
TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic

 121

KnowiXML: A Knowledge-Based System Generating
Multiple Abstract User Interfaces in USIXML

Elizabeth Furtado, Vasco Furtado,
Kênia Soares Sousa

Universidade de Fortaleza (UNIFOR)
Av. Washington Soares, 1321 – 60.811-905

Fortaleza (CE), Brazil
e-mail: {elizabet, vasco, kenia}@unifor.br

Jean Vanderdonckt,
Quentin Limbourg

Université catholique de Louvain
Place des Doyens, 1

B-1348 Louvain-la-Neuve, Belgium
{vanderdonckt, limbourg}@isys.ucl.ac.be

ABSTRACT
This research presents a multidisciplinary approach
aimed at generating multiple Abstract User Interfaces
(AUIs), which are adaptable for different kinds of users,
performing different tasks, using specific devices in
various physical environments. The UI generation
framework, called IKnowU, is based on a unified process
for interactive system design, which integrates Software
Engineering (SE), and Human-Computer Interaction
(HCI) best practices. This framework is supported by
KnowiXML, a Knowledge-Based System (KBS) that
facilitates the application of models and the allocation of
appropriate visual elements during the generation of
AUIs. These AUIs are generated by using problem
solving methods studied in Artificial Intelligence (AI).
Design knowledge encoded in KnowiXML uniformly
manipulates models and UI specifications through the use
of an User Interface Description Language (UIDL).

ACM Classification Keywords
D.2.1 [Software Engineering]: Requirements/Specifica-
tions – elicitation methods. D.2.2 [Software
Engineering]: Design Tools and Techniques – user
interfaces. H.1.2 [Models and Principles]: User/Machine
Systems. H.5.2 [Information Interfaces and Presentation]:
User Interfaces –Prototyping, Graphical User Interfaces
(GUI). I.2.4 [Artificial Intelligence]: Knowledge
Representation Formalisms and Methods. I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and
Search.

General terms
Design, Languages, Human Factors.

Author Keywords
Abstract user interface, design knowledge, expert system,
knowledge base, problem solving methods.

INTRODUCTION
As users’ needs become more varying, interactive
application modeling and development become more

complex.

Therefore, we consider the generation of multiple UIs,
which leads to the need of various HCI models (e.g., task,
user, environment, platform), practices, and professionals
(designers, HCI experts) throughout the Software
Development Process (SDP). As a result, it becomes
necessary to integrate HCI models, practices, and
activities with those from SE. This integration might
generate more complex SDPs that lead to communication
problems between the HCI and SE teams, making it more
difficult to attend users’ needs. Among the existing
solutions that have been developed, we believe that
besides using formal languages, there must be a step-by-
step definition of integrated processes supported by
computational tools, and on the early-use of prototypes
based on Abstract UIs (AUIs) definitions, useful for user
acceptance tests.

This research work presents an approach that, besides
integrating SE and HCI, also integrates AI. Related to SE
and HCI, we defined a Unified Process, called UPi [18],
for interactive system design, which integrates SE and
HCI best practices in order to generate adaptable UIs for
different kinds of users, performing different tasks, using
specific devices in various contexts.

Related to AI, our proposal is to develop a KBS, in which
we can formalize the generation of multiple AUIs based
on conceptual specifications. As a result, the designer
would not need to have a high level of specialized
knowledge. The KBS will be a module of the UI
generation framework, which we are also proposing in
this paper. The KBS will use problem-solving methods
studied in AI, as well as an extensible UI conceptual
specification, that is an UIDL, which will be defined
using ontologies. The extensibility of the specification
leads to the generation of UIs for multiple platforms that
allow professionals to perform their activities more
effectively when information and services are made
available instantly.

This paper is organized as follows: the second section
presents related work; the third section introduces the
UIDL used to define the UI models in this paper; the
fourth section presents the process and the framework;
the fifth section presents the framework components; the
sixth section presents an application of the process using
the framework; and the seventh section concludes this
work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

TAMODIA’04, Prague, Czeck Republic.
Copyright ©2004 ACM 1-59593-000-0/04/0011…$5.00

TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic

 122

RELATED WORK
In this section, we report on initiatives that integrate HCI
and SE techniques while establishing requirements and
works related to the generation of multiple UIs.

