
Users need your models!
Exploiting Design Models for Explanations

Alfonso Garcı́a Frey
UJF, CNRS, LIG

41 rue des mathématiques,
38400 Saint Martin d’Hères, France

Alfonso.Garcia-Frey@imag.fr

Gaëlle Calvary
Grenoble INP, CNRS, LIG

41 rue des mathématiques,
38400 Saint Martin d’Hères, France

Gaelle.Calvary@imag.fr

Sophie Dupuy-Chessa
UPMF, CNRS, LIG

41 rue des mathématiques,
38400 Saint Martin d’Hères, France

Sophie.Dupuy@imag.fr

End users can ask themselves about the User Interface (UI). Questions arise because users are not designers
so both designers and users, have different perceptions of the same UI. Help Systems have naturally emerged
to tackle this problem. Most of these Help Systems are predefined, so at design time designers need to
anticipate the problems users may find at runtime, which limits the scope of the support. This paper explores
Model-Driven Engineering to overcome this limitation: models created at design time are exploited at runtime
for providing end users with explanations. Based on Norman’s Theory of Action this paper introduces the
Gulf of Quality as the distance between the models the designer creates at design time and the mental
models the end user elaborates. This concept sets the basis of a Model-Driven method and a supporting
architecture for computing explanations for the end user. The method deals uniformly with the UI of the help
system and the UI of the application. They can be weaved or not, depending on the model transformations
the designer selects. A software architecture is devised and implemented in a running IDE. The feasibility of
the approach is shown through two use cases.

Self-Explanatory User Interfaces, Model-Driven Engineering, Gulf of Quality

1. PROBLEM AND GOALS

One recurrent problem in interactive systems is that
end users may require assistance while interacting
with a User Interface (UI). As stated in Myers
et al. (2006): Modern applications such as Microsoft
Word have many automatic features and hidden
dependencies that are frequently helpful but can
be mysterious to both novice and expert users.
Consequently, questions such as how to accomplish
a task, where an option is or why a feature is not
enabled, naturally arise from the interaction with the
UI. Therefore, assistance is needed to overcome the
obstacles the end users find in the interaction.

A classical approach to support end users is to
provide them with predefined help systems such
as FAQs, guides or precomputed tutorials. These
solutions cover most of the general topics end
users may find. However, the scope of these
solutions is limited because predefined help systems
rely on information considered at design time,
making difficult to anticipate all the obstacles for
different reasons. First, designers are not end users
so designers have different perceptions of the
same UI than end users have. Having a different

perception entails encountering different problems.
Second, as the end users’ perception is mainly
based on previous experience, different end users
have different perceptions. Consequently, different
end users will potentially find different obstacles.
Designers cannot foresee all the different problems
for all the potential end users. Third, plastic UIs
(Calvary et al. (2003)), i.e. UIs able to dynamically
adapt to the context of use (<environment, platform,
user>), demand dynamic help systems as well
because UIs may adapt themselves to unforeseen
contexts. Developers cannot consider all the different
contexts of use one by one.

One approach to overcome the limitation of pre-
defined help systems is Model-Driven Engineering
(MDE). See for instance (Hussmann et al. (2011)).
Model-Driven UIs are able to explore the UI mod-
els at runtime, extracting the necessary informa-
tion to support end-users. These kind of Model-
Driven UIs with support facilities are also known as
Self-Explanatory UIs (Garcı́a Frey et al. (2010a)).
Different models have been used in the literature
for supporting purposes, such as Behavior models
(Vermeulen et al. (2010)) or Tasks models (Pangoli
and Paternó (1995), Garcı́a Frey et al. (2010b)).

© The Authors. Published by BISL. 
Proceedings of the BCS HCI 2012 
People & Computers XXVI, Birmingham, UK

79



Users need your models!
Exploiting Design Models for Explanations

Garcı́a Frey • Calvary • Dupuy-Chessa

This paper unifies the extraction and exploitation
of explanations from design models through three
contributions. First, an extension of Norman’s Theory
of Action couples designers’ models with end users’
mental models under the same framework. This
extension allows us to formulate the hypothesis that
the models used by designers at design time are
useful for supporting end users at runtime. Based
on this hypothesis we propose a set of Model-Driven
design principles for building help systems, which
is the second contribution. The third contribution is
a generic architecture supporting these principles,
that has been implemented in a running Integrated
Development Environment (IDE).

