
Graceful Degradatio of User Interfaces as a Design
Method for

Murielle Florin
IAG – School of Man

B-134
{florins,va

ABSTRACT

This paper introduces and describes the notion o
degradation as a method for supporting the design of use
for multiplatform systems when the capabilities of each p
very different. The approach is based on a set of transf
rules applied to a single user interface designed fo
constrained platform. A major concern of the graceful d
approach is to guarantee maximal continuity between th
specific versions of the user interface. In order to gua
continuity property, a priority ordering between rules is
That ordering permits the rules with the smallest imp
multiplatform system continuity to be applied first.

Categories and Subject Descriptors
D.2.2 [Design Tools and techniques]: User Interfaces

General Terms
Design, Human Factors, Theory.

Keywords
Continuity, design, graceful degradation, multiple
platforms, multiplatform systems.

1. INTRODUCTION
An increasing number of applications can be accessed fr
range of platforms. A platform is generally defined as
combination of hardware and operating system. When c
user interfaces (UIs), it is useful to add to this notion o
other elements such as the browser or the available
toolkit(s). Sometimes the capabilities of each platform
different [5]: the devices may differ in screen size, re
colour number; some HTML code may be rendered in
way depending on the interpreting browser; or some wi

Permission to make digital or hard copies of all or part of this
personal or classroom use is granted without fee provided that c
not made or distributed for profit or commercial advantage
copies bear this notice and the full citation on the first page.
otherwise, or republish, to post on servers or to redistribut
requires prior specific permission and/or a fee.

IUI’04, January 13–16, 2004, Madeira, Funchal, Portugal.

Copyright 2004 ACM 1-58113-815-6/04/0001…$5.00.
n

Multiplatform Systems

s Jean Vanderdonckt
agement – Université catholique de Louvain
Place des Doyens, 1

8 Louvain-la-Neuve, Belgium
nderdonckt}@isys.ucl.ac.be

f graceful
r interfaces
latform are
ormational
r the less
egradation
e platform
rantee the
 proposed.
act on the

computing

om a wide
 a specific
onsidering
f platform
 graphical
 are very

solution or
a different
dgets may

be available within a given toolkit and unavailable within another
one.
However users expect to be able to employ their knowledge of a
given version of the system when using the same service on another
platform. Thus the transitions between system versions have to be as
smooth as possible. In the literature, this property of a multiplatform
system is called the continuity property [4].We propose an approach
called design by graceful degradation as a method of building
usable user interfaces for multiplatform systems while guaranteeing
continuity between the system versions.
The remainder of this paper is structured as follows: we first report
the various approaches that can be used to develop UI for
multiplatform systems; next we define the graceful degradation
approach. Transformation rules for graceful degradation are then
identified and their impact on the continuity property is considered.

2. PAST LESSONS FROM HCI RESEARCH
AND PRACTICE
Many techniques and tools have been used to develop UI for
multiple platforms (see [1, 2, 7, 8, 11, 12, 15, 17] to name but a
few). One approach is the development of a specific interface for
each platform. This approach does not guarantee any consistency
between the different target-specific UIs.
Another approach consists of designing a single interface that will
run on several platforms, using generic clients (browsers) or virtual
toolkits such as Java Swing or Tk. Those techniques do not provide
any adaptation perceivable to the user – except some rendering
differences between browsers and adaptation to the platform look-
and-feel for some virtual toolkits [2] – and do not offer a satisfying
solution when considering systems that will run on devices with
very distinct input/output capabilities [17]. Xweb [8] produces UIs
for several devices starting from a multi-modal description of the
abstract UI. This system operates on specific XWEB servers and
browsers tuned to the interactive capacities of particular platforms,
which communicate thanks to an appropriate XTP protocol.
A third approach is the development of one single description for the
common part and additional descriptions for the platform-specific
sides of the UI. This approach is an extension of the generic client
approach described above. Examples are XML documents with CSS
or XSL style sheets, or one XML document with XSLT
transformations to WML or XHTML [13, 14]. UIs produced with
this approach are consistent at the level of information, if not at the