Requirements Definition with HCI and SE Techniques
Functional requirements can be analyzed and documented
using different techniques or artifacts. We analyzed four
of them that are used to understand user’s goals and tasks
and to design the UIs: scenario, context of use, use case,
and task analysis. A scenario is an informal narrative
description [3] describing the human activities being
performed in an environment. It has two important
advantages: it is easy for the stakeholders to write stories,
and it allows developers and HCI experts to concentrate
on understanding what people do and the contexts with
which the humans operate.

The context of use model defines aspects related to the
system to be developed, which are: the platform, the
environment, and users. This model associates the
platform with an environment, anchoring the description
to the physical world, besides taking into account the
variations of the tasks in order to preserve usability [2].
This model reflects one way to represent textual scenarios
in a defined manner, organized in the three entities
mentioned previously.

The Use Case Model represents a set of flows of events
that can happen as a result of the user interaction with the
system [9]. Essential use cases [4] are a textual structured
and platform-independent definition of use cases,
organized in user intentions and system responsibilities.

A task specifies a set of activities the user and/or the
interactive system does in order to achieve the user’s
goals identified. In task models, it is possible to represent
the task decomposition (that involves breaking a complex
task – either system’s or user’s - down into subtasks, until
the lowest level task), and the structural and temporal
relations as an ordering among tasks.

All of these sorts of techniques should be combined to
help people to imagine what they could have on a system.
This is due to the fact that some requirements are difficult
to find or they are unconscious (for instance, people can
be used to it or maybe they do not have a clue to see the
overall picture). In addition to that, each technique is
more appropriate to one kind of modeling than to another.

Although use cases are also focused on users’ goals, their
emphasis is on a user-system interaction rather than the
user’s task itself [15]. This happens because they contain
certain assumptions about the UI and the kind of
interaction to be designed, including the technology
device the user interacts with. Essential use cases [4] try
to avoid these assumptions, by defining only what the
user role (not the actor) is responsible for (her/his
intentions) and what the system should do.

Phillips [14] suggests the use of tabular representation of
use cases in order to describe the flow of events, and the
use of UI element clusters, which can be used as

references to the UI prototype. Tabular use cases separate
user and system actions. Lauesen [11] argues that
separating users' and systems' actions as early as in
requirements may be a barrier for future decisions in the
project. He suggests the use of task descriptions, which
specify what the users and the system shall do, not
dividing the work between them.

Generation of Multiple UIs
We now compare works generating UIs from conceptual
models. Some of them consider multiple AUIs, others
focus on the generation of Final UIs (FUI). The
Cameleon Reference Framework for multi-target UIs [2]
uses three types of models: i) ontological models are
meta-models independent from any domain and
interactive system; ii) archetypal models depend on the
domain and interactive system; and iii) observed models
are executable models that support adaptation at run-time.
The process also uses three classes of models (e.g.
domain, context of use, and adaptation models) that may
be ontological, archetypal or observed. Domain models
cover domain concepts and user tasks; context of use
models describe the user, platform, and environment [2];
and adaptation models cover evolution and transition of
the UI.

UIML [1] is a UIDL for multiple devices emphasizing the
separation of concerns of an interactive system in a
platform-independent way. The framework for building
multi-platform UIs has three models: i) a task model that
is independent of the physical model; ii) a family model
that describes the arrangement of the UI for each family
(e.g. desktop, PDA, WAP); and iii) a platform-specific UI
that uses widgets associated with the platform.

XIML [16] is a universal representation for UIs that can
support multiple UIs at design time and at run-time. It is
an organized collection of interface elements that are
categorized into five components: task, domain, user,
dialog, and presentation. The first three are in the
contextual and abstract levels while the last two are in the
implementation and concrete levels. It also supports
relationship definition and statement for linking any
component and any element.

AUIT [8] is a device-independent mark-up language
useful to build adaptable UIs that augments current JSP
web server implementations. It generates a thin-client UI
adapted for the user, their current task context, and their
display device characteristics. An AUIT screen
specification contains device-independent screen element
tags. At run-time, the AUIT tags are processed by JSPs
that look for a corresponding tag library class, which
performs adaptations and generates appropriate output for
the user’s device.

The adaptive task modeling [6] proposes two
specification techniques. The first one is an adaptation
mechanism for task models and the second one is the
process that makes a transformation of an abstract
interaction model into a specific UI representation. The
adapted task model consists of a sequential description, in

TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic

 123

which the operations can be performed to fulfill the
whole task, with constraints for specific devices. The
transformation process starts with a XML-based UI
description that is mapped into a XML-based device
dependent UI model based on information about specific
features of devices. The next step is to create a XSL-
based UI description based on design rules, then the
specific UI is generated by XSL transformation.

