
What can Model-Based UI Design offer to End-User
Software Engineering?

Anke Dittmar1, Alfonso Garcı́a Frey2, Sophie Dupuy-Chessa3

Dept. of Computer Science, University of Rostock1, University of Grenoble2, UJF2, UPMF3, LIG2,3

Germany1, France2,3

Anke.Dittmar@uni-rostock.de, {Alfonso.Garcia-Frey, Sophie.Dupuy}@imag.fr

ABSTRACT
End-User Programming enables end users to create their own
programs. This can be accomplished in different ways, where
one of them is by appropriation or reconfiguration of existing
software. However, there is a trade-off between end users’
‘situated design’ and quality design which is addressed in
End-User Software Engineering. This paper investigates how
methods and techniques from Model-Based UI Design can
contribute to End-User Software Engineering. Applying the
concept of Extra-UI, the paper describes a Model-Based ap-
proach that allows to extend core applications in a way that
some of the underlying models and assumptions become ma-
nipulable by end users. The approach is discussed through a
running example.

Author Keywords
End-User Software Engineering, End-User Programming, Model-
Based UI design, Human-Computer Interaction.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces – theory and methods.: D.2.2.Software Engineering:
Design Tools and Techniques – user interfaces.

INTRODUCTION
The term ‘End-User Programming’ (EUP) has been devel-
oped in response to an existing gap between design and use
of interactive applications. For a long time, ‘designers’ were
seen as the experts in developing software artefacts. They ac-
quired the right skills and followed the right processes to do
so1. ‘Users’ were mainly seen as experts in their domains
who have to learn to use the software that was built for them.
Today, the number of people who do programming at work
or in their leisure time is many times higher than the number
of professional programmers as pointed out by [9] and others.
Designing for end-user programming has supported this ten-
dency and opened the design space for (end) users. However,

1Obviously, this is an oversimplification. Software Engineering is
still in its infancy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’12, June 25-26, 2012, Copenhagen, Denmark.
Copyright 2012 ACM 978-1-4503-1168-7/12/06...$10.00.

“the problem with end-user programming is that end users’
programs are all too often turning out to be of too low qual-
ity for the purposes for which they were created” [1]. There
is a trade-off between ‘situated design’ and quality design.
End-User Software Engineering addresses this problem [1].

In this paper, we investigate how methods and techniques that
have been developed in Model-Based UI Design (MBD) can
contribute to End-User Software Engineering (EUSE). MBD
is an engineering approach that applies conceptual knowl-
edge about the users’ tasks and domains as well as ergonomic
and technical knowledge about human-computer interaction
to design user interfaces in a systematic way. In particular,
we show how meta-models and the concept of Extra-UIs can
help to put meta-design [6] into practice. In our approach,
UI-designers become ‘meta-designers’ by adding Extra-UIs
to their application under design. This offers design spaces
for end users according to their main interests. They can ex-
plore possible uses of the user interface that are not necessar-
ily intended by the designer.

The paper is organized as follows. Basic ideas and trends
in End-User Software Engineering are first examined to po-
sition our own approach. The next two sections introduce
MBD in more detail and illustrate one specific method and
corresponding techniques through an example. This example
application does not support end-user programming yet, but
has to be enriched by an Extra-UI. How this can be done is
shown in the following section to illustrate the overall idea of
our approach that is explained at the beginning of that sec-
tion. The paper concludes with a discussion of possible im-
plications and future work.

BACKGROUND I: END-USER PROGRAMMERS AND EUSE
We first need to understand the concept ‘end-user program-
mer’ in order to understand what EUSE is about. An indirect
description may be given in the definition of End-User De-
velopment (EUD)2 in [11] as a “set of methods, techniques,
and tools that allow users of software systems, who are act-
ing as non-professional software developers, at some point to
create, modify or extend a software artefact”. According to
[11], there are two types of EUP activities. Parameterization
and customization allow the end user to choose between pre-
defined options. Program creation and modification (e.g. by
programming by example) allow them to change a program
beyond the intentions of the ‘professional developer’. In this
paper, we are interested in supporting activities of the second
type.
2EUSE and EUD are not distinguished in this paper.

