
Université Catholique de Louvain

MSc Thesis

Model-Driven Engineering of User
Interfaces for Rich Internet

Applications: the case of the Oliva
Nova Model Execution.

by

Quentin ENGLEBERT

supervisor

Jean VANDERDONCKT

August 22, 2009

Quentin Englebert CONTENTS

Contents

1 Introduction 1

1.1 Concepts . 1
1.1.1 Web development . 1
1.1.2 Rich Internet Applications . 2
1.1.3 Computer-Aided Software Engineering . 5

1.2 Goals of the MSc Thesis . 6
1.2.1 Model-driven engineering . 6
1.2.2 Beauti�cation . 6
1.2.3 Thesis statement . 7

1.3 Hypothesis . 7
1.4 Methodology . 8

1.4.1 Chosen CASE tool . 8
1.4.2 Chosen programming environment . 8

2 State of the Art 9

2.1 Features of RIA applications . 9
2.2 Programming environments . 12

2.2.1 Ajax . 12
2.2.2 Adobe Flex . 16
2.2.3 Microsoft Silverlight . 17
2.2.4 OpenLaszlo . 18
2.2.5 Google Web Toolkit . 18
2.2.6 JavaFX . 19
2.2.7 Echo3 . 19
2.2.8 haXe . 20
2.2.9 Curl . 20
2.2.10 FlashiXML . 21

3 Technological choices for RIA production 22

3.1 ONME . 22
3.1.1 MDA and the OO-Method . 22
3.1.2 Presentation Model . 23
3.1.3 Oliva Nova Model Execution . 23

3.2 Ajax . 24
3.3 JQuery . 24

4 Design patterns for RIA 26

4.1 ONME patterns . 26
4.1.1 Basic Elements . 26
4.1.2 Interaction Units . 27

4.2 Results of the analysis of RIA constructs for ONME 27

MSc Thesis Beauti�cation editor

Quentin Englebert CONTENTS

5 Implementation of signi�cant RIA constructs 30

5.1 Master-detail with a slider and an accordion . 30
5.2 Carousel for navigation basic element . 31
5.3 Imagecropper for Available Actions basic element . 33

6 Development of a software to support RIA production 35

6.1 Software approach . 35
6.1.1 Beauti�cation process . 35
6.1.2 Beauti�cation editor for ONME . 38

6.2 Speci�cation of the tool . 38
6.3 Implemented features . 39
6.4 Implementation Architecture . 43

6.4.1 Packages . 43
6.4.2 Classes . 43
6.4.3 Adding a widget . 51
6.4.4 Adding a pattern . 52
6.4.5 Implementation e�ort . 52

7 Conclusion 53

7.1 Contributions . 53
7.2 Improvements . 54
7.3 Final word . 54

MSc Thesis Beauti�cation editor

Quentin Englebert Introduction

Chapter 1

Introduction

In the middle of the 1990s, the explosive growth of the Internet lead to the general adoption of a
model for applications with low developping costs while increasing application types that could be
o�ered. This model was based on a very thin client and huge servers that created dynamically web
pages before delivering them to the clients.

This model recently began to show its limits because of the increasing complexity of tasks performed
through web applications. Rich Internet Applications (RIA) have become more and more important
those last years thanks to: [NODA05]

• broadband increase

• computing power shift between PCs and servers

• a need for sophisticated user interfaces

• a move from leading tech companies

• the emergence of Web Services and Service Oriented Architecture (SOA)

However, the RIA market is still immature. Technologies are evolving every day and there is a lack
of speci�c methodologies to design Rich User Interfaces.

Some work has been done these last years to develop a proper model related to Model-Driven
Architecture (MDA) to reduce developing costs and produce �exible interfaces [MA07]

1.1 Concepts

In this section, we will introduce the main concepts appearing in this MSc Thesis. We will �rst
explore the domain of web programming to have a small overview of today's technological choices.
Then we will de�ne RIA, see their advantages and current design issues to understand where e�orts
must speci�cally be done. Afterwards, we will have an overview of CASE tools to understand how
they can address current design issues of RIA.

1.1.1 Web development

HTML (Hypertext Mark-up Language) allows to describe the structure of web pages: it lets web
developers format text, add images, create links, forms, tables, . . .
While HTML might be su�cient for simple document-like web pages, typical web development
consists of more areas, among others server-side coding, database technology and client-side coding.

• Server-side coding Some operations are performed server-side because they require access
to information or functionality that is not available on the client or because it would be
unreliable client-side. They also allow to process and store data from the client to the server.
In particular, server-side scripting (such as PHP) allows running a script directly on the
server to generate dynamic web pages. It is often used for interfaces to databases. The
advantage of server-side scripting is being able to customize the response according to user's
preferences, access rights or queries.

MSc Thesis 1 Beauti�cation editor

Quentin Englebert Introduction

• Database technology Databases are used to store data on servers to be accessed anywhere
(for instance electronic mails) or for coordination between many users.

• Client-side coding Some operations are performed client-side because they require access to
information or functionality that is available on the client but not on the server, because they
require interaction with the user or because the server lacks the processing power to perform
the operations in a timely manner for all of the clients it serves.
In particular, client-side scripting (such as Javascript) allows running a script on the client
(for instance in a web browser). They require that the client understands the scripting lan-
guage in which they are written. Their main advantage is that processing can be done without
sending data over the network, they take less time than server-side scripts, use less bandwidth,
and are more secured for the client (while they are not allowed to access the user's computer).

1.1.2 Rich Internet Applications

We will now de�ne precisely the concept of Rich Internet Applications (RIA) and discuss current
design issues.

De�nitions from the literature

Various de�nitions of RIA exist in the scienti�c literature and on the Internet, and as we will see,
the concept is ambiguous.

Let's have a look at the �rst functional de�nition of a RIA. In March 2002, in a document describing
the technical aspects of Macromedia Flash MX, the crucial aspects of a Rich Client Technologies
were described for the �rst time [ALLA02]. Rich Client Technologies should:

• Provide an e�cient, high-performance runtime for executing code, content and
communications.

• Integrate content, communications, and application interfaces into a common en-
vironment.

• Provide powerful and extensible object models for interactivity.

• Enable rapid application development through components and re-use.

• Enable the use of web and data services provided by application servers.

• Embrace connected and disconnected clients.

• Enable easy deployment on multiple platforms and devices.

Today, we can �nd the following de�nition on Wikipedia [WPRIA]:

Rich Internet applications (RIA) are web applications that have some of the character-
istics of desktop applications, typically delivered by way of a proprietary web browser
plug-ins or independently via sandboxes or virtual machines.

Here is a more precise de�nition [MART06]:

RIA are Web applications that transfer most of the load of processing the user interface
to the Web client while the predominant part of data (from control and maintaining to
business data) remains on the application server.

The following de�nition of RIA is more general [NODA05]:

MSc Thesis 2 Beauti�cation editor

Quentin Englebert Introduction

Rich Internet Applications (RIA) capitalize on the strengths of both web and desktop
applications. RIA is a set of technologies which enables some or all of the characteristics
[of those applications].

Here is another de�nition based on their advantages [BOZZ06]:

They provide sophisticated interfaces for representing complex processes and data, while
minimizing client-server data transfers and moving the interaction and presentation
layers from the server to the client.

A de�nition based on their features also exists [PREC07]:

RIA o�er online and o�ine capabilities, sophisticated user interfaces, the possibility to
store and process data directly on the client side; they o�er high levels of user interaction,
usability and personalisation, minimise bandwidth usage, and separate presentation and
content at the client side.

Comparison of de�nitions

While giving the advantages or features of such applications might be useful to convince developpers
to use them, it isn't suited for a theoritical de�nition of RIA. The de�nition should describe what
a RIA is, and not how it works or what it does.

There is a common belief that RIA consist in adding AJAX functionality to existing websites. But
can a website like Youtube (http://www.youtube.com) be considered as a RIA? This website uses
Flash to display content but isn't really an application. So we have to emphasize that a RIA is a
Web Application, to avoid such confusions.

After having seen every de�nition, we should agree that RIA take advantage of both web

and desktop applications: now that Web Applications have become more complex and popular,
processing can't only be done server-side anymore and RIA are designed to cope with this problem
by processing data client-side. Here are the advantages of desktop applications [NODA05]:

• Richer user experiences

• No page reloading

• Online and o�ine support

• Can be more complex

• More responsive and interactive

Some de�nitions are already out-of-date because of fast evolution of RIA:

Can we still say today that RIA only process the User Interface? The Internet is in constant
evolution, and today, RIA are even replacing the old traditional desktop applications. An example
is Google Documents http://docs.google.com/, now even available o�ine!

Indeed, using RIA instead of desktop applications bene�t to both customers and providers [LASZ05]:

• Application providers can deliver applications by servers, which reduces costs.

MSc Thesis 3 Beauti�cation editor

http://www.youtube.com
http://docs.google.com/

Quentin Englebert Introduction

• Users don't have to con�gure nor update applications and can access services everywhere.

RIA can even be used outside a Web Browser, for instance in a Site Speci�c Browser like Prism
(https://wiki.mozilla.org/Prism).

Proposed de�nition

Current aspects as the environments using RIA (browsers, sandboxes, virutal machines), the amount
of processing done client-side (what is currently executed client-side and what remains on the server),
their advantages and what they o�er in the current architecture of the World Wide Web should
not been given in a de�nition to avoid they become outdated it in a few years after more evolution.
Therefore, to deal with the constant evolution of the domain, we will stick to a general de�nition
based on their main goal:

RIA are Web applications that capitalize on the strengths of both
web and desktop applications: they transfer the processing of various
elements (such as the User Interface) to the client.

Examples

Here are some examples of RIA:

• Broadmoor Hotel (http://www.broadmoor.com/): The reservation process on this website
is much less frustrating than standard processes where the user is forced to page back and forth
when the price or the date doesn't match his expectations. The whole reservation process can
be done on one page. Every task is directly executed without pages being reloaded.