UIML and XIML can be both considered as a UIDL. In
this paper, we use the USer Interface eXtensible Markup
Language (USIXML) as the UIDL, which will be
explained in the next section.

THE UNDERLYING USER INTERFACE LANGUAGE
USIXML was chosen because it is equipped with a
collection of basic UI models (Fig. 1) [12]: task, domain,
AUI, Concrete UI (CUI), context, transformation, and
mapping. These models can be mapped together
according to a mapping model. All models share a
common syntax based on semantics defined in terms of
UML class diagrams that have been transformed into
XML Schemas to guide UI specifications.

UiModel is the topmost superclass containing common
features shared by all component models of a UI. A
uiModel may consist of a list of component model in any
order and any number. TransformationModel allows a
collection transformations among the UI models.
DomainModel is a description of the classes of objects
manipulated by a user while interacting with a system.
TaskModel is a model describing the interactive task as
viewed by the end user interacting with the system. A
task model represents a de-composition of tasks into sub-
tasks linked with task relationships. AUIModel defines
interaction spaces and a navigation scheme among
interaction spaces and selects abstract objects that are
independent of any modality of interaction (e.g.,
graphical, vocal, speech, video, virtual reality) or of any
context of use. CUIModel concretizes an AUI for a given
context of use into concrete objects so as to define
widgets layout and interface navigation. MappingModel
is a model containing a series of related mappings among
models or elements of models. A mapping model serves
to gather a set of inter-model relationships that are
semantically related. ContextModel is a model describing
the context of use in which an end user is carrying out an

interactive task with a specific computing platform in a
given surrounding environment.

THE PROCESS AND THE FRAMEWORK
After comparing related approaches, we decided to
develop a framework, called IKnowU, to semi-
automatically generate usable UIs, concerned with how to
provide a robust solution for the software industry. With
this goal in mind, we consider the requirements
established in [16]: i) define the models based on robust
representation, such as CTT [13] and UML; ii) use a
representation that is in sync with the needs of the
software industry (e.g., portability); iii) propose a process
that is compatible with acceptable SE processes (UPi is
based on RUP [10]); iv) use a widely implemented
foundation technology, such as XML; and v) apply the
environment in a pilot program to verify its feasibility.

Fig. 2 represents the relationship among the process
activities and artifacts, organized in three columns: the
first one makes reference to the UPi disciplines, in which
professionals execute activities (second column) to
generate artifacts (third column). The main process
activities and their order of execution are based on [2,6].
We focus on two UPi disciplines: Requirements, and
Analysis and Design, which are directly related to the
generation of AUIs. The Implementation discipline will
be detailed in a future work, in which we will focus on
the generation of CUIs and FUIs.

In the requirements discipline, the system analyst and the
HCI expert elicit users’ needs and translate such needs
into system functionality, focusing on the context of use
and usability requirements. We propose that the analysis
of users’ needs, the definition and refinement of the
system are made through the definition of conceptual
models, which are: task and context of use model. These
models are useful to represent users’ tasks, personal
characteristics, environment, and platform. In addition,
we use a domain model, which is useful to specify
allocated entities to perform tasks, represented by the
UML class diagram.

Figure 1. USIXML Model Collection.

TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic

 124

Figure 2. The Process disciplines, activities and artifacts

In the analysis and design discipline, the software
architect, the designer, the UI designer, and the HCI
expert design the system architecture as a solution to
develop the system, model the AUI and CUI, and refine
the architecture to design system components and the
database. The formal definition of abstract and concrete
UIs are useful to facilitate the generation of AUIs based
on information in the conceptual models and the
generation of CUIs based on AUIs.

With the definition of UPi, we envisioned the need to
create IKnowU to support SE and HCI professionals in
generating interactive systems for multiple contexts of
use. IKnowU is currently in the analysis and design phase
according to UPi. The framework functionality,
exemplified with a UML use case diagram in Fig. 3,
depicts the automation of the first two activities in Fig. 2.

Figure 3. The framework functionality.