A more precise view on the end-user programmer concept
is given in [9]. Basically, it is seen as “a role and a state
of mind”. A person acts in this role if the manipulated pro-
gram is not the primary outcome of their work but serves as
a (often temporary) means to an end. ”Traditional” software
engineering assumes that developers are responsible for sup-
plying quality products in terms of reliability, maintainabil-
ity, usability etc., but that they often are not the users of their
products. Personas and scenarios are well-known means for
developers to understand and imagine contexts of use. In con-
trast, EUSE has to assume that developers modify a program
for ‘situated use’, but may have less interest in or understand-
ing of quality criteria and the role of abstraction in the appli-
cation. Additionally, requirements and design activities are
more intertwined in EUSE because end users tend to explore
possible uses (appropriation). Two approaches to cope with
these challenges are mentioned in [9]: dictating proper design
practices, and injecting good design decisions into existing
user practices. A technique that supports the latter approach,
and that is also applied in this paper, is the combination of
constraints and generation mechanisms. The end user can
design or modify certain aspects only and the final code is
generated automatically.

Above explanation reveals the weak boundaries between ‘pro-
fessional’ programmers and end users and between related
processes. Fischer et al. show how ideas of End-User Devel-
opment extends the traditional notion of system development.
In their meta-design approach they suggest to include users
as active co-developers throughout the entire existence of the
system. This includes periods of unplanned evolution and pe-
riods of deliberate (re)structuring and enhancement [6].

BACKGROUND II: MODEL-BASED UI DESIGN
MBD is a software engineering approach that uses models
capturing knowledge about different aspects of human-com-
puter interaction as a basis for producing code of user in-
terfaces (UI) in a structured way [12]. Typically, domain-
dependent Concepts and Task models serve as starting point
for producing Abstract UI models (AUI). From AUIs models
Final UIs (FUI) are derived via an intermediate step - the Con-
crete UI models (CUI) [2]. Lower-level models are produced
from higher-level descriptions by transformations. They can
be performed by the application of transformation rules in an
automated or semi-automated way or by the designer mak-
ing explicit design decisions. Just to mention two examples:
enabled task sets and heuristics are used in TERESA to trans-
form task models automatically into AUI models [13]. A
manual but tool-supported transformation of task and domain
knowledge into dialog models is preferred in [3]. Transfor-
mations help to consider usability criteria during the design
process [14, 8]. If they are applied on lower-level models to
get higher-level ones they support re-engineering activities.
Mappings are used to link elements from different models
and, in some approaches, to keep track of the transformations
from source to target elements. For example, each task of a
task model and the concepts involved to achieve the task are
mapped to a set of interactors in the CUI model in [14].

In MBD approaches, models can be re-used across different

Figure 1. Ecore representations of the Domain meta-model (top) and
Mapping meta-model (bottom) that are applied in the case study.

platforms and programming languages. Design decisions are
made and described at conceptual levels. MBD also supports
a more consistent development of UIs for different contexts
[2]. However, there are still open questions concerning the
link between UIs and functional cores in MBD. Limitations
that arise from assumptions made in task descriptions are dis-
cussed e.g. in [4]. We will argue later that a view of UI de-
signers as meta-designers and of (end) users as co-developers
(as suggested in [6]) can change MBD practices and alleviate
some of these limitations.

Meta-Models in MBD
What makes MBD possible at all is the assumption that dif-
ferent task/domain/AUI/. . . models have common underlying
structures that can be described by their corresponding meta-
models. Figure 1 shows parts of ecore class diagrams of meta-
models that will be used in the case study later on. Like in
most MBD approaches, hierarchical task structures are as-
sumed that include temporal constraints between sub-tasks.
Domain models are described by concepts with attributes and
relationships to other concepts. AUI/CUI models specify in-
teractors in a platform independent/dependent way.

