

Graceful Degradation: a
Method for Designing

Multiplatform Graphical User
Interfaces

By Murielle Florins

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy in
Management Sciences

of the Université catholique de Louvain

Examination committee:

Prof. Jean Vanderdonckt, Advisor
Prof. Manuel Kolp, Examiner
Prof. Benoît Macq, Examiner

Prof. Gaëlle Calvary, Université J. Fourier, Reader
Prof. Philip Gray, Reader

 ii

 iii

Acknowledgement

I would like to express my thanks to:

− My advisor, Professor Jean Vanderdonckt, for his constant support and enthusiasm
regarding my work.

− Professors Gaëlle Calvary, Philip Gray, Benoît Macq, and Manuel Kolp for accepting
to participate to the jury of this thesis.

− My colleagues from IAG school of management at Université catholique de Louvain.
Special thanks to Marco Saerens for his help on statistical analysis and Benjamin
Michotte for his development efforts on the GD plug-in.

− My family and friends.

This thesis was realized thanks to the support of:

− The Salamandre Project, funded by the ‘Initiatives III’ program of the Ministry of
Walloon Region (DGTRE, Belgium) under contract No. 001/451 (in association with
the ARTHUR project, under convention WDU 9914094-14624 of Walloon Region).

− The ISYS research unit at IAG.

− The SIMILAR network of excellence supported by the 6th Framework Program of the
European Commission, under contract FP6-IST1-2003-507609 and the CAMELEON
research project under the umbrella of the European Fifth Framework Programme (FP5-
IST4-2000-30104).

 iv

 1

Table of Contents
ACKNOWLEDGEMENT...III

TABLE OF CONTENTS...1

TABLE OF FIGURES ..5

TABLE OF TABLES ..8

CHAPTER 1 INTRODUCTION ..9

1.1 Motivation: the Challenge of Developing User Interfaces for Multiple
Platforms ... 9

1.2 Thesis ... 10
1.2.1 Thesis statement ... 10
1.2.2 Definitions / motivations .. 11
1.2.3 Graceful degradation .. 15
1.2.4 Focus .. 16

1.3 Reading Map... 17

CHAPTER 2 STATE OF THE ART ...19

2.1 A structuring theoretical framework.. 19

2.2 Approaches to the development of user interfaces for multiple platforms..... 22
2.2.1 The traditional development approach ... 23
2.2.2 The unique portable code approach.. 25
2.2.3 The transcoding approach... 29
2.2.4 The multireification approach .. 30
2.2.5 The abstraction-reification approach.. 36

2.3 Single-authoring ... 38

2.4 Comparison of the approaches.. 38
2.4.1 Production costs.. 39
2.4.2 Completeness.. 42
2.4.3 Level of control .. 42
2.4.4 Usability ... 43
2.4.5 Cross-platform consistency .. 44
2.4.6 Guidance... 45

 2

2.5 Global comparison and conclusion ... 45

CHAPTER 3 LANGUAGE AND MODELS..48

3.1 UsiXML ... 49

3.2 Task Model.. 51

3.3 Domain Model... 51

3.4 AUI Model... 52

3.5 CUI Model... 55

3.6 Platform Model... 57

3.7 Interactor Model... 59
3.7.1 Requirements.. 59
3.7.2 State-of-the-art of meta representations of widgets.. 61
3.7.3 Interactor model in the GD approach ... 66

3.8 Mapping Model... 69

3.9 Conclusion... 70

CHAPTER 4 EFFECTIVE KNOWLEDGE FOR GRACEFUL DEGRADATION
 71

4.1 Typology of rules using the Unified Reference Framework............................. 71
4.1.1 GD rules at the Final User Interface level .. 72
4.1.2 GD rules at the Concrete User Interface level.. 72
4.1.3 GD rules at the Abstract User Interface level... 80
4.1.4 GD rules at the Tasks & Concepts level... 83
4.1.5 Discussion .. 85

4.2 Formalization.. 85
4.2.1 Introduction .. 85
4.2.2 Specification of GD rules in OCL: examples... 86

4.3 Discussion and conclusion.. 89

CHAPTER 5 MULTILEVEL APPLICATION OF RULES: EXAMPLE OF THE
SPLITTING RULE..92

5.1 State of the art of pagination techniques.. 92
5.1.1 Pagination of Web pages .. 92
5.1.2 Pagination of content expressed in a user interface description language 93

 3

5.2 Splitting at the Concrete UI level .. 94

5.3 Splitting at the Abstract UI level... 96
5.3.1 Preliminaries... 97
5.3.2 Principles .. 99
5.3.3 Description of the algorithm... 103

5.4 Conclusion... 105

CHAPTER 6 TOOL SUPPORT ...106

6.1 A knowledge base of GD rules... 106
6.1.1 Selection criteria... 107
6.1.2 Structure of the knowledge base... 107
6.1.3 Support of the adaptation process in the knowledge base............................ 117

6.2 A tool support for GD rules... 118
6.2.1 A plug-in to the GrafiXML editor .. 118
6.2.2 Functionalities .. 119
6.2.3 Scenario supported by the tool ... 121
6.2.4 Support of the adaptation process in the GD plug-in 125
6.2.5 User testing... 125

CHAPTER 7 CASE STUDIES ...128

7.1 ARTHUR... 128
7.1.1 Introduction .. 128
7.1.2 Application of GD Rules .. 131
7.1.3 Conclusion.. 134

7.2 Semi-automatic adaptation of the rules: a hotel booking system 134
7.2.1 The hotel booking system... 134
7.2.2 Production of the target UIs ... 137
7.2.3 Conclusion.. 137

CHAPTER 8 VALIDATION..140

8.1 Theoretical validation .. 140
8.1.1 Production costs.. 140
8.1.2 Completeness.. 142
8.1.3 Level of control .. 142
8.1.4 Usability ... 143
8.1.5 Cross-platform consistency .. 143
8.1.6 Guidance... 144
8.1.7 Conclusion.. 144

8.2 Empirical validation... 146

 4

8.2.1 Goals of the experiment ... 146
8.2.2 Experimental UIs.. 147
8.2.3 Participants ... 150
8.2.4 Tasks... 150
8.2.5 Questionnaires .. 151
8.2.6 Experimental procedure.. 151
8.2.7 Results .. 152
8.2.8 Conclusion.. 157

CHAPTER 9 CONCLUSION..158

9.1 Summary of results... 158
9.1.1 Theoretical and conceptual contributions... 158
9.1.2 Methodological contribution .. 159
9.1.3 Tools developed ... 159

9.2 Future work in prospect .. 159

9.3 Concluding remarks... 161

REFERENCES...162

ANNEX A. CTT/USIXML TASK MODEL ...179

ANNEX B. DISCUSSION OF USIXML'S PLATFORM MODEL ATTRIBUTES
 181

ANNEX C. AN INTERACTOR MODEL FOR THE QTK TOOLKIT191

ANNEX D. AN OVERVIEW OF OCL ...197

ANNEX E. DESCRIPTION OF THE RULES TO BE IMPLEMENTED IN THE
GD TOOL 200

 5

Table of Figures

Figure 1-1 Constraints of some current hardware platforms (from [Pier04]) 14
Figure 1-2 Graceful Degradation in a nutshell ... 16
Figure 2-1 The four abstraction levels in the Unified Reference Framework.................... 20
Figure 2-2 Two sublevels in the Final User Interface .. 21
Figure 2-3 Relationships between components in the Unified Reference Framework 22
Figure 2-4 Traditional development of multiplatform UI .. 23
Figure 2-5 The web site of American Airlines: an example of traditional development of

multiplatform UI... 24
Figure 2-6 Development of portable UI using a virtual toolkit.. 25
Figure 2-7 Development of portable UI using browsers .. 25
Figure 2-8 Adaptation of the UI's look-and-feel using Java Swing 26
Figure 2-9 Automatic adaptation of a layout to the size of a container using a layout

manager in Java Swing... 27
Figure 2-10 Development of multiplatform UI using transcoding tools............................ 29
Figure 2-11 Transcoding tools in the identity configuration.. 29
Figure 2-12 Transcoding tools in the direct configuration... 29
Figure 2-13 Development of multiplatform UI in the multireification approach 31
Figure 2-14 The abstraction-reification approach .. 37
Figure 3-1 Constituent models in UsiXML.. 49
Figure 3-2 Meta-model of the UsiXML task model... 51
Figure 3-3 Meta-model of the UsiXML domain model ... 52
Figure 3-4 Meta-model of the UsiXML Abstract User Interface....................................... 54
Figure 3-5 Concrete Interaction Objects in UsiXML: upper part of the hierarchy 55
Figure 3-6 UsiXML's platform model.. 59
Figure 3-7 Same toolbox / distinct environments: the DatePicker object on Pocket PC

(left) and Smartphone (right).. 61
Figure 3-8 Same environment / distinct toolboxes: the TreeView object in Windows MFC

(left) and Java Swing (right)... 61
Figure 3-9 Modelling of comets (from [Calv04]) .. 65
Figure 3-10 Class diagram of the concepts involved in our interactor model.................... 67
Figure 3-11 Hierarchy of task types ... 68
Figure 3-12 Mappings in UsiXML... 70
Figure 4-1 Reorientation rule ... 73
Figure 4-2 Automatic application of a repositioning rule by an on-line reformatting service

.. 74
Figure 4-3 Resizing rule applied in combination with image cropping 76
Figure 4-4 Component replacement due to unavailability ... 77
Figure 4-5 Candidate interactors for multiple choice... 77
Figure 4-6 Candidate interactors for simple choice ... 77
Figure 4-7 Interactor substitution: example of composite substitution 78
Figure 4-8 Substitution rule (1) .. 79

 6

Figure 4-9 Substitution rule (2) .. 79
Figure 4-10 Substitution rule (3) .. 80
Figure 4-11 Defining Abstract Containers for a simple information retrieval system....... 82
Figure 4-12 Internal redundancy due to splitting rule .. 83
Figure 4-13 Example of temporal ordering transformation ... 85
Figure 5-1 Unidirectional/bidirectional linear navigation.. 96
Figure 5-2 Unidirectional/bidirectional indexed navigation .. 96
Figure 5-3 Unidirectional/bidirectional mixed navigation ... 96
Figure 5-4 Fully-connected navigation .. 96
Figure 5-5 Priority ordering between the temporal operators in the task model................ 97
Figure 5-6 A task model and its priority tree representation.. 98
Figure 5-7 Task model for a simple IR system, with different distribution of tasks among

interaction spaces.. 100
Figure 5-8 Splitting an interaction space containing a sequence of tasks, one of them being

an optional task... 101
Figure 5-9 Splitting an interaction space at the level of a concurrent operator................ 101
Figure 5-10 Splitting an interaction space containing concurrent tasks at different level in

the hierarchy ... 102
Figure 5-11 An example of distribution of a disabling task... 103
Figure 5-12 Scope of a temporal operator: illustration .. 104
Figure 6-1 Class diagram of the concepts of the knowledge base 109
Figure 6-2 Relational model of the database.. 114
Figure 6-3 Functionalities offered by the Web-based interface to the knowledge base .. 115
Figure 6-4 The consultation of rules in the interface to the database............................... 116
Figure 6-5 Support of Dieterich’s four adaptation stages in the knowledge base............ 118
Figure 6-6 The five groups of rules in the GD plug-in... 119
Figure 6-7 Details panel linked to a selected rule .. 120
Figure 6-8 Access to the knowledge base from the GD plug-in 121
Figure 6-9 A very simple UsiXML specification in textual format and in the GrafiXML

composer .. 122
Figure 6-10 Description of a rule in the GD tool ... 123
Figure 6-11 Selection of rules and parameters in the GD tool ... 124
Figure 6-12 Selection of the components to which the rule applies................................. 124
Figure 7-1 Problems raised by ARTHUR’s user interfaces ... 129
Figure 7-2 Task model of the ARTHUR prototype.. 130
Figure 7-3 Subtasks for the nursing records management ... 130
Figure 7-4 Example of a subtask detail .. 131
Figure 7-5 Desktop version of the ARTHUR prototype: source interface....................... 131
Figure 7-6 An alternative for the PDA version of ARTHUR: deleting edition tasks 132
Figure 7-7 Interactor substitution in ARTHUR.. 133
Figure 7-8 Design alternatives for ARTHUR’s PDA user interfaces (mock-ups in HTML)

.. 134
Figure 7-9 The source UI of the hotel booking system in the GrafiXML editor 135
Figure 7-10 UsiXML code of the source UI .. 136
Figure 7-11 Preview of the source UI .. 136
Figure 7-12 Design alternatives for a small target device (preview in GrafiXML) - 1.... 138
Figure 7-13 Design alternative for a small target device (preview in GrafiXML) - 2 139

 7

Figure 8-1 Screenshot of the Iacchos Web site: first source user interface of the
experiment .. 147

Figure 8-2 Screenshot of the Maporama Web site: second source user interface of the
experiment .. 148

Figure 8-3 “Splitted” version of the Iacchos Web site, with sequential navigation......... 149
Figure 8-4 “Splitted” version of the Maporama Web site, with fully-connected navigation

.. 149
Figure 8-5 Preferences expressed on Iacchos / Maporama versions................................ 153
Figure 8-6 Perceived similarity of the PDA versions with the desktop version in terms of

functionalities ... 156
Figure 8-7 Perceived similarity of the PDA versions with the desktop version in terms of

presentation... 156
Figure A-0-1 The personal computing continuum (illustration from [Weis02]) 188
Figure A-0-2 Handheld devices categories (illustration from [Weis02])......................... 189

 8

Table of tables

Table 2-1 Global comparison of development approaches on all criteria46
Table 6-1 Decomposition of the moving rule ..106
Table 6-2 Detail of the plug-in’s five sections...120
Table 6-3 The CSUQ questionnaire...126
Table 8-1 Compared costs of developing UIs for multiple platforms141
Table 8-2 Compared costs of modifying/adding a functionality on multiple platforms

..141
Table 8-3 Compared costs of modifying/adding a format on UIs deployed on multiple

platforms ..142
Table 8-4 Compared completeness of the development approaches142
Table 8-5 Compared level of control offered by the development approaches.........143
Table 8-6 Compared usability of UIs targeted to very distinct platforms143
Table 8-7 Compared cross-platform consistency between the UIs produced............144
Table 8-8 Global comparison of graceful degradation and other approaches on all

criteria ..145
Table 8-9 The 12 categories of subjects recruited for the experience150
Table 8-10 Evaluation of the four PDA versions of the Iacchos Web site152
Table 8-11 Evaluation of the four PDA versions of the Maporama Web site...........153
Table 8-12 p-values for Wilcoxon Signed-Ranked test (H0: Global score on perceived

usability is equal) ...154
Table 8-13 p-values for Wilcoxon Signed-Ranked test (H0 : Global score on task

completion time is equal)...154

1. Introduction

 9

Chapter 1 Introduction

1.1 Motivation: the Challenge of Developing User Interfaces
for Multiple Platforms

Computer-based information systems are an essential part of modern organizations.
Users of these information systems often have to deal with a variety of platforms, mobile
and fixed, from which they expect to have access to the same data and functionalities.

Computing platforms, that we will define as “any combination of hardware and software
components on which the user interface will run”, can be very different: the devices,
ranging through desktops, laptops, PDA’s and mobile phones, may differ in screen size,
resolution or number of colours supported; the graphical toolkits can be different; the
input devices can include a pointing device (mouse, stylus) or none, a full keyboard or a
simple phone keypad, etc. New devices appear on the market at a very high rate and,
although it is difficult to predict whether one particular material will gain popularity or
not, the use of mobile devices and wireless technologies is unlikely to decrease in the
next years.

Designing Multiplatform User Interfaces, i.e. interactive systems that provide access to
information and services using different platforms [Seff04], is a difficult and time
consuming task. Developers and researchers agree that the current methods, tools and
languages do not entirely satisfy the challenges issued by multiplatform development.
The development of Multiplatform User Interfaces (hereafter MUIs) suffers from the
following limitations:

 Lack of knowledge and experience: developing a user interface that is tailored to a given

platform requires knowledge and skills about the programming languages
supported on the target platform, about the device capabilities, about the usability
guidelines for this platform... but information on platform capabilities and usability
guidelines is often unavailable or very scattered.

 Lack of methodology: if some methods for developing classical user interfaces have

been proposed, for example MUSE [Lim94], DIANE [Bart88] or TRIDENT
[Boda95], methods for building several versions of a user interface for multiple
platforms at the same time are almost non-existent.

1. Introduction

 10

 Lack of tool support: few tools are specifically dedicated to the design or coding of
MUIs, whether we consider interface builders, prototyping tools, model-based
generation tools, or user interface development environments in general.

These three major deficiencies entail further problems:

 High development and maintenance costs: user interface have always represented a

significant fraction of the software development and maintenance effort, even for
traditional applications designed with a single target platform in mind. The
diversity of platforms, added to the ever increasing complexity of information
systems, has still increased development costs.

 Lack of consistency: consistency is a basic principle of user interface design. In

multiplatform systems, users expect to be able to rely on their experience of a
given version of the system when using the same service on another platform.
However, development is often performed by several teams (each platform
requiring specific skills and experience), at different times (depending on the
evolution of the customer’s requirements). Consistency is thus seldom achieved.

 Lack of adaptation /bad usability: user interfaces must be usable, thus adapted to the

platform on which they run. Adaptation to the target platform is often neglected,
due to high development costs and, should the problem be taken into account,
existing techniques sometimes provide results of poor quality, for instance when
the adaptation is performed automatically via reauthoring systems.

 Lack of reusability: developers lack techniques that would allow them to reuse a user

interface’s components, logical structure and design on several platforms.

 Lack of techniques combining genericity and flexibility: developers lack techniques that

would allow them to specify a user interface at an abstract, generic level, suitable
for several platforms and contexts, while providing flexible, configurable
adaptation to the specific target platforms.

1.2 Thesis

1.2.1 Thesis statement

We argue that developing consistent, usable and adapted user interfaces for multiple
platforms simultaneously is a task that would benefit from

1. Introduction

 11

 An integrated approach where all stages in the software life cycle are covered, from
early requirements until prototyping and coding and where the same team or
developer can work on several versions;

 An approach that considers the entire multiplatform system at the initial design stage with a

focus on the continuity of the user experience;

 A computer assisted approach which automates some repetitive tasks while offering an

good level of control to the designer;

 A repository of design knowledge which gathers observed practices and discusses their

effects on usability.

Therefore, we will defend the following thesis:

The design and development of multiplatform user interfaces benefits from a semi-
automatic, model-based, transformational approach which applies transformation rules to
a source model, conceived for the least constrained platform, in order to produce one
or several target models, adapted to more constrained platforms.

The concepts introduced above are reviewed and defined in the next section.

1.2.2 Definitions / motivations

1.2.2.a Semi-automatic approach

In order to conciliate computer-support and human control, we adopt a semi-automatic
approach where:

(1) Transformation rules are manually selected and parameterized by the designer,
with a possibility to modify this configuration at any time.

(2) Transformation rules are then automatically applied to reduce the design effort.

1.2.2.b Model-based approach

Model-based tools have been investigated since the late 1980’s. The goal of these tools is to
allow the designer to specify the user interface at a level that is independent from the
implementation. The specification is usually shared between a set of components, called
models, each model representing a facet of the interface characteristics. The number and
type of theses models is different from one approach to another, therefore the first part
of this text will be dedicated to a precise description of concepts relevant to our
approach.

The model-based approach has been the target of some major criticisms [Myer00]
[Szek96] [Puer96]. The main shortcomings commonly cited are:

1. Introduction

 12

(1) High threshold: the programmers need to learn a new language in order to express

the specifications of the UI.

(2) Low ceiling: each of the model-based systems has strict limitations on the kind of UI
they can produce and the generated UI are generally not as good as those that
could be created with conventional techniques.

(3) Unpredictability: it is difficult to understand and control how the specifications are
connected with the final UI. Therefore, the results may be unpredictable.

(4) Lack of propagation of modifications: changes made to one model or to the final UI are
generally not propagated to the other levels of the specification.

(5) System dependent and private models: a lot of models are strongly tied to their associated
model-based system and can not be exported. Furthermore, some model
specifications are neither publicly available, neither obtainable via a license.

Most of these problems can be addressed:

(1) High threshold: most models can be built graphically in a design environment, which

prevents users from learning the specification language. Even if the designers have
to learn the specification language, the automation of a portion of the development
should reduce the development efforts.

(2) Low ceiling: we believe that this criticism only holds for a specific kind of model-
based generation tool, which generates the user interface starting from very high
level models (task model and/or domain model).

(3) Unpredictability: our approach relies on an explicit set of rules, fully documented and
accessible. It offers to the designer a full control on the selection of those rules.
The results of the application of a rule may be previewed.

(4) Lack of propagation of modifications: although the problem of the impact of a
modification made on a given model on the other models remains a tricky one, we
will attempt to determine the side effects on the other models entailed by the
application of a given rule.

(5) System dependent and private models: we will make use of a user interface description
language publicly and freely available.

Model-based interfaces have also recognized advantages [Puer97]:

(1) Advantages in terms of methodology:

 It is a widely accepted software engineering principle to start a software
development cycle with a specification stage [Ghez01].

1. Introduction

 13

 The model-based approach supports a user-centred and UI-centred
development life cycle: it lets designers work with tasks, users and domain
concepts instead of thinking in engineering terms.

(2) Advantages in terms of reusability:

 In a multiplatform context, model-based tools can provide automatic
portability across the different devices.

 The availability of a complete description of the interface in a declarative form
allows the reuse of some interface components.

(3) Advantages in terms of consistency:

 This approach ensures some form of consistency between the early phases of
the development cycle (requirements analysis, specification) and the final
product.

 In a multiplatform context, it also guarantees a minimal consistency between
the UI generated for different target platforms. This is not always possible
when using traditional techniques where the development of each version of
the UI is likely to be performed separately.

1.2.2.c Transformational approach

Besides being model-based, our approach is also transformational i.e. based on a catalogue
of transformation rules. Similarly to the concept of schema transformation in database
engineering [Hain02], we can define a transformation between source model M and
target model M’ as an operator which replaces a construct C in M by a construct C’ in M’,
or inserts a new construct into M’, or removes an existing construct, while preserving a
set P of properties of M.

The set P of properties we want to preserve includes:

 The usability of the user interface;

 The cross-platform consistency of the whole information system, i.e. the
consistency between the various versions of the user interface.

1.2.2.d Source model/target model

In our approach, the source model M is a UI model of a given type t (e.g., presentation,
task...) designed for a given platform (typically: a desktop) and the target model M’ is a
UI model of the same type t, targeted to more constrained platforms (for example, PDAs
or smartphones). Centring the design process on a source interface designed for the least
constrained platform is sometimes referred to in the literature as a “single authoring”
method [Wong02] [Ding06].

Typically, the source platform, when it is a desktop, will also be the most frequently used
platform and the first platform to be considered when starting the development of a
multiplatform system.

1. Introduction

 14

1.2.2.e Constraints of a platform

Our basic idea is that transformation rules will adapt a source interface to more
constrained platforms (see illustration on Figure 1-1). The phrase more constrained platforms
covers several parameters:

 Decrease of the screen resolution and size: this parameter has a strong influence on
the structure and presentation of the user interface. Sometimes, even with a
similar screen size, the available screen area may be more constrained when a
part of the display is used for other purposes (e.g; virtual keyboard).

 Increase of the minimal size of graphical objects and the minimal spacing between them: on
some platforms, the objects included in the interface are to be larger or more
distant (e.g; touch screen interfaces).

 Decrease of the number of available widgets: not all toolkits are available on every
platform. Furthermore, some platforms have reduced versions of the toolkit
or simplified versions of the mark-up language.

 Decrease of the usability of available widgets: the usability of a given widget may vary
from one platform to another, for example because of the absence of a
keyboard on some platforms.

Figure 1-1 Constraints of some current hardware platforms (from [Pier04])

Other parameters such as the network capacity, the support of frames, images or colours,
the presence and the type of pointing devices and keyboard, the storage capacity or the
CPU speed can also be taken into account, but we will focus on the four parameters
listed above for two reasons:

(1) They raise interesting methodological problems because they force the

modification of the UI at a high abstraction level and cannot be addressed only by
mechanical solutions as transcoding, image cropping, or the use of multiplatform
virtual toolkits.

1. Introduction

 15

(2) Some technical characteristics of platforms such as the RAM memory, network
bandwidth or disk space available are likely to be improved in the near future,
while the display size will probably remain almost constant (see [Menk03b]).

Deciding which platform is the most constrained is not always easy:

 Some platform characteristics may be quite similar: is the difference between a
screen size of 128x128 and a screen size of 128x160 significant enough to
consider that we have distinct constraints? What should be the threshold?

 One platform could have a better performance with respect to one criterion
and a less good performance with respect to another criterion. In such
situation, it is difficult to decide which platform is the most constrained.

When it is doubtful whether a given platform should be considered as a source or a
target platform, for example because a platform performs better with respect to one
criterion and worse with respect to another one, our transformation rules should not be
used, or should be used very cautiously. For example, if we need to design a
multiplatform system that has to run on a PDA and on an interactive kiosk with a similar
screen resolution, no platform is actually “less constrained”. Thus, applying our approach
to adapt the PDA UI to the interactive kiosk or conversely does not seem a good idea. A
possible design strategy for such a multiplatform system could consists in starting
designing an artificial source UI conceived for a desktop, and to apply our
transformation rules to that source interface.

1.2.3 Graceful degradation

As our transformation rules take as input an interface tailored for a given platform and
produce smaller interfaces as output, we call the transformation process degradation.
As we want to produce highly usable interfaces adapted to the specific platforms while
preserving the consistency between the versions, we qualify this degradation as a
“graceful” one.

The phrase “graceful degradation” was born in the field of safety-critical systems such as
aerospace. It denotes the ability of a system to continue providing service in proportion
to the level of surviving hardware. The idea is that every system can malfunction at some
point, either because a component has failed or is missing, or because the system
experiences conditions it was not designed for (overload…) Under these bad conditions,
the system is expected not to crash completely, but to continue providing its basic
functions with a lower performance than would be expected normally. Our use of the
term is slightly different since we do not consider the adaptation of services but the
adaptation of the user interface presentation and since the adaptation is not triggered by
a component failure but by the target platform capabilities.

We define design by graceful degradation as a model-based, transformational method to support
the development of user interfaces for multiplatform systems. This method, applied at
design time by the designer, is based on a set of transformation rules called graceful

1. Introduction

 16

degradation rules (hereafter GD rules). These rules transform a source interface in order to
produce specific interfaces targeted to more constrained platforms. The method is meant to
respect a trade-off between, on the one hand, the usability of the user interface and, on
the other hand, the consistency between the versions of the user interface. Figure 1-2 is a
visual synthesis of our approach.

Even is the term may seem ambiguous, graceful degradation does not refer to a
degradation of some quality of the user interface, but to a degradation of the
potentialities of the target platform in terms of the constraints enumerated above
(without other value judgment on the utility and quality of these small platforms).
Therefore, this thesis will not contain a description of the ergonomic properties of a
source interface that would be degraded on a target platform: when a satisfying design is
produced, the usability of a target user interface could even be higher than the usability
of the source user interface, notably in terms of guidance.

The “gracefulness” of the degradation refers to the trade-off mentioned above: our
transformational approach should preserve at the same time the usability of the UI on
the target platform and the cross-platform consistency.

Figure 1-2 Graceful Degradation in a nutshell

1.2.4 Focus

 Our focus is information systems (IS), defined as “a set of interrelated
components that collect (or retrieve), process, store, and distribute information”
[Laud06]. Typically, this information is stored in databases. The importance of
these IS is vital in nearly all companies and organizations. Different types of IS
can be distinguished following the operational level they serve in the organization
(strategic, management or operational level) and following their major functional
area (sales and marketing, manufacturing and production, finance and
accounting, and human resources). Typical examples of information systems (or

1. Introduction

 17

subsystems) are a payroll system, a registration system or a sales order
information system. Examples of applications outside the category of IS are
entertainment applications, embedded systems or control systems.

 The scope of this work is limited to Graphical User Interfaces (hereafter GUI),
which are the standard interface to most information systems, are familiar to the
majority of users, and are available on almost every platform. Hence, we do not
consider nonvisual, multimodal or 3D user interfaces.

 The target audience of this thesis is, on the one hand, the HCI research
community and, on the other hand, the professionals involved in the design and
development of multiplatform user interfaces. In the remainder of this
manuscript, we refer to these actors as “designers”.

1.3 Reading Map

The remainder of this thesis is structured as follows:

Chapter 2 presents current methods and tools which support the development of user
interfaces for multiplatform systems (MUI). These approaches are classified using a
theoretical framework called the CAMELEON framework, or Unified Reference
framework, described here and used extensively in the remainder of the manuscript.
They are compared and assessed using a set of criteria. The same list of criteria will help
us to evaluate the usefulness of the method and tools proposed in this thesis.

Chapter 3 defines the model constituents that will be used through the whole work and
the language chosen to represent these concepts (the user interface description language
UsiXML).

Chapter 4 presents effective knowledge for Graceful Degradation. In this chapter, we
establish a typology of rules using the CAMELEON framework and we discuss their
formalization, relying on the UsiXML notation introduced in Chapter 3.

Chapter 5 will show the implication of multilevel application of rules on the example of
the splitting rule, which permits to paginate content.

Chapter 6 will present the tools developed to document GD rules and to support their
application. The first tool is a knowledge base that gathers, structures and organizes the
rules. The second tool is a prototype aimed to demonstrate how GD rules can be applied
automatically on a UsiXML specification.

1. Introduction

 18

Chapter 7 illustrates the Graceful Degradation approach on case studies. The case studies
cover the two types of scenarios envisioned for the use of GD rules: manual adaptation
(the ARTHUR case study) and semi-automatic adaptation using the tool described in
Chapter 6.

Chapter 8 will contain elements of validation, both theoretical and practical. Theoretical
validation consists in assessing the GD approach using the quality criteria identified in
Chapter 2. Empirical validation was realized by conducting an exploratory study implying
twelve end users and analysing their appreciation of user interfaces produced by graceful
degradation, in contrast to other methods (ad-hoc development and direct migration).

Chapter 9 will conclude by summarizing our contributions and exploring some avenues
for future work.

2. State of the Art

 19

Chapter 2 State of the Art

This chapter starts by presenting a theoretical framework for model-based, context-
sensitive user interfaces. This framework then serves as a reference for structuring our
description of current methods and tools for developing user interfaces for multiple
platforms. These tools and methods are then analysed and compared using a set of
quality criteria.

2.1 A structuring theoretical framework

The Graceful Degradation approach, as a model-based approach, relies on a set of
constituents called models. These models describe various aspects of the user interface
considered as relevant. The number and type of models is different from one approach
to the other but, generally, three layers1 of models [Szek96] can be distinguished,
depending on the abstraction level:

(1) The highest level consists of the task and domain models.

- A task model is a description of the tasks that a user will be able to achieve
in interaction with the system. This model can be understood as a generic
representation of the envisioned scenarios that were elicited during the
requirements analysis. It has generally a hierarchical structure and
additional constraints and information about the tasks (such as ordering,
launching conditions, associated objects and functions) can be added.

- In the model-based approach, a domain model represents the set of objects
that will have an impact on the UI (objects storing data that will be
displayed or that will be modified by the user, or objects with methods
that can be called from the UI or that can modify some aspect of the UI).

(2) The second level represents the interface in terms of low-level interface tasks (such
as selecting an element from a set or consulting a list of values), presentation units
(abstractions of windows) and information elements (the data to be shown).

(3) The third level specifies how the presentation units and their content will be
rendered. It represents the interface in terms of toolkit primitives such as windows,
dialog boxes, buttons or check boxes and also specifies the layout of those
elements.

1 In this manuscript, the term “layer” merely refers to the abstraction level of a model and is unrelated
to the concept of layer in networking protocols such as TCP-IP or OSI.

2. State of the Art

 20

Models at level 3 are often known under the terms of presentation model for the static
aspects and dialog model for the dynamic aspects i.e. the description of the reactions of the
system to the user’s actions on the presentation elements.

Other types of models can be used:

 A user model stores the characteristics of the different types of users or user

groups (their preferences, capabilities, role…)

 An application model describes functions belonging to the application functional
core that are associated with objects in the domain.

 A platform model is a description of the combination of hardware (input and
output devices, network connectivity, memory ...) and software (OS, available
toolkits ...) on which the UI will run.

This distribution of models into hierarchical levels has been formalized into what is
known as the CAMELEON framework or Unified Reference Framework [Calv03]. The
Unified Reference Framework is intended to support the development of context-
sensitive user interfaces in a model-based approach. We will refer to this framework
throughout this manuscript, notably because the mark-up language we rely on (UsiXML)
has been structured in accordance with it.

The notion of context in the framework encompasses three components: the user, the
platform and the physical environment. Since we are only concerned by variations of
platforms, we will use the terms “context of use” and “platform” indiscriminately.

The framework describes models at four abstraction levels (Figure 2-1) from the task
specification to the running interface:

Figure 2-1 The four abstraction levels in the Unified Reference Framework

2. State of the Art

 21

(1) The Tasks and Concepts level describes the interactive system's specifications in
terms of the user tasks to be carried out and the domain objects manipulated by
these tasks.

(2) The Abstract User Interface (AUI) is an expression of the UI in terms of interaction
spaces (or presentation units), independently of which interactors are available and
even independently of the modality of interaction (graphical, vocal, haptic,...) An
interaction space is a grouping unit that supports the execution of a set of logically
connected tasks.

(3) The Concrete User Interface (CUI) is an expression of the UI in terms of “concrete
interactors” (in fact, already an abstraction of actual widgets generally included in
toolkits). The placement of these concrete interactors is also specified.

(4) The Final User Interface (FUI) consists of source code, in any programming language
or mark-up language (e.g. Java or HTML). It can then be interpreted or compiled.
A given piece of code will not always be rendered on the same manner depending
on the software environment (virtual machine, browser,...) For this reason, we
consider two sublevels of the FUI: the source code and the running interface
(Figure 2-2).

Figure 2-2 Two sublevels in the Final User Interface

Three types of relationships between these models have been defined (see Figure 2-3):

(1) A relationship of reification links each level to the more concrete level just below.

(2) A relationship of abstraction links each level to the more abstract level just above.

(3) A relationship of translation between models at the same level of abstraction, but
conceived for different contexts of use.

2. State of the Art

 22

Figure 2-3 Relationships between components in the Unified Reference Framework

The Unified Reference Framework contains more than the four abstraction levels and
three types of relationships. However, these notions are sufficient to describe and
understand methods and tools currently used to develop user interfaces for multiple
platforms at design time.

2.2 Approaches to the development of user interfaces for
multiple platforms

Many techniques and tools have been used to develop UI for multiplatform systems. On
the basis of the Unified Reference Framework, we can distinguish between five
approaches:

1. The first approach or traditional development approach consists in coding a separate
UI for each target platform.

2. The second approach or unique portable code approach consists in coding a unique
UI able to run on the different platforms.

3. The third approach or transcoding approach takes as input the source UI’s code and
generates UI’s for the target platform(s).

4. The fourth approach or multireification approach takes as input the source UI’s
specification and generates UI’s for the target platform(s).

5. The last approach or abstraction-reification approach takes as input the code of one
source UI, generates an intermediate representation at a higher abstraction level
and produces as output the code of a UI ready to run on the target platform(s).

2. State of the Art

 23

2.2.1 The traditional development approach

The more obvious method and probably the most commonly used method when
producing UIs for multiplatform systems consists in developing a specific interface for
each target platform (Figure 2-4).

Figure 2-4 Traditional development of multiplatform UI

The traditional approach makes use of tools such as:

 Programming environments.

 User interface builders such as Visual C++, Visual Basic, Borland JBuilder,
Glade, etc.

 Prototyping tools: [Szek94] drawing editors, sometimes enhanced with functions
that permit simulating the interface’s behaviour, such as Astound, Apple’s
Hypercard, MacroMind Director, Microsoft Visio; sketching tools (e.g.; DENIM
[Lin02]); some of them enhanced with sketch recognition, what gives them
functionalities similar to UI builders, like SILK [Land95] or JavaSketchIt
[Caet02]. A state of the art report on sketching tools can be found in [Coye04]2.

This approach:

 Often requires programming skills in different languages.

 Often requires knowledge of different toolkits.

 Does not factor out common aspects (features common to all versions) from
specific ones (features specific to one version, to one platform).

2 Some of the tools listed here are used for Web design (e.g; DENIM, SILK) or generate portable code
relying on a virtual toolkit (e.g; JBuilder, JavaSketchIt) and could have been introduced in the next
section (2.2.2). What we want to emphasize here is that a number of separate versions of the user
interface are developed, whatever format is used for coding the final user interface.

2. State of the Art

 24

 Does not guarantee any consistency between the different target specific UIs: this
is left under the responsibility of the designers.

Figure 2-5 shows an example of separate development for two versions of the Web site
of American Airlines http://www.aa.com), the PDA version being developed by the
AvantGo company: the PDA version proposes only a subset of the functionalities
offered by the desktop version, only the navigation menu is visible on the home page
while much more information was displayed on the desktop, the logo image is cropped,...

Figure 2-5 The web site of American Airlines: an example of traditional development of

multiplatform UI

2. State of the Art

 25

2.2.2 The unique portable code approach

Two techniques are widely used in order to achieve code portability: virtual toolkits
(Figure 2-6) and generic clients (Figure 2-7).

Figure 2-6 Development of portable UI using a virtual toolkit

Figure 2-7 Development of portable UI using browsers

2.2.2.a Development of one single portable UI using a virtual toolkit

Virtual toolkits [Myer03] provide virtual widgets that can be mapped into the widgets of
each toolkit. The interface code will run without change on different platforms and still
provide a platform specific look-and-feel. Some virtual toolkits like Java AWT use the
actual toolkits on the host machine while others like Galaxy3, Amulet [Myer97] or Java

3 Visix Software Inc. “Galaxy application environment”. Now owned by Ambiência Information Systems.

2. State of the Art

 26

Swing provide their own libraries that mimic the host platform look-and-feel. A mix of
both techniques can be used such as in version 8.0 of Tk [Oust94], where many widgets
are implemented with native platform widgets while others only emulate native look and
feel. These virtual toolkits are considered to provide a limited form of adaptation (look-
and-feel adaptation). Java Swing even permits setting explicitly the look-and-feel, as
shown on Figure 2-8. Other multiplatform toolkits such as SUIT [Paus92], Garnet
[Myer90] or the earlier versions of Tk use the same look-and-feel on all platforms and do
not provide any adaptation perceivable to the user. Virtual toolkits like Tk and Swing
where a layout manager dynamically calculates the placement of the objects also provide
some adaptation of the UI presentation to the window’s size. For example, Figure 2-9
shows how a layout manager in Swing adapts the placement of the components in
reaction to the resizing of a container.