The first section of the paper explains the extension
of Norman’s Theory of Action through the concept
of Gulf of Quality. A second section presents the
Model-Driven design principles for help systems,
along with a generic architecture supporting these
principles. Next, we present an implementation of
such architecture. Later, we show two use cases
based on this implementation. Finally, we discuss the
properties of these help systems before the section
Conclusions and Perspectives.

2. GULF OF QUALITY

Inspired by the Isatine framework (López-Jaquero
et al. (2008)), we reuse Norman’s Theory of Action
for defining the Gulf of Quality. Norman stated
(Norman (1990)) that any action of the interaction
between humans and computers consists of seven
cyclic stages. These stages are categorized into
two gulfs (figure 1) that designers must ideally
overcome: the Gulf of Execution -getting from the
intention to execution- and the Gulf of Evaluation
-interpreting and evaluating the system response-.
The Theory of Action relies on the hypothesis that
end users elaborate mental models of the interactive
systems, and that these models determine end
users’ behavior during the interaction. We extend the
theory to explicitly consider design models (figure 1)
with the two following working hypotheses.

2.1. Working Hypotheses

When the designer of a UI interacts with the interface
as a normal user does, according to the Theory of
Action he/she makes mental models that determine
the interaction process. However, we claim that the
designer’s behavior is also determined by other
models related to the design process.

Hypothesis 1 The UI design models influence the
behavior of its designer while interacting with this UI.

Examples of these models that may influence the
designers’s behavior are task models and design

Figure 1: Hypothesis 1. Design models influence the
designer’s behavior in the interaction process.

rationale, classically expressed using notations such
as QOC (MacLean et al. (1991)) or DRL (Lee and
Lai (1991)).

Because designers of an interactive system under-
stand the system they design, their models are
supposed to be more complete and accurate than
end users’ mental models. This fact explains why
designers don’t need the same support as end users
and why they don’t find the same problems in the
interaction. Moreover, some works identify design
models as being key for understanding the UI, for
example Serna et al. (2010) stated that changing
the platform of a UI leads to the reexamination of
the initial designs. This fact leads us to a second
hypothesis:

Hypothesis 2 Design models are suitable for sup-
porting end users in the interaction process.

The immediate consequence is that design models
can enrich end users’ support, so end users will
better understand the UI, and therefore they’ll have
less problems while interacting. To directly take into
account design models for supporting purposes, we
introduce the concept of Gulf of Quality.

2.2. Definition

We define Gulf of Quality in interaction (or simply
Gulf of Quality ) as the distance between the design
models the designers create at design time and the
mental models the end users make at runtime while
interacting with the system (figure 2).

80



Users need your models!
Exploiting Design Models for Explanations

Garcı́a Frey • Calvary • Dupuy-Chessa

Figure 2: Gulf of Quality.

Note how the term “design models” considered
in the definition has a different sense as in the
Theory of Action. Norman denotes “design models”
to the designer’s mental model (Norman and Draper
(1986), page 47), while we explicitly consider the
design models used to develop and produce the UI.

Model-Driven approaches are suited for reducing the
Gulf of Quality because design models are explicitly
defined by designers and a large effort has been put
in MDE to keep models alive at runtime. Next section
describes the design principles that are needed
to reduce this gulf by dynamically extracting from
design models the relevant information that is useful
for supporting end users.

3. DESIGN PRINCIPLES AND SOFTWARE
ARCHITECTURE

This section presents the necessary MDE concepts,
the design principles described through a four steps
methodology and a generic architecture with an
implementation supporting these principles.

3.1. MDE for HCI in a nutshell

MDE of UIs consists of describing different features
of UIs (e.g. tasks, domain, context of use) in models
from which a final UI is produced. This paper
is based on the Cameleon Reference Framework
by Calvary et al. (2003) which promoted a MDE-
compliant approach for developing UIs along four
levels of abstraction: Tasks, Abstract User Interface
(AUI), Concrete User Interface (CUI) and Final User
Interface (FUI), being the FUI the source code of
the generated UI. In a forward engineering approach
the UI is obtained applying top-down transformations
from tasks to code. Our approach can be used with
any other model-driven approach and it supports the
next functionality.

3.2. Help Systems Functionality

The help systems generated with our approach are
responsible for:

• Providing means for asking for support. Designers
must choose the way end users will ask for
assistance so the system can understand the
request. For instance, natural language dialogs or
contextual help menus are valid for this purpose.