 work for
opies are
 and that
 To copy
e to lists,

level of their appearance. However, they still require one style sheet
or XSLT document per target platform to be developed.
The final techniques belong to the model-based paradigm. Recent
tools such as ARTStudio [16] and TERESA [11] have extended the
scope of automatic interface design to multiplatform generation.
Those tools make use of various descriptions, called models. Some
models (such as the task model and the domain model) contain the
interactive system specifications at a high abstraction level while
other models (such as the platform model and the interactor model)
act more as a knowledge base that will be reused in different system
design processes. Starting from these models, the tools are able to
produce a set of platform-specific UIs, depending on the platforms
they support. This approach has the drawback of offering little
control to the designer: when a system is completely automatic, the
designer cannot choose how the tasks will be shared among
presentation units, which widgets will be used, or what layout will
be given to the final interface. Some systems however allow user-
defined parameters. On the other hand, automatic design tools
present the advantage of “specify once, generate many”, which
means that they are able to generate several UIs starting from one
single specification. A slightly different approach is the
specification-based interface design with model-based tools.
Specification based MB-IDEs [9] provide powerful interface
specification languages [13]. The modelling languages of these MB-
IDEs allows models to be expressed at different abstraction levels.
Covigo has developed a system for paginating the content of Web
pages by pattern (e.g. every fifth <tr>) or by size (e.g. 1024 KB).
Pagination is a technique used to break a large body of content into
multiple pages [7].
LiquidUI, an authoring tool for the UIML language [12], is a good
example of a specification-based multiplatform MB-IDEs. An
important drawback of this approach is that each UI has to be
described with a platform-specific vocabulary. This is not very
different from the development of a specific interface for each
platform, except that the vocabularies are simple to learn (UIML
claims to be usable by everyone and not only by computer scientists)
and that some common elements can be factorized. A recent
development around UIML is the Transformation-based Integrated
Development Environment (TIDE) [1]. TIDE goes far beyond the
specification approach. It uses four abstraction levels: a task model;
a description of the UI using UIML [12] with a generic vocabulary
that is common for a device family (e.g. desktop or WML); a UIML
description with a platform-specific vocabulary; and the final UI.
The tool supports the mappings between the abstraction levels (the
task model is not yet included), letting the designer control them.
Another model-based transformational approach is the Scalable Web
technique [17]. Scalable Web address the problem of device
heterogeneity in Web development by allowing authors to build a
device-independent presentation model at design time. This model is
provided for the device with the largest screen size. The presentation
model is then submitted to two adaptations: pagination of large
presentations into smaller and simpler ones, and control
transformations. Layout transformations are also realized. This kind
of transformational approach offers both a guarantee of continuity
between the system versions and an adaptation of the UI to the
specific target. However, the set of transformations rules provided
seems very limited and no specific attention is directed to continuity
issues.

3. THE GRACEFUL DEGRADATION
APPROACH
Like [17], we argue that it must be possible to centre the design
effort on one source interface (or “root interface”), designed for the
least constrained platform, and to apply a set of transformation rules
to this source interface in order to produce specific interfaces
targeted to more constrained platforms. The phrase more
constrained platforms covers:
- platforms whose screens have lower resolutions;
- platforms whose screens have similar resolutions, but where the

objects included in the interface have to be larger or more
distant (e.g. touch screen interfaces), or where a part of the
display is used for other purposes (e.g. virtual keyboard);

- platforms where fewer widgets are available, because, for
example, they have reduced versions of the toolkit or simplified
versions of the mark-up language;

- platforms where some widgets are much less usable, for
example because of the absence of a keyboard on some
platforms.

As our transformation rules take as input an interface tailored for a
large screen and produce smaller interfaces as output, we call the
transformation process a degradation. As we want to produce highly
usable interfaces adapted to the specific platforms, while preserving
the consistency between the versions, we qualify this degradation as
a graceful one.

4. RULES FOR GRACEFUL
DEGRADATION
Design by Graceful Degradation requires a set of transformation
rules that will adapt the source interface to each target platform.
Graceful Degradation rules (hereinafter GD rules) have been
identified by the observation of the user interfaces of a large number
of applications running on several devices. Some applications were
publicly available, others, such as an information system developed
for emergency services in Belgian hospitals that runs on
workstations, Pocket PCs and a wall display, were developed in
collaboration with our research centre

5. TYPOLOGY OF RULES
GD rules have been classified using the CAMELEON framework [3]
abstraction levels. The CAMELEON framework is intended to support
the development of context-sensitive user interfaces in a model-
based approach. It describes models at four abstraction levels
(Figure1) from the task specification to the running interface [3, 15,
16]:
- The Tasks and Concepts level describes the interactive systems’

specifications in terms of the user tasks to be carried out and the
domain objects manipulated by these tasks.

