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Abstract 
Distributed User Interfaces (DUIs) are those inter-

faces whose different parts can be distributed in time 
and space on different monitors, screens, and comput-
ing platforms, depending on several parameters ex-
pressing the context of use, such as the user, the com-
puting platform, and the physical environment in which 
the user is carrying out her interactive task. To under-
stand and classify existing approaches for DUIs and to 
identify underexplored situations of DUIs, a reference 
model for DUIs is introduced that examines DUIs ac-
cording to four ‘C’ dimensions: computation (what is 
distributed?), communication (when is it distributed?), 
coordination (who is it distributed?), and con-
figuration (from where and to where is the distribution 
operated?). At the core of this reference model exists 
the original notion of user interface habitat, that is the 
place where a particular type of user interface is nor-
mally found. According to this notion, it is possible to 
explore and investigate a wide spectrum of DUIs 
among which we exemplify several cases coming from 
our existing research and development of DUIs. 

1. Introduction 
With the advent of ubiquitous computing and the 

ever increasing amount of computing platforms, the 
user is confronted with more and more situations 
where she is invited to move from one platform to an-
other while carrying out her interactive task, across 
several platforms or even with the platforms them-
selves. The ultimate situation is when the user is carry-
ing out a task in a physical environment where several 
systems are concurrently working on different physical 
platforms, but forming a single task oriented user inter-
face from the user’s viewpoint. All these situations rep-
resent typical cases of Distributed User Interfaces 
(DUIs) where one or many parts or whole of one or 
many user interfaces are distributed in time and space 

depending on several parameters of the context of use, 
such as the user, the computing platform, and the 
physical environment where the task is carried out [5]. 
For instance, in a medical environment, a surgeon may 
be confronted to several screens coming from one or 
many platforms that are distributed in space, but with-
out any migration across them. Today, there is an onto-
logical confusion between the various terms borrowed 
to refer to various cases of DUIs such as: migration 
[14], migratory UIs [1,2], migratable UIs [9], group-
ing/ungrouping [7], portable [10], tunable [13], muta-
ble [13], transformable [9], reconfigurable [8], retarge-
table [4], composition/ decomposition [20]. In addition 
to that confusion, a need exists for consolidating this 
very recent branch of research dedicated to DUIs. One 
the one hand, several DUI systems exist such as IAM 
[6], i-Land [17], Stanford Interactive Mural [11], Aura 
[16], ConnecTables [18,19], Dygimes [20], DistriXML 
[9]. So far, no state of the art of these systems has been 
conducted and no reference framework has been pro-
posed to better perceive the differences existing be-
tween these terms, referring to various situations. For 
each term, different implementations have been real-
ized that are often located at different levels of abstrac-
tion and different parts of the UI. For instance, the mi-
gration of a User Interface (UI) may be interpreted as 
the action of transferring a UI from a computing plat-
form to another one, such as from a desktop computer 
to a handheld device. A UI is said to be migratable if it 
has the migration ability. If we stick to this definition, 
several ways have been implemented to achieve mi-
gratability: X11 remote displays (www.x.org/), Virtual 
Network Computing (VNC - 
www.uk.research.att.com/vnc/), Windows Terminal 
Server (http://www.microsoft.com/win-
dows2000/technologies/terminal/default.asp) all allow 
migrating a window from one screen to another at the 
window manager level. But this is not the same level 
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as application migration across workstations [2] or 
task-oriented migration of parts or whole of the UI [1]. 
Partitioning a window across several screens, at the 
physical or at the logical level, is not comparable and 
involve different systems of coordinates (Fig. 1) until 
reaching the definition of interaction surfaces [7]. 

For each DUI term, we need to differentiate the dif-
ferent implementations possible by locating them on a 
reference frame-work. Such a framework would also 
be fundamental to understand the human factors posed 
by DUIs: when a surgeon must collect information 
from several screens simultaneously, a significant in-
crease of the cognitive work load may arise. Several 
usability problems are raised by distributing UIs across 
several screens such as peripheral vision difficulties 
[9], risk of cognitive overload [12], configuration diffi-
culties [12], and differences of perception [11]. 

 
Fig. 1. Partitioning of a window across several screens 

to obtain a distributed user interface. 

