
Animated Transitions between User Interface Views
Charles-Eric Dessart, Vivian Genaro Motti, and Jean Vanderdonckt

Université catholique de Louvain, Louvain School of Management
Louvain Interaction Laboratory, Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)

{vivian.genaromotti, jean.vanderdonckt}@uclouvain.be – Phone: +32 10 478525

ABSTRACT
User interface development life cycle often involve several
different views of the user interface over time either at the same
level of abstraction or at different levels of abstraction. The
relationship between these different views is often supported by
tiling coordinated windows containing these related views
simultaneously, thus leaving the developer with the responsibility
to effectively and efficiently link the corresponding elements of
these different views. This paper attempts to overcome the
shortcomings posed by the coordinated visualization of multiple
views by providing UsiView, a user interface rendering engine in
which one single window ensures an animated transition between
these different user interface views dynamically: an internal view,
an external view, and a conceptual view. Examples include the
following cases: an authoring environment ensures an animated
transition between an internal view (e.g., HTML5) and its external
view (e.g., a web page), an Integrated Development Environment
ensures an animated transition between its conceptual view and its
external view; a model-driven engineering environment ensures
an animated transition between the conceptual view at different
levels of abstraction, e.g., from task to abstract user interface to
concrete user interface until final user interface. The paper
discusses the potential advantages of using animated transitions
between user interface views during the development life cycle.

Categories and Subject Descriptors
D2.2 [Software Engineering]: Design Tools and Techniques –
Modules and interfaces; user interfaces. D2.m [Software
Engineering]: Miscellaneous – Rapid Prototyping; reusable
software. H.5.1 [Information interfaces and presentation]:
Multimedia Information Systems – Animations. H5.2
[Information interfaces and presentation]: User Interfaces –
User-centered design.

General Terms
Design, Experimentation, Human Factors, Verification.

Keywords
Animated transition, animation, model evolution animation, user
interface development method, user interface view.

1. INTRODUCTION
Authoring a web User Interface (UI) typically requires the
developer to write the UI code in a markup (e.g., HTML5) and/or a
programming language (e.g., JavaScript) and test its rendering until

a satisfactory result is obtained. In model-based UI design, the
process requires the designer to model the UI of concern and test the
final UI resulting from it until a satisfactory result is obtained.
Similarly, in model-driven UI engineering, the transformational
approach requires the engineer to apply the right transformations
from one level of abstraction to another [25], and test the final UI
issued from this approach until a satisfactory result is obtained. In
these three cases, analysts, designers and developers constantly
oscillate across multiple user interface views, that represent a final
UI according to a certain representation either at the same level of
abstraction or at a superior level of abstraction [9].
For beginners, this back-and-forth process is inconvenient not only
because they are not yet familiar with the different views but also
because it is hard for them to relate the various elements contained
in the different views. Moreover, modifying one element in a UI
does not facilitate identifying the potential implications in the other
views since no connection exists across views.

For expert users, this process is also inconvenient because it forces
them to perpetually maintain a correspondence between the views.
These views are potentially expressed with different notations,
specification, formal methods or models and do not offer any
immediate feedback regarding the views’ transitions. Moreover
when a complex UI syntax is used, it does not lend itself readily to
proofreading the UI rendering when the UI syntax differs
considerably from the rendered UI.
Consequently, UI engineering processes typically involve several
different views of the UI of concern throughout the UI development
life cycle. Such views are represented with heterogeneous
semantics, syntaxes, and stylistics, which requires the establishment
and maintenance of the correspondence between these views. To
address the shortcomings induced by this back-and-forth process,
we introduce UsiView, a UI rendering engine that ensures a smooth
progression from one view to another using animated transitions.

The remainder of this paper is structured as follows: the Section 2
provides some theoretical and historical background on UI views.
The methodology for defining the animated transitions between UI
views are motivated and presented in Section 3. The software
architecture of the rendering engine is explained in Section 4.
Finally, Section 5 delivers a conclusion with the main points of this
research and presents some future avenues.

2. BACKGROUND
2.1 Theoretical background: the UI view
We hereby define a UI view as any representation of a final UI
involved in a UI development life cycle. A UI view may be textual,
graphical or both, based on a data structure or not. By observing UI
development methods and life cycles, UI views can be classified
into three categories (Fig. 1):
1. Conceptual View (CV): describes a conceptual representation of

a UI of interest based on semantics, syntax, and stylistics.
Typical examples include: UI models for domain, functional
core, resources, and dynamic aspects. A conceptual view is the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
AVI ‘12, May 21-25, 2012, Capri Island, Italy Copyright © 2012 ACM
978-1-4503-1287-5/12/05... $10.00

341

designer’s view at early stage.
2. Internal View (IV): consists of the UI code in any programming

or markup language. An internal view is the typical developer
view for developing a particular UI.

3. External view (EV): refers to the final UI that is visible and
executable by the end user.

Figure 1. Possible paths between UI views.