- The Abstract User Interface (AUI) is an expression of the UI in
terms of presentation units, independently of which interactors
are available. A presentation unit is a presentation environment
(e.g. a window or a panel) that supports the execution of a set of
logically connected tasks.

- The Concrete User Interface (CUI) is an expression of the UI in
terms of abstract interactors and their position. The concrete UI
is still only a mock-up in the development environment. It can
be modified by the designer.

- The Final User Interface (FUI) is generated from a concrete UI
expressed in the source code of any programming language or
mark-up language (e.g. Java or HTML). It can then be
interpreted or compiled.

GD rules can be considered at the CUI level, at the AUI level and at
the Tasks and Concepts level. The FUI does not concern the
designer anymore.

Figure 1. The four abstraction levels in the CAMELEON

framework

6. GD RULES AT THE CONCRETE USER
INTERFACE LEVEL
Two important kinds of GD rules can be applied at the Concrete
User Interface level: rules that transform the layout relationships
between the graphical objects, and rules that modify the number and
nature of the graphical objects.

6.1 Transformations of Layout Relationships
There are three types of rules that can be applied to layout
relationships: resizing rules, that modify the dimensions of a
graphical object; reorientation rules that modify the orientation of
an object without changing its size or position; and moving rules that
modify the localization of a graphical object (i.e. the position of the
object in the containing window), either defined in the coordinates
of the window or in terms of constraints on its geometric
relationships with other objects (alignment, justification, etc.).
Theoretically, resizing rules could be applied to any UI component,
but we have to take into account:
- The nature of the abstract interactor: some interactors have fixed

dimensions in most of the toolkits where they have been
implemented (e.g. a radio item) while others may generally be
resized (e.g. a button).

- The constraints imposed by the toolkits: a lot of toolkits do not
let the programmer give the widgets arbitrary dimensions: for
example, widgets in languages such as HTML or QTk
automatically give the required size.

- The limits of human perception: for example, experimental
usability results establish that an icon cannot be shrunk below
the threshold of 8 x 7 pixels [6]. Beyond this, it becomes
illegible or impossible to distinguish.

When a component can be resized, we have to know the minimum
width and height to which it can be shrunk (Figure 2). For some
widget types, the minimum width/height of some interactors is
influenced by factors that can only be determined at design time for

a given application. For example, the minimal width of a list box
depends on the length of the larger proposed choice, while the
minimal width of a button depends on the length of its label. When
the aspect ratio need not necessarily be kept, the definition is
enriched by the minimum height when the minimum width is
reached (Figure 3a) and by the minimum width when the minimum
height is reached (Figure 3b)

maximum width
m

axim
um

 height

minimum width

m
in

im
um

 h
ei

gh
t

Maximum area =
(maximum width,
maximum height)
Minimum area =
(minimum width,
minimum height)

Figure 2. Minimum and maximum areas of component

Minimum width

Minimum height
when minimum
width

Maximum
height
when
minimum
width

Minimum
height

Maximum width
when minimum height

Minimum width
when minimum height

Figure 3. Minimum and maximum width and height

Reorientation rules are mainly useful when switching from
landscape to portrait mode or vice versa. They can only be applied
to a small set of objects, such as table labels. Figure 4 shows an
example of a reorientation rule applied to an accumulator widget
(i.e. a component transferring items from the left list of possible
values to the right list of accumulated selected items).

>

<
><

Figure 4. Reorientation rule

Moving rules are useful when:
- the components do not fit in one dimension (horizontally or

vertically) when there is blank space left in the other dimension;
- the components do not fit horizontally and we want to avoid

horizontal scrolling;
- some ergonomic rule or convention of the target platform has to

be respected (e.g. menus on an IPaq should be placed at the
bottom of the screen).