• Computing the support the end user is asking for.
Once the question is understood by the system,
its answer needs to be computed. For instance,
if the end user asks how to configure the recto-
verso printing option, one possible answer the help
system can compute is the necessary steps the
end user needs to do to access the dialog where
this option is. Using our approach, the help system
will query some design models to find the location
of the recto-verso option and will compute the
required steps that the end user needs to do to
display it.

• Presenting the computed support. The computed
answer must be provided to the end user in
an understandable way. Natural language is a
common option but designers can use any others
with our approach, for instance, an animation of
the mouse cursor that shows all the steps that are
needed to configure the recto-verso option.

Next section describes the design principles for
building Model-Driven help systems supporting this
functionality.

3.3. Design principles

Design principles for explaining how to get end users’
requests, how to extract explanations from design
models according to these requests, and how to
provide the extracted information back as support,
are described through a four steps methodology:

3.3.1. Building the UI of the application
The UI of the application is built using classical UI
models, obtaining the code at the end of the top-
down transformation process (Application UI, figure
3). The methodology does not set any restrictions
on what models are needed to generate the UI.
For those applications having non Model-Driven UIs,
reverse engineering techniques can be applied to
obtain these models in a bottom-up transformation
process from code to tasks (Limbourg et al. (2005)).

3.3.2. Building the Help UI with classical UI models
The UI of the Model-Driven help system needs
to be constructed following the same model-based
approach used for the application UI. Moreover,
models from both UIs must conform to the same
meta-models to allow a weaving of the two UIs in
the next step.

3.3.3. Adding support for computing help
According to the second hypothesis, design models
are suited for supporting end users. In this step

81



Users need your models!
Exploiting Design Models for Explanations

Garcı́a Frey • Calvary • Dupuy-Chessa

Figure 3: Possible combinations of weaving UIs.

designers must add generic ways of computing
answers from these models. Several works describe
how to use specific models for this purpose.
Vermeulen et al. (2010) present the PervasiveCrystal
system, which benefits from a Behavior Model to
answer why and why not questions in pervasive
computing environments. This Behavior Model
is based on the Event-Condition-Action (ECA)
paradigm (Act-Net Consortium (1996)) and extended
with inverse actions (ECAA−1). Task models have
been classically used for explanation purposes as
shown by Pangoli and Paternó (1995). Design
Rationale notations are also suited for explanations.
For instance, the QOC notation -QOC for Question,
Options and Criteria- which focuses on the
discussion between different design alternatives, has
been used by Garcı́a Frey et al. (2011) for explaining
why the UI is the way it is, using quality criteria
as justification for design choices. The architecture
presented later shows how to unify all these methods
and how to use them together at runtime. Designers
are free to exploit other models from other model-
based approaches as the architecture does not
set any restrictions about what models to use.
Note that these approaches are based on generic
answers, i.e. designers do not need to write all
the possible answers for all the possible “why this
happens?” questions, but only the mechanism that
computes the answer from the underlying models.

In the case of our architecture and according to
a MDE approach, this mechanism is based on
transformations. The help system computes the
answer by applying transformations on the models,
independently of what model/s are implied or what is
the question to be answered. These transformations
query and extract the necessary information from
the models, combining it if the information comes
from different models, and converting it to something
comprehensible by the end users.

3.3.4. Weaving the UIs
Designers can mix the help UI with the application UI
at different levels. Models composition is discussed
by many authors in MDE (e.g. by Lewandowski
et al. (2007)). Its details are not the focus of this
paper, but we briefly discuss some advantages
and disadvantages of weaving the help UI with the
application UI at different levels of abstraction (see
figure 3).

Weaving at higher levels of abstraction implies a
decrease in the total number of models. For instance,
if we weave the task model of the help UI with
the task model of the application UI, the composed
UI can be obtained directly from the resulting task
model of the weaving (transforming it to an AUI,
CUI and FUI successively). Contrariwise, we can
transform the task model of the help UI and the
application UI independently to code (FUI) and make
the weaving at this last level. In the first case, the
transformations for computing the information from
models become easier to manage as all the models
have been unified so the help system only needs
to query one task model instead of two, one AUI
model instead of two, etc. The main disadvantage
is that because the models have been weaved at the
task level, the designer does not really know what
elements of each model belongs to the help UI and
what don’t. One may need to make the distinction for
many reasons such as for tuning the visual aspect
of the help UI. In the case of weaving at the FUI
level, the help models are completely separated
from the application models, so customizing the UI
of the help is easier. However, the transformations
responsible for computing the help are more complex
to manage because they need to query two tasks
models, two AUIs and so on. This is mandatory as it
guarantees the introspection property explained later
in the paper.