During the development life cycle, also at run-time (e.g., in end-
user programming), various UI stakeholders can create, retrieve,
modify, delete, or simply execute any UI view or view element:
for instance, while a designer is responsible for the conceptual
view, the developer is responsible for the internal view, and the
end user accesses the external view. Consequently, nine
development paths are possible (Fig. 1):
1. External view to Internal view: consists in drawing to the

largest extent possible the final UI, e.g., in a graphical editor
of an Integrated Development Environment (IDE), and to
derive code from this drawing. Presentation aspects are
generally well covered since they are static, as opposed to
dynamic aspects (e.g., navigation, behavior) that are difficult
to draw, and thus require a conceptual view. Graphical UI
(GUI) builders are better at coding presentation than dialogue.

2. Internal view to External view: consists in obtaining the UI
rendering from its application/UI code, thus requiring
compilation or interpretation.

3. Conceptual view to External view: exploits one or many UI
models in order to derive the UI rendering as
straightforwardly as possible. Model based design of UIs [24]
adheres to this frequently used path.

4. Conceptual view to Internal view: exploits one or many UI
models in order to derive the UI code as straightforwardly as
possible. Model-based design is also relevant. Model-to-code
(M2C) transformations are also considered in this category.

5. External view to Conceptual view: applies reverse engineering
techniques in order to recover any UI model from its visual
rendering. For instance, it is possible to regenerate a UI
presentation model from a screen shot, an image, or a video.

6. Internal view to Conceptual view: applies reverse engineering
techniques in order to recover any UI model from its code.
For instance, a UI presentation model from its HTML code.

7. Loop on Conceptual view: applies model-based techniques in
order to create a new model from an existing one or to modify
an existing model. Model-Driven Engineering (MDE) belongs
to this category: it involves the use of models in development,
which entails that at least one User Interface Description
Language (UIDL) language must be used and described in
terms of the MOF language to enable the metadata to be
understood in a standard manner, which is a precondition for
any activity to perform automated transformation. Model-to-
model (M2M) transformations are also in this case.

8. Loop on External view: applies image-processing techniques
in order to produce a new external view from an existing one
or to modify an existing one.

9. Loop on Internal view: applies transcoding to generate UI
code in a language other than the original one.

2.2 Historical background: UI views used
UI views have been extensively introduced, motivated, and used so
far in order to provide designers and developers with as much
guidance as possible during the applications development life cycle.
This section provides an historical perspective on UI views.
 [20] is one of the pioneer work in this domain, in which the authors
remark the importance of taking into account the mental model of
the user. As such, for any view (and mainly regarding graphical
representations) the users must be able to easily identify and follow
the corresponding connections.

FORMSVBT [2] consists of a design environment where two UI
views co-exist: an internal view represents the GUI according to
LaTeX-like syntax in a dedicated window, and an external view
depicts the final UI that can be executed in a second window. The
same external view is presented with the hierarchical structure of UI
elements in a third window. UI views are synchronized: any
modification in one view is automatically propagated on the two
other views, e.g., moving a widget from one container to another in
direct manipulation in the external view, automatically updates the
internal view (LaTeX syntax) and the external view without
structure.

VISTA [8] synchronizes a conceptual view with an internal view.
While the conceptual view is composed of a task model in UAN
notation and UAN tables, and presented in two adjacent windows;
the internal view is composed of software architecture and code and
presented in two other adjacent windows; which totalizes four tiled
windows.

TADEUS++ [29] consists of a model-based UI development
environment in which a single window contains four related
aspects of a conceptual view (i.e., task, domain, and user), and an
internal view (i.e., a final UI structure). An external view can be
automatically generated at any time in an overlapping window.

TEALLACH [16] maps a conceptual view (consisting of a task,
domain, and UI models) onto an external view (consisting of UI
elements). Mappings support the developer in propagating the
changes of any element in one model in the others, while updating
the external view.

IdealXML [24] displays a conceptual view made up of three
aspects (i.e., a domain model, a task model, and an abstract UI) in
three windows. These three aspects are then represented as trees
in order to facilitate editing mappings between elements.

Figure 2. 3D linking between UI views in GEF3D [34]: a

conceptual view (UML Class diagram), an external view (a
structured UI), and another external view (the final UI).

GEF3D [34] draws lines connecting elements belonging to three

342

views in 3D: a conceptual view (i.e., a UML class diagram), an
external view (i.e., a UI without structure) and a second external
view (i.e., a UI with structure). Views are depicted in augmented
planes to be assembled together into a volume (Fig. 2).
The aforementioned software and similar others suffer from the
following shortcomings with respect to the organization of UI
views: (i) almost inexistent linking: in many cases, there is no
representation of links between views, which may prevent the
developer from identifying relationships between views that are
subject to synchronization. Coordinated windows are implemented,
but without any link representation; (ii) limited linking
representation: when such a link representation exists (e.g., in Fig.
2), multiple connections may produce a graph that becomes illegible
when scalability comes into play, sometimes with a representation
that does not facilitate the understanding; (iii) variation of link
representation: when such a link is represented, many different
techniques are used (Table 1); (iv) no immediate feedback: due to
the lack of link representation, the feedback of updating a content in
one view with propagation into another view is often perceived too
late by developers; (v) high cognitive load: when links are
represented between views, the visual density induced by their
representation, even on demand, increases the cognitive load for
manipulating them.