For all these reasons and other, and given the fact 
no other framework allows to represent platforms, spa-
tial relationship and digital elements in the same time, 
we assigned ourselves the goal of defining a reference 
framework for DUIs that would allow us to clearly dis-
tinguish existing terms, precisely locate related work 
according to these terms, and identify underexplored 
areas. For this purpose, the remainder of this paper is 
structured as follows: Section 2 defines the UI habitat, 
the notion central to this framework that will allow 
term differentiation; then, four ‘C’ of the framework 
will represent four classification dimensions on how to 
understand DUIs in Section 3. Section 4 will then illus-
trate the 4C reference framework for DUIs by express-
ing several examples coming from our research and 
Section 5 will report on the benefits of this framework. 

2. The notion of habitat as a central con-
cept for distribution 
In the real world, a habitat is referred to as the typi-

cal place where an animal or a vegetal can be found. 
By analogy, the habitat of an interactive system con-
sists of the configuration of the interactive system. By 

definition, a habitat is a graph, constituted of nodes 
(e.g., CPUs, FCs, UIs, Actuators) and links betweens 
those nodes. We describe here some of these nodes: 
o Logical Space: It defines a coordinates system. 
o Zone: It defines an area of a logical space.  
o CPU: The Central Processing Unit (CPU) com-

putes the interactive system. A CPU can be seen 
from the programmer point of view as a single re-
source even if several physical processors are used. 
It defines its own logical space. 

o Actuator: It is a physical space’s zone making per-
ceivable digital user interface entities. It is managed 
by a CPU. An actuator can be seen as a single en-
tity from the programmer’s point of view (e.g., a 
wall screen, two loud speakers). An actuator makes 
perceivable a part of several coordinates systems. A 
screen makes perceivable a part of windows. 

o Functional Core: It makes available a set of ser-
vices. A functional core (FC) can be connected to 
other FCs. It is managed by CPUs. 

o User Interface: It’s a digital entity defining its own 
coordinate system. It can be directly or indirectly 
mapped on an actuator (e.g. a window is define in 
the logical space of the desktop, which is mapped 
on a screen). 
Nodes of a habitat are described in the UML dia-

gram of Fig. 2 where relations between nodes will be 
used in section 4. 

 
Fig. 2. A conceptual model of the notion of habitat. 

Error! Reference source not found. illustrates dif-
ferent kinds of habitat, regardless to the functional 
core. Each case is illustrated by a typical interactive 
system using it. For instance, a laptop connected to a 
dual screen illustrate the <1 CPU, 1 digital space, 2 
screens> case. Thanks to the graph structure of a habi-
tat, it becomes possible to formally describe reference 
terms for DUIs. All terms we will define are about UI 
nodes. In a first time, we describe terms involving only 
one habitat. Let us introduce some utilities functions: 
• Rel(i, j) : i and j are nodes, there is a relation Rel 

from i to j. 
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Fig. 3. Different <#CPU, #DigitalSpace, #Actuators> 

habitats. 

• Replicas(i, j) : i and j are nodes of a same type, 
that is they are considered as replicas. 

• Way : it is a path in a habitat graph. 
• Mothers(I : DigitalEntity; X:TYPE; R:Relation) 

: {m:X | Rel(m, I)•m} 

Let us introduce function involving only one habitat. 
• LOCATIONS : it is a set of triplet <CPU, sm : set 

of MappingUIA, w : way of DigitalEntity > 
• Locations_where_I_is_displayable(L : LOCA-

TIONS) : the subset of L where CPU are managing 
Effectors mapped on a node {h:H | h.sm≠∅ • h} 

• AreXScattered(si : set of DigitalUI) : Define 
whether a set of DigitalUI is scattered from a X 
point of view. X can be CPUs or Actuators. Actu-
ally, scattering property can be seen as distribution 
property. This is from a system point of view. In-
deed, with this definition a DIgitalUI can be scat-
tered among a set of screen even if it is only dis-
played on one of them. (This function will indicate 
on which screen the DigitalUI is displayable). 