Figure 2-8 Adaptation of the UI's look-and-feel using Java Swing

2. State of the Art

 27

Figure 2-9 Automatic adaptation of a layout to the size of a container using a layout manager in

Java Swing

More flexible toolkits have been proposed. Crease et al. [Crea00] have developed an
extension to the Java Swing toolkit, with widgets able to adapt their presentation and
handle different modalities at input and output, depending on user preferences or
resource availability. Similarly, [Calv04] [Calv05] introduce a new kind of widget, the
comet, which can possess different presentations and can be capable of self-adaptation.
Comets can correspond to classical widgets (e.g. a button) or to custom widgets that can
be much more sophisticated. The adaptation mechanisms provided by both toolkits go
far beyond mere look-and-feel adaptation. For example, a polymorphic comet may own
several descriptions at the Abstract User Interface level (the number of interactive spaces
used to render the comet is different), and at the Concrete User Interface level (the
comet has several alternate presentations). However, the comet mechanism only permits
switching between pre-calculated alternate designs stored in the comet.

Additional techniques can be used together with virtual toolkits, in order to provide
more than widget-level adaptation. For instance, [Ding06] proposes an authoring tool
that transforms a Java user interface designed for a large platform to a more constrained
platform, thanks to a transformation engine able to apply adaptation strategies such as
scaling, widget substitution and splitting.

2.2.2.b Development of one single portable UI using generic clients

The second form of the “unique portable code approach” consists in specifying the user
interface using a mark-up language, such as HTML. This code is rendered by a client
program, called browser, available for a large range of platforms. As the mark-up
languages were first designed for document display, they generally have to be combined
with scripting languages such as JavaScript in order to control the UI behaviour.

2. State of the Art

 28

A variant of this approach has been demonstrated by Wingman, a browser for the Palm
Pilot PDA [Fox98]. Wingman relies on a three-tier client-proxy-server architecture. The
proxy carries out most of the tasks usually devoted to the client, such as HTML parsing
or tag-to-font mapping. In addition, it performs transformations such as image scaling
and conversion to the Palm Pilot native format or image dithering.

HTML was conceived to be platform independent. However, the different browsers
available often implement their own version of standards, which jeopardizes the task of
authoring web sites for multiple platforms. This problem is topical again because of the
important number of different browsers for small devices: Pocket IE (a version of
Microsoft’s browser for small devices), Opera (which has an established position in the
market of small-screen devices), Minimo (a version of Mozilla), AvantGo, Blazer, Palm
Web browser, ... Furthermore, one cannot expect the same Web page to be directly
usable on such different platforms as a desktop, a PDA or a phone, due to differences in
screen size notably. For this reason, some small-screen browsers such as Opera reformat
Web sites to fit inside the screen width, which is beneficial in terms of adaptation to the
device’s capabilities but reduces the author’s control on his/her pages. Such browser-side
adaptation is made easier when Web sites authors respect design principles such as those
issued by the W3C device independence working group (for example, the note on
Authoring Techniques for Device Independence [W3C04b]).

Another problem with the generic client approach is the number of mark-up languages in
use: besides the different versions of HTML, we could quote formats such as XML,
WML, cHTML and iMode, Palm Web Clipping, ... One solution to this problem consists
in developing one common XML document or HTML page and XSLT transformations
to the other formats, which still requires a lot of authoring.

Good web development practices involve the separation of content, expressed as HTML
or XML, and presentation, described in CSS or XSL stylesheets. Some adaptation of
Web pages to the client’s device can be provided using platform specific stylesheets. For
example, parts of the content can be shrunk or hidden, or table items can be presented in
sequence. The technique requires a lot of authoring. For this reason, research has been
conducted on “multi-level” stylesheets [Dees04] factorizing the styling attributes
common to several devices, in order to avoid writing a separate stylesheet for each target
platform. Another limitation of stylesheets is that they do not allow performing
transformations such as paging or changing form controls. Extensions to HTML have
been explored that could support such adaptations. For example RIML [Zieg04] permits
declaring parts of the code as “splittable” or not in order to achieve automatic
pagination. Another example is the W3C recommendation XForms [W3C03]. XForms
defines device-independent form controls (e.g. “input” or “choices”) that are further
rendered as appropriate on the target devices. However, if some small-screen browsers
such as Opera already have support for CSS, it is doubtful whether they will ever accept
new standards such as XForms.

2. State of the Art

 29

2.2.3 The transcoding approach

Transcoding tools perform a transformation of a final user interface conceived for a
given platform into another final user interface conceived for a distinct platform, without
generating explicitly an abstract description of the UI (Figure 2-10).

Figure 2-10 Development of multiplatform UI using transcoding tools

Transcoding tools may be classified into two categories [Menk03]4:
1. Identity configuration. The identity configuration (Figure 2-11) corresponds to

approaches where input and output are in the same standard format. A standard
format is a widespread format that consumer devices can display without
modification, such as HTML or WML. An example of this configuration is
reauthoring an HTML document into another HTML document.

Figure 2-11 Transcoding tools in the identity configuration

2. Direct configuration. The direct configuration (Figure 2-12) corresponds to

transcoding approaches where the input and output formats are standard
formats. This technique is especially used for adapting Web content to other
mark-up languages (e.g. HTML to WML, to TinyHTML for PalmPilots, to
CHTML for iMode or to Voice XML).

Figure 2-12 Transcoding tools in the direct configuration

4 Menkhaus and Fischmeister's classification contains two additional categories. "Hybrid configuration"
includes tools such as MUSA or UIML, and roughly corresponds to the multireification approach
described in next section. " Indirect configuration" corresponds to the abstraction-reification approach
described below.

2. State of the Art

 30

2.2.3.a Digestor

Digestor [Bick97] is a tool in the identity category. It has been implemented as a proxy
server. It dynamically adapts Web pages to the screen size specified by the user using a
best-first algorithm and a set of page transformations: redistribution of text between
several pages (parts of the text are elided from the document and hyperlinks linking to
the elided content are created), image and font reduction...

2.2.3.b Artail and Raydan’s reauthoring approach

[Arta05] describes another approach in the identity category. The server-based tool
proposed automatically reauthors Web pages for rendering on small-screen devices. The
tool is composed of a “preprocessor” and a “handler”. The preprocessor automatically
generates CSS files for each page on the web server. These CSS files include a section
intended for rendering elements on desktops, another section meant for handheld
devices, as well as a common section. The handler is called when the user requests a
given page. Relying on the characteristics of the client’s device found in the http header,
the handler passes the page through several algorithms, which operate text
transformation (first sentence elision), table conversions and image size reduction before
sending the transformed page and the related CSS style sheet to the client. The state of
the art section of Artail and Raydan’s paper discusses several similar techniques for
transforming Web pages.

2.2.3.c IMBWebsphere

IMBWebsphere5 is a server-based tool in the direct category. It performs real-time
transcoding of HTML to multiple mark-up languages (Palm OS HTML, Voice XML,
WML, iMode). It provides adaptation such as image reformatting and rescaling, filtering
content, fragmenting data. Transformations can be customized in several ways.

2.2.4 The multireification approach

In the multireification approach, developers produce a specification of the user interface
instead of code. This specification can take different forms:

1. Detailed description(s) of the concrete user interface’s widgets, layout and
behaviour (Concrete User Interface level in the CAMELEON framework) e.g.
LiquidUI [Phan00], AUIT [Grun03], SEESCOA [Luyt03], WebML [Ceri00]

2. More abstract description(s) expressed in terms of toolkit independent widgets,
or even modality independent widgets (Abstract User Interface level) e.g. TIDE
[Ali03], the AUIML toolkit [Clar00]

3. High level abstractions expressed in terms of tasks and domain concepts
(Tasks&Concepts level) e.g. TIDE [Ali03], ArtStudio [Thev01], and TERESA
[Pate02]. Most often, a single representation is provided at the tasks and concepts

5 WebSphere Transcoding Publisher http://www-306.ibm.com/software/pervasive/transcoding_publisher

2. State of the Art

 31

level, but annotations indicating what should be rendered on which platform are
added to the task model or the domain model.

The specification is then transformed into code, often producing intermediate
representations at lower abstraction levels. Figure 2-13 shows multiplatform reification at
distinct abstraction levels.

Figure 2-13 Development of multiplatform UI in the multireification approach

We will not list the whole range of user interface description languages (UIDLs) and
related tools, but only a few representative approaches. UIDLs are numerous and more
complete reviews can be found elsewhere [Souc03].

2.2.4.a LiquidUI

Harmonia’s LiquidUI6, an authoring tool for the UIML language [Phan00] is a good
example in the first category. UIML or “User Interface Mark-up Language” is a XML-
based language that allows the description of device-independent user interfaces. An
UIML interface specification includes three components:

 The logic component, that provides a way to communicate with the application
independently from the protocols, method names or server location,

6 Harmonia: http://www.harmonia.com

2. State of the Art

 32

 The presentation component, that provides a way to render the UI independently
from the actual widgets and their properties and event handling,

 The interface component that describes the interaction between user and
application in a platform independent way.

The interface component is subdivided into four subcomponents: the structure, the style,
the content and the behaviour. The interface is then specified using a platform specific
vocabulary. So, there is a separate vocabulary for AWT, Swing, WML, HTML... Each
platform-specific specification can then be rendered using LiquidUI. The LiquidUI suite
includes a Java renderer, an HTML renderer, a VoiceXML renderer and a WML
renderer. Other renderers for UIML have been developed outside Harmonia: renderers
to C++, QT, Visual Basic...

2.2.4.b TIDE

Another tool based on UIML is the Transformation-based Integrated Development
Environment (TIDE). TIDE [Ali03] uses four abstraction levels: a task model, a
description of the UI using UIML with a generic vocabulary that is common for a device
family (e.g. desktop or WML), a UIML description with a platform specific vocabulary
and the final interface. The tool highlights the mappings between the abstraction levels
(the task model is not included yet), letting the designer controlling them.

2.2.4.c The Abstract User Interface Language Toolkit

IBM’s Abstract User Interface Mark-up Language (AUIML) Toolkit [Clar00] relies on
the same principle as LiquidUI. The AUIML specification is built using a graphical
editor. Renderers for Java Swing and HTML are available. The AUIML vocabulary is
platform independent. Although little information on AUIML is publicly available,
AUIML’s building blocks seem to be elements describing the data type, the function
(action, choice...) or the grouping, which places the AUIML Toolkit in the category of
multireification tools working on the Abstract UI level.

2.2.4.d MONA

The MONA research project [Simo05] has investigated a tool supporting the
development of multimodal user interfaces for mobile devices. The reification process
starts from a single presentation model, or “root interface”, written in an ad-hoc user
interface description language. The core of this language is a set of platform- and
modality-independent widgets, associated to “content sets” which are collections of
multiple alternative contents for different modalities. Widgets are associated to properties
(style, priority...) and behaviours, described declaratively. The layout is specified by
nested groups of widgets and alignment constraints between the widgets of each group,
generating an adaptive flow-layout. Groups of widgets semantically linked can be
declared. This tool is meant to stay experimental, as the objective of the authors is
migration to existing Web standards such as XFORM or CSS, or at least to solutions
built around standards.

2. State of the Art

 33

2.2.4.e SEESCOA XML and Dygimes

SEESCOA XML was first designed as a serialization language aimed to describe at run-
time an existing interface using the reflection mechanism of Java [Luyt03]. The XML
description provides an abstraction of the user interface using Abstract Interaction
Objects. The XML document can then be transported to another system (for example,
via the Internet). Once arrived on the target system the XML document can be
converted to a working user interface. For every target system, an XSLT document is
defined which maps the AIO’s defined in the abstract user interface description to CIO’s
for that particular system. Transformation rules used with SEESCOA XML were thus
platform specific rules (one XSLT document per target) and allowed only changes in the
mappings between CIO’s and AIO’s.

The work on SEESCOA XML has been later included into the Dygimes framework
[Luyt04]. Dygimes is a framework for generating multi-device user interfaces at runtime.
It takes as input a CTT task model, annotated with UI “building blocks” i.e., fragments
of presentation, expressed in terms of AIO’s, attached to the tasks of the task model.
The sets of tasks that will be presented together are then calculated using an “Enable
Task Sets” (ETS) algorithm, similar to the algorithm in [Pate00]. Heuristics also permit
grouping several ETS together. A dialog model, under the form of a State-Transition
Network, is automatically generated from the CTT task model [Luyt03b]. The user
interface is then generated, using the ETS to determine the content of the windows and
the STN to generate the navigation between those windows. Each window corresponds
to the merging of the building blocks attached to the tasks of the ETS. At this level, the
UI is expressed in SEESCOA XML. The transformation of this XML description into a
final interface is supported by the rendering engine UiBuilder. UiBuilder is part of the
Dygimes system, and is able to render a SEESCOA XML document in Java AWT, Java
Swing, Java kAWT (a subset of AWT for Palm OS) and HTML.

2.2.4.f Adaptable User Interface Technology

AUIT [Grun03] describes the UI at the Concrete UI level as a grid layout containing
screen elements (widgets, images, etc.) and other grids. The grid structure can be used to
divide a large interface into multiple, smaller interfaces for display on small-screen
devices. The AUIT tags are device mark-up language independent and are transformed at
run-time into HTML or WML mark-up. The layout is determined depending on the
device, user and user task context.

2.2.4.g WebML

The Web Modeling Language (WebML) [Ceri00] is a specification language for Web
sites. It is a mark-up language, but each concept is associated with a graphic notation.
WebML involves four distinct descriptions:

− A UML class diagram-like domain model, describing relevant entities and relationships,

− A hypertext model, which consists of two sub-models: a composition model, which
specifies which pages compose the hypertext, and which content units make up a

2. State of the Art

 34

page. Different types of content unit exist: some units display information on a single
object or collection, while others are used to browse a set of objects (searching,
scrolling,...) and a navigation model which expresses how pages and content units are
linked,

− A presentation model expresses the layout and graphic appearance of pages,
independently of the target platform's language, using stylesheets. These style sheets
can be generic (they apply to all pages) or specific (they apply only to units describing
specific concepts),

− A user model, used for personalization purposes.

A code generator processes WebML specifications and translates them into some
concrete mark-up language (e.g. HTML or WML). At the same time, it maps the abstract
references to content units into concrete data retrieval instructions in some server-side
scripting language (e.g., JSP or ASP).

2.2.4.h ArtStudio

ArtStudio ([Calv01] and [Thev01]) is a generation tool that makes use of various
descriptions: a task model, a concept model, a platform model, an interactor model, an
abstract interface model and a concrete interface model. The task model in ArtStudio is a
CTT structure with additional parameters, such as references to the functions that will be
launched before or after the execution of the task or references to the concepts involved
in the task. The concept model is an UML specification. The abstract user interface
(AUI) represents the first step of the reification process from the models at a high
abstraction level (tasks and concepts) to the final running interface. An ArtStudio AUI
consists of a set of workspaces where each elementary workspace corresponds to a leaf
task and each compound workspace corresponds to a task at a higher level in the task
hierarchy. The static part of the AUI is completed by a navigation scheme based on the
logical and temporal relationships between the tasks. The navigation scheme determines
which transitions between workspaces will be allowed by the UI. The generation of the
concrete user interface (CIO) takes as input the AUI, the platform model and the
interactor model and consists in a reification of the workspaces into windows or other
container widgets, of the concepts into interactors and of the navigation scheme into
navigation interactors.

2.2.4.i TERESA

TERESA ([Pate02] and [Mori03]) generates UI for multiple devices from a single CTT
task model. For each task, the objects that will be handled as well as the suitable target
are mentioned. It is also possible to specify the suitable target at the object level. The task
model is then filtered to produce a platform specific task model. This task model is
further transformed into an Abstract User Interface (AUI), i.e. a set of abstract
presentations and their dynamic behaviour. This transformation uses the Enable Task
Sets (ETS) algorithm [Pate00], which produces the set of tasks enabled at the same time.
These ETSs can be modified using various heuristics. Once the tasks have been

2. State of the Art

 35

distributed among the presentations, each presentation is defined in terms of abstract
interaction objects linked by operators (grouping, ordering, hierarchy, relation). In the
last step of the generation process, each abstract interactor is mapped to a concrete
interactor available on the target platform and each operator receives a concrete
representation.

2.2.4.j SGUI

SGUI [Chu04] is a user interface development tool for cross-platform user interfaces. It
also supports migration between platforms. The tool is composed of a library of abstract
widgets and events and of a transformation manager. The transformation manager uses
as input a platform independent presentation model. This model is a tree structure
combining a task model and a presentation model (the upper part is a task model, the
leaf nodes are widgets). Annotations can be attached to each node. These annotations
specify the layout of the node (using a Grid Bag layout), the task preference (describes
whether a task is suitable to a given platform), a priority (nodes with a higher priority will
be placed first in the display panels), a splittability (indicates whether the subnodes can be
spread over multiple pages) and an importance (optional or mandatory). SGUI optimizes
the layout generated for a given platform by resizing widgets, operating widget
substitutions, applying a different layout manager (Flow layout), or changing the
repartition of widgets between screens. The transformations in SGUI are totally
automatic (there is no human control on the process). An obvious limit of this approach
is that task model and presentation model need to have a compatible structure: it is
impossible to specify that two non contiguous tasks in the task model must appear in the
same presentation unit, except if all tasks between them also belong to that presentation.

2.2.4.k PUC

The personal universal controller (PUC) is a universal remote control for home
appliances such as media or tape players [Nich02]. The user interfaces of the PUC are
automatically generated from higher-level descriptions. The specification mostly includes
elements of the domain model, under the form of state variables. Examples of state
variables are the current radio station, or the current track of the CD player. Each state
variable is associated to a type and, optionally, to a label. Elements are grouped through
group trees and dependencies between interface components can be specified. The
automatic generation of UIs comes with a “Smart Template” mechanism [Nich04]. A
Smart Template is a kind of domain specific design pattern, which defines the set of state
variables (e.g. “time”, “volume”) and functions (e.g. “play”, “record”...) typical for a
given kind of appliance. Multiple combinations of states and commands and allowed in
the template definition, which allows a single template to be applied across slightly
different appliances. At the rendering stage, the elements specified in the Smart Template
are then rendered using platform-specific controls and intelligent layout and resizing
mechanisms. PUCs built using Smart Templates are cross-platform consistent (they are
generated from the same domain model), while respecting the platform-specific
conventions the users are accustomed to. Of course, the Smart Template mechanism

2. State of the Art

 36

seems difficult to adapt to all kinds of graphical user interface, since it requires an a priori
knowledge of the usual functionalities of the target platform.

2.2.4.l Supple

Supple [Gajo04] treats interface generation as an optimization problem, where the
rendered interface must meet the constraints of the device while minimizing the
estimated cost for the user. Supple requires three declarative descriptions of the user
interface: a platform model, a user model, represented in terms of user traces and an
“interface model”, which roughly corresponds to the domain model in the CAMELEON
framework, with some additional constraints expressed on mappings. This “interface
model” includes a set of interface elements, defined in terms of data types (primitive
type, collection...), the set of interface constraints specified by the designer (e.g. “all lights
have to be rendered by the same widget”) and optional additional information about each
element (label, indication that the element is read-only, list of likely values...) The
platform model is composed of the set of available widgets, the set of platform-specific
constraints (functions that map element-widget assignments to either true or false) and
platform-specific functions for evaluating the suitability of given widgets in particular
contexts. The user is modelled in terms of his/her user traces, where a trace is a set of
trails i.e. a sequence of elements manipulated by the user. A legal solution in Supple is a
solution that maps each interface element to a widget while satisfying interface and
device constraints. An optimal solution is a legal solution that minimizes the expected
cost, defined as the sum of the costs of each user operation recorded in the trace.
Supple’s rendering algorithm is an A* search. So, the precise Concrete User Interface
generated by Supple depends not only of the specifications given by the designer, but
also of the user’s specific experience with the system (Supple is auto-adaptive). So, the
final layout of a user interface generated by Supple is neither controlled by the designer,
nor immutable for a given user.

2.2.5 The abstraction-reification approach

The abstraction-reification approach extracts an abstract description from a UI’s code
and generates the code of new UIs adapted to the target platform(s) e.g. PIMA,
Vaquita/ReversiXML. Figure 2-14 schematizes this approach.

2. State of the Art

 37

Figure 2-14 The abstraction-reification approach

2.2.5.a PIMA

The PIMA system [Bana04] is a tooling environment for building and deploying
applications targeted to run on several devices. The first step when designing a PIMA
application consists in creating a generic application model. This generic description can
be created by hand or extracted from a specific instance of an application interface using
PIMA’s reverse engineering facilities (a generalization process in PIMA’s framework).
The generic representation is then converted into multiple device-specific representations
by the specialization process. The third process or tweaking consists of handcrafting the
automatically generated device-specific representations.

2.2.5.b Vaquita/ReversiXML

ReversiXML [Boui04] (formerly Vaquita) is a tool that reverse-engineers HTML pages
into UsiXML models, both at the Abstract User Interface (AUI) and the Concrete User
Interface (CUI) levels. ReversiXML not only creates a generic representation of the
HTML source, it also adapts this representation following the characteristics of the
computing platform where the UI is intended to migrate (retargeting). Abstraction and
retargeting heuristics in Vaquita and ReversiXML can be entirely customized by the
designers.

The reification stage consists in getting a new running interface from the UsiXML
specification, by reification to the FUI level or by rendering of the CUI model.

2. State of the Art

 38

Reification is not covered by ReversiXML, but by other tools in the UsiXML suite: the
GrafiXML editor, which is able to generate XHTML and Java code, and the interpreter
InterpiXML.

2.3 Single-authoring

Transversally to the five development approaches described above, several tools (2.2.2.a,
2.2.4.d, 2.2.4.j) promote a single authoring7 solution, which consists in centring the
design process on a source interface designed for the least constrained platform.
However, our own approach differs significantly from the other single authoring
approaches investigated:

− In contrast to our semi-automatical approach, the SGUI tool described by Wong and
Chu (2.2.4.j) automatically generates user interfaces starting from a hierarchical model
combining task and presentation.

− Similarly, the single-authoring approach for multimodal interfaces investigated within
the MONA project (2.2.4.d) relies on the automatic adaptation of a root user
interface to several platforms.

− More similar to our vision, the tool developed by Ding (2.2.2.a) adopts a semi-
automatic approach but takes as input a user interface in Java, enhanced with
annotations indicating order or grouping relationships. The transformation rules
implemented in the tool are either applied when selected by the designer, or applied
automatically by the transformation engine. Those rules are similar to our own
transformation rules but, of course, their scope is limited to Java interfaces and they
can not rely on high level semantic information, such as the information that can be
drawn from a task model, for example.

2.4 Comparison of the approaches

On the basis of the Unified Reference Framework, five categories of approaches to the
development of UIs for multiple platforms have been identified, and representative tools
have been described. This section will compare these five categories, using a set of
criteria that were found relevant:

 The production costs include not only the development cost of the first release of
the system but also the cost of system maintenance: modifying or adding
functionalities, modifying or adding formats.

 The completeness describes the possibility of obtaining any type of UI using the

approach.

7 This phrase is sometimes employed with other meanings in the literature. For example, [Brau04]
defines single autoring as an approach that relies on “a single, device-independent user interface
description, which can be mapped to a good concrete UI for each feasible target device”.

2. State of the Art

 39

 The level of control offered to the developers includes:

− The “granularity” of the developer's input (i.e.; the level of detail he/she
can access). Fine-grained approaches allow the designer to control the
smallest details of widgets attributes values, while coarse grained
approaches only permit to specify tasks and concepts, for example.

− The predictability of the final user interface rendered.

 The usability of the each UI produced considered separately, i.e., their

observance of commonly accepted ergonomic recommendations.

 The cross-platform consistency describes the relations between versions of a user
interface on different platforms or devices, i.e.; similarities/differences
between versions in terms of tasks offered, concepts represented,
presentation, dialog...

 The guidance refers to the means available to help the designer in his/her work

of building a user interface for multiple platforms.

2.4.1 Production costs

The production costs criterion is crucial for the acceptance of any development
technique. The cost of producing software is not only devoted to the production of the
first system: it is widely estimated that 70% of the cost of software is due to maintenance
activities [Meye97]. The largest part of maintenance activities consists in adding or
modifying functionalities due to changes in user requirements (41,8%). The next
maintenance activities in terms of costs are due to changes in data formats (17,6%) or
hardware changes8.
A truly accurate evaluation of software production costs as a function of the chosen
approach would require benchmark tests that are far beyond the scope of this thesis. We
have little knowledge, for example, of the relative effort required to specify a UI vs. coding
it. Nevertheless, some general comparisons can be made at this point. We will consider:

− The cost of developing a first version of the user interface for N platforms;

− The maintenance cost when functions are modified or added in response to changes
in user requirements;

− The maintenance cost when formats change (for example, modification of 1
language, 1 graphical toolkit...)

8 Figures from Lientz, B.P. & Burton Swanson E.(1980). Software Maintenance Management. Boston:
Addison-Wesley, cited by [Meye97].

2. State of the Art

 40

2.4.1.a Cost of developing user interfaces for N platforms

Approach Estimation of the development cost

Traditional development High: the design effort is directly proportional to the
number of platform families (i.e. platforms with similar
capabilities) and the coding effort is directly proportional to
the number of system versions. Furthermore, different
programming languages may be used.

Unique portable code using
virtual toolkits

Low: one single interface is designed and coded.

Unique portable code using
generic clients

Low: one single interface is designed and coded. The cost
increases when using stylesheets and/or XSLT
transformations (one stylesheet or XSLT transformation has
to be produced per platform family), but even in this case, 2
languages only have to be used.

Transcoding approach Low: one platform-specific UI is designed and coded; the
transcoding tool takes care of the adaptation to other
platforms.

Multireification approach with a
specification of the UI at a high
level in the Unified Reference
Framework (Tasks & Concepts)

Low9: one single interface is specified, nothing is
programmed.

Multireification approach with a
specification at a lower
abstraction level

Moderate: the cost is directly proportional to the number of
platform families (one UI per platform has to be specified),
but only one specification language has to be used.

Abstraction-reification Low: one platform-specific UI is designed and coded; the
tool takes care of the adaptation to other platforms.

2.4.1.b Cost of modifying or adding functionalities

Approach Cost of modifying/adding 1 functionality in N

platforms

Traditional development High: modifications in N platform-specific versions
required.

Unique portable code using
virtual toolkits

Low: modification of the code in 1 single version required.

9 At least theoretically: a small experimental evaluation conducted on the TERESA multi-reification tool
has shown no significant difference in the total development time necessary to develop UIs for two
different platforms using the generation tool or directly using XHTML [Ches04].

2. State of the Art

 41

Unique portable code using
generic clients

Low: modification of the code in 1 single version required

Transcoding approach Low: modification of the code in 1 single version required

Multireification approach with a
specification of the UI at a high
level in the Unified Reference
Framework (Tasks & Concepts)

Very low: 1 single modification at the Tasks&Concepts level
of the specification required.

Multireification approach with a
specification at a lower
abstraction level

Moderate: modification of the specification in M platform-
specific versions required, where M is the number of
platform families (M ≤ N).

Abstraction-reification Low: modification of the code in 1 single version required,
the tool passes the modifications on to other platforms.

2.4.1.c Cost of modifying or adding formats

Approach Cost of modifying/adding 1 format in N platforms

Traditional development High: modifications across the code of all the platform-
specific versions concerned.

Unique portable code using
virtual toolkits

Moderate: modifications across the code of 1 single version.

Unique portable code using
generic clients

Moderate: modifications across the code of 1 single version.

Transcoding approach Moderate: modifications across the code of 1 single version
+ N-1 modifications of the transcoding tool.

Multireification approach with a
specification of the UI at a high
level in the Unified Reference
Framework (Tasks & Concepts)

Low: N modifications of the generation tool, no change in
the UI's specification.

Multireification approach with a
specification at a lower
abstraction level

Low: N modifications of the generation tool, no change in
the UI's specification (except if the designer wants to take
advantage of a new feature such as a new widget, for
example)

Abstraction-reification Low: 1 modification of the reverse-engineering tool if the
source format is adapted + N-1 modifications of the
generation tool

2. State of the Art

 42

2.4.2 Completeness

While some approaches impose no restriction on the kind of user interface they can
provide (they are complete), others are not suitable for every purpose. Completeness is
thus an important criterion that characterizes the applicability domain of a given method.

Approach Level of completeness

Traditional development Maximum.
Unique portable code using
virtual toolkits

Maximum.

Unique portable code using
generic clients

High, if used in combination with scripting languages, but
restriction on the type of dialog (form-based dialog mainly).

Transcoding approach Moderate, practicability mostly demonstrated for Web-based
UI's.

Multireification approach with a
specification of the UI at a high
level in the Unified Reference
Framework (Tasks & Concepts)

Low, practicability mostly demonstrated for simple form-
based interfaces (TERESA) or for UIs of control systems
(ArtStudio, Supple, PUC).

Multireification approach with a
specification at a lower
abstraction level

Low/high: depends of the possibilities of the specification
language: possibility of specifying any type of dialog, any
type of presentation...

Abstraction-reification Moderate, practicability mostly demonstrated for Web-based
UI's.

2.4.3 Level of control

Control is an important factor of user satisfaction and is likely to have a great impact on
the acceptance of a given approach. As mentioned above, this criterion includes:

− The level of detail the designer can access, which can range from a task's
specification until the very details of a widget's presentation;

− The predictability of the final results, with respect to the input provided (code,
specifications, parameters to transformations ...)

Approach Level of control

Traditional development Maximum.
Unique portable code using
virtual toolkits

Very high, even if no control on the virtual machines' exact
behaviour.

Unique portable code using
generic clients

Very high, even if no control of the browsers’ exact
behaviour.

2. State of the Art

 43

Transcoding approach Moderate: the first version can be fully controlled by the
designer, but the subsequent transformations are automatic
(even if some transformations accept user-defined
parameters).

Multireification approach with a
specification of the UI at a high
level in the Unified Reference
Framework (Tasks & Concepts)

Very low, even if some systems allow user-defined
parameters.

Multireification approach with a
specification at a lower
abstraction level

Moderate: the designer has a general control on the choice
and presentation of widgets, but the details are hidden to
him.

Abstraction-reification Moderate: the first version can be fully controlled by the
designer, but the subsequent transformations are automatic
(even if some transformations accept user-defined
parameters).

2.4.4 Usability

The usability of a user interface is a key factor for user acceptance of the product
delivered. The usability can be assessed thanks to a range of methods (heuristic
evaluation, user testing...), criteria and rules. Producing usable user interfaces for each
platform-specific version of a multiplatform system is difficult, due to differences
between the capabilities of the different devices and softwares.

Approach Usability of the final user interfaces rendered

Traditional development Potentially maximum, but has to be guaranteed by the good
practices of the developers

Unique portable code using
virtual toolkits

Low if the platforms are very different: no adaptation to the
platform is provided (except portability and sometimes
adaptation to the platform’s look-and-feel), which generates
usability problems (excessive scrolling, tasks inappropriate
on the device, illegible fonts, inappropriate widgets...)
Toolkits of self-adaptive widgets offer a solution to the last
problem.

Unique portable code using
generic clients

Low if the platforms are very different: no adaptation to the
platform is provided (except portability). Stylesheets may
improve the usability of the UI's, but they are still
insufficient when very different target platforms are
considered (very different screen size, or different modality).

Transcoding approach Depends on the transformations provided: can range from
simple code-to-code equivalences to complete reauthoring
of the system.

2. State of the Art

 44

Multireification approach with a
specification of the UI at a high
level in the Unified Reference
Framework (Tasks & Concepts)

Potentially high usability and excellent adaptation to the
target platform, depending on the heuristics of the
generation tool.

Multireification approach with a
specification at a lower
abstraction level

Potentially high usability, as one specification per platform
family is provided, but depends on good practices of the
developers.

Abstraction-reification Low if the platforms are very different: no adaptation to the
platform is provided. Higher if the tool is able to adapt the
recovered specification to the characteristics of the target
platform (retargeting).

2.4.5 Cross-platform consistency

The cross-platform criterion is one important aspect of the usability of a cross-platform
user interface. It can be defined as the capability to provide similar functionalities, similar
operation procedures, similar data representations and same data sets in each version of
the UI [Flor04].

Approach Cross-platform consistency

Traditional development Has to be guaranteed by the good practices of the
developers.

Unique portable code using
virtual toolkits

Maximum: 1 single UI.

Unique portable code using
generic clients

Maximum: 1 single UI. Lower if stylesheets are used,
especially if they introduce very different placements,
colours...

Transcoding approach High: the general structure of the UI is respected. Lower if
reauthoring techniques are used.

Multireification approach with a
specification of the UI at a high
level in the Unified Reference
Framework (Tasks & Concepts)

High, but depends on the generating heuristics of the tool.

Multireification approach with a
specification at a lower
abstraction level

Very good between platforms of the same family, but has to
be guaranteed by the good practices of the developers for
platforms from distinct families.

Abstraction-reification High: the general structure of the UI is respected. Lower if
retargeting is used.

2. State of the Art

 45

2.4.6 Guidance

Designing user interfaces for a variety of computer devices at the same time is a complex
task. Therefore, designers should benefit from some assistance in the design process, at
least if different versions of the user interface have to be produced (if one single code or
specification is provided, no guidance is needed). Guidance should have an impact on
two criteria mentioned above: usability and cross-platform consistency.

Approach Guidance

Traditional development None.
Unique portable code using
virtual toolkits

_

Unique portable code using
generic clients

_

Transcoding approach _

Multireification approach with a
specification of the UI at a high
level in the Unified Reference
Framework (Tasks & Concepts)

_

Multireification approach with a
specification at a lower
abstraction level

None.

Abstraction-reification _

2.5 Global comparison and conclusion

The table below (Table 2-1) provides a synthetic view of how each approach can be
evaluated against the eight criteria listed previously (development costs, cost of
modifying functionalities, cost of modifying formats, completeness, level of control,
usability, cross-platform consistency and guidance).

2. State of the Art

 46

Criteria

Approach

D
ev

el
op

m
en

t c
os

ts

M
ain

te
na

nc
e

co
st

s (
m

od
ifi

ca
tio

n
of

fu

nc
tio

na
lit

ies
)

M
ain

te
na

nc
e

co
st

s (
m

od
ifi

ca
tio

n
of

fo

rm
at

s)

Co
m

pl
et

en
es

s

Le
ve

l o
f c

on
tro

l

U
sa

bi
lit

y
if

th
e

pl
at

fo
rm

s a
re

 v
er

y
di

ff
er

en
t

Cr
os

s-
pl

at
fo

rm
 c

on
sis

te
nc

y

G
ui

da
nc

e

Traditional development

Virtual toolkits _

Generic clients _

Transcoding _

Multireification approach
(high level specification)

 _

Multireification approach
(lower level specification)

Abstraction-reification _

Table 2-1 Global comparison of development approaches on all criteria

A general conclusion that can be drawn from the observation of this table is that no
approach is free from serious drawbacks:

(1) Traditional development of MUI is very expensive, both for the development of
the first versions of the user interfaces and for their maintenance. Furthermore, ad-
hoc development of platform specific versions does not guarantee any form of
consistency within the multiplatform system.

= bad for that criterion

= medium for that criterion

= good for that criterion

-

Legend

= irrelevant

2. State of the Art

 47

(2) “One fits all” approaches based on virtual toolkits, generic clients or transcoding
are cheaper solutions, but their common weakness is a lack of adaptation of the
user interfaces produced to their target platform when these user interfaces are
ported to platforms with very distinct capabilities.

(3) Each one of the three model-based approaches (multireification from high-level
specifications, multireification from low-level specifications and abstraction
reification) has a serious limitation:

− Multireification from high-level specifications such as task models and
domain models neither offer a solution for all types of GUIs
(completeness), nor permit anticipating what exact design will be
generated from the specifications (control).

− Multireification approaches based on lower-level specifications, at least
when they cover several kinds of target platforms, such as UIML, are
more expensive to develop and maintain, generate user interfaces that are
less similar (cross-platform consistency) and offer no guidance to the
designer.

− The abstraction-reification approach neither offers any guarantee on the
quality of the final results, nor is completely satisfying in terms of control
and completeness (in fact, little is known about the possibilities of
abstraction-reification tools, which are not numerous and mostly targeted
to the reverse-engineering of Web pages).

In conclusion, we think that there is a place among the enumerated techniques for
another model-based approach:

− Providing a better level of control and a larger coverage than multireification from
high-level specifications or abstraction-reification, thanks to designer-controlled
explicit transformation rules applied to a source user interface specification.

− Generating cross-platform consistent user interfaces, starting from detailed
specifications semi-automatically built from the source user interface, which
represents an advantage in terms of guidance and development costs in comparison
to multireification from low-level specifications.

− Specifically targeted to multiplatform systems where the capabilities of the platforms
are very different, which is not the case of abstraction-reification.

− Conceived as a trade-off between cost and quality criteria on one side, and conflicting
quality criteria such as usability and cross-platform consistency on the other side.

The two basic ingredients for the model-based method we introduce in this thesis, i.e;
design by graceful degradation, are a source interface specification and a catalogue of
transformation rules. So, the next chapters will be devoted to the description of the
chosen specification language and its underlying concepts (Chapter 3) and to a
presentation of the transformations rules (Chapter 4).

3. Language and Models

 48

Chapter 3 Language and Models

Our method to develop user interfaces for multiple platforms is model-based. Therefore,
it requires the use of a user interface description language (hereafter UIDL). Our method
is also transformational, as it consists of specifying a source UI, designed for the least
constrained platform and then applying transformation rules to it to produce specific UIs
targeted to more constrained platforms. These transformation rules will process different
layers of the specification, according to the abstraction levels defined in the Unified
Reference Framework described above. For this reason, the UIDL we will use needs to
be structured in several layers. Until now, only a few UIDLs meet this requirement:
XIML [Puer02], the last versions of UIML [Ali03] and UsiXML.

We have chosen the last:

 UsiXML is the UIML developed in our team, which offered opportunities to
collaborate on its design.