Dimensions	
 Links	
 between	
 UI	
 views	

1D	
 Lines	
 in	
 a	
 table	
 (IdealXML	
 [24])	

2D	
 Graphs	
 and	
 trees	
 (FormsVBT	
 [2],	
 Vista	
 [8],	

Tadeus++	
 [29],	
 Teallach	
 [16]),	
 drawings	
 (FormsVBT	

2])	

2½D	
 Augmented	
 planes	
 (GEF3D	
 [34])	

3D	
 Volumes,	
 such	
 as	
 cubes	
 (GEF3D	
 [34])	

Table 1. Links between UI views in terms of dimensions.
In this work, we intend to replace the existing link between UI
views by an animated transition in order to address the mapping
problem in model evolution. The mapping problem [11,21,25]
addresses the need for expressing links between either different
views or different models for the same UI case study. This should
not be confused with model animation, in which a model is
rendered in an animated way, e.g., in order to understand or to
simulate it [23].

3. METHODOLOGY FOR ANIMATED
TRANSITIONS BETWEEN VIEWS
This section introduces, defines, and explains the various steps
required to establish an animated transition between UI views.
Fig. 3 shows intermediate steps of an animated transition from a
conceptual view to an external view, then from an internal view to
an external view. This last transition is discussed in details in the
next sub-sections, while the former is similar in principle.

3.1 Step 1. Define the External View
From its definition, the external view is interpreted as the final
GUI with the look and feel according to its computing platform.
Therefore, the external view will consist of any runnable GUI in
any platform that could be expressed in terms of widgets. We
choose to implement UsiView in Microsoft Expression Studio for
the following reasons: (i) it supports XAML, a XML-compliant
UIDL that is expressive enough for the external view; (ii) since
XAML widgets are vector-based, logical operations such as rotate,
enlarge or reduce are easily developed; (iii) basic animated
transitions, such as zoom-in or zoom-out, are already built-in with
some configuration options; (iv) MS Expression Studio comprises
five products: Expression Blend (for building GUIs for Silverlight,

Windows, and Surface), Expression Blend SketchFlow (for
prototyping these GUIs), Expression Web (for building Web GUIs),
Expression Design (for creating graphic assets for the Web or
Silverlight, Windows, and Surface), and Expression Encoder (for
preparing video assets for the Web or Silverlight, Windows, and
Surface); (v) Expression Design will be used to develop the
animated transitions and Expression Blend for rendering them.
Defining an external view on XAML does not induce any particular
restriction and could be based on another UIDL instead without any
information loss.

3.2 Step 2. Define the Internal View
From its definition, the internal view is considered as the
developer’s view in which the UI code or description is
manipulated. Today, several XML-compliant User Interface
Description Languages (UIDLs), such as XWT
(http://wiki.eclipse.org/E4/XWT) [36], XIML (www.ximl.org)
[27], or UIML (www.uiml.org) [1], allows describing a GUI. For
the purpose of this paper, a subset of UsiXML [33] has been
selected based on XWT [36]. Other UIDLs could also be adopted
without significant changes.

A GUI is described (Fig. 3b) in a UsiXML [33] document
structured into three parts: a prolog specifying the header and
specification format, a body made up of elements and attributes
describing the various GUI widgets, and an epilog closing the
document. An element is considered as the logical document
component either beginning with a start-tag and ending up with a
matching end tag or being empty. The characters between are
called contents. Elements can be nested. Elements are refined
through attributes, a markup construct consisting of a pair
(variable name, value) that exists within a start-tag or an empty
tag. UsiXML [33] elements determine one or many instances of a
widget of a certain type. For example, the element <textfield	
 …/>	

</textfield> (Fig. 3b) determines an instance of an edit field in a
form (Fig. 3c). Attributes specify one or many properties of an
existing widget. For example, the attribute name=”Firstname”	
 (Fig.
3b)	
 is used to identify the edit field and to have the prompt
“Please enter your first name” in the field (Fig. 3c). Element
nesting determines the structure of existing widgets and their
layout. For example, the hierarchy of group in Fig. 3b is rendered
into tabbed dialog box in Fig. 3c.

3.3 Step 3. Define the Mapping between Views
In order to define a mapping between UI views, taking as example
from the internal view to the external view, a correspondence
must be established and maintained between elements belonging
to the internal view and elements belonging to the external view.
This mapping is structured according to the following format:

Mapping M: series of pairs (variable name, value) Ê
set of instructions on the widgets of the external view.

A mapping relates a series of pairs (variable name, value)
belonging to the internal view to a set of instructions to be
executed on the widgets belonging to the external view. These
instructions are structured according to an Extended Backus-Naur
Form (EBNF) grammar. Four mapping types could be
distinguished depending on their input/output.

