
The Comets Inspector: Towards Run Time Plasticity
Control based on a Semantic Network

Alexandre Demeure1, Gaëlle Calvary1, Joëlle Coutaz1, Jean Vanderdonckt1,2
1Université Joseph-Fourier

CLIPS-IMAG, BP 53,
F-38041 Grenoble Cedex 9 (France)

Phone: +33 4 76 51 48 54 – Fax: +33 4 76 44 66 75
{Alexandre.Demeure, Gaelle.Calvary,

Joelle.Coutaz}@imag.fr

2School of Management, Univ. catholique de Louvain
Place des Doyens, 1

B-1348 Louvain-la-Neuve (Belgium)
Phone: +32 10 478525 – Fax: +32 10 478324

jean.vanderdonckt@uclouvain.be

ABSTRACT
In this paper, we describe the Comets Inspector, a software tool
that is intended to provide end users (yet, designers and/or devel-
opers) with a semantic network in order to control the plasticity of
their User Interfaces (UI) at run-time. Thanks to a set of prede-
fined relationships, the semantic network links together various
concepts ranging from the final UI (i.e. in terms of available tech-
nological spaces) to the concrete UI (i.e., in terms of concrete in-
teraction objects independent of any technological space), to the
abstract UI (i.e., in terms of abstract individual components and
containers independent of any interaction modality) up to the
tasks and concepts of the interactive system. In this way, plastic-
ity can be addressed at each of the four levels of abstraction for
forward, reverse, and lateral engineering. The end user exploits
the network at run-time to adapt her UI to another context of use
by identifying, selecting, and applying plasticity suitable opera-
tions.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Computer-aided software engineering (CASE), Evolutionary pro-
totyping, Structured Programming, User Interfaces. H.5.2 [In-
formation Interfaces and Presentation (e.g., HCI)]: User inter-
faces – Graphical user interfaces, Interaction styles, Input devices
and strategies, Prototyping, Windowing systems. I.3.6 [Computer
Graphics]: Methodology and Techniques – Device independence.

General Terms
Algorithms, Design, Human Factors, Standardization, Languages.

Keywords
Abstract user interface, Active model, Ambient intelligence,
Comet, Concrete user interface, Model-based approach, Plasticity,
Task modeling, User interface eXtensible Markup Language.

1. INTRODUCTION
In an ever-changing world, end users of interactive systems are
constantly demanding a higher level of adaptation of their User

Interfaces (UI) to fit their purpose and better address their needs
and wishes. The wide availability of different computing plat-
forms makes this desire even stronger as the aspiration for execut-
ing the same interactive system on these different platforms is ex-
pressed, while minimizing the changes in the UI across these plat-
forms. In these circumstances, the notion of plasticity plays a fun-
damental role as it denotes the “capacity of a UI to withstand
variations of contexts of use while preserving predefined usability
properties” [2]. Supporting plasticity is more sophisticated than
merely ensuring UI adaptation. Any kind of UI adaptation always
induces some disruption from the end user’s point of view as parts
or whole of the UI may change during adaptation. Simple adapta-
tion does not necessarily guarantee any level of quality. In con-
trast, plasticity aims at maintaining a certain level of usability by
explicitly addressing the evolving context of use in which the user
is carrying out his/her interactive task. By context of use [2], we
hereby refer to the combination of a user U working with a plat-
form P in a given physical environment E: C = <U,P,E>. Al-
though the adaptation in general and the plasticity in particular
both consider the three aspects of this context definition, it is
noteworthy to observe that the P aspect is the most frequently and
extensively researched area (among them are [3,4,6,8,9,11,14-
18,20]): the platform is probably the facet which affects the UI
the most immediately and concretely. This is challenging since a
UI which was designed for a given platform in mind may no
longer fit another one with extended or reduced interaction capa-
bilities if they were not considered before.

The premises for supporting any form of plasticity are twofold:
first, the availability of any valuable information on the context of
use that may influence the UI adaptation, and secondly, the rela-
tionships between this contextual information and the reshuffled
UI (remolded and/or redistributed) for that context. The Model-
Based UI Development (MB-UIDE) community typically ad-
dresses the former aspect by context modeling [2,4,14,17,20] en-
riching task and system modeling [6,15], whereas for the latter,
the problem is often characterized as a mapping problem between
the models [3,10,12,19]. Thanks to the combination of context
modeling and a technique for solving the mapping problem, it is
possible to adapt the UI presentation, dialog and/or deployment in
response to change of the context of use [13].

Three significant moments exist in the literature when this combi-
nation occurs depending on the time when the models and their
relationships are used: at design time to foresee future plastic UI,
at installation time to take into account the current context of use
(especially the platform that is foreseen at that time), and at run
time to take into account contextual information which is known

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
TAMODIA’06, October 23–24, 2006, Hasselt, Belgium.
Copyright © 2006 ACM 1-58113-000-0/00/0004…$5.00.

only at that time. Most recent works are devoted to design and in-
stallation time. The few works dedicated to run time are mostly
addressing plasticity at the concrete UI level where only the UI
look and feel is changed.