6.2 Transformations of Graphical Objects
As well as GD rules that transform the layout relationships between
graphical objects, another type of transformation can be applied at

the CUI level, namely modifications in the nature of the graphical
objects (widgets, icons, windows etc.). Object transformations can
take three different forms: modification, substitution and removal.
Modification rules act upon the appearance of a graphical object.
The physical rendering of a semantic feature can be modified (e.g.
the notion of ‘emergency’ could be represented by the red colour on
a workstation and by a flickering on a mobile phone), or the font of
a text or the colour of an object can be changed.
Substitution rules replace an interactor (i.e. an interactive graphical
object, or widget in a GUI context) by an alternate interactor that
enables the same type of functionalities. A substitution rule can be
activated for two reasons:
- Unavailability: when an interactor is no longer available on the

target platform, it has to be replaced by another one. For
example, check boxes and radio buttons, non-existent in WML
language for mobile phones, can be replaced by a list, as
illustrated in Figure 5.

Figure 5. Component replacement due to unavailability

- Screen size inadequacy: if an interactor does not fit in the target

platform because it requires too great a screen size, it has to be
replaced. For example, Figure 6 shows possible substitutions for
an accumulator (an interactor transferring items from the left list
of possible values to the right list of accumulated selected
items), thus allowing multiple selection from a closed list of
items. The accumulator can be replaced with a smaller version
of the same object (using shorter labels on the transfer buttons
for example). When the accumulator can be reduced no further,
the use of other interactors supporting multiple selection tasks
has to be considered: a group of check boxes, a list box
containing check boxes, a simple list box or, in the extreme
case, a list restricted to merely one item. Figure7 shows a similar
set of substitutions for a simple choice task.

Different types of substitution can be performed:

- Simple substitution (1→1): interactor X on the source platform
is replaced by interactor Y on the target platform.

- Regrouping (N→1): a set of interactors on the source platform is
replaced by a single interactor on the target platform. For
example, a set of check buttons could be regrouped into an
accumulator.

- Splitting (1→N): a single interactor on the source platform is
replaced by a set of interactors on the target platform. For
example, a tabbed panel could be replaced by a set of
hyperlinks.

Add all >>

Add >

<< Remove all

< Remove

>>

>

<<

<

>

<

Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Item 7

Item 1

Group box
Item 1
Item 2
Item 3
Item 4

Item 5
Item 6
Item 7
Item 8

Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Item 7

Figure 6. Candidate interactors for multiple choice

Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Item 7

Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Item 7

Item 1

Group box
Item 1
Item 2
Item 3
Item 4

Item 5
Item 6
Item 7
Item 8

Item 1
Item 2

Item 3
Item 4

Item 5
Item 6

Item 7
Figure 7. Candidate interactors for simple choice

Not all the alternatives have the same ergonomic quality in a given
context:
- Not all interactors are equally easy to manipulate on a given

platform: a check box is difficult to select on touch screen
platforms because of the finger dimension.

- Some interactors offer better visual guidance for a given type of
task. For example, an accumulator clearly denotes a multiple
selection task, whereas a simple list box does not indicates
whether multiple choice is allowed or how to achieve this task.
Only experienced users will know that they have to press a
special key in order to select multiple items.

- Depending on the number of choices available, some interactors
seem to be more appropriate than others. For example,
ergonomic rules generally state that a group of check boxes
should be limited to seven items in order to optimize its
legibility, whereas an accumulator is perfectly suitable for
higher numbers of items.

Interactor substitution rules can also operate at a semantic level,
taking into account domain characteristics.
 Let us consider the choice of a month. This is a simple choice
among a predefined set of twelve possible values ranging from
January to December. The rules exhibited above apply: we could
use one of the interactors shown in Figure 7. However, since

January
February
M

arch
April
M

ay
June
July
August
Septem

ber
O

ctober
N

ovem
ber

D
ecem

ber

J F M A M J J A S O N D

January February March

Jan Feb Mar Apr Ma

Mar

Figure 8. Semantic substitution rules for month selection

months have a special semantic meaning and are continuous over
time (horizontality typically represents the time dimension), a
dedicated series of substitutions may be used instead (see Figure 8).
The last type of GD rule that can be applied to graphical objects is a
removal rule, i.e. a rule that merely deletes a graphical object, due to
space constraints on the target platform (such as the removal of
pictures on a mobile phone).

7. GD RULES AT THE AUI LEVEL
The AUI level defines the distribution of the interactive tasks among
the presentation units. A presentation unit groups low level tasks
(e.g. selecting an item or entering text) that are logically linked
together and that will be achieved within the same presentation
(window, panel, dialog box, card, etc.)
When there are big differences between the platforms’ constraints
(e.g. big differences in screen size and resolution), it is not possible
to maintain the same distribution of tasks between the system
versions. Figure 9 shows the distribution possibilities in platform
specific versions of a system: similar versions are versions sharing
the same task distribution among presentation units, whereas
distributed versions allocate the same set of tasks differently from
version to version.