MSc Thesis 4 Beauti�cation editor

https://wiki.mozilla.org/Prism
http://www.broadmoor.com/

Quentin Englebert Introduction

• Alibabuy (http://www.alibabuy.com/): This website gives a price comparison between
�ights from various companies. The search takes 60 seconds but the tool seeks in realtime so
the user can see the �rst results while others are processed. Then the user can change search
�elds and make a new search without any page loading.

Current problems

As the technology is still in its evolution, each class of contributors has currently some issues to
face:

Designers faced issues with conceptual modeling for RIA in data modeling, hypertext modeling in
the large and hypertext modeling in the small [BOZZ06] so there is currently a lack of speci�c
methodologies to develop RIA, such as model-based design.

Developpers have to become familiar with developping tools. Learning a framework can take
some time, and there are multiple RIA platforms, each one having its own advantages over
others [NODA05].

Users of web applications belong to a wide number of categories from novice to experts. They
have various requirements for user interfaces. Too many new gadgets can also cause cognitive
overload to them [MART06]. They can also have bandwidth issues to download RIA.

1.1.3 Computer-Aided Software Engineering

Computer-Aided Software Engineering (CASE) is the use of computer-based support in
the software development process. It helps to provide high-quality, defect-free, and maintainable
software products.

A CASE tool is a computer-based product aimed at supporting one or more software engineering
activities within a software development process [SEI07].

CASE tools have two main kinds of utility (some integrate one of them, some integrate both):

• Providing computer assistance in software development (and or maintenance) processes, as
model transformation tools do.

MSc Thesis 5 Beauti�cation editor

http://www.alibabuy.com/

Quentin Englebert Introduction

• Providing an engineering approach to software development (and or maintenance), as UML
designing tools do.

There is a need to connect CASE tools together (for instance to have a single set of documentation
with a centralized version control), so a mechanism is needed to support interactions among CASE
components. So, a CASE environment is a collection of CASE tools and other components
together with an integration approach that supports most or all of the interactions that occur among
the environment components, and between the users of the environment and the environment itself
[SEI07].

1.2 Goals of the MSc Thesis

1.2.1 Model-driven engineering

Model-Driven Engineering (MDE) is a software development methodology aiming on creating and
transforming models. An example is the well-known Uni�ed Modeling Language (UML) [WPMDE].

MDE allows model-to-model (M2M) and model-to-code (M2C) transformations, which can be done
automatically by CASE tools.

The need for a model-based design for RIA has been growing those last years because of the in-
creasing number of applications to be build and conditions that applications should ful�ll [MART06].

1.2.2 Beauti�cation

Some user requirements aren't supported by M2M and M2C transformations.

The beauti�cation consists in manual changes to deal with user requirements that have not been
supported during transformations. The need for these changes comes from user's preference,
customization or compliance with corporate style guidelines [P&al07]

Manual modi�cations can lead to several issues [P&al07]:

• Problems to understand the generated code

• Inconsistencies between the �nal application and its model

• Quality features guaranteed by MDE may become invalidated (for instance, manual changes
can produce errors)

• When the model of a manually modi�ed application changes, the new application might
become no longer compliant with previous manual changes

The last issue is called round-trip engineering. There are solutions to deal with this problem:
manual modi�cations can be saved, interpreted, abstracted then replaced by a beauti�ed operation
for the model that initiated the M2M and M2C transformations so that the operation can be
replicated when transformations are reapplied [P&al07].

The �rst three issues occur when manual modi�cations are poorly designed. Therefore, avoiding
manual modi�cations if possible is the right choice to ensure quality applications. This solution

MSc Thesis 6 Beauti�cation editor

Quentin Englebert Introduction

becomes available when all necessary beauti�cation operations are implemented to be done
automatically according to user's choice.

To summarize, the conception of a framework allowing the user to choose operations to apply among
pre-made beauti�cation operations would be e�cient to deal with unsupported requirements.

1.2.3 Thesis statement

After discussing the motivations of this MSc thesis, we can now state what will be defended in this
paper:

The conception of a framework to allow automatic beauti�cation op-

erations improving automatically generated User Interfaces for Rich
Internet Applications while preserving the quality features guaranteed
by Model-Driven Engineering.

1.3 Hypothesis

In this section, we will enumerate the asumptions that have been done for this MSc thesis and
explain why they were necessary.

• Focus on UI beauti�cation 64% of the beauti�cation modi�cations to deal with unsup-
ported user requirements are related to User Interfaces (UI) [P&al07]. Therefore,we will focus
on UI in this MSc thesis to deal with the largest source of issues in a �rst time.

• Focus on designing a prototype tool The tool developped for this thesis will act as a
prototype. There is a huge number of beauti�cation parameters that could be used depending
on various needs. The complexity of the automation of some beauti�cation operations can
also be important and may require important developping e�orts. The goal of this thesis is
mainly to show the applicability of such a tool.

• Forbid any manual intervention As seen when beauti�cation was de�ned (subsection
1.2.2), manual beauti�cation operations should be avoided when possible. For a public re-
lease, the need for speci�c categories of users (with knowledge of the �eld) to add their own
operations manually may arise. In the context of the prototype application (ie that isn't
expected to be distributed), all required beauti�cation operations can be implemented to be
automatic.

• Focus on analysing existing constructs Another goal of this thesis is the analysis of the
applicability of RIA constructs to patterns of the chosen CASE tool. Therefore, we will focus
only on existing constructs.

• Use of existing scriptsWhile knowledge of web development scripting languages is necessary
for the prototype, a lot of open source scripts are available for RIA constructs. Developping
new scripts for RIA constructs is out of the scope of this thesis.

• Focus on client user interfaces: no databases We already made the asumption that we
will focus on UI modi�cations in this thesis. The scripts in the implementations of chapter
5 and the prototype are client-side only: we won't care about client-server interactions and
databases.

MSc Thesis 7 Beauti�cation editor

Quentin Englebert Introduction

1.4 Methodology

1.4.1 Chosen CASE tool

OlivaNova tool [CARE09] allows to represent user interactions with a pattern-based approach
(for a more detailed overview of OlivaNova, see section 3.1.3 on page 23). It takes class models,
functional models, and presentation models and creates a completely functional and executable
software application.

Furthermore, it has been proven that the usability issues of an interactive application generated
with the OlivaNova tool can be addressed as an integrated part of the system design and not only
as an ad-hoc solution after completing most of the development [ABRA08].

1.4.2 Chosen programming environment

The prototype is developped with Java on Eclipse. RIA widgets are developped with Javascript
embedded in HTML on Aptana platform, using several libraries such as JQuery [JQ], JQueryUI
[JQUI] or YUI [YUI].

MSc Thesis 8 Beauti�cation editor

Quentin Englebert State of the Art

Chapter 2

State of the Art

The �rst part of this chapter explores deeper the concept of RIA by covering their domains of
applications with some examples. The second part presents the various programming environments
for RIA and compares them.

2.1 Features of RIA applications

Following is an overview of some features and widgets provided by RIA and examples of websites
where they may be used:

• Auto-completion (�g 2.1): Used in search engines to give suggestions

Figure 2.1: Google Suggest feature (http://www.google.com/)

MSc Thesis 9 Beauti�cation editor

http://www.google.com/

Quentin Englebert State of the Art

• Dashboard, drag&drop, tabs (�g 2.2): Used in content syndication to display information
from various sources

Figure 2.2: Netvibes (http://www.netvibes.com/#General)

• Filters (�g 2.3): Used in �lter engines, allow dynamic presentation of results

Figure 2.3: Amazon Diamond search (http://www.amazon.com/gp/gsl/search)

MSc Thesis 10 Beauti�cation editor

http://www.netvibes.com/#General
http://www.amazon.com/gp/gsl/search

Quentin Englebert State of the Art

• Keyboard shortcuts (�g 2.4): Used in webmails

Figure 2.4: Yahoo! mail (http://mail.yahoo.com)

• Document edition (�g 2.5): Used in online word processors, allows them to be collaborative

Figure 2.5: Google Documents (http://docs.google.com/)

• Real-time data validation (�g 2.6): Used in forms to check data before the user submits
them

Figure 2.6: Remember The Milk (http://www.rememberthemilk.com/signup/)

• Navigation tree (�g 2.7): Used to navigate through large collections

MSc Thesis 11 Beauti�cation editor

http://mail.yahoo.com
http://docs.google.com/
http://www.rememberthemilk.com/signup/

Quentin Englebert State of the Art

Figure 2.7: Virgin Music Explorer (http://www.virginmega.fr/musique/explorer.htm)

2.2 Programming environments

Several technologies are available to support RIA development. They can be classi�ed into four
categories:

• Scripting-based: The client side logic is implemented via scripting languages and interfaces
are based on a combination of HTML and CSS

• Plugin-based: Rendering and event processing are done by browser plug-ins interpreting
XML, programs or media �les such as Flash

• Browser-based: Rich interaction is natively supported by some browsers that interpret
declarative interface de�nition languages (such as XUL - the XML User Interface Language -
for Mozilla)

• Web-based desktop technologies: Applications are downloaded from the Web but exe-
cuted outside the browser (Java Web Start, Window Smart Client, Adobe AIR).