In this paper, we present a software tool which goes beyond this
situation by supporting plasticity at run time at any level of ab-
straction (ranging from the final UI to the task and the domain)
thanks to a semantic network that solves the mapping problem in
a more elaborated way than existing techniques. To prove this,
Section 2 summarizes the current trends in design- and installa-
tion-time plasticity, and identifies the most recent advances in
run-time plasticity so as to locate this work as a next step in the
progress. Section 3 provides a general definition of the semantic
network that is used throughout this paper and illustrates it with
an excerpt centered on the task type of choice. It exemplifies the
case study along with a series of plasticity questions which can be
addressed thanks to this network, and that cannot be addressed by
existing systems. Section 4 presents the Comets Inspector, a soft-
ware that exploits this network at run-time. Section 5 concludes
the paper by highlighting the strengths and the shortcomings of
the current version of the system and introduces new families of
UIs with even a higher level of plasticity to be researched in the
future.

2. RELATED WORK
FormsVBT [1] pioneered the field of plasticity at design time by
providing the UI designer with three views: a view on TeX-based
UI specifications, a view on the UI presentation and dialog, and a
view on the final UI. These three views are coordinated: any
change brought in one view is automatically reflected in the oth-
ers, thus providing the end user with a mean to directly validate or
invalidate a UI crafted for a specific platform.

The Graceful Degradation plug-in [8] for GrafiXML editor
(www. usixml.org) provides UI designers with a series of trans-
formations to be manually applied on a UI tailored for an initial
platform. The resulting UI should be adapted to a computing plat-
form exhibiting reduced interaction capabilities, especially a
smaller resolution or reduced widgets set.

The Context Toolkit [4] embeds multiple widgets compositions in
one single widget with plasticity capabilities. This system is still
design time: although the appropriate UI composition is selected
at run time, the available compositions are pre-computed at de-
sign time. The system only switches from one composition to an-
other depending on the changes of the context of use. This obser-
vation is similar for the Ubiquitous Interactor [16], the vocabulary
of Generic Widgets found in [18], and the ADUS system [14].

For plasticity at installation time, in AUI [20], the UI is also
shipped with different compositions which are selected when the
interactive application is installed on a particular platform. In the
same vein, TERESA [17] automatically generates multiple UIs for
multiple platforms, but one UI is used at a time for each platform
considered. TERESA also supports some plasticity by achieving
transmodality, i.e. a change of modality after a platform change.

For plasticity at run time, [11] presents an algorithm for repurpos-
ing a UI layout depending on its container dimensions. An inter-
esting feature consists in its animation of the adaptation process.
ARNAULD [9] is relying on games theory for eliciting the most
preferred UI at run time. It is based on SUPPLE, a system which

automatically generates a UI layout based on weights of its con-
tents. ARNAULD shows very interesting plasticity questions such
as widget substitution, layout reshuffling and re-portraiting. In
this paper, we will show that the Comets Inspector supports more
sophisticated forms of what we will define as plasticity questions.

Puerta & Eisenstein [19] defined a computational framework for
managing relationships within and across the various models
(e.g., the task, the domain, the abstract UI, the concrete UI, the
system, the context) to solve the mapping problem. Teallach [10]
is probably the first implementation of this framework, although it
is not targeted at plasticity, but merely UI development. Since
then, several attempts have been made to expand this form of
plasticity, as in [3] for ambient intelligence and in [12] for multi-
platform UIs. The predefined usability involved in the plasticity
in [3] is the consistency, while it is the UI guidance in [12].

All the aforementioned efforts to support plasticity involve some
form of information on the context of use (usually in a context
model) and some ways to infer a UI from this context (typically
as a system of inference rules, as a knowledge base, as a set of
transformations). Next section introduces our semantic network,
our new approach to condensate UI design knowledge captured at
design-time, but to be exploited at run-time.

3. A SEMANTIC NETWORK FOR RUN-
TIME PLASTICITY
This section provides a general definition of a semantic network
(3.1). It is then applied to plasticity (3.4) based on concepts and
relationships (3.3) defined in the CAMELEON reference framework
(3.2). The section concludes with plasticity questions that are
covered by the approach (3.5).

3.1 General Definition
Sowa [21] defines a semantic network as “a graphic notation for
representing knowledge in patterns of interconnected nodes and
arcs. Computer implementations of semantic networks were first
developed for artificial intelligence and machine translation, but
earlier versions have long been used in philosophy, psychology,
and linguistics”. Each semantic network may exhibit one or many
of the following dimensions [21]:
• Definitional networks emphasize the subtype or "is-a" relation

between a concept type and a newly defined subtype. The re-
sulting network, also called a generalization or subsumption
hierarchy, supports the rule of inheritance for copying proper-
ties defined for a supertype to all of its subtypes.

• Assertional networks are designed to assert propositions.
Unlike definitional networks, the information in an assertional
network is assumed to be contingently true, unless it is explic-
itly marked with a modal operator.

• Implicational networks use implication as the primary relation
for connecting nodes.

• Executable networks include some mechanisms, such as
marker passing or attached procedures, which can perform in-
ferences, pass messages, or search for patterns.

• Learning networks build or extend their representations by
acquiring knowledge from examples.

By defining the concepts and relationships appropriate for UI
plasticity (3.3), we argue that our semantic network combines the
five above dimensions. Concepts and relationships for plasticity
are based on the CAMELEON reference framework.