• SSX : set of sets of X | SSX={i:si • getX(i)} • α 
- strong condition : Two different DigitalUI have 
no common x∈X such as α ≡ (¬∃sx1,sx2 : SSX | 
sx1∩sx2≠∅) 
- weak condition  : At least two DigitalUI have dif-
ferent X such that α ≡ (∃sx1,sx2 : SSX | sx1≠sx2) 

• HowMuchIsActuated(Z: DigitalZone) : Define 
what percentage of a zone is displayed considering 
actuators where it is displayable. L = Locations(Z), 

sz = ∪{l:L • {mapping:l.sm • Zone(Z.zone, l.way, 

mapping)} ← Size(∪(sz)) / Size(Z.zone) 
• Zone(z:Zone, w:Way, m:MappingUIA) : For a 

zone z, define what part of it is actually displayed 
by an actuator, given the mapping from Actuator 
coordinate to DigitalZone coordinate 
(f_phy_to_Digital function) 
w = w_root→i 
(m.i=i)⇒(ZoneActuatorInInfoRef=m.f_phy_to_Di
gital (m.actuator.zone) ← ZoneActuatorInInfoRef 
∩z) 
(m.i≠i) ⇒(w=w1→m.i→w2→I              
←Zone(i.Transfo_Zone(zone), w_root, m)) 

Let us illustrate a function involving two habitats: 
• Migrations(I : DigitalUI, H1, H2 : Habitat) :  

A doublet <Q,A> where Q and A are LOCA-
TIONS. Q represents LOCATIONS leaved by ‘I’ 
between H1 and H2 and A LOCATIONS where ‘I’ 
arrived. 
L1:H1.Habitat(I), L2:H2.Habitat(I)  
<{l1:L1 | l1=<cpu1, sm1, w1> ∧ (¬∃l2:L2 | 
l2=<cpu2,sm2,w2>∧cp1=cpu2∧w1=w2∧sm1⊆sm2
)• l1}, {h2:H2 | h2=<cpu2, sm2, w2>  ∧ (¬∃l1:L1 | 
l1=<cpu1,sm1,w1>∧cp1=cpu2∧w1=w2∧sm2⊆sm1
)• l2}> 
Actually, a lot of properties can be expressed using 

the notion of habitat. Various authors have a perhaps 
different definition of what a DUI could be or how the 
distribution of UI elements could be operated. There-
fore, we would like to provide a formal definition. For 
example, the notion of distribution of a UI can be: “My 
UI is displayable on different screens”, “My UI is dis-
played on different screens”, “Parts of my UI are 
(strongly, weakly) scattered among screens”, “my UI is 
decomposed into…”. Using the habitat notion, all of 
those properties can be expressed. The general proper-
ties of UI habitat can serve as a common ground for 
expressing various manifestations of DUIs, which are 
developed in the next section throughout the four di-
mensions of the reference framework. 

3. The four dimensions of the 4C Refer-
ence Framework 
In this section, we define the four ‘C’ representing 

the reference framework for DUIs. 

3.1 C1: Computation 
C1 represents the computation of a DUI, i.e. what 

are the elements to be distributed during the operation. 
Theoretically speaking, all components of the interac-
tive application could be distributed, but we are here 
mainly interested by the UI. Based on the ARCH meta-
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model, we envision distributing the following layers: 
presentation, logical presentation, control, functional 
code and its adapter. Presentation is materialized 
through a Concrete UI (CUI) as in the Cameleon refer-
ence framework [3], while logical presentation is re-
lated to the Abstract UI (AUI). Therefore, the part that 
is subject to distribution could be any part or whole of 
the CUI. The CUI model decomposes any UI into Con-
crete Interaction Object (CIOs) that are characterized 
by various attributes (id, name, icon, defaultContent, 
defaultValue) and sub-typed into one of the two cate-
gories: graphicalContainer for all widgets containing 
other widgets such as page, window, frame, dialog 
box, table, or graphicalIndividualComponent for all 
other traditional widgets: text, video, image, radio but-
ton, drawing canvas,….For instance, the whole UI, 
some windows and dialog boxes, some selection of 
components of these windows and dialog boxes, or in-
dividual components. For this purpose, we need to de-
fine the notion of splittability: a graphical container is 
said to be splittable, respectively unsplittable, if all 
their graphical individual components could, respec-
tively could not, be presented separately depending on 
the constraints imposed by the user’s task correspond-
ing to the container. With respect to the habitat notion, 
splittability is defined as the fact whether the logical 
reference of each element in a container has to be C.ref 
where C is a logical reference of the container. In fact, 
splittability is the ability for any part of an interactive 
system to be ungrouped. For this purpose, an attribute 
isSpittable is assigned to any container. The UI portion 
subject to distribution is therefore any node in the CUI 
hierarchy or combination of nodes or leaf nodes. 