 It relies on a theoretical framework aimed to address the development of user
interfaces for multiple contexts of use (the Unified Reference Framework
described above).

 It has the additional advantage to possess a graphical syntax for a majority of
constituent models, which is an advantage in terms of communication and
acceptance. Furthermore, graphical editors are available that permit editing these
models.

 Contrary to XIML, UsiXML’s language specifications are freely available and not
protected by copyright.

 Unlike XIML, UsiXML can be rendered in Java, HTML and XUL; even if the
UsiXML renderers are still at the development stage and can not compete with
the numerous implementations of UIML.

This chapter presents UsiXML and the conceptual content of this language. We will
focus on the representation of tasks, domain objects, presentation and dialog, platforms
and interactors. The platform and interactor models represent a specific contribution of
this thesis and are thus described in more detail.

3. Language and Models

 49

3.1 UsiXML

The user interface description language UsiXML ([Limb04]) allows designers describing
various aspects of a user interface, while using the same language. Depending on the
needs, a designer can adopt distinct viewpoints on the same user interface. In the early
stages of design, he might choose to specify only high level functionalities (tasks) or
domain objects. Later, he might want to give a very detailed description of the dialog and
presentation. These views on a user interface, called models in UsiXML, are organized in
abstraction layers, following the Unified Reference Framework.

A UsiXML specification is thus a combination of models. None of these models is
mandatory and every combination of models is allowed. UsiXML is equipped with eight
main types of models, as illustrated on Figure 3-1: a task model, a domain model, an AUI
model, a CUI model, a mapping model, a context model, a resource model and a
transformation model.

modelType
id : string
name : string

authorName

version
modifDate : string

comment

transformationModel domainModel taskModel auiModel cuiModel mappingModel contextModel resourceModel

uiModel
creationDate : string
schemaVersion : string

0..n 0..n0..n 0..n

0..n
1..n

0..n
1..n

0..n 10..n 1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..n

1

0..n

1

0..1

1

0..1

1

Figure 3-1 Constituent models in UsiXML

The task and domain models both belong to the Tasks&Concepts level of the Unified
Reference Framework. The task model is a description of the tasks carried out by a user
in interaction with the system, while the domain model is a description of the objects and
classes viewed or manipulated by the user.

The AUI model (Abstract User Interface) lies at the next abstraction level in the Reference
Framework. It is used to specify which group of tasks and domain concepts will be
presented together (for example, in the same window or card).

The CUI model (Concrete User Interface) is a detailed specification of the appearance and
behaviour of the UI's elements.

3. Language and Models

 50

The mapping model serves to establish relationships between models or elements of models
(for example, between a task belonging to the task model and the widget of the CUI that
permits the execution of this task).

The context model consists of three submodels: a user model, an environment model and a
platform model:

− The user model decomposes the user population into user stereotypes, described by
attributes such as the experience with the system or with the task, the motivation, etc.

− The environment model describes any property of interest of the global environment
where the interaction takes place. The properties may be physical (e.g., lighting or
noise conditions) or psychological (e.g., level of stress).

− The platform model captures relevant attributes related the combination of hardware
and software where the user interface is intended to be deployed.

The resource model contains elements (title, tooltip, mnemonic...) specific to a given context
(for example, the user's language). Resources are linked to objects of the CUI or AUI
model.

At last, the transformation model permits the specification of transformation rules under the
form of graph transformation rules, taking advantage of the underlying graph structure
of UsiXML. A graph transformation is expressed as a pair {LHS, RHS}, where LHS is
the Left Hand Side of the rule and RHS is the Right Hand Side of a rule. LHS expresses
a graph pattern that, if it matches the host graph, will be modified to result in another
graph called resultant graph, according to what is specified in RHS [Limb04b]. This
formalism supports different types of transformations: abstraction (e.g.; recovering an
AUI model starting from a CUI model), reification (e.g.; generating a CUI from a task
model and a domain model) and translation (e.g.; adapting a CUI designed for one
specific context of use to another context of use). We will not rely on this formalism in
this thesis, for two reasons:

− Some GD rules are inherently difficult to express using graph transformations. For
example, it is far more easy and intuitive to express layout transformations by
describing the algorithms used to generate the results then by giving a precise
description of the pre- and post-conditions of the rule as patterns defined on a graph.
In particular, the difficulty in ordering the substeps of a given rule is a serious
obstacle both for layout transformations rules and for the splitting rules presented on
Chapter 5.

− Even for simple transformations, such as modifying fonts size for example, relying
on graph transformations has a negative impact on performance, because the process
requires the collaboration of different tools, the use of several internal formalisms
and several steps: (1) Firstly, models are built using a graphical editor. These editors
(IdealXML [Mont05], GrafiXML) possess an internal representation of the model,
and export it in UsiXML (2) The UsiXML models are imported within AGG
(Attributed Graph Grammar tool [Ehri99]), a graphical environment for specifying

3. Language and Models

 51

and executing graph transformations where the rules are applied to the graph
structure (3) The resulting models are exported from AGG to UsiXML.

The next sections will be dedicated to a precise definition of the conceptual content of
the models that are relevant in the framework of Graceful Degradation: task, domain,
AUI, CUI, platform, interactor and mappings. The interactor model is a separate model
that is not part of UsiXML. It permits producing meta-descriptions of the toolkits
available on a given platform. We will not make use of the other UsiXML models.

3.2 Task Model

A task model, as defined above, is a description of the tasks that a user will be able to
accomplish in interaction with the system. This description is a hierarchical
decomposition of a global task, with constraints expressed on and between the subtasks.
The task model of UsiXML (see Figure 3-2) is an (slightly) extended version of
ConcurTaskTree (CTT) [Pate00]: a hierarchical task structure, with temporal
relationships specified between sibling tasks. A complete description of this task model
can be found in Annex A.

Figure 3-2 Meta-model of the UsiXML task model

3.3 Domain Model

UsiXML relies on UML class diagrams and objects diagrams [Rati97] for its domain
model. The main concepts in a UsiXML class diagram, as represented on the meta-model
on Figure 3-3 are classes, objects, attributes, methods and relationships.

3. Language and Models

 52

Figure 3-3 Meta-model of the UsiXML domain model

3.4 AUI Model

An AUI model is an expression of the rendering of the domain concepts and tasks in a
way that is independent from any modality of interaction. In UsiXML, the AUI (see
meta-model on Figure 3-4) is populated by Abstract Interaction Objects and AIO
Relationships.

Abstract Interaction Objects (AIO’s) are elements populating the AUI. They may be of two
types: Abstract Containers (ACs) and Abstract Individual Components (AICs).

Abstract Containers (ACs), also named interaction spaces or presentation units, define grouping
of tasks that have to be presented together, in the same window or page for example. An
abstract container contains other AIO’s. It may be reified into graphical containers like
windows or dialog boxes.

Abstract Individual Components (AICs) are individual elements populating an abstract
container. AICs are an abstraction of widgets found in most toolkits (for example
windows, buttons or vocal output widget in auditory interface).

An AIC may be composed of multiple facets describing the type of interactive tasks it is
able to support. Each facet describes a particular function an AIO may assume. Four
main facets have been identified:

1. An input facet describes the type of input that may be accepted by an AIO.

3. Language and Models

 53

2. An output facet describes what data may be presented to the user by an AIO.

3. A navigation facet describes the possible container transition a particular AIO may
enable.

4. A control facet describes possible methods of the domain model that may be
triggered from an AIO.

Some AIO’s may assume several facets at the same time (for instance, an AIO may
display an output while accepting an input from a user).

AIO relationships are abstract relationships between two distinct AIO’s. Our description of
these relationships is more precise and complete than what can be found in the current
UsiXML specification (introduction of new constraints, of new types of relationships).
These propositions are intended to be included in the next UsiXML release.

AIO relationships indicate the existence of some spatio-temporal or logical setting
among AIO’s. A given pair of source and target AIO’s can be linked by several AIO
relationships. The operators between the abstract interaction objects in the TERESA
tool [Pate02] or the abstract constraints expressed between components in some
constraint-based automated layout systems [Lok01] are examples of the use of AIO
relationships in the literature. Different types of AIO relationships can be defined:

 Decomposition relationships allow specifying a hierarchical structure of abstract
containers.

 Spatio-temporal relationships are modality-independent constraints between AIO’s,
using the temporal relationships defined by Allen [Alle83]. When UsiXML is
used for specifying GUIs, they are redundant with the graphical relationships
defined at the Concrete User Interface level: for this reason, we will not make use
of Allen relationships in the context of this thesis.

 Abstract grouping is an abstract relationship between two or more AIO’s of the
same abstract container that need to be grouped together, regardless of the actual
layout that will be defined at the Concrete User Interface level.

 Conversely, abstract separation is an abstract relationship between two AIO’s of the
same abstract container that need to be separated from each other (for example,
by a blank space or a separation line in graphical user interfaces, by a beep in
auditory user interfaces...)

 Differentiation is an abstract relationship between two AIO’s that should be
differentiated from each other. For example, an “erase all” button could be
differentiated from its neighbours, in order to avoid confusions.

 Is-title-of is an abstract relationship between one output AIO that represents a title
and the AIO it describes.

3. Language and Models

 54

 Hierarchy is an abstract relationship between two or more AIO’s that form a
hierarchy. For example, a series of titles in a document could be linked with a
hierarchy relationship.

 Abstract adjacency is an abstract relationship between two AIO’s that have to be
adjacent (which is not possible to specify using Allen relationships).

 The Order relationship specifies some kind of ordering between two or more
AIO’s (list...)

 Dialog control relationship allows a specification of a flow of control between the
abstract interaction objects in terms of LOTOS operators.

Figure 3-4 Meta-model of the UsiXML Abstract User Interface

3. Language and Models

 55

3.5 CUI Model

A CUI Model represents a concretization of an AUI Model. A CUI is populated by
Concrete Interaction Objects and Concrete User Interface relationships between them.

Concrete Interaction Objects (CIO’s) are the building blocks of the CUI. They are an
abstraction of widgets sets found in popular toolkits such as Java AWT/Swing or
HTML4.0. UsiXML distinguishes between graphical CIO’s and auditory CIO’s. In the
context of this thesis, we will only consider graphical CIO’s. UsiXML further classifies
graphical CIO’s in two categories: graphical containers and graphical individual components
(Figure 3-5).

A graphical container is a graphical CIO that can contain other CIO’s, including other
containers. UsiXML's metamodel contains a list of 11 types of containers: dialog box,
menu bar, menu pop-up, tabbed dialog box and tabbed item, table and cell, tool bar,
status bar, window and box.

Figure 3-5 Concrete Interaction Objects in UsiXML: upper part of the hierarchy

A graphical individual component is a CIO that permits observing or manipulating domain
objects, or to call domain methods. Graphical individual components are a direct
abstraction of widgets found in popular toolkits. For example, UsiXML's checkBox

3. Language and Models

 56

component corresponds to <INPUT TYPE = CHECKBOX> in HTML 4, JCheckBox
in Java Swing or Checkbutton in Tcl/Tk. The list of graphical individual components in
UsiXML includes text component, video component, image component, button, toggle button, radio
button, checkbox, combobox, listbox, spin, menu items drawing canvas, colour picker, date picker, file
picker, hour picker, progression bar and slider.

Concrete Interaction objects are linked by Concrete User Interface relationships. Again,
they are divided into auditory relationships and graphical relationships. Dialog control relationship
can be defined between both types of interaction objects.

Graphical relationships express different types of constraints between a source graphical
CIO and a target graphical CIO:

− Relative positioning constraints specify a positioning relationship between two
components. Most of these constraints are a concretization of Allen relationships for
graphical UI's: insertion, left-of, right-of, superiority, inferiority. Other constraints
were impossible to express at the AUI level: left-indentation, right-indentation,
horizontal adjacency and vertical adjacency.

− Graphical transitions specify a transition between two containers. Transition types are
open, close, minimize, maximize, suspend/resume.

− Alignment relationships specify a relationship between two components and a guide
extending their edges (vertical alignment, horizontal alignment) or crossing their
centre either horizontally (horizontal centred alignment) or vertically (horizontal
centred alignment). Except centred alignment, these relationships have direct
correspondences at the AUI level (i.e; they can be expressed in terms of Allen
relationships).

− Adjacency relationships indicate that there is no interpolated component between two
graphical CIO’s, either in the horizontal direction (horizontal adjacency) or in the
vertical direction (vertical adjacency).

Dialog control relationships allow a specification of a flow of control between the concrete
interaction objects, independently from the task model, using LOTOS operators. Dialog
control relationships at the CUI level are a refinement of the dialog control relationships
defined at the AUI level.

Relative positioning constraints (e.g; left-of, inferior-to...) between two components can
also be specified by the type of box that contains the CIO’s. Boxes are the basic layout
mechanism in UsiXML. A box can contain other boxes or graphical individual
components. Boxes are characterized by:

− Their type: horizontal, vertical, grid.

− Their relative width and height with respect to their parent container.

− Information on their resizability and their minimum width and height.

− Optional balance constraints.

3. Language and Models

 57

− A “splittable” attribute that indicates whether the box may be redistributed between
several abstract containers.

UsiXML's Concrete User Interface is a hybrid model that contains at the same time
information on the presentation of the UI and on its behaviour. At the CUI, each CIO
can be linked to a behaviour.

A behaviour is the set of reactions of the user interfaces to events such as user interactions,
changes in the system state, period of time elapsed... These events trigger actions, such as
a method call or a transition to a target container, provided that certain conditions are met.

3.6 Platform Model

UsiXML’s platform model, as well as the related interactor model presented below, has
been developed in the context of this doctoral research.

A UI platform model is a description of the platforms that may run this UI. A platform is a
specific combination of hardware (screen, keyboard, memory...) and software (OS,
graphical toolkit, browser ...). A platform model should contain values for each feature of
the platform that influences the design of the user interface (the screen size and
resolution, the graphical toolkit...)

Unlike user models, which are widely used in systems such as Adept [Wils96], Trident
[Vand97], FUSE [Lonc96], CT-UIMS [Mart90], Mobi-D [Puert97], Tadeus [Schl97] or
WebML [Ceri00], platform models are almost non-existent in model-based user interface
management systems. To the best of our knowledge, only two tools in the
multireification category (2.2.4), ArtStudio [Thev01] and TERESA [Mori03], contain a
platform model, but this model is very rudimentary: in ArtStudio, the platform model
only specifies the target language and the screen dimensions and resolution, while
TERESA only permits associating to tasks and objects an annotation indicating the set of
platforms suitable to support it. The User Interface mark-up language XIML [Puer02] is
equipped with a platform model, named “Workstation model”, that should represent the
computer platforms on which the user-interface may be instantiated, but the XIML
specification proposes only imprecise attributes such as “description” or “feature”.

On the other side, the Web community has shown a huge interest for specifying device
capabilities, in order to perform adaptation of Web content delivered to platforms such
as WAP phones or PDA’s. A number of platform modelling technologies have been
developed [Butl01]. Some of these initiatives such as Universal Plug and Play, promoted
by Microsoft, Media feature Sets, proposed by the Internet Engineering Task Force, or
the W3C recommendation CC/PP [W3C04] (Composite Capability/Preferences Profile)
define only syntax for describing device capabilities, allowing vendors to define their own
vocabularies. Other initiatives such as SyncML, UA-PROF or Wireless Village Initiative
define their own vocabularies. There are of course overlaps between those three
vocabularies.

3. Language and Models

 58

We have chosen UA-PROF as a starting point:

− UA-PROF possesses the richest set of attributes.

− Repositories of hardware devices descriptions in UA-PROF (UA-PROF “profiles”)
are already available10. Partial vocabulary interoperability between the UsiXML
platform model and UA-PROF will allow UsiXML users wishing to develop their
own platform models to exploit these repositories, which is very valuable since
information on hardware capabilities is often hard to collect.

− UA-PROF is CC/PP compliant, and CC/PP is a W3C Recommendation. Actually,
UAProf is just a specific CC/PP vocabulary and not an alternative standard.

UAProf (User Agent Profile) is a WAP Forum specification that defines a framework for
describing characteristics of WAP-enabled devices. This work is based on WAP-248-
UAPROF-20011020-a, Version 20 October 2001. Our platform model was built in two
phases:

1. Selection of a subset of UA-PROF attributes that are useful for user interface design
and adaptation, especially in the framework of graceful degradation. We only use the list
of attributes defined in UA-PROF, without taking into account its syntax.

2. Addition of other useful attributes, inspired from the SyncML and Wireless Village
Initiative or from our own experience.

Similarly to UA-PROF, a platform description in UsiXML in structured in five
components (see Figure 3-6):

− The Hardware Platform component contains properties of the device's hardware
(category, screen dimensions and resolution, keyboard and pointing devices, colour
support...)

− The Software Platform component contains properties of the device's application
environment, OS and installed software.

− The Browser User Agent component contains attributes related to the browser user
agent running on the device (browser name and version, supported mark-up and
scripting languages...)

− The Network characteristics component contains properties describing the network
environment (capacity, cost...)

− The WAP characteristics component contains properties related to the WAP protocol,
if any.

Each component is then described by a set of attributes. A discussion of the attributes
included in UsiXML's platform model and a description of these attributes can be found
in Annex B. Only a subset of the attributes in UsiXML's platform meta-model needs to
be instantiated in a platform specification, depending on the needs.

10 For example http://w3development.de/rdf/uaprof_repository/ (December 5th 2005)

3. Language and Models

 59

Figure 3-6 UsiXML's platform model

The model is aimed at covering classical platforms: advanced platforms composed of
clusters of devices, or using mixed reality are not covered.

3.7 Interactor Model

An instance of an Interactor model is a meta-description of a given widget library or user
interface description mark-up language. It is linked with one or several instances of the
platform model. It describes the components that may appear at the AUI, CUI and Final
UI descriptions. In the context of this thesis, this interactor model will be used for
detecting the unavailability of a widget on a given target platform and specifying
interactor substitutions.

3.7.1 Requirements

The current set of UsiXML metamodels suffers from the following limitations:

− The metamodel of the CUI is too restrictive: it proposes a pre-established set of
CIO’s, which renders impossible the modelling of a user interface containing other
widgets (existing widgets not included in UsiXML, “ad-hoc” widgets created by a
designer, or new widgets included in future toolkits).

− Conversely, the description of AIO’s is not restrictive enough: the metamodel of the
AUI allows describing AIO’s composed of any number and type of facets, regardless
of the possibility to reify these AIO’s into actual widgets. It would be possible, for

3. Language and Models

 60

example, to specify an AIO composed of 5 input facets, 0 output facet, 2 navigation
facets and 1 control facet, which does not correspond to any widget in current
toolkits.

− The mapping between CIO’s and AIO’s has to be explicitly provided by the designer.
Now, there exist a limited number of correct mappings, and these possibilities are
known beforehand: this information has to be stored and exploited.

− Similarly, the mappings between CIO’s/AIO’s and the data types/task types they
support should be known beforehand, in order to allow the automatic selection and
substitution of interactors: the current metamodels only permit deriving this
information from the mappings established between CIO’s/AIO’s and domain
concepts or tasks in a specific user interface’s description.

To overcome the shortcomings listed above, an interactor model should satisfy the
following conditions:

− It should be able to describe any widget, not just a predefined set of widgets.

− It should only allow CIO’s and AIO’s that possess a reification.

− It should make explicit links between the widgets found at the Final UI level, the
CIO’s populating the Concrete UI level, and the AIO’s.

− It should contain information on

(1) The role(s) of the interactor i.e., the type of task it is able to support. For
example, we would like to know that a button object has the role of “launching
a command” and could be replaced by an object sharing the same role (for
example, a menu item) on another platform.

(2) The abstract data type(s) it is able to handle, if any.

(3) The rendering cost of the interactor [Thev99], i.e. the quantity of physical
resources needed for its instantiation. In our approach, the rendering cost
consists essentially of the object's width and height on the screen and of the
required interaction devices (pointer, keyboard). Other characteristics of the
platform such as the RAM memory required could also be used. The object's
width and height should not be expressed in terms of constant values, since
interactors can often be resized. The rendering cost should be a platform
dependent data.

(4) An evaluation of the appropriateness of the interactor for a given combination of
role / abstract data type / platform.

3. Language and Models

 61

3.7.2 State-of-the-art of meta representations of widgets

3.7.2.a CIO/AIO

Vanderdonckt and Bodart [Vand93] introduced a common way of representing
interactors in model-based systems: the distinction between Concrete Interaction Objects
(CIO) and Abstract Interaction Objects (AIO).

The CIO's and AIO's described here do not correspond to the CIO's and AIO's defined
in sections 3.4 and 3.5. Vanderdonckt and Bodart’s CIO’s (also called widgets, controls
or physical interactors) belong to the Final User Interface, while AIO's belong to the
Concrete User Interface. In Vanderdonckt and Bodart's terminology, a CIO is thus a real
object belonging to a particular toolkit. Its specification includes:

(1) Its graphical appearance, determined by the graphical toolbox and the
environment. Every change of graphical toolbox / environment may result in a
difference in the control appearance, as illustrated on Figure 3-7 and Figure 3-8.

(2) Its concrete attributes.

(3) The concrete events it can receive or generate.

(4) The concrete primitives that describe its reaction to events.

Figure 3-7 Same toolbox / distinct environments: the DatePicker object on Pocket PC (left) and

Smartphone (right)

Figure 3-8 Same environment / distinct toolboxes: the TreeView object in Windows MFC (left)

and Java Swing (right)

3. Language and Models

 62

Abstract Interaction Objects (also called logical interactors) are an abstraction of all
CIO’s sharing the same behaviour, independently of the presentation differences in their
target environment. They correspond to Graphical CIO's in UsiXML. They have abstract
attributes, events and primitives. They have no graphical appearance, but each AIO is
connected to one or more CIO’s. For example, the “Button” AIO corresponds to a
Button object on Macintosh, to an XmPushButton on X-Windows and to a Command
Button on Open Look.

However, the AIO's proposed in [Vand93] do not allow specifying an interface at a high
semantic level. For example, using these AIO, it is possible to specify in the presentation
model that a Button object has to be used (instead of a XmPushButton or JButton), but
it is not possible to declare a presentation object that will launch an application function,
independently of the presentation of that object (menu item, button, icon in a menu
bar,...)

Categories of AIO have been proposed by the authors:

(1) Action AIO (e.g. menu, menu item, menu bar, drop-down menu, ...)

(2) Scrolling AIO (e.g. scroll arrow, scroll cursor, scroll bar, frame, ...)

(3) Static AIO (e.g. label, separator, group box, prompt, icon ...) A static AIO has no
interaction function and thus nor events, neither primitives.

(4) Control AIO (e.g. edit box, scale, check box, switch, push button, list box, table,...)

(5) Dialog AIO (e.g. window, help window, dialog box, panel, ...)

(6) Feed-back AIO (e.g. message, progression indicator, contextual cursor, ...)

However, these categories do not correspond to the roles we would like to represent in
our interactor model:

 The classification criteria employed are not well defined and lead to surprising
distinctions. For example, why should menu’s and buttons belong to distinct
categories since they both permit to call an application function? And why should
a table belong to the control category and not the static one?

 The objects within a category are not mutually substitutable.

3.7.2.b Teallach's presentation model

The presentation model in the Teallach environment [Grif01] also contains a concrete
and an abstract level. The concrete level contains actual widgets, based on Java Swing.
The abstract level consists of a set of categories:

(1) FreeContainer (e.g. window or dialog box). A FreeContainer is a top-level window.
It is a container for other presentation items that is not itself contained by
anything.

(2) Container. It represents all containers that are not top-level windows. Typically, a
container is used as a grouping mechanism for interaction objects.

3. Language and Models

 63

(3) Inputter (e.g. text field). An Inputter is used to transfer data from the user to the
application.

(4) Display (e.g. read-only table). A Display is used by the application to transfer data
to the user.

(5) Editor (e.g. updateable table). An Editor allows the user to alter existing data.

(6) Chooser (e.g. a list box). A Chooser allows the user to perform a choice among a
set of alternatives.

(7) ActionItem (e.g. a button or menu item). An ActionItem allows the user to initiate
some behaviour of the system.

Contrary to the categories proposed in [Vand93], the entities in Teallach’s abstract model
can be used to specify a user interface without commitment to specific presentations,
allowing developers to postpone decisions on the actual widgets to be used until later in
the design process. However, the typology is not detailed enough for our purpose, since
only some substitutions between objects of the same category are possible. For example,
a group of check boxes allowing the user to select an undetermined number of options
can not be replaced by a group of radio buttons, which would restrict the user choice to
only one option, even when both objects belong to the “Chooser” category.

3.7.2.c ACE's Selectors categories

An abstraction mechanism similar to Teallach's was developed earlier in the ACE system
[John92]. ACE (Application Construction Environment) offers Selectors and Presenters
as an alternative to widgets.

There are two subclasses of Selectors:

 The Data Selectors, that have mappings with elements of the domain (they display
and set application variables).

 The Command Selectors, that display and invoke system operations.

Data Selectors encapsulate the semantics of choice. Each Selector is defined by

 A base-type i.e. the data type it can contain (e.g. Integers, Colours, …)

 A domain i.e. a restriction on the values of the base-type that define a set of
options. A domain can be specified by explicit enumeration (e.g. {red, green,
blue}), by a range (e.g. [10..50]) or by a predicate function (e.g. Odd(n)).

 A value, that indicates the minimum and maximum number of possible choices
among the options.

Data Selectors are given an appearance by a Data Selector Presenter. A Data Selector can
be presented by multiple Presenters at the same time. The Presenter manages the layout,
the look and the behaviour of the displayed objects, but the content of the object (option
list, etc.) is managed by the Selector.

3. Language and Models

 64

Command Selectors, on the other side, provide invocation access to a set of related
commands. A Command Selector has:

 A domain (a list of related commands).

 A value that indicates which of the Selector’s commands are active.

 A minimum and maximum number of commands that can be activated at the
same time.

Command Selectors are given an appearance by Command Selector Presenters.

The Selector approach permits to compose interfaces at a semantic level, as it was the
case with Teallach’s abstract categories. It presents the additional advantage to connect
explicitly the presentation objects to application semantics (domain values and operations
linked to the commands). On the other side, all examples in the source paper are related
to ActionItems or Choosers (in the Teallach terminology) and it is unclear whether
Selectors are also an appropriate abstraction mechanism for objects in the other
categories (Inputter, Display ...)

3.7.2.d ArtStudio's interactor model

The interactor model of ArtStudio (see section 2.2.4.h) was developed in a perspective of
multiplatform generation. In ArtStudio, an interactor is described in terms of its
representational capacity, interactional capacity and usage cost.

The representational capacity of an interactor corresponds to the data type it is able to
render. ArtStudio defines two categories of interactors: the presentation interactors, that
have a representational capacity, and the navigation interactors, that do not represent
concepts but are systems composed of a view on a navigation spaces and control objects
on that navigation space.

The interactional capacity of an interactor are the tasks that this interactor is able to support
(e.g., specification or selection).

Finally, the usage cost of an interactor is expressed as the graphical footprint of the
interactor on the screen (the display area it requires).

ArtStudio's interactor model satisfies most of our requirements:

 ArtStudio’s interactors have toolkit independent definitions.

 Their role is represented by the task type(s) they can support. The few task types
proposed by ArtStudio do not permit to define correct substitutions between
interactors (the only types listed are consultation, specification, selection and
activation), but this typology can be extended (see section 3.7.3).

 The abstract data type(s) the interactors can handle is specified when appropriate.

 The rendering cost of the interactors is expressed by the display area they require
on the screen.

3. Language and Models

 65

3.7.2.e The Comets

A new type of widgets has been introduced lately under the name of comet [Calv04]
[Calv05]. A comet is a new type of widget specially designed to support software
plasticity, i.e. the capacity of an interactive system to withstand variations of context of
use while preserving its quality in use.

Comets are defined as self-descriptive widgets, able to export their functional and non functional
properties. The functional properties, which correspond roughly to ArtStudio’s concepts of
representational capacity and interactional capacity, include the tasks the comet can
support (e.g. selecting an option among a set of options) and the concepts it can
manipulate (e.g. a banking account). The potential capacity of a comet to adapt itself is
also considered as a functional property. Non functional properties are qualities the
comet guarantees in a given interaction context. They may also refer to the properties of
the comet’s auto-adaptation process (e.g., continuity of the interaction) and they may be
expressed in any reference framework (ISO, IFIP …)

More sophisticated comets own the additional capabilities of polymorphism (they contain
several presentations) and self-adaptation (they contain all the mechanisms necessary to
adapt themselves i.e. they can recognize the context, calculate a reaction and apply it).

A comet can be defined at different levels of granularity: the functionalities it can cover range
from functionalities of classical widgets (e.g. a button) to functionalities of a specific
interactive system (e.g. viewing the time at two different locations).

Figure 3-9 Modelling of comets (from [Calv04])

3. Language and Models

 66

The description of a comet (see Figure 3-9) is structured in four abstraction levels,
following the Unified Reference framework (section 2.1): Tasks&Concepts (description
of the concepts and user tasks supported), Abstract User Interface level (description of
the comet in terms of interactive spaces), Concrete User Interface level (description of
the “style” of the comet and assessment of whether it is typical or not to use this style in
a given context of use) and Final User Interface level (detects and communicates context
changes and manages the comet’s interaction state). Each level publishes its quality of
use for a given pair of property / context of use.

Like ArtStudio, comets have thus an explicit representation of the concepts and tasks
supported. The notion of quality of use subsumes the concept of usage cost in ArtStudio,
as it can be characterized by any property in any set of ergonomic recommendations. In
contrast, in the context of graceful degradation, a widget’s quality is not only determined
by the context of use, understood as a triplet user-platform-environment, but is also
influenced by characteristics of the particular user interface to which it belongs (for
example, whether it is densely populated or not, …) In GD, the appropriateness of a
widget should be calculated for a given concrete user interface, and not directly stored in
the toolbox.

As a major characteristic, comets are auto-descriptive. This feature could be useful if we
whished to apply graceful degradation rules (such as widget substitution rules) on the fly,
at run-time. When considering only the application of the rules at design time, we can
rely on an external description (a meta description of the widget library, not embarked in
the toolkit itself).

3.7.3 Interactor model in the GD approach

Our own description of interactors is based on ArtStudio and shares some features with
basic comets, although our own model is not meant to be used at run-time, but will serve
to describe final interactors available in toolkits or mark-up languages.

Like in the comets' approach, we will describe interactors at distinct abstraction levels.
Our description has no abstract interface level: we have considered interactors as no
splittable units. Our description is thus structured in three levels only:

(1) The higher level (corresponding to the Tasks&Concepts level for comets)
describes Extended AIO’s. Like Abstract Interaction Objects defined in section 3.4,
Extended AIO's are independent from the modality and composed of facets, but
their description contain details impossible to express using only the four facets
described above. Examples of Extended AIO's are a Number Inputter, a Date
Chooser, an Action Item, a Separator or a Container.

(2) At the second level (which would be the concrete interface for comets), the
Graphical CIO’s are a reification of the Extended AIO’s for GUIs. They
correspond to the Graphical Concrete Interaction Objects defined in section 3.5.
Examples of graphical CIO's are an edit box, a radio button or a list box.

3. Language and Models

 67

The third level (final user interface) represents the actual widgets, or Final widgets. This
level is platform dependent and modality dependent.

Figure 3-10 shows a detailed representation of the concepts involved in our interactor
model. Let’s review the concepts of that diagram.

Figure 3-10 Class diagram of the concepts involved in our interactor model

Extended AIO’s are described by their name and composed of facets.

The names are Teallach-based, with extensions. Examples of names for a-modal AIO’s
are:

 For the interactors with an interactive role (i.e. attached to a task type): Editors,
Choosers, Inputters, Choosers, Displays, Internal Navigator, Action Items, ...,
together with the attached data type if any (e.g. Text Inputter, Date Inputter, ...)

 For the static interactors (i.e. not attached to any task type): Separators ...

Facets are described by the task type(s) they support, the abstract data types they can handle
and a cardinality. Some extended AIO’s are composed of several facets (e.g. a text editor is
composed of a specification facet and to a consultation facet at the same time). Other
extended AIO’s (e.g; Separators) do not possess facets at all, because they neither permit
to realize an interactive task, neither present data.

The task types are structured into a hierarchy of inheritance, shown on Figure 3-11. A
facet supporting a given task type can also support the descendants of that task type (e.g.
a facet that supports a specification task can also support a selection task or a unique
selection task). This property is important if we consider the possibility of interactor
substitution in a GD process.

3. Language and Models

 68

Figure 3-11 Hierarchy of task types

The abstract data types are also structured in a hierarchy. Such as for tasks, a facet that
supports a given abstract data type can also support the descendants of that data type
(e.g. a facet that can represent text can also represent a city, if we consider “Cities” to be
a subclass of “Text”). Some abstract data types can be considered as an aggregation of
several simpler data types (e.g. a date is the composition of a month, a day and a year).

The last attributes of a facet are its cardinality and its centrality. The cardinality indicates the
number of concepts the interactor can handle. Interactors that have no representational
function because they are not linked to any abstract data type have no value for this
attribute. The centrality is a Boolean attribute indicating is the facet is a central
component in the interactor's description or not. For example, a Chooser is composed of
a selection facet, which is central, and a consultation facet, which is secondary.

At the second abstraction level, Graphical CIO’s are the abstractions of widgets
predefined in the toolkits. They are described by their name and are linked with a list of
CIOAttributes. They have a usability on a given platform.

The names correspond to the subtypes of graphicalIndividualComponent and
graphicalContainer defined in UsiXML's CUI model (section 3.5). For the graphical
CIO's not included yet in UsiXML, the names are based on the terminology developed in
[Vand98]. Examples of names are ScrollBar, MenuItem, Button, or CheckBox.

The CIO attributes contains the generic attributes of the graphical CIO. A generic
attribute is the generalization of a property of the final widgets linked with that CIO,
independently of the actual names and particularities of these attributes at the Final User
Interface level. Examples of attributes are the object’s colour, label, etc.

A graphical CIO should be able to evaluate its usability on a given platform. For example,
the usability of an Edit box is higher on a platform that is equipped with a physical
keyboard than on a platform that has only a virtual keyboard, and the usability of menu’s
and scrollbars is lower on an electronic white board than on a workstation, because the
user can not reach them easily from any position. A CIO’s usability depends also on user

3. Language and Models

 69

characteristics and preferences or on the context of use (Was the user trained in touch
typing? Is he/she standing or sitting? Will he/she have the possibility to use both hands?)
However, some general recommendations can be made for an average, typical user, in a
typical context of use. For example, a general recommendation could be to prefer pop-
up pie menus to classical pull-down menus on very large displays [Jaba03] or to prefer
selection to text entry when only a phone keypad is available.

At the Final User Interface level, toolkit-dependent Final widgets are characterized by a
name and a list of final attributes. They belong to a given toolkit, which is available on one
or several platforms (see 3.6).

The interactor model described above will allow us to perform interactor substitution in
a graceful degradation process, as will be shown in section 4.1.2.b. In order to assess the
validity of this model, we have used it to represent the widgets of a toolkit of limited size:
QTk (a Tcl/tk based toolkit linked with the Oz language). The resulting meta-description
of QTK can be found in Annex C.

3.8 Mapping Model

UsiXML's mapping model is a collection of links, named mappings, between elements of
the interface specification. UsiXML proposes a non exhaustive list of mappings,
illustrated on Figure 3-12:

(1) isReifiedBy: relationship between elements of a model Mi and a model Mj, where Mj
has a lower level of abstraction than Mi. Links an abstract object (for example an
AIO) to the more concrete object that reifies it (for example, a CIO).

(2) isAbstractedInto: inverse of the isReifiedBy relationship.

(3) isTranslatedInto: relationship between elements of a model Mi and a model Mj,
where Mi and Mj are at the same abstraction level, but belong to distinct
descriptions targeted to distinct contexts of use.

(4) manipulates: relationship between a Task Model and a Domain Model. Maps a task
to a domain concept (class, object or attribute).

(5) isExecutedIn: relationship between a task model and an Abstract User Interface or
Concrete User Interface. Links a task and the interaction object (CIO or AIO)
allowing its execution.

(6) observes: relationship between a Concrete/Abstract User Interface and a Domain
Model. Links an interaction object to the domain concept it permits to observe.

(7) updates: relationship between a Concrete/Abstract User Interface and a Domain
Model. Links an interaction object to the domain concept it permits to update.

3. Language and Models

 70

(8) triggers: relationship between a Concrete/Abstract User Interface and a domain
model. Links an interaction object and the method of the Domain Model this
interaction object triggers.

(9) hasContext: relationship between any User Interface model (Task, Domain, AUI,
CUI) and the Context Model it is related to.

 Figure 3-12 Mappings in UsiXML

3.9 Conclusion

One major characteristic of the UIDL described above is its hierarchal structure in four
abstraction layers. The different models belonging to each abstraction layer (Task,
Domain, AUI, CUI) were defined independently of this thesis [Limb04][Limb04b],
whereas UsiXML’s platform model represents a contribution of this doctoral research.
Because we have identified some limitations in the descriptions of interactors in UsiXML
(3.7.1), we also propose an interactor model, which could be used to enrich the
description of UsiXML’s graphical CIO’s and AIO’s or as an alternative construct in a
future version of the language.

The language and models defined in this chapter will be used through the remainder of
this thesis. The GD rules presented in Chapter 4 will be expressed in UsiXML. The
splitting rule described in the next chapter will take advantage of UsiXML’s capacity to
freely combine models at different abstraction levels. A tool performing semi-automatic
transformations on UI specifications in UsiXML will be introduced in Chapter 6.

4. Effective knowledge for Graceful Degradation

 71

Chapter 4 Effective knowledge
for Graceful Degradation

After the state of the art of development approaches for multiplatform systems of
Chapter 2, we have shown that there is a place for an approach that would realize a
trade-off between development and maintenance costs on the one side and level of
control, completeness, usability and guidance on the other side. We have called that
approach Graceful Degradation of user interfaces. The two basic ingredients of Graceful
Degradation are a UIDL, used to specify source and target UI, and a set of
transformation rules, used to adapt the source UI to more constrained platforms.
Chapter 3 consisted in the presentation of the chosen specification language: UsiXML.
Chapter 4 will present a collection of GD rules, classified using the Unified reference
framework presented in section 2.1 and formalized in UsiXML.