3.2 CAMELEON Reference Framework
The CAMELEON Reference Framework (www.plasticity.org) struc-
tures the development life cycle of multi-target UIs according to
four levels: (1) the Final UI (FUI) is the operational UI, i.e. any
UI running on a particular platform either by interpretation (e.g.
through a Web browser) or by execution (e.g., after the compila-
tion of code in an interactive development environment); (2) the
Concrete UI (CUI) expresses any FUI independently of any term
related to a peculiar rendering engine, that is independently of any
markup or programming language; (3) the Abstract UI (AUI) ex-
presses any CUI independently of any interaction modality (e.g.,
graphical, vocal, tactile) via the mechanisms of Abstract Interac-
tion Objects (AIO) [22] as opposed to Concrete Interaction Ob-
jects (CIO) for the CUI; and (4) the Task & Concept level, which
describes the various interactive tasks to be carried out by the end
user and the domain objects that are manipulated by these tasks.
We refer to [11] and to www.usixml.org for its translation into
models uniformly expressed in the same User Interface Descrip-
tion Language (UIDL), selected to be UsiXML (which stands for
User Interface eXtensible Markup Language). In Figure 1, two
contexts of use are represented with the possibility of moving
from one context to another one through three relationships: ab-
straction, reification and translation for respectively reverse, for-
ward and lateral engineering.

Environment T

Final user
Interface T

Concrete user
Interface T

Task and
Domain T

Abstract user
Interface T

T=Target context of use

Concrete user
Interface S

Final user
Interface S

Task and
Domain S

Abstract user
Interface S

S=Source context of use

Reification

Abstraction

Reflexion

Translation

http://www.plasticity.org

UsiXML
unsupported

model

UsiXML
supported

model

User S Platform S Environment S Platform TUser T Environment TEnvironment T

Final user
Interface T

Concrete user
Interface T

Task and
Domain T

Abstract user
Interface T

T=Target context of use

Concrete user
Interface S

Final user
Interface S

Task and
Domain S

Abstract user
Interface S

S=Source context of use

ReificationReification

AbstractionAbstraction

ReflexionReflexion

TranslationTranslation

http://www.plasticity.org

UsiXML
unsupported

model

UsiXML
supported

model

User S Platform SPlatform S Environment SEnvironment S Platform TPlatform TUser T

Figure 1. The four levels of the CAMELEON Framework.

3.3 Concepts and Relationships for Plasticity
The concepts are those that are involved at each level of the
CAMELEON reference framework (Fig. 1), which can be found in
UsiXML (www.usixml.org): the “task & domain” level manipu-
lates a task model (which consists of a recursive decomposition of
a task into sub-tasks ordered with temporal relationships) and a
domain model (which consists of a UML class diagram). In
UsiXML, each task is associated with a task type: acquire, con-
vey, select, navigate, compute, print, publish, etc. The task type is
associated to an attribute, a group of attributes, or a class in the
domain model. Therefore, the data type and the definition of the
domain and co-domains are inferred from the domain model.

At the AUI level, any AUI consists of a decomposition of Ab-
stract Containers into Abstract Individual Components (AIC).
Each AIC exhibits one or many facets among input, output, con-
trol, etc. For instance, a task “select the value of an attribute”
could be mapped onto an AIC “input an element from a collec-
tion”.

At the CUI level, the AUI is reified into Concrete Containers and
Concrete Interaction Objects satisfying the constraints imposed by
the AUI. In our example (“input an element from a collection”),
any CIO matching the AIC could work, such as a list box, a
combo box, a radio box.

The concepts of the network are structured with multiple types of
relationships such as inheritance, aggregation, composition, etc.
The relationships themselves are arranged in an inheritance hier-
archy, as presented in Fig. 2. Therefore, the semantic network is
represented as a graph (i.e. a set of nodes and edges between the
nodes), whose nodes represent fragments of models appearing at
any level of abstraction and edges consist of transformation be-
tween nodes. The transformations represent a key aspect of ex-
ploiting UI design knowledge [19].

Figure 2. Inheritance hierarchy between the relationships.

The transformations are the following ones:
• Inheritance. y inherits from x if y refines x. The relation can

be total versus partial, exclusive versus non exclusive. Total
means that x can not be further refined, i.e. if y and z refine x
in a total way then x can not be refined by another t. Exclu-
sive means that, if y and z refine x in an exclusive way, then
there is no t that can inherit from both y and z.

• Restriction. Restriction refers to cuts that make of y a sub-
case of x. As a result, y and x are no more substitutable. One
example is the type restriction.

• Specialization. Specialization refers to inheritance that pre-
serves properties. If y specializes x then y satisfies all the
properties of x. As a result, y can be seen as an x making it
substitutable to x.

• Extension. y extends x if y adds new descriptions to x, but x is
still an X. This kind of inheritance is always partial.

• Concretisation. Concretisation refers to reification (Fig. 1). y
concretises x if y adds more concrete descriptions to x. x is not
changed.

• Implementation. Whatever x is except an FUI, y is an FUI cor-
responding to x.

• Composition. y is part of x if y is included as is in x. y can be
seen as a subsystem of x. Mappings between x and y are
weaved.