Weavin at middle levels can be a good compromise
depending on the requirements of the system (real-
time re-generation of the UI, tuned help UI, ...)

3.4. A Model-Driven Generic Architecture

Figure 4 presents the architecture. The application
UI is generated by transformation. The models,

82



Users need your models!
Exploiting Design Models for Explanations

Garcı́a Frey • Calvary • Dupuy-Chessa

meta-models and transformations implied in this
generation are directly accessed by the application
controller, in charge of this process. This controller
also links the application logic from the functional
core to the UI and vice versa. The help UI is
generated by its respective help controller. However,
this UI has its own models as seen in figure 3.
These models conform to the same meta-models of
the application UI. The same set of transformations
are applied to derive both UIs. From the end
user’s point of view there is only one weaved UI.
When the user requests support, the help controller
receives the request and passes it to the interpreter
service in charge of understanding it. This interpreter
can be a natural language processor or even a
gesture recognition system. The interpreter says
to the processor service what support information
needs to be computed. The processor service
computes such information by accessing the models
at runtime. Special help transformations are used
for this purpose. The processor service can query
all the models independently if they belong to the
application or the help system, and using exactly the
same help transformations. This is possible because
all the models conform to the same meta-models.
Once the information has been retrieved from
models and computed by the processor service, it is
prepared for the end user by the generator service.
This service can update the UI with the desired
information (so the user can use it) via the controller.
The generator is also responsible for managing how
the information is presented, for instance, in natural
language or with an animation of the mouse cursor

showing some procedure. Next section shows an
implementation of the architecture.

3.5. UsiComp: an Implementation of the
Generic Architecture

UsiComp (Garcı́a Frey et al. (2012)) consists of a
design module and a runtime module, both sharing
common resources as meta-models and models
(figure 5). The design module includes a visual editor
(figure 6) for designing and prototyping purposes. It
offers the following functionalities:

• Designers can manually define all the models and
transformations needed to produce a UI (figure 6).

• Transformations of models are composed of rules
represented by arrows. They are written in ATL1.
Designers can select what rules they want to apply
to a given model and the system will automatically
compose and compile the resulting transformation.

• The resulting UI can be directly executed from the
IDE (green play button) so designers can figure out
what the generated UI looks like.

The runtime infrastructure works as follows:

• The Transformer Service (fig. 5) is a generic trans-
formation service that can apply any transforma-
tion to any model or models, producing models or
text (code) as output.

• To produce the UI, the Controller Service manages
the transformations, their order of execution and

1http://www.eclipse.org/atl/

Figure 4: Generic architecture for Model-Driven help systems. The functional core of the help accesses any (meta-)model.

83

http://www.eclipse.org/atl/


Users need your models!
Exploiting Design Models for Explanations

Garcı́a Frey • Calvary • Dupuy-Chessa

Figure 5: UsiComp architecture: IDE and runtime
infrastructure.

their related models and meta-models, calling the
Transformer Service as many times as needed.

• In the transformation process, the Controller
weaves the Functional Core of the application into
the UI, embedding the calls from and to the UI.

UsiComp is implemented in Java, EMF2 and OSGi
services3, which allows us to, for instance, change
the way the help is computed without stopping the
application.

4. USE CASES

The feasibility of the contribution is shown through
two different use cases, both of them based on
different help UIs that extract different explanations.

4.1. Use Case 1: Exploiting a CUI Model

This use case shows how to exploit a CUI model
from which a RIA (Rich Internet Application) has
been generated. This RIA has two classical desktop
menus (figure 7) containing some options. Using the
approach, we want to generate a help UI that makes
it possible to the end-userto ask Where questions
about the UI of the RIA. Where questions localize
elements in the UI, so the end user can ask where
an option is and the system will automatically retrieve
the position in the interface, will compute the answer
in natural language, and will return it to the end user
using the UI of the help system. The approach has
been implemented as follows:

4.1.1. Building the UI of the application
The UI of the RIA (background application in figure
7) is built using the models on figure 6 thanks to the
2http://www.eclipse.org/modeling/emf/
3http://www.osgi.org/

Figure 6: UsiComp editor with the models of the RIA
application from the first use case. A task model in CTT
notation is transformed into an AUI model (blue boxes),
which is transformed into a graphical CUI (mockup).