Here is a presentation of today's programming environments with their advantages and weaknesses:

2.2.1 Ajax

Description

Ajax (an acronym for Asynchronous JavaScript and XML) is not a technology: it is a combination
of web development techniques used on the client-side. It was invented in 2004. It usually combines:

• XHTML and CSS for standards-based presentation (respect of W3C recommendations)

• the Document Object Model (DOM) for dynamic display and interaction, XML and XSLT
for data exchange, storage and manipulation

• the XMLHttpRequest object for asynchronous data exchange with the web server

• Javascript to bind everything together and act on the classical web presentation layer thanks
to the DOM

Actually, despite the name, the use of JavaScript and XML is not actually required, and requests
don't even need to be asynchronous:

MSc Thesis 12 Beauti�cation editor

http://www.virginmega.fr/musique/explorer.htm

Quentin Englebert State of the Art

• Other scripting languages than Javascript, such as VBScript can implement an Ajax applica-
tion

• There are many other ways to interchange data than XML, such as the Javascript Object
Notation (JSON), preformatted HTML or plain text

Figure 2.8 explains the interactions of these techniques.

Figure 2.8: Comparison between classic web application model and Ajax web application model
[GA05]

The base principle is intercepting events occurring on the page with Javascript and dynamically
inserting content from a web server (usually exchanged with an XML document), with Javascript
too. Those user actions are done with an XMLHttpRequest object (XHR) allowing Javascript to
process a request to the server that will be invisible to the user, won't have to reload the entire
page and will be asynchronous (allowing the user to do something else while the information is
processed by the server).

Figure 2.9 shows how synchronous web applications require a trip back to the server for each
data transmission, limiting user's activity whereas asynchronous web applications don't stall user's
interactions with the application.

Strengths

Here are the advantages of asynchronous web development (common to all asynchronous techniques):

MSc Thesis 13 Beauti�cation editor

Quentin Englebert State of the Art

Figure 2.9: Comparison between the synchronous interaction pattern of a traditional web application
and the asynchronous pattern of an Ajax application [GA05]

MSc Thesis 14 Beauti�cation editor

Quentin Englebert State of the Art

• Better performances for the client and reactivity: No complete refreshing of the web
page. The user doesn't have to wait The client's Web browser UI will respond quickly to
inputs

• Better performances for the server: Databases queries are done only when necessary,
not each time the page is requested. Scripts and style sheets only have to be requested once
(only dynamic data have to be reloaded)

• Concurrent actions: Multiple requests are processed in parallel

These advantages have led to an increase in interactive animation on web pages and to better
quality of Web services.

Following are the advantages related speci�cally to Ajax:

• Powerful: It solves current business problems: Ajax technologies allow users to interact with
data in a �exible way similar to the desktop

• Platform independence: Developers may choose among many technology providers, com-
mercial and open source to �nd the matching products or open source technologies

• Skill-set Conformity: A lot of developers already know HTML and JavaScript. Developers
don't have to jump into new technologies of narrow use

• Network E�ects: Ajax is widely used. As more and more people use a particular language,
the value derived from using it increases exponentially. For instance, as more people start
using Ajax, more resources, information, and 3rd party components, toolkits, and libraries
become available. Other platforms (mobile devices, other presentation frameworks, . . .) will
adapt to comply with the Ajax architecture, and even begin to support it

• Browser and platform compatibility: Browsers are transparently compatible and Ajax
doesn't require any plug-in (uses the native language)

• Compatibility with existing technologies: Ajax is fully compatible with the current
HTML application development infrastructure: application servers (J2EE, .NET, . . .), server
scripting languages (ASP, JSP, PHP, . . .), server application frameworks (JSF, Struts, . . .),
web services and service oriented architecture (SOA)

• Multiple alternative Ajax programming models: Ajax o�ers a wide range of architec-
tural options

Weaknesses

Here are the weaknesses and challenges related to Ajax:

• Development complexity: Server-side developers must understand how presentation is
done in HTML client pages and how to generate the XML content for the client HTML pages.
HTML page developers must learn Javascript. Sophisticated development is hard (Javascript
code is tedious to maintain and can easily become unstable), but components may help

• Accessibility: Not all browsers have access to Javascript and some users choose to disable
it. An alternative solution has to be implemented for those users

MSc Thesis 15 Beauti�cation editor

Quentin Englebert State of the Art

• Browsers di�erences: Accessing and using the XMLHttpRequest object in Internet
Explorer is di�erent than in other browsers. Both cases must be treated separately

• Ergonomics: Because pages dynamically created with Ajax do not automatically register
themselves with the browser's history, so some standard features may malfunction (solutions
exist though, such as implementing a way to save the current page state or use recent frame-
works):

� Bookmarking or linking to a particular state of the application isn't possible by default

� Saving pages or indexing their content isn't possible by default

� The "`Back"' button may return to the last full page visited before it, not to the state
before the Ajax update

• User's feedback: Not informing the user of pages content update or latencies due to long
requests to the server may be misinterpreted by users: they may think the application is not
working as expected

• Security �aws in Javascript by design: Javascripts can do anything the user can do: a
script can pretend the user clicked on a particular link, or typed in some text

• XMLHttpRequest object: Due to security constraints, only information from the host
that served the initial page can be accessed. Displaying information from another server is
not possible according to AJAX

2.2.2 Adobe Flex

Description

Flex provides developers with a framework of extendable classes and an Eclipse-based IDE (Flex
Builder) which allow them to create RIA using the ActionScript and MXML programming lan-
guages. The MXML and ActionScript in a Flex application are translated into ActionScript then
compiled into a SWF �le that can be read with Flash Player. Users can request these applica-
tions from a server. These applications can dynamically request data. The request goes through
the application server to the database, back to the application server then back to the browser.
Rich Application interfaces can be tied into existing services by making remote calls using the
RemoteObject tag.

Strengths

• Browser and platform compatibility: Flash Player has the ability to display Rich User
Interfaces consistently across platforms and browsers

• Increasingly powerful development tools: Flex Builder o�ers an easy to use development
environment with a really handful interface and features such as Design view and a debugger.
It is built on Eclipse, so it is possible to have Flex code and application server code in a
single IDE. Flex Builder also includes design mode of Flash for non-programmers interested
in building Flex apps

• Multimedia: Flex (using Flash runtime) has more access to the multimedia components of
computers (for instance to embed video in web pages, such as in Google Video video.google.
com)

MSc Thesis 16 Beauti�cation editor

video.google.com
video.google.com

Quentin Englebert State of the Art

• Speed and �exibility: As Flex �les are compiled, the execution is much faster for rich
interaction and media heavy pages (there is no need to reload �les client-side). Flex also
e�ciently uses caching for improved speed ([FLCA])

• Open source and alternative solutions: Flex SDK is open source and there are open
source solutions as well such as Flashdevelop (http://www.flashdevelop.org/community/).
There are also alternative commercial options such as IntelliJ (http://www.jetbrains.com/
idea/)

Weaknesses

• Lack of trust from enterprise software developers: The Flash format is a published
speci�cation (allowing alternative tools to make Flash �les). However unlike open initiatives
the future of the Flash platform is controlled by a single organization (Adobe)

• Skill-set required: ActionScript and MXML are similar to JavaScript and XML but are not
as common. There are less networks e�ects than in Ajax

• Limitations of Flash Player: There are a few limitations due to the use of the Flash Player:

� Because Flex applications are thin clients, there is a load when running a �ex application
initially that may last a few seconds so Flex applications are not suited for web pages
but can be used similarly to desktop applications (one-time loading time required)

� The Flash Player is not a web browser so it is harder to produce rich documentation
than with HTML.

� Flex windows must be displayed within the dimensions of the instance of the Flash Player
that created it

� Back button and right-click don't have desired e�ects without enhanced coding

• Penetration: Flash player is installed on 99% of desktop computers in mature markets
[FLPE], but it is not supported by all mobile devices (for instance the iPhone) and is less
present in emerging markets. Though it is more present than Java on browsers [STAT].

To conclude, both technologies have their advantages, �ex being more suited for multimedia
content and Ajax for large amount of text (better handled by the browser).

Both technologies can also work together. Adobe has created a Flex-Ajax Bridge facilitating com-
munication between JavaScript and Flex SWFs. It is also possible to create widgets or sections of a
website with Flex and other sections with Ajax because Flex SWF can be added to any web page.

2.2.3 Microsoft Silverlight

Description

Silverlight is a direct competitor of Adobe Flex. It is based on a subset of XAML (eXtensible
Application Markup Language) to allow developing cross-browser (supports all browsers), cross-
platform and cross-device applications: there are runtimes for each platform to allow the execution
of applications on all browsers. The XAML code can be combined with Javascript code to o�er a
real interaction between the application and users. Silverlight allows to use ASP, .NET, Ajax and
Microsoft tools (Expression, Visual Studio . . .).

MSc Thesis 17 Beauti�cation editor

http://www.flashdevelop.org/community/
http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/

Quentin Englebert State of the Art

Strengths

• Skill-set Conformity: There is no need to learn a new language such as ActionScript:
development can be done by using only XAML and Javascript. It is possible to program with
multiple languages such as C#, C++, javascript and visual basic. Existing Microsoft tools
such as Visual Studio 2005 and Expression Studio can be used.

• Runtime: The Runtime to allow the execution of Silverlight applications is light (about
1MB) and cross-browser. It is now o�ered with Windows Update

Weaknesses

• Penetration: Silverlight is still in an early stage, and the runtime is less present than Flash
Player. It is installed on less than 1/3 of browsers [STAT]

• Few open source support: The Linux version has been delegated to Novell in the framework
of the Mono Moonlight project and doesn't support the latest developments.

2.2.4 OpenLaszlo

Description

OpenLaszlo is an open source platform consisting of the LZX programming language and the
OpenLaszlo Server:

• The source code is written in the LZX language which is XML with embedded JavaScript
code

• The OpenLaszlo Server provides a compiler that translates LZX applications into binary SWF
�les that the Flash Player can execute directly or DHTML �les

Strengths

• OpenSource: Free and customizable by anyone

• Flexible: OpenLaszlo is ideal to run the same code on a lot of di�erent devices and platforms,
such as Flash and DHTML (currently supported), and other platforms in the future such as
Java ME, iPhone or Silverlight

• Skill-set Conformity: There is no need to learn a new language such as ActionScript. The
development can be done only with XML and Javascript

Weaknesses

• Popularity: There are no big advertisement campaigns, it is less known than Flex, so there
are few third party plug-ins and modules or less advanced existing components

2.2.5 Google Web Toolkit

Description

Google Web Toolkit (GWT) is an open source set of tools allowing web developers to create Ajax
applications in Java.