• Encapsulation. Encapsulation means that y is embedded in x.
y does no more live for itself.

• Use. Conversely to encapsulation, if y is used in x, then y still
exists.

• Abstraction and reification are two other kinds of transforma-
tions. They are defined accordingly to Fig. 1.

Based on these concepts and relationships, next section presents a
semantic network for plasticity.

3.4 The Semantic Network for Plasticity
For legibility, this subsection focuses on an excerpt of the entire
semantic network: the portion related to the “Choice” task type
(Fig. 3). We have selected this portion because many interactive
systems involve some form of choice among items, objects,
menus, actions, etc. In addition, the available widgets set for im-
plementing a choice is wide: list box, drop-down list, combination
box, drop-down combination box, radio button, check box, etc. In
addition to these typical widgets, specialized widgets exist too:
fast scrolling list box, accumulator, pie menu, season selector,
calendar, etc. Usually, usability guidelines convey information to
the designer on how to choose, format, and implement a choice
widget in a UI. But this knowledge remains always subject to
human interpretation and is never provided in an explicit, exploit-
able way. Our semantic network tackles this problem.
As illustrated in Fig. 3, the semantic network collects descriptions
of a same entity (here the “Choice”) in a same schema and makes
explicit the relationships between them. The concepts and rela-
tionships are those that have been elicited in subsection 3.3. For
legibility, the level of abstraction to which the descriptions belong
is indicated by colors and labels: TC for Task&Concepts, AUI,
CUI, FUI.
A description is provided for each node. For instance, at the TC
level, the task “Choice in a known set” (of elements) makes ex-
plicit that:

• It manipulates elements of a given type TYPE;
• Elements can be chosen in a set of possible elements

(S_poss);
• The selected elements are stored in a set of effective ele-

ments (S_eff);
• The number of selected elements can vary between a mini-

mum (min) and a maximum (max);
• And of course (constraints part), S_eff is a subset of S_poss

and the number of effective elements is comprised between
the min and max values.

The task “Choice a month” is a restriction of “Choice in a known
set” as the type of the elements is constrained to be a month (see
the constraint “Type=MONTH” in Fig. 3). A round FUI is pro-
vided as an example of implementation (“TK torus month
chooser”). It is interesting to note that this FUI is an implementa-
tion of both “Choice a month” and “Simple choice” tasks. They
are both restrictions of “Choice in a known set” (of elements).
“Choice a month” is a restriction along the type of elements,
whereas “Simple choice” restricts the number of selectable ele-
ments (see the constraint min=max=1).

“Choice in a known set” of elements can be specialized in many
ways: for instance accumulators (“Accumulator”), and interleav-
ing and markers (“Choice by ||| and marks”). For legibility, accu-
mulators are not described in Fig. 3. They are typically concre-
tized as two lists exchanging elements according to the user’s se-
lection. Fig. 3 develops the interleaving and markers specializa-
tion. A marker is a Boolean that indicates whether the correspond-
ing element is selected (true) or not (false). Markers are managed
by interleaving. Scrollable list boxes are typical concretizations
(Fig. 3): the scrollbar corresponds to the interleaving, whereas the
highlighting color corresponds to the marker (true). Two TK im-
plementations are provided in Fig. 3. Check boxes are another op-
tion, whereas radio buttons would concretize both “Choice by |||

and marks” and “Simple choice”.

At the AUI level, interleaving (“|||”) is concretized as a dialog
space (“||| dialog level”) managing the elements that are inter-
leaved. One dialog space is associated per element. They are
nested in the interleaving dialog space. Two specializations are
mentioned whether there is or not a navigation between the inter-
leaved dialog spaces (“||| with navigation”, “||| without naviga-
tion”). By navigation, we mean articulatory user’s actions that do
not directly contribute to the user’s task but that are necessarily to
access to the dialog spaces in which the user will perform his/her
task. For instance, opening a menu is an articulatory task. One
CUI with navigation is provided (Fig. 3): the user has to deploy
the menu before achieving his/her task. This CUI contrasts with a
linear, grid, scattering or pie interleaving that directly makes ob-
servable all the dialog spaces: no navigation is required (Fig. 3).

As pointed out in Fig. 3, interleaving with navigation (“||| with
navigation”) can be specialized in many ways. Three variants are
mentioned:

• Sequence (“||| sequence”): the possible elements are browsed
in a sequential way. The scroll list is a typical CUI example;

• Sequential access (“||| sequential access”): the possible ele-
ments are browsed in sequential way, parcel by parcel, what-
ever the size of the parcel is (i.e., the number of elements
that are browsed step by step). Roughly speaking, it is not
possible to switch from X to X+2 without first displaying
X+1. The scroll list is an implementation too;

• Monospace (“||| monospace”): only one dialog space is ob-
servable at a time. An example of FUI is provided in Fig. 3.

Besides this organized capitalization of knowledge, the semantic
network promotes creation through composition. Composition is
supported as a Cartesian product. It is for instance possible to
combine any specialization of interleaving with any specialization
of marker to create new interactors that had never been seen in the
past. This is powerful for exploring new possibilities at design
and/or run time: for instance, what about a monospace multiple
choice with highlighters?