4.1 Typology of rules using the Unified Reference
Framework

The basic ingredient of the GD approach is a collection of transformation rules
[Flor04b]. Graceful Degradation rules have been identified by the observation of the user
interfaces of a large number of applications running on several devices, most of them
publicly available on the Web or described in scientific publications. The observed
transformations were then abstracted and logically organized in terms of the
CAMELEON framework.

The rules are intended for two uses: semi-automatically transforming user interface
specifications in UsiXML, and manual application by human designers. For this reason,
this typology is not limited to rules actually implementable when working with models in
UsiXML.

In the terms of the Unified reference framework, GD is a translation process. The GD
rules are thus transformations between a source model and a target model at the same
abstraction level. In this section, we present a classification of GD rules according to:

(1) Their abstraction level: GD can be applied at different abstraction levels in the
Unified reference framework, namely the Tasks&Concepts level, the Abstract
Interface level, the Concrete Interface level and the Final Interface level;

(2) Their source element(s) in the layer they belong to: GD can be applied on distinct
elements of a given layer (for example, on Graphical CIO’s or on graphical
relationships in the Concrete User Interface).

4. Effective knowledge for Graceful Degradation

 72

The abstraction level of a rule is the highest level in the hierarchy of models of the
reference framework where the rule can be attached. Of course, every rule applied at a
high abstraction level in the framework has an impact on lower levels: if we delete a task
in the task model, this change would be propagated at the AUI, CUI and FUI levels
when coupling GD translation with a generation process. For this reason, we begin by
presenting rules belonging to the lowest abstraction level.

4.1.1 GD rules at the Final User Interface level

Ultimately, each GD rule will result in a modification at the code level (the Final User
Interface). A lot of transformations can also be applied directly on the code, without
need of any higher level description. These rules are generally platform specific and do
not require a model-based approach to be developed. Nearly every non model-based
technique aimed to adapt the UI to a platform (in transcoding tools for example) is a
transformation rule at the final UI level.

Some transformations at the Final User Interface level are impossible to express in our
framework: they have no impact on higher levels and, in a model-based approach; the
Final User Interface is generated, not specified. These transformations are thus beyond
our scope. For example:

− The substitution of an image by an image in a compressed format (e.g. substituting a
BMP by a JPEG).

− The reduction of the colour number

− Zooming techniques

Other transformations can be applied on a higher level description of the UI (they will be
included in the classification below), but can just as well be applied at the code level:

− Removal of images

− Reduction of font sizes

− Interactor substitution rules or moving rules when directly expressed between two
specific platforms

− etc.

4.1.2 GD rules at the Concrete User Interface level

As explained above, The Concrete User Interface level (CUI) is a detailed specification of
the appearance and behaviour of the UI's elements. A CUI is populated by Concrete
Interaction Objects (CIO’s) and Concrete User Interface relationships. In the case of
graphical user interfaces, a CUI is restricted to graphical CIO's and graphical relationships.

Two important kinds of GD rules can be applied at the CUI level:

− Rules that transform the graphical relationships between the graphical CIO's
(graphical relationship transformations)

4. Effective knowledge for Graceful Degradation

 73

− Rules that modify the size, number and nature of the graphical CIO's (graphical
CIO's transformations).

4.1.2.a Graphical Relationships Transformations

There are two types of rules that can be applied to graphical relationships:

1. Reorientation rules.

2. Moving rules.

4.1.2.a.1 Reorientation rules

Reorientation rules modify the orientation of an object without other change in size or
position. They are mainly useful when switching from landscape to portrait mode or
conversely. They can only be applied to a small set of objects (tables and table labels,
sliders, toolbars...) Figure 4-1 shows an example of a reorientation rule applied to an
accumulator widget (i.e. a component transferring items from the left list of possible
values to the right list of accumulated selected items).

Figure 4-1 Reorientation rule

4.1.2.a.2 Moving rules

Moving rules modify the localization of a graphical object, i.e. the position of the object
in its container, defined by the graphical relationships where it is involved. Moving rules
are useful in several cases:

 The components do not fit in one dimension (horizontally or vertically) when
there is blank space left in the other dimension.

 The components do not fit horizontally and we want to avoid horizontal
scrolling.

 Some ergonomic rule or convention of the target platform has to be respected
(for example, menus on an IPaq should better be placed on the bottom of the
screen, and on a wall display, should not be placed out of reach of a short
person).

4. Effective knowledge for Graceful Degradation

 74

Repositioning graphical objects vertically is especially useful, since a majority of users
dislike horizontal scrolling, considered as a tedious and disorientating task (Palm OS does
not even support horizontal scrolling at all). For example, repositioning elements in one
or more columns or placing graphical objects beneath their labels instead of to the right
of their labels are widely used transformations. A good illustration of the use of moving
rules is the Skweezer11 Web service, which reformats Web pages in order to avoid left-to-
right scrolling when accessing the Web with a handheld device. Figure 4-2 shows the
result of the application of a moving rule on our research project Web page.

Figure 4-2 Automatic application of a repositioning rule by an on-line reformatting service

11 Trade Mark of Greenlight Wireless Corporation (http://www.greenlightwireless.net/skweezer/)

4. Effective knowledge for Graceful Degradation

 75

4.1.2.b Graphical CIO's Transformations

Beside GD rules that transform the graphical relationships between objects, another type
of transformation can be applied at the Concrete User Interface level, namely
modifications in

 The size of the graphical objects.

 The nature of these graphical objects. Object transformations can take three
different forms: modification, substitution and removal.

4.1.2.b.1 Resizing rules

Resizing rules modify the dimensions of a graphical object. Theoretically, they could be
applied to any UI component, but we have to take into account:

 The type of the graphical CIO: some interactors have fixed dimensions in most
of the toolkits where they have been implemented (e.g. a radio item) while others
may generally be resized (e.g. a button).

 The constraints imposed by the toolkits: a lot of toolkits do not allow the
designer to give arbitrary dimensions to the widgets: for example, widgets in
languages like HTML or QTk are automatically given the necessary size.

 The limits of human perception: for example, experimental usability results
establish that an icon cannot be shrunk below the threshold of 8 x 7 pixels.
Beyond this, it becomes illegible or impossible to distinguish.

When a component can be resized, the designer has to know the minimum width and
height it can be shrunk to. For some widget types, the minimum width / height is
influenced by factors that will only be determined at design time for a given application:
e.g. the minimal width of a listbox depends on the length of the larger proposed choice,
the minimal width of a button depends on the length of its label, etc.

Some resizing transformations are impossible to apply on a CUI expressed in UsiXML,
since the language does not permit expressing information on the size of all graphical
CIO’s. So, resizing a button has to be applied at the FUI level, when allowed by the
graphical toolkit. However, transformations such as reducing the size of text components
(width of edit fields, height and width of text fields), limiting the number of items visible
in a listboxes, modifying the size of fonts or resizing an image are easy to express in
UsiXML. Some transformations may combine resizing and deletion of non central
information: Figure 4-3 for example shows the result of applying scaling and cropping to
a picture.

Note that “resizing” does not always mean “shrinking”, even in a GD context. For
example, when the target platform must support touch interaction with the finger, or
possess a lower pointing resolution, some graphical objects may need to be enlarged.

4. Effective knowledge for Graceful Degradation

 76

Figure 4-3 Resizing rule applied in combination with image cropping

One interesting method to address resizing has been proposed by Dragevic et al.
[Drag05]. Their technique, called “artistic resizing” allows designers providing various
versions at a given graphical object, at different key sizes, using their usual drawing
environment. The system then interpolates the resizing behaviour of the object between
these key sizes, while taking into account the need to apply deformations to objects in
order to create an illusion of smooth resizing.

4.1.2.b.2 Modification rules

Modification rules act upon the appearance of a graphical object. The physical rendering of
a semantic feature can be modified (e.g. the notion of ‘emergency’ could be represented
by the red colour on a workstation and by a flickering on a mobile phone), or the font of
a text, or the colour of an object.

Modification of the fonts is sometimes imposed by the fonts available on the target
platform: mobile devices often own a very limited set of native fonts.

Similarly, modification of the colours is unavoidable when a smaller number of colours
or grey scales is supported by the target platform. Furthermore, ergonomic guidelines fix
a maximum number of colours per screen, in order to improve legibility. Switching
colours also permits respecting platform specific colour conventions (linked to a given
operating system, for instance).

4.1.2.b.3 Substitution rules

Substitution rules replace a graphical CIO by an alternate interactor that enables the same
type of functionalities. A substitution rule can be activated for two reasons:

 Unavailability: when a graphical object is no longer available on the target
platform, it has to be replaced by another one which is available on the target.
For example, check boxes and radio buttons, non existing in WML language for
mobile phones, are replaced by a list, as illustrated on Figure 4-4.

4. Effective knowledge for Graceful Degradation

 77

Figure 4-4 Component replacement due to unavailability

 Screen size inadequacy: when a graphical object does not fit in the target platform
because it takes too much screen size and when it is not possible anymore to
resize it, it should be replaced. For example, Figure 4-5 shows possible
substitutions for an accumulator, an interactor transferring items from the left list
of possible values to the right list of accumulated selected items, thus allowing
multiple selection among a closed list of items. In a first stage, the accumulator
can be replaced with a smaller version of the same object (with the transfer
buttons labels being reduced). In a second stage, when the accumulator is no
longer affordable, the use of other interactors supporting multiple selection tasks
has to be considered: a group of check boxes, a list box containing check boxes, a
simple listbox or a list restricted to merely one item in the extreme case. Similarly,
Figure 4-6 shows a set of substitutions for a simple choice task.

Add all >>

Add >

<< Remove all

< Remove

>>

>

<<

<

>

<

Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Item 7

Item 1
Group box

Item 1
Item 2
Item 3
Item 4

Item 5
Item 6
Item 7
Item 8

Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Item 7

Figure 4-5 Candidate interactors for multiple choice

Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Item 7

Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Item 7

Item 1

Group box
Item 1
Item 2
Item 3
Item 4

Item 5
Item 6
Item 7
Item 8

Item 1
Item 2

Item 3
Item 4

Item 5
Item 6

Item 7

Figure 4-6 Candidate interactors for simple choice

4. Effective knowledge for Graceful Degradation

 78

Different types of substitution can be performed:

 Simple substitution (1→1): a graphical object x on the source platform is replaced
by a graphical object y on the target platform.

 Merging (N→1): a set of graphical objects on the source platform is replaced by a
single a graphical object on the target platform. E.g. a set of check buttons can be
regrouped into an accumulator.

 Splitting (1→N): a single graphical object on the source platform is replaced by a
set of graphical objects on the target platform. E.g. a tabbed panel could be
replaced by a set of hyperlinks.

 Composite substitution (N→M): a set of graphical objects on the source platform is
replaced by another set of graphical objects on the target platform. E.g. a group
of N action buttons is replaced by a menu and N menu items (for example, if the
methods launched by the buttons correspond to subtasks of the same mother
task in the task model, or belong to the same class of the domain model). Figure
4-7 shows an example of composite substitution that replaces a sequence of edit
fields and their associated labels by a single edit field and a combobox permitting
the selection of each of the labels in turn.

Figure 4-7 Interactor substitution: example of composite substitution

Not all alternatives have the same usability in a given context:

 Not all interactors are as easy to manipulate on a given platform. For example, a
checkbox is difficult to select on touch screen platforms because of the
dimension of the fingers.

 Some interactors offer better visual guidance for a given type of task. For
example, an accumulator clearly denotes a multiple selection task whereas a
simple listbox does not indicate whether multiple choice is allowed nor how to
achieve this task. Only experienced users will know that they have to press a
special key in order to select multiple items.

 Depending on the number of available choices, some interactors seem to be
more appropriate than others. For example, ergonomics rules generally state that
a group of checkboxes should be limited to 7 items in order to optimize the
legibility, whereas an accumulator is perfectly suitable for higher cardinality.

4. Effective knowledge for Graceful Degradation

 79

As mentioned above, interactor substitution rules can also be defined at the FUI level.
However, rules applied on a FUI are platform specific: a separate set of transformations
has to be defined for each pair of platform. On the other hand, the use of a model-based
approach allows us to define platform independent substitution rules. These substitution
rules presuppose the availability of a description of the interactors on the source and
target platform following the format we have proposed in section 3.7.3.

The rules are to be applied as a 2 step process:

(1) When a given graphical CIO is not available or suitable on a given platform, select
a graphical CIO linked with the same extended AIO in the interactor model. For
example, substitution of a Button by a MenuItem: these graphical CIO's are both
linked to the Extended AIO “ActionItem”.

(2) When there is no suitable graphical CIO linked to the same Extended AIO, select
a CIO linked to another Extended AIO that supports:

- A supertype of the original task type e.g., an Extended AIO supporting a
selection task can always be replaced by another Extended AIO
supporting a specification task (see Figure 4-8).

Figure 4-8 Substitution rule (1)

- And/or a supertype of the original abstract data type e.g., if we consider
that a season is a subtype of the string data type, then we can replace a
Season Selector by a Text Selector (see Figure 4-9).

Figure 4-9 Substitution rule (2)

- And/or data types corresponding to the decomposition of the original
data type into simpler data types (and conversely) e.g., substitution of a
Date Inputter by a Month Inputter, Day Inputter and Year Inputter
(Figure 4-10). This kind of substitution has of course more visual impact

4. Effective knowledge for Graceful Degradation

 80

on the UI and is more likely to disturb users switching from the version
of the interface on the source platform to the version of the interface on
the target platform (less cross-platform consistency).

Figure 4-10 Substitution rule (3)

Both the mapping of the CIO to the domain model and the behaviour specification are
kept constant.

4.1.2.b.4 Removal rules

Finally, the last type of GD rule that can be applied to graphical CIO's are removal rules,
that merely delete a graphical object, due to space constraints on the target platform (e.g.,
removal of pictures on a mobile phone).

4.1.3 GD rules at the Abstract User Interface level

An Abstract User Interface defines grouping of tasks that have to be presented together,
in the same window or page for example. In UsiXML, the AUI is populated by Abstract
Containers and Abstract Individual Components.

Let’s consider the simple example of an information retrieval system (Figure 4-11). The
system's task structure is composed of two sequential subtasks. The first subtask is an
interactive task consisting of the insertion of the search criteria. The second subtask is an
interactive task consisting of viewing the results of the query. We can imagine several
ways to map these interactive tasks to Abstract Containers:

− Both tasks mapped to the same Abstract Container: the Abstract Individual
Components presenting the “Insert search criteria” task and the “View results” task
are grouped together.

− Each task mapped to a distinct Abstract Container: the Abstract Individual
Components presenting the “Insert search criteria” task and the “View results” task
belong to separate containers.

− The first task mapped to a first Abstract Container, plus a mapping between both
tasks and a second Abstract Container: the first container contains the Abstract
Individual Component(s) presenting the “Insert search criteria” task, while the
second container presents the “Insert search criteria” task and the “View results”
task at the same time.

4. Effective knowledge for Graceful Degradation

 81

Figure 4-11 shows two representations for these Abstract Containers. The graphical
representation on the right was produced using the graphical editor for UsiXML included
in the IdealXML tool [Mont05]. This representation shows Abstract Containers and
Abstract Components, with their facets. The representation on the left is a shortcut
notation that shows the Abstract Containers thanks to outlines drawn directly on the task
model. If we consider that a given task is always mapped to the same Abstract
Component or set of Abstract Components in the AUI model, the two notations are
equivalent.

When there are big differences between the platforms constraints (e.g. big differences in
screen size and resolution), it will not be possible to maintain the same distribution of
tasks among Abstract Containers between the system versions. For this reason, the most
useful GD rules at the AUI level split the source Abstract Container into two or more
Abstract Containers on the target platform. We call these rules splitting rules.

A possible side effect of the application of a splitting rule is the introduction of internal
redundancy within distributed versions of a system: a task mapped to one single Abstract
Container on the source platform could be mapped to two or more containers on the
target platform. Figure 4-12 shows an example of internal redundancy caused by a
platform change: the single “cancel” component on the source platform has to be
duplicated on the target platform.

Besides splitting rules, another possible adaptation technique at the Abstract UI level is
the reorganization of tasks within the same Abstract Container (modification of the spatio-
temporal relationships between the Abstract Individual Component mapped to these
tasks). The reason for internal permutation between tasks can be that we want to present
tasks in the order of frequency of each task and that we expect that a task frequency will
change on the target platform (e.g. the consultation of an address book could be more
frequent on a mobile phone than on a workstation).

4. Effective knowledge for Graceful Degradation

 82

Figure 4-11 Defining Abstract Containers for a simple information retrieval system

4. Effective knowledge for Graceful Degradation

 83

Figure 4-12 Internal redundancy due to splitting rule

4.1.4 GD rules at the Tasks & Concepts level

At the Tasks & Concepts level, GD rules can be applied to general functionalities (high
level tasks, that correspond to the user’s general goals), to the procedures that the user
must follow in order to achieve his/her general goals (low level tasks), to the temporal
ordering between tasks and to the concepts.

4.1.4.a High Level Task Deletion

A high level task present on the source version may be removed from the target version,
for different reasons:

 The task implies interaction capabilities that are unavailable or inappropriate on
the target platform (e.g. tasks involving video streaming or manipulation of
complex graphics are impossible to perform on a cellular phone, so are tasks of
data storage when the quantity of data is huge).

 The task requires resources that are very scarce on the target platform so that the
interaction could be interrupted due to lack of resources (e.g. a task manipulating
an object requiring much RAM memory).

 The task requires such interaction capabilities that carrying out this task on the
target platform could become very tedious (e.g. a task of word processing on a
PDA, although partially possible, rapidly becomes impractical due to the limited
entry capabilities like virtual keyboard or character-recognition).

 The typical context of use of the target version is inappropriate to the
performance of that task (e.g. a task of graphical edition is inappropriate in a
context where the user will be standing, when the target platform is an interactive
kiosk for example).

Cancel Cancel

Cancel

4. Effective knowledge for Graceful Degradation

 84

4.1.4.b Procedure Transformations

Another type of transformation at the Tasks & Concepts level affects the subtasks
necessary to achieve the same general functionality. Two types of GD rules modify a
system subtasks: subtasks deletion rules and subtasks insertion rules.

4.1.4.b.1 Subtask Deletion

Subtasks can be deleted for different reasons:

 Some subtasks are unnecessary on the new platform (e.g., on a platform with a
GPS system, it is no longer necessary to specify the user’s location).

 Some subtasks require too many resources with respect to the constraints of the
target platform (e.g. the cellular phone version of an information system
dedicated to theatre will still enable the general task of booking theatre tickets,
but not the subtask of viewing the free seats on a picture of the hall).

4.1.4.b.2 Subtasks Insertion

Causes for subtasks insertion involve:

 Insertion of a subtask because the target platform does not permit executing
several tasks at the same time (e.g. on a mobile phone, as it is impossible to edit
several items simultaneously, a selection task that would allow the user to choose
which item he wants to modify should be added before any edition task mapped
to more than one item).

 Insertion of a subtask because the display area on the target platform does not
permit executing the same set of tasks within one presentation only, so that the
tasks have to be split among several presentations, what may imply the insertion
of additional navigation tasks between the new presentation spaces.

4.1.4.c Temporal Ordering Transformations

Examples of GD rules modifying the temporal ordering between tasks are:

 Sequentialization of tasks when the style of interaction changes (e.g. from a direct
manipulation UI to a form-based UI). For example, Figure 4-13a depicts a task
model where the first level of decomposition is regulated by a concurrent
operator (the user can specify the payment method independently from entering
the reference of the product). In Figure 4-13b, an additional constraint is set: the
product has to be specified before entering the payment method.

 Conversely, some tasks that where sequential can become concurrent when the
style of interaction changes.

4. Effective knowledge for Graceful Degradation

 85

Figure 4-13 Example of temporal ordering transformation

4.1.4.d Concept Level Transformations

The domain model should be preserved as much as possible in order to permit
interoperability across platforms (for example, several platform specific user interfaces
should be able to share the same database). However, graceful degradation rules can
modify the view given on some concepts:

 Information can be summarized or cut;

 Some attributes can be masked;

 Alternative shorter label or titles can be chosen;

 Numeric data (for example, tables) can be replaced by graphical representations
(charts...);

 Text can be replaced by a graphical representation (icon instead of a menu item
for example).

4.1.5 Discussion

The level of the CAMELEON framework where a rule can be applied (Tasks&Concepts,
Abstract Interface, Concrete Interface or Final Interface) has not always been easy to
identify, especially when considering pictures and other graphical content. In those cases,
it is not always possible to decide whether an image is a presentational element belonging
to the Concrete Interface, or whether it is content, belonging to the domain model: for
example, resizing an image is similar to resizing a CIO, when cropping this image may be
closer to text summarization. Our intuition is that the form and presentation of non
textual elements are difficult to separate, and that the CAMELEON framework may be
less suitable for describing such elements.

4.2 Formalization

4.2.1 Introduction

The main interest of formalizing GD rules is to avoid the ambiguity that could be linked
to a description in natural language. In other words, we will make a descriptive use of the
formal notations and do not intend to use them to support the verification or validation
of the target user interfaces generated against formal properties.

4. Effective knowledge for Graceful Degradation

 86

A GD rule is as a model transformation. Each model has been described by a meta-
model (UML class diagram). Each rule can thus be described as a transformation on the
instances of this meta-model, using pre- and post-conditions on the meta-model
instances. For most of the rules (but not all), pre- and post-conditions can be expressed
easily with any language having the power of first order predicate calculus, plus some
elements of set theory.

Several formal and semi-formal specification formalisms have been considered for
specifying GD rules:

− Representation using a set of functions specified using pre- and post-conditions,
where pre- and post-conditions are expressed using predicates.

− Specification using Z schemas

− OCL

The Object Constraint Language (OCL) [OMG05] [Warm99], used to specify constraints
on UML models, has been selected because it is especially convenient for formalizing
such rules:

− The use of OCL guarantees coherence between the specification of the rules and the
class diagrams described in Chapter 3 (class names, attributes, methods, multiplicity
of associations...)

− Each class or association defined within a UML model can be referred to in OCL,
which avoid defining artificial predicates only for the purpose of formalizing GD
rules.

− Finally, OCL is an accepted standard in the UML community and is readable without
need of a strong mathematical background.

An overview of OCL’s main concepts can be found in Annex D.

4.2.2 Specification of GD rules in OCL: examples

Specifying GD rules with OCL is quite straightforward. Each rule can be specified
directly in UsiXML's meta-model. Of course, some rules that can not be executed
automatically without intervention of the designer (for example, deleting a task), can not
either be given a formal specification. For each GD rule to specify, a corresponding
UML operation is inserted in the class diagram, using the oclOperation stereotype. This
operation is added into a class corresponding to the rule's source element. If a rule has
several source elements, or makes use of several constructs in UsiXML's meta-
description, the additional method is inserted into the most convenient host class. Let us
examine some examples of how GD rules can be described in OCL.

4. Effective knowledge for Graceful Degradation

 87

Example 1: formalization of the FontSizeReduction rule

The font size reduction rule modifies objects of the class graphicalCio (see above). The
OCL description of this rule consists merely in putting conditions on the textSize
attribute:
rule name FontSizeReduction
context graphicalCio::fontSizeReduction()
pre textSize > 6
post textSize < textSize@pre

textSize >= 6

Example 2: formalization of the SimpleInteractorSubstitution rule

After the very simple example above, let us examine a more complex rule involving
several associated classes, belonging to different “models” of the UsiXML description.
The interactor substitution rule is applied on graphicalCIO's belonging to the CUI model
and uses:

− Several classes from the Interactor model.

− Mappings between graphicalCIO's and their description in the Interactor model.

The simple interactor substitution consists in replacing a graphicalCIO with another
graphicalCIO reifying the same extendedAIO. For example, a ListBox could be replaced
by a Combobox, as both reify the MultipleTextChooser extendedAIO. This is translated
into an OCL post-condition that checks whether the two graphicalCIO’s (before and
after the substitution) are different and are reifications of the same extendedAIO.

If the interactor on the source platform is an “ambiguous” graphical CIO, which may
correspond to several extendedAIO's, the simple interactor substitution rule can not be
applied directly (hence the rule's precondition). For example, a Combobox can be

4. Effective knowledge for Graceful Degradation

 88

abstracted into a SimpleTextChooser, but also into a MultipleTextChooser. Do we have
to select a target interactor reifying SimplestTextChooser or MultipleTextChooser? This
question can not be answered without examining the structure of the extendedAIO (its
facets). On the contrary, the rule applies to graphicalCIO's whose abstraction(s) do not
possess facets (e.g. Separators).

rule name SimpleInteractorSubstitution
context graphicalCIO::simpleInteractorSubstitution()
pre graphicalCIO.graphicalCIOdescription.extendedAIO -> size = 1
post graphicalCIO.graphicalCIOdescription.extendedAIO ->

includesAll(graphicalCIO.graphicalCIOdescription.extendedAIO@pre)

and

graphicalCIO <> graphicalCIO@pre

Example 3: formalization of the InteractorSubstitutionAtFacetLevel

When simple interactor substitution can not be applied, or do not produce satisfying
results, interaction substitution has to be performed at the facet level i.e. substitution by a
CIO linked to another Extended AIO

− that supports a supertype of the original task type (first term of the post-condition),

− and/or a supertype of the original abstract data type (second term of the post-
condition).

4. Effective knowledge for Graceful Degradation

 89

Subtyping is evaluated using the oclIsKindOf OCL operation. The rule only applies to
interactors possessing at least one central facet (precondition).
rule name InteractorSubstitutionAtFacetLevel
context graphicalCIO::InteractorSubstitutionAtFacetLevel()
pre graphicalCIO. graphicalCIOdescription.extendedAIO.facet -> exists

(isCentral=true)
post (graphicalCIO@pre. graphicalCIOdescription.extendedAIO.facet.taskType ->

select (tt_source: taskType | isCentral=true)) -> forAll (graphicalCIO.
graphicalCIOdescription.extendedAIO.facet.taskType -> exists((tt_target:
taskType | tt_source.oclIsKindOf(tt_target))

and

(graphicalCIO@pre. graphicalCIOdescription.extendedAIO.facet.
abstractDataType -> select (adt_source: abstractDataType | isCentral=true) ->
forAll (graphicalCIO. graphicalCIOdescription.extendedAIO.facet.taskType ->
exists(adt_target: abstractDataType | adt_source.oclIsKindOf(adt_target))

and

graphicalCIO <> graphicalCIO@pre

The largest part of the rules catalogue remains unformalized yet, but these few examples
permit demonstrating how formalization could be achieved. Nevertheless, the exercise is
tedious, and the majority of the rules could have been expressed more quickly and
effectively by using pseudo-code.

4.3 Discussion and conclusion

The above discussion of GD rules remained at the rather comfortable level of individual
rules. However, rules are not independent: they are used in combination with other rules,
and the application of one rule may have an effect on other rules.

Several types of relationships between rules could be listed:

− Priority/ordering: Which rule should be considered firstly when designing a new UI?
Which sequence of rules should be applied afterwards? These questions will not be
answered in this thesis, where we have considered that the responsibility for selecting
and ordering rules was left to the human designer. A possible solution for improving
this situation should be to analyse the practices of designers experimenting with the
tools described in Chapter 6 and to describe the observed sequences of applied GD
rules in terms of “frequently used transformation scenario’s”.

− Entailment: The application of some rules may trigger the need to apply other rules.
For example, deleting an element of the UI is likely to be followed by the application

4. Effective knowledge for Graceful Degradation

 90

of a moving rule in order to avoid unnecessary blank spaces or to preserve the
alignment of graphical components.

− Exclusion: Conversely, the application of some rules can make other rules inapplicable
or useless. For example, if several CIO’s of the source platform are merged into a
single CIO on the target platform, it is not possible anymore to split between the
original CIO’s. Or, more generally, if a given transformation has generated an
acceptable target UI, the application of additional GD rules may be less useful.

Another important issue for GD rules is their impact on the usability of the UI. GD
rules are not supposed to “degrade” the ergonomics of the source user interface; instead,
they are expected to solve some usability problems that would have occurred on the
target UI if no adaptation had been performed. For example, repositioning content into
one single column may avoid horizontal scrolling, while applying a splitting rule may be a
solution to an excessive vertical scrolling depth. Applying a rule has also side effects: for
example, splitting may cause a lost of contextual information, resizing fonts has an
impact on the text’s legibility,...

Foreseeing and describing the relationships between rules and their impact on
ergonomics is difficult, if not impossible, due to the number of factors influencing the
usability of a user interface and to the potential combinatorial explosion when a large
number of rules are considered. Such information is not an absolute requirement for a
human-controlled application of the rules, at design time, as envisioned in this thesis: the
knowledge base of GD rules described in section 6.1 contains some directions on the
links between rules and on the advantages and disadvantages of these rules, but the tool
supporting the semi-automatic application of the rules (section 6.2) does not. Rather than
trying to describe completely and precisely the effects of a rule, we could imagine
enhancing the last tool with an automatic usability evaluation component, that would be
called iteratively to analyse the target UI’s ergonomics and make recommendations on
the next rule or set of rules to apply.

Most of the rules presented above were taken from the HCI literature, in order to gather
a maximum of transformations that could be automated, even if non-automatable rules
were also collected. There is no pretension to completeness in this description, but a
mere attempt to clarify the notion of GD rule by exploring which components of a user
interface can be subject to modification when a design is adapted to a more constrained
platform. Likewise, the classification of the rules using the CAMELEON framework was
merely theoretical: we found that, in most cases, this framework helped us structuring
our descriptions and understanding the transformation processes. The decision of
classifying a rule into one abstraction level or another might have an impact on the
implementation, if we chose to perform graceful degradation as a composition of
translation (“horizontal” transformation at the level where the rule has been classified)
and reification. Actually, as will be seen in section 6.2, we opted in favour of an
implementation at the CUI level for all rules, while taking advantage of the information
of models at higher abstraction levels, when these models are available. This solution

4. Effective knowledge for Graceful Degradation

 91

permits circumventing the additional difficulties of reifying specifications starting from
the AUI or Task& Concepts level, instead of starting from the CUI level, and of
maintaining the consistency between the various layers of the target UI specification (the
only model produced for the target platform is a CUI).

We also observed that most of the rules can not be easily specified declaratively. As no
assumption was made on the better way to achieve model transformations, having only a
procedural description of most of the transformation rules is not a problem. However,
the difficulty of specifying rules declaratively and even, in some cases, of giving a
procedural specification, may indicate that the approach is not suitable for complex
problems such as complex layout adaptation.

5. Multilevel application of rules: example of the splitting rule

 92

Chapter 5 Multilevel application of
rules: example of the splitting rule

This chapter is dedicated to a detailed presentation of the splitting rule, which permits paginating
content [Flor06]. Pagination is perhaps the most difficult and significant step of the whole graceful
degradation process. Splitting generates important changes into the very structure of the UI, has an
important influence on the quality of the final results, and is appreciated by users that consider it as
one of the most useful GD rules [Henr04].

Automatic pagination is a complex problem that has partially been addressed in earlier work that
will be described in section 5.1. Splitting will be examined at two levels of abstraction: Concrete UI
(section 5.2) and Abstract UI (section 5.3).

5.1 State of the art of pagination techniques

Pagination has been applied in different contexts, notably for redistribution of Web content,
especially Web forms, among several pages and as a part of UIDL-based systems.

5.1.1 Pagination of Web pages

5.1.1.a Covigo

Covigo’s library of special tags for HTML [Mand02] implements pagination of Web pages at run-
time, using simple heuristics such as breaking every fifth <tr> or breaking by size. The size can be
retrieved from the CC/PP profile of the connecting device. The content outside the paginated
body is repeated for each page (i.e. headers, footers, etc).

5.1.1.b RIML

Similarly to the previous approach, the mark-up language RIML [Spri03], which relies on XHTML
and XFORMS for content definition, has defined separate, additional mark-up for specifying
layout and pagination capabilities. The new mark-up delimits sections, which are the interface’s
building blocks, and associated containers. Each container can be specified as a paginating
container. After pagination, the sections that belong to a paginating container can be distributed
over different pages, while the content of non-paginating containers will be repeated on each
resulting page. A special section contains the navigational elements to include in every paginated
page when pagination occurs.

5.1.1.c Watters and Zhang

Unlike the two first approaches, Watters and Zhang [Watt03] can process any pre-existing HTML
form, and not only newly created page specifications. Their algorithm segments forms into a

5. Multilevel application of rules: example of the splitting rule

 93

sequence of smaller forms, using partition indicators such as horizontal lines, nested lists and
tables. Of course, grouping directives induced from the “partition indicators” within the code are
less accurate than they would have been in an explicit specification. Complex layout relationships
(e.g. use of tables for layout purpose) will probably constitute a bottleneck for such approaches.

5.1.1.d Chen et al.

Splitting pre-existing Web pages is also the concern of Chen & al. [Chen05]. Their technique
consists of three steps. First, the high-level content blocks typical in current Web site designs
(header, footer, sidebars, and body) are identified by analysing the position and dimension of the
nodes in the HTML DOM tree. Afterwards, each block can be further partitioned by detecting
“explicit separators” i.e., tags such as <HR>, <TABLE> or <DIV> (similarly to 5.1.1.c). The last
step consists of finding “implicit separators” i.e., blank spaces. Once the page is split into
fragments, an index page linking to each subpage is produced by generating a thumbnail image of
the original Web page, with the appropriate hyperlinks. The technique can be deployed on the
server side, proxy side or client side.

5.1.2 Pagination of content expressed in a user interface description language

The second group of approaches relies on a generic description of the user interface in a higher
level language, instead of HTML.

5.1.2.a Pagination with DDL

Göbel et al. [Göbe01] use an XML-based Dialog Description Language (DDL), specially conceived
for the device-independent description of web-based dialogs. A dialog in DLL is composed of
containers and other elements (controls, images…). Containers whose elements must appear
together are declared atomic. Elements are assigned a weight indicating resource requirements in
terms of memory and screen size. The fragmentation generates fragments of balanced weights,
while respecting the integrity of atomic containers. Navigation elements are added in order to
permit navigation between dialog fragments. No indication is given on how to assign weights to
leaf elements, which is a difficult task, especially when considering multiplatform rendering.

5.1.2.b Pagination with XUL

Ye and Herbert [Ye04] apply similar heuristics on an abstract UI description in XUL. Their
algorithm exploits the hierarchy of widgets and containers, while respecting the value of a
“breakable” attribute attached to each component, which has to be explicitly provided by the
designer.

5.1.2.c PIMA

The PIMA system [Bana04] also relies on a unique high level description, which is then converted
into multiple device-specific representations. This conversion includes a splitting process. As in
other approaches, PIMA's algorithm uses grouping constraints defined at the generic description
level as well as size constraints. An interesting feature of PIMA is to take into account the
navigation and the possibility to apply distinct navigation policies between screens resulting from a
splitting process: creation of a fully connected navigation (e.g., tabbed windows), of a linear
navigation (e.g., forward and back buttons), etc.

5. Multilevel application of rules: example of the splitting rule

 94

5.1.2.d ROAM

While the fragmentation methods enumerated so far were mostly working on a hierarchy of
interface components (i.e. on elements related to the presentation of the user interface), the
splitting algorithm of the Roam system [Chu04] takes as input a structure combining a task model
and a layout structure. Roam’s splitting algorithm is only a small part of a general transformation
algorithm which adapts a presentation specified for the device with the largest display device for
use on smaller devices, while taking into account layout specifications. No scrolling is allowed in
the generated pages. Again, the splitting algorithm works on a tree structure whose nodes can be
annotated as splittable or not. It does not intend to find the best place to split but merely places the
extra widgets that can not fit in a page on a new page. Navigation between the new pages is also
generated. The navigation policy is determined by the target device: on a Pocket PC, a “page
selection” menu item is added to the menu bar and on a cell phone, a page containing the selection
menu is added, and all other pages provide a link to this menu page.

In comparison, our own splitting rules will be:

− Generic: GD rules rely on UsiXML and are not tied to a given technology at the Final UI level,
so that we will not have to write a separate set of algorithms for HTML pages (like [Mand02],
[Spri03] or [Watt03]) and another one for AWT/Swing windows, for example. The use of
UsiXML also avoids the need to introduce another mark-up language specially designed for
supporting pagination, or additional language constructs, unlike RIML.

− Fully controlled by the developer. With the exception of RIML, which allows some customization of
the size limit applied to generated pages, all the approaches described above are fully automatic;
no human control is foreseen.

− Task driven. Information on “breakable” or “splittable” fragments ([Göbe01], [Spri03], [Ye04],
[Bana04], [Chu04]) is useful, but not very rich semantically. When higher level specifications,
especially tasks models, are available (like in ROAM), these specifications must be used to
refine the splitting process. In particular, the temporal relationships between tasks must be
used.

− Able to adapt the dialog (i.e.; the transitions between containers) in a flexible, customizable way.
When they do not merely evade the problem of the dialog between the newly created fragments
([Ye04]), most of the splitting approaches only consider one possible kind of transition (the
basic next-previous navigation, or the indexed navigation). A notable exception is PIMA which,
nevertheless, does not seem to exploit the whole range of navigation possibilities.

5.2 Splitting at the Concrete UI level

Not all the layers of UsiXML are mandatory in a UI specification. In the simplest case, we suppose
that the designer has just produced a description of the Concrete User Interface (CUI).

Different constructs in the CUI model of UsiXML can be used for pagination purposes:

− The layout of each graphical container (window, dialog box…) is specified using embedded
boxes. Those boxes are declared as splittable or not, which is the basic ingredient for
pagination.

5. Multilevel application of rules: example of the splitting rule

 95

− Each container and each component of the CUI is marked as pageable or not. Pageable
components can be distributed between the graphical containers created during the splitting
process, while non pageable components have to be present in each fragment. For example, a
menu bar or a widget permitting to logout from the system could constitute non pageable
components, because their presence in each container is useful.

− Transitions can be specified between each pair of containers.

Implementing splitting rules starting from such a model is quite a straightforward process: the
splittable attribute indicates where to split, and the pageable attribute indicates which elements will
be duplicated. When several boxes are splittable, the outermost box is chosen.

Each execution of our splitting rules is fully controllable and configurable by the designer. The
parameters taken into account by the algorithm are:

− The number of graphical containers (windows...) at output. By default, we take the number of
boxes directly embedded into the main container (level 1–boxes).

− The content of the n graphical containers at output. By default, we take the content of each
level 1–box, but the designer is allowed to select content by drag-and-drop.