MSc Thesis 18 Beauti�cation editor

Quentin Englebert State of the Art

Strengths

• Open-Source: GWT is licensed under the Apache License version 2.0

• Skill-set Conformity and Network E�ects: GWT applications are developed in Java
which is a popular language, and can be developed with Java IDE and debuggers instead of
Javascript debuggers. GWT can also bene�t from the richness of existing Java APIs

• Performances: The JavaScript created by the GWT compiler performs well (Gmail is an
example) and applications are cross-browser

Weaknesses

• UI logic in Java: Java is not the most suited language to lay out components in web pages
(XML and scripting language based platforms are more intuitive for UI code when Java is
more suited for procedural logic)

2.2.6 JavaFX

Description

JavaFX (or JavaFX Script) is a functional scripting language requiring to be compiled before being
executed. This is the main di�erence with GWT and it places JavaFX as a direct competitor
of Adobe Flex. JavaFX uses the JVM. It has been designed mainly to develop applications with
strongly animated GUIs: Everything needed to make animations and manipulate graphical objects
is present in JavaFX base APIs

Strengths

• Skill-set Conformity and Network E�ects: JavaFX applications are developed in Java
which is a popular language, and can be developed with Java IDE (there is an Eclipse Plug-in)
and debuggers instead of Javascript debuggers. JavaFX can also bene�t from the richness of
existing Java APIs

• Integration: It is very easy to call Java code from a JavaFX script

Weaknesses

• Lack of components: There aren't many high-level graphical components available currently

• Load: As for Flash applications, JavaFX applications will take a few time to load on the �rst
encounter

• Penetration: Java is less present than Flash Player (about 25% of machines don't have Java
installed [STAT])

2.2.7 Echo3

Description

Echo is a component-oriented and event-oriented concurrent framework from GWT allowing to
develop server-side applications (in Java with a Swing-like logic) as well as client-side applications
(in Javascript). There is no compilation from Java to Javascript: during execution, the state of

MSc Thesis 19 Beauti�cation editor

Quentin Englebert State of the Art

components is serialized then sent to the client to display them with the Javascript library from
Echo.

Strengths

• Flexibility: Allows the choice between server-side and client-side developing

• Web languages Agnostic: There is no need to know HTML nor even Javascript and CSS
to design an Echo3 application

Weaknesses

• No Network E�ects: There is a small community only; so there aren't that many high-level
graphical components currently available

2.2.8 haXe

Description

haXe is a multiplatform open source language. It allows to choose the best target platform
(Javascript, Flash, . . .) for a given job. haXe provides the user with:

• A standardized language

• A standard library (the same on all platforms)

• Platform-speci�c libraries (APIs of each platform)

Strengths

Working across multiple platforms o�ers the following bene�ts:

• Remoting between platforms: Allows passing objects between di�erent platforms

• Single syntax: Similar to Javascript and Actionscript

• Conditional compilation: Code logic can be easily transferred to the most suitable target
in the platform

Weaknesses

• No Network E�ects: There is a small community only; so there aren't a lot of speci�c
libraries currently available

• High Level: haXe adds one more high level layer with one new language that won't take
into account the di�erences between speci�c languages

2.2.9 Curl

Description

Curl is a re�ective object-oriented language combining text markup (like HTML), scripting and
heavy-duty computing (object-oriented like Java) in one single framework. Curl compiled applica-
tions are viewed using the Curl RTE, a runtime environment with a plug-in for web browsers.

MSc Thesis 20 Beauti�cation editor

Quentin Englebert State of the Art

Strengths

• Performance: It bene�ts from the advantages of a compiled, strongly-typed and object-
oriented programming language.

Weaknesses

• Penetration: The Player has a very low penetration in comparison with other solutions

• Skill-set required: There is a short supply of skill-set because of the competition; so the
learning curve is a risky investment

• Toolset: There aren't many high-level UI tools (such as good drag and drop) and graphical
components

2.2.10 FlashiXML

Description

Following is a description of FlashiXML Website: [FXML]

FlashiXML is a rendering engine for UsiXML-compliant user interfaces
(http://www.usixml.org) in a vectorial mode that is compatible with SVG (Scalable
Vector Graphics is an XML-based speci�cation to describe two-dimensional vector
graphics). Any UsiXML-compliant user interface can be opened and rendered in this in-
terpreter so as to create the truly working interface with presentation and dialog. In this
environment, the UI can be resized at any time to address some constraints imposed by
the computing platforms and to support some properties of Graceful Degradation of UIs,
a sub-property of the Plasticity property. In this way, any UsiXML-compliant UI can
be rendered on any computing platform equipped with a SVG or Flash plug-in or player.

For this purpose, an underlying mini-toolkit has been developed in ActionScript in the
Macromedia Flash environment so as to render basic widgets which were not available
natively in the Macromedia Flash environment.

MSc Thesis 21 Beauti�cation editor

http://www.usixml.org

Quentin Englebert Technological choices for RIA production

Chapter 3

Technological choices for RIA production

In this chapter, the three most important technological choices will be discussed:

• Why using ONME instead of another CASE tool

• Why chosing Ajax as a technique to create Rich Internet Applications

• Why using Jquery as a Javascript library

3.1 ONME

3.1.1 MDA and the OO-Method

The Model-driven architecture (MDA) supports MDE (see section 1.2.1 on page 6 for the de�nition
of MDE) by involving models of the system at di�erent levels of abstraction (Figure 3.1):

• The Computation Independant Model (CIM)

• The Platform Independant Model (PIM)

• The Platform Speci�c Model (PSM)

• The Code Model (CM)

The OO-method is MDA-compliant. It provides an explicit transformation mechanism between the
levels of abstraction:

Figure 3.1: Correspondances between MDA and the OO-Method [P&al07]

The Conceptual Model is the equivalent of the MDA's Platform-Independant Model. There are
4 views in this model:

• TheObject Model de�nes the classes through which a program can examine and manipulate
some speci�c parts of its world.

• The Dynamic Model de�nes the life cycles and the interactions of objects.

• The Functional Model describes the object's state changes.

• Finally, the Presentation Model models the User Interface (UI).

MSc Thesis 22 Beauti�cation editor

Quentin Englebert Technological choices for RIA production

3.1.2 Presentation Model

As explained in the section 2 page 9, the focus will be on User Interfaces (UI). So let's have a look
at the structure of the Presentation Model of the OO-Method:

Figure 3.2: Decomposition of the Presentation Model [P&M07]

The Presentation model is made of three levels (enumerated from the most general to the most
speci�c):

1. Level 1: System Access Structure. It describes the interactions with the system.

2. Level 2: Interaction Units (IU). The IU determine the scope of the interaction between
the user and the system.

3. Level 3: Basic Elements. These patterns are the building blocs from which IU are created.

IU and basic elements are described in section 4.1 on page 26

3.1.3 Oliva Nova Model Execution

There are 58 commercial or open source tools that follow the MDA paradigm today [OMG09].
Most of them support UML modeling and other features of MDA such as transformation rules,
model integration and code generation, but there are currently very few softwares that create
source code for a target platform from the CIM.

Genova from Genera is a plugin for Rational Rose allowing dialog modeling and database mapping.
Dialog modeling uses information from UML to generate a user interface proposal in the form of

MSc Thesis 23 Beauti�cation editor

Quentin Englebert Technological choices for RIA production

a dialog model. This model can generate code for a given target platform such as Java, C++ or
Visual Basic. Dialogs are combined to create applications. Those combinations are de�ned in the
application model (following the OO-method paradigm). Changes of the Object Model regenerate
dialog models and database mappings dynamically.

The o�cial website of Genera (http://www.genera.no/) is unavailable and it became very di�cult
to �nd recent information on internet.

Jaxfront (http://www.jaxfront.org/pages/home.html) allows to generate graphical user inter-
faces on Java, HTML or PDF with an XML schema but does not follow the OO-Method.

Oliva Nova Model Execution (ONME) is a computer-aided software engineering (CASE) tool sup-
porting the OO-Method. It o�ers important advantages as a candidate tool for the beauti�cation
process:

• It o�ers a full support of the OO-Method (the Presentation Model is well de�ned and it de�nes
completely the system)

• It exports an XML �le describing IU and basic elements with patterns (this will be explained
in subsection 6.1.1 about the beauti�cation process on page 35)

3.2 Ajax

We have seen the most popular asynchronous web programming environments in section 2.2 on page
12. Ajax has been chosen for the following reasons:

• There are lots of existing toolkits, components, and libraries (such as JQuery [JQ], JQuery
UI [JQUI], Dojo (http://www.dojotoolkit.org/) , Prototype (http://prototype.conio.
net/) , and the Yahoo User Interface Library [YUI]). They o�er API at a higher level of
abstraction and take care of lower-lever implementation

• There are powerful platforms to develop Ajax applications. Aptana (http://www.aptana.
com/) has been chosen because it is a complete web development environment that may be
used as an Eclipse plugin

• Javascript language o�ers some similarities with Java so the skill-set needed was less important
than with other technologies

• Debugging (which was one of the most popular original critics made on Ajax) is made easier
thanks to �refox plugins Firebug and WebDevelopper. The last one allows seing directly the
generated source code of a web page, which is handy

3.3 JQuery

JQuery enables Unobtrusive Javascript: it allows to separate style from structure within an HTML
document. JQuery makes common tasks trivials. The selector expression allows to identify target
elements on a page to identify and grab needed elements easily.