M1: element specifying a widget type T Ê create an instance of
widget type T with associated properties. The associated
properties are themselves regulated by the following sets of
rewriting rules: rules for selecting widgets or rules for layout
production (that is itself decomposed into location, sizing, and
arrangement). For example, the pair (hint, “form”) parsed from
the UsiXML [33] document in Fig. 3b is mapped onto the

343

Figure 3. Starting point, intermediate steps, and ending points of animated transitions between user interface views.

following set of instructions in order to automatically create a
form with submit and cancel buttons:

Create	
 (w,	
 window),	

Create	
 (s,	
 pushbutton,	
 w),	
 Set	
 (s,	
 label,	
 “Submit”)	

Create	
 (t,	
 pushbutton,	
 w),	
 Set	
 (t,	
 label,	
 “Cancel”)	

Set	
 (s,	
 position,	
 bottom-­‐left),	
 Set	
 (t,	
 position,	
 bottom-­‐left-­‐row)	

M2: attribute specifying a property P of a widget of type T Ê
assign values to properties of a widget instance of type T. For
example, the pairs (rows, “0”), (cols, “0”) in Fig. 3b based on
their parents (rows, “1”), (cols, “1”) together define an offset of
(1,1) for displaying the form, thus resulting into the following pair
of instruction	
 Set	
 (w,	
 X_pos,	
 “1”),	
 Set	
 (w,	
 Y_pos,	
 “1”).
M3: attribute specifying a property P of a widget instance of type
T Ê assign value to properties of an existing widget instance. For
example, the pair (label_short, “Car reservation”) (Fig. 3b) leads
to the instruction Set	
 (w,	
 label_short,	
 “Car	
 reservation”)	
 in order to
create the label of the corresponding tab in Fig. 3c.
M4: compute height/length of a widget type T governed by
element nesting Ê assign value(s) to properties of an existing
widget instance. For example, the functions h = Σ hi + 2 spaces,
respectively l = Σ li + (i-1) spaces, determine the total height,

respectively the total length, of the form depending on the
individual heights (hi) and lengths (li) of contained widgets. This
will lead to the two instructions: Set	
 (w,	
 length,	
 l),	
 Set	
 (w,	
 height,	
 h).	

3.4 Step 4. Derive the Transition from the
Mapping Definition
A transition is hereby defined as the logical way to transform the
input of a mapping into its output depending on their respective
data type (e.g., text, color, shape). A transition is therefore
encoded in UsiView by an identifier, a name, a list of synonyms, a
description, a transition type (e.g., text-to-text, text-to-color, text-
to-shape), and a transition cardinality that is defined as follows:
• One to one: one element belonging to the initial view (the

internal view in our running example) is mapped onto one
element belonging to the final view (the external view in our
running example). For example, assign a label to a widget (M3).

• One to many: one element belonging to the initial view is
mapped onto many elements belonging to the final view. For
example, create an instance of a widget type (M1) or assign the
same foreground color to a set of widget instances (M2).

• Many to one: many elements belonging to the initial view are
mapped onto one element belonging to the final view. For

344

example, the foreground color of one widget in a web page is
determined by considering both its HTML code and CSS.

• Many to many: many elements belonging to the initial view are
mapped onto many elements belonging to the final view. For
example, HTML and CSS together determine the border color
of several widgets included in a container.

In order to determine the transition type, coding schemes [22]
have been gathered and sorted by decreasing level of precision.
Fig. 4 ranks coding schemes by decreasing order of precision
respectively for a quantitative variable, for an ordinal variable,
and for a nominal variable. The first column of Fig. 4 is read as
follows: in order to represent a quantitative variable, the position
is the most precise variable, followed by the length, the angle, etc.

Figure 4. Coding schemes by decreasing level of precision.

Based on this classification (Fig. 4), Table 2 summarizes the
transition types from an internal view to an external view:
1. A text-to-text transition type denotes a transition where a

textual element of the initial view (e.g., some UsiXML text in
the internal view) is mapped onto a textual element of the
final view (e.g., a label in the external view).

2. A text-to-position transition type denotes a transition where a
textual element of the initial view (e.g., some UsiXML text in
the internal view) should be mapped onto a position of an
object (e.g., the location of a widget).

3. A text-to-length transition type denotes a transition where a
textual element of the initial view (here, some UsiXML text in
the internal view) should be mapped onto the length of an
object (e.g., the size of a widget).

4. A text-to-color-saturation transition type denotes a transition
where a textual element of the initial view (e.g., some
UsiXML text in the internal view) should be mapped onto the
saturation of a color of an object (e.g., the foreground color of
a widget). Note that color level and texture are handled
similarly by playing with the RGB code of any color.

5. A text-to-shape transition type denotes a transition where a
textual element of the initial view (e.g., some UsiXML text in
the internal view) should be mapped onto a shape of an object
(e.g., a rectangle for a text field, a circle for a radio button). A
variant of this transition is the text-to-symbol, where the shape
is replaced by a special symbol (e.g., * for a mandatory field).

For the moment, UsiView does not support four of the transition
types mentioned above (i.e., text-to-surface, text-to-volume, text-
to-density, and text-to-connection) because situations involving
such transition types have not yet been met and because they
require more advanced development based on animation
techniques –such as shape, surface, or volume deformation and
morphing– found in information visualization [27] or computer
graphics [30,32]. SMIL (Synchronized Multimedia Integration

Language), for instance, as a markup language capable of
describing multimedia presentations, can be applied in this sense
to support the implementation the animations across different
views [35].

3.5 Step 5. Identify Animation Technique to
Produce the Animated Transition
This section discusses which animation technique could be used
in order to animate a transition according to its transition type.