An obvious use of meta-models is in the specification of trans-
formation rules to reason about models and to find appropri-
ate mappings (see Code 1 for an example). Mappings them-
selves are often organized by a meta-model if they need to
be maintained for traceability and for model changes at run
time. This is required e.g. for UI plasticity [15] and, gener-
ally, in all approaches defining user interfaces on the basis of
other UI models. In the suggested approach to support EUSE
the concept of Extra-UIs is applied. An Extra-UI is a UI that
represents and provides control over a UI [15]. Later in this
paper, we will show how Extra-UIs can be used to allow users
(re)configuring the application from a EUSE perspective.

Figure 2. Models in the mastermind example. Tasks in the task model (top left) are mapped (light, curved lines) to concepts from the Domain model
(bottom left). The AUI -represented by containers (white background boxes) and units (grey background boxes)- is obtained by transformation of these
models in 1. The CUI is produced from the AUI in 2 before the FUI is generated in 3.

INTRODUCTION OF THE CASE STUDY
This section demonstrates above mentioned ideas by illustrat-
ing the development of a user interface for the mastermind
game3. The applied MBD approach is similar to [2]. The ex-
ample was chosen for several reasons. First, it has a reason-
able complexity and the domain is easy to understand. Sec-
ond, its extension in the second part of the paper shows our
contribution to EUSE. Third, it is useful to illustrate ‘tinker-
ing’ activities of hobbyists who form one particular end-user
group. They like to explore ways “to reconfigure and person-
alize technology with no definite end in mind” [9].

The example is designed by using the UsiComp tool [7]. The
designer needs to create the following input models using the
tool: the task model, the domain and the mapping model. The
mapping model indicates what concepts from the domain are
manipulated by each task. The AUI is automatically produced
from these models by using transformation rules. An excerpt
of one of these rules is shown in Code 1. The CUI is derived
semi-automatically from the AUI, i.e., the designer specifies
what predefined rules are applied to each element of the AUI
model. Finally, a last automatic transformation generates the
java code of the UI from the CUI model (see figure 2).

In the context of this paper, sketchy illustrations of models are
often used for reasons of brevity and clarity. They focus on
important aspects and avoid less well-known notations. They
may also help to show the generality of the approach.

3http://en.wikipedia.org/wiki/Mastermind_
(board_game)

1 rule Task2DataIU {
2 from s : CTTE!Task (
3 not thisModule.manipulates(s) and−− Do not manipulate any Concepts
4 s.compositions−>size() = 0 and−− Is leaf
5 s.Category = #Interaction)−− It is an Interactive Task
6 to t : AUI!AbstractDataIU (
7 name <− s.Name),
8 m : Mapping!MappingDefinition (
9 name <− s.Name,

10 type <−#isReifiedBy,
11 source <− s,
12 target <− t)
13 }

Code 1. Excerpt of an ATL transformation.

MODEL-BASED UI DESIGN FOR EUSE
We consider a user interface that allows for end-user pro-
gramming (EUP UI) as consisting of two parts: a) UI of the
actual application (core UI), and b) UI for modifications by
end users that are not considered in the description of the core
tasks. Both parts are developed by the designers within the
model-based paradigm and require their own functional core.
The latter part can be considered an Extra-UI because the sep-
aration makes possible that its design is informed by models
that were developed during the design process of the core UI
(core models). As a side effect, an opportunity is provided to
reflect those core models and underlying modeling assump-
tions. This in turn is necessary to decide about the design
space that the EUP UI should offer to end-user programmers.
For example, the models in figure 2 describe a core UI that is
designed to play mastermind with a four-pegs code. It would
be reasonable to constrain EUP activities in such a way that

http://en.wikipedia.org/wiki/Mastermind_(board_game)
http://en.wikipedia.org/wiki/Mastermind_(board_game)

Figure 3. Generic architecture for model-based EUP UI.

the resulting UIs still include a board and some kinds of pegs.
The functional core of the Extra UI implements the manipula-
tion of core models at run time and the generation of modified
core UIs that still preserve some original design decisions. In
other words, an Extra UI opens a ‘window’ for the end user to
underlying mechanisms and assumptions in the design. Fig-
ure 3 shows a generic architecture supporting these ideas. The
coupling of elements of the core UI and the Extra-UI that is
described later in this section (including figure 5) shows an-
other perspective on how to develop the final EUP UI.

