaction. In Interactive Systems. Design,
Specification, and Verification, T. Graham and
P. Palanque, Eds., vol. 5136 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2008,
238–251.

2. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., and Vanderdonckt, J. A unifying reference
framework for multi-target user interfaces. Interacting
with Computers 15, 3 (2003), 289–308.

3. Coyette, A., and Vanderdonckt, J. A sketching tool for
designing anyuser, anyplatform, anywhere user
interfaces. In Human-Computer Interaction -
INTERACT 2005, M. Costabile and F. Patern, Eds.,
vol. 3585 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2005, 550–564.
10.1007/11555261 45.

4. Gabillon, Y., Petit, M., Calvary, G., and Fiorino, H.
Automated planning for user interface composition. In
Proceedings of the 2nd International Workshop on
Semantic Models for Adaptive Interactive Systems:
SEMAIS’11 at IUI 2011 conference, Springer HCI
(2011).

5. Ghallab, M., Nau, D. S., and Traverso, P. Automated
planning - theory and practice. Elsevier, 2004.

6. Hamid, B., Radermacher, A., Lanusse, A., Jouvray, C.,
Gérard, S., and Terrier, F. Designing Fault-Tolerant
component based applications with a model driven
approach. In SEUS (2008), 9–20.

7. Heidenreich, F., Johannes, J., Seifert, M., and Wende, C.
Closing the gap between modelling and java. In
Software Language Engineering, M. van den Brand,
D. Gaševic, and J. Gray, Eds., vol. 5969 of Lecture
Notes in Computer Science. Springer Berlin /
Heidelberg, 2010, 374–383.

8. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., and
Valduriez, P. Atl: a qvt-like transformation language. In
Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and
applications, OOPSLA ’06, ACM (New York, NY,
USA, 2006), 719–720.

9. Limbourg, Q., and Vanderdonckt, J. USIXML: a user
interface description language supporting multiple levels
of independence. In ICWE Workshops (2004), 325–338.

10. Michotte, B., and Vanderdonckt, J. GrafiXML, a
multi-target user interface builder based on UsiXML. In
ICAS (2008), 15–22.

11. Mohagheghi, P., Fernández, M. A., Martell, J. A.,
Fritzsche, M., and Gilani, W. MDE Adoption in
Industry: Challenges and Success Criteria. 2008.

12. Montero, F., and López-Jaquero, V. Idealxml: An
interaction design tool. In Computer-Aided Design of
User Interfaces V, G. Calvary, C. Pribeanu, G. Santucci,
and J. Vanderdonckt, Eds. Springer Netherlands, 2007,
245–252.

13. OSGi Alliance. OSGi Service Platform Release 4.
[Online]. Available:
http://www.osgi.org/Main/HomePage. [Accessed: Mar.
20, 2012], 2007.

14. Paterno, F., Mancini, C., and Meniconi, S.
ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models. In INTERACT ’97:
Proceedings of the IFIP TC13 Interantional Conference
on Human-Computer Interaction, Chapman & Hall, Ltd.
(London, UK, UK, 1997), 362–369.

15. Paternò, F., Santoro, C., and Spano, L. D. Maria: A
universal, declarative, multiple abstraction-level
language for service-oriented applications in ubiquitous
environments. ACM Trans. Comput.-Hum. Interact. 16,
4 (Nov. 2009), 19:1–19:30.

16. Sottet, J.-S., Calvary, G., Coutaz, J., and Favre, J.-M. A
model-driven engineering approach for the usability of
plastic user interfaces. In Proc. of EIS ’08,
Springer-Verlag (2008), 140–157.

17. Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. EMF: Eclipse Modeling Framework (2nd Edition),
2 ed. Addison-Wesley Professional, Dec. 2008.

18. Wikipedia. Service (Systems Architecture) - Wikipedia.
[Online]. Available:
http://en.wikipedia.org/wiki/Service (systems architecture).
[Accessed: Mar. 20, 2012], 2012.

	Problem and Motivation
	Related Works
	Software Architecture
	Design Module
	Runtime Module
	Code Generation

	Extension abilities
	Example 1: Find a Doctor
	Example 2: Balsamiq Mockups

	Conclusions and Perspectives
	Acknowledgments
	REFERENCES