Now that the principles of the semantic network have been
roughly introduced, let us examine how it can help in designing or
plastifying UIs. Exploitation may be driven by strategies, such as:

• “Select the existing FUI that is the most compliant with the
functional requirements”. That means that producing FUIs
manually or automatically is not an option. An existing FUI
has to be selected. In that case, only three FUIs are available:
the TK torus month chooser and the two TK scrollable list
boxes. Again, for legibility, all the existing widgets support-
ing the “Choice” task have not been mentioned on Fig. 3.

• “Identify the element that map the best with all the func-
tional and non functional requirements and if necessary gen-
erate an FUI from that point”. Of course, the new FUI will be
inserted in the network at the right place to enrich the knowl-
edge for further designs and/or adaptations.

• “Prefer general purpose widgets” such as list box, combo
box, pie menu that serve the simple choice with no restric-
tion. As they are less exotic, they are probably more familiar
to the user.

Next section elaborates on the relevance of the semantic network
for solving plasticity questions.

Eff Poss

Spec

|||

Marks *

Cont *

Choice in a known set
 Type: a TYPE
 S_poss: set of Type
 S_eff: set of Type
 min, max : Integer
Constraints:
 S_eff ⊆ S_poss
 #S_eff ∈ [min; max]
User Task:
 Specify S_eff

Choice in a partially known set
 If Specifyer.TaskDone() then
 Choice.S_eff U= {Specifyer.elmt}
Constraints:
 Spec().Type = Choice().Type

Specifyer
 Type: a TYPE
 elmt: Type
Task:
 Specify elmt

Is composed of
Simple choice
 Constraints:
 min = max = 1

Restriction of
partial/non exclusive

Choice a month
 Constraints:
 Type = MONTH

Accumulator
 Constraints:
 Eff().Type = Poss().Type
 Eff().S_poss = S_eff
 Poss().S_poss = S_poss\S_eff
 If Poss().TaskDone() then
 L_eff U= Poss().L_eff
 If Eff().TaskDone() then
 L_eff() \= Eff().L_eff

Specializes
partial/exclusive Encapsulates

Choice by ||| and marks
 Constraints:
 ∀m:Marks() • m.Type = Bool
 #Marks() = #L_poss
 U{m:Marks() |
 m.Value = true
 • m.Obj} = L_eff
 U{m:Marks() |
 m.Value = false
 • m.Obj} = L_poss \ L_eff
 |||().S_IS = Marks()

|||
 S_IS: set of OBJECT

Extends

Encapsulates

Marker
 Type: a TYPE
 Value: TYPE
 Obj: OBJECT

Concretizes
partial/non exclusive

||| without navigation

||| Dialog level

Constraints:
 DS = {c:Cont() • c.DS}
 ∀is:S_IS • (∃c:Cont() | c.S_IS = {is})
 ∀c:Cont() • (∃is:S_IS | c.S_IS = {is})

|||

 DS0 DSi

 DS0 DSi

|||

||| with navigation

 DS0 DSi

|||

Cond

||| monospace
Constraints:
 Cond #{i:Integer|DSi.active}=1

Specializes
total / exclusive

Specializes
partial / non

exclusive

||| sequence
Constraints:
 Cond ¬∃i1,i2,i3:Integer | i1<i2<i3
 • DSi1.active ∧ ¬DSi2.active ∧ DSi3.active

||| sequential access
Constraints:
 Cond ¬∃i:Integer | DSi.active at t

• ¬DSi.active at t-1
∧ ¬DSi-1.active at t-1
∧ ¬DSi+1.active at t-1

Container
S_IS : set of OBJECT

Container Dialog level

Constraints:
 Represents(DS, S_IS))

DS

Concretizes
total/exclusive

Encapsulates

TC

AUI

TK torus month
chooser

Scrollable
monospace

Implements
partial / non

exclusive

TK Scrollable listbox

TK Scrollable listbox

Scattering |||

Scrollable listbox

Constraints
 Typeof(|||) = ScrollList
 ∀m : Marks() •
 typeof(m) = Hignlighter

Linear |||

Matricial |||

A SPACE name

A SPACE

A SPACE name

A SPACE

ScrollList

Pie |||

Implements
partial / non

exclusive

CUI

FUI

Concretizes
partial / non

exclusive

Concretizes
partial / non

exclusive

Concretizes
partial / non

exclusive

Concretizes
partial / non

exclusive

Concretizes
partial / non

exclusive

Concretizes
partial / non

exclusive

Figure 3. Excerpt of the semantic network for the “Choice” case study.