− The names assigned to each graphical containers at output, which will be used as windows titles
and for widgets pointing to these interactive spaces. By default, names are automatically
generated by suffixing the original name.

One last parameter, namely the type of transitions generated between the new graphical containers,
deserves a little more explanation.

As the dialog model of UsiXML does not possess a graphical representation yet, we will represent
the behavioural aspects as statecharts. We have considered four types of transitions between the
graphical containers generated by the splitting algorithm (hereafter target containers):

− Linear navigation (Figure 5-1) establishes transitions between one target container and another
container considered as its successor. It is typically realized with “next-previous” links or
buttons. This type of navigation offers the most guidance to the user. Linear navigation is
unidirectional (for example, “next” links only) or bidirectional (going backward is allowed).

− Indexed navigation (Figure 5-2) establishes transitions between a newly created container, the
index, and each target container. Unidirectional indexed navigation provides only transitions
from the index to the other containers; while bidirectional indexed navigation offers transitions
in both directions.

− Mixed navigation (Figure 5-3) is a combination of linear and indexed navigation.

− Fully-connected navigation (Figure 5-4) links each pair of target containers. This type of navigation
is the least restricting for the user. It is typically rendered as a tabbed panel.

5. Multilevel application of rules: example of the splitting rule

 96

Figure 5-1 Unidirectional/bidirectional linear navigation

Figure 5-2 Unidirectional/bidirectional indexed navigation

Figure 5-3 Unidirectional/bidirectional mixed navigation

Figure 5-4 Fully-connected navigation

The splitting algorithm has been integrated in a GD plug-in for the GrafiXML environment
(section 6.2). In the GD plug-in, the application of the splitting rule is under the control of the
designer. He/she can parameterize the rule, apply it, preview the results, and compare alternatives.
He/she is given guidance thanks to the knowledge base of rules linked with the tool (section 6.1).

5.3 Splitting at the Abstract UI level

Until now, we have supposed that the designer has just produced a description of the Concrete
User interface. Let’s now consider the scenario where a task model and an Abstract user interface
have been produced. In that case, we can use the high level information from the task model to
refine our algorithm.

5. Multilevel application of rules: example of the splitting rule

 97

5.3.1 Preliminaries

The CTT-based task model of UsiXML described in 3.2 is thus a hierarchy of tasks, where each
task can be decomposed into two or more subtasks. A task T can be declared as optional ([T]) or
iterative (T*). Sibling tasks, appearing at the same level in the task hierarchy, are connected by
temporal/logical operators:

− Choice T1 [] T2: exclusive choice between T1 and T2.

− Order independency T1 |=| T2: T1 and T2 can be performed in any order.

− Independent concurrency T1 ||| T2 and Concurrency with information exchange T1 |[]| T2:
T1 and T2 can be performed in any order. We shall call these operators “concurrent
operators”.

− Disabling T1 [> T2 and Suspend-resume T1 |> T2: T2 disables/interrupts T1.

− Enabling (T1 >> T2) and Enabling with information passing (T1 []>> T2): T1 and T2 are
executed in sequence. We shall call those operators “sequential operators”.

There is a priority ordering between the temporal operators. Figure 5-5 shows the list of operators
sorted by decreasing order of priority. The order is as follows:

(1) Unary operators: iteration (T*), finite iteration (T(n)) and optional ([T]).

(2) Deterministic (T1 [] T2) and non-deterministic choice (T1 π T2).

(3) Order independency (T1 |=| T2).

(4) Independent concurrency (T1 ||| T2) and concurrency with information exchange (T1
|[]| T2).

(5) Disabling (T1 [> T2) and suspend-resume (T1 |> T2).

(6) Enabling (T1 >> T2) and enabling with information passing (T1 []>> T2).

Figure 5-5 Priority ordering between the temporal operators in the task model

An easy way to cope with the priorities among these temporal operators is the priority tree
technique used in [Luyt03b]. A priority tree is a view on a task model (originally a CTT task model),
with the same semantics as the original task model, but where all the temporal relations at Figure
5-6 shows, at the left hand side, a CTT/UsiXML task model in an arbitrary form and at the right
hand side, the priority tree generated from the first representation.

5. Multilevel application of rules: example of the splitting rule

 98

Figure 5-6 A task model and its priority tree representation

As explained above (3.4), an Abstract User Interface describes how the tasks contained in the task
model will be grouped together within a presentation (window, panel of a tabbed panel, dialog
box). Task groupings, although expressed at a modality and interactor independent level, are highly
dependent on the available display area, and thus on the computing platform: intuitively, we
understand that a set of tasks presented together in the same window on a desktop computer will
not always be kept together on the PDA version of the user interface.

In UsiXML, an AUI consists of Abstract Containers, or interaction spaces, whose components are
mapped to tasks of the task model. In this chapter, we will rely on the shortcut representation of
interaction spaces which consists of drawing contours directly on the task model, instead of
presenting a task model, an AUI model and a mapping model separately.

We consider that all tasks mapped to components of an interaction space are leaf tasks, because
only leaf tasks will be directly reified in the concrete presentation.

Which groupings of tasks form a correct interaction space? There is probably no good answer to
that question since the constitution of the interaction space is often a human activity that depends
on the designer’s experience and practices. Research has shown that it is possible to generate
correct presentation units from a task model and a domain model. For example, the CTTE case
tool generates “Enable Tasks Sets” (ETS) i.e. sets of tasks that are enabled in the same slice of
time. A recent version of this algorithm can be found in [Luyt03b]. [Pate00] also describes
heuristics to group ETS. However, the ETS algorithm and the grouping heuristics are definitely
unable to produce all the correct interaction spaces. As our objective is translation, we will assume
that every interaction space on the source platform is well-formed because it was produced by a
human designer.

Translating at the abstract interface level may imply modifications in the distribution of tasks
among interaction spaces. Not all transformations are correct and the correctness of a
transformation is linked with the temporal operators between the tasks within the task model. We
have built our transformation algorithm inductively, starting from small examples of tasks models

a) Task model with arbitrary form b) Same task model viewed as a priority tree

5. Multilevel application of rules: example of the splitting rule

 99

together with the interaction space that could be acceptable for these tasks models. As we do not
define what a well-formed interaction space is, we are also unable to prove theoretically the
correctness of our translation rules, but we have tested our algorithm on a battery of examples. A
better evaluation could have been provided by comparing the results of the algorithms with the
designs produced by human designers asked to manually split a source interface.

At this level, we will adopt two simplifying hypothesis:

 We will work with constant tasks sets: we consider that all the tasks will be present both on
the source platform and on the target platform

 We do not consider duplicated tasks. Duplicated tasks are tasks with the same identifier
appearing at different places in the task model. They can be used to express recursion, if
one task is inserted in a subtree originated by a task with the same identifier. Although
allowed by the CTT environment, those situations are not very frequent.

5.3.2 Principles

At the AUI level, our splitting algorithm relies on a few principles, detailed hereafter.

►Principle 1: An interaction space can be split at the level of a sequential operator.

“Splitting at the level of operator Op” means that all the tasks (and their descendants) to the left of
Op which belonged to the source interaction space will be assigned to target interaction space 1 (IS-
target1) and that all the tasks (and their descendants) to the right of Op which belonged to the
source interaction space will be assigned to target interaction space 2 (IStarget2). Unlike generative
approaches such as Paterno’s ETS algorithm [Pate00], we do not consider that sequential tasks are
automatically assigned to different interaction spaces. This decision should remain the
responsibility of the designer to preserve human control and flexibility. Presenting sequential tasks
in the same interaction space can make sense, especially when those sequential tasks decompose a
higher level task which has to be accomplished iteratively.

(a)

5. Multilevel application of rules: example of the splitting rule

 100

(b) (c)

Figure 5-7 Task model for a simple IR system, with different distribution of tasks among interaction spaces

Let's consider again the example introduced above and reproduced on Figure 5-7a.

In this simple information retrieval system, a designer could choose to place the two sequential
tasks Insert search criteria and View results into the same interaction space, if the screen space is
unconstrained (Figure 5-7). If a new version of the user interface has to be conceived for a
platform with less display capabilities, pagination could be operated at the level of the sequential
operator, creating the two interaction spaces in Figure 5-7c.

►Principle 2: When an interaction space includes several sequential tasks, split before the first
optional task in the sequence.

Where the optional task is not actually carried on, the user will not even have to navigate to the
second interaction space. For example, let us consider the extension of the previous task model
reproduced in Fig. 9. The View results task now consists of three subtasks: the first subtask displays
the full list of results generated by the request to the information system; the second subtask is a
selection task that focuses on one of the displayed results; and the last subtask is an optional task
which displays a complete description of the selected item. Again, in a first, unconstrained version
of the specification, the designer could choose presenting all tasks in the same interaction space
(Figure 5-8a). If we now determine the best place to operate pagination, we will notice that here,
obviously, the best design solution is to split the source interaction space before the optional task
View items details, generating the target interaction spaces of Figure 5-8b. By the way, splitting
between two tasks linked with the same component of the AUI is not allowed: it would not make
sense to split between View list of items and Select items.

5. Multilevel application of rules: example of the splitting rule

 101

(a) (b)

Figure 5-8 Splitting an interaction space containing a sequence of tasks, one of them being an optional task.

►Principle 3: When it is not possible to split an interaction space at the level of a sequential
operator, split at the level of a concurrent, order independency or choice operator (|||, |[]|, |=|, [])

The temporal operators with a lower priority are considered first. Splitting at the level of an
interrupting or disabling task is not allowed: splitting at the level of one of the four operators above
introduces constraints that were not present in the task model, and splitting at the level of a
sequential operator should always be preferred when possible. Figure 5-9 shows the example of a
(very) small task model which consists of the higher level task Insert personal data and its two
concurrent subtasks Insert identity and Insert address. The initial interaction space contains both
subtasks (Figure 5-9a). Splitting separates those two subtasks (Figure 5-9b).

(a) (b)

Figure 5-9 Splitting an interaction space at the level of a concurrent operator

►Principle 4: When splitting rules can be applied at distinct levels in the task hierarchy, split at the
highest level.

The rationale behind this principle is that tasks at a lower level in the task tree will be more closely
semantically linked than tasks at a higher level. For example, let us consider the task model in
Figure 5-10, a more complete version of the previous example. On the first, less constrained
platform, the designer could place all the tasks together (Figure 5-10a). If less space is available, the
best place to operate pagination, obviously, is to split the source interaction space at the highest
level in the hierarchy, generating the target interaction spaces shown on Figure 5-10b. This
transformation preserves the integrity of the Insert identity and Insert address tasks: their subtasks,
which were considered by the designer as tied enough to form concepts, are maintained together.

5. Multilevel application of rules: example of the splitting rule

 102

(a)

(b)

Figure 5-10 Splitting an interaction space containing concurrent tasks at different level in the hierarchy

►Principle 5: When splitting in the scope of an operator with a higher level of priority, a
distribution of tasks amongst target interaction spaces has to be operated.

Let us consider the small extension to the previous example as reproduced in Figure 5-11. If we
naively split at the level of the sequential operator as described above, we will obtain a first
interaction space IS1 = (Insert name, Insert first name) and a second interaction space IS2 = (Insert
street, Insert number, Insert city, Insert country, Cancel). Such a transformation introduces a
discrepancy between source and target platforms since it is not possible anymore to access the
disabling Cancel task when performing the Insert identity task on the target platform: the user has to
realize entirely the Insert identity task, and then he/she should access the second interaction space
where the Cancel task is available. This kind of design introduces a usability defect and can be
frustrating for the user, especially when long tasks have to be achieved entirely without any
possibility of interruption. A better transformation should distribute the task to the right of the
disable operator to each target interaction space (Figure 5-11b), giving a solution with IS1 = (Insert
name, Insert first name, Cancel) and IS2 = (Insert street, Insert number, Insert city, Insert country,
Cancel). This distribution principle is now defined in the next subsection (5.3.3), along with the
complete description of the algorithm based on this principle.

5. Multilevel application of rules: example of the splitting rule

 103

(a)

(b)

Figure 5-11 An example of distribution of a disabling task

5.3.3 Description of the algorithm

Our algorithm requires at input a subset of tasks of the task model, viewed as a priority tree. This
subset of tasks, or Source interaction space (hereafter: ISsource) contains the leaf tasks that are
mapped to the components of an abstract container that the designer has decided to split. ISsource
is a list (T1,…, Tn) where

− T1,…, Tn are leaf tasks in the task model.

− (T1,…,Tn) is a subsequence of the list (Ti,…,Tj) formed by the leaf nodes in the task model
arranged as an ordered tree.

Until the interaction space is split and unless there are no more operators to go through:

1. We try to split at the level of a sequential operator

1.1. If there is an optional task in the sequence, we split before this task.

1.2. Else

1.2.1. We look for the first suitable sequential operator where to split. “First” means “at the
highest level in the task hierarchy” and “suitable” means that splitting at that place would
generate non empty target interaction spaces, well balanced in terms of number of tasks.
We search the task tree applying a breadth-first strategy, starting from the task that is the
lowest common ancestor of the tasks forming ISsource.

5. Multilevel application of rules: example of the splitting rule

 104

1.2.2. If such a sequential operator is found, the source interaction space is then split into
two temporary target interaction spaces IStarget1 and IStarget2. Let T1 and T2 be the two
tasks in the task model linked by the operator where we have decided to split. IStarget1 will
contain the first part of ISsource, delimited by T1 if T1 is a leaf task, its right-most
descendant otherwise. IStarget2 will contain the remainder of ISsource.

1.3. We then apply distribution rules.

2. When it was not possible to operate sequential splitting, we then try to split at the level of
another operator.

2.1. We look for the first suitable operator where to split.

2.2. If such an operator is found, the source interaction space is then split into two temporary
target interaction spaces.

2.3. We then apply distribution rules.

Distribution rules are applied when splitting occurs between two tasks T1 and T2 that remain in
the scope of a temporal operator with higher priority (following the priority ordering of Figure
5-5). By construction, splitting always occurs between sister tasks in the priority tree. Let T1 and T2
be two sister tasks, linked by temporal operator Op1. T1 and T2 are in the scope of temporal
operator Op2 iff an ancestor of T1 and T2 is linked by a temporal operator Op2 to a given task T3.
If Op2 has a higher priority level than Op1 and T3 has descendants in ISsource, then distribution
must be applied.

Figure 5-12 Scope of a temporal operator: illustration

Distribution consists in appending to the right of IStarget1 the descendants of T3 that belong to
ISsource and appending to the left of IStarget2 the descendants of T3 that belong to ISsource.

The algorithm starts by distributing at the level of the mother of T1 and T2, and then the upper
levels are successively considered, until reaching the level of the lowest common ancestor of all
tasks in ISsource.

5. Multilevel application of rules: example of the splitting rule

 105

5.4 Conclusion

When applied at the CUI level, the algorithm proposed is quite classical. Nevertheless, it goes
further than state-of-the art approaches listed in section 5.1.

Our approach is original in that it invokes the UI description at several levels of abstraction taking
them into account when available. As far as we know, no similar attempt exists today that exploits
information from the AUI and task levels to improve the splitting process.

In the future, improvements could be made to the algorithm. Information from the domain model
could be used, in order to check which tasks manipulate the same concepts or have some concepts
in common: these tasks should be preferably grouped together. Other criteria could be used, such
as the balance in terms of cognitive load of each target interaction space (the cognitive load of each
target interaction space should be similar). The cognitive load of a task could be approximated by
the number of concepts manipulated by that task. The number of different objects, classes and
relationships from the class diagram manipulated by a task could also have an influence on its
cognitive load. Also the balance in terms of display area between the target interaction space or the
ratio between display size and available screen size on the target platform seem obvious criteria to
take into account. The exact display area required by a task can not be determined from the UI
specification only, but it could be approximated by analysing the components of the CUI mapped
to the task.

6. Tool support

 106

Chapter 6 Tool support

GD rules are meant to be applied either manually, by a human designer seeking guidance
on how to adapt a UI to a more constrained platform, either automatically. In the first
scenario, the designer needs to have an easy access to a structured set of transformation
rules. For this reason, we have gathered a collection of rules in a knowledge base
described in section 6.1. In the second scenario, the GD rules should be applied to a
UsiXML specification. A prototype for supporting the automatic application of the rules
is presented in section 6.2.

6.1 A knowledge base of GD rules

In Chapter 4, we presented a classification of GD rules. The rules introduced there were
very general and some of them were not directly usable. For example, at the Concrete
User Interface level, we identified a “moving rule”. However, this kind of rule is neither
useful to a human designer, neither directly automatable. In order to identify more
precise, working rules, a second exploratory study has been carried out, notably by two
students during their master thesis, and the catalogue of rules has been extended until
becoming a paper document of 200 pages [Henr04] where, for example, the “moving
rule” has been broken up into 10 rules with a more precise definition, as shown on Table
6-1.

Vertical repositioning
R1. Vertical repositioning of elements in one or more columns
R2. Vertical repositioning with a column length constraint
R3. Justified vertical repositioning
R4. Centred vertical repositioning
R5. Vertical repositioning with indentation
R6. Balanced vertical repositioning
Horizontal repositioning
R7. Horizontal repositioning with a row length constraint
R8. Justified horizontal repositioning
R9. Centred horizontal repositioning
R10. Balanced horizontal l repositioning

Table 6-1 Decomposition of the moving rule

This second stage of the gathering of rules raised two questions:

 What makes up a GD rule and what does not? We need to identify discriminating
criteria that will permit us to decide whether a modification between observed UI

6. Tool support

 107

on multiplatform systems would be included as a rule in the knowledge base or
not.

 The increasing number of rules has pointed out the interest to gather them in a
knowledge base. Indeed, potential use of the set of rules in traditional design
requires the rules to be given a good organization, in order to be easily retrieved
and used by a human designer. What should be the best organization for this
knowledge base? This question has not been researched until now: tools such as
SIERRA [Vand95], Sherlock [Gram00], GUIDE [Henn00] or MetroWeb
[Mari05] manage knowledge bases of usability guidelines, but no tool permits
searching information and structuring knowledge about adaptation rules.

6.1.1 Selection criteria

In order to decide what will be considered as a GD rule and what will not, we will use
several criteria:

 Reusability: only generic transformations reusable beyond a specific software or
domain will be kept. We opted for that solution in order to provide a basic set of
rules meant to apply in the broadest range of contexts, but of course this should
not prevent designers from developing their own domain specific knowledge
bases. On the other side, rules specific to a given pair of platforms or to a given
target platform will be kept (e.g. for all transformations to an interactive kiosk,
resize all widgets with a minimum of 9.12 mm or 38 x 38 pixels12).

 Good level of granularity: rules are to be precise enough. For example “move
widgets” is an indication that is neither useful to a human designer, neither
automatable, while “put all widgets behind their associated label” is a rule that
can be applied by a tool and that is more useful to a designer.

 Complexity: some transformations are both useful and reusable, but are not
inserted in the database because they introduce much more programming
complexity at the target platform side than in the original user interface.
Transformations based on complex visualisation techniques such as zooming,
fish-eye or rifling are thus deliberately excluded.

6.1.2 Structure of the knowledge base

6.1.2.a Introduction

The structure of the knowledge base will depend on the answer to two questions:

 What kind of information about a GD rule do we want to represent?

 To what kind of requests do we want to answer?

12 SDK Documentation for Windows Mobile-Based Pocket PCs, Pocket PC User Interface Guidelines,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ui_guide_ppc/htm/Ergonomics.asp

6. Tool support

 108

In answer to these questions, a list of requirements was established:

 The knowledge base should include a description of each rule in terms of input
and output, a formal description (4.2) when available, an indication on its level in
the CAMELEON framework, examples and references, comments on the
advantages and disadvantages of using it, situations when the rule should not be
applied, information on its importance, on whether it can be automated or not,
on its relationship with other rules.

 The rules database must satisfy requests such as “Which rules are available when
migrating from a classical Web-based user interface to a Web-based user interface
on a PDA? Or, more precisely, to a Pocket PC?”, “Which rules can I use when
migrating to a platform with a smaller screen size? Or with a lower-resolution
pointing device? Or with only a limited version of the graphical toolkit?”

We found that the best way to achieve the last requirement was to consider that a GD
rule is composed of a condition (left-hand side of the rule) and a reaction (right-hand
side of the rule). This structure has the additional advantage to be compatible with the
meta-model of adaptation rules for plastic environments recently developed in the
framework of the SIMILAR network [Gann05].

6.1.2.b Class diagram of the database

Starting from the basic structure selected above, we have established a class diagram of
the concepts to be involved in our database (Figure 6-1).

Let us now review the content of the class diagram.

GDRule

A graceful degradation rule (GDRule) is a transformation rule which will perform
adaptation of the presentation (and indirectly of the dialog) to the platform, when the
target platform is more constrained than the source platform. A GDRule is an
aggregation of a condition (left-hand side of the rule) and a reaction (right-hand side of
the rule). It is characterized by:

− An identifier (idRule).

− A centrality: a rule is central if its application is mandatory, non central otherwise.
An example of central rule is the interactor substitution rule, when the
interactor is no longer available on the target platform.

− An evaluation in terms of the advantages / disadvantages the application of the rule
will have on the target user interface and on the multiplatform system in
general.

− Possible exceptions to the application of the rule. For example, resizing images
containing text or figures is likely to make them illegible and should be avoided.

6. Tool support

 109

UsabilityProblem
objectConcerned

Condition
idCondition
nameCondition
nameDisplay

ChangeInPlatformFeature
natureOfChange

TargetPlatformIs

PlatformFeature
idFeature
category
nameFeature
nameDisplay
valueFeature

1

0..n
concerns

1..n

0..n

composedOf

1

0..n

1..n

0..n

ReactionRelationship
typeOfRelationship
nameDisplay

Example
idExample
fileName

Reaction
idReaction
nameReaction
nameDisplay
description
input
output
type
formalDescription
level

0..n

0..n

0..n

0..n

0..n 0..1
+isChildOf

0..n
+isParentOf

0..1

reactionHierarchy

0..n

0..n

0..n

0..n illustrates

Synonyms
idSynonym
nameSynonym
lgSynonym

0..n

1
synonymy

0..n

1

Reference
idReference
title
source
URL
comments0..n

0..n

0..n

0..n

refers

0..n

0..1

0..n

0..1

refExample

Author
idAuthor
name
firstName

RefAuthor
rank

0..n1..n 0..n1..n

KnowledgeBase
idBase
nameBase
nameDisplay

GDRule
idRule
centrality
advantages
disadvantages
exceptions

1

1..n

1

1..n

1

1..n

1

1..n

Section
idSection
nameSection
nameDisplay1..n1..n 1..n1..n

baseComposition

1..n1..n 1..n1..n

sectionContent

0..n0..1

sectionHierarchy

+subsection+parentSection 0..n0..1

Figure 6-1 Class diagram of the concepts of the knowledge base

6. Tool support

 110

Condition

A condition constitutes the left-hand side of a graceful degradation rule. A condition is
described by the following attributes:

− An identifier (idCondition).

− A internal name (nameCondition) and a name in a format that will be displayed to
the user (nameDisplay).

As we distinguish between three kinds of launching conditions, this class has three
subclasses: UsabilityProblem, ChangeInPlatformFeature and TargetPlatformIs.

UsabilityProblem (Subclass of Condition)

Conditions of this class are expressed as a usability problem: for example “horizontal
scrolling on the target UI” or “font unreadable”. They contain the additional attribute
objectConcerned, which specifies the name of the object concerned by the usability problem
(e.g. fonts, images ... or all objects).

ChangeInPlatformFeature (Subclass of Condition)

Conditions of this class are linked to a change in a platform feature: for example
“pointing device has changed to stylus” or “number of screen colours has decreased”.
They contain the additional attribute natureOfChange, which describes the type of
modification undergone by the linked platform feature (e.g. decreases, disappears...). An
instance of ChangeInPlatformFeature is linked to 1 and only one instance of
PlatformFeature.

TargetPlatformIs (Subclass of Condition)

This class includes conditions related to one or several characteristics of the target
platform: for example “on a Compaq iPaq Pocket PC” or “on a platform with a browser
that does not support frames”. The instances of this class are linked to 0 to N instances
of the class PlatformFeature through the composedOf relationship.

PlatformFeature

A platform feature is a characteristic of a platform corresponding to an attribute in the
platform model. This class has five attributes:

− idFeature: identifier of the platform feature.

− category: category of the feature in the platform model (hardwarePlatform,
softwarePlatform, networkCharacteristics, browerUA).

− nameFeature: name of the feature in the platform model, for example screenSize,
pointingDevice, keyboard... For a complete list, we invite the reader to refer to
section 3.6.

− nameDisplay: name of the feature in a format that will be displayed to the user.

6. Tool support

 111

− valueFeature: value of the feature, for example (screenSize)=800x600,
(pointingDevice)=finger, (keyboard)=phoneKeypad

An instance of PlatformFeature is linked to 0 to N instances of
ChangeInPlatformFeature and to 0 to N instances of TargetPlatformIs.

Of course, the three types of conditions mentioned above are intimately linked: for
example, if the target platform is a PDA, then some platform features such as the screen
size will change, and usability problems such as the presence of horizontal scrolling will
occur. However, the distinction makes the consultation of the knowledge base easier for
its users.

Reaction

A reaction constitutes the right-hand side of a graceful degradation rule. It can be
described with the following features:

− An identifier (idReaction).

− An internal name and a name in a format that will be displayed to the user
(displayName).

− A description, in natural language.

− A description of the source user interface, in natural language (input).

− A description of the target user interface, in natural language (output).

− Its type: executable or not.

− Possibly a formal description, when the rule is formalized (see 4.2).

− The level of the Unified reference framework where it can be applied:
Tasks&Concepts, Abstract User Interface, Concrete User Interface or Final
User Interface. When a reaction may be applied at different abstraction levels
(e.g. splitting rule), the highest abstraction level is held.

Reactions can be related by different types of relationships: some reactions are more
general than others (e.g.; “reduce the length of the objects of the UI” is more general
than “apply a combination of shrinking and cropping to all images that cause horizontal
scrolling”), some reactions entail other reactions (e.g. “delete an image” entails “delete
the related caption”, or “reduce the font size of the text presented in a graphical CIO”
entails “reduce the size of the related graphical CIO”), ...

A reaction can be documented thanks to four additional classes: Synonyms, Reference,
Author and Example.

6. Tool support

 112

Synonyms

A reaction is characterized by a name, but it can own synonyms or equivalents in another
language. Objects of this class possess the following attributes: an identifier (idSynonym), a
name (nameSynonym) and a language (lgSynonym).

Reference

This class contains documents (papers, books, Web page...) referencing the reaction. A
reference is described by the following attributes:

− idReference: identifier of the reference.

− title: title of the reference.

− source: complete description of the source (for example, publisher, publication
year, ... depending on the category of the reference and the availability of the
information), if any.

− URL: URL of the Web page where the reference was found, if any.

− comments: optional comments on the reference.

A reference is linked to 0 or several instances of the Author class. For a given instance of
this relationship, an author has a rank with respect to the reference.

Author

Objects of this class are authors of documents inserted in the Reference class. An author
has a name and an (optional) first name.

Example

This class contains graphical examples illustrating a reaction. An example can be related
to a reference (refExample relationship) or not. An example is described by an identifier
(idExample) and the name of the file where the example is stored (fileName).

In order to facilitate the consultation and management of large-size or multilingual
corpora of rules, the rules were regrouped into sections, each section belonging to one or
several knowledge bases.

Section

Sections correspond to categories discussed in section 4.1, for example
LayoutModificationRules, ResizingRules, MovingRules, SplittingRules,
TaskModificationRules... A section is described by an identifier (idSection), an internal
name and a name in a format that will be displayed to the user (nameDisplay). Sections are

6. Tool support

 113

organized into a hierarchy (for example, resizingRules are a subset of
LayoutModificationRules.

KnowledgeBase

A knowledge base is meant to regroup several sections regrouping GDRules written in
the same language. A knowledge base is described by an identifier (idBase), an internal
name and a name in a format that will be displayed to the user (nameDisplay).

6.1.2.c Implementation

The class diagram described above was then translated into a relational schema of 21
tables (Figure 6-2), which has been implemented using the relational database
management system MySQL 5.0. The database server is accessed using the scripting
language PHP 5.0, and a simple Web-based interface13 using HTML and CSS permits the
insertion, the display and the management of rules, examples and references. Figure 6-3
shows the functionalities offered by the Web-based interface. Figure 6-4 is a screenshot
showing the results of a query to the database.

13 http://www.isys.ucl.ac.be/bchi/research/salamandreTrav/GDbase/homeConsultation.php

6. Tool support

 114

Figure 6-2 Relational model of the database

6. Tool support

 115

Figure 6-3 Functionalities offered by the Web-based interface to the knowledge base

6. Tool support

 116

Figure 6-4 The consultation of rules in the interface to the database.

6. Tool support

 117

6.1.3 Support of the adaptation process in the knowledge base

According to Dieterich et al. [Diet94], the adaptation process can be broken down into four stages,
each of them being controlled either by the user, either by the system:

1. The initiative stage is the decision of one of the agents (user or system) to suggest an
adaptation.

2. During the proposal stage, alternatives for adaptation are proposed.

3. At decision stage, one of these alternatives is chosen.

4. Finally (execution stage), the selected alternative is executed.

Dieterich's framework includes other classification criteria such as the goals of adaptation and the
strategies of adaptation (when the changes are made).

In the approach supported by the knowledge base, the goal of the adaptation is to obtain a usable
UI on the target device, while taking into account the cross-platform consistency among the
different versions of the UI. The rules are applied at design time. The human designer controls the
majority of the adaptation stages:

1. The initiative stage is under responsibility of the human designer, who detects a launching
condition (classes Condition, UsabilityProblem, ChangeInPlatformFeature,
TargetplatformIs of the class diagram).

2. The proposal stage is covered by the system, which is able to link a given launching
condition to one or several possible reactions (aggregation relationships linking the
Condition and Reaction classes to the compound class GDRule).

3. The decision is taken by the human designer. He or she can rely on information from the
database in order to perform the best choice (information of the GDRule class on the
centrality of the rule, its advantages and disadvantages and possible exceptions).

4. The execution is manual. Information on how to adapt may be found in the Reaction class
(description of the reaction, of its input and output, formal description) and in the
ReactionRelationship association class (permits to identify other reactions linked to the
first, basic reaction).

Identifying the entities supporting each adaptation stage among the main classes and relationships
of our class diagram of GDRule leads to the partition shown on Figure 6-5. We observe
furthermore that each main concept identified (GDRule, Condition, Reaction, aggregation
relationships) belongs to a separate stage in Dieterich’s framework, which is a strong argument in
support of the division of concepts in our meta-model.

6. Tool support

 118

Figure 6-5 Support of Dieterich’s four adaptation stages in the knowledge base

6.2 A tool support for GD rules

6.2.1 A plug-in to the GrafiXML editor

GD rules can be applied not only manually, as heuristics for a human designer wishing to adapt a
UI to a more constrained platform, but also automatically, with the help of a MB-UIDE. A
collection of GD rules has thus been implemented in a plug-in to the GrafiXML editor, which
permits building graphically user interfaces that are saved in UsiXML.

The rules have been implemented as transformations on UI descriptions in the GrafiXML's editor
specific format, and further propagated to descriptions in UsiXML. We have chosen this option
because it provided a quick way to visualize the results of a GD rule, relying on a pre-existing tool
which represented several months of development. The main drawback of this choice is that the
current implementation of the rules is totally dependent of GrafiXML's specific format (i.e. they
work on a collection of Java classes representing UsiXML’s graphical objects) and can not be
exported to other tools. However, the small implementation attached to GrafiXML permits
demonstrating the feasibility of the approach, to evaluate the quality of the UI's that can be
produced using GD rules semi-automatically, and to collect users' impressions on the approach and
the tool.

6. Tool support

 119

6.2.2 Functionalities

The rules to be supported have been selected on a criterion of frequency and utility, based on the
experience acquired during the case studies.

The rules are regrouped into sections, corresponding to the sections identified above (6.1.2.b).
Currently, five sections are proposed, as shown on Figure 6-6: resizing rules, moving rules,
interactor transformations, image transformations and splitting rules. The rules included in each
section are detailed in Table 6-2.

Figure 6-6 The five groups of rules in the GD plug-in

6. Tool support

 120

Resizing rules

Font size reduction (reduce font size to a given minimum)

Input field shrinkage (reduce the visible length of text fields, without reduction of the maximal length)

Number of visible list items decrease (reduce the number of items in list boxes and combo boxes that are
visible without scrolling.)

Moving rules

Vertical repositioning in columns (vertical repositioning of the boxes structuring the source UI into one or
several columns. The difference between the column’s sizes must be minimized.)

Vertical alignment of group box content (vertical repositioning of all the elements inside the selected boxes,
without modification of the relative position of the boxes)

Interactor transformations

Interactor substitution (substitution of an interactor by another interactor supporting the same data type and
the same functionalities)

Image transformations

Replace image by Alt (replace images by a textual description)

Scale and crop (reduce images to their core subject by truncating their edges and minimize their size as much
as possible)

Splitting rules

Interaction space splitting (with different navigation types)

Table 6-2 Detail of the plug-in’s five sections

Each selected rule can be given parameter values (Figure 6-7). Default values are given for each
parameter. A small textual description is associated with each rule, and a hyperlink provides access
to the complete description of the rule in the knowledge base (Figure 6-8).

Figure 6-7 Details panel linked to a selected rule

6. Tool support

 121

Figure 6-8 Access to the knowledge base from the GD plug-in

The complete list of rules to be implemented in the plug-in and their precise description can be
found in Annex E. The implementation of these rules is still ongoing work performed by our
team’s developer: at the time of writing these lines, a few rules have not been implemented yet.

6.2.3 Scenario supported by the tool

The GD tool was designed to support the following scenario:

(1) The user produces a source UI in UsiXML. This specification may have been built by hand,

using any XML editor or text editor, or with the graphical editor GrafiXML, or recovered
from existing code using reverse engineering tools such as Vaquita [Boui04]. The source UI is
then opened within GrafiXML (Figure 6-9).

6. Tool support

 122

 Figure 6-9 A very simple UsiXML specification in textual format and in the GrafiXML composer

6. Tool support

 123

(2) The user opens the GD plug-in from the “Tools” item menu of GrafiXML.

(3) He or she selects a platform profile (firstly, the default platform profile will be Web-based UI

on PDA’s).

(4) He or she can select a set of GD rules among the different panels of the plug-in. For each
rule:

− A small description and an illustration are given, and access to the knowledge base is
possible (Figure 6-10).

− Parameters values may be specified (Figure 6-11).

− The list of components to which the rule applies may be specified (Figure 6-12).

Figure 6-10 Description of a rule in the GD tool

6. Tool support

 124

Figure 6-11 Selection of rules and parameters in the GD tool

Figure 6-12 Selection of the components to which the rule applies

(5) He or she can preview the result of the application of the selected rules

(6) ... or save the resulting interface, which now appear as a distinct project in a new tab of the

tabbed panel.

6. Tool support

 125

6.2.4 Support of the adaptation process in the GD plug-in

The semi-automatic approach supported by the GD plug-in also pursues the goal of obtaining a
usable UI on the target device, while minimizing the gap between the different versions of the UI.
Again, the rules are applied at design time. Although the human designer still controls most of the
process, more adaptation stages are covered by the system:

1. The initiative stage is still under responsibility of a human designer, wishing to adapt a UI
to a given target platform.

2. The proposal stage is covered by the system, which proposes a list of suitable adaptation
rules.

3. The decision is taken by the human designer, who selects a rule (or a set of rules) and
specifies the value of its parameters. Each rule implemented in the GD plug-in is linked to
the corresponding rule in the knowledge base, so that the descriptions, recommendations
and examples of the database are also accessible from the automatic tool.

4. The execution is automatic.

Stages 3 (decision) and 4 (execution) may be performed iteratively : after previewing the result of
the application of a given set of rules, the designer may wish to apply a second set of rules to the
same source interface, or to test additional rules on the first result.

6.2.5 User testing

In order to obtain feed-back on the usability and utility of the GD plug-in, we conducted a small,
informal user study during the development of the tool.

6.2.5.a Experiment

Seven software industry professionals (6 men, 1 woman) participated in the experiment. The age of
the participants ranged from 23 to 31. Of these participants, 3 were identified as “experienced
developers”, given that they had at least 6 years experience in designing and developing information
systems and 3 years experience in developing multiplatform information systems, and 4 were
categorized as “novice developers”, as they had at most 1 year experience in the field.

A development version of the plug-in was presented to the participants, with GrafiXML opened on
a pre-existing project, in order to avoid them the need to specify a source user interface. No
specific task was assigned, because the prototype was far from bug-free, but subjects were asked to
freely experiment with the tool, with the following question in mind: “One of my clients wants this
graphical interface to be ported to a small platform, might this tool help me doing my work?”

After a few minutes, participants were asked to fill a standard usability questionnaire (the IBM
Computer Usability Satisfaction Questionnaire CSUQ [Lewi95], shown on Table 6-3). Free
comments were also encouraged.

6. Tool support

 126

 Question statement
1. Overall, I am satisfied with how easy it is to use this system
2. It was simple to use this system
3. I can effectively complete my work using this system
4. I am able to complete my work quickly using this system
5. I am able to efficiently complete my work using this system
6. I feel comfortable using this system
7. It was easy to learn to use this system
8. I believe I became productive quickly using this system
9. The system gives error messages that clearly tell me how to fix problems
10. Whenever I make a mistake using the system, I recover easily and quickly
11. The information (such as online help, on-screen messages, and other
documentation) provided with this system is clear
12. It is easy to find the information I needed
13. The information provided for the system is easy to understand
14. The information is effective in helping me complete the tasks and scenarios
15. The organization of information on the system screens is clear
16. The interface of this system is pleasant
17. I like using the interface of this system
18. This system has all the functions and capabilities I expect it to have
19. Overall, I am satisfied with this system

Table 6-3 The CSUQ questionnaire

6.2.5.b Results

The analysis of the CSUQ questionnaire showed that the overall average response of the designers
to the plug-in was slightly above average. It is not possible to draw many conclusions from this
result, for different reasons:

− The experiment did not reflect any normal usage of the tool, since the users were not actually
performing the task.

− The interviewer was known by the users, so that the satisfaction ratings obtained may have
been distorted.

− The number of respondents was small, and all of them belong to the same team into the same
organization.

− The questionnaire does not permit any evaluation of the utility of the tool, since it is focused on
usability aspects.