UsiComp editor. A task model defining the actions
that the end user can perform on the RIA is modeled
at first. It is then transformed into an AUI model,
which is in turn transformed into a CUI model, that
finally generates the final UI shown on figure 7.

4.1.2. Building the Help UI with classical UI models
The help UI is derived from the models illustrated on
figure 8. The task model is composed of four main
iterative tasks: Think a question, Ask a question,
Compute the answer and Provide the answer. This
kind of help UI is completely generic so it can
be reused and weaved with any other different
application and not only the RIA of this example.

4.1.3. Adding support for computing help
To answer Where questions, we use the CUI model
to localize where an element of the UI is. An excerpt
of the CUI meta-model used for computing the
the right answer is shown in figure 9. The Where
questions supported by the system are of the form:

“Where is + label?”

where label can be any label of any element (buttons,
menus, windows, checkboxes, ...) of the UI, even
those of the help UI (remember that the models of

84

http://www.eclipse.org/modeling/emf/
http://www.osgi.org/


Users need your models!
Exploiting Design Models for Explanations

Garcı́a Frey • Calvary • Dupuy-Chessa

Figure 7: Example of a Model-Driven help UI weaved at
the CUI level. Where questions are asked in a limited form
of natural language.

both UIs -RIA and help UI- conform to the same
meta-models).

We have implemented the functional core of the help
system according to the general architecture. The
controller and the specific help services (interpreter,
processor and generator) are built on OSGi. Every
time the end user asks a Where question using
the dialog, the controller service calls the interpreter
passing the question as parameter. The interpreter
service checks that the answer is well-formed,
and passes the type of the question (Where)
and the label of the element to be found to
the processor service. The processor computes
the answer launching the ATL transformation that
processes Where questions with the parameter
label. This ATL transformation accesses the CUI
model at runtime looking for all the labels of the
model (figure 9). If the parameter label matches the
field “Text” (figure 9) of any label of the CUI model,
it looks for its first visible parent. Visible parents
can be buttons, menus, titles or any other widget
of the UI. We skip invisible elements because we
do not want to provide answers containing elements
such as layouts, as end users are supposed to be
unaware of such elements. Once a visible parent
has been found, the transformation returns the name
and type of the parent to the processor service,
which calls in turn the generator service with these
parameters. The generator service implements a
very basic natural language composer. It formulates
answers according to the following grammar:

“Label is on the ParentName ParentType”

where Label is the label to be found, ParentName
is the name of the visible parent containing such
label, and ParentType is the type of such container
(Window, Menu, ...). Figure 7 shows an example.

4.1.4. Weaving the UIs
We choose to weave the help UI as a subwindow of
the main UI of the application. For this, we manually

Figure 8: The IDE showing all the models of the Model-
Driven help system. From top to bottom: task model, AUI
model and CUI model.

mix both UIs at the Window level thanks to UsiComp
as shown in figure 10. We choose this level for
weaving the UIs because the ATL transformation
inspects the CUI models, and because if we have
only one CUI model (result of the weaving) we
need to launch the transformation only once. If we
had weaved the UIs at the FUI level, we would
have had two CUI models to inspect (application
and help) so we would have needed to launch the
transformation twice, once per model (the answer
can be an element of the help UI as well).

This example illustrates how the design principles
make it possible to use the CUI model to answer
a specific kind of questions. Note how this generic
approach lets designers to reuse the same help UI
with other applications based on the same meta-
models, just by weaving the UIs. Independently of
the simplicity of the example, designers can add
to their help UIs any of the approaches of the
literature we have seen previously. Moreover, once
one approach is added, it can be reused for different

85



Users need your models!
Exploiting Design Models for Explanations

Garcı́a Frey • Calvary • Dupuy-Chessa

Figure 9: Excerpt of the CUI Meta-model in Ecore
notation. Menu entries are modeled as buttons. The Menu
element is the direct parent of all their menu entries.

applications adapting the visual aspect of the help UI
according to the circumstances.

4.2. Use Case 2: Exploiting Annotated Models

Figure 11 shows a new RIA application where the
end user needs to fill in some information. The task
model of such UI was annotated at design time by
the designers, so each interactive task has a brief
description that designers want now to reuse for
supporting end users. Designers want to generate
a UI for taking benefit of such annotations. The
approach and architecture are used as follows:

4.2.1. Building the UI of the application
The Java code of this RIA is obtained with the
same top-down transformation process from the task
model to the code.