MSc Thesis 24 Beauti�cation editor

http://www.genera.no/
http://www.jaxfront.org/pages/home.html
http://www.dojotoolkit.org/
http://prototype.conio.net/
http://prototype.conio.net/
http://www.aptana.com/
http://www.aptana.com/

Quentin Englebert Technological choices for RIA production

Furthermore, JQuery UI o�ers rich UI widgets, such as the Accordion, the Slider and Tabs.

YUI library is used for widgets that weren't available in JQuery UI, such as the Carousel or the
ImageCropper. YUI is developped by a known company, is well documented and some known
websites such as LinkedIn (http://www.linkedin.com/) are powered by YUI.

MSc Thesis 25 Beauti�cation editor

http://www.linkedin.com/

Quentin Englebert Design patterns for RIA

Chapter 4

Design patterns for RIA

The �rst part of this chapter describes ONME patterns. Then the results of the analysis of the
applicability of �fteen RIA constructs will be presented here. Due to its length, the full analysis is
available as an annex of this report.

4.1 ONME patterns

Basic Elements will be presented �rst, because they are building blocks for Interaction Units (IU).
Then IU will be presented. The Action Hierarchy Tree is not present in the analysis because there
is no information about it in the XML generated by OlivaNova, so it won't be considered for the
beauti�cation editor.

4.1.1 Basic Elements

• Entry: Corresponds to an input zone for a service. Data type, its format, valid values and a
default value can be speci�ed. Example: a textbox in a form

• De�ned Selection: Corresponds to the selection of a value within a collection of valid values
in a service.
Example: a combobox

• Argument Grouping: Allows to de�ne groups for input arguments in a service. Those
groups have aliases.
Example: a frame for textual information and another for various ID

• Argument Dependency: Allows de�ning dependency relationships between input argu-
ments of a service with ECA (event-condition-action) rules.
Example: selecting an author in a de�ned selection will update books that can be chosen in
another de�ned selection (showing only books written by that author)

• Filter: Corresponds to a query to get a subset of a population according to criteria.
Similar to WHERE in a SQL query

• Order Criterion: The ordering of a population according to one or more attributes.
Similar to ORDER BY in a SQL query

• Display Set: Attributes shown for a population or an instance.
Similar to SELECT in a SQL query

• Available Actions: Allows to invoke a service for an Instance or a Population IU. Privileges
may determine who can access which services.
Example: When a book is consulted on Amazon, actions such as "Buy this book" are displayed
to the user allowing to access the corresponding service

• Navigation: Allows to access a related object in an Instance or a Population IU.
Example: see the implementation in subsection 5.2 on page 31 displaying books related to a
given book

MSc Thesis 26 Beauti�cation editor

Quentin Englebert Design patterns for RIA

4.1.2 Interaction Units

• Service: Allows to add, remove or modify properties of an object.
Similar to a form.

• Instance: Allows to manage an individual object.
Example: Displaying a book, its informations, showing services available for it and related
objects

• Population: Allows the manipulation of a collection of objects.
Example: Displaying a list of books, mechanisms to select a subset and sort them, show
related information and services available for them

• Master-Detail: Combination of the three other Interaction Units with a Master IU and
Details IU.
Example: a population to choose a book and an Instance to display information on the chosen
book.

4.2 Results of the analysis of RIA constructs for ONME

An analysis of 15 RIA constructs has been done by Francisco Javier Martinez Ruiz. This analysis
is available in the �rst annex of that report. It is useful as a guide to understand constructs in the
second analysis thanks to descriptions and facsimiles giving an idea of what the construct looks like.

Then an analysis of the applicability of these 15 constructs for ONME patterns has been done espe-
cially for this thesis. Professor Jean Vanderdonckt speci�ed the legend (�g 4.1) of what needed to be
speci�ed for each (partially) applicable pattern and asked for a table resuming the applicability (4.2).

Figure 4.1: Legend of tables of the analysis of applicability of RIA constructs for ONME

MSc Thesis 27 Beauti�cation editor

Quentin Englebert Design patterns for RIA

Figure 4.2: Table of applicability of RIA constructs for ONME (++: Applicable, +/-: Partially
applicable, -: Not Applicable)

For each construct, its applicability for a pattern was assessed thereby:

Look for existing scripts to have an overview of features provided by that construct and potential
uses.

Determining whether this construct could be applied for this pattern. Think about an example
where it could �t. If there is an example,

• Think about a negative example to have a �rst idea of limits of applicability

• Specify as completely as possible the context of use of such a construct for this pattern

• Assess the applicability and determine whether it is fully applicable or partially applicable. It
is partially applicable if the pattern's features are restricted using that construct (for instance
if there is no Order Criterion for a Population, or if a Filtering process has to be done manually
instead of using a query

• Identify intrinsic constraints of using that construct and, if possible, constraints of using it
with ONME (for instance interaction required from the user)

• Finally, evaluate the usability (for the user) and the complexity of implementation to have an
idea of which to implement �rst

To make examples easier to understand, they were used if possible in a same context (an on-line
retailer such as Amazon (www.amazon.com).

The help of an expert of ONME (Nathalie Aquino) allowed de�ning what was actually possible to
implement with an in-depth knowledge of transformations.

MSc Thesis 28 Beauti�cation editor

www.amazon.com

Quentin Englebert Design patterns for RIA

The work has been consolidated by Francisco Javier Martinez Ruiz, who invalidated some cases
based on the feedback of Nathalie Aquino with an explanation of what they couldn't be applied
for beauti�cation. Those cases are labeled in red in the table. He also included the Domain Model
and the brief explanation of OlivaNova patterns, the general case for the Context of Use, added
the analysis of the Timeline and did some local additions to the tables.

The last step to make all examples understandable was to make drawings of most complicated
constructs. The following patterns were considered as hard to understand:

• Star�eld Display: Multiple dimensions are expressed with tracks, the ruler and coding
schemes

• Clustermap: Markers have various uses (for instance as regions)

• Zoom Menu: The number of levels of interaction and the navigation between menus is hard
to understand

• Dashboard: Content and display of windows may be hard to understand (for instance if the
minimized window represented by a label)

In addition, this document was read by someone without an IT background to identify individual
examples hard to understand and add some additional drawings:

• Accordion for Argument Grouping: To understand how it �ts in a service

• Carousel for De�ne Selection: For the same reason

• Carousel for Display Set: To understand how it interacts with the display

MSc Thesis 29 Beauti�cation editor

Quentin Englebert Implementation of signi�cant RIA constructs

Chapter 5

Implementation of signi�cant RIA constructs

This chapter presents manual implementations of some RIA constructs from the analysis.

Here are the motivations for manual implementations:

• Learning Web Development languages and techniques: Developping web applications
requires a speci�c experience and shows some di�erences with desktop applications. Examples
below have been chosen speci�cally to learn some languages and techniques.

• Have an overview of some existing constructs: Some constructs are made for a speci�c
use that could not �t with the expected use for some patterns of OlivaNova. Implementing a
manual example allows to see for which pattern it is e�ectively suited. This may often not be
understood with the documentation provided with the library: some properties may not be
alternable. Using the construct in a speci�c context may also have bugs.

5.1 Master-detail with a slider and an accordion

Here are the motivations for choosing this example:

• Discover HTML: Using multiple constructs that need to be displayed e�ciently with a table
and headings tags

• Discover Javascript: Using external scripts, Javascript Arrays and loops to iterate through
them, handling strings (replace characters)

• Discover JQuery: Using selectors to get and update values

• Test JQuery UI constructs: Both constructs present in the analysis (accordion and slider)
are used in this example

• Apply an Interaction Unit: The next examples implement basic elements but this one
implements the master-detail to use both constructs while not being constrained by the choice
of a basic element the construct is suited for: constructs are used for their original purpose
here:

1. Selecting an object with the slider, one of the features of the Population Interaction Unit

2. Displaying attributes of the selected object and related objects with the accordion, two
features of the Instance Interaction Unit

MSc Thesis 30 Beauti�cation editor

Quentin Englebert Implementation of signi�cant RIA constructs

Figure 5.1: Master-detail with a slider and an accordion

Book attributes were stored in a CSV �le. An online converter (http://www.creativyst.com/
cgi-bin/Prod/17/eg/csv2js.pl) was used to convert values to Javascript Arrays. Related books
are determined manually in Arrays. Images are retrieved from the directory Images with their
names (as some characters such as question marks or columns can't be used in �le names, they
have not to be taken into account).

Using JQuery , the slider dynamically updates information in the accordion and the image of the
book displayed with values corresponding to the element selected.

This example allowed to see that the accordion widget animation may cause troubles because the
size of the accordion changes abnormally during the animation. The slider is basic and the selection
of values by clicking is not really precise, but works when the cursor is moved so it can be applied
for the beauti�cation editor.

5.2 Carousel for navigation basic element

Here are the motivations for the choice of this example:

• Getting more familiar with Javascript: Discovering the global scope of variables in
functions and recursivity

• Discover the link between Javascript and the DOM: Dynamically creating HTML tags
in the document with Javascript

• Discover CSS: Setting properties of the Carousel with Cascading Style Sheets

MSc Thesis 31 Beauti�cation editor

http://www.creativyst.com/cgi-bin/Prod/17/eg/csv2js.pl
http://www.creativyst.com/cgi-bin/Prod/17/eg/csv2js.pl

Quentin Englebert Implementation of signi�cant RIA constructs

• Test a construct from YUI: As seen in the analysis, the Carousel is a construct applicable
to many patterns so it was one of the most interesting constructs to test

Figure 5.2: Carousel for navigation pattern

MSc Thesis 32 Beauti�cation editor

Quentin Englebert Implementation of signi�cant RIA constructs

The same Arrays with book information as those of the �rst example are used in this one. An
image of the book and information about it are displayed in a table. A Carousel below displays
related books. The interesting part of this example is that when a user clicks on a related book,
the information in the table is updated, but related objects of the new selected book replace the
old ones in the Carousel. The function newCarousel is called when a related book is selected. For
the �rst related books, a new context of scope has to be created because the scope of variables is
global to the function:

image.onclick = function(j){

return function (){

newCarousel(j);

}

}(Related[book][i]);

To update the Carousel without refreshing the page, Carousel elements need to be changed dynam-
ically:

carousel.clearItems ();

var i = 0;

while (Related[k][i]) {

carousel.addItem("<img src=\"" + Images[Related[k][i]]

+ "\" height =\"150\" width =\"100\" onclick =\" newCarousel("

+ Related[k][i] + ");\" >");

i++;

}

There was a bug in one of the CSS �les related to the Carousel widget provided in the package of
the second beta of YUI but the �le hosted on yui.yahooapis.com was working. This detail aside,
the widget is working as intended so it is the primary widget choice for the prototype.