Nevertheless, the users offered helpful comments towards further simplifying and enhancing the
tool, which has been and will be used in upgrading the system. The identified weak points of the
system mainly concerned the limited documentation and on-line help facilities provided (Q11) and
the quality of error management (Q9, Q10). This was a known shortcoming of the prototype plug-
in, attributed to restricted resources at development time. Another identified weakness was the lack
of an undo facility. Furthermore, some of the respondents had specific requests for additional
functionalities they would have liked to see supported in future versions of the system. In
particular, one participant expressed the wish that the plug-in should be equipped with some kind
of templates providing predefined layouts well-adapted to the target platform. Neither the
combination of templates with GD rules, nor the possibility to enhance UsiXML with a template

6. Tool support

 127

mechanism has been explored for the moment, but this could be an interesting direction for future
work. Such a use of platform-specific templates for prototyping cross-platform user interfaces is
not unknown in the literature [Lin03] [Nich04]. However, existing approaches are targeted to
specific domains: they provide, for example, templates for a shopping card or for a UI controlling a
given appliance device, such as a tape recorder.

In general, the evaluation offered valuable insight into the functional and the interaction
characteristics of the system. Participants’ comments showed that the plug-in could be used in
different scenarios typical in their work environment:

1. A pre-existing system must be ported as quickly as possible to a small platform. In this case,
the plug-in can be used as a rapid prototyping tool.

2. A pre-existing system must be ported to a small platform, and the customer comes with
sketches of the envisioned design. In this case, the plug-in in its current version is less
useful, but additional functionalities such as automatic recognition of usability problems or
realistic, platform specific preview, should be very helpful.

3. A pre-existing system must be ported to a small platform, and the customer asks for design
propositions. In this scenario, the plug-in can produce rapidly different design proposals to
discuss with the client.

7. Case studies

 128

Chapter 7 Case studies

Our case studies cover the two types of scenarios envisioned for the use of GD rules:

 Manual adaptation of an existing user interface to a more constrained platform by a human
designer: scenario applied on the ARTHUR case study.

 Semi-automatic adaptation using the GD plug-in described in section 6.2.

7.1 ARTHUR

7.1.1 Introduction

ARTHUR (Architecture de Télécommunications Hospitalières pour les Services d'Urgences) is an
information system developed for emergency departments and other related units (intensive care
unit, biology test lab, radiology department ...) in Belgian hospitals [Amou05]. ARTHUR provides
computerized support for medical and nursing tasks as well as for administrative tasks in the
emergency department. ARTHUR is multi-device and runs on workstations, Pocket PCs and a wall
display.

We have collaborated in the design of the first version of the ARTHUR system, especially the
patient records management system. The technologies chosen for the user interfaces of this version
were the Web standards HTML, XSLT and XML, with slight differences between the language
versions on the different devices: for instance, the Pocket Internet Explorer on the PDA only
supported JavaScript 1.1 and HTML 3.2, with minor exceptions for some tags, and CSS was not
available.

The differences in web standards, screen size and resolution imply big differences in design and
implementation between the user interfaces on the different devices. Figure 7-1 illustrates this
problem on a screenshot of the ARTHUR prototype. From this screen, members of the medical
team (doctors and nurses) must consult and modify nursing records. Figure 7-1 shows the desktop
version of ARTHUR and highlights some elements that are likely to cause design changes between
the ARTHUR desktop and PDA versions.

7. Case studies

 129

tabbed panel
unaivalable on the

PDA

difference in
display sizes

interactor too
wide for the

PDA

240 pixels

320 pixels 257 pixels

229 pixels

Figure 7-1 Problems raised by ARTHUR’s user interfaces

7. Case studies

 130

The user interfaces of ARTHUR have been designed using an iterative and task-based approach.
Task models were built after observing members of the medical staff performing their tasks.
Afterwards, mock-ups of the UI were drawn and modified according to the comments of the staff
until reaching a satisfying version. The first prototype of the ARTHUR information system
supported the patients’ health records management, as illustrated in Figure 7-2.

Figure 7-2 Task model of the ARTHUR prototype

After authentication (this task does not require any display), the user is allowed to use the patients’
health records. This general task is subdivided in five subtasks: access to the medical records, access
to the nursing records, access to the vital parameters, view of the summary and view of the
patient’s history.

The first subtask investigated was the management of the nursing records. The six subtasks implied
in the nursing records management are the consultation and modification of data related to the
patient’s personal effects, past records, regular treatments, symptoms, Glasgow test and health
tasks to be carried (Figure 7-3). These tasks have similar substructure: their first subtask is the
information visualization that enables the optional modification of one or more fields
(add/delete/edit an item). The modifications can then be validated or cancelled (see example on
Figure 7-4).

Figure 7-3 Subtasks for the nursing records management

7. Case studies

 131

Figure 7-4 Example of a subtask detail

7.1.2 Application of GD Rules

7.1.2.a Source interface

The first ARTHUR interfaces were designed for workstations. Starting from that source interfaces,
we have investigated some design options for PDA interfaces (iPAQ Pocket PC), applying our
transformation rules. The mock-ups for the different options have been submitted to future users
of the ARTHUR system for comments and test.
As an illustration of that design work, we will describe the transformation rules that have been
applied to the screen related to the subtask described above, namely the consultation and
modification of information related to the patient’s personal effects, subtask of the management of
the nursing records (see Figure 7-5).

Figure 7-5 Desktop version of the ARTHUR prototype: source interface

7. Case studies

 132

7.1.2.b Application of GD Rules at the Tasks and Concepts level

An option for the PDA interface is to delete all edition tasks and to keep only the consultation
tasks, due to the difficulty of text entry with the virtual keyboard or the character-recognition
system (Figure 7-6).

Figure 7-6 An alternative for the PDA version of ARTHUR: deleting edition tasks

7.1.2.c Application of the GD Rules at the Abstract User Interface Level

As the source interface already uses a tabbed panel, we do not wish to split the presentation unit in
order to avoid scrolling: too many levels of navigation objects would cause the user interface to
become unusable.

7.1.2.d Application of the GD Rules at the Concrete User Interface Level

A lot of transformation rules can be considered at this level:

7.1.2.d.1 Substitution rules

Substitution rules are mandatory when an interactor on the source platform is no longer available
on the target platform. It is the case of the tabbed panel on the desktop, which could not be
programmed on the PDA, due to the lack of CSS support on Pocket Internet Explorer at that time.
Therefore, we had to choose a substitute for the tabbed panel.

Two options have been considered:

(1) Replacing the tabbed panel by a frameset and the tabs by hyperlinks.

(2) Replacing the tabbed panel by a frameset and the tabs by image links.

Another substitution has been proposed: the accumulator in the PC interface should be replaced by
a reduced version, in order to save screen space, as illustrated on Figure 7-7. (To be precise: this
interactor substitution belongs to the final user interface level: the description of these widgets in
terms of the interactor model defined above does not permit to distinguish them at the concrete
user interface level, they are both Accumulators).

7. Case studies

 133

Figure 7-7 Interactor substitution in ARTHUR

7.1.2.d.2 Removability rules

Some interfaces elements do not need to be explicitly labelled in order to be understood: we
suggest removing the titles « Nom du patient » and « Motif d’admission ».

7.1.2.d.3 Modification rules

Some labels can be summarized: « Objets personnels chez le patient » and « Objets personnels dans
le coffre » should be replaced by a common « Objects personnels » title and two shorter subtitles «
Chez le patient » and « Dans le coffre ».
Emphasis could be represented by bold characters instead of red colour (better visibility).

7.1.2.d.4 Moving rules

On the Pocket PC, ergonomic rules advise to place all menus and tabs at the lower edge of the
screen in order to allow the user to use them without obscuring the data on the screen with his or
her hand. However, it was not possible to move the ARTHUR « menus » to the bottom: the virtual
keyboard would mask them when displayed.
However, other moving rules have been applied in order to avoid horizontal scrolling:

(1) The title and upper buttons could be displayed on the same line on the PC interface but they
are better displayed on distinct lines on the PDA.

(2) In the main frame of the PDA interface, labels are better put above the controls, while there
were placed to their left on the source interface.

7.1.2.d.5 Resizing rules

All controls (buttons, edit fields...) have to be resized in order to fit into the screen width.

7.1.2.e Target Interfaces

Two alternative designs for the PDA interface, resulting from the application of the transformation
rules described above, are presented on Figure 7-8.

7. Case studies

 134

Figure 7-8 Design alternatives for ARTHUR’s PDA user interfaces (mock-ups in HTML)

7.1.3 Conclusion

This case study has demonstrated:

(1) The feasibility of the GD methodology when applied manually: we were able to make design
proposals for the PDA version of the ARTHUR system, resulting from an application of the
graceful degradation rules to the ARTHUR desktop version.

(2) The validity of the CAMELEON framework for classifying graceful degradation rules, since
each rule used in the design of the ARTHUR PDA interfaces can be situated in that
framework.

7.2 Semi-automatic adaptation of the rules: a hotel booking system

The first case study showed how GD rules could be applied manually by a designer wishing to
adapt a pre-existing user interface to a more constrained device. This second case study shows how
the tool described above (6.2) can support a semi-automatic application of GD rules.

7.2.1 The hotel booking system

A Webmaster is asked to design the user interface of an on-line hotel booking system. This user
interface must run both on a traditional desktop and on limited size devices (PDA). The system
must permit specifying:

− The hotel location.

− The arrival and departure dates.

7. Case studies

 135

− The number of nights and rooms required.

− The number of guests, adults and children.

− The category of the hotel and the price range.

− The accommodation required.
Using the GrafiXML editor, the designer produces a first, unconstrained version of the user
interface (Figure 7-9).

Figure 7-9 The source UI of the hotel booking system in the GrafiXML editor

Different views are available in the editor: design view (Figure 7-9), code (Figure 7-10) and preview
(Figure 7-11).

7. Case studies

 136

Figure 7-10 UsiXML code of the source UI

Figure 7-11 Preview of the source UI

7. Case studies

 137

7.2.2 Production of the target UIs

The second stage of the design task consists in selecting rules to apply to the source UI. A strategy
frequently observed among the few users who tested the system consists in applying first a “global”
rule, such as vertical alignment or splitting, and then refining the result by exploring the possibilities
offered in the other panes (resizing elements, interactor substitutions...)

Combining the few rules implemented in the plug-in already permits to produces several
convincing alternative UIs for a smaller target platform.

Figure 7-12a shows a preview in GrafiXML of a user interface generated by the plug-in when
vertical alignment and font resizing are applied. Figure 7-12b shows a slightly different version with
the list of radio buttons replaced by a combobox. Figure 7-13 is the result of applying a splitting
rule with sequential navigation on the source user interface.

7.2.3 Conclusion

This case study has demonstrated the feasibility of the GD methodology when applied semi-
automatically. Even if the set of rules implemented in the prototype authoring tool is limited, we
have been able to show how designers can experiment with GD rules and produce several design
alternatives in parallel or iteratively without much effort.

7. Case studies

 138

(a) (b)

Figure 7-12 Design alternatives for a small target device (preview in GrafiXML) - 1

7. Case studies

 139

Figure 7-13 Design alternative for a small target device (preview in GrafiXML) - 2

8. Validation

 140

Chapter 8 Validation

8.1 Theoretical validation

In Chapter 2, we have identified and described five categories of approaches to the development of
UIs for multiple platforms. These approaches were then compared using a set of criteria:

 The production costs.

 The completeness.

 The level of control.

 The usability of the UI produced.

 The cross-platform consistency.

 The guidance.

The theoretical validation of the graceful degradation approach will consist in discussing the
characteristics of our methodology against the same set of criteria.

8.1.1 Production costs

In section 2.4.1, we considered that production costs include three facets:

− The cost of developing a first version of the user interface for N platforms;

− The maintenance cost when functions are modified or added;

− The maintenance cost when formats change.

8.1.1.a Cost of developing user interfaces for N platforms

In the GD approach, as in multireification approaches like UIML, the design effort is directly
proportional to the number of platform families (i.e. platforms with similar capabilities), but only
the source UI has to be designed from scratch, for all the UIs built subsequently, the primary
design options are largely reused.

Like in other model-based approaches, no coding is required. Also the specification effort is
limited: only one specification language has to be used, and only the source UI has to be entirely
specified, the target UIs being produced semi-automatically.

Table 8-1 compares the evaluation of graceful degradation relatively to the five other categories of
approaches.

8. Validation

 141

Low Medium High

Virtual toolkits

Generic clients

Transcoding

Multireification approach (high
level spec)

Abstraction-reification

Multireification approach (low
level spec)

Graceful degradation

Traditional development

Table 8-1 Compared costs of developing UIs for multiple platforms

8.1.1.b Cost of modifying or adding functionalities

Modifying a functionality using graceful degradation requires, at least, one modification at the level
of the specification of the source UI. In that case, the modification cost can be very low.

However, the designer could choose, instead of reusing the transformation rules applied on the
first source user interface, to select new sets of transformation rules, more adapted to the new
source UI. In that case, the modification cost is slightly higher.

In both cases however, no coding is required, so graceful degradation has a modification cost
comparable to other model-based approaches, as illustrated in Table 8-2.

Low Medium High

Virtual toolkits

Generic clients

Transcoding

Multireification approach (high
level spec)

Abstraction-reification

Multireification approach (low
level spec)

Traditional development

Graceful degradation

Table 8-2 Compared costs of modifying/adding a functionality on multiple platforms

8.1.1.c Cost of modifying or adding formats

Again, the performance of the graceful degradation for this criterion is similar to other model-
based approaches (see Table 8-3): in all model-based approaches, modifying a format means
modifying the generation tool, without any change in the UI specifications. In contrast, the
modification of a format (programming language, toolkit...) using non model-based approaches
requires modifying all the UIs that rely on this format. The difference is especially important when
a large number of systems have been built.

8. Validation

 142

Low Medium High

Multireification approach (high
level spec)

Multireification approach (low
level spec)

Abstraction-reification

Graceful degradation

Virtual toolkits

Generic clients

Transcoding

Traditional development

Table 8-3 Compared costs of modifying/adding a format on UIs deployed on multiple platforms

8.1.2 Completeness

Until now, the model-based community has not demonstrated that automatic generation of UIs
starting from high level specifications (Tasks&Concepts level) was able to produce UIs of any kind,
as good as those that could be created with conventional techniques. When attempting to generate
multiple platform-specific UIs starting from high level specifications, the “low ceiling” problem
[Myer00] becomes still more acute.

Other model-based approaches, such as multireification from low-level specifications, appear to
have a “higher ceiling”, as a big part of the design process does not need to be automated: the
choice of interactors, layouts... is specified by the human designer instead of being deduced from
tasks models or domain models (which remains intrinsically difficult). Graceful degradation, as
shown on Table 8-4, benefits from the same characteristics as low-level multireification for this
criterion.

Low Medium High

Multireification approach (high
level spec)

Multireification approach (low
level spec)

Abstraction-reification

Graceful degradation

Traditional development

Virtual toolkits

Generic clients

Transcoding

Table 8-4 Compared completeness of the development approaches

8.1.3 Level of control

Another criticism addressed to model-based development is that those techniques generate
unpredictable results: the connection between specification and final user interface is difficult to
understand and control [Myer00].

On the other side, graceful degradation, as shown on Table 8-5, offers a better level of control. The
approach relies on an explicit set of rules, fully documented and accessible. It offers to the designer
a full control on the selection of those rules. The results of the application of a rule may be
previewed.

8. Validation

 143

Low Medium High

Multireification approach (high
level spec)

Transcoding

Multireification approach (low
level spec)

Abstraction-reification

Graceful degradation

Traditional development

Virtual toolkits

Generic clients

Table 8-5 Compared level of control offered by the development approaches

8.1.4 Usability

Obviously, the usability of a user interface does not depend only on the chosen development
technique. Nevertheless, as shown on Table 8-6, the approaches relying on transcoding or reverse-
engineering, generic clients or virtual toolkits are incapable of producing user interfaces adapted to
different platforms at the same time, especially if the platforms are very different.

In contrast, the core component of graceful degradation is adaptation to the target platform, in
order to preserve the UI’s usability.

These theoretical assumptions were also tested empirically (section 8.2.7.a).

Low Medium High

Virtual toolkits

Generic clients

Transcoding

Abstraction-reification

 Traditional development

Multireification approach (high
level spec)

Multireification approach (low
level spec)

Graceful degradation

Table 8-6 Compared usability of UIs targeted to very distinct platforms

8.1.5 Cross-platform consistency

In section 2.4.5, cross-platform consistency was defined as the capability to provide similar
functionalities, similar operation procedures, similar data representations and the same data sets in
each platform-specific version of the UI.

All model-based forward-engineering approaches ensure some form of consistency between the
early phases of the development cycle (requirements analysis, specification) and the final product.
In a multiplatform context, these approaches also guarantee consistency between the UI generated
for different target platforms, with the exception of low-level generation, which requires a separate
specification for each platform family and does not differ much from traditional techniques on that
point, as shown on Table 8-7.

8. Validation

 144

Consistency was one of our major concerns, and one important point that differentiates graceful
degradation from low-level multireification, so we have tried to confirm this intuition on
experimental data (section 8.2.7.b).

Low Medium High

Traditional development

Multireification approach (low
level spec)

 Virtual toolkits

Generic clients

Transcoding

Abstraction-reification

Multireification approach (high
level spec)

Graceful degradation

Table 8-7 Compared cross-platform consistency between the UIs produced

8.1.6 Guidance

Guidance is a core component of graceful degradation: in contrast to other methods, where each
new version of the user interface has to be redesigned from scratch; GD guides the transformation
process between source and target UI by providing explicit transformation rules. For any change of
platform feature or usability problem, the designer is oriented to possible actions. The
consequences of each transformation rule are well documented, and additional information
(advantages/disadvantages, exceptions, examples) is available on demand.

8.1.7 Conclusion

Let us now consider the position of graceful degradation in the summary table below.

8. Validation

 145

Criteria

Approach

D
ev

el
op

m
en

t c
os

ts

M
od

ifi
ca

tio
n

of
 fu

nc
tio

na
lit

ie
s

M
od

ifi
ca

tio
n

of
 fo

rm
at

s

Co
m

pl
et

en
es

s

Le
ve

l o
f c

on
tro

l

U
sa

bi
lit

y

Cr
os

s-
pl

at
fo

rm
 c

on
sis

te
nc

y

G
ui

da
nc

e

Traditional development

Virtual toolkits _

Generic clients _

Transcoding _

Multireification approach
(high level spec)

 _

Multireification approach
(lower level spec)

Abstraction-reification _

Graceful degradation

Table 8-8 Global comparison of graceful degradation and other approaches on all criteria

= bad for that criterion

= medium for that criterion

= good for that criterion

-

Legend

= irrelevant

8. Validation

 146

Graceful degradation appears as a trade-off approach to the development of user interfaces for
multiple, different platforms.

In terms of development and maintenance costs, our methodology is a middle way between the
approaches that require only one single code or specification for all platform-specific versions of
the UI and the approaches that require one code per target platform (traditional development) or
one specification per platform family (low-level multireification).

In terms of completeness, although we do not expect to be able to produce any kind of complex
user interfaces using GD rules only, graceful degradation performs better than other model-based
approaches, because the source CUI is entirely specified by a human designer, instead of being built
automatically from higher level descriptions, and because most of the aesthetical and practical
design options taken by the designer when building the source UI can be preserved by the
transformation process.

For the same reason, the usability of the user interfaces produced using GD rules is acceptable. On
that criterion again, graceful degradation is a good trade-off between solutions relying on a unique
code or specification and ad-hoc solutions such as traditional development, that permit to achieve
the highest level of usability.

Graceful degradation also guarantees a reasonable degree of cross-platform consistency: the core
components of the source UI are kept on all target UIs, even if the application of the
transformation rules have an impact on the similarity between versions.

Guidance, which is a dimension largely neglected by the other development approaches, is also one
strong point of our methodology.

8.2 Empirical validation

Empirical validation of our method and rules is realized by

(1) Demonstrating the possibility of adapting an existing user interface to a more constrained

target using the graceful degradation approach, by applying the methodology on case studies,
both in the case of manual and semi-automatic development (Chapter 7).

(2) Analysing the user’s appreciation of the user interfaces produced by graceful degradation, in

contrast to other methods (ad-hoc development and direct migration).

The last point is the subject of this section. The experiment described hereafter was carried out by
two students during their master thesis [Henr04], conducted under our supervision.

8.2.1 Goals of the experiment

The study had two main goals:

8. Validation

 147

(1) To measure the usability of the user interfaces produced with the graceful degradation
approach.

(2) To investigate the cross-platform consistency of these user interfaces.

8.2.2 Experimental UIs

The GD approach consists in transforming a source UI into a target UI adapted to a more
constrained platform. Therefore, the experiment has been conducted on UIs conceived for a
desktop, and later adapted to a PDA.

We have selected two different source user interfaces from two Web sites:

(1) An informative Web site, comprising only text and images: Iacchos14, a Web site for wine
lovers (Figure 8-1).

(2) An interactive Web site, comprising form controls by which the user interacts with the
system: Maporama15, an on-line map service providing free maps and driving directions
(Figure 8-2).

Figure 8-1 Screenshot of the Iacchos Web site: first source user interface of the experiment

14 http://www.iacchos.com (May 2004)
15 http://www.maporama.com (May 2004)

8. Validation

 148

Figure 8-2 Screenshot of the Maporama Web site: second source user interface of the experiment

For both source user interfaces, 4 distinct target user interfaces have been considered:

(1) A first version without modification (direct migration: the HTML code of the source
interface was directly interpreted by the PDA’s browser): version A.

(2) A version resulting from the manual application of GD rules belonging to the Concrete User
Interface level (layout modification rules): version B.

(3) A version resulting from the manual application of a splitting rule (Abstract User Interface
level): version C. On the Iacchos Web site, the navigation created between the interface’s
fragments was sequential (Figure 8-3) while, on the Maporama Web site, we provided a fully-
connected navigation, thanks to a tabbed panel (Figure 8-4).

(4) The last version (version D) was an “independent” version, i.e. an ad-hoc version, where the
user interface has been totally redesigned in order to fit the target platform.

Versions B and C were produced by the two students together. Versions D were downloaded from
the AvantGo Company Web site16 and are thus real-life examples of UIs manually adapted for use
on handheld devices. Both the particular characteristics of the designers of the PDA UIs and the
fact that B/C versions were not produced by the same designers as D versions may constitute a
bias in our experiment (even if predicting the potential effects of these biases seems difficult).

During the experiment, the interviewers referred to these versions by the single letter identifier A,
B, C and D, so that the interviewees did not have other information on these versions (they did not

16 http://www.avantgo.com, May 2006.

8. Validation

 149

know, for example, that one version had been designed by a commercial company while two other
versions had been produced by the students who conducted the experiment).

Figure 8-3 “Splitted” version of the Iacchos Web site, with sequential navigation

Figure 8-4 “Splitted” version of the Maporama Web site, with fully-connected navigation

8. Validation

 150

8.2.3 Participants

The participants were selected by quota sampling: 12 respondents were chosen, each belonging to a
category determined by the values of three variables: the computer literacy, the sex and the age
range, as shown on Table 8-9.

Due to the non-random nature of the sample and to its limited size (forced by time constraints: the
experiment required more than one hour per participant), we did not expect to obtain statistically
significant results, but to identify trends and to get a global evaluation of the approach and of the
rules.

Variable 1 : Computer

literacy

Variable 2 : Age Variable 3 : Sex Nr subject

Woman Subject 1 Less than 26

Man Subject 2

Woman Subject 3 Between 26 and 55

Man Subject 4

Woman Subject 5

Good

More than 55

Man Subject 6

Woman Subject 7 Less than 26

Man Subject 8

Woman Subject 9 Between 26 and 55

Man Subject 10

Woman Subject 11

Low

More than 55

Man Subject 12

Table 8-9 The 12 categories of subjects recruited for the experience

8.2.4 Tasks

One task per Web site was devised:

− On the informative site (Iacchos), users were asked to find two pieces of information: a
price and a person’s name (price and name had been modified on each version in order to
make the task less repetitive).

− On the interactive site (Maporama), the task consisted in navigating the Web pages,
finding a form and filling it.

We chose these simple tasks in order to be able to carry out the experiment within a reasonable
time. Increasing the complexity of the tasks (for example, by proposing a comparison task) would

8. Validation

 151

probably have revealed more differences between the versions. This effect of the task complexity
on experiments with small screen devices has been observed in other contexts [Chae04].

8.2.5 Questionnaires

Two main series of questionnaires were developed. The first series consisted of 8 questionnaires
administered after each test on a distinct PDA version. These questionnaires were designed to
assess, for each UI version:

− The user’s satisfaction.

− The perceived ease of use.

− The perceived speed of use.

− The perceived clarity of information presentation.

Five response options, ranging from “5-very high” until “1-very low” were possible for each item.
Furthermore, the participants were given the opportunity to provide free text comments on the
positive / negative aspects of each version.

The second series included two comparison questionnaires administered after completing the entire
set of tests linked to a given Web site, where users were asked to rank the 4 PDA versions. One
ranking had to be provided for each of the following criteria: user’s preference, aesthetics,
perceived similarity with the desktop version in terms of functionalities and perceived similarity
with the desktop version in terms of presentation.

8.2.6 Experimental procedure

The session began with a brief explanation of the purpose of the study, and a general introduction
to the manipulation of the PDA (use of key buttons, of the virtual keyboard, of the stylus...) by the
student playing the role of the instructor. Indeed, none of the participants was an actual PDA user,
which is a limitation of our study. In order to avoid an unconscious manipulation of the tests by
the instructor (a possible tendency to show her own versions in a more favourable light), all the
interventions had been drawn up beforehand and were merely read during the experiment.

The participant was then given a task to perform on the first Web site (Iacchos). He/she began
with the desktop version, and then successively carried out the same task on each PDA version.
The target versions were presented in random order, distinct for each participant, in order to
minimize the bias linked to the learning effect. A questionnaire of the first series was administered
at the end of each task. Each task completion time was recorded by the second student, who acted
as an observer and also took note of any event of interest that may occur (user comment, problem
encountered...) A comparison questionnaire had to be filled after the tests related to the first Web
site.

The same modus operandi was observed for the tests related to the second Web site (Maporama)
and a global summary questionnaire was then proposed. The order between the two Web sites was
kept constant (Iacchos was always before Maporama); because the participants were all PDA
beginners and that the task to be carried out on the Maporama Web site was slightly more difficult.

8. Validation

 152

8.2.7 Results

8.2.7.a Evaluation of the usability

The ISO 9241 standard defines usability as “the extent to which a product can be used by specified
users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context
of use” [ISO98]. Effectiveness is measured by evaluating the quality of the results that the user
generates with the system; efficiency is assessed by quantitative measurements, such as the duration
or the error count and satisfaction is evaluated through questionnaires.

The tasks the users had to complete during our experiment were not complex enough to measure
differences between user interface versions in terms of effectiveness. Efficiency was evaluated
through the measure of task completion time and user satisfaction was assessed through the
subjective ranking of the approaches along several quality criteria (satisfaction, ease of use,
perceived speed of use and clarity).

Table 8-10 and Table 6-1 summarize the answers to the first series of questions (on a 5-point scale,
1 being the lowest score and 5 the highest), while the charts on Figure 8-5 present the global
ranking of each version, drawn from the two comparison questionnaires.

Iacchos A

Direct
migration

Iacchos B

GD: layout
modification

rule

Iacchos C

GD: splitting
with sequential

navigation

Iacchos D

Ad-hoc
development

satisfaction mean 1.8 3.8 3.2 4
 median 1 4 3 4
ease of use mean 1.8 4 3.2 4.3
 median 1 4 3 4
speed of use mean 2.1 4.3 3 4.1
 median 2 4 3 4
clarity mean 1.8 3.8 3.4 4.4
 median 1 4 3,5 4
global appreciation 1.83 3.96 3.19 4.19
time mean 1:52 1:17 2:08 0:41
 median 1:42 0:59 1:36 0:35

Table 8-10 Evaluation of the four PDA versions of the Iacchos Web site

8. Validation

 153

Maporama A

Direct
migration

Maporama B

GD: layout
modification

rule

Maporama C

GD: splitting
with tabbed

panel

Maporama D

Ad-hoc
development

satisfaction mean 1.5 3.5 3.9 3.7
 median 1 3 4 4
ease of use mean 1.8 3.4 3.8 3.8
 median 2 3.5 4 4
speed of use mean 1.5 3.3 3.8 3.8
 median 1 3 4 4
clarity mean 1.5 3.3 4.2 3.8
 median 1 3.5 4 4
global appreciation 1.56 3.37 3.94 3.75
time mean 3:28 2:10 2:04 2:29
 median 2:53 1:48 1:47 1:46

Table 8-11 Evaluation of the four PDA versions of the Maporama Web site

Figure 8-5 Preferences expressed on Iacchos / Maporama versions

The primary goal of the experiment was to compare the usability of the user interfaces produced by
graceful degradation (versions B and C), in contrast to ad-hoc development (versions D) and direct
migration (versions A).

Our hypothesis was a ranking D> C> B> A, the D versions being the most appreciated and the
most usable, and the A versions the least appreciated and usable, with a middle position for the
interfaces produced with the GD approach.

Preferences expressed on Maporama
versions

1

11

2 2

87

3

1

1
3

7

2

Choice 1 Choice 2 Choice 3 Choice 4

N
um

be
r o

f s
ub

je
ct

s

D

C

B

A

Preferences expressed on Iacchos
versions

1

11

6
2 3

1

1
4

7

5 5
2

Choice 1 Choice 2 Choice 3 Choice 4

N
um

be
r o

f s
ub

je
ct

s

D

C

B
A

8. Validation

 154

We analysed the global appreciation and task completion time of the four UI versions using the
nonparametric Wilcoxon Signed-Ranked test, in order to check whether the apparent differences
presented in Table 8-10 and Table 8-11 were significant or not. The results of these tests are
presented in Table 8-12 and Table 8-13.We found significant differences (with p-values < .05) for
all Iacchos versions. For the Maporama UIs, we were only able to demonstrate the difference
between the A versions and the other versions (i.e. for this particular set of UIs, we were able to
prove that the PDA UIs produced by GD were more appreciated and required less task completion
time than the PDA UI produced by direct migration, but we were not able to found significant
differences between the UIs produced by GD and the ad-hoc UI).

 Iacchos A /
Iacchos B

Iacchos B /
Iacchos C

Iacchos C /
Iacchos D

Global score 0.001 0.014 0.000

 Maporama A /
Maporama B

Maporama B /
Maporama C

Maporama C /
Maporama D

Maporama B /
Maporama D

Global score 0.000 0.059 0.344 0.107

Table 8-12 p-values for Wilcoxon Signed-Ranked test (H0: Global score on perceived usability is equal)

 Iacchos A /

Iacchos B
Iacchos B /
Iacchos C

Iacchos C /
Iacchos D

Time 0.009 0.017 0.001

 Maporama A /
Maporama B

Maporama B /
Maporama C

Maporama C /
Maporama D

Maporama B /
Maporama D

Time 0.002 0.606 0.027 0.209

Table 8-13 p-values for Wilcoxon Signed-Ranked test (H0 : Global score on task completion time is equal)

In summary, experimental results do not contradict our ranking hypothesis (D> C> B> A):

− The A versions (HTML code directly used on the PDA) were the least appreciated, on both
Web sites, obtained the lowest score for all criteria and required the highest task completion
times. The difference between the A versions and the other versions were found statistically
significant, for both source UIs and for all criteria.

− The D versions (traditional, ad-hoc development) were generally highly appreciated, were
classified in first or second position by a large majority of users, obtained a high global mean
for the four quality criteria assessed and required the lowest task completion times (even if the
differences could not be proved to be significant for the Maporama UI).

− The B versions (GD rules at the Concrete User Interface level) are effectively positioned
between D and A versions on both Web sites in terms of task completion time, of global mean
for the four quality criteria, and for nearly each individual criterion.

− The classification of the C versions seems to be linked with the navigation style created
between the interaction spaces on the target platform:

8. Validation

 155

(1) When the navigation is sequential (Iacchos), the C version gives lower scores than the B
version: lower global mean, lower score for all quality criteria, higher task completion time.

(2) On the other side, when the navigation is fully-connected (Maporama), the C version
performs much better: it is the first choice version for a majority of participants, the most
appreciated for all quality criteria and one of the best in terms of efficiency. Most of the
time, the C version of the Maporama Web site was even more appreciated that the D
version (ad-hoc development).

User’s perception of the different navigation types is confirmed by their comments: when
questioned on sequential navigation, ten people out of twelve gave a negative appreciation. In
contrast, navigation inside a tabbed panel received only one negative comment and one moderate.

Note also that efficiency and user appreciation are not always correlated. So, on Table 8-10,
Iacchos C is the least efficient version (highest mean task completion time), but is not the least
appreciated. Similar observations may be found in a study of the performance, precision and user
appreciation of widgets for various tasks [John95], where the authors found that the most efficient
widget was not necessarily the most appreciated.

The present data suggests that our theoretical estimation of the usability of the UIs produced with
our methodology (section 8.1.4) was correct but, again, these experimental results should be
confirmed by tests conducted at a bigger scale. In particular, the independent variables should be
refined to take into account variations of programming techniques (for the A versions), precise type
of GD rule used (versions B and C) and variations between design teams (versions D). The number
of different source UIs should also be increased and more complex tasks should be proposed to
the participants.

8.2.7.b Evaluation of the cross-platform consistency

One theoretical argument in favour of graceful degradation was that the approach provided
consistency between the platform specific versions. This aspect is important, because the usability
of a multiplatform system depends not only on the usability of each platform specific version but
also on the transitions between these versions. While [Deni03] proposes to assess cross-platform
consistency by analyzing each possible transition between versions, we will only consider the
transitions from the source UI to the target UIs. This approach is less complete than the first one,
but the focus is set on the most important transitions: those between the user’s most familiar
environment (the desktop) and the other environments (here: the PDA), where we would like the
user to reuse his/her knowledge of the first system.

Two measures were meant to assess the cross-platform consistency:

− The rating of perceived similarity with the desktop version in terms of functionalities (results
on Figure 8-6).

− The rating of perceived similarity with the desktop version in terms of presentation (results on
Figure 8-7).

8. Validation

 156

Iacchos version most similar
to desktop version in terms of

functionalities

8.3%25%

33.3%
33.3%

Iacchos A

Iacchos B

Iacchos C

Iacchos D

Maporama version most
similar to desktop version in

terms of functionalities

17%

41%
25%

17% Maporama A
Maporama B
Maporama C
Maporama D

Figure 8-6 Perceived similarity of the PDA versions with the desktop version in terms of functionalities

Iacchos version most similar
to desktop version in terms of

presentation

15%

54%
8%

23% Iacchos A

Iacchos B
Iacchos C

Iacchos D

Maporama version most similar
to desktop version in terms of

presentation

27%

37%

27%
9% Maporama A

Maporama B
Maporama C
Maporama D

Figure 8-7 Perceived similarity of the PDA versions with the desktop version in terms of presentation

The order expected, from the most similar version until the most different was A < B < C < D.
Surprisingly, few participants recognized that the A versions were identical to their source desktop
version: A versions are considered as the least similar to the source interface in terms of
functionalities both on Iacchos and Maporama, and they are only classified second and third in
terms of similarity of presentation. This non-recognition was confirmed by oral comments made
during the experiment and is probably due to the large amount of scrolling required or to some
presentation features not satisfyingly rendered on the PDA.

The collected data was insufficient to be exploited statistically but, in average, the expected order
between the other versions (i.e. B < C < D) is not contradictory with the experimental data
because: (1) it is confirmed in three rankings out of four, even is the perceived similarity of the
Iacchos D version is higher than the C version, (2) the average ranking for the functionalities
similarity is B < C < D < A and the average ranking for the presentation similarity is B < A < C <
D.

These results seem to confirm that the GD approach leads to more cross-platform consistency
than ad-hoc development, and that GD rules applied at the CUI level (B versions) have less impact
on the cross-platform consistency than GD rules applied at the AUI level (C versions).
Furthermore, they show that relying on generic clients for interpreting the same code does not

8. Validation

 157

always provide user interfaces that are perceived as similar, which forces us to moderate the
theoretical ranking presented in Table 8-7.

8.2.8 Conclusion

The experiment described above was meant to confront the subjective appreciation given on the
impact of graceful degradation on usability (8.1.4) and cross-platform consistency (8.1.5) with
factual data. The analysis of the results collected did not reveal evidence against our hypothesis that
graceful degradation should be considered as a trade-off approach between direct migration and ad-
hoc development, in terms of the two criteria studied. However, the study also suggests that
parameters such as the exact type of GD rule (type of dialog between the splitted fragments of the
UI for example), or the chosen source UI may have an impact on the users’ appreciation of the UI.
Our experimental set-up did not permit studying these potential effects. Another limitation of the
experiment is that we did not meet the ideal condition of having all PDA UIs produced by
independent designers.

9. Conclusion

 158

Chapter 9 Conclusion

9.1 Summary of results

9.1.1 Theoretical and conceptual contributions

9.1.1.a Platform and interactor models

Chapter 3 proposed a platform model (3.6) and an interactor model (3.7) for the UsiXML user
interface language. We observed a shortage of platform models in model-based user interface
management systems. Therefore, we established a detailed list of hardware and software properties
likely to influence the construction of user interfaces. An overview of this platform model can be
found in [Limb04]. The set of widgets available on a given platform is also an important
characteristic of this platform. For this reason, we developed an interactor model aimed to enhance
the description of final interactors found in toolkits or mark-up languages with higher level
information about their functionalities. Chapter 4 demonstrates how this interactor model supports
interactor substitution rules, when a given widget is unsuitable or unavailable on a target platform
(4.2.2).

9.1.1.b Catalogue of rules

In the first chapter of this thesis, we listed a series of problems faced in creating multiplatform user
interfaces. The lack of knowledge and experience in the field was identified as an important
limitation. Chapter 4 addressed this problem by presenting a structured collection of
transformation rules that can be used both manually and semi-automatically by designers (4.1). This
typology of rules has been published in [Flor04b]. Formalization and structuring of these rules have
been addressed in Chapter 4 (4.2) and Chapter 6 (6.1), respectively.