3.5 Covered Plasticity Questions
Since plasticity is a particular form of adaptation, it is equally
submitted to the problems to be solved by adaptation. The main
goal of performing some adaptation consists in defining an adap-
tation goal, identifying and executing adaptation rules in order to
reach the adaptation goal. The literature abounds in providing ad-
aptation rules, but seems more silent in defining properly adapta-
tion goals by linking them to adaptation rules which could be exe-
cuted for this purpose. Similarly, it is expected here to uncouple

the adaptation goals from the adaptation rules. Therefore, we de-
fine a plasticity question Q as a couple Q = (G, S) where G de-
notes a plasticity goal to reach when performing the plasticity and
S denotes a set of plasticity solutions which are potential actions
to be executed to reach the plasticity goal. Let us assume that a
plasticity goal would be to migrate a graphical UI from a desktop
to a PDA. The reduced screen real estate of the PDA stems for
trying to reduce the surface of UI widgets, a possible solution
among others. For instance, “a list box could be turned into a

drop-down list”, “a radio box of radio items could be transformed
into a drop-down list” are two possible plasticity solutions. The
main shortcoming observed in the state of the art is that the set S
is usually defined in extension by hard-coding opportunistic plas-
ticity solutions in the adaptation engine, thus leaving little or no
room for flexibility and modifiability. In this paper, the definition
of S is given in comprehension so that the definition of plasticity
questions remains unchanged: any extension of the semantic net-
work will be automatically incorporated in the related plasticity
questions.

A plasticity question is said to be simple, respectively composite,
if and only if its goal G involves concepts and relationships of at
most, respectively at least, one level of the CAMELEON reference
framework (Fig. 1).

Since a FUI plasticity question only refers to elements of techno-
logical spaces, a restriction of the questions to be addressed is im-
posed. For instance, the plasticity goal “transcode a form from
HTML to Java” is decomposed into similar sub-goals for all con-
stituents of the form, such as “transcode a SELECT element from
HTML into its counterpart in Java”. If XUL is the target lan-
guage, the goal becomes “transcode a SELECT element from
HTML into its counterpart in XUL”. To solve this question, the
mappings between counterpart elements in various technological
spaces are required. In terms of the semantic network, the plastic-
ity solution consists of an abstraction of the SELECT element fol-
lowed by a reification in the target platform, which is expressed
as:

S = { reic-f (absf-c (SELECT, HTML), Java) }

where reic-f denotes the reification from CUI to FUI, absf-c denotes
the abstraction from FUI to CUI. If the previous plasticity goal is
extended up to the CUI level, it would give “abstract a SELECT
element from HTML into a CUI”, a platform agnostic goal which
is expressed as:

S = { absf-c (SELECT, HTML) }

If the previous plasticity goal is extended up to the AUI level, it
would give “abstract a SELECT element from HTML into a
AUI”, a modality agnostic goal which is expressed as:

S = { absc-a (absf-c (SELECT, HTML)) }

where absc-a denotes the abstraction from CUI to AUI. If the pre-
vious plasticity goal is extended up to the TC level, it gives “ab-
stract a SELECT element from HTML into a task and domain”, a
computing independent goal which is expressed as:

S = { absa-tc (absc-a (absf-c (SELECT, HTML))) }

where absa-tc denotes the abstraction from AUI to TC.

The original plasticity question in natural language could be gen-
eralized as “Give me the equivalent of this widget of this techno-
logical space in another space” (S = {reic-f (absf-c (SELECT,
HTML), X)}) where X denotes any technological space. If this
widget is itself composed of other sub-widgets, the plasticity solu-
tion is recursively addressed. For instance, if a group box is com-
posed of a group and a series of radio items, the plasticity solution
is queried on the semantic network on the sub-nodes.

Other typical plasticity questions involve: “Give me all the possi-
ble reifications of this CIO for any technological space”, or “for

the X technological space”, “Give me the abstraction of this
CIO”, “Give me the possible reifications of this AIO satisfying
this property”, “Give me the behaviorally-equivalent widgets in
the same technological space corresponding to a given widget”,
“Give me a modality-equivalent CIO of this CIO”, “Give me any
equivalent CIO of this CIO independently of any modality”,
“Give me a browsable version of this observable interaction com-
ponent”, “Give me all the possibilities for implementing a simple
choice”.

Next section introduces a small case study that takes benefit from
the semantic network at runtime to solve few of these questions
under the control of the end user.

4. A CASE STUDY: THE COMETS IN-
SPECTOR
The Home Heating Control System (HHCS) allows the user to
manage the temperature at home depending on the month. In an
interleaving way, the user selects the month and controls the tem-
perature of the different rooms. They are here limited to the living
room and the wine cellar (Fig. 4). HHCS has been implemented in
COMETS (COntext Mouldable widgETs). COMETS are interactors
specially fashioned for plasticity [2]. A COMET is “a self descrip-
tive interactor that publishes the quality in use it guarantees for a
set of contexts of use. It is able to either self-adapt to the current
context of use, or be adapted by a tier-component. It can be dy-
namically discarded, respectively recruited, when it is unable, re-
spectively able, to cover the current context of use” [2].

a)

b)

(c)

Figure 4. A set of FUIs obtained by tuning the interleaving

comet. Detachable windows are easily implemented thanks to
comets.

HHCS is made of four major comets:

• One for each user’s task (“choose a month”, “control living-
room” and “control wine cellar”). Each comet recursively
embeds (encapsulates) other comets for both guiding the task
(e.g., the label “Select a month”) and sustaining interaction
(e.g., the list boxes and sliders on Fig. 4a).

Figure 6. Based on the semantic network, the comets inspector (left window) provides the user (designer and/or end-user) with a

set of operations that can be applied to the interactive system (the two right windows) for its design and/or adaptation.