5.3 Imagecropper for Available Actions basic element

Here are the motivations for the choice of this example:

• Getting more familiar with Javascript: Retrieving values from the HTML, using Image
objects and handling events

• Getting more familiar with HTML: Using forms and buttons, using styles

• Test a construct from YUI: This is another YUI construct present in the analysis. The
third and last one was a slider. This construct was already implemented with JQuery UI.

MSc Thesis 33 Beauti�cation editor

yui.yahooapis.com

Quentin Englebert Implementation of signi�cant RIA constructs

Figure 5.3: Imagecropper for Available Actions pattern

An Imagecropper allows selecting an area on an image. A preview of the selected area is displayed
too. The cropped image attributes (height, width and position of the upper left corner) are
displayed and updated on the event moveEvent. A form allows to upload a local image. The
save button only allows to lock the values of the cropped image because there is no client/server
interaction.

This construct has a limited use (for instance for this pattern it allows to execute only one service:
resizing an image) and it can't really be used to improve a pattern in a classical application generated
by OlivaNova such as the Expense Reports application.

MSc Thesis 34 Beauti�cation editor

Quentin Englebert Development of a software to support RIA production

Chapter 6

Development of a software to support RIA

production

This chapter describes the design and the implementation of the beauti�cation editor prototype.
Starting from what was explained before on OlivaNova and the OO Method in general, a �rst step
will explain where the tool is located in the transformation process from models to code.

Then the speci�cations for the tool of this MSc thesis will be explored: the original expectations
for the required tool will be discussed.

The third section describes features that have actually been implemented in the prototype.

The fourth section gives a thorough overview of the packages as well as classes and sequence
diagrams.

Finally, an estimate of the e�ort of the implementation of the software will be given.

6.1 Software approach

The Model-Driven Approach has been explained in subsection 3.1.1 on page 22 and the motivations
for a beauti�cation process in Model-Driven Engineering of User Interfaces have been described in
subsection 1.2.2 on page 6.

Knowing that information, the beauti�cation process for User Interfaces in OO-method can be
explained more thoroughly.

6.1.1 Beauti�cation process

The beauti�cation process is made of three steps [P&al07]:

1. Derivation of a Concrete User Interface Model from the Presentation Model (�g

6.1): A Concrete User Interface is an abstraction of the Final User Interface without taking
into account speci�c widgets of target platforms. The User Interface is characterized in terms
of Concrete Interaction Objects (such as a combo box or tabs) with attributes.

2. Application of the Beauti�cation Operations (�g 6.2): The goal of the beauti�cation
is to modify existing Concrete Interaction Objects, not delete or create new ones. A User
Interface Editor detects which beauti�cation operations can be applied to Concrete Interaction
Objects and allows to select the desired operation to apply. It gives then a preview of the
modi�cation. Parameters are used to modify values of components of the User Interface.

3. Generation of the Final User Interface (�g 6.3): When all beauti�cation operations
have been made, the Concrete User Interface Model is updated and transformed into code
with the other models. To achieve that, the Model Compiler needs to be able to understand

MSc Thesis 35 Beauti�cation editor

Quentin Englebert Development of a software to support RIA production

the new Concrete User Interface Model with the modi�cations brought by the beauti�cation
editor.

The �rst step is done by the Oliva Nova Model Execution System, which exports an XML �le
describing Concrete Interaction Objects in form of Patterns (Interaction Units and Basic Elements
of the Presentation Model, which is a User Interface Abstract Speci�cation Model).

The purpose of the software is therefore to achieve the second step. The third step can only be
performed after completion of the second and requires modi�cations of the Model Compiler.

MSc Thesis 36 Beauti�cation editor

Q
u
en
tin

E
n
gleb

ert
D
e
v
e
lo
p
m
e
n
t
o
f
a
so
ftw

a
re

to
su
p
p
o
rt

R
IA

p
ro
d
u
c
tio

n

Figure 6.1: Derivation of a Concrete
User Interface Model from the
Presentation Model [P&al07]

Figure 6.2: Application of the
Beauti�cation Operations [P&al07]

Figure 6.3: Generation of the Final
User Interface [P&al07]

M
S
c
T
h
esis

3
7

B
eau

ti�
cation

ed
itor

Quentin Englebert Development of a software to support RIA production

6.1.2 Beauti�cation editor for ONME

Figure 6.4: Beauti�cation process covered by the editor

Figure 6.4 gives an overview of the process covered in this MSc thesis (pictured in red). We will
explain each part in the following sections

1. Exporting an XML �le from an OlivaNova project

2. Browsing through the XML �le to identify patterns

3. Importing Patterns of interest into the editor

4. Allowing the user to select the desired modi�cations to apply and give a preview of the
modi�cation

5. Generate fragments of beauti�ed code

The dotted red arrow represent the export of a new Concrete User Interface Model to the Model
Compiler in order to produce code for the whole project with beauti�cation modi�cations. While it
corresponds to the third step of the beauti�cation process, Oliva Nova Model Compiler is currently
unable to take these modi�cations into account so this part wasn't covered in this thesis.

6.2 Speci�cation of the tool

It is now possible to identify what were the expectations for the tool.
The goal diagram shows that the tool process should be sequential, allowing two kinds of user
interaction for pre-made beauti�cation operations. It also gave an intuition on an interaction
scenario:

• XML importation: The user chooses an XML �le exported by an OlivaNova project

MSc Thesis 38 Beauti�cation editor

Quentin Englebert Development of a software to support RIA production

Figure 6.5: Goal diagram of the beauti�cation editor

• XML parsing: The software identi�es all patterns eligible for beauti�cation regarding an
RIA application and stores them

When all eligible patterns are identi�ed, the tool repeats the following steps for each occurence of
them:

• Choose beauti�cation operations: The user chooses the widget he wants to apply to the
occurence of the pattern or skips this occurence

• Choose parameters (optional): The user may want to choose parameters for the selected
widget such as the size or the orientation

• Generate a preview: The user needs to have a comparison between the default display and
the beauti�ed widget he has chosen

• Save beauti�ed code: When the user con�rms his choice, the beauti�ed code is saved and
the following occurence is processed

6.3 Implemented features

This section describes features allowed by the tool. It can also be used as a guide explaining how
to use it.

The tool is developped in Java. It uses the system look and feel and automatically �ts to the
window size when it is launched. A File Chooser is initially opened to select an exported project.
A Text Area in the bottom gives information on the process advancement to the user. Initially it
speci�es the kind of XML �le the user is expected to load. This is particularly necessary because
there are two di�erent kind of XML �les exported by OlivaNova, which already led to confusion:

MSc Thesis 39 Beauti�cation editor

Quentin Englebert Development of a software to support RIA production

there is a Multilanguage export (.mlg.xml �les) that seems to be suited for external tools such
as the beauti�cation editor but is actually a less complete version of the Object Oriented Model
export (.oom.xml �les), lacking key parameters for widgets such as the service type in the Available
Actions pattern (explaination later in the text).

Figure 6.6: Launching the editor

MSc Thesis 40 Beauti�cation editor

Quentin Englebert Development of a software to support RIA production

After selecting an XML �le, the Menu Bar becomes available, allowing to choose another XML �le,
close the tool or have more information about the author. The document is quickly parsed, the
number of occurences detected for each pattern is displayed. The panels for user interaction are
displayed:

Figure 6.7: Parsing done

The panels are displayed using the MultiSplitPane Swing Container is used. It allows a resizable
tiled layout of components without nesting. The layout is de�ned with a simple tree-structured
model that can be stored and retrieved to make the user's layout con�guration persistent. [MSP]

Here is the Layout De�nition for the panels in the tool:

// Definition of the MultiSplitLayout to display the four panels

// consisting of two columns sharing the screen width and resizable

String layoutDef = "(ROW (COLUMN cc opt p) (COLUMN ip on))";

As seen on �gure 6.7, three of the �ve Panels contain directly information:

• The Information Panel (ip), labeled "Pattern information" displays information on items of
the pattern to help the user understand which occurence of the pattern is currently eligible
for beauti�cation

• The OlivaNova Panel (on), labeled "Default display from OlivaNova" displays a screenshot
of the default look of the pattern. It is not possible to generate the actual transformation to
give a preview because OlivaNova code transformation is done by a server and the generated
code is sent by mail. The bene�t of implementing the same transformation with this tool
is low for a big implementation e�ort: giving a screenshot of the result of a transformation
with information on the current pattern is enough to understand what the default OlivaNova
generated pattern looks like in the context of a prototype.

MSc Thesis 41 Beauti�cation editor

Quentin Englebert Development of a software to support RIA production

• The ConstructChoice Panel (cc), labeled "Possible constructs for beauti�cation" allows the
user to choose the widget he wants to apply to the current pattern with a contextual menu.
He may skip to display the next pattern occurence too.

The panels on the right side of the screen are designed to provide information, while the panels on
the left side require interaction. When the user selects a widget, the content of the two last panels
is updated:

Figure 6.8: Chosen construct

• The Options Panel (opt), labeled "Options for chosen construct" allows to change parameters
related to the selected widget. In this example, the Carousel widget is chosen and the user
may change the number of items displayed at a time and select the orientation of the Carousel.