The domain expert and the designer are professionals,
and KnowiXML is a module of IKnowU. The domain
expert is responsible for creating the KB by providing a
set of guidelines and informing transformation rules.
Therefore, this professional must be an expert in the HCI
domain in order to perform those tasks (the domain is not
making reference to the knowledge on the domain of the
system under development). The designer elicits usability
requirements and instantiates conceptual models.
KnowiXML creates constraints concerning abstract
objects in order to generate the AUI by analyzing users’

preferences and constraints, abstract objects constraints,
and selecting abstract objects based on this analysis.

STEP 1 – KNOWLEDGE BASE CREATION
As we have mentioned previously, the domain expert
provides guidelines and transformation rules. Guidelines
are usability rules that represent users’ preferences and
constraints, as well as correction actions (fixes)
concerning the system they want to use (Fig. 4).
Guidelines are associated to abstract objects and serve as
the basis for the definition of usability requirements,
which are also related to abstract objects.

One example of transformation rules are task rules that
represent the relationship among tasks in the task model
and abstract objects in the AUI. For instance, tasks that
request information from the user are associated to input
abstract objects. Even though, the framework includes an
initial KB, the domain expert can enhance it with more
information.

Figure 4. Relationship among guidelines and abstract

UIs

STEP 2 – REQUIREMENTS ELICITATION
The designer elicits usability requirements with the user
by using interview techniques, considering different user
profiles. These requirements are elicited from a set of
preferences and constraints that must be addressed in the
abstract UI. For instance, preferences are: ‘maintain
system consistency’, ‘provide feedback’, ‘provide help’,
and constraints are: ‘provide help only upon request’. In
some cases, it is necessary to use actions (fixes) to correct
situations when certain preferences and constraints are
conflicting. For instance, concerning the preference and
constraint related to help, the fix would be ‘offer user
explicit control when providing help’. Because of the
association of guidelines with abstract objects, the
usability requirements (preferences, constraints or fixes)
represent actions upon the abstract UI that include or
exclude abstract objects (abstract containers or abstract
individual components in USIXML [12]).

Step 3 – Models Instantiation
The designer instantiates users’ usability requirements
and the following models: use case, task, domain, and
context of use, which are required to generate the AUI.

Step 4 – Constraints Creation
When the designer requests the generation of the AUI,
KnowiXML starts an analysis of a set of task rules
against information from instantiated models (such as the
task and context of use model) in order to create a set of
AUI constraints concerning the allocation of objects in
the AUI. Such constraints allow the definition of which
(e.g., input, output, control, navigation) and how many

TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic

 125

abstract objects will be allocated in a certain abstract
container.

Step 5 – Abstract User Interface Generation
As a result of analyzing users’ preferences, constraints,
and AUI constraints, KnowiXML generates the AUI. The
abstract objects are in accordance to usability
requirements and to the task, context of use, and domain
models. The accordance to the task model is achieved
with the use of task rules that result in the allocation of
abstract objects on the AUI in order to facilitate the users
to perform their tasks.

Step 6 – Progressive generation of CUI and FUI
Once the AUI is generated, it is supposed to be a UI that
remains independent of any modality and computing
platform as it is expressed only in terms of abstract
containers and abstract individual components. Therefore,
the ultimate step in the process is to progressively reify
the AUI into a CUI once a target computing platform has
been selected. This CUI will be in turn the source for
reification into a Final UI (FUI) once a particular
language of the platform has been identified. These two
reifications are ensured by TransformiXML, a
transformation engine that supports multi-path
development of UIs based on USIXML. In principle, a
CUI is independent from any programming or markup
language. But in practice, this reification depends on the
availability of USIXML code generators [17] and
interpreters.

GENERATION OF MULTIPLE ABSTRACT UIS
Now, we detail how IKnowU functions in terms of its
components, as depicted in Fig. 5 according to the UML
component diagram. It consists of three main
components:

Component 1: the Ontology Editor
The HCI expert instantiates conceptual models allowing
the generation of UIs using ontologies. Ontologies define
concepts related to each model, specified in XML,
according to the USIXML formalism [12]. For instance,
name, type, and frequency are concepts for the task
model. The specification of these models is made using
the tool called Protégé [7], which is an ontology editor
and a knowledge-base editor. Protégé is also an open-
source Java tool that provides an extensible architecture
for the creation of customized applications and interacts
with XML. Protégé will allow experts to create the
ontologies for the models and designers to instantiate the
models using forms.