• One for the interleaving. This comet is in charge of managing
the three previous ones (they are nested in this comet). De-
pending on the layout (Fig. 4 a and b) and whether the em-
bedded containers are displayed as frames (Fig. 4 a and b) or
windows (Fig. 4c), the rendering is updated, possibly imple-
menting detachable windows (Fig. 4c).

In our approach, adaptation is placed under the control of the end
user (yet the designer only because of a too poor quality of the
tool’s UI). A COMETS inspector [5] supports the inspection of the
UI and its modification thanks to the support of the semantic net-
work. The TK torus month chooser has been selected in Fig. 5.

Figure 5. The torus presentation for selecting one month.

Only basic operations (i.e., Add, Remove and Substitute) are sup-
ported yet, for instance enabling the end-user to substitute one
FUI with another one. Fig. 6 shows the inspector (the left win-
dow). It displays the hierarchy of comets (left part). A zoom in
the selected one is provided (central part). The performable opera-
tions are listed in the right part according to the freedoms lever-
aged by the semantic network. On Fig. 6, the user is being to
switch from a window-based to a frame-based presentation for the
“control living room” comet. This will have the effect of re-
attaching the living-room window to the main HHCS window.

Actually, the semantic network is outside the comets. We envi-
sion to embed local semantic networks in the comets to support a
mix of open and close adaptations.

5. CONCLUSION
First of all, it is important to emphasize that the semantic network
defined in this paper is independent from its exploitation through
the Comets Inspector: whether you are using a Comet-compliant
system [2] or not, it does not matter and it does not change the
structure of concepts. The network structures the concepts
throughout the four levels of the CAMELEON Reference Frame-
work, thus enabling us to address plasticity questions at run time
with an unprecedented level of flexibility and exploitation. The
plasticity can now be based on the task and the concepts models.
Since the network is exploited at run time to address the plasticity
question requested by the end user, genuine run time plasticity
could be achieved. The Comets Inspector is just one implementa-
tion of a software which accesses this network and performs the
desired operations. In the example provided, the task type was
predefined (here, a choice). We could even imagine that this task
type is provided at run time by the end user by asking “what task
do you want to carry out on this object?”. The user could then be
presented by a series of options like “Insert an object, delete an
object, list existing objects, select an object among several (our
example)”. This is compliant with the CRUD pattern (Create-
Read-Update-Delete) design pattern usually found in the UML
method and notation. Therefore, the design knowledge that is con-
tained in the semantic network remains stable over time since the
plasticity questions do not change. If, for instance, another widget
should be added, it could be added only where it is required and
the rest is re-composed straightforwardly. Changing the network
is a matter of adapting the internal representation (a graph) of the
network and exploiting it therefore becomes a problem of graph
exploration according to predefined semantic relationships. Of
course, the quality of the results heavily depends on the network
quality.

6. ACKNOWLEDGMENTS
We gratefully acknowledge the support of the SIMILAR network
of excellence (http://www.similar.cc), the European research task
force creating human-machine interfaces similar to human-human
communication of the European Sixth Framework Programme
(FP6-2002-IST1-507609). Jean Vanderdonckt would like to thank
Université Joseph Fourier for supporting his position as invited
professor for two months since May 2006.

7. REFERENCES
[1] Avrahami, G., Brooks, K.P., and Brown, M.H. A Two-view

Approach to Constructing User Interfaces. In Proc. of SIG-
GRAPH’89 (Boston, July 31-August 4, 1989), Computer
Graphics, 23, 3 (July 1989), 137-146.

[2] Calvary, G., Coutaz, J., Dâassi, O., Balme, L., and Demeure,
A. Towards a new Generation of Widgets for Supporting
Software Plasticity: the “Comet”. In Proc. of 9th IFIP Work-
ing Conf. on Engineering for Human-Computer Interaction
EHCI-DSVIS’2004 (Hamburg, July 11-13, 2004). Lecture
Notes in Computer Science, Vol. 3425. Springer-Verlag,
Berlin, 2005, 306-324.

[3] Clerckx, T., Luyten, K., and Coninx, K. The Mapping Prob-
lem Back and Forth: Customizing Dynamic Models while
Preserving Consistency. In Proc. of the 3rd Int. Workshop on
Task Models and Diagrams for User Interface Design TA-
MODIA’2004 (Prague, November 15-16, 2004). ACM Press,
New York, 2004, 33-42.

[4] Crease, M., Gray, P.D., and Brewster, S.A. A Toolkit of
Mechanism and Context Independent Widgets. In Proc. Of
Int. Workshop on Design, Specification, and Verification of
Interactive Systems DSVIS’2000 (Limerick, June 5-6, 2000).
Lecture Notes in Computer Science, Vol. 1946. Springer-
Verlag, Berlin, 2000, 121-133.

[5] Demeure, A., Calvary, G., Coutaz, J., and Vanderdonckt, J.
The Comets Inspector, Manipulating Multiple Interface Rep-
resentations Simultaneously, In Proc. of 6th Int. Conf. on
Computer-Aided Design of User Interfaces CADUI’06 (Bu-
carest, June 3-5, 2006). Springer-Verlag, Berlin, 2006, 167-
174.