• The Preview Panel (p), labeled "Preview" displays a preview of the generated RIA widget
with chosen (or default) parameters in a JWebBrowser [JWB]. This browser based on Mozilla
avoids the need to display the construct in an external browser, easing the comparison between
beauti�cation operations and default OlivaNova transformation. Using an external library was
necessary because Java doesn't interpret Javascript by default. The widget is generated in a
HTML �le with the name of the project, the name of the pattern and the occurence number
(for instance "ExpenseReportDemo2.oom.xml - Available actions2.html"). When the user
con�rms his choice, the HTML �le is kept and the next occurence of a pattern is displayed.
If he chooses to skip the occurence, the HTML �le is deleted.

While XSLT transformations were initially planned to generate beauti�ed widgets, the generation
isn't performed from an XML �le anymore, but from some data that have already been parsed from
the XML and parameters given by the user. Generating the HTML �le from a default Java String
with inclusion of some parameters, values or speci�c lines of code at speci�c places is now both
handier for the developper and faster for the tool.

MSc Thesis 42 Beauti�cation editor

Quentin Englebert Development of a software to support RIA production

6.4 Implementation Architecture

Due to time constraints, the tool was �rst done with the basic idea of a prototype: implement one
or some example operations to validate the beauti�cation process. When the �rst construct was
implemented for the �rst pattern and the base goal was actually met, it was interesting to facilitate
the addition of new patterns and/or constructs. So a code refactoring was done with this goal in
mind: make the maximum amount of processing steps generic and only have to add speci�c code
where it is necessary.

6.4.1 Packages

To have a better overview of the architecture, we will �rst explore the highest level diagram: the
packages diagram.

Figure 6.9: Packages diagram

There are four packages:

1. editor: contains the main class and classes related to the GUI

2. process: contains the XML parser class and classes to process beauti�cation operations

3. pattern: contains classes corresponding to detected occurences of patterns

4. pAtternElement: contains classes corresponding to elements of the occurences of patterns.
For instance, an occurence of the Available Actions pattern is made of Actions elements.

The content of these packages will be detailled in following subsections.

6.4.2 Classes

This subsection contains class diagrams for each package. To have clear diagrams, only the rela-
tions between classes of a same package have been drawn. The relations between packages will be
explained in the text.

Editor

The main method is in the class BEditor. It calls the invokeLater method from Swing, the Open
method for the JWebBrowser and creates an instance of BEditor. The constructor creates an

MSc Thesis 43 Beauti�cation editor

Quentin Englebert Development of a software to support RIA production

Figure 6.10: Class diagram of editor

instance of the MainFrame then calls openXMLFile. As seen on �gure 6.11, this method allows to
choose an XML �le, creates an XML parser, launches the parsing of the document, creates a process
object when the parsing is done and launches the process of the �rst pattern.
MainFrame creates the Main Frame, creates the Menu Bar (creates an instance of
MainFrameMenuBar), the Debug Area (the text area in the bottom of the screen) the Status Bar
(creates an instance of MainFrameStatusBar, this bar is the bar under the Debug Area) and the
Transform Panel (its content will be updated by Process).

MainFrameMenuBar creates the context menu and creates an instance of the AboutDialog
(displaying information about the authors in HTML in a JEditorPane with mailto links).

Figure 6.12 lists attributes and methods of each class of the package editor:

MSc Thesis 44 Beauti�cation editor

Quentin Englebert Development of a software to support RIA production

Figure 6.11: Sequence diagram for openXMLFile

MSc Thesis 45 Beauti�cation editor

Quentin Englebert Development of a software to support RIA production

Figure 6.12: Classes of editor with methods and attributes

process

As said in the beginning of the section, everything is made in a generic way and the process is
di�erent only when it depends on the pattern. The class Process is the biggest class. It creates the
�ve panels of the Transform Panel, sets and update their content. This class may seem monolithic
with a lot of global variables, but it is intended to provide genericity: nothing in it has to be
changed to handle new Patterns or new Constructs.

When it needs to display elements depending on the pattern, it will call generic methods in
ProcessGen that will check the type of the current method and call the suited method. Figure
6.14 is an example: to create the ComboBox displaying widgets available for current pattern, the
Construct Choice Panel calls makeComboBox on ProcessGen. It will check the type of the pattern
and call the right process (here makeSpecComboBox on ProcessActions).

Other similar methods are getIcon to display the default Oliva Nova display image for the Oliva
Nova Panel, makeOptions to display the options available for the chosen pattern, setTextPatPanel
to display the table of information on the current pattern and obviously createConstruct to create
the selected widget with chosen options.

So the goal of ProcessGen is to detect the type of the pattern and call the right method on
Process[name of pattern]. Each of those speci�c classes have to implement the �ve similar methods
listed above, de�ned in the interface ProcessSpec. These methods return a GUI Component or a

MSc Thesis 46 Beauti�cation editor

Quentin Englebert Development of a software to support RIA production

Figure 6.13: Class diagram of process

Figure 6.14: Sequence diagram for Choice Panel

MSc Thesis 47 Beauti�cation editor

Quentin Englebert Development of a software to support RIA production

String and may call methods of Process to update their panel.

The class XMLParser is the only class that has not been made generic, because the parsing should
be done only one for e�ciency. It should only be modi�ed for the inclusion of a pattern, which
is less frequent than including a new construct (because there is a limited amount of OlivaNova
patterns). The XMLParser creates an ArrayList of patterns occurences for each pattern. Thanks
to SAX, it parses the document only once and tags opening, closing or text between tags may
trigger some action.

For instance, for the Available Actions pattern, it detects an occurence of the pattern, adds a
new instance of ActionsPattern the ArrayList of Available Actions, and adds all actions of that
occurence to the ActionPattern object with their ID and their alias.

In parallel, the parser detects each service and adds their type to an Hashtable with their ID as a
key. When the parsing is done, all keys corresponding to actions parsed for the Available Actions
pattern are checked to couple the type of service with the action. This allows to de�ne an Action
as a triplet as shown in the table: ID, alias, type. There is also a generic getter methods for the
Process class to get the ArrayList of occurences for a type of pattern.

Figure 6.15 lists attributes and methods of each class of the package process:

MSc Thesis 48 Beauti�cation editor

Quentin Englebert Development of a software to support RIA production

Figure 6.15: Classes of process with methods and attributes

MSc Thesis 49 Beauti�cation editor

Quentin Englebert Development of a software to support RIA production

pattern

Figure 6.16: Class diagram of pattern

Each type of pattern needs to have a class [Pattern name]Pattern. Those classes extend the class
Pattern (only sharing a variable type). Their methods are called by the XMLParser to get the
list of elements of an occurence of a pattern or to add an element to the ArrayList of elements
of an occurence. There is no interface for speci�c pattern classes because their methods may be
di�erent: the ArrayList of each pattern contains di�erent PatternElements objects (here Action
objects) so the getList method is di�erent and the add method depends on attributes of elements.
For instance, we've seen that an Action object is de�ned by a triplet of values and only two (the
ID and alias) are added upon detection of the pattern.

Figure 6.17 lists attributes and methods of each class of the package editor:

Figure 6.17: Classes of pattern with methods and attributes

MSc Thesis 50 Beauti�cation editor

Quentin Englebert Development of a software to support RIA production

patternElement

Figure 6.18: Class diagram of patternElement

Each type of PatternElement needs to have a speci�c class, such as the Action class. Those classes
extend the class PatternElement (only sharing a variable type). Their methods are getters and
setters for the attributes used by the XMLParser and their speci�c Process class.

Figure 6.19 lists attributes and methods of each class of the package editor:

Figure 6.19: Classes of patternElement with methods and attributes

6.4.3 Adding a widget

Adding a widget such as the dockbar is now fairly simple: only the speci�c Process class (such as
ProcessActions) needs to be modi�ed. Here are the steps:

MSc Thesis 51 Beauti�cation editor

Quentin Englebert Development of a software to support RIA production

• The name of the widget needs to be added in the table of Strings de�ning elements of the
Combo Box of the ConstructChoice Panel, in makeSpecComboBox

• A case has to be added in the switch of makeSpecOptions to de�ne options for this Construct

• Finally a case has to be added in the switch of createSpecConstruct to generate the HTML
�le for that construct

6.4.4 Adding a pattern

Adding a pattern requires some more implementation as seen before, but e�orts have been done to
make it as simple as possible:

• A speci�c Pattern Class has to be created in the pattern package with methods to handle the
ArrayList of pattern elements

• A speci�c PatternElement Class has to be created in the patternElement package with at-
tributes and getters and setters

• The name of the pattern needs to be added in the table of Strings patterns de�ned in
XMLParser

• Event Handlers of the XMLParser need to detect occurences of the pattern, stock them in
an ArrayList de�ned in that class and stock elements of this pattern thanks to the speci�c
Pattern object

• The type has to ben handled in the generic method getPattern of the XMLParser and in the
generic methods of ProcessGen

• Last but not the least, a speci�c Process class needs to implement the Interface ProcessSpec

6.4.5 Implementation e�ort

As seen through this chapter, this prototype deals with one widget for one pattern currently, but
e�orts have been done to have a handy tool (integrated web browser, parameters for widgets, User
interface, ...) and the addition of new widgets and patterns has been made simple.

A new widget and a new pattern will be added as soon as possible to validate previous subsections.

MSc Thesis 52 Beauti�cation editor

Quentin Englebert Conclusion

Chapter 7

Conclusion

This chapter will summarize the work done for this MSc thesis, explain its actual contributions,
both conceptual and under the form of implementation.

Then it will summarize what else could have been analyzed and how to improve the prototype.

Finally, the last part will be the actual conclusion of this thesis.