3.2 C2: Communication 
C2 represents the dimension of distribution time, 

i.e. when are the elements of an interactive system dis-
tributed. For this purpose, we need to define a time line 
that segregates the distribution operation whether it is 
executed at design-time or at execution-time or be-
tween. Based on the taxonomy of adaptive middleware 
[12] and classical definition of process migration [13], 
the UI distribution is said to be static or dynamic de-
pending on the distribution time: static distribution 
methods take place at development, compile, or load 
time, whereas dynamic distribution refers to methods 
that can be applied at runtime (Fig. 4). If an interactive 
system is scheduled for distribution at development 
time, then we consider that the definition of the habi-
tats is hardwired into the interactive system and cannot 
be changed without recoding. Alternatively, a devel-
oper or user can schedule a limited set of distribution 
capabilities at compile time or link time by configuring 
the interactive system for a particular set of predefined 
habitats. A UI is said to be customizable when the in-

teractive system only requires recompilation or relink-
ing to fit to a new set of possible habitats that are sup-
ported. A configurable UI delays the final decision on 
the logical CPUs to use in the current environment un-
til a running UI loads the corresponding component. 
Load-time composition can be considered as a type of 
static distribution, but it is more dynamic than other 
static cases. When the UI requests the loading of a new 
component, the control might select from a list of UIs 
with different capabilities of supporting various habi-
tats, choosing the one that most closely matches the 
new habitat. For example, if a user starts a UI on a 
handheld computer, the runtime system might load a 
minimal display component to guarantee proper pres-
entation. Other load-time approaches work by dynami-
cally modifying the class itself as it is loaded. In dy-
namic distribution, two types of approaches can be dis-
tinguished according to whether the distributor can 
modify the UI itself. A tunable UI is a UI that cannot 
be submitted to any change of underlying code, but 
that can be tuned according to user’s needs that are 
known only at run-time. A mutable UI is a UI that can 
be submitted to a change of its underlying code, e.g., 
by decomposition and recomposition of components. 
 

Development
time

Compile
time

Load/startup
time

Execution
time

Design time Run time

Static distribution Dynamic distribution

Customizable UI Configurable UI Tunable UI Mutable UI

Development
time

Compile
time

Load/startup
time

Execution
time

Design time Run time

Static distribution Dynamic distribution

Customizable UI Configurable UI Tunable UI Mutable UI

 
Fig. 4. Time of distribution. 

3.3 C3: Coordination  
C3 represents the dimension of distribution respon-

sibility, i.e. who is distributing the interactive system. 
To support all these different cases of distribution, a 
special UI is required that will perform the required 
steps to conduct the distribution, such as identification 
of distribution possibilities, proposal for distributions, 
selection of an appropriate alternative, and execution 
of the distribution itself. Since these types of distribu-
tions and underlying steps require complex handling of 
UI events and procedures, the UI responsible for distri-
bution is even more complex and not always visible to 
the eyes of the end user. This UI is referred to as the 
meta-user interface, i.e. the UI for controlling the UI 
distribution of the interactive systems. In most of re-
search/development projects involving some form of 
migration, the meta-UI is implemented in very differ-
ent ways with different manifestations. It is not made 
explicit whether the meta-UI is system initiated (the 
system initiates the distribution), user-initiated (the 
user initiates the distribution), or mixed-initiated (the 
user and the system collaborate to perform the distribu-
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tion together). In some special cases, the distribution 
could be ensured by a third-party, an agent external to 
the user and the system which is responsible for con-
ducting the distribution. The above parameters could 
be applied separately and individually to all operations 
involved in the distribution: 
• Detection: which agent detects the need for distri-

bution and according to which parameters from the 
context of use? 

• Computation: which agent computes the different 
alternatives for conducting the distribution? Re-
garding this aspect, a typology of distribution op-
erations could be imagined such as, but not limited 
to: (un)grouping, merging,...  

• Selection: which agent selects the most appropriate 
alternative among the computed ones? 

• Execution: which agent actually executes the alter-
native selected for the distribution? 
For example, a user may decide that there is a need 

to do so and selects various portions of the UI which 
could then be migrated to other platforms she is using. 
When the task is finished, she may want to recall all 
migrated portions to restore the initial UI. In this case, 
detection, computation, and selection are user-initiated 
while execution is system-initiated. 