9.1.1.c Splitting algorithm

Chapter 5 explored the splitting rule. Although the only input required to apply the splitting rule is
a source interface at the CUI level, an algorithm was proposed that exploits the AUI and task
models to guide the splitting process when these models are available. The novelty of this
algorithm resides, on one hand, in the use of the temporal relationships between tasks in a splitting
process and, on the other hand, in the scalability of the multi-level approach, which takes advantage
of the possibility to build a UI specification using any combination of model components in
UsiXML. A description of this algorithm has been published in [Flor06] and, more extensively, in
[Flor06b].

9. Conclusion

 159

9.1.2 Methodological contribution

The introduction of graceful degradation as a design approach represents a methodological
contribution to the field of multiplatform user interface design, which is an answer to the lack of
methods in the field of MUI identified at the begin of this thesis. Chapter 7 demonstrated the
practicability of the method. Chapter 8 showed the advantages of GD compared to other
approaches for developing of MUI in terms of costs, applicability domain, usability of the user
interfaces produced, designer control, cross-platform consistency and guidance. GD thus also
addresses concerns expressed on the high development and maintenance costs of MUI and on the
lack of consistency and usability of multiplatform systems.

9.1.3 Tools developed

Two tools were built in support to the GD method. The first tool (6.1) offers an interface to a
database that gathers, structures and organizes GD rules. To the best of our knowledge, this is the
first tool aimed to manage knowledge bases of adaptation rules. The second tool (6.2) demonstrates
the viability of GD when applied semi-automatically on a UI specification. In contrast to other
model-based environments for building MUI, this tool mostly relies on “horizontal”
transformations (translations in the CAMELEON terminology) instead of “vertical”
transformations (i.e; reification and/or abstraction). The tool provides access to the description of
the rules in the knowledge base (6.2.2). Industry professionals interviewed during a small user study
(6.2.5) expressed their interest towards this kind of tool.

9.2 Future work in prospect

In the immediate future, possible research opportunities include:

 Applying the method and rules to user interfaces in other formats. Until now, GD rules

have been described in terms of the CAMELEON framework and applied semi-automatically
on source user interfaces in UsiXML. Applying GD concepts to user interfaces in formats
such as UIML or XUL for example would demonstrate the transferability of the approach. The
availability of stable and effective rendering engines for these languages would constitute an
additional advantage.

 Applying the method and rules to more complex applications. In this thesis, we have
selected two case studies to show the applicability of our approach, both in a scenario where
the rules are used manually by a human developer and in a scenario where the application of
the rules is supported by a tool. Investigating more complex and more diverse applications
would be necessary to demonstrate the scalability of the approach.

 Exploring new architectures and techniques for the GD tool. The prototype built in the
context on this thesis was only meant to prove the feasibility of designing user interfaces by
applying GD rules semi-automatically. Further development of the tool should provide the
designer with possibilities to add or modify GD rules, and to export these rules to other
environments. The possibility to save a subset of rules and their parameters as a kind of
“transformation scenario” that could be applied consistently on any interaction space from the

9. Conclusion

 160

source user interface, or on another source interface, should also be considered: it would
provide a real advantage in terms of reusability.

 Exploring GD rules at the dialog level. This thesis has been focused on presentational
aspects. Future work should give more attention to aspects such as dialog adaptation, impact of
existing GD rules on the dialog, representation of the dialog in UsiXML or other user interface
description languages.

 Extending the corpus of rules in other directions:

− Extending the corpus of rules with upgradation rules. Upgradation rules would permit
to deal with the fact that a lesser restricted device, in comparison to a chosen source device,
could occur during the lifetime of the system. A basic corpus of upgradation rules could be
built by inversing the current GD rules.

− Extending the corpus of rules with platform-specific rules. The current corpus is
composed of rules that apply to every target platform. Gathering rules linked to
characteristics and usability rules specific to a given platform would increase the utility of
the tools, since designers often lack experience and knowledge about mobile platforms, or
are specialized in a small number of platforms only.

 Studying work practices of multiplatform designers. This thesis has only tackled this aspect
superficially (6.2.5.b), but a larger-scale investigation of current design practices would help us
to understand which development processes must be supported by our tools.

Considering possible extensions at the long term, we could think about:

 Applying the GD rules in different adaptation configurations:

− System initiative: automatic recognition of usability problems and/or detection of changes
in the platform (e.g. smaller screen size). Existing works on automatic evaluation of
usability should be a starting point, but additional difficulties should be taken into account:
the evaluation should be carried on an abstract description of the user interface, and not at
the code level, and the evaluation should take the target platform’s characteristics into
account.

− System proposal: automatic proposition of GD rules when a problem is recognized. The
structure of the GD rules as an aggregation of a condition and a related reaction is already a
first step in this direction. More advanced metamodels of evolution rules (for example,
[Gann05]) should also be considered.

− System decision: automatic selection of a suitable GD rule among the proposals. In
[Flor04b], we proposed a priority ordering of GD rules based on their impact on the
continuity of the multiplatform system. This theoretical ranking should be refined by user
studies such as the experiment described in section 8.2. Other selection criteria should also
be taken into consideration, such as for example user preferences, or expected impact on

9. Conclusion

 161

the usability of the target user interface, which would also requires investigation on the
automatic evaluation of the quality of a user interface design, the definition of metrics, or
the extension of the interactor model to include platform-specific information on the
computational, physical and cognitive costs of each interactor.

− System learning: automatic acquisition of transformation scenarios based on the analysis
of the interactions of human designers with the plug-in.

 Applying the GD rules with different goals:

− UI personalization / customization after deployment, either under direct user control,
either driven by the computer and based on a user model (containing information on the
user's role, experience, access to data, frequency of tasks carried on,...)

− Improving the accessibility for users with disabilities: for example, resizing rules,
possibly coupled with splitting rules, could be useful for low-vision users...

9.3 Concluding remarks

We started this doctoral research with one research field: model-based development techniques for
multiplatform user interfaces and one real-world case study: the ARTHUR system. At this time,
most of the model-based solutions specifically adapted to the problem of multiplatform UIs were
focused on automatically deriving UI code from abstract models (what we called “multireification”)
and on defining the User Interface Description Languages necessary to specify those models.

Our experience with the ARTHUR prototype has led us to question the current model-based
engineering methods. Classically, the development cycle of the ARTHUR software began with a
stage of requirement elicitation and analysis, where several artefacts were produced: task models
and UML use cases and class diagrams. Our first intention, which was to explore transformation
rules able to produce platform specific user interfaces starting from these abstract models, quickly
appeared unrealistic, due to the complexity of the envisioned system and the high expectations of
emergency health professionals in terms of system usability.

This complexity, together with the difficulty to collect, understand and formalize user requirements,
forced the ARTHUR development team to adopt a fast prototyping approach, where mock-ups
were iteratively used to collect user feedback, which permitted obtaining more precise
specifications and to build new mock-ups, more consistent with users’ expectations.

Difficulty of transforming high level specifications in usable user interfaces fully automatically and
confrontation with actual practices, where first versions of the user interfaces are produced before
the end of the requirements elicitation stage were the initial motivations for the work described in
this thesis. Our work has been neatly focused on the design stage with little attention to run-time
and on presentational aspects rather than dialog, so the list of potential future work is still huge. We
hope that further research on these fields may benefit from our attempt to clarify the problem
space.

References

 162

References

A

[Ali03]

Ali, M. F., A.Pérez-Quiñones, M., Abrams, M., & Shell, E. (2004). Building Multi-Platform User
Interfaces with UIML. In H. J. a. A. Seffah (Ed.), Multiple User Interfaces: Engineering and Application
Framework (pp. 95-118). Chichester (GB): Wiley and Sons.

[Alle83]

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11),
832-843.

[Amou05]

 Ammouh, T., Gemo, M., Macq, B., Vanderdonckt, J., Gariani, A. W. E., Reynaert, M., et al. (2005).
Versatile clinical information system design for emergency departments. IEEE Transactions on
Information Technology in Biomedicine, 9(2), 174-183.

[Arta05]

 Artail, H.A., & Raydan, M. (2005). Device-aware desktop web page transformation for rendering on
handhelds. Personal and Ubiquitous Computing, 9(6), 368-380.

B

[Bana04]

 Banavar, G., Bergman, L. D., Gaeremynck, Y., Soroker, D., & Sussman, J. (2004). Tooling and system
support for authoring multi-device applications. The Journal of Systems and Software, 69(3), 227-242.

[Bart88]

 Barthet, M.-F. (1988). Logiciels interactifs et ergonomie. Paris: Dunod Informatique.

[Bick97]

 Bickmore, T. W., & Schilit, B. N. (1997). Digestor: Device-independent access to the World Wide Web.
Computer Networks and ISDN Systems, 29(8-13), 1075-1082.

[Boda95]

 Bodart, F., Henneber,t A. , Lheureux, J. , Provot, I. , Sacré, B. , & Vanderdonckt, J. (1995). Towards a
systematic building of software architecture: The TRIDENT methodological guide. Proceedings of 1st
Eurographics Workshop on Design, Specification, Verification of Interactive Systems DSV-IS'95 (7-9
June, Château de Bonas, France).

References

 163

[Boui02]

 Bouillon, L., Vanderdonckt, J., & Chow, K. C. (2004). Flexible re-engineering of web sites. Proceedings of
the 9th International Conference on Intelligent User Interfaces IUI'04 (13-16 January, Funchal,
Portugal).

[Boui04]

 Bouillon, L., Vanderdonckt, J., & Eisenstein, J. (2002). Model-Based Approaches to Reengineering Web Pages.
Proceedings of the 1st International Workshop on Task Models and Diagrams for User Interface
Design TAMODIA '02 (18 -19 July, Bucharest).

[Brau04]

 Braun, E., Hartl, A., Kangasharju, J. & Mühlhäuser, M. (2004). Single Authoring for Multi-Device Interfaces.
Proceedings of the 8th ERCIM Workshop "User Interfaces For All" (28-29 June, Vienna). Retrieved
March, 2006, from http://ui4all.ics.forth.gr/workshop2004/files/ui4all_proceedings/adjunct/
techniques_ devices_metaphors/45.pdf

[Butl01]

 Butler, M. (2001). Current Technologies for Device Independence. HP Technical Report HPL-2001-83,
Retrieved January, 2006, from http://www.hpl.hp.com/techreports/2001/HPL-2001-83.html

[Butl02]

 Butler, M. (2002). Using Capability Profiles For Appliance Aggregation. HP Technical Report HPL-2002-
173R1 Retrieved January, 2006, from http://www.hpl.hp.com/techreports/2002/HPL-2002-
173R1.html

 [Buyu02]

 Buyukkokten, O., Kaljuvee, O., Garcia-Molina, H., Paepcke, A., & Winograd, T. (2002). Efficient web
browsing on handheld devices using page and form summarization. ACM Transactions on Information
Systems (TOIS), 20(1), 82-115.

C

[Caet02]

 Caetano, A., Goulart, N., Fonseca, M., & Jorge, J. (2002). JavaSketchIt: Issues in Sketching the Look of
User Interfaces. Proceedings of the 2002 AAAI Spring Symposium - Sketch Understanding (25-27
March, Palo Alto, United States).

[Calv03]

 Calvary, G., Coutaz, J., Daassi, O., Balme, L., & Demeure, A. (2004). Towards a new generation of widgets for
supporting software plasticity: the 'comet'. Proceedings of the 9th IFIP Working Conference on Engineering
for Human-Computer Interaction, Jointly with The 11th International Workshop on Design,

References

 164

Specification and Verification of Interactive Systems EHCI-DSVIS'04 (11-13 July, Hamburg,
Germany).

[Calv04]

 Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., & Vanderdonckt, J. (2003). A
unifying reference framework for multi-target user interfaces. Interacting with Computers 15(3), 289–308.

[Calv05]

 Calvary, G., Daassi, O., Coutaz, J., & Demeure, A. (2005). Des widgets aux comets pour la Plasticité
des Systèmes Interactifs. Revue d'Interaction Homme-Machine, 6(1), 33-53.

[Ceri00]

 Ceri, S., Fraternali, P., & Bongio, A. (2000). Web Modeling Language (WebML): a Modeling Language for
Designing Web Sites. Proceedings of the 9th World Wide Web Conference WWW9 (15-19 May,
Amsterdam).

[Chae04]

 Chae, MW., & Kim, JW. (2004). Do size and structure matter to mobile users? An empirical study of
the effects of screen size, information structure, and task complexity on user activities with standard
web phones. Behaviour & Information Technology, 23(3), 165-181.

[Chen05]

 Chen, Y., Xie, X., Ma, W.-Y., & Zhang, H.-J.(2005). Adapting Web Pages for Small-Screen Devices.
IEEE Internet Computing, 09(1), 50-56.

[Ches04]

 Chesta, C., Paternò, F., & Santoro, C. (2004). Methods and Tools for Designing and Developing
Usable Multi-Platform Interactive Applications. PsychNology Journal, 2, 123-139. Retrieved January 2006
from http://www.psychnology.org/File/PSYCHNOLOGY_JOURNAL_2_1_CHESTA.pdf

[Chu04]

 Chu, H., Song, H., Wong, C., Kurakake, S., & Katagiri, M. (2004). Roam, a seamless application
framework. Journal of Systems and Software, 69(3), 209-226.

[Clar00]

 Clark, D. (2000). From Abstract to Concrete: designing AUIML renderers. IBM White Paper, May 2000.

[Coye04]

 Coyette, A., Faulkner, S., Kolp, M., Limbourg, Q., & Vanderdonkt, J. (2004). SKetchiXML: Towards a
Multi-Agent Design Tool for Sketching User Interfaces Based on USIXML. Proceedings of the 4th International
Workshop on Task Models and Diagrams for User Interface Design TAMODIA’04 (15-16 November,
Prague, Czeck Republic).

References

 165

[Crea00]

Crease, M., Gray, P., & Brewster, S. (2000). A Toolkit of Mechanism and Context Independent Widgets.
Proceedings of the Design, Specification and Verification of Interactive Systems, Workshop 8, ICSE
2000 (5-6 June, Limerick, Ireland).

D

[Dees04]

 Dees, W. (2004). Handling device diversity through multi-level stylesheets. Proceedings of the 8th International
Conference on Intelligent User Interfaces IUI’2004 (13-16 January, Funchal, Portugal).

[Deli98]

 Delis, V., & Papadias, D. (1998). Querying Multimedia Documents By Spatiotemporal Structure. Proceedings of
the Third International Conference on Flexible Query Answering Systems FQAS '98 (13-15 May,
Roskilde, Denmark).

[Deni03]

 Denis, C., & Karsenty, L. (2003). Inter-usability of multi-device systems: A conceptual framework. In
A. Seffah & H. Javahery (Eds.), Multiple User Interfaces: Engineering and Application Framework (pp. 373-
385). Chichester (GB): Wiley and Sons.

[Diet94]

 Dieterich, H., Malinowski, U., Kühme, T., & Schneider-Hufschmidt, M. (1994). State of the Art in
Adaptive User Interfaces. In M. Schneider-Hufschmidt, T. Kühme & U. Malinowski (Eds.), Adaptive
User Interfaces: Principles and Practice (pp. 13-48). Amsterdam: North-Holland.

[Ding06]

 Ding, Y., & Litz, H. (2006). Creating Multiplatform User Interfaces by Annotation and Adaptation. Proceedings
of the 10th International Conference on Intelligent User Interfaces IUI’2006 (29 January - 1 February,
Sydney).

[Drag05]

 Dragicevic, P., Chatty, S., Thevenin, D., & Vinot, J.-L. (2005). Artistic resizing: a technique for rich scale-
sensitive vector graphics. Proceedings of the 18th annual ACM symposium on User interface software and
technology UIST '05 (23-26 October, Seattle, United States).

E

[Ehri99]

 Ehrig, H., Engels, G., Kreowski, H-J., and Rozenberg, G. (1999). Handbook of Graph Grammars and
Computing by Graph Transformation, Application, Languages and Tools, Vol. 2. Singapore: World Scientific.

References

 166

[Eise01]

 Eisenstein, J., Vanderdonckt, J., & Puerta, A. (2001). Applying model-based techniques to the development of UIs
for mobile computers. Proceedings of the 6th International Conference on Intelligent User Interfaces
IUI'01 (14 -17 January, Santa Fe, United States).

F

[Flor04]

 Florins, M., Trevisan, D., & Vanderdonckt, J. (2004). The Continuity Property in Mixed Reality and
Multiplatform Systems: a Comparative Study. Proceedings of the 4th International Workshop on Computer-
Aided Design of User Interfaces CADUI'04 (13-16 January, Funchal, Portugal).

[Flor04b]

 Florins, M., & Vanderdonckt, J. (2004). Graceful Degradation of User Interfaces as a Design Method for
Multiplatform Systems. Proceedings of the 8th International Conference on Intelligent User Interfaces
IUI’04 (13-16 January, Funchal, Portugal).

[Flor06]

 Florins, M., Montero, F., Vanderdonckt, J., & Michotte, B. (2006). Splitting rules for graceful degradation of
user interfaces. Proceedings of the 11th International Conference on Intelligent User Interfaces IUI'06
(29 January 29 - 01 February, Sydney, Australia).

[Flor06b]

 Florins, M., Montero, F., Vanderdonckt, J., & Michotte, B. (2006). Splitting rules for graceful degradation of
user interfaces. Proceedings of the Advanced Visual Interfaces International Working Conference AVI
2006 (23-26 May, Venice).

[Fox98]

 Fox, A., Goldberg, I., Gribble, S. D., & Lee, D. C. (1998). Experience With Top Gun Wingman: A Proxy-
Based Graphical Web Browser for the 3Com PalmPilot. Proceedings of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing Middleware'98 (15-18 September,
Lake District, UK).

G

[Gajo04]

 Gajos, K., & Weld, D. S. (2004). SUPPLE: Automatically Generating User Interfaces. Proceedings of
the 8th International Conference on Intelligent User Interfaces IUI’2004 (January 13-16, Funchal,
Portugal).

References

 167

[Gann05]

 Ganneau, V. (2005). Plasticité des Systèmes Interactifs: Modèle d’Evolution et Apprentissage. Unpublished Master
thesis, Université Joseph Fourier, Grenoble.

[Ghez01]

 Ghezzi, C., Jazayeri, M., & Mandrioli, D. (1991). Fundamentals of Software Engineering. Englewood Cliffs
(United States): Prentice Hall.

[Göbe01]

 Göbel, S., Buchholz, S., Ziegert, T., & Schill, A. (2001). Device independent representation of web-based dialogs
and contents. Proceedings of the IEEE Youth Forum in Computer Science and Engineering
YUFORIC'01 (29-30 November, Valencia, Spain).

[Gold93]

 Goldberg, D., & Richardson, C. (1993). Touch typing with a stylus. Proceedings of the Conference on
Human Factors in Computing Systems INTERCHI’93 (24-29 April, Amsterdam).

[Gram00]

 Grammenos, D., Akoumianakis, D., & Stephanidis, C. (2000). Integrated Support for Working With
Guidelines: The Sherlock Guidelines Management System. Interacting with Computers, 12(3), 281-311.

[Grif01]

 Griffiths, T., Barclay, P. J., Paton, N. W., McKirdy, J., Kennedy, J., Gray, P. D., et al. (2001). Teallach:
A Model-Based User Interface Development Environment for Object Databases. Interacting with
Computers, 14(1), 31-68.

[Grol02]

 Grolaux, D., Van Roy, P., & Vanderdonckt, J. (2002). FlexClock: A Plastic Clock Written in Oz with the
QTk Toolkit. Proceedings of the 1st International Workshop on Task Models and Diagrams for User
Interface Design TAMODIA '02 (18-19 July, Bucharest).

[Grun03]

 Grundy, J., & Zou, W. (2003). AUIT: Adaptable User Interface Technology, with Extended Java Server
Pages. In A. Seffah & H. Javahery (Eds.), Multiple User Interfaces: Engineering and Application
Framework (pp. 149-167). Chichester (UK): Wiley and Sons.

H

[Hain02]

 Hainaut, J. (2002). Introduction to Database Reverse Engineering. Retrieved January, 2006, from
http://www.info.fundp.ac.be/~dbm/publication/2002/DBRE-2002.pdf

References

 168

[Hare96]

 Harel, D., & Naamadz, A. (1996). The STATEMATE Semantics of Statecharts. ACM Transactions on
Software Engineering and Methodology, 5(4), 293 – 333.

[Henn00]

 Henninger, S. (2000). A Methodology and Tools for Applying Context-Specific Usability Guidelines to
Interface Design. Interacting with Computers, 12(3), 225-243.

[Henr04]

 Henry, C., & Henry, K. (2004). Recherche sur les préférences des utilisateurs en ce qui concerne la dégradation des
interfaces en vue d’être visionnées sur des plates-formes à petit écran. Unpublished Master thesis, Université
Catholique de Louvain, Louvain-la-Neuve.

I

[ISO98]

 ISO. (1998). International Standard ISO 9241-11: Ergonomic requirements for office work with visual
display terminals (VDTs) - Part 11: Guidance on usability.

J

[Jaba03]

 Jabarin, B., & Graham, T.C.N. (2003). Architectures for Widget-Level Plasticity. Proceedings of the 10th
International Workshop on Interactive Systems Design, Specification, and Verification DSV-IS 2003
(11-13 June, Funchal, Portugal).

[John95]

 Johnsgard, T.J., Page, S.R., Wilson, R.D., & Zeno, R.J. (1995). A Comparison of Graphical User Inteface
Widgets for Various Tasks. Proceedings of the Human Factors & Ergonomics Society 39th Annual
Meeting HFS'95 (9-13 October, Santa Monica, United States).

[John92]

 Johnson, J. (1992). Selectors: going beyond user-interface widgets. Proceedings of the SIGCHI conference on
Human factors in computing systems CHI '92 (03-07 May, Monterey, United States).

[John95]

 Johnson, P., Johnson, H., & Wilson, S. (1995). Rapid prototyping of user interfaces driven by task
models In J. M. Carroll (Ed.), Scenario-Based Design: Envisioning Work and Technology in System
Development. New-York: John Wiley & Sons.

References

 169

K

[Kaas01]

 Kaasinen, E., Kolari, J., & Laakko, T. (2001). Mobile-Transparent Access to Web Services. Proceedings of the
8th IFIP TC.13 Conference on Human-Computer Interaction Interact 2001 (9-13 July, Tokyo).

[Kera02]

 Keränen, H., & Plomp, J. (2002). Adaptive Runtime Layout of Hierarchical UI Components. Proceedings of
the 2d Nordic Conference on Human-Computer interaction NordiCHI '02 (19 - 23 October, Ǻarhus,
Denmark).

[Kim93]

 Kim, W., & Foley, J. (1993). Providing High-Level Control and Expert Assistance in User Interface
Presentation Design. Proceedings of the Conference on Human Factors in Computing Systems
INTERCHI’93 (24-29 April, Amsterdam).

L

[Land95]

 Landay, J. A., & Myers, B. A. (1995). Interactive Sketching for the Early Stages of User Interface Design.
Proceedings of the Conference on Human Factors in Computing Systems CHI'95 (7–11 May, Denver,
United States).

[Laud06]

 Laudon, K., & Laudon, J. (2006). Management information systems: managing the digital firm. Upper
Saddle River (United States): Pearson Prentice Hall.

[Leun00]

 Leung, K. R. P. H., Hui, L. C. K., Yiu, S. M., & Tang, R. W. M. (2000). Modeling Web Navigation by
Statechart. HKU CSIS Technical Report Retrieved January, 2006, from http://www.cs.hku.hk/
research/techreps/document/TR-2000-01.pdf

[Lewi95]

 Lewis, J. R. (1995). IBM Computer Usability Satisfaction Questionnaires: Psychometric Evaluation and
Instructions for Use. International Journal of Human-Computer Interaction, 7(1), 57-78.

[Lin03]

 Lin, J. (2003). Damask: A Tool for Early-Stage Design and Prototyping of Cross-Device User Interfaces.
Proceedings of the Conference Supplement of UIST 2003: ACM Symposium on User Interface
Software and Technology (2–5 November, Vancouver, Canada).

References

 170

[Limb03]

 Limbourg, Q., & Vanderdonckt, J. (2003). Comparing Task Models for User Interface Design. In D.
Diaper & N. Stanton (Eds.), The Handbook of Task Analysis for Human-Computer Interaction (pp. 135-154).
Mahwah (United States): Lawrence Erlbaum Associates.

[Limb04]

 Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Florins, M., & Trevisan, D. (2004).
USIXML: A User Interface Description Language for Context-Sensitive User Interfaces. Proceedings of the 9th
IFIP Working Conference on Engineering for Human-Computer Interaction, Jointly with The 11th
International Workshop on Design, Specification and Verification of Interactive Systems EHCI-
DSVIS'04 (11-13 July, Hamburg, Germany).

 [Limb04b]

 Limbourg, Q. (2004). Multi-Path Development of User Interfaces. Unpublished PHD thesis, Université
catholique de Louvain, Louvain-la-Neuve.

[Lin02]

 Lin, J., Thomsen, M., & Landay, J. A. (2002). A Visual Language for Sketching Large and Complex Interactive
Designs. Proceedings of the Conference on Human Factors in Computing Systems CHI'02 (20-25 April,
Minneapolis, United States).

[Lok01]

 Lok, S., & Feiner, S. (2001). A Survey of Automated Layout Techniques for Information Presentations. In
Proceedings of the 1sr International Symposium on SmartGraphics (21-23 March, Hawthorne, United
States).

[Lonc96]

 Lonczewski, F., & Schreiber, S. (1996). The FUSE-System: an Integrated User Interface Design Environment.
Proceedings of the 2nd International Workshop on Computer-Aided Design of User Interfaces
CADUI'96 (5-7 June, Namur).

[Luo93]

 Luo, P., Szekely, P., & Neches, R. (1993). Management Of Interface Design In Humanoid. Proceedings of the
Conference on Human Factors in Computing Systems INTERCHI’93 (24-29 April, Amsterdam).

[Luyt03]

 Luyten, K., Van Laerhoven, T., Coninx, K., & Van Reeth, F. (2003). Runtime transformations for
modal independent user interface migration. Interacting with Computers, 15(3).

[Luyt03b]

Luyten K., Clerckx T., Coninx K. and Vanderdonckt J., Derivation of a Dialog Model from a Task Model by
Activity Chain Extraction, In Preliminary Proceedings of DSV-IS'2003 (Funchal, Madeira Island,
Portugal, 4-6 June 2003).

References

 171

[Luyt04]

Luyten, K. (2004). Dynamic User Interface Generation for Mobile and Embedded Systems with
Model-Based User Interface Development. Unpublished PHD thesis, transnationale Universiteit
Limburg, Diepenbeek, Belgium.

M

[Mand02]

 Mandyam, S., Vedati, K., Kuo, C., & Wang, W. (2002). User Interface Adaptations: Indispensible for
SingleAuthoring. Proceedings of the W3C Workshop on Device Independent Authoring Techniques (25-
26 September, St. Leon-Rot, Germany).

[Mari05]

 Mariage, C. (2005). MetroWeb: logiciel de support à l'évaluation de la qualité ergonomique des sites web.
Unpublished PHD thesis, Université catholique de Louvain, Louvain-la-Neuve.

[Mart90]

 Martin, C. (1990). A UIMS for knowledge based interface template generation and interaction. Proceedings of the
IFIP TC13 3rd International Conference on Human-Computer Interaction INTERACT'90 (27-31
August, Cambridge, UK).

[Menk02]

 Menkhaus, G. (2002). A hybrid approach to adaptive user interface generation. CIT - Journal of
Computing and Information Technology, 10(3), 171-179.

[Menk03]

 Menkhaus, G., & Fischmeister, S. (2003). Evaluation of User Interface Transcoding Systems. Proceedings of
the 7th World Multiconference on Systemics, Cybernetics and Informatics (27-30 July, Orlando, United
States).

[Menk03b]

 Menkhaus, G., & Fischmeister, S. (2003). Dialog Model Clustering for User Interface Adaptation. Proceedings
of the 3rd International Conference on Web Engineering ICWE 03 (16-18 July, Oviedo, Spain).

[Meye97]

 Meyers, B. (1997). Object-Oriented Software Construction (2d ed.). New York: Prentice Hall.

[Mont05]

 Montero, F., López-Jaquero, V., Vanderdonckt, J., Gonzalez, P., Lozano, M. D., & Limbourg, Q.
(2005). Solving the Mapping Problem in User Interface Design by Seamless Integration in IdealXML. Proceedings
of the 12th International Workshop on Design, Specification and Verification of Interactive Systems
DSVIS'05 (13–15 July, Newcastle upon Tyne, UK).

References

 172

[Mori03]

Mori, G., Paternò, F., & Santoro, C. (2003). Tool Support for Designing Nomadic Applications. Proceedings
of the 8th international conference on Intelligent user interfaces IUI'03 (12-15 January, Miami).

[Myer90]

 Myers, B., Giuse, D., Dannenberg, R., Vander Zanden, B., Kosbie, D., Pervin, E., et al. (1990). Garnet:
Comprehensive Support for Graphical, Highly-Interactive User Interfaces. IEEE Computer, 23(11), 71-
85.

[Myer97]

 Myers, B., McDaniel, R., Miller, R., Ferrency, A., Faulring, A., Kyle, B., et al. (1997). The Amulet
Environment: New Models for Effective User Interface Software Development. IEEE Transactions on
Software Engineering, 23(6), 347-365.

[Myer00]

 Myers, B., Hudson, S., & Pausch, R. (2000). Past, present, future of user interface tools. ACM
Transactions on Computer-Human Interaction, 7(1), 3-28.

[Myer03]

 Myers, B. (2003). Graphical User Interface Programming. In A. B. Tucker (Ed.), CRC Handbook of
Computer Science and Engineering (2d ed.). Boca Raton, United States: CRC Press.

N

[Nich02]

 Nichols, J., Myers, B. A., Higgins, M., Hughes, J., Harris, T. K., Rosenfeld, R., et al. (2002). Generating
Remote Control Interfaces for Complex Appliances. Proceedings of the 15th annual symposium on
User Interface Software & Technology UIST'02 (27-30 October, Paris).

[Nich04]

 Nichols, J., Myers, B. A., & Litwack, K. (2004). Improving Automatic Interface Generation with Smart
Templates. Proceedings of the 8th International Conference on Intelligent User Interfaces IUI’2004
(13-16 January, Funchal, Portugal).

O

[Oliv01]

 Oliveira, M. C. F. d., Turine, M. A. S., & Masiero, P. C. (2001). A statechart-based model for
hypermedia applications. ACM Transactions on Information Systems (TOIS), 19(1), 28-52.

References

 173

[Olle88]

 Olle, T. W., Hagelstein, J., Macdonald, I. G., Rolland, C., Sol, H. G., Van Assche, F., et al. (1998).
Information Systems Methodologies, a framework for understanding. Reading (United States): Addisson-Wesley.

[Olse98]

 Olsen, D. R. (1998). Developing User Interfaces. San Francisco: Morgan Kaufmann Publishers.

[OMG05]

 OMG. (2005). UML OCL 2.0 Specification Version 2.0. Retrieved January, 2006, from
http://www.omg.org/docs/ptc/05-06-06.pdf

[Oust94]

 Ousterhout, J. (1994). Tcl and TK Toolkit. Reading (United States): Addisson Wesley.

P

[Pate00]

 Paternò, F. (2000). Model-Based Design and Evaluation of Interactive Applications. Berlin: Springer-Verlag.

[Pate02]

Paternò, F., & Santoro, C. (2002). One Model, Many Interfaces. Proceedings of the 4th International
Conference on Computer-Aided Design of User Interfaces CADUI'02 (15-17 May, Valenciennes,
France).

[Paus92]

 Pausch, R., Conway, M., & DeLin, R. (1992). Lesson Learned from SUIT, the Simple User Interface
Toolkit. ACM Transactions on Information Systems (TOIS), 10(4), 320-344.

[Phan00]

Phanouriou, C. (2000). UIML: A Device-Independent User Interface Markup Language. Unpublished PHD
thesis, Virginia Polytechnic Institute, Blacksburg.

[Pier04]

 Jeffrey S. Pierce, J. S., & Mahaney, H. E. (2004). Opportunistic Annexing for Handheld Devices:
Opportunities and Challenges. Human-Computer Interface Consortium 2004. Retrieved June, 2006,
from http://www-static.cc.gatech.edu/~jpierce/papers/OA-HCIC2004.pdf

[Puer96]

 Puerta, A. R. (1996). The Mecano Project: Comprehensive and Integrated Support for Model-Based Interface
Development. Proceedings of the 2nd International Workshop on Computer-Aided Design of User
Interfaces CADUI'96 (5-7 June, Namur).

[Puer97]

 Puerta, A. R. (1997). A model-based interface development environment. IEEE Software, 14(4), 40-47.

References

 174

[Puer98]

 Puerta, A. R. (1998). Supporting User-Centered Design of Adaptive User Interfaces Via Interface Models.
Proceedings of the 1st Annual Workshop On Real-Time Intelligent User Interfaces For Decision
Support And Information Visualization (January, San Francisco).

[Puer99]

 Puerta, A. R., & Eisenstein, J. (1999). Towards a General Computational Framework for Model-Based Interface
Development Systems Proceedings of the 4th International Conference on Intelligent User Interfaces
IUI’99 (5-8 January, Los Angeles).

[Puer02]

 Puerta, A. R., & Eisenstein, J. (2002). XIML: a common representation for interaction data.
Proceedings of the 7th International Conference on Intelligent User Interfaces IUI’02 (13-16 January,
San Francisco).

R

[Rati97]

Rational Software (1997), UML Semantics, v.1.1. Retrieved January, 2006, from http://umlcenter.visual-
paradigm.com/umlresources/sema_11.pdf

S

[Schl97]

 Schlungbaum, E. (1997). Individual user interfaces and model-based user interface software tools. Proceedings of
the 2nd International Conference on Intelligent User Interfaces IUI '97 (6-9 January, Orlando, United
States).

[Seff04]

 Seffah, A., & Javahery, H. (2004). Multiple user Interfaces: Cross-Platform Applications and Context-
Aware Interfaces. In A. Seffah & H. Javahery (Eds.), Multiple User Interfaces: Engineering and Application
Framework (pp. 11-26). Chichester (GB): Wiley and Sons.

[Simo05]

 Simon, R., Wegscheider, F., & Tolar, K. (2005). Tool-supported single authoring for device independence and
multimodality. Proceedings of the 7th international conference on Human computer interaction with
mobile devices & services MobileHCI '05 (19 - 22 September, Salzburg, Austria).

[Somm92]

 Sommerville, I. (1992). Software engineering. Wokingham (UK): Addison-Wesley.

References

 175

[Souc02]

 Souchon, N. (2002). Towards a Computational Notation for Supporting Context-Sensitive User Interface
Development. Unpublished 3rd cycle master thesis, Université catholique de Louvain, Louvain-la-Neuve.

[Souc03]

 Souchon, N., & Vanderdonckt, J. (2003). A Review of XML-Compliant User Interface Description Languages.
Proceedings of the 10th International Conference on Design, Specification, and Verification of
Interactive Systems DSV-IS'03 (4-6 June, Funchal, Portugal).

[Spri03]

 Spriestersbach, A., Ziegert, T., Grassel, G., Wasmund, M., & Dermler, G. (2003). Flexible pagination and
layouting for device independent authoring. Proceedings of the WWW2003 Emerging Applications for
Wireless and Mobile access Workshop (May 20th, Budapest).

[Szek92]

 Szekely, P., Luo, P., & Neches, R. (2002). Facilitating the Exploration of Interface Design Alternatives: The
HUMANOID Model of Interface Design. Proceedings of the Conference on Human Factors in Computing
Systems CHI’92 (3-7 May, Monterey, United States).

[Szek93]

 Szekely, P., Luo, P., & Neches, R. (1993). Beyond Interface Builders: Model-Based Interface Tools. Proceedings
of the Conference on Human Factors in Computing Systems INTERCHI’93 (24-29 April,
Amsterdam).

[Szek94]

 Szekely, P. (1994). User Interface Prototyping: Tools and Techniques. Proceedings of the Software Engineering
and Human-Computer Interaction ICSE '94 Workshop on SE-HCI: Joint Research Issues (16-17 May,
Sorrento, Italy).

[Szek95]

 Szekely, P., Sukaviriya, P., Castells, P., Muthukumarasamy, J., & Salcher, E. (1995). Declarative interface
models for user interface construction tools: the MASTERMIND approach. Proceedings of the IFIP Working
Conference on Engineering for Human-Computer Interaction EHCI'95 (14-18 August, Grand Targhee
Resort, United States).

[Szek96]

Szekely, P. (1996). Retrospective and Challenges for Model-Based Interface Development. Proceedings
of the 2nd International Workshop on Computer-Aided Design of User Interfaces CADUI ’96 (5-7
June, Namur).

References

 176

T

[Thev99]

 Thevenin, D., & Coutaz, J. (1999). Plasticity of user interfaces: Framework and research agenda. Proceedings of
the 7th International Conference on Human-Computer Interaction Interact'99 (30 August - 3
September, Edinburgh).

[Thev01]

Thevenin, D. (2001). Adaptation en Interaction Homme-Machine: le cas de la Plasticité. Unpublished
PHD thesis, Université Joseph Fourrier, Grenoble.

V

[Vand93]

 Vanderdonckt, J., & Bodart, F. (1993). Encapsulating Knowledge for Intelligent Automatic Interaction Objects
Selection. Proceedings of the Conference on Human Factors in Computing Systems InterCHI’93 (14-19
April, Amsterdam).

[Vand95]

 Vanderdonckt, J. (1995). Accessing Guidelines Information with SIERRA. Proceedings of the International
Conference on Human-Computer Interaction Interact’95 (27-29 June, Lillehammer, Norway).

[Vand97]

 Vanderdonckt, J. (1997). Conception Assistée de la Présentation D'une Interface Homme-Machine Ergonomique
Pour Une Application de Gestion Hautement Interactive. Unpublished PHD thesis, Facultés Universitaires
Notre-Dame de la Paix, Namur.

[Vand98]

 Vanderdonckt, J. (1998). Une description orientée objet des objets interactifs abstraits utilisés dans les
Interfaces Homme-Machine. Namur: Facultés Universitaires Notre-Dame de la Paix.