7.1 Contributions

Because of the quick advancement done in the �eld of RIA, learning and de�ning them precisely,
analysing the current frameworks and technologies around them was necessary before anything
else.

Once the lack of a model-based approach has been con�rmed, an in-depth learning of the MDA
was a second step to try addressing this lack.

Then the beauti�cation process and the existence of other technologies to improve code generation
such as transformation templates needed to be learned.

Before doing any implementation, understanding technologies and languages around RIA was
necessary. This step took quite a long time because those technologies di�er from traditional
desktop programming technologies. New languages such as (X)HTML, Javascript and the DOM
had to be learned and even for a known language such as XML the knowledge has to be improved by
learning more precisely its syntax, e�cient parsing, Xpath and XSLT transformations. Frameworks
such as Aptana, Web Developer toolbar and Oxygen were indispensable. Traditional libraries such
as JQuery, YUI but also dojo and script.aculo.us had to be learned too.

Manual implementations allowed to practice all these new concepts and try some scripts.

Understanding the basic use of ONME, its patterns and the generated XML code (where patterns
were really hard to identify) was a last step to achieve before having a su�cient knowledge to make
signi�cant contributions.

The �rst contribution providing a real novelty was the analysis of the applicability of RIA
constructs for ONME patterns. With instructions from Mr Vanderdonckt, the help of both an RIA
expert (Francisco Javier Martinez Ruiz) and an expert of ONME patterns (Nathalie Aquino), it
was possible to validate this analysis.

The second actual contribution is obviously the beauti�cation editor. Although a prototype, it
meets the original objectives of that MSc thesis, i.e. proving that RIA constructs can be used to
improve RIA generated by OlivaNova and is designed to be easily improved with new constructs
and patterns.

MSc Thesis 53 Beauti�cation editor

Quentin Englebert Conclusion

7.2 Improvements

As part of a MSc thesis, both the analysis and the tool are mainly focused on the generation of
RIA. They could be extended to handle any kind of application.

The beauti�cation process could be applied to other code generating softwares as well and to other
parts of applications than user interfaces.

The beauti�cation is made on patterns without taking their context into account. Taking them
into account would be a big challenge.

The tool itself could be improved to handle other constructs and patterns but also to add user
interaction (for instance a means of providing images for the Carousel) or on the contrary automate
some default parameters (for instance set both the default amount of visible items and the Carousel
size depending on the number of items and the space available).

Finally, the third step of the beauti�cation process, i.e. providing a new Concrete User Interface
Model to the Model Compiler could be implemented. It would require ONME being able to under-
stand it and generate RIA �rst.

7.3 Final word

This work contributed to provide more information and a tool as a starting point to achieve both
�rst steps of the beauti�cation process for RIA with ONME.

It could also be reused as a basis for a similar reasoning in other programming environments or
with other automated code generation approaches.

The analysis of the applicability of RIA constructs to ONME patterns could also be used as an
idea for manual implementation in RIA.

Incidentally it could also serve as a base for discovering RIA and choose the most suited development
environment.

MSc Thesis 54 Beauti�cation editor

Quentin Englebert BIBLIOGRAPHY

Bibliography

[ABRA08] Silvia Abrahão, Emilio Iborra and Jean Vanderdonckt, Usability Evaluation of User

Interfaces Generated with a Model-Driven Architecture Tool, 2008

[ALLA02] Jeremy Allaire, Macromedia Flash MX - A next-generation rich client, http://

download.macromedia.com/pub/flash/whitepapers/richclient.pdf, March 2002

[BOZZ06] Alessandro Bozzon, Sara Comai, Piero Fraternali, Giovanni To�etti Carughi, Conceptual
Modeling and Code Generation for Rich Internet Applications, Dipartimento di Elettronica e
Informazione Politecnico di Milano, 2006

[CARE09] CARE Technologies - OlivaNova The Programming Machine, http://www.care-t.com/
products/index.asp, last consultation: 27/04/2009

[FLCA] Adobe, Flex Application Performance: Tips and Techniques for Improving Flex Server

Performance , http://www.adobe.com/devnet/flex/articles/server_perf_02.html, last
consultation: 1/08/09

[FLPE] Adobe, Flash Player Penetration, http://www.adobe.com/products/player_census/

flashplayer/, last consultation: 1/08/09

[FXML] FlashiXML, http://www.usixml.org/index.php?mod=pages&id=24, last consultation:
1/08/09

[GA05] Jesse James Garrett, Ajax: A New Approach to Web Applications, 2005, http://

adaptivepath.com/ideas/essays/archives/000385.php, last consultation: 30/07/09

[JQ] Jquery Javascript Library, http://jquery.com/, last consultation 19/08/09

[JQUI] Jquery UI Javascript Library, http://jqueryui.com/, last consultation 19/08/09

[JWB] Native Swing Library (with JWebBrowser), http://djproject.sourceforge.net/ns/, last
consultation: 18/08/09

[LASZ05] Laszlo Systems Technology White Paper, OpenLaszlo - An XML Framework for Rich

Internet Applications, Laszlo Systems, 2005

[MART06] Francisco J. Martínez-Ruiz, Jaime Muñoz Arteaga, Jean Vanderdonckt, Juan M.
González-Calleros and Ricardo Mendoza, A �rst draft of a Model-driven Method for Designing

Graphical User Interfaces of Rich Internet Applications, 2006

[MA07] Francisco Javier Martínez Ruiz, A Development Method for User Interfaces of Rich Internet

Applications, Université Catholique de Louvain (Diploma of Extended Studies in Management
Sciences), 2007

[MSP] MultiSplitPane: Splitting Without Nesting, http://today.java.net/pub/a/today/2006/
03/23/multi-split-pane.html, last consultation: 17/08/09

MSc Thesis 55 Beauti�cation editor

http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf
http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf
http://www.care-t.com/products/index.asp
http://www.care-t.com/products/index.asp
http://www.adobe.com/devnet/flex/articles/server_perf_02.html
http://www.adobe.com/products/player_census/flashplayer/
http://www.adobe.com/products/player_census/flashplayer/
http://www.usixml.org/index.php?mod=pages&id=24
http://adaptivepath.com/ideas/essays/archives/000385.php
http://adaptivepath.com/ideas/essays/archives/000385.php
http://jquery.com/
http://jqueryui.com/
http://djproject.sourceforge.net/ns/
http://today.java.net/pub/a/today/2006/03/23/multi-split-pane.html
http://today.java.net/pub/a/today/2006/03/23/multi-split-pane.html

Quentin Englebert BIBLIOGRAPHY

[NODA05] Tom Noda and Shawn Helwig, Rich Internet Applications: Technical Comparison and

Case Studies of AJAX, Flash, and Java based RIA, http://www.uwebc.org/opinionpapers,
2005

[OMG09] Object Management Group (OMG), http://www.omg.org/mda/committed-products.
htm, last consultation: 27/04/2009

[P&al07] Inés Pederiva, Jean Vanderdonckt, Sergio España, Ignacio Panach and Oscar Pastor, The
Beauti�cation Process in Model-Driven Engineering of User Interfaces, INTERACT 2007

[P&M07] Oscar Pastor and Juan Carlos Molina, MDA in practice: a Software Production

Environment Based on Conceptual Modeling, 2007

[PREC07] J.C. Preciado, M. Linaje, S. Comai, F. Sánchez-Figueroa, Designing Rich Internet

Applications with Web Engineering Methodologies , Quercus Software Engineering group.
Universidad de Extremadura, 2007

[SEI07] Software Engineering Institute, http://www.sei.cmu.edu/legacy/case/case_whatis.

html, 2007

[STAT] Statistics on Flash, Silverlight and Java plugin deployments http://riastats.com/#, last
consultation: 1/08/09

[WPMDE] http://en.wikipedia.org/wiki/Model-driven_engineering, last consultation:
18/04/09

[WPRIA] http://en.wikipedia.org/wiki/Rich_internet_applications, last consultation:
26/04/09

[YUI] The Yahoo! User Interface Library, http://developer.yahoo.com/yui/, last consultation
19/08/09

MSc Thesis 56 Beauti�cation editor

http://www.uwebc.org/opinionpapers
http://www.omg.org/mda/committed-products.htm
http://www.omg.org/mda/committed-products.htm
http://www.sei.cmu.edu/legacy/case/case_whatis.html
http://www.sei.cmu.edu/legacy/case/case_whatis.html
http://riastats.com/#
http://en.wikipedia.org/wiki/Model-driven_engineering
http://en.wikipedia.org/wiki/Rich_internet_applications
http://developer.yahoo.com/yui/

	Introduction
	Concepts
	Web development
	Rich Internet Applications
	Computer-Aided Software Engineering

	Goals of the MSc Thesis
	Model-driven engineering
	Beautification
	Thesis statement

	Hypothesis
	Methodology
	Chosen CASE tool
	Chosen programming environment

	State of the Art
	Features of RIA applications
	Programming environments
	Ajax
	Adobe Flex
	Microsoft Silverlight
	OpenLaszlo
	Google Web Toolkit
	JavaFX
	Echo3
	haXe
	Curl
	FlashiXML

	Technological choices for RIA production
	ONME
	MDA and the OO-Method
	Presentation Model
	Oliva Nova Model Execution

	Ajax
	JQuery

	Design patterns for RIA
	ONME patterns
	Basic Elements
	Interaction Units

	Results of the analysis of RIA constructs for ONME

	Implementation of significant RIA constructs
	Master-detail with a slider and an accordion
	Carousel for navigation basic element
	Imagecropper for Available Actions basic element

	Development of a software to support RIA production
	Software approach
	Beautification process
	Beautification editor for ONME

	Specification of the tool
	Implemented features
	Implementation Architecture
	Packages
	Classes
	Adding a widget
	Adding a pattern
	Implementation effort

	Conclusion
	Contributions
	Improvements
	Final word