The rules that represent users’ preferences and constraints
are defined using the Rules Plug-in, which allows the
expert to define rules using concepts from the models and
to compile such rules into Java classes using Java
Embedded Object Production System (JEOPS) [5]. The
JEOPS adds forward chaining, first-order production
rules to Java through a set of classes designed to provide
this language with some kind of declarative
programming. With that, the development of intelligent

applications, such as software agents or expert systems is
facilitated [5].

Figure 5. IKnowU Components.

Component 2: the Modeling Tool
Designers can use Protégé to instantiate the models or
they can use tools that they are accustomed to (such as
IBM Rational Rose for the use case model or CTTE [13]
for the task model), and then use such tools to translate
these models into XML, which will be instantiated in a
predefined ontology in Protégé [7]. As a result, we expect
to provide tools to enable the execution of an integrated
SDP that considers artifacts and activities from SE and
HCI.

Component 3: the Knowledge-based System (KBS)
We consider that the task to generate AUIs based on
conceptual specifications involves problems related to the
configuration of multiple AUIs, such as which abstract
object should be on a UI to achieve a good level of
usability. Therefore, the proposed KBS implements a
Problem-Solving Method (PSM) used to generate AUIs
based on configuration propositions, and revisions of
such propositions when they violate specific constraints.
This method is called propose-and-revise.

This configuration method initially processes the
preferences, which are elicited from users’ usability
requirements. These preferences allocate abstract objects
on the AUI. After that, AUI constraints are also processed
in order to guarantee that all the allocated abstract objects
are in conformance to users’ preferences and constraints.

IKnowU contains a Knowledge Base (KB) and an
inference engine. Therefore, IKnowU is responsible for
the multiple AUI generation, through the analysis of the
instantiated models in Protégé, and through the execution
of rules by the JEOPS inference engine.

This declarative definition for problem-solving facilitates
the knowledge acquisition process and allows the
exploration of such knowledge through, for instance,

TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic

 126

explanation about the system reasoning process to solve
problems [19]. That is, the resulting AUI presented to the
designer can be negotiated using an explanation
mechanism that provides information concerning the
steps taken to achieve the solution and other possible
ways to reach different results. An explanation
mechanism was developed and implemented in Java to
provide adaptive messages according to the expert
knowledge level about KBS decisions executing a design
PSM [19].

AN EXAMPLE
In order to explain the details of generating AUIs, we
present a scenario for an interactive system and the steps
taken by the domain expert (HCI expert), the KBS user
(the designer) and the interactive system users (professors
and students). In our selected scenario, a student, who is
taking a distance learning course in order to
accommodate a busy working schedule, wants to access
the course materials in different situations: (i) from the
desktop computer at home during the night and
weekends; (ii) from the notebook at the office during
breaks and lunch hours or at a hotel during business trips;
(iii) from the Palm Top during business trips while
waiting for a flight in the airport.

Step 1 – Knowledge Base Creation
Some examples of guidelines are: facilitate undo tasks,
provide progress indication, facilitate object selection,
etc.

Step 2 – Requirements Elicitation
In our scenario, one user preference is:

1. To have quick access.
As the user does not require quick access to all system
tasks, only to the most frequent ones, which must be
accessible at any time while interacting with the system,
two user constraints associated to the preference above
are:

2. Only to have quick access to tasks with high frequency
of execution.
3. Tasks with high frequency of execution can not be
interrupted.
The fix that can solve the differences among these
preferences and constraints is:

4. Offer quick access only to tasks with high frequency of
execution throughout the system.

Step 3 – Models Instantiation
The designer is responsible for instantiating the tasks,
domain and context model using Protégé (Tables 1-4). In
the task model, we have three subtasks: (i) the user
selects one theme from the course to view a list of course
materials; (ii) the user can view data of any selected
material; and finally, (iii) the user can actually view the
course material (table 1). In table 2, the first task can be
repeated many times and enables the execution of the
second task, and the other two tasks are optional, while
the second task enables the execution of the third one.
Tables 1-4 involve model attributes as they are typically

featured in USIXML models. In the domain model, we
define the attributes and methods for the class “Material”,
which has 4 attributes and 3 methods.

Table 1. The Task Model.

Table 2. The Relationships among Tasks.

Table 3. The Domain Model.

Table 4. The Context Model.

In the context model, we specify four different
environments in which the user might interact with the
system, two different user profiles, and characteristics of
the browser the user might be interacting with.