W

[W3C03]

 W3C. (2003). XForms 1.0, W3C Recommendation. Retrieved January, 2006, from
http://www.w3.org/TR/xforms/

[W3C04]

 W3C. (2004). Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies 1.0,
W3C Recommendation. Retrieved January, 2006, from http://www.w3.org/TR/CCPP-struct-vocab/

References

 177

[W3C04b]

 W3C. (2004). Authoring Techniques for Device Independence, W3C Working Group Note 18
February 2004. Retrieved March, 2006, from http://www.w3.org/TR/2004/NOTE-di-atdi-
20040218/

[Warm99]

 Warmer, J., & Kleppe, A. (1999). The object constraint language: precise modeling with UML. Boston: Addison-
Wesley.

[Watt03]

 Watters, C., & Zhang, R. (2003). PDA Access to Internet Content: Focus on Forms. Proceedings of the 36th
Annual Hawaii International Conference on System Sciences HICSS'03 (6-9 January, Big Island, United
States).

[Weis02]

 Weiss, S. (2002). Handheld Usability. Chichester (UK): John Wiley & Sons.

[Wiec89]

 Wiecha, C., Bennett, W., Boies, S., & Gould, J. (1989). Generating Highly Interactive User Interfaces.
Proceedings of the Conference on Human Factors in Computing Systems CHI’89 (30 April-4 May,
Austin).

[Wils96]

 Wilson, S., & Johnson, P. (1996). Bridging the Generation Gap: From Work Tasks to User Interface Designs.
Proceedings of the 2nd International Workshop on Computer-Aided Design of User Interfaces
CADUI’96, Namur).

[Wong02]

 Wong, C., Chu, H., & Katagiri, M. (2002). A Single-Authoring Technique for Building Device-
Independent Presentations. Proceedings of the W3C Workshop on Device Independent Authoring
Techniques (25-26 September, St. Leon-Rot, Germany).

Y

[Ye04]

 Ye, J., & Herbert, J. (2004). User Interface Tailoring for Mobile Computing Devices. Proceedings of
the 4th International Conference on Web Engineering ICWE 2004 (28-30 July, Munich).

References

 178

Z

[Zieg04]

Ziegert, T., Lauff, M., & Heuser, L. (2004). Device Independent Web Applications – The Author Once –
Display Everywhere Approach. Proceedings of the 4th International Conference on Web Engineering
ICWE 2004 (28-30 July, Munich).

Annex A CTT/UsiXML task model

 179

Annex A. CTT/UsiXML task
model

A CTT/UsiXML task model is a hierarchical task structure, where each task is described
by:

 An identifier and a name.

 A type, which is determined by the allocation of the task: a task performed by the
user (e.g. a cognitive task) is called a user task. A task completely executed by the
system (e.g. a computation task) has category application task. A task performed by
the user in interaction with the system (e.g. viewing results, selecting items,
editing a field, pushing a button to invoke an application function) is called an
interaction task. Last, abstraction tasks (e.g. booking a flight) are complex tasks
whose performance can not be univocally allocated and that can be decomposed
into simpler tasks (thus, there must be at least two different task categories
among the tasks decomposing an abstraction task).

 Optional attributes such as the task importance, frequency...

Tasks are linked by two types of relationships:

 Hierarchical relationships. Each task can be decomposed into two or more subtasks.
Thus, with the exception of the root task, each task has a mother task from
which the temporal relationships are inherited.

 Temporal relationships. Temporal relationships between the tasks are specified with
temporal operators. The temporal operators are based upon the LOTOS operators.

Temporal relationships are of two types: unary and binary. Unary operators characterize
a single task when binary operators link together two sibling tasks.

There are three unary operators. The first one is the iteration operator (notation: T*),
which means that the task T is repeated until some other task disables it. The second
one, is the finite iteration operator (notation T(n)), used when the designer knows in
advance exactly how many time the task will be performed. The last operator permits
indicating that the performance of a task is optional (notation [T]).

If we consider two generic tasks T1 and T2, the binary temporal operators can be
described as follows:

1. Independent concurrency or parallelism (T1 ||| T2): T1 and T2 can be performed in any
order without any constraints. E.g.: filling field 1 and field 2 in a form.

2. Concurrency (or parallelism) with information exchange (T1 |[]| T2): T1 and T2 can be
performed in any order but they have to synchronize in order to exchange

Annex A CTT/UsiXML task model

 180

information. E.g. filling fied1 and field 2 in a form when there is some coherency
check (between a phone number and a city for example).

3. Deterministic choice (T1 [] T2): Once one task is initiated, the other cannot be
accomplished anymore, until the first task is terminated. E.g. log in as a reviewer or
as an author on a conference reviewing system.

4. Non-deterministic choice (T1 π T2): Once one task is finished the other cannot be
accomplished anymore. E.g., saving one's bank statements to one's desktop
computer or printing them in the bank's self-service lobby.

5. Order independency or sequential independence (T1 |=| T2). This operator is equivalent
to (T1>>T2) OR (T2 >>T1) E.g., in a hospital, the human task of taking blood
samples from patients can be done before or after filling the request form for lab
analysis, but both tasks have to be completed before the request is send to the lab.

6. Disabling (T1 [> T2): T1 is definitively disabled when T2 (or the first subtask or T2)
has been performed. E.g., sending a form disables all tasks that could be achieved
in this form.

7. Suspend-resume (T1 |> T2): T1 is interrupted when T2 (or its first subtask) is
performed. Once T2 terminated, T1 is reactivated from the state reached before
the interruption. E.g., an alarm message indicating that the battery of the device is
low interrupts any activity on that device, and the activity is reactivated only when
the alarm dialog box is closed.

8. Enabling (T1 >> T2): T2 is enabled when T1 is terminated. E.g., the authentication
of the user allows him/her to access to the restricted area of a Web site.

9. Enabling with information passing (T1 []>> T2): T1 enables T2 and provides it some
information. E.g., T1 allows the user to specify a query and T2 displays the search
results related to the information requested in T1.

Annex B Discussion of UsiXML's platform model attributes

 181

Annex B. Discussion of UsiXML's
platform model attributes

Component: HardwarePlatform

Attribute Description Discussion Decision
BitsPerPixel The number of bits of

colour or greyscale
information per pixel

Does not seem useful in a GD
context

Rejected

BluetoothProfile

Supported Bluetooth
profiles as defined in the
Bluetooth specification

Does not seem to have any
impact on the user interface

Rejected

Category Category of the device Can be used by GD rules.
Example of GD rule : for all
transformations between a
desktop and a PDA, place the
input controls in separate lines
instead of going horizontally
(moving rule)

Added

ColourCapable Whether the device display
supports colour

Can be used by GD rules
(example of GD rule :
represent the level of emphasis
by differences in font type and
size instead of using colours)

Adopted

CPU Name and model number of
device CPU

May be useful in a GD
context although general
assumptions about the device’s
performances can be made
from other attributes (the
model for example)

Adopted

ImageCapable Whether the device supports
the display of images

Can be used by GD rules
(substitution rule : replace an
image by its textual
representation)

Adopted

InputCharSet List of character sets
supported by the device for
text entry

May be useful (see
SoftwarePlatform CcppAccept-
Charset)

Adopted

Keyboard Type of keyboard supported
by the device

Can be used by GD rules
(moving rule : when the user is
expected to use the soft input
panel, place menus at the top of
the page and not at the bottom
where they would be masked
by the soft keyboard or
character recognition area).

Adopted

Model Model number assigned to
the terminal device by the
vendor or manufacturer

Can be used by GD rules : in
combination with the vendor’s
name, define the precise type

Adopted

Annex B Discussion of UsiXML's platform model attributes

 182

of hardware and permits to
define rules at a quite high
precision level. Example: for
all transformations between a
desktop and a Compaq iPaq
Pocket PC, regroup menu bar
and toolbar into a command
bar (interactor substitution rule:
regrouping).

NumberOfColours Number of colours the
display supports

Can be used by GD rules
(substitution rules applied to
images for example)

Added

NumberOfGreyScal
e

Number of grey scale the
display supports

See NumberOfColours Added

NumberOfSoftKeys Number of soft keys
available on the device.

Can be used by complex GD
rules that could achieve
substitution between menu
items or soft buttons and soft
keys.

Adopted

OutputCharSet List of character sets
supported by the device for
output to the display

May be useful (see
SoftwarePlatform CcppAccept-
Charset)

Adopted

PointingDevice Type of pointing device Can be used by GD rules.
Example : delete all tooltips or
replace them by labels when a
stylus is used instead of a
mouse (onMouseOver event no
more available)

Added

PointingResolution Type of resolution of the
pointing accessory
supported by the device

Can be used by GD rules
(example : resizing rules when
the pointing resolution
changes)

Adopted

RAMMemory RAM memory on the device
(Mb)

Can be used by GD rules
(example: interactor
substitution rules)

Added

ScreenResolution Resolution of the device’s
screen (dpi)

Can be used by GD rules
(example: fonts resizing rules,
...)

Added

ScreenSize The size of the device's
screen in units of pixels

Can be used by GD rules
(example: moving rules,
resizing rules, ...)

Adopted

ScreenSizeChar Size of the device's screen
in units of characters

Can be used by GD rules
(example: moving rules,
resizing rules, ...)

Adopted

SoundOutputCapabl
e

Indicates whether the device
supports sound output

Can be used in advanced GD
rules using multimodality

Adopted

StandardFontProport
ional

Indicates whether the
device's standard font is
proportional.

Fonts should be linked with the
software they are installed
with.

Rejected

StorageCapacity Secondary memory capacity
(hard disk, flash memory,
...)

Can be used in advanced GD
rules. Example: delete all data
intensive tasks on devices
where no storage capacity is
available.

Added

TextInputCapable Indicates whether the device Can be used by GD rules. Adopted

Annex B Discussion of UsiXML's platform model attributes

 183

supports alphanumeric text
entry

(Example: if the device does
not support text entry, try to
replace all Text Inputters by
Text Choosers).

TouchScreen Indicates whether the
hardware has a touchscreen
or not

Can be used by GD rules.
(Example: a soft key could be
replaced by a button in the UI
if a touchscreen is available)

Added

Vendor Name of the vendor
manufacturing the terminal
device

Can be used by GD rules (see
« Model »)

Adopted

VoiceInputCapable Indicates whether the device
supports any form of voice
input, including speech
recognition

Can be used in advanced GD
rules using multimodality

Adopted

Component: SoftwarePlatform

Attribute Description Discussion Decision
AcceptDownloadabl
eSoftware

Indicates the user's
preference on whether to
accept downloadable
software

Elements describing the user’s
preferences should not be part
of a platform model

Rejected

AudioInputEncoder List of audio input encoders
supported by the device

Useful for substitution rules
due to unavailability

Adopted

CcppAccept List of content types the
device supports

May be redundant with other
attributes (AudioInputEncoder,
VideoInputEncoder,
OutputCharSet) but still useful
for substitution rules due to
unavailability

Adopted

CcppAccept-Charset List of character sets the
device supports

Can be useful in a GD context.
(Example : if the UI contains
ISO-LATIN characters and the
target device only supports
ASCII, replace all characters
with diacritics with a
counterpart without diacritics)

Adopted

CcppAccept-
Encoding

List of transfer encodings
the device supports

Does not seem useful in a GD
context

Rejected

CcppAccept-
Language

List of preferred document
languages

Does not seem useful in a GD
context

Rejected

DownloadableSoftw
areSupport

List of executable content
types which the device
supports and which it is
willing to accept from the
network (list of MIME
types)

No direct impact on the user
interface.

Rejected

HandwritingRecogni
tionSoftware

List of handwriting
recognition software the
device supports

May have an impact on the
usability of some text input
widgets

Added

JavaEnabled

Indicates whether the device
supports a Java virtual
machine.

Together with the attributes
JavaPlatform and JVMVersion,
may be useful in order to

Adopted

Annex B Discussion of UsiXML's platform model attributes

 184

characterize the device’s set of
available widgets

JavaPlatform

The list of JAVA platforms
and profiles installed in the
device. Each item in the list
is a name token describing
compatibility with the name
and version of the java
platform specification or the
name and version of the
profile specification name
(if profile is included in the
device)

See JavaEnabled Adopted

JVMVersion List of the Java virtual
machines installed on the
device. Each item in the list
is a name token describing
the vendor and version of
the VM.

See JavaEnabled Adopted

MexeClassmark ETSI MExE classmark Standard related to 3rd
generation mobile systems.
Describe a terminal’s
capability and user preference.
Seems to be redundant.

Rejected

MexeSecureDomain
s

Indicates whether the
device's supports MExE
security domains. "Yes"
means that security domains
are supported in accordance
with MExE specifications
identified by the MexeSpec
attribute. "No" means that
security domains are not
supported and the device
has only untrusted domain
(area).

See MexeClassmark Rejected

MexeSpec Class mark specialization See MexeClassmark Rejected
OSName Name of the device's

operating system
Together with the OS vendor
name and OS version, permits
to define the set of native
widgets and fonts available on
the platform --> useful in all
GD rules when native widgets
are used

Adopted

OSVendor Vendor of the device's
operating system

See OSName Adopted

OSVersion Version of the device's
operating system

See OSName Adopted

RecipientAppAgent User agent associated with
the current request

Identification of the user agent
is more suitable for adaptation
to the user

Rejected

SoftwareNumber Version of the device
specific software (firmware)
to which the device's low-
level software conforms

Not precise enough. Which
software?

Rejected

Annex B Discussion of UsiXML's platform model attributes

 185

SpeechRecognitionS
oftware

List of speech recognition
software the device supports

Can be used in advanced GD
rules using multimodality, in
combination with the hardware
attribute VoiceInputCapable

Added

VideoInputEncoder List of video input encoders
supported by the device

Useful for substitution rules
due to unavailability

Adopted

Component: NetworkCharacteristics

Attribute Description Discussion Decision
Capacity Amount of data that can be

sent through a given
communications circuit per
second.

Can be used by some GD rules
(example : if the capacity is
low, delete tasks requiring
access to the server, or modify
their priority so that they
appear in a less accessible part
of the UI)

Added

CostPerVolume Cost per unit of data
transferred

Can be used by some GD rules
(see capacity)

Added

CostPerTime Cost per time using the
communications channel

Can be used by some GD rules
(see capacity)

Added

CurrentBearerServic
e

The bearer (channel) on
which the current session
was opened

Too technical to be directly
useful for user interface
adaptation

Rejected

SecuritySupport Type of security or
encryption mechanism
supported

Too technical to be directly
useful for user interface
adaptation

Rejected

SupportedBearers List of bearers supported by
the device

Too technical to be directly
useful for user interface
adaptation

Rejected

SupportedBluetooth
Version

Supported Bluetooth
version.

Too technical to be directly
useful for user interface
adaptation

Rejected

Component: BrowserUA

Attribute Description Discussion Decision
BrowserName Name of the browser user

agent associated with the
current request

Together with the
BrowserVersion attribute, may
be useful to establish the set of
HTML tags actually supported

Adopted

BrowserVersion Version of the browser See BrowserName Adopted
DownloadableBrows
erApps

List of executable content
types which the browser
supports and which it is
willing to accept from the
network

Not directly linked to user
interfaces design

Rejected

FramesCapable Indicates whether the
browser is capable of
displaying HTML frames

Useful to establish the precise
widgets set

Adopted

HtmlVersion Version of HyperText
Mark-up Language (HTML)

Useful to establish the precise
widgets set

Adopted

Annex B Discussion of UsiXML's platform model attributes

 186

supported by the browser
JavaAppletEnabled Indicates whether the

browser supports Java
applets.

Useful to establish the precise
widgets set

Adopted

JavaScriptEnabled Indicates whether the
browser supports
JavaScript.

Together with the attribute
JavaScriptVersion, useful to
establish the precise widgets
set, for non HTML widgets
programmed with JavaScript

Adopted

JavaScriptVersion Version of the JavaScript
language supported by the
browser

See JavaScriptEnabled Adopted

MexeSecureDomain
s

Indicates whether the
device's supports MExE
security domains. "Yes"
means that security domains
are supported in accordance
with MExE specifications
identified by the MexeSpec
attribute. "No" means that
security domains are not
supported and the device
has only untrusted domain
(area).

Probably of no use for user
interfaces design

Rejected

PreferenceFor
Frames

Indicates the user's
preference for receiving
HTML content that contains
frames

User preferences should not be
part of a Platform model

Rejected

TablesCapable Indicates whether the
browser is capable of
displaying HTML tables

Useful to establish the precise
widgets set

Adopted

XhtmlVersion Version of XHTML
supported by the browser

Useful to establish the precise
widgets set

Adopted

XhtmlModules List of XHTML modules
supported by the browser

Useful to establish the subset
of Xhtml actually supported

Adopted

Component: WapCharacteristics

Attribute Description Discussion Decision
SupportedPictogram
Set

Pictogram classes supported
by the device as defined in
"WAP Pictogram
specification".

Useful to establish the
available image set on WAP
phone --> useful for some
specific GD rules applied to
WAP phones

Adopted

WapDeviceClass Classification of the device
based on capabilities as
identified in the WAP 1.1
specifications

Redundant with Hardware
attribute "Category", but may
be interesting to have an
industry-standard type

Adopted

WapVersion Version of WAP supported The subsets of the WAP
protocol useful for user
interfaces are already defined
elsewhere. (WmlScriptVersion,
WmlVersion...)

Rejected

Annex B Discussion of UsiXML's platform model attributes

 187

WmlDeckSize Maximum size of a WML
deck that can be
downloaded to the device

Useful for user interfaces in
general

Adopted

WmlScriptLibraries List of mandatory and
optional libraries supported
in the device's WMLScript
VM

Together with the
WmlScriptVersion attribute,
useful for the dialog part of
user interfaces

Adopted

WmlScriptVersion List of WMLScript version
numbers supported by the
device

See WmlScriptLibraries Adopted

WmlVersion List of WML language
version numbers supported
by the device

Useful to establish the precise
widgets set

Adopted

WtaiLibraries List of WTAI network
common and network
specific libraries supported
by the device that are URI
accessible

Only useful for wireless
telephony applications

Rejected

WtaVersion Version of WTA user agent Only useful for wireless
telephony applications

Rejected

Component : PushCharacteristics

Attribute Description Discussion Decision
Push-Accept List of content types the

device supports, which can
be carried inside the
message/http entity body
when OTA-HTTP is used.
Property value is a list of
MIME types, where each
item in the list is a content
type descriptor as specified
by FC 2045.

Too specific. No direct impact
on user interfaces.

Rejected

Push-Accept-
Charset

List of character sets the
device supports. Property
value is a list of character
sets, where each item in the
list is a character set name
registered with IANA.

Push-Accept-
Encoding

List of transfer encodings
the device supports.
Property value is a list of
transfer encodings, where
each item in the list is a
transfer encoding name as
specified by RFC 2045 and
registered with IANA.

Push-Accept-
Language

List of preferred document
languages. If a resource is
available in more than one
natural language, the server
can use this property to

Too specific. No direct impact
on user interfaces.

Rejected

Annex B Discussion of UsiXML's platform model attributes

 188

determine which version of
the resource to send to the
device. The first item in the
list should be considered the
user's first choice, the
second the second choice,
and so on. Property value is
a list of natural languages,
where each item in the list is
the name of a language as
defined by RFC
3066[RFC3066].

Push-Accept-AppID List of applications the
device supports, where each
item in the list is an
application-id on absolute
URI format as specified in
[PushMsg]. A wildcard
("*") may be used to
indicate support for any
application.

Push-MsgSize Maximum size of a push
message that the device can
handle. Value is number of
bytes.

Push-MaxPushReq Maximum number of
outstanding push requests
that the device can handle.

Too specific. No direct impact
on user interfaces.

Rejected

The first attribute of the hardware component deserves more explanation. Intuitively, we see
that it is possible to establish categories of devices that share common features. For example,
Scott Weiss [Weis02] makes a distinction between desktops, laptops, palmtops and handhelds,
where the last category is further segmented into PDA’s, mobile phones, pagers and
communicators. Weiss’s categories are based on two criteria: size and portability. In Weiss's
illustration (Figure A-0-1), the four basic types of computing platform are presented by order
of increasing portability and decreasing size. The four device types overlap to show that the
categories are not discrete.

Figure A-0-1 The personal computing continuum (illustration from [Weis02])

Desktops are typically used in a stationary context: they are used while seated and require a
table. They require a power cord and are not mobile. They have good storage capabilities

Annex B Discussion of UsiXML's platform model attributes

 189

(hard disks with 80 GB or more, CDRW, etc.) and memory up to 3 GB. They have fast and
reliable network connectivity, often at low cost. They have a good screen resolution (a
minimum of 800 x 600 pixels), a keyboard and a mouse.

Laptops computers share more of the characteristics of desktops in terms of performance, but
they enable mobility. However, they are still large and heavy, require frequent battery
recharging and are used in a stationary context.

Palmtops are smaller and lighter then laptops. They have batteries, which have to be recharged
frequently. They are best used while seated on a table, which differentiate them from the next
category.

Handheld devices are lightweight and small enough to be put into a pocket. They can be used
while standing. They are completely mobile and have batteries with enough life length. They
have less or no storage capacities and memory up to 64 MB. Input devices may include a
stylus, keypad, mini-keyboard, roller wheel. Display sizes top out at 320 x 320 pixels. Figure
A-0-2 shows the four types of handhelds devices that can be distinguished.

Figure A-0-2 Handheld devices categories (illustration from [Weis02])

The internal classification of handheld devices is based on their differences of use, input
method, display size and other capabilities and their expandability (add-ons of software
and/or hardware):

− Mobile phones are first used for voice calls and SMS, then for WAP. They usually have a 12-
key keypad, very small screens (a few text lines only, sometimes pictures can be displayed).
They are not expandable.

− PDA’s are typically used for information storage and retrieval. The available input
methods are the stylus, on-screen keypad, some hard buttons, sometimes a small
keyboard. The screen resolution is ranging from 160x160 to 320x480 pixels. Additional
applications and hardware components can be added.

− Pagers are used primarily for email communication, with additional features such as an
address book and calendar, and sometimes Web browsing. Pagers have tiny keyboards but
no touch screen. Some pagers support application downloads.

− Communicators (e.g. Smartphone) combine features of the other categories.

Annex B Discussion of UsiXML's platform model attributes

 190

This classification deliberately excludes portable consumer electronic devices such as
calculators, digital cameras or MP3 players, because they lack both the ability to add
applications and the connectivity to the Internet, as well as game machines, which usage and
design are very different from usual handheld devices. According to Weiss’s classification, we
can establish a first list of device categories: Desktops, Laptops computers, Palmtops, Mobile phones,
PDA, Pagers and Communicators.

The following computing devices can be added to this list:

− Tablet PCs are small, ultra-mobile laptops with convertible screens that can be used in
normal laptop mode, or flipped around and used like a tablet, with stylus and on-screen
keyboard input. They have handwriting-recognition and sometimes voice-recognition
input capabilities. They have roughly the same power and performance of a PC, with a
pen and letter size screen.

− Interactive kiosks are interactive terminals intended for use in a given public area. They
accept user input and display information, with sometimes access to the Web. They are
desktops equipped with a touch screen, which is the primary and often the only interface.
Sometimes, they have additional peripherals such as a keyboard, printer, card reader, ...

− Screenphones are multifunction telephones that also provide access to the Internet. They
have a slidable keyboard and a touchscreen, ports for a mouse, printer and other
communications and video peripherals. Like a classic desktop, they are expandable and
upgradeable.

− WebTVs are TV offering access to Internet thanks to a special receiver, and sometimes a
special remote control and wireless keyboard.

Following Weiss’s criteria, we deliberately omit platforms that neither provide Internet
connectivity, nor allow the addition of applications, such as car navigation systems.

In conclusion, here is a list of admissible values for the Category attribute: Desktop, Laptop,
Palmtop, Mobile phone, PDA, Pager, Communicator, Tablet PC, Interactive kiosk,
Screenphone, WebTV. Of course, this list and the description of the categories are expected
to evolve rapidly: new kinds of devices are regularly launched to the market, and existing
devices of all categories become increasingly more powerful, are equipped with higher-quality
displays, new multimedia periphericals...

Annex C: An Interactor Model for the QTk Toolkit

 191

Annex C. An Interactor Model for
the QTk Toolkit

Final Widget
(QTK toolkit)

Graphical CIO Extended AIO

Button

Button ActionItem
Facet:

Canvas

Canvas Graphical Editor
Facet:

Facet:

Checkbutton

CheckBox Checker
Facet:

Facet:

T: activation
D: _
Card: _
IsCentral: true

T: specification
D: graphics
Card: N
IsCentral: true

T: consultation
D: graphics
Card: N
IsCentral: false

T: selection
D: boolean
Card: 1
IsCentral: true

T: consultation
D: boolean
Card: 1
IsCentral: false

Annex C: An Interactor Model for the QTk Toolkit

 192

N Checkbuttons

Group of N CheckBoxes Multiple Text Chooser
Facet:

Facet:

Dropdownlistbox.

ComboBox Simple Text Chooser
Facet:

Facet:

OR

Multiple Text Chooser (not typical of
this object)

Facet:

Facet:

Entry

EditBox

(preferred to UsiXML's tag
<textComponent
isEditable="true">)

Text Inputter
Facet:

T: selection
D: string
Card: N (ergonomic
rule : N ≤ 7)
IsCentral: true

T: consultation
D: string
Card: N
IsCentral: false

T: selection
D: string
Card: 1
IsCentral: true

T: consultation
D: string
Card: N
IsCentral: false

T: selection
D: string
Card: M ≤ N
IsCentral: true

T: consultation
D: string
Card: N
IsCentral: false

T: specification
D: string
Card: 1
IsCentral: true

Annex C: An Interactor Model for the QTk Toolkit

 193

Label

Label

(preferred to UsiXML's tag
<textComponent
isEditable="false">)

Documentation Object
Facet:

Listbox (+ tdscrollbar)

ListBox Multiple Text Chooser
Facet:

Facet:

Tdline (vertical separator) or
Lrline (horizontal separator)

Separator Separator Object
Facet: _

Tdrubberframe or
Lrrubberframe

ExtensibleFrame Container + placement relationship
Facet: _

Tdscale (vertical scale) or
Lrscale (horizontal scale)

Slider Simple Number Chooser
Facet:

Facet:

T: consultation
D: string
Card: 1
IsCentral: true

T: selection
D: string
Card: M ≤ N (ergonomic
rule : N > 6)
IsCentral: true

T: consultation
D: string
Card: N
IsCentral: false

T: selection
D: integer
Card: 1
IsCentral: true

T: consultation
D: interval of N integers
Card: 1
IsCentral: false

Annex C: An Interactor Model for the QTk Toolkit

 194

Tdscrollbar (vertical
scrollbar) ou Lrscrollbar
(horizontal scrollbar)

ScrollBar Internal Navigator
Facet :

Tdspace (vertical space) or
Lrspace (horizontal space)

BlankSpace Space
Facet :_

Menubutton

Menu Action Item
Facet:

Message

Message Text Display
Facet:

Numberentry

SpinButton Simple Number Chooser
Facet:

Facet:

Panel TabbedDialogBox Tabbed Navigator
Facet:

T: internal navigation
D: _
Card: _
IsCentral: true

T: activation
D: _
Card: _
IsCentral: true

T: consultation
D: string
Card: 1
IsCentral: true

T: selection
D: integer
Card: 1
IsCentral: true

T: consultation
D: interval of N
integers
Card: 1
IsCentral: false

T: navigation
D: _
Card: _
IsCentral: true

Annex C: An Interactor Model for the QTk Toolkit

 195

Group of Radiobuttons

Aggregation of N RadioButton Simple Text Chooser
Facet:

Facet:

Tbbutton

DrawButton Action Item
Facet:

Tbcheckbutton

Combination of DrawButton +
CheckBox

Action Item + Multiple Text Chooser
Facet:

Facet:

Facet:

T: selection
D: string
Card: 1
IsCentral: true

T: consultation
D: string
Card: N ergonomic
rule: N ≤ 7
IsCentral: false

T: activation
D: _
Card: _
IsCentral: true

T: activation
D: _
Card: _
IsCentral: true

T: selection
D: string
Card: N
IsCentral: true

T: consultation
D: string
Card: N
IsCentral: false

Annex C: An Interactor Model for the QTk Toolkit

 196

Tbradiobutton

Combination of DrawButton +
RadioButton

Action Item + Simple Text Chooser
Facet:

Facet:

Facet:

Text ExtendedEditBox Text Inputter
Facet:

Facet:

Td or Lr Frame Container + placement relationship
Facet: _

T: activation
D: _
Card: _
IsCentral: true

T: selection
D: string
Card: 1
IsCentral: true

T: consultation
D: string
Card: N
IsCentral: false

T: specification
D: string
Card: 1
IsCentral: true

T: consultation
D: string
Card: 1
IsCentral: false

Annex D: An overview of OCL

 197

Annex D. An overview of OCL

Use

OCL expressions are bound to a UML model. In the case of class diagrams, OCL can be used
to specify invariants or pre- and post-conditions on operations

An OCL expression is always bound to a specific context, i.e. to a construct in the UML model.
Each OCL expression begins with a context declaration.

Example: context Toolkit

Types

The building blocks for OCL expressions are objects and object properties.

Each object has a type. OCL types belong to one of these categories:

− predefined types: basic types (Boolean, Integer, Real, String) and collection types
(Collection, Set, Bag, Sequence)

− user-defined types: all classifiers (type, class...) defined within a UML model have a
corresponding type in OCL

OCL types are organized in a type hierarchy, which determines conformance of the different
types to each other.

Properties

OCL expressions can also refer to an object's properties. A property can be an attribute, an
association end or a method.

The value of an object's property is specified by a dot followed by the name of the property.

Example: context Toolkit

self.name

The keyword self is a reference to the context object, optional if the context is not
ambiguous. The type of the subexpression self.name is the type of the attribute name (String).
When the multiplicity of the attribute is greater than 1, the result type is a collection type.

Associated classes can be referred to by their rolename or, if the rolename is not present, by
the classname starting with a lowercase letter.

Example: context Toolkit

self.finalWidget

Annex D: An overview of OCL

 198

As the multiplicity of the association between the classes Toolkit and FinalWidgets is 1 to N,
self.finalWidget will evaluate to a set of FinalWidgets.

Operations

OCL defines a number of operations on predefined types. For example:

− Boolean: operations and, or, not, if-then-else...

− Integer and Real: mathematical operations (+, -, * ...)

Operations are also defined on collection types, for instance:

− includes(object): returns true if the object is an element of the collection

− includesAll(collection): returns true if all elements of the parameter collection are present
in the current collection

− exists(expression): returns true if the expression is true for at least one element in the
collection

− forAll(expression): returns true if the expression is true for all elements of the collection

− isEmpty, notEmpty, size,...

− select (expression): returns the elements for which the expression is true

Operations on collection types are accessed by using an arrow notation.
Example: context Toolkit

self.finalWidget -> notEmpty

The methods defined on the model types in a UML model can also be used in OCL, with one
restriction: only the methods that return a value but have no side-effects are allowed. The dot
notation used for attributes is also used to reference methods:

Example: context FinalWidget

self.getDesiredLength()

Some operations are defined for objects of every OCL type:

− obj.oclIsTypeOf (type:OclType): evaluates to true if the type of the object is identical to the
type of the argument

− obj.oclIsKindOf(type:OclType): evaluates to true if the type of the object is identical to the
type of the argument or to any of its subtypes

Pre- and post-conditions in OCL

As stated above, OCL can be used to specify pre- and post-conditions on operations and
methods. The context of those pre- or post-conditions is always an operation or a method.

Annex D: An overview of OCL

 199

Example: context FinalWidget::getDesiredLength():Integer

post result = ...

In OCL expressions that are part of a post-condition, it is possible to refer to the value of a
property before the operation, using the suffix @pre.

It is also possible to define extra operations on a class using the stereotype <<oclOperation>>.
Such operations are used for specification purposes only, and do not need to be implemented.

Annex E: Description of the rules to be implemented in the GD tool

 200

Annex E. Description of the
rules to be implemented in the GD
tool

Panel 1: Resizing rules

Name of the
rule :

FontSizeReduction

Label : Change size fonts

Description : Reduce font size to a given minimum

UsiXML
description :

Decrease value of textSize attribute of
graphicalIndividualComponent objects

Parameters : s, the minimum size of fonts in the target UI. By default, s = 8 pts

Name of the
rule :

InputFieldShrinkage

Label : Resize visible length of text fields

Description : Reduce the visible length of text fields, without reduction of the
maximal length.

UsiXML
description :

Decrease value of numberOfColumns attribute of
textComponent objects, with constant value of the
maxLength attribute

Parameters : l, the visible length of text components in the target UI. The default
value is 10 characters.

Name of the
rule :

NumberOfVisibleListItemsDecrease

Label : Decrease number of visible rows in lists and combo boxes

Description : Reduce the number of items in list boxes and combo boxes that are

Annex E: Description of the rules to be implemented in the GD tool

 201

visible without scrolling.

UsiXML
description :

Decrease value of maxlineVisible attributes of comboBox
and listBox objects

Parameters : n, the number of visible items in the target UI. The default value is 1

Panel 2: Moving rules

Name of the
rule :

VerticalRepositioningInColumns

Label : Align group boxes vertically

Description : Vertical repositioning of the boxes structuring the source UI into
one or several columns. The difference between the column’s sizes
must be minimized.

UsiXML
description :

Input: a source cuiModel structured into boxes b1, b2, ...bx

Output: the same cuiModel where all the boxes belonging to
levels < n are repositioned in one or several columns:

 (1) If c=1, b1, b2, ...,bx are inserted into a single vertical box, in
such a way that each object that was positioned to the right of
another object in now positioned above.

 (2) If c>1, the ordered list produced in (1) evenly distributed
between c columns, so as to minimize the difference between the
columns’ height.

Parameters : - n, the nesting level where the rule applies. The outermost box is of
level 0, the boxes directly embedded in this level are of level 1, etc.
By default, n = the innermost level (the rule applies to all boxes)

- c, the number of columns on the target platform. The default value
is 1

Name of the
rule :

VerticalAlignmentOfGroupBoxContent

Label: Align content of a group box vertically

Description : Vertical repositioning of all the elements inside de selected boxes
(without modification of the relative position of the boxes)

Annex E: Description of the rules to be implemented in the GD tool

 202

UsiXML
description :

Replace the value of the type attribute of the box object by
“type=vertical”

Parameters : _

Panel 3: Interactor transformations

Name of the
rule : InteractorSubstitution

Label: Interactor substitution

Description : Substitution of an interactor by another interactor supporting the same
data type and the same functionalities.

UsiXML
description :

Replace a graphicalCIO

(1) with another graphicalCIO reifying the same extendedAIO
button

↔ menuItem
Option : menu to which the menu item
belongs (pre-existing menu or new one, with
insertion of a menuBar if none is present)

comboBox ↔ group of radioButtons
listBox
with multiple
selection = false

↔ group of radioButtons

listBox
with multiple
selection = true

↔ group of checkBoxes

slider ↔ spin
tabbedDialogBox ↔ set of labels (with hyperlinks)

(2) or with another graphicalCIO linked to extendedAIO
supporting a supertype of the original task type
comboBox → textField
filePicker → textField
label
with hyperlink ≠ void

→ button

slider → comboBox
with multiple selection=false

slider → textField
spin → comboBox

with multiple selection=false
spin → textField
tabbedDialogBox → set of buttons

(3) or with a set of graphicalCIO linked to extendedAIO

Annex E: Description of the rules to be implemented in the GD tool

 203

supporting data types whose aggregation corresponds to the original data
type
colorPicker ↔ group of spins to select R-B-G values
colorPicker ↔ group of sliders to select R-B-G values
colorPicker → group of edit fields
datePicker ↔ group of comboBoxes to select a year, a

month and a day
datePicker ↔ group of spins to select a year, a month and

a day
fontChooser ↔ 2 comboBoxes to select a font type and a

font size,
1 group of check boxes to select effects
1 combo box to select a colour

hourPicker ↔ group of comboBoxes to select hours,
minutes and seconds

hourPicker ↔ group of spins to select hours, minutes and
seconds

Parameters : -

Panel 4: Image transformations

Name of the
rule : ReplaceImageByAlt

Label: Replace images by their textual counterpart

Description : Replace images by a textual description (in the case of Web sites,
by the content of the <ALT> tag, if any)

Parameters : _

Name of the
rule : ScaleAndCrop

Label: Scale and crop images

Description : Reduce images to their core subject by truncating their edges and
minimize their size as much as possible.

Parameters : _

Panel 5: Splitting rules

Name of the
rule: InteractionSpaceSplittingWithLinearNavigation

Label : Splitting of an interaction space with linear navigation
Description : Distribution of the content of a source interaction space between

Annex E: Description of the rules to be implemented in the GD tool

 204

two or more target interaction spaces, with :

- Insertion into the dialog model of a transition between each
pair of successive interaction spaces.

- Insertion of the related navigation interactors in each target
interaction space.

Unidirectional linear navigation

Bidirectional linear navigation

Parameters : - t, the type of sequential navigation (uni- or bidirectional)

- n, the number of interaction spaces at output. By default, n =
the number of boxes.

Examples :

Annex E: Description of the rules to be implemented in the GD tool

 205

Name of the
rule : InteractionSpaceSplittingWithIndexedNavigation

Label: Splitting of an interaction space with indexed navigation

Description : Distribution of the content of a source interaction space between
two or more target interaction spaces, with :

- Insertion of an additional index page containing navigation

Annex E: Description of the rules to be implemented in the GD tool

 206

interactors (hyperlinks...) allowing the transition to every
target interaction space.

- Insertion into the dialog model of the related transitions.

Unidirectional indexed navigation

Bidirectional indexed navigation

Parameters : - t, the type of indexed navigation (uni- ou bidirectional)

- n, the number of interaction spaces at output (index page not
included). By default, n = the number of boxes

- the names assigned to the target interaction spaces, which will
also serve as labels for the interactors pointing from the
index to these interaction spaces.

Annex E: Description of the rules to be implemented in the GD tool

 207

Example :

Name of the
rule : InteractionSpaceSplittingWithIntraPageFullyConnectedNavigation

Label : Splitting of an interaction space with fully-connected navigation

Description : Distribution of the content of a source interaction space between
two or more subsets (e.g ; panels of a tabbed panel) among which
only one at the same time will be visible.

Annex E: Description of the rules to be implemented in the GD tool

 208

Fully-connected navigation

Parameters : - n, the number of interaction spaces at output. By default, n
= the number of boxes

- the names assigned to the target interaction spaces, which
will also serve as labels for the tabs of the tabbed panel
pointing to these interaction spaces.