4.2.2. Building the Help UI using classical UI
models
Designers make a task model for the help UI.
They design only one interactive task called Require
description. The motivation of this choice is to weave
the help UI with the application UI at the task level.

4.2.3. Adding support for computing help
An annotated task model is used, so descriptions of
the tasks will become available for the end user at
runtime.

The Require description task is activated every time
the end user presses the F1 key. The controller
service has been now implemented with a listener
for that key. When pressed, the controller passes the
name of the widget having the focus directly to the
processor service (the interpreter does not need to
compute anything now). The processor launches the
transformation responsible for retrieving the widget
in the CUI model, looking for its associated task in
the task model, and extracting its annotation. Once

Figure 10: Manually weaving two CUI models coming from
different AUIs.

the processor gets the annotation containing the
description of the task, it passes it to the generator
service. The generator calls a new transformation
to generate a new pop-up dialog that shows the
description to the end user (figure 11).

4.2.4. Weaving the UIs
Using the UsiComp editor, the task Require
description has been manually added to the root of
the task model of the application so it will be available
during all the life of the application.

This example shows how the transformations
computing help deal with different models (CUI
and task models). Approaches with any number of
models are also possible.

5. PROPERTIES OF THIS APPROACH

Our method provides the generated help systems
with the properties of Introspection, Flexibility,
Distributability, Reusability and Customization.

5.1. Introspection

An introspective help system is able to provide
support not only from the models coming from
the application but also from its own models, for
instance, to answer end users’ questions about
how to use the help system. This is possible
because both UIs (application and help) are unified
by construction as their models conform to the
same meta-models, so the same transformation for
extracting explanations can be applied. In the use
case one, if the end user asks the question

“Where is Self-Explanatory UI?”

86



Users need your models!
Exploiting Design Models for Explanations

Garcı́a Frey • Calvary • Dupuy-Chessa

Figure 11: Second use case. Weaved help is triggered
by pressing the F1 key. The help UI is generated by
transformation.

which is the title of the dialog, the system will
automatically answer

“Self-Explanatory UI is on the RIA window”

as the direct parent of the dialog is the main window
of the application, called RIA, which is an element of
type “window” in the CUI model.

5.2. Flexibility for Weaving

The method provides different forms of flexibility
regarding how the help UI is integrated into the target
application. Help systems can be then Weaved,
where the help UI and the application UI share
the same space of interaction (figures 7 and 11),
Non-Weaved, where the help UI runs in a different
interaction space, or Mixed, where some of the
options of the help UI are directly weaved into the
application UI, and some others aren’t. Non-weaved
options can be directly accessible from the weaved
ones if needed.

5.3. Distributability

Distributability is the property allowing a UI to run
on multiple platforms. Distributing non-weaved UIs
is specially easy because the models of the help UI
are clearly separated from those of the application
UI. This form of flexibility is specially useful for
ubiquitous systems where not all the platforms are
always available, or we want to require support
without stopping other interaction processes. For
instance, when playing a film on a laptop, the end
user may want to ask about some options of the
video player interface without stopping the film. The
UI of the help system can be distributed to the
smartphone for this purpose.

5.4. Reusability

Once designers know how to exploit a specific model
for supporting purposes, they can easily apply the
same procedure to the same kind of models of
different applications. For instance, the use case two

can benefit of the Where questions of the use case
one, as the models of both use cases conform to
the same meta-models. Designers can create their
Model-Driven help systems once and reuse them
everywhere.

5.5. Customization

The architecture allows to perform different cus-
tomizations of the generated help UIs to fit specific
application requirements. For instance, the look and
feel of the application UI is normally fixed at the CUI
level, using some mechanism based on stylesheets
or skins stored in the CUI model. Designers would
like to preserve the same look and feel for their help
systems and applications. This can be accomplished
by applying the same mechanism to the CUI model
of the help UI. This is the technique we have im-
plemented in the first use case (figure 7), where
the same “stylesheet” has been applied to both CUI
models. If the help UI is weaved before the CUI level
the look and feel is automatically preserved as there
is no specific CUI model for the help system (only
one CUI model containing both UIs).