Text-to-text. This transition typically involves texts of different
fonts, sizes, and styles. Some text animation techniques, like text
mapping [10] and pixel-based approach [14], address this issue.
We chose a more simple approach that was made possible thanks
to the vectorial rendering of XAML:
¬ When the initial text is identical to the final text, the text is

simply moved from its initial to its final coordinates computed
according to the objects position in their respective views.

¬ When the initial text is different from the final text, the initial
text is again moved to its final coordinates and then replaced
by the final one using a fade in/fade out visual effect [12,30].

¬ When the initial text and the final text are different in fonts,
sizes or styles, the initial text is again moved to its final
coordinates and aligned in font, size, and style by a box in/out
visual effect [12], whether the texts are identical or different.

These rules adhere to the main principle of moving the initial text
first to its final location to see its impact, then to transform it
depending on the conditions. This is applicable for any text: label,
push button label, edit field label, message inside an edit field, a
tab label, window name, group box label, etc.
Transition	
 	
 Internal	
 view	
 External	
 view	

Text-­‐to-­‐text	
 <label_short=”Birthdate”>	
 Birthdate : 	

Text-­‐to-­‐
position	

<textfield	
 …	
 col=”4”…>	

Birthdate :
4

	

Text-­‐to-­‐
length	

<textfield	
 …	
 length=”20”.>	

Birthdate :

20

	

Text-­‐to-­‐
color-­‐
saturation	

<textfield.	
 fgColor=”red”.>	
 Birthdate : 	

Text-­‐to-­‐
color-­‐
texture	

<textfield	
 …	

bgTexture=”checkerboard”…
>	

Birthdate : 	

Text-­‐to-­‐
shape	

<textfield	

name=”Birthdate”>	

Birthdate : 	

Text-­‐to-­‐
symbol	

<textfield	
 …	

required=”yes”…	
 >	

Birthdate * :
	

Table 2. Transition types from internal view to external view.
Text-to-color. In order to render a color (e.g., based on saturation
level or texture), the metaphor used is the painter palette
according to these rules:
¬ The initial text representing the color (e.g., the foreground

color of a widget, the background color of a tab, a texture
color of an area) is first colored according to the target color
using Red-Green-Blue (RGB) transformations.

¬ The colored text is then replaced by a colored box by a “Box
in/out” visual effect [12] and the texture is applied if needed.

¬ The new colored box is then moved from its initial
coordinates to the final coordinates using a fade in/out effect
whose direction is governed by the arrow from the source to
target.

Text-to-shape. Gliimpse [14] renders this transition type by
linearly interpolating the bounding boxes of the initial and final

345

objects and by alpha-blending them. [12] uses a “barn door close”
visual effect to close a transient screen or a current scene and a
“barn door open” visual effect to open a transient screen, to
initiate a new step and to open a new window. In order to simplify
the transition, the initial text is first replaced by its bounding box
on the line where it starts (if it spans over several lines, the
bounding box remains on the first line) using a “barn door close”
visual effect and then replaced with the final shape using a “barn
door open” visual effect. The new element is then moved to its
final coordinates. This transition is used for any new shape or
symbol (the two last lines of Table 2). Shape-to-shape transitions
are handled similarly except that there is no bounding box created,
but simply the initial shape is replaced by its respective final
shape.
Disappearing elements. Any element of the initial view that does
not map to any element of the final view simply disappears using
a fade out visual effect. For example, in the animated transition
from Fig. 3a to Fig. 3c the shape-to-shape transitions are used to
map the model elements of the conceptual view onto their
corresponding widgets for the tab displayed; all the other elements
simply vanish progressively since they have no counterpart in the
external view at hand. Selecting another tab in the external view
activate the corresponding model elements in the conceptual view.

3.6 Executing the Animated Transition
Fig. 3a reproduces a screenshot of the UsiXML-based simplified
GUI builder developed for the purpose of this paper, in which the
developer could drag and drop model elements from the palette to
the working area, thus producing the UsiXML corresponding
code. This code could also be manually typed and synchronized
with the model. At any time, the animated transition is triggered
by pressing the <Ctrl> key once for one-way and twice for two-
way. Pressing simultaneously the “+” or “-“ key increases or
decreases the animation speed, in order to address the lag problem
[4,10]. In this context the user manually defines the timing for the
animation, however automated or hybrid approaches could also be
adopted. For example considering the approach of [13] in which
animations that start and finish in a slower speed than the
intermediary one, are better perceived by the end users.

4. RELATED WORK
4.1 Animation
“Smooth interactive animation is particularly important because it
can shift a user’s task from cognitive to perceptual activity, freeing
cognitive processing capacity for application tasks.” [30]
summarizes the benefits of using animation in GUIs. Animation [3,
5, 30] has been widely used as a general technique for supporting
end users in understanding various phenomena: the evolution of a
dynamic process, a chronological sequence of events, complex
graphics and statistics [18], relations between elements such as
spatial connections [5], for organizing diagrams [6], for improving
decision making [15] and for searching information in 3D tree-maps
[27]. Small animated icons are proved to convey functionality better
than static icons of the same size [19].