Design Methodology
A four steps design methodology is suggested. It certainly
needs to be integrated into a more holistic approach as it will
be briefly discussed in the implications section.

1. Design of core UI,
2. Specification of design space constraints for end users,
3. Design of Extra-UI,
4. Coupling of core UI and Extra-UI to the final EUP UI.

In the first step, the UI of the core application is designed
using a classical MBD approach as described above. Steps 2
and 3 deal with scope and complexity of the Extra-UI. People
who act as end-user programmers are focused on their domain
and have no primary interest in the models and techniques
used in MBD. They should have the opportunity to change
conceptual aspects and their representations in the UI within
the scope of the domain, but without being confronted with
all model details and notations in use (as e.g. in [15]). It is a
design problem in itself to find a good representation of those
UI parts end users can manipulate4. In the following, steps
2-4 will be explained in more detail. The example study (see
figure 2) will be continued for illustration.
4A good description of the problem is given in [5]: “When creating
means for users to modify their environment there is often a temp-
tation to try to do everything - the spectre of Turing equivalence
rises and before long a simple end-user customisation tool becomes
a full-blown and complex programming language.”

Specification of design space constraints
In this step designers constrain the possible design space for
end-user programmers. This is done by model annotation (but
other approaches are possible). In the case study, model ele-
ments have two additional attributes fixed:boolean and ma-
nipulable:boolean. The first attribute serves to specify key
elements in the core task and core domain model that can-
not be deleted because they are considered as essential to the
problem domain. The second attribute specifies elements that
are not manipulable by the end user. Let us assume that in the
core models of figure 2 tasks playMastermind, makeGuess,
startGame, finishGame, fillHole1 as well as concepts Master-
mind, CodeHole and RedPeg are specified as fixed and their
representations cannot be removed from the UI.

Design of Extra-UI
The Extra-UI needs to be constructed following the same MBD
approach as used for the core UI. Moreover, models from
both UIs must conform to the same meta-models to allow for
a coupling in the next step. Tasks in the task model of the
Extra-UI describe possible manipulations of core models and
need to be mapped to corresponding parts in the Extra-UI do-
main model (nothing is new). The domain model again con-
sists of the annotated core models (including all mappings)
that are represented according to the meta-models in use (see
figure 1). As a consequence, the designer’s view on what
can be manipulated by the end user is strongly influenced by
the meta-models. Of course, this is both a limitation and an
advantage. Typical tasks the designer identifies may be re-
stricted to the deletion, duplication, and renaming of tasks
and concepts, the modification of their presentation in the UI
and so on. On the other hand, meta-models make possible the
description of design patterns for Extra-UIs.

Figure 4. A 1-m-m design pattern for Extra-UIs.

Such patterns suggest representations of certain parts of an-
notated models in a core UI design that allow end users to
modify these parts in a familiar notation. An important char-
acteristic of design patterns for Extra-UIs is that they ensure
consistency across core models. That means that the new
core UI can be re-generated from modified core models. Fig-
ure 4 depicts a pattern that describes situations for applying
the (Extra-UI) task Change Multiplicity. On the top of the left
hand side, parts of the Extra-UI task model are to be seen. The
bottom part of the figure describes in a generic way which
parts of the core domain model, AUI and CUI model are in-
volved. Corresponding mappings between task Change Mul-
tiplicity and domain concepts are indicated by light, curved
lines as in figure 2. On the right hand side a transformation
into an AUI and then CUI presentation for Extra-UIs is sug-
gested that does not expect end users to be familiar with UML
diagrams and the like.