5.6. Open Architecture

The design principles presented in the paper do not
set any restrictions on how designers let end users
ask for support. No assumption is made about how
the information supporting the end user is provided.
There is no restriction on what models designers can
use and how they can be exploited. For instance, the
computation of the help in the functional core of the
help system can be done with rule-based systems
based on the application models, or on machine-
learning algorithms.

6. CONCLUSIONS AND PERSPECTIVES

This paper presents three different contributions.
First, the concept of Gulf of Quality is introduced
based on Norman’s Theory of Action. It couples
the perception of designers and end users under
the same framework, allowing to formulate the
hypothesis that models used by designers at design
time are useful for supporting end users at runtime.
Second and based on this hypothesis, design
principles for building Model-Driven help systems are
described through a four steps approach. Third, a
generic architecture supporting these principles is
presented.

We have implemented this architecture in a
prototype called UsiComp. We have evaluated the
feasibility of the contribution along two use cases. As
the presented principles do not rely on any particular
model, it presents a means for unifying the different
help systems of the literature under the framework of

87



Users need your models!
Exploiting Design Models for Explanations

Garcı́a Frey • Calvary • Dupuy-Chessa

the MDE of UIs. Our research agenda includes the
generation of help UIs for real applications, as well
as the evaluation of their usefulness.

7. ACKNOWLEDGMENTS

This work is funded by the European ITEA UsiXML
project.

REFERENCES

Act-Net Consortium, C. (1996), ‘The active database
management system manifesto: a rulebase of
adbms features’, SIGMOD Rec. 25(3), 40–49.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg,
Q., Bouillon, L. and Vanderdonckt, J. (2003), ‘A
unifying reference framework for multi-target user
interfaces’, Interacting With Computers Vol. 15/3
pp. 289–308.

Garcı́a Frey, A., Calvary, G. and Dupuy-Chessa,
S. (2010a), Self-explanatory user interfaces by
model-driven engineering, in ‘Proceedings of the
CHI’10 Workshop on Model Driven Development
of Advanced User Interfaces (MDDAUI’10)’, pp. 1–
4.

Garcı́a Frey, A., Calvary, G. and Dupuy-Chessa,
S. (2010b), Xplain: an editor for building self-
explanatory user interfaces by model-driven
engineering, in ‘Proceedings of the 2nd ACM
SIGCHI symposium on Engineering interactive
computing systems’, EICS ’10, ACM, New York,
NY, USA, pp. 41–46.

Garcı́a Frey, A., Céret, E., Dupuy-Chessa, S. and
Calvary, G. (2011), Quimera: a quality metamodel
to improve design rationale, in ‘Proceedings of
the 3rd ACM SIGCHI symposium on Engineering
interactive computing systems’, EICS ’11, ACM,
New York, NY, USA, pp. 265–270.

Garcı́a Frey, A., Céret, E., Dupuy-Chessa, S., Cal-
vary, G. and Gabillon, Y. (2012), Usicomp: an
extensible model-driven composer, in ‘Proceed-
ings of the 4th ACM SIGCHI symposium on Engi-
neering interactive computing systems’, EICS ’12,
ACM, New York, NY, USA, pp. 263–268.

Hussmann, H., Meixner, G. and Zuehlke, D. (2011),
Model-driven development of advanced user
interfaces, Springer, Berlin.

Lee, J. and Lai, K.-Y. (1991), ‘What’s in design
rationale?’, Hum.-Comput. Interact. 6(3), 251–
280.

Lewandowski, A., Lepreux, S. and Bourguin, G.
(2007), Tasks models merging for high-level
component composition, in ‘Proc. of HCI’07’,

Springer-Verlag, Berlin, Heidelberg, pp. 1129–
1138.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouil-
lon, L. and López-Jaquero, V. (2005), USIXML:
a language supporting multi-path development of
user interfaces, in R. Bastide, P. Palanque and
J. Roth, eds, ‘Engineering Human Computer Inter-
action and Interactive Systems’, Vol. 3425 of Lec-
ture Notes in Computer Science, Springer Berlin /
Heidelberg, pp. 134–135. 10.1007/11431879 12.

López-Jaquero, V., Vanderdonckt, J., Montero, F.
and González, P. (2008), Engineering interactive
systems, Springer-Verlag, Berlin, Heidelberg,
chapter Towards an Extended Model of User
Interface Adaptation: The Isatine Framework,
pp. 374–392.