4.2 Animated Transitions
Animated transitions [4,6,10,12,14,18,19,28,32] in interactive
systems are aimed at conveying to the end user a transition between
states, views or scenes, e.g., to foster a smooth progression between
two scenes, menus, widgets [4] or images [19]. Animated
transitions improve feedback on users’ actions, notify display
changes, and improve situation awareness in a distributed
environment.

Animated transitions are subject to a series of potential
shortcomings [4,5,10,14]: they may require more cognitive
workload than static images, they attract the end user’s attention
first, they may cause user distraction, their duration always induce
some lag [4,30], their execution requires additional processing
capabilities, the animated objects should not exceed a certain
threshold. To minimize lag, an animated transition should be fast,
but not too fast, otherwise the end user may completely overlook
the animated transition [10]. Variable speeds can be also considered
to play the transitions [13].
Animated transitions may induce a significantly positive impact on
understanding display changes, whether it is for notifying value
changes in GUI widgets [4], for updated contents in a web page
[31], such as web navigation [17] or for evolving data in a dynamic
display. Different techniques support end users in perceiving and
understanding screen changes, mainly based on animation between
states [19], perhaps supplemented by sound [28].
Mnemonic rendering [7] consists of an image-based technique that
buffers all changes of a fast-changing dynamic display and restitutes
these changes under the end user’s control via a memory jog.
DiffIE highlights web page contents that have been updated since
last visit [31]. A positive value has been demonstrated on how
people interact with the web page and understand their contents, in
particular dynamic ones.
Phosphor widgets [4] rely on afterglow visual effect in order to
leave some visual reminiscence of changes of widgets values (e.g.,
the value change of a slider, the check/uncheck of a check box, a
new selection in a radio box).
Fialho & Schwabe [5] enrich the user experience of web
applications by applying a Rhetoric Structure Theory (RST) as a
way to set the effects presented by animation, as well their sequence
and duration. In order to capture the dynamic aspects of a widget, an
Abstract Widgets Ontology (AWO) was extended to include the
following classes: Transition (for representing a state change),
RhetoricalStructure (for animating a transition or in response to an
event), and Decoration (for animating a widget change). The
Decoration class is further refined into the following elements:
InsertElement (for introducing a new element), RemoveElement
(for removing an element from the destination state),
MatchElements (for matching the parameters of an element in the
current state and another in the destination state), TradeElements
(for performing a transformation of an element in the current state
into another in the destination state), and EmphasizeElement (for
highlighting an action).
Differentiated transitions [28] are animated transitions that support
explaining a process over time in a way that is reflected in the visual
effect. For instance, the transfer time, the network bandwidth, and
the file size are explicitly represented in an animated transition
depicting a file transfer.
RST, respectively Mnemonic rendering, force end users to wait for,
respectively to replay, the display changes, thus inducing some lag
[30]. DiffIE does not induce such a drawback (since the
highlighting is almost instantaneous), nor Phosphor widgets (since
the afterglow effect does not stop user in their tasks). Differentiated
transitions actually animate the task while being executed [28], thus
not representing any hindrance for achieving the end user’s goals.

4.3 Animated Transitions between Views
Most aforementioned techniques apply animated transition only on
one UI view at a time. For instance, Phosphor Widgets and
Differentiated transitions are applied on the external view only.

346

RST [17] is applying animated transitions on two views separately,
but not across views: an abstract UI description of a web page as a
conceptual view and an external view consisting of the web page.
The closest work to UsiView is Gliimpse [14] in which an animated
transition is ensured between an internal view (e.g., HTML) and an
external view (e.g., a web page), but no explicit link with the
conceptual view. In Gliimpse [14], a web form can also be rendered
from its HTML code. In UsiView, an XML representation (i.e.,
UsiXML) is used instead of HTML in order to support
independence between the internal view and the external view since
this XML representation could be obtained from other languages
(e.g., HTML, XForms, XWT, Java classes) via XSLT
transformations. In addition, a mapping mechanism has been
introduced in order to logically define how the animated transition
will be produced. This definition could be modified or could use a
different set of rules for choosing which animated technique should
be selected at run-time.

5. CONCLUSION AND PERSPECTIVES
This paper presented UsiView, a technique supporting animated
transitions between three UI views: conceptual, internal, and
external. The potential benefits of this approach are: reducing the
cognitive load induced by task switching and view switching,
improving the understanding of the impact of one view on
another, reducing the task completion time for simple view editing
actions.

Animated transitions could be used in many different situations:
from one view to another, between coordinated views, when
several levels of abstractions (e.g., in CRF [9]) co-exist, when
transformations are applied between them.

Future work will consider extending the transition types for the
currently supported animated transitions, but also investigate to
what extent different views, possibly of the same type, could be
derived from the same one. For instance, different internal views
could be offered depending on the user level of experience, different
external views from the same internal view could be provided on-
demand. As the software development life cycle progresses, it is
likely that some views will evolve. Therefore, it is also worth to
investigate how to ensure an animated transition from one view
over time in order to provide a visual feedback on view evolution,
similarly to Mnemonic Rendering [7]. For example, an animated
transition between conceptual views, internal views or external
views (defined as loops on views in Section 2) over time could
support the design history. Similarly, reverse engineering
techniques could be investigated to recover an internal or
conceptual view from an external view while explaining how this
reverse engineering technique has produced which result. For
example, when a GUI screen shot is available (an external view), a
conceptual view could be derived from it.

