
UNIVERSITE CATHOLIQUE DE LOUVAIN

FACULTE DES SCIENCES APPLIQUEES

A Comparative Analysis of Transformation

Engines for User Interface Development

A thesis submitted in fulfillment of the requirement

for the degree of "Licence en Informatique" of the

Université catholique de Louvain

By Jean-Pierre DELACRE

Committee in charge:

Prof. Jean Vanderdonckt, Supervisor

Adrian Stanciulescu, Reader

Prof. Tom Mens, Reader

Academic year 2006-2007

1

2

A Comparative Analysis of Transformation Engines for User Interface Development............. 0

Chapter One. Introduction .. 6

1.1 Context .. 6

1.2 Hypotheses.. 7

1.3 Primary goal .. 7

1.4 Reading Map ... 8

Chapter Two. Model-Driven Engineering of User Interfaces: state of the art........................ 10

2.1 Definitions ... 10

2.2 Transformation Engines .. 14

2.3 Selected transformation Engines and meta-model .. 15

2.3.1 Meta-model ... 15

2.3.2 Transformation Engines ... 16

2.3.1.1 AToM³ ... 16

2.3.1.2 Custom java application .. 17

2.3.1.3 ATL ... 17

Chapter Three. ATOM³ .. 18

3.1 Implementation .. 19

3.2 Meta-model .. 20

3.3 Transformations .. 22

3.3.1 The rules sets ... 23

3.3.2 The rules ... 23

3.3.3 Properties of the objects .. 27

Chapter Four. Custom transformation engine in java .. 32

4.1 Implementation .. 32

4.2 Details of the implementation .. 34

4.2.1 The graphical user interface (UsiXMLTransformationGui) 35

4.2.2 The main class .. 37

3

4.2.3 The Rules class ... 39

Chapter Five: ATL ... 47

Chapter Six. Case studies .. 49

6.1 Implemented rules .. 49

6.2 Use case: Currency convertor ... 50

Step 2: From Task a to AUI Model ... 51

Sub-step 2.1: Rules for the identification of AUI structure 51

Sub-step 2.2: Rules for the selection of AICs .. 52

Sub-step 2.3: Rules for spatio-temporal arrangement of AIOs 52

Sub-step 2.4: Rules for the definition of abstract dialog control 52

Sub-step 2.5: Rules for the derivation of the AUI to domain mappings 52

Step 3: From AUI Model to CUI Model ... 52

Sub-step 3.1: Reification of AC into CC ... 52

Sub-step 3.2: Selection of CICs .. 52

Sub-step 3.3: Arrangement of CICs ... 53

Sub-step 3.4: Navigation definition .. 53

Sub-step 3.5: Concrete Dialog Control Definition ... 53

Sub-step 3.6: Derivation of CUI to Domain Relationship .. 53

6.2.1 Currency convertor in AToM³ .. 54

6.2.2 Custom java transformation engine .. 60

6.3 Use case: Polling System ... 64

Step 1: The Task and Domain Models ... 64

Step 2: From Task and Domain Models to AUI Model ... 68

Sub-step 2.1: Rules for the identification of AUI structure 68

Sub-step 2.2: Rules for the selection of AICs .. 68

Sub-step 2.3: Rules for spatio-temporal arrangement of AIOs 69

Sub-step 2.4: Rules for the definition of abstract dialog control 69

Sub-step 2.5: Rules for the derivation of the AUI to domain mappings 69

Step 3: From AUI Model to CUI Model ... 69

Sub-step 3.1: Reification of AC into CC ... 69

Sub-step 3.2: Selection of CICs .. 69

4

Sub-step 3.3: Arrangement of CICs ... 70

Sub-step 3.4: Navigation definition .. 70

Sub-step 3.5: Concrete Dialog Control Definition ... 70

Sub-step 3.6: Derivation of CUI to Domain Relationship .. 70

6.3.1 AToM³ .. 71

6.3.2 Custom java transformation engine .. 79

Chapter 7: Comparison of the four techniques .. 87

7.1 Summaries .. 87

7.1.1 AToM³ .. 87

7.1.2 ATL .. 88

7.1.3 Custom transformation engine in java .. 88

7.2 Comparison ... 89

7.2.1 Tools-specific issues ... 89

7.2.1.1 AToM³ ... 89

7.2.1.1.1 Meta-model and models creation ... 89

7.2.1.1.1 Rules creation .. 89

7.2.1.2 Custom java transformation engine ... 90

7.2.1.2.1 Meta-model creation ... 90

7.2.1.2.2 Model creation ... 90

7.2.1.2.3 Rules creation .. 91

7.2.2 Tools-specific advantages .. 91

7.2.2.1 AToM³ ... 91

7.2.2.2 Custom java transformation engine ... 92

7.2.3 Global comparison ... 92

7.2.3.1 Implementation paradigm and required programming skills 93

7.2.3.2 The model-to-model approach ... 93

7.2.3.3 Code generation .. 94

7.2.3.4 Pattern matching .. 94

7.2.3.5 Rules scheduling and organization, inheritance ... 94

5

7.2.3.6 Bi-directionality ... 95

7.2.3.7 Performance ... 95

7.2.3.8 Flexibility and maintainability ... 95

7.2.3.9 Completeness .. 96

7.3.3 Conclusion .. 98

Bibliography .. 100

Appendix A .. 103

2.3.1.1 Task Model .. 103

2.3.1.2 Domain Model .. 104

2.3.1.3 Abstract User Interface Model .. 105

2.3.1.4 Concrete User Interface Model... 109

2.3.1.5 Final User Interface ... 110

2.3.1.6 Context Model .. 110

2.3.1.7 Mapping Model ... 111

2.3.1.8 Transformation Model .. 112

Appendix B .. 114

6

Chapter One. Introduction

1.1 Context

Cobol, Visual Basic, C/C++, Java, XML, .net, and many other languages, spread over many OS

like Windows, Unix, MacOS, etc: today’s opulence in computer science leads to an all-time

growing complexity in software engineering. With so many technologies and platforms, a lot of

issues are raised, among those: reusability, interoperability, portability, adaptability.

Reducing the number of those technologies and platforms could be a solution. But the chance

for it to happen is negligible, and there is no technology that prevails on the others.

For that reason, another solution is needed. The object-oriented approach was a first attempt

to decrease the complexity of software engineering, but it proved insufficient.

In this context came the Model Driven Engineering, with an ambitious objective: moving the

development effort from implementation to solution modeling. The MDE refers to the

systematic use of models as first and primary development step. We create a model for our

application that is totally independent of any technology, in a more natural language than

programming language. