
Splitting Rules for Graceful Degradation of User Interfaces
Murielle Florins1, Francisco Montero Simarro1,2, Jean Vanderdonckt1, Benjamin Michotte1

1IAG/ISYS, Université catholique de Louvain, Place des Doyens 1, B−1348 Louvain-la-Neuve (Belgium)
2Escuela Pol. Sup. de Albacete, Univ. de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete (Spain)

{florins, montero, vanderdonckt, michotte}@isys.ucl.ac.be, fmontero@info-ab.uclm.es

ABSTRACT
This paper addresses the problem of the graceful degradation of user
interfaces where an initial interface is transferred to a smaller plat-
form. It presents a technique for pagination of interaction spaces
(e.g., windows, dialog boxes, web pages) based on a multi-layer
specification in the user interface description language UsiXML. We
first describe how an interaction space can be split using information
from the presentation layer (Concrete User Interface). We then show
how information from higher abstraction levels (Abstract user Inter-
face, Task model) can be used to refine the process. This technique
belongs to a collection of transformation rules that have been devel-
oped to adapt a user interface to smaller, more constrained displays.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
User interfaces. H.5.2 [Information Interfaces and Presentation]:
User Interfaces – Graphical user interfaces.

General Terms
Design, Human Factors, Languages.

Keywords
Design, graceful degradation, multiplatform systems, pagination,
splitting rules, user interface extensible markup language.

1. INTRODUCTION
Computer-based information systems are an essential part of modern
organizations. Users of these systems have often to deal with a vari-
ety of computing platforms from which they expect to have access to
the same data and functionalities. Those computing platforms range
from desktops and laptops to PDAs and mobile phones. Their capa-
bilities are very different, especially in terms of screen size and reso-
lution. Designing multiple user interfaces (UIs) for such different
platforms remains a challenging and difficult task, implying perpet-
ual trade-offs between:
− The usability of each particular version: each UI should be

adapted to its particular platform;
− The cross-platform consistency.
One design method in particular, referred to as Graceful Degrada-
tion of user interfaces [4], addresses this trade-off between continu-
ity and adaptation. The Graceful Degradation approach consists in
specifying one source interface, designed for the least constrained
platform, and to apply transformation rules to this source interface in
order to produce specific interfaces targeted to more constrained
platforms. These transformations rules [4] include:

1. Splitting rules, which split the initial UI into chunks;
2. Interactor and image transformation rules (e.g., widget substitu-

tion), which transform the initial widgets into smaller widgets
supporting the same functionalities;

3. Moving rules, which are applied to reshuffle widgets to obtain a
UI that consumes less screen space;

4. Resizing rules, which are applied to shrink widgets or to re-align
them after they have been moved;

5. Removal rules, which are applied to delete unnecessary or less
useful widgets while preserving the main purpose of the UI.

This paper focuses on the splitting problem because it is a difficult
and significant step of the whole process. Automatic pagination has
been partially addressed in the existing studies that are described in
Section 2. Section 3 presents our reference framework and language.
Splitting will be examined at two levels of abstraction: concrete UI
(Section 4) and abstract UI (Section 5). Section 6 concludes the pa-
per and suggests some avenues for future work.

2. DISCUSSION OF RELATED WORK
Pagination of web pages has been widely researched. The Covigo li-
brary of special tags for HTML [8] implements pagination of web
pages at run-time, using simple heuristics such as breaking every
fifth <tr> or breaking by size. RIML [10] relies on XHTML and de-
fines additional mark-up which permits to specify paginating con-
tainers. After pagination, the sections that belong to a paginating
container can be distributed over different pages, while the content
of non-paginating containers will be repeated on each resulting page.
Unlike the two first approaches, Watters and Zhang’s [13] approach
can process any pre-existing HTML form using partition indicators
such as horizontal lines, nested lists and tables.
Another group of approaches relies on a generic description of the
user interface in a higher level language, instead of HTML. Göbel et
al. [6] use a language called DDL. A DDL dialog is composed of
containers and elements. Containers whose elements must appear to-
gether are called atomic. Elements are assigned weights indicating
their requirements in terms of memory and screen size. Fragments
with similar weights are generated, while respecting the integrity of
atomic containers. Navigation elements are added to permit naviga-
tion between dialog fragments. Ye & Herbert [13] apply similar heu-
ristics to a description in XUL. PIMA [1] also relies on a UIDL,
which is converted into multiple device-specific representations.
This conversion includes a splitting process. Like other approaches,
PIMA’s algorithm uses grouping constraints as well as information
on size constraints. PIMA also takes navigation into account and the
possibility of applying distinct navigation policies between screens
resulting from a splitting process.

While the fragmentation methods enumerated so far mostly work on
a hierarchy of interface components (i.e. on elements related to the
presentation of the UI), the splitting algorithm of the Roam system
[3] takes as its input a tree structure combining a task model, which
is only a hierarchy of tasks without temporal constraints, and a lay-

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’06, January 29–February 1, 2006, Sydney, Australia.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

out structure. The nodes of the tree can be annotated as splittable or
not. Roam’s algorithm does not attempt to find the best place to split,
but merely places the extra widgets that do not fit in a page onto a
new page. Navigation between the new pages is also generated, al-
though without a lot of flexibility. To overcome the shortcomings
identified above, our splitting approach should satisfy the conditions:
− Be language-independent, not tied to a given technology: we do

not want to write a separate set of algorithms for HTML pages
[10, 15, 17] and another one for AWT/Swing windows.

− Not introduce any additional construct, no need for yet another
mark-up language specially designed to support pagination, nor
any additional language constructs (unlike [10]).

− Be fully designer-controlled. In the approaches described above,
no human control is envisaged after the specification stage.

− Use semantic information to help the designer determine where
to split: when higher-level specifications, especially task models,
are available, these specifications must be used to refine the split-
ting process. In particular, the temporal relationships between
tasks must be used, which is not the case in [4].

− Be able to adapt the dialog (i.e., the transitions between pages or
windows) in a flexible, customizable way. Most of the splitting
approaches do not fulfill this requirement.

3. FRAMEWORK AND LANGUAGE
To address the requirements identified in Section 2, our splitting ap-
proach will rely on a high level description of the initial user inter-
face. This description will be expressed in the user interface
description language UsiXML [7]. The principles set out below are,
however, generally applicable and other UIDLs such as XIML [11]
or UIML [1] could also be used. UsiXML is a single language, but
structured in four abstraction levels, following the ‘CAMELEON
reference framework’ [3] (see Figure 1).

Tasks & Concepts

Abstract User Interface
Concrete User Interface

Final User Interface

Tasks & Concepts

Abstract User Interface
Concrete User Interface

Final User Interface

Figure 1. The four abstraction levels used in the framework.
The final user interface (FUI) refers to the actual UI (code). The con-
crete user interface (CUI) is a specification of the UI in terms of
widgets (concrete interaction objects in UsiXML), layout, navigation
and behaviour. The abstract user interface (AUI) abstracts the CUI
into a definition that is independent of any interaction modality
(such as graphical, vocal or haptic modes). The AUI expresses a UI
in terms of interaction spaces, i.e. the grouping of tasks that have to
be presented together to carry out the task. In UsiXML, the AUI is
populated by abstract components and abstract containers. The tasks
and concepts level describes the interactive system specifications in
terms of the user tasks to be carried out and the domain objects ma-
nipulated by these tasks. In the remainder of this paper, these levels
will be successively considered to demonstrate that the splitting al-
gorithm will satisfy all the requirements identified in Section 2.

4. SPLITTING AT THE CUI LEVEL
Not all the layers listed above are mandatory in a user interface
specification in UsiXML. In the simplest case, the designer may just
produce a description of the concrete user interface (CUI). The CUI
may be built by hand (using any XML editor or text editor) or with a
graphical editor (GrafiXML, www.usixml.org). Different constructs
in the CUI model of UsiXML can be used for pagination purposes:

− The layout of each container (e.g., a window, or a dialog box) is
specified using embedded boxes. Those boxes are declared as
splittable or unsplittable, which is the basic ingredient for pagi-
nation.