Coupling of core UI and Extra-UI
If the core and Extra-UI are designed they need to be coupled
into the final application. Again, involved design models can
be used to support a coupling at different levels of abstraction.
Model composition is not in the focus of this paper, but it
is discussed by many authors in MBD (e.g. [10]). Figure 5
indicates the coupling at the task and domain level that is used
in our case study. Here, task models of the core UI and Extra-
UI are integral parts of the overall task model.

Figure 5. A coupling of core UI and Extra-UI is possible at different
levels of abstraction (here illustrated at the task & domain level).

Extra-UI for the mastermind game
Figure 6 shows an Extra-UI design for the running example.
The above mentioned pattern was applied several times in
transformation steps (partly recursively). Two other Extra-UI
design patterns were used. First, a concept can be renamed
within its final presentation if there is a 1:1:1 mapping be-
tween concept, AUI element, and CUI element. Additionally,
there must be inverse rules for the transformation rules. In the
example, the concept Mastermind can be renamed (see the
text entry at the top container). Second, leaf tasks that are not
fixed can be deleted. This includes the removal of all map-
pings to domain concepts and AUI elements. If it results in

concepts with no mappings to tasks anymore the representa-
tions of the concepts are disabled in the Extra-UI and they are
not represented in the modified core UI (similarly with AUI
elements). In the screenshot, tasks Evaluate Row and Give
Up are deleted which implies disabling the representation of
the feedback part of the board and the “Give Up” button.

FINALLY: USING THE EXAMPLE EUP UI (AND SHARE)
One advantage of appropriation is the sense of ownership and empowerment
it engenders. A sense of control is important for well being, and the act of
tinkering gives this, whether to improve the user interface for its original
purposes, or make it do something completely novel. [5]

The provided Extra-UI lets end users produce different varia-
tions of the mastermind or even new peg based games. Please
take a look at figure 6 and use your imagination to modify the
original game on the left hand side. One possible example of
a new game is a tic-tac-toe. A human-vs-human version of
this game does not require the ”confirm” button, responsible
for linking the evaluation function from the functional core
with the UI. For a human-vs-computer game, the ”share” but-
ton must be used for asking the programmers to re-implement
this evaluation function.

IMPLICATIONS FOR MBD
Fischer et al. [6] encourage designers to conceptualize their
activity as meta-design. In contrast to conventional design,
meta-designers do not aim at the development of complete
systems. Their task is to supply tools to users that empower
them “to engage actively in the continuous development of
systems rather than being restricted to the use of existing sys-
tems” [6]. Underdesign is suggested as a technique of meta-
designers to create such design spaces for end users. The
approach to MBD that is introduced in this paper supports
the idea of underdesign. The separation between core UI and
Extra-UI invites designers to reflect explicitly about their de-
sign assumptions that are incorporated in the core models. In
a second design step, some of these assumptions are made
modifiable by the user. The example illustrated that mod-
ifications of the core application by the end user can lead to
new functional requirements. They need to be shared with the
(meta-)designers to initiate extensions of the system, and pos-
sibly re-design steps. According to [4], MBD designers focus
on the production of consistent and complete system specifi-
cations and, as a consequence, often consider task models as
complete descriptions of the users’ tasks. The proposed ap-
proach alleviates this problem by accepting design as an open
and continuous co-operative process to find a better balance
between ‘too specific’ and ‘too universal’ interactive applica-
tions.

CONCLUSIONS AND FUTURE WORK
This paper investigates how methods and techniques from
Model-Based UI Design can contribute to End-User Software
Engineering through three main contributions. Firstly, the
concept of Extra-UI is revisited from the EUP perspective.
Secondly, a four steps methodology explains how to apply
this concept to create an EUP UI. And finally, we discuss
some interesting annotations on the core models that help to

Figure 6. An EUP UI for mastermind: the game was interrupted by pressing the “tinker” button (core UI on the left) to use the Extra-UI (on the right).

decide about the design space for end users and some Extra-
UI design patterns to support appropriate representations of
this design space. The contributions are discussed and il-
lustrated through a running example in which a mastermind
game can be (re)programmed into a tic-tac-toe game. This
example demonstrates the practicality of the method. Further
work aims to make it more systematic. In addition, we want
to consider sets of Extra-UIs for different groups of end-users
who approach a system under design with different interests
and background knowledge.