Another way of investigation consists of exploring an animated
transition of some elements at once (e.g., to preview only a group of
elements, not all of them) or only one element at a time (e.g., to
preview the effect of one tag in the internal view on the widgets of
the external view), as opposed to all elements at once as it is today.

6. REFERENCES
[1] Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams,

S. M., and Shuster, J. E., UIML: An Appliance-Independent
XML User Interface Language, in Proc. Of the 8th World
Wide Web Conf. WWW’8 (Toronto, May 11-14, 1999),
Computer Networks, 1999.

[2] Avrahami, G., Brooks, K.P. and Brown, M.H. 1989. A Two-
view Approach to Constructing User Interfaces. In Proc. of
16st Annual Conf. on Computer Graphics and Interactive
Techniques (Boston, 31 July-4 August 1989). SIGGRAPH’-
89. Computer Graphics 23, 3 (July 1989), 137-146.

[3] Baecker, R. and Small, I. 1990. Animation at the interface. In
The Art of Human-Computer Interface Design, B. Laurel, Ed.
Addison-Wesley, New York, 251-267.

[4] Baudisch, P., Tan, D., Collomb, M., Robbins, D., Hinckley,
K., Agrawala, M., Zhao, S., and Ramos, G. 2006. Phosphor:
Explaining Transitions in the User Interface Using Afterglow
Effects. In Proc. of ACM Symposium on User Interface
Software Technology (Montreux, October 15-18, 2006).
UIST’2006. ACM Press, New York, 169-178.

[5] Bederson, B.B. and Boltman, A. 1999. Does Animation Help
Users Build Mental Maps of Spatial Information? In Proc. of
IEEE Symposium on Information Visualization. InfoVis'99.
IEEE Computer Society Press, Los Alamitos, 28-35.

[6] Bladh, T., Carr, D.A., and Kljun, M. 2005. The Effect of
Animated Transitions on User Navigation in 3D Tree-Maps.
In Proc. of the 9th Int. Conf. on Information Visualization.
InfoVis'2005. IEEE Computer Society, Los Alamitos, 297-
305.

[7] Bezerianos, A., Dragicevic, P., and Balakrishnan, R. 2006.
Mnemonic Rendering: An Image-Based Approach for
Exposing Hidden Changes in Dynamic Displays. In Proc. of
ACM Symposium on User Interface Software Technology.
UIST’2006. ACM Press, New York, NY, 159-168.

[8] Brown, J., Graham, T.C.N., and Wright, T.N. 1998. The
Vista Environment for the Coevolutionary Design of User
Interfaces. In Proc. of ACM Conf. on Human Aspects in
Computing Systems. CHI’1998. ACM Press, New York, 376-
383.

[9] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., and Vanderdonckt, J. 2003. A Unifying
Reference Framework for Multi-Target User Interfaces.
Interacting with Computers 15, 3 (June 2003), 289-308.

[10] Chevalier, F., Dragicevic, P., Bezerianos, A., and Fekete, J.-
D. 2010. Using Text Animated Transitions to Support
Navigation in Document Histories. In Proc. of ACM Conf. on
Human Aspects in Computing Systems (Atlanta, April 10-15,
2010). CHI'2010. ACM Press, New York, 683-692.

[11] Clerckx, T., Luyten, K., and Coninx, K. 2004. The mapping
problem back and forth: customizing dynamic models while
preserving consistency. In Proc. of 3rd Conf. on Task models
and diagrams. TAMODIA'2004. ACM Press, NY, 33-42.

[12] Dessart, Ch.-E., Motti, V. G., and Vanderdonckt, J. 2011.
Showing User Interface Adaptivity by Animated Transitions.
In Proc. of 3rd ACM Symposium on Engineering Interactive
Computing Systems. EICS’2011. ACM Press, NY, 95-104.

[13] Dragicevic, P., Bezerianos, A., Javed, W., Elmqvist, N., and
Fekete, J.-D.. 2011. Temporal distortion for animated
transitions. In Proceedings of the 2011 annual conference on
Human factors in computing systems (CHI '11). ACM, New
York, NY, USA, 2009-2018.
DOI=10.1145/1978942.1979233
http://doi.acm.org/10.1145/1978942.1979233

[14] Dragicevic, P., Huot, S., and Chevalier, F. 2011. Gliimpse:
Animating from Markup Code to Rendered Documents and
Vice Versa. In Proc. of 24th ACM Symposium on User
Interface Software and Technology. UIST’2011. ACM Press,
New York, 257-262.

347

[15] Gonzalez, C. 1996. Does animation in user interfaces
improve decision making? In Proc. of ACM Conf. on Human
Aspects in Computing Systems (Vancouver, April 13-18,
1996). CHI'1996. ACM Press, New York (1996), pp. 27-34.

[16] Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, J.,
Kennedy, J.B., Gray, P.D., Cooper, R., Goble, C.A., and
Pinheiro da Silva, P. 2011. Teallach: a model-based user
interface development environment for object databases.
Interacting with Computers 14, 1, 31-68.