3.4 C4: Configuration 
C4 represents where a UI is distributed. It therefore 

poses the problem of how to distribute it. Should we 
keep the same representation, adapt it or change it? In-
deed, a representation adapted for a location l1 may not 
be adapted for a location l2. We can illustrate this con-
sidering the particular GUI case. Every single part of a 
GUI can be seen as a bloc of pixels. Particular prob-
lems arise when a part of the UI go from one screen to 
another. It may pose the problem of how to represent 
the UI on this new screen. We identified three ways to 
achieve this: 
1. Conserving physical pixels: By physical pixel we 

mean the smallest point we can address on the 
video card and/or on the screen. Conserving physi-
cal pixels mean that a bloc of L x H physical pixels 
in the location l1 would be represented by the same 
bloc of L x H physical pixel in the location l2. 

2. Conserving logical pixels: By logical pixel we 
mean a point independent of the video card and the 
screen. A logical pixel will be rendered as a bloc of 
pixels (1 logical pixel  L x H physical pixels, L, 
H ∈ℜ+). Conserving logical pixels mean that a 
bloc of L x H logical pixels in the location l1 would 
be represented by the same bloc of L x H logical 
pixel in the location l2. Logical pixels from l1 and 
l2 could have different size when rendered to 
physical pixels. 

3. Conserving semantic pixels: By semantic pixels we 

mean a set of pixel expressing a concept. Conserv-
ing semantic pixels means conserving the same 
meaning for two blocs of pixels on different loca-
tions, e.g., a list box and a drop down list both ex-
press the concept (task) of choice. 

The adequacy of those three approaches wrt. the con-
text of use will depend on what we want to preserve 
between locations. In particular, if we want to conserve 
rendering size (i.e. size of the UI on the screen), some 
problems may occur. Three cases can be distinguished: 
• Conserving physical pixels can cause some trouble, 

especially if we want to obtain a spatial continuity 
when distributing UI across several screens. This is 
typically the example of IAM. Problem will then 
appear if the size of physical pixels in l1 is different 
from the one of l2, conserving physical pixels will 
then lead to a different size of GUI and may result 
in alignment problems. Moreover, if screens have 
different resolutions, it may be impossible to fully 
render the GUI on some of them.  

SCREEN_1 SCREEN_2 

 
• Conserving logical pixels aim to solve some the 

alignment problem. However it can’t fully solve it 
in every case. Indeed, target physical pixels size 
could be too big, witch would result in lost of in-
formation (1mm 1 pixels on source while 
1mm 0,8 pixels on destination for example). In 
fact, to be sure to not loose any information, pixel 
size of target should be half the size of source one 
(Shannon’s theorem) OR if we consider enough 
small pixels, pixels should have the same size. We 
can consider pixels alignment as a minor problem 
momentarily. 

 
• In fact, logical pixels adequacy is a bit more com-

plex. It depends on the logical pixels size on the 
surfaces. Let’s consider that a logical pixel on sur-
face take LxH physical pixels. The adequacy of 
logical pixel is: max(L/2,1)* max(H/2,1). The ade-
quacy does not only depend on the relative physical 
pixels size but also on the logical pixel size: e.g., if 
we want to full screen display a 100x100 pixels im-
age on a 1024x768 and on a 800x600 screens, ade-
quacy will be optimal on both, despite that physical 
pixel sizes do not respect Shannon’s theorem. 

• Conserving semantic pixels: it can lead to a great 
discontinuity. To minimise it notions such as grace-
ful degradation techniques should be applied. For 
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instance, when a UI is reduced from a classis desk-
top to a more constrained platform such as a Ta-
bletPC, not only the UI should be degraded, but this 
degradation should preserve the usability of the re-
sulting UI for continuity. 
We propose a 3D space to describe different con-

figuration we can meet when displaying logical pixels 
on physical ones. Let’s consider a GUI S, it take S.L x 
S.H pixels. Let’s consider we want to migrate it on a 
surface D witch is D.L x D.H pixels. Let’s also con-
sider that pixel size on S is S.Pix and pixel size on D is 
D.Pix. Fig. 5 illustrates possibilities in the case D.Pix / 
S.Pix > 1. The more the case is in the top right corner, 
the better it is. We could have an evaluation function to 
determine the pertinence of each adaptation type: 
• Physical pixel conservation: PPC (R_L, R_H, R_P) 

= max(R_L, 1) * max(R_H, 1)  
• Logical pixel conservation : LPC(R_L, R_H, R_P) 

=  max (R_L* R_P, 1)*max(R_H* R_P, 1)*max(1 / 
(2*R_P), 1). If we consider pixel small enough or if 
we do not matter about the pixel alignment between 
S and D then we have the particular case : LPC 
(R_L, R_H, 1) = PPC (R_L, R_H, 1) 

• Semantical pixel conservation: Is welcome when 
others conservation have low level of adequacy. 