Figure 9. Distribution possibilities in platform specific
versions of a system.

At the AUI level, the most useful GD rules split the source
presentation unit into two or more presentation units on the target
platform. We call these splitting rules. Conversely, merging of
presentation units is also possible.
A possible side effect of the application of a splitting rule is the
introduction of internal redundancy within distributed versions of a
system: a task that appears once on the source platform could appear
on two or more presentation units on the target platform. Figure 10
shows an example of internal redundancy caused by a platform
change: the single “cancel” task on the source platform has to be
duplicated on the target platform.
Another possible adaptation technique at the Abstract UI level is the
reorganization of tasks within the same presentation unit. A reason
for internal permutation between tasks can be that we want to

present tasks in the order of frequency of each task and that we
expect that a task frequency will change on the target platform (e.g.
the consultation of an address book could be more frequent on a
mobile phone than on a workstation).

Figure 10. Internal redundancy due to splitting rule

8. GD RULES AT THE TASKS AND
CONCEPTS LEVEL
At the Tasks and Concepts level, GD rules can be applied to general
functionalities (high level tasks, that correspond to the user’s general
goals), to the procedures that the user must follow in order to
achieve his/her general goals (low level tasks), to the temporal
ordering between tasks, and to the concepts.

8.1 Transformations of General
Functionalities
There are two types of GD rule that modify the general
functionalities of a system: high level task deletion and high level
task insertion.

8.1.1 High Level Task Deletion
A high level task present on the source version may be removed
from the target version for a variety of reasons:
- The task implies interaction capabilities that are unavailable or

inappropriate on the target platform (e.g. tasks involving video
streaming or manipulation of complex graphics are impossible
to perform on a cellular phone, as are tasks of data storage when
the quantity of data is large).

- The task requires resources that are very scarce on the target
platform, so that the interaction could be interrupted due to lack
of resources (e.g. a task manipulating an object requiring much
RAM memory).

- The interaction capabilities required for the task are such that
carrying it out on the target platform could become very tedious
(e.g. a task of word processing on a PDA, although partially
possible, rapidly becomes impractical due to the limited entry
capabilities such as a virtual keyboard or character-recognition).

- The typical context of use of the target version is inappropriate
to the performance of that task (e.g. a task of graphical editing is
inappropriate in a context where the user will be standing, for
example when the target platform is an interactive kiosk)

8.1.2 High Level Task Insertion
A high level task not available on the source version may be added
on the target version, for the same types of reason (changes of
interaction capabilities or changes of the typical context of use on
the target platform).

8.2 Transformations of Procedures
Another type of transformation at the Tasks and Concepts level
affects the subtasks necessary to achieve the same general
functionality. Two types of rules modify subtasks: subtask deletion
rules and subtask insertion rules.

Subtask Deletion
Subtasks can be deleted for several reasons:
- Some subtasks are unnecessary on the new platform (e.g. on a

platform with a GPS system, it is no longer necessary to specify
the user’s location).

- The resources required by some subtasks are too great with
respect to the constraints of the target platform (e.g. the cellular
phone version of an information system dedicated to theatre
bookings will still enable the general task of booking theatre
tickets, but not the subtask of viewing the free seats in a picture
of the hall).

Subtask Insertion
The reasons for using subtask insertion include:
- Insertion of a subtask because the target platform does not

permit several tasks to be executed at the same time (e.g. on a
mobile phone, as it is impossible to edit several information
items simultaneously, a selection task that would allow the user
to choose which item he or she wishes to modify should be
added before any editing task mapped to more than one item)

- Insertion of a subtask because the display area on the target
platform does not permit the same set of tasks to be executed
within one presentation, so that the tasks have to be split
between several presentations. This may imply the insertion of
additional navigation tasks between the new presentation spaces.

8.2 Transformations of Temporal Ordering
Examples of GD rules modifying the temporal ordering between
tasks are:
- sequentialization of tasks when the style of interaction changes

(e.g. from a GUI to a speech-based conversational interface, or
from a direct manipulation UI to a form-based UI);

- conversely, some tasks that were sequential can become
concurrent when the style of interaction changes.