− Each container and each component is marked as pageable or
unpageable. Pageable components can be distributed between the
graphical containers created during the splitting process, while
unpageable components must be present in each fragment. For
example, a menu bar or a widget for logging out of the system
should be considered as unpageable components because their
presence in each container is required.

− Transitions can be specified between each pair of containers.
Implementing splitting rules starting from the CUI is straightfor-
ward: the splittable attribute tells us where to split, and the pageable
attribute indicates which elements will be duplicated. Each execution
of our splitting rules is fully controllable and configurable by the de-
signer. The parameters of the algorithm are:
− The number of interactive spaces at output.
− The content of the n interactive spaces at output.
− The names assigned to each interactive space at output, which

will be used as windows titles and for widgets pointing to these
interactive spaces.

− The type of transitions generated between the new interaction
spaces generated by the splitting algorithm. Four types of transi-
tions are proposed: linear navigation (e.g., through ‘next-
previous’ links or buttons), indexed navigation (creation of a new
page, the index, which links to the other interaction spaces),
mixed navigation (combination of linear and indexed navigation)
and fully-connected (typically rendered as a tabbed panel).

Default values are provided for each parameter. The splitting algo-
rithm has been integrated into a plug-in for the GrafiXML environ-
ment. This plug-in implements a collection of transformation rules
(see section 1), to be applied to a source CUI in order to produce
specific interfaces targeted to more constrained platforms.

5. SPLITTING AT THE AUI LEVEL
In the previous section we discussed how the designer can develop
the pagination process from an existing CUI. This scenario can be
expanded by considering the task model and the AUI corresponding
to the CUI. With this information, the pagination process can pro-
duce results that are more meaningful from the user’s point of view,
since the task model drives the pagination. The task model we are
using is more than a hierarchy of tasks: temporal operators connect
sibling tasks and the task model is not simply mirroring the hierar-
chy of presentation components (unlike Roam [4]). Our splitting al-
gorithm has been integrated into the IdealXML environment [8].
IdealXML is an interface development environment which allows
designers to specify user interfaces in UsiXML at different abstrac-
tion levels: task model, AUI model, and mappings between these
levels. As explained above, the AUI level is composed of abstract
containers and abstract individual components. If the designer de-
cides that a container contains too many components, he or she may
choose to split this container into smaller units. The designer selects
the abstract container. The tool retrieves the set of leaf tasks linked
to the components inside the container. The splitting algorithm pro-
duces two subsets of tasks to be integrated into two separate subsets
of containers. The original container in the AUI is replaced by two
new containers, each containing appropriate components. The map-
ping between leaf tasks and components remains constant; only the
mappings between higher level tasks and containers are updated (see
Figure 2).

Figure 2. Different paginations and corresponding AUIs.

6. CONCLUSION AND FUTURE WORK
We have described a pagination technique, which relies on a high
level description of the UI using the UsiXML UIDL. When applied
at the CUI level, the proposed algorithm is quite classical, but goes
further than state-of-the art approaches by satisfying the require-
ments outlined in Section 2. It is language-independent: once split-
ting has been applied at the CUI level, code can be generated in Java
or HTML (thanks to GrafiXML). It does not require any additional
constructs but relies on the pre-existing structures of UsiXML. It can
be applied automatically, using default parameters, but it can also be
fully controlled by the designer, who can choose the number of
pages of output, the type of dialog generated and the content of the
pages. It suggests a large range of dialog styles, where other ap-
proaches often only generate one single result (typically, a sequential
navigation). However, the originality of the proposed technique is
that it involves UI description at several levels of abstraction. As far
as we know, there has been no similar attempt.
In the future, we plan to implement a larger collection of transforma-
tion rules, in order to demonstrate how higher level information can
be used to improve the transformations. This multilevel approach is
quite new. Existing model-based tools which generate several UI
versions for multiple platforms adopt a totally different approach: ei-
ther they generate code starting from a description at the tasks and
concepts level [9] (which offers little or no control over the layout
and structure of the final interface), or they require a distinct CUI to
be specified for each target platform or for each family of target plat-
forms [1] (which demands more work from the designer and offers
no guarantee of consistency between the different UI versions). In
contrast, our approach requires only one specification, which can be
given at any level of detail desired while taking advantage of the in-
formation specified at higher levels of abstraction if this is available.

7. ACKNOWLEDGMENTS
We gratefully thank the Salamandre Project, funded by the ‘Initia-
tives III’ program of the Ministry of Walloon Region under contract

No. 001/4511 and the SIMILAR network of excellence, supported
by the 6th Framework Program of the European Commission, under
contract FP6-IST1-2003-507609.

8. REFERENCES
[1] Ali M.F., Pérez-Quiñones M.A. and Abrams M. Building

multi-platform user interfaces with UIML. In Multiple User
Interfaces: Engineering and Application Framework. John
Wiley and Sons, Chichester, UK, 2004, 95–118.

[2] Banavar, G., Bergman, L.D., Gaeremynck, Y., Soroker, D.
and Sussman, J. Tooling and system support for authoring
multi-device applications. Journal of Systems and Software
69, 3 (2004), 227–242.

[3] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouil-
lon, L. and Vanderdonckt, J. A unifying reference framework
for multi-target user interfaces. Interacting with Computers
15, 3 (June 2003), 289–308.

[4] Chu, H., Song, H., Wong, C., Kurakake, S. and Katagiri, M.
ROAM, a seamless application framework. Journal of System
and Software 69, 3 (2004), 209–226.

[5] Florins, M. and Vanderdonckt, J. Graceful degradation of
user interfaces as a design method for multiplatform systems.
In Proc. of ACM Conf. on Int. UIs IUI’04 (Funchal, Jan. 13–
16, 2004). ACM Press, New York, NY, 2004, 140–147.

[6] Göbel, S., Buchholz, S., Ziegert, T. and Schill, A. Device in-
dependent representation of web-based dialogs and contents.
In Proc. of the IEEE YUFORIC ´01 (Valencia, Spain, No-
vember 2001). IEEE Computer Society Press, Los Alamitos,
2001.

[7] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L.
and Lopez, V. UsiXML: a language supporting multi-path
development of user interfaces. In Proc. of EHCI-DSV-
IS’2004 (Hamburg, July 11−13, 2004). Lecture Notes in
Computer Science, Vol. 3425, Springer-Verlag, Berlin, 2005,
200−220.

[8] Mandyam, S., Vedati, K., Kuo, C. and Wang, W., User inter-
face adaptations: indispensable for single authoring. In W3C
Workshop on Device Independent Authoring Techniques
(DIA’2003) (St. Leon-Rot, 15−26 September 2002).

[9] Montero, F., López-Jaquero V., Vanderdonckt J., Gonzalez
P., Lozano, M. D. and Limbourg, Q. Solving the mapping
problem in user interface design by seamless integration in
IdealXML In Proc. of DSV-IS’05 (Newcastle upon Tyne,
UK, July 13–15, 2005). Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 2005.

[10] Paternò, F., Mori, G. and Santoro, C. Tool support for de-
signing nomadic applications. In Proc. of ACM Conf. on In-
telligent User Interfaces (IUI’03) (Miami, January 12−15,
2003). ACM Press, New York, NY, 2003, 141–148.

[11] Puerta, A.R. and Eisenstein, J. XIML: a common representa-
tion for interaction data. In Proc. of IUI’2002 (San Francisco,
Jan. 13-16, 2002). ACM Press, New York, 2002, 214–215.

[12] Spriestersbach, A., Ziegert, T., Grassel, G., Wasmund, M.
and Dermler, G. Flexible pagination and layouting for device
independent authoring. In WWW2003 Emerging Applications
for Wireless and Mobile Access Workshop (unpublished).

[13] Watters, C., and Zhang, R. PDA access to internet content:
focus on forms. In Proc. of HICSS’03 (Big Island, Hawaii,
USA, January 2003). IEEE Computer Society Press, Los
Alamitos, 2003, 105–113.

[14] Ye, J. and Herbert, J. User interface tailoring for mobile
computing devices. In Proc. of UI4All’2004 (Vienna, Aus-
tria, 28−29 June 2004). Lecture Notes in Computer Science,
Vol. 3196, Springer-Verlag, Berlin, 2004, 175−184.