 

 

D.H / S.H 

D.Pix / S.Pix < 1 D.L / S.L 

Fewer pixels 

Same number 
of pixels 

More pixels 
but D shorter 
than S 

More pixels 
and D equal 
to S 

More pixels 
and D taller 
than S 

 
Fig. 5. Relative dimensions when destination pixel size 

is lower than source one. 
4 Instantiations of the 4C Reference 

Framework 
In order to improve readability in the rest of the docu-
ment, Fig.  introduces the notation used in the rest. 
A B A and B are CPU. They can communicate. 
A B : A manage B. A is a CPU, B is an Actuator or an InfoNode or a Mapping 
A B : B is defined with respect to A. A and B inherit from T. 

M B : M define a mapping between A and B. A is an Actuator and B an InfoNode.

A B : A and B are functional cores. B depend on A. 
A B : A and B are conceptually the same. They are replicas. 

Fig. 6. Relations between nodes of a habitat graph. 
 

4.1 Instantiation #1: Extending a Desktop with an-
other Screen or Monitor 
In this case, only the rendering zone is extended us-

ing another screen instance, here called “SCREEN 2” 
(Fig. 7). When the two screens are kept separate, a vis-

ual discontinuity is induced, which may decrease when 
they are joined, but will never totally disappear due to 
the rupture caused by the bezels. 

 
Ref_1 SCREEN_1 SCREEN_2 

 Fig. 7. At physical pixel level, spatial discontinuity can 
often be observed. 

4.2 Instantiation #2: The IAM environment 
The primary principle of IAM is to replicate logical 

spaces between elementary platforms. Being aware of 
the spatial discontinuity problem, an environment like 
IAM adapts logical space to prevent it. Logical space is 
then stretched, rotated and/or translated. But if we con-
sider previous case, we can have two type of solution 
depending on where the UI come from (SCREEN_2 
(left case) or SCREEN_1 (right case)). 

 
The left case above shows that some information 

will be lost on SCREEN_1, due to its big pixel size. 
Similarly, the right case could also cause some loss of 
information if pixel size from SCREEN_2 is not half 
of the SCREEN_1’s pixel size. Same problems may 
occur when using anti-aliasing: a pixel from 
SCREEN_1 should not necessarily correspond a only 
pixel from SCREEN_2 and reciprocally (Fig. 8). Let us 
illustrate how the UI is replicated in the top right case 
(Fig. 9). 
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Fig. 1. Even if physical pixel size of the destination sur-

face is smaller, problems can occur. 

Ref_1 SCREEN_1 Ref_2 SCREEN_2 

 
Fig. 2. CPU1 is the server where the UI is created. UI is 

replicated among IAM clients. If a client drops down, 
the server does create another UI. 

4.3 Instantiation #3: The Sedan-Bouillon Tourist 
Application with Plasticity 

“Sedan-Bouillon” is a web site that aims at promot-
ing tourism in the regions of Sedan and Bouillon in 
France and Belgium (www.bouillon-sedan.com/). It 
targets tourists whose mother tongue is French, Ger-
man, and Dutch. It provides tourists with four kinds of 
information or services: general information about the 
region, guiding information for visiting the region (a 
pre-selection of specific monuments of interest), logis-
tic information for sojourning in the region (a preselec-
tion of hotels, camping, bred and breakfast, restau-
rants), and access to a set of relevant documentation. 
Initially, the web site has been designed for PC screens 
only. A plastic light weight version (called LSB for 
Light Sedan-Bouillon) has been developed in for ex-
ploring the distribution of a web site across a PC 
screen and a PDA. LSB is limited to French speaking 
users and covers the hotel browsing task only. But LSB 