[6] Dittmar, A. and Forbrig, P. Methodological and Tool Sup-
port for a Task-Oriented Development of Interactive Sys-
tems. In Proc. of 3rd Int. Conf. on Computer-Aided Design of
User Interfaces CADUI’99 (Louvain-la-Neuve, Oct. 21-23,
1999). Kluwer Academics Pub., Dordrecht, 1999, 271-274.

[7] Fensel, D., Benjamins, V., Motta, E., and Wielinga, B.
UPML: A Framework for Knowledge System Reuse. In
Proc. of the 16th Int. Joint Conf. on Artificial Intelligence
IJCAI’99 (Stockholm, July 31-August 6, 1999). Morgan
Kaufmann, San Francisco, 1999, 16-23.

[8] Florins, M., Montero, F., Vanderdonckt, J., and Michotte, B.
User Interface Graceful Degradation for Small Platforms. In
Proc. of 8th Int. Working Conference on Advanced Visual In-
terfaces AVI’2006 (Venezia, May 23-26, 2006). ACM Press,
New York, 2006.

[9] Gajos, K. and Weld, D.S. Preference Elicitation for Interface
Optimization. In Proc. of the 18th Annual ACM Symp. on
User Interface Software and Technology UIST’2005 (Seattle,
Oct. 23-26, 2005). ACM Press, New York, 2005, 173-182.

[10] Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, J., Ken-

nedy, J.B., Gray, P.D., Cooper, R., Goble, C.A., and da
Silva, P. Teallach: a Model-Based User Interface Develop-
ment Environment for Object Databases. Interacting with
Computers 14, 1 (2001), 31-68.

[11] Keränen, H. and Plomp, J. Adaptive Runtime Layout of Hi-
erarchical UI Components. In Proc. of the 2nd Nordic Conf.
on Human-Computer Interaction NordiCHI’02 (Aarhus, Oc-
tober 19-23, 2002). ACM Press New York, 2002, 251-254.

[12] Limbourg, Q. and Vanderdonckt, J. Addressing the Mapping
Problem in User Interface Design with UsiXML. In Proc. of
the 3rd Int. Workshop on Task Models and Diagrams for
User Interface Design TAMODIA’2004 (Prague, November
15-16, 2004). ACM Press, New York, 2004, 155-163.

[13] McKinley, P.K., Sadjadi, S.M., Kasten, K.P., and Cheng,
B.H.C. Composing Adaptive Software. IEEE Computer 37, 7
(July 2004), 56-64.

[14] Mitrović, N., Royo, J.A., and Mena, E. ADUS: Indirect Gen-
eration of User Interfaces on Wireless Devices. In Proc. of
7th Int. Workshop Mobility in Databases and Distributed Sys-
tems MDDS’2004 (Zaragoza, August 30-September 3, 2004).
IEEE Computer Society, Los Alamitos, 2004, 662-666.

[15] Navarre, D., Palanque, P., Paternò, F., Santoro, C., and Bas-
tide, R. A Tool Suite for Integrating Task and System Mod-
els through Scenarios. In Proc. of 8th Int. Workshop on De-
sign, Specification, and Verification of Interactive Systems
DSV-IS’2001 (Glasgow, June 13-15, 2001). Lecture Notes in
Comp. Science, Vol 2220. Springer-Verlag, Berlin, 88-113.

[16] Nylander, S., Bylund, M., and Waern, A. The Ubiquitous In-
teractor – Device Independent Access to Mobile Services. In
Proc. of 5th Int. Conf. of Computer-Aided Design of User In-
terfaces CADUI’2004 (Funchal, January 13-16, 2004). Klu-
wer Academics, Dordrecht, 2005, 271-282.

[17] Paternò, F. and Santoro, C. One Model, Many Interfaces. In
Proc. of 4th Int. Conf. on Computer-Aided Design of User In-
terfaces CADUI’2002 (Valenciennes, May 15-17, 2002).
Kluwer Academics Pub., Dordrecht, 2002, 143-154.

[18] Plomp, C.J. and Mayora-Ibarra, O. A Generic Widget Vo-
cabulary for the Generation of Graphical and Speech-Driven
UIs. Int. J. of Speech Technology 5 (2002), 39-47.

[19] Puerta, A.R. and Eisenstein, J. Towards a General Computa-
tional Framework for Model-based Interface Development
Systems. Knowledge-Based Systems 12, 8 (1999), 433-442.

[20] Schneider, K.A. and Cordy, J.R. Abstract User Interfaces: A
Model and Notation to Support Plasticity in Interactive Sys-
tems. In Proc. of 8th Int. Workshop on Design, Specification,
and Verification of Interactive Systems DSV-IS’2001 (Glas-
gow, June 13-15, 2001). Lecture Notes in Comp. Science,
Vol. 2220. Springer-Verlag, Berlin, 2001, 28-48.

[21] Sowa, J.F. Knowledge Representation: Logical, Philosophi-
cal, and Computational Foundations. Brooks/Cole Publish-
ing Co., Pacific Grove, 2000.

[22] Vanderdonckt, J. and Bodart, F. Encapsulating Knowledge
for Intelligent Automatic Interaction Objects Selection. In
Proc. of ACM Conf. on Human Aspects in Computing Sys-
tems INTERCHI'93 (Amsterdam, April 24-29, 1993). ACM
Press, New York, 1993, 424-429.