[17] Fialho, A.T.S. and Schwabe, D. 2007. Enriching Hypermedia
Application Interfaces. In Proc. of 7th Int. Conf. on Web
Engineering (Como, July 16-20, 2007). ICWE'2007. LNCS,
Vol. 4607. Springer, Berlin, 188-193.

[18] Heer, J. and Robertson, G. 2007. Animated Transitions in
Statistical Data Graphics. IEEE Transactions on
Visualization and Computer Graphics 13, 6 (Nov. 2007),
1240-1247.

[19] Huhtala, J., Sarjanoja, A.-H., Mäntyjärvi, J., Isomursu, M.
and Häkkilä, J. 2010. Animated UI transitions and perception
of time: a user study on animated effects on a mobile screen.
In Proc. of ACM Conf. on Human Aspects in Computing
Systems. CHI'2010. ACM Press, New York, 1339-1342.

[20] Kazuo Misue, Peter Eades, Wei Lai, Kozo Sugiyama. 1995.
Layout Adjustment and the Mental Map. J. Vis. Lang.
Comput. 6(2): 183-210.

[21] Limbourg, Q. and Vanderdonckt, J. 2004. Addressing the
Mapping Problem in User Interface Design with UsiXML. In
Proc. of 3rd Int. Workshop on Task Models and Diagrams
for user interface design (Prague, November 15-16, 2004).
Tamodia’2004. ACM Press, New York, 155-163.

[22] Mackinlay, J. 1986. Automating the Design of Graphical
Presentations of Relational Information. ACM Transactions
on Graphics 5, 2 (April 1986), 110-141.

[23] Mirlacher, T. 2011. Modeling Animations for Dependable
Interactive Applications. In Proc. of 3rd ACM Symposium on
Engineering Interactive Computing Systems (Pisa, June 13-
16, 2011). EICS'2011. ACM Press, New York, 319-322.

[24] Montero, F., López-Jaquero, V., Vanderdonckt, J., Gonzalez,
P., Lozano, M.D., and Limbourg, Q. 2005. Solving the
Mapping Problem in User Interface Design by Seamless
Integration in IdealXML. In Proc. of 12th Int. Workshop on
Design, Specification, and Verification of Interactive
Systems. DSV-IS'2005. LNCS, Vol. 3941, Springer, Berlin,
161-172.

[25] Puerta, A.R. and Eisenstein, J. 1999. Towards a General
Computational Framework for Model-Based Interface
Development Systems. In Proc. of ACM COnf. on Intelligent
User Interfaces. IUI'1999. ACM Press, New York, 171-178.

[26] Puerta, A. R. and Eisenstein, J. 2002. XIML: a common
representation for interaction data. In Proceedings of the 7th
international conference on Intelligent user interfaces (IUI
'02). ACM, New York, NY, USA, 214-215.
DOI=10.1145/502716.502763
http://doi.acm.org/10.1145/502716.502763

[27] Robertson, G.G., Mackinlay, J.D., and Card, S.K. 1991.
Information visualization using 3D interactive animation. In
Proc. of the ACM Conf. on Human factors in computing
systems. CHI’1991. ACM Press, New York, 461-462.

[28] Schlienger, C., Dragicevic, P., Ollagnon, C., and Chatty, S.
2006. Les transitions visuelles différenciées : principes et
applications. In Proc. of 18th Int. Conf. of the Association
Francophone d'IHM (Montréal, April 18-21, 2006).
IHM’2006. ACM Int. Series, Vol. 133. ACM Press, 59-66.

[29] Stary, Ch. 2000. TADEUS: seamless development of task-
based and user-oriented interfaces. IEEE Transactions on
Systems, Man, and Cybernetics, Part A 30, 5, 509-525.

[30] Stasko, J. 1993. Animation in User Interfaces: Principles and
Techniques. In Proc. of User Interface Software '93, 81-101.

[31] Teevan, J., Dumais, S.T., Liebling, D.J., and Hughes, R.
2010. A Longitudinal Study of How Highlighting Web
Content Change Affects People's Web Interactions. In Proc.
of ACM Conf. on Human Aspects in Computing Systems.
CHI'2010. ACM Press, New York, 1353-1356.

[32] Thomas, B.H. and Calder, P. 2001. Applying Cartoon
Animation Techniques to Graphical User Interfaces. ACM
Trans. on Computer-Human Interaction 8, 3 (Sept. 2001),
198-222.

[33] Vanderdonckt, J., Limbourg, Q., Michotte, B., Bouillon, L.,
Trevisan, D., Florins, M., UsiXML: a User Interface
Description Language for Specifying Multimodal User
Interfaces, in Proc. of W3C Workshop on Multimodal
Interaction WMI'2004 (Sophia Antipolis, 19-20 July 2004).

[34] von Pilgrim, J. and Duske, K. 2008. GEF3D - a Framework
for Two-, Two-and-a-Half-, and Three-Dimensional
Graphical Editors. In Proc. of the 4th ACM Symposium on
Software Visualization. SoftVis'08. ACM Press, New York,
95-104.

[35] W3C. SMIL Animation, W3C Recommendation 04-
September-2001http://www.w3.org/TR/smil-animation/

[36] XWT (XML Window Toolkit). Available at: www.xwt.org.

348