8.3 Transformations of Concept Level
Graceful degradation rules can modify the way some concepts are
viewed:
- information can be summarized or cut;
- some attributes can be masked;
- alternative shorter label or titles can be chosen, etc.

9. GRACEFUL DEGRADATION RULES
AND CONTINUITY
Not all the GD rules that can be applied to a source interface have
the same impact on the continuity within the multiplatform system.
Intuitively, we suspect that rules applied at a lower level in our
framework (e.g. resizing a graphical object) generate less
discontinuity than rules applied at a higher level (e.g. high level task
deletion).
Following this principle, we have established a priority ordering
between graceful degradation rules. Rules with a high priority
should be the first to be tried when adapting the source UI to a target
platform. Rules with a lower priority should only be applied when
higher priority rules have failed to transform the source UI into a UI
that respects the target platform usability criteria. We propose the
following list of graceful degradation rules, from the rules with the
highest priority to the rules with the lowest priority:
- Layout transformation (modification of the layout relationships

between graphical objects). The layout transformation rule that
seems to introduce the least discontinuity is the resizing rule,
then comes the reorientation rule, then the moving rule (Figure
11).

Figure 11. Level of discontinuity induced by layout
transformation rules

- Graphical object transformation. Simple modifications of the
interactor’s appearance (such as colour changes) do not cause a
lot of discontinuity. The substitution of one interactor by another
supporting the same type of functionalities induces more
discontinuity (e.g. substitution of an accumulator by a list box).
More discontinuity is perceived if the substituted interactor has a
different shape. Regrouping or splitting interactors creates still
more discontinuity (e.g. substitution of a group of check boxes
by a list box or conversely). The highest level of discontinuity
for graphical object transformation rules is achieved by deleting
an interactor (see priority ordering in Figure 12).

Figure 12. Level of discontinuity induced by graphical objects
transformation rules

Task reorganization. Two types of reorganization rules can be
applied: reorganization within the same presentation unit and
splitting rules that distribute the tasks belonging to one
presentation unit on the source UI between distinct presentation
units on the target platform. Rules of the first type obviously

generate less discontinuity than rules of the second type (Figure
13).

Figure 13. Level of discontinuity induced by task
reorganization rules

- Transformations at the Tasks and Concepts level. These
transformation rules generate important differences between the
platform-specific versions of the UI. We propose to give a
higher priority to temporal ordering transformation rules that
preserve the displayed information and the available tasks.
Concept level transformations and procedure transformations
generate more discontinuity and should be given a lower
priority. The lowest priority is given to general functionality
transformation rules, that significantly modify a system (Figure
14).

Figure 14. Level of discontinuity induced by transformation
rules at the Tasks and Concepts level

The proposed priority ordering has still to be validated by usability
studies conducted with end users. Both the performance and the
preference of the users have to be recorded. The performance can be
evaluated by the time required to perform a task on the source and
target interface. The preference can be obtained by asking the users
to classify several designs, where each design results from the
application of a single different rule to the same source interface.

10. CONCLUSION AND FUTURE WORK
In this paper, we have introduced the notion of graceful degradation
as a method for designing multiplatform systems with a focus on
continuity. The graceful degradation approach is based on an
original set of rules. These rules are described and classified in a
model-based framework. A priority ordering between rules is then
proposed. This still has to be validated by empirical studies. Future
work includes the formalization of some of the rules described
above, with the aim of applying them automatically in two cases: in
systems able to adapt their user interfaces at run-time in response to
changes in the screen resolution; and in a design environment that
will provide designers with assistance in obtaining a graceful
degradation of UIs.

11. ACKNOWLEDGMENTS
We gratefully acknowledge the support of the Salamandre Project,
funded by the “Initiatives III” research program of the Ministry of
Walloon Region, DGTRE, Belgium

(http://www.isys.ucl.ac.be/bchi/research/salamandre.htm).

12. REFERENCES
[1] Ali M.F., Pérez-Quiñones M.A. and Abrams M. (2003),

Building Multi-Platform User Interfaces With UIML, in: A.
Seffah & H. Javahery (eds.) Multiple User Interfaces:
Engineering and Application Framework. John Wiley and
Sons.