is plastic since it promotes a user-initiated distribution 
of the UI portions among the web browsers with which 
the user is connected to the web site. LSB is composed 
of three workspaces (Fig. 10): a title, a navigation 
menu and informational content. The navigation menu 
is augmented with a “meta-UI” link that allows the 
user to control the UI distribution across the resources 
of the interactive space: for each workspace, the user 
can specify the platform on which it can be displayed. 
To comfortably browse the site from the sofa, the user 
turns on a PDA and connects to the web site with the 
same identifier. A meta UI appears that informs the 
user that she is currently using two browsers, and that 
she can redistribute the user interface across the re-
sources available in the interactive space: the three 
workspaces are mentioned and the two browsers are 
identified. The, the user can specify which workspace 
will run on which platform. In our case, the user asks 
for the title and the contents to be displayed on the PC, 
while keeping the title (titre) and the navigation menu 
(navigation) to be rendered on the PDA. The PC and 
the PDA screens are then updated accordingly. Fig. 11 
characterizes this situation the UI workspaces could be 
distributed via the meta-UI, either individually or to-
gether provided that they included. 
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Fig. 3. The Sedan-Bouillon application. 
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Fig. 4. FC is on the server side. Only UI is replicated. If 
the client server connexion drops down, UI remain on 

client side but cannot drive the FC anymore. 
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4.4 Instantiation #4: CamNote 
The CamNote application is a PowerPoint-like ap-

plication where the slide controller could be run on a 
PC hosting the slides or on a PDA to serve as a remote 
controller. The PC Remote Controler, however, does 
not run on the PDA since its capabilities are not 
equivalent, in particular in terms of runnable applica-
tions. Therefore, it has to be substituted by another one 
which is tailored to the PDA. 

 
Fig. 5. The architecture when CamNote is distributed 

across the PC and the PDA (a) and when it is re-
centralized (b). 

  

 
The above figure depicts the whole system when 

distributed between a PC and a PDA, a situation whose 
architecture is reproduced in Fig. 12. Only functional 
core is distributed. Indeed, native UI descriptions on a 
PC and on a PDA are quite different. Using a same 
toolkit would have been inappropriate. When the PDA 

disappears, the remote controller function is migrated 
to the PC. A DigitalUI node is then created and takes 
place with respect to the DigitalUI root node of the 
CamNote interactive system. When then system is re-
centralized (this architecture is depicted in), the win-
dow containing the remote controller could be merged 
with the slide show or separated. When this operation 
occurs, the window is being rotated as represented in 
the figure below in order to animate the transitions be-
tween the two situations: centralized (Fig. 13) and de-
centralized. 

 
Fig. 13. The architecture when CamNote is centralized. 

5 Conclusion 

In this paper, we have motivated, introduced, defined 
and exemplified a reference framework for distributed 
user interfaces (DUIs) that is explicitly based on crite-
ria defined along four dimensions: computation (what 
is distributed?), communication (how is it distrib-
uted?), coordination (when is it distributed?), and con-
figuration (from where and to where is the distribution 
operated?). Thanks to this combination, it is possible to 
characterize a wide array of DUIs. At first glance, the 
most typical cases of DUI involve the following situa-
tions which could be easily characterized on the 
framework defined in Fig. 2: 
• The multiple monitors situation: a single user may 

connect a dual screen on her main computer so as 
to extend the display area. In this case, there is 
only one CPU, one DigitalUI, but several actua-
tors. 

• The multi-platform situation: a single user may 
use simultaneously two computing platforms 
(hence, two different CPUs) which are intercon-
nected, thus exhibiting the capability of rendering 
a portion of each other’s UI by exchanging them. 

• The detachable user interface situation: this is 
particular case of the multi-platform situation 
where one platform may delegate (detaching) por-

68



tions of its UI to a secondary platform (attaching). 
When the task is finished, the detached portion 
could be restored to its initial position (re-
attaching). 

• The fully distributable situation: this is a situation 
where each platform could operate a distribution 
of its workspaces to other platforms at run-time. 
One platform could for instance replicate a por-
tion of its UI to another platform (e.g., a shared 
one) and receive another portion of another UI 
coming from another platform. 

The framework defined in this paper does not take into 
account the dimension of collaboration between or 
across users. This dimension is a natural extension: for 
instance, a DUI could take place not only for a single 
user (as we addressed in this paper) or across several 
users (which is not addressed here). 
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