Step 4 – Constraints creation
Some examples of task rules are:

1. If the unary relationship of a task is ‘finite iteration’
and the unary relationship of a related task is
‘optional’, then use a splittable abstract container.

2. If the type of the task is ‘interactive’ and the domain
model associated to this task has attributes that are

TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic

 127

mandatory, then use the ‘output’ abstract individual
component.

3. If the binary relationship of a task is ‘enabling’, then
use the ‘navigation’ abstract individual component.

4. If the type of the task is ‘interactive’ and the domain
model associated to this task has methods, then use
the ‘control’ abstract individual component.

Example of AUI constraints generated by KnowiXML
through the analysis of the rules above and of the
instantiated models (in tables 1, 2, and 3) are:

1. The AUI must have 2 splittable abstract container
(task id 1 and 2, 1 and 3).

2. The AUI must have 3 ‘output’ abstract individual
component (task id 1, 2, and 3).

3. The AUI must have 2 ‘navigation’ abstract individual
component (task id 1 and 2).

4. The AUI must have 3 ‘control’ abstract individual
component (task id 1, 2, and 3).

If there is any unconformity of abstract objects in relation
to users’ references and constraints, certain actions (e.g.
include new abstract IOs, substitute allocated abstract IOs
to new ones, etc.) are performed to correct
unconformities until all the allocated abstract IOs are in
conformance to usability preferences and constraints.

Step 5 – Abstract User Interface Generation
As a result of analyzing the user preferences and the
constraints generated from the task rules, the PSM
processing results in the abstract UI, depicted in Table 5.

The PSM guarantees that the abstract objects are in
accordance to users’ usability requirements and to the
task model. The accordance to the task model is achieved
with the use of task rules that result in the allocation of
abstract objects on the AUI in order to facilitate the users
to perform their tasks. In the AUI for the scenario in
which the user is interacting with a web browser on a
desktop, there are two containers, one showing the list of
themes (task 1) and the other one showing the course
material detail data (task 2); there are nine individual
components, 4 output, 2 navigation, and 3 control objects.

Step 6 – Progressive generation of CUI and FUI

Figure 6. Import of the AUI in IDEALXML.

Once the AUI has been generated, its corresponding
USIXML specifications can be imported into IDEALXML
(Fig. 6), which is the integrated development

environment from which the transformation engine is
called (TransformiXML) to turn the AUI into a CUI, into
a FUI.

CONCLUSION
Our main goal is to save design and development time by
automating the generation of UI models and assure
consistency among different platforms with the
application of such models. By noticing the similarities
among different approaches, we can assure that our
approach and framework has a wide range of possibilities
to be applied and validated by many research groups.
With the use of a KB, we intend to process rules that
concern device characteristics, user preferences,
contextual issues, among other aspects in order to provide
designers and developers a framework that dynamically
organizes and personalizes the UI and also that learns
with experience.

We hope to develop interactive systems that are easy to
learn and use, therefore, helping users in performing their
daily tasks in an efficient manner. This work focused on
the knowledge acquisition process, which is performed
semi-automatically with the models that compose the
knowledge base, thus, guiding interviews with the HCI
expert. This process, however, has demonstrated to be
difficult and time-consuming. A perspective that we are
investigating is to define how to create tools that
automate part of this process. This is possible by defining
filters that translate conceptual specifications in PSM
knowledge rules (e.g., constraints, preferences, and
solutions). This way, interviews with designers can be
useful to validate the acquired knowledge, which would
considerably decrease the knowledge acquisition time,
besides, maintaining coherence with what was specified
on the functional, usability requirements, and on user
profiles.

Since we are currently working on generating the
ontologies in Protégé and screens for IKnowU, we intend
to perform usability, applicability, and reliability
evaluations to be presented it in a future paper.

REFERENCES
1. Ali, M.F., Pérez-Quiñones, M.A., and Abrams, M.

Building Multi-Platform User Interfaces with UIML.
In A. Seffah & H. Javahery (eds.), Multiple User
Interfaces. John Wiley & Sons, New York, 2004, 95–
117.

2. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L. and Vanderdonckt, J. A Unifying
Reference Framework for Multi-Target User
Interfaces. Interacting with Computers 15, 3 (2003)
289–308.

3. Carroll, J. Introduction to the Special issue on
“scenario-Based Systems Development”. Interacting
with Computers 13, 1 (2000) 41–42.