[2] Bickmore, T.W., Schilit, B.N. (1997), Digestor: Device-
Independent Access to the World Wide Web, in Proc.
WWW’7 Conference.

[3] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L. and Vanderdonckt, J. (2003), A Unifying
Reference Framework for Multi-Target User Interfaces,
Interacting with Computers, V15N3, June, 289-308.

[4] Denis C. and Karsenty L. (2003), Inter-usability of multi-
device systems: A conceptual framework, in: A. Seffah & H.
Javahery (eds.) Multiple User Interfaces: Engineering and
Application Framework, John Wiley & Sons.

[5] Elting, Ch., Zwickel, J.and Malaka, R. (2002), Device-
Dependent Modality Selection for User Interfaces – An
Empirical Study, in Proceedings of 6th Int. Conf. on
Intelligent User Interfaces IUI’2002 (January 13-16, 2002,
San Francisco), ACM Press, New York.

[6] Kamba, T., Elson, S.A., Harpold, T., Stamper, T. and
Sukaviriya, P.N. (1996), Using Small Screen Space More
Efficiently, Proceedings of ACM Conf. on Human Aspects in
Computing Systems CHI’96 (Vancouver, 13-18 April 1996),
ACM Press, New York, pp. 383-390.

[7] Mandyam, S., Vedati, K., Kuo, C. and Wang, W. (2002),
User Interface Adaptations: Indispensible for Single
Authoring, in Proceedings of W3C Workshop on Device
Independent Authoring Techniques (St. Leon-Rot, 15-26
September 2002)

[8] Olsen, D.R., Jefferies, S., Nielsen, T., Moyes,P. and
Fredrickson, P. (2001), Cross Modal Interaction using
XWEB, in Proceedings of the 13th annual ACM symposium
on User interface software and technology UIST 2000 (San
Diego, United States), ACM Press, New York, pp. 191-200.

[9] Paternò, F. (2000), Model-Based Design and Evaluation of
Interactive Applications, Springer-Verlag, Berlin.

[10] Paternò F. and Santoro C. (2002), One Model, Many
Interfaces, in Proceedings of CADUI 2002, the 4th
International Conference on Computer-Aided Design of User
Interfaces (Valenciennes, France, May 2002), 143-154.

[11] Paternò, F., Mori, G. and Santoro, C. (2003), Tool Support
for Designing Nomadic Applications, in Proceedings of 7th
Int. Conf. on Intelligent User Interfaces IUI’03 (January 12-
15, 2003, Miami), ACM Press, New York.

[12] Phanouriou C. (2000), UIML : A Device-Independent User
Interface Markup Language. Ph. D. Thesis, Virginia
University,.

[13] Puerta, A. and Eisenstein, J. (1999), Towards a General
Computational Framework for Model-Based Interface
Development Systems Model-Based Interfaces, Proceedings
of 3rd Int. ACM Conf. on Intelligent User Interfaces IUI’99
(Redondo Beach, 5-8 January 1999), ACM Press, New York,
pp. 171-178, accessible at http://www.arpuerta.
com/pubs/iui99.htm

[14] Puerta, A. and Eisenstein, J. (2003), Developing a Multiple
User Interface Representation Framework for Industry, in: A.
Seffah & H. Javahery (eds.) Multiple User Interfaces:
Engineering and Application Framework. Wiley and Sons,
2003.

[15] Thevenin, D. and Coutaz, J. (1999), Plasticity of User
Interfaces: Framework and Research Agenda, Proceedings of
7th IFIP Int. Conf. on Human-Computer Interation
INTERACT’99 (Edinburgh, 30 August-3 September 1999),
IOS Press, Amsterdam, pp.110-117, accessible at
http://research.nii.ac.jp/~thevenin/papiers/Interact9
9/Plasticity.Interact99-WWW.pdf

[16] Thevenin D. (2001), Adaptation in Human Computer
Interaction: the case of Plasticity. Ph. D. Thesis, Joseph
Fourier University, Grenoble.

[17] Wong C., Chu H.H. and Katagiri M. A (2002), Single-
Authoring Technique for Building Device-Independent
Presentations, in Proceedings of W3C Workshop on Device
Independent Authoring Techniques (St. Leon-Rot, 15-26
September 2002), accessible at
http://www.w3.org/2002/07/DIAT/posn/docomo.pdf

http://www.isys.ucl.ac.be/bchi/research/salamandre.htm