MacLean, A., Young, R., Bellotti, V. and Moran,
T. (1991), ‘Questions, Options, and Criteria:
Elements of Design Space Analysis’, Human-
Computer Interaction 6(3), 201–250.

Myers, B. A., Weitzman, D. A., Ko, A. J. and
Chau, D. H. (2006), Answering why and why
not questions in user interfaces, in ‘Proceedings
of the SIGCHI conference on Human Factors in
computing systems’, CHI ’06, ACM, New York, NY,
USA, pp. 397–406.

Norman, D. (1990), The design of everyday things,
New York: Doubleday.

Norman, D. A. and Draper, S. W. (1986), User
Centered System Design; New Perspectives
on Human-Computer Interaction, L. Erlbaum
Associates Inc., Hillsdale, NJ, USA.

Pangoli, S. and Paternó, F. (1995), Automatic
generation of task-oriented help, in ‘Proceedings
of the 8th annual ACM symposium on User
interface and software technology’, UIST ’95,
ACM, New York, NY, USA, pp. 181–187.

Serna, A., Calvary, G. and Scapin, D. L. (2010), How
assessing plasticity design choices can improve
ui quality: a case study, in ‘Proceedings of the
2nd ACM SIGCHI symposium on Engineering
interactive computing systems’, EICS ’10, ACM,
New York, NY, USA, pp. 29–34.

Vermeulen, J., Vanderhulst, G., Luyten, K. and
Coninx, K. (2010), Pervasivecrystal: Asking and
answering why and why not questions about
pervasive computing applications, in ‘Proceedings
of the 2010 Sixth International Conference on
Intelligent Environments’, IE ’10, IEEE Computer
Society, Washington, DC, USA, pp. 271–276.

88


	1 Problem and Goals
	2 Gulf of Quality
	2.1 Working Hypotheses
	2.2 Definition

	3 Design Principles and Software Architecture
	3.1 MDE for HCI in a nutshell
	3.2 Help Systems Functionality
	3.3 Design principles
	3.3.1 Building the UI of the application
	3.3.2 Building the Help UI with classical UI models
	3.3.3 Adding support for computing help
	3.3.4 Weaving the UIs

	3.4 A Model-Driven Generic Architecture
	3.5 UsiComp: an Implementation of the Generic Architecture

	4 Use Cases
	4.1 Use Case 1: Exploiting a CUI Model
	4.1.1 Building the UI of the application
	4.1.2 Building the Help UI with classical UI models
	4.1.3 Adding support for computing help
	4.1.4 Weaving the UIs

	4.2 Use Case 2: Exploiting Annotated Models
	4.2.1 Building the UI of the application
	4.2.2 Building the Help UI using classical UI models
	4.2.3 Adding support for computing help
	4.2.4 Weaving the UIs


	5 Properties of This Approach
	5.1 Introspection
	5.2 Flexibility for Weaving
	5.3 Distributability
	5.4 Reusability
	5.5 Customization
	5.6 Open Architecture

	6 Conclusions and Perspectives
	7 ACKNOWLEDGMENTS
	80-88_Frey_Full.pdf
	1 Problem and Goals
	2 Gulf of Quality
	2.1 Working Hypotheses
	2.2 Definition

	3 Design Principles and Software Architecture
	3.1 MDE for HCI in a nutshell
	3.2 Help Systems Functionality
	3.3 Design principles
	3.3.1 Building the UI of the application
	3.3.2 Building the Help UI with classical UI models
	3.3.3 Adding support for computing help
	3.3.4 Weaving the UIs

	3.4 A Model-Driven Generic Architecture
	3.5 UsiComp: an Implementation of the Generic Architecture

	4 Use Cases
	4.1 Use Case 1: Exploiting a CUI Model
	4.1.1 Building the UI of the application
	4.1.2 Building the Help UI with classical UI models
	4.1.3 Adding support for computing help
	4.1.4 Weaving the UIs

	4.2 Use Case 2: Exploiting Annotated Models
	4.2.1 Building the UI of the application
	4.2.2 Building the Help UI using classical UI models
	4.2.3 Adding support for computing help
	4.2.4 Weaving the UIs


	5 Properties of This Approach
	5.1 Introspection
	5.2 Flexibility for Weaving
	5.3 Distributability
	5.4 Reusability
	5.5 Customization
	5.6 Open Architecture

	6 Conclusions and Perspectives
	7 ACKNOWLEDGMENTS