4. Constantine, L. and Lockwood, L. Software for Use:
A Practical Guide to Models and Methods of Usage-
Centered Design. Addison-Wesley, Reading, 1999.

5. Figueira, C. and Ramalho, G. JEOPS – The Java

TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic

 128

Embedded Object Production System. In M. Monard,
J. Sichman (eds.). Proc. of 7th Ibero-American
Conference on AI (Atibaia, November 19-22, 2000).
Lecture Notes in Artificial Intelligence, Vol. 1952.
Springer-Verlag, Berlin, 2000, 53–62.

6. Forbrig, P., Dittmar, A., and Müller, A. Adaptive
Task Modelling: From Formal Models to XML
Representations. In A. Seffah & H. Javahery (eds.).
Multiple User Interfaces. John Wiley, New York,
2004, 171–192.

7. Gennari, J.H., Musen, M.A., Fergerson, R.W.,
Grosso, W.E., Crubézy, M., Eriksson, H., Noy, N.F.,
and Tu, S.W. The Evolution of Protégé: An
Environment for Knowledge-Based Systems
Development. SMI Report Number: SMI-2002-0943,
Stanford, 2002. Accessible at
http://smi.stanford.edu/pubs/SMI_Abstracts/SMI200
2-0943.html

8. Grundy, J. and Zou, W. AUIT: Adaptable User
Interface Technology, with Extended Java Server
Pages. In A. Seffah & H. Javahery (eds.). Multiple
User Interfaces. John Wiley & Sons, New York,
2004, 149–167.

9. Jacobson, I., Christersson, M., Jonsson, P.,
Overgaard, G. Object-Oriented Software
Engineering: A Use Case Driven Approach. Addison-
Wesley, Reading, 1992.

10. Kruchten, P. Ahlqvist, S., and Bylund, S. User
Interface Design in the Rational Unified Process.
Object Modeling and User Interface Design.
Addison-Wesley, 2001.

11. Lauesen, S. Task & Support - Task Descriptions as
Functional Requirements. Proc. of AWRE’2001.
Centre for Advanced Software Engineering Research,
Univ. of New South Wales, Sydney, 2001, pp. 83-91.
Accessible at

 http://www.itu.dk/people/slauesen/Papers/
TasksSupportAWRE.pdf
12. Limbourg, Q., Vanderdonckt, J., Michotte, B.,

Bouillon, L., Florins, M. and Trevisan, D. USIXML:
A User Interface Description Language for Context-
Sensitive User Interfaces. Proc. of the AVI’2004
Workshop “Developing User Interfaces with XML:
Advances on User Interface Description Languages”
UIXML’04 (Gallipoli, 25 May 2004). EDM-Luc
(2004), 55–62.

13. Paternò, F. Model-based Design and Evaluation of
Interactive Applications. Springer-Verlag, Berlin,
1999.

14. Phillips, C. and Kemp, E. In Support of User Interface
Design in the Rational Unified Process. Proc. of the
Third Australasian User Interface Conf. 2002, 21–27.

15. Preece, J., Rogers, Y., and Sharp, H. Interaction
Design-Beyond Human-Computer Interaction. John
Wiley & Sons, New York, 2002.

16. Puerta, A., Eisenstein, J. XIML: A Multiple User
Interface Representation Framework for Industry. In
A. Seffah & H. Javahery (eds.). Multiple User
Interfaces. John Wiley & Sons, New York, 2004,
119–148.

17. Schlee, M. and Vanderdonckt, J., Generative
Programming of Graphical User Interfaces. In M.F.
Costabile (ed.). Proc. of AVI’2004 (Gallipoli, May 25-
28, 2004). ACM Press, New York, 2004, 403–406.

18. Sousa, K. and Furtado, E. An Approach to Integrate
HCI and SE in Requirements Engineering. In M.B.
Harning & J. Vanderdonckt (eds.). Proc. of
Interact’2003 Workshop on Closing the Gaps:
Software Engineering and Human-Computer
Interaction (Zürich, 1 September 2003). 81–88.

19. Vasconcelos, E., Pinheiro, V., and Furtado, V. Mining
Data and Providing Explanation to improve Learning
in Geosimulation. Proc. of Int. Conf. on Intelligent
Tutoring Systems ITS’2004 (Maceió, 2004), to appear.