ACKNOWLEDGMENTS
We are grateful to UPMF for their fincancial support to the
collaboration between the authors. The second author is sup-
ported by the European ITEA UsiXML project, the third au-
thor by the ANR MOANO.

REFERENCES
1. Burnett, M. What is end-user software engineering and

why does it matter? In Proc. of IS-EUD’09, IS-EUD
’09, Springer-Verlag (2009), 15–28.

2. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., and Vanderdonckt, J. A unifying reference
framework for multi-target user interfaces. Interacting
with Computers 15, 3 (2003), 289–308.

3. Dittmar, A., and Forbrig, P. The influence of improved
task models on dialogues. In Proc. of CADUI ’04,
Kluwer (2004), 1–14.

4. Dittmar, A., and Forbrig, P. Task-based design revisited.
In Proc. of EICS ’09, ACM (2009), 111–116.

5. Dix, A. Opening the Box - Meta-level Interfaces Needs
and Solutions. In Proc. of Interfaces : SUI’11 Workshop
at EICS’11 (2011).

6. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., and
Mehandjiev, N. Meta-design: a manifesto for end-user
development. Commun. ACM 47, 9 (2004), 33–37.

7. Garcı́a Frey, A., Ceret, E., Dupuy-Chessa, S., Calvary,
G., and Gabillon, Y. UsiComp: an extensible
model-driven composer. In Proc. of EICS2012, ACM
Press (2012).

8. Garcı́a Frey, A., Ceret, E., Dupuy-Chessa, S., and
Calvary, G. C. QUIMERA: a quality metamodel to
improve design rationale. In Proc. of EICS2011, ACM
Press (2011), 265–270.

9. Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A.,
Burnett, M., Erwig, M., Scaffidi, C., Lawrance, J.,
Lieberman, H., Myers, B., Rosson, M. B., Rothermel,
G., Shaw, M., and Wiedenbeck, S. The state of the art in
end-user software engineering. ACM Comput. Surv. 43,
3 (2011), 21:1–21:44.

10. Lewandowski, A., Lepreux, S., and Bourguin, G. Tasks
models merging for high-level component composition.
In Proc. of HCI’07, Springer-Verlag (Berlin, Heidelberg,
2007), 1129–1138.

11. Lieberman, H., Paterno, F., and Wulf, V., Eds. End-User
Development. Kluwer/ Springer, 2006.

12. Limbourg, Q., and Vanderdonckt, J. Addressing the
mapping problem in user interface design with usixml.
In Proc. of TAMODIA ’04 (2004), 155–163.

13. Paternò, F., and Santoro, C. One model, many interfaces.
In Proc. of CADUI ’02, Kluwer (2002), 143–154.

14. Sottet, J.-S., Calvary, G., Coutaz, J., and Favre, J.-M. A
model-driven engineering approach for the usability of
plastic user interfaces. In Proc. of EIS ’08,
Springer-Verlag (2008), 140–157.

15. Sottet, J.-S., Calvary, G., Favre, J.-M., and Coutaz, J.
Megamodeling and metamodel-driven engineering for
plastic user interfaces: Mega-ui. In Human-Centered
Software Engineering. 2009, 173–200.

	Introduction
	Background I: End-User Programmers and EUSE
	Background II: Model-Based UI Design
	Meta-Models in MBD

	Introduction of the Case Study
	Model-Based UI Design for EUSE
	Design Methodology
	Specification of design space constraints
	Design of Extra-UI
	Coupling of core UI and Extra-UI
	Extra-UI for the mastermind game

	Finally: Using the Example EUP UI (and share)
	Implications for MBD
	Conclusions and Future Work
	Acknowledgments
	REFERENCES

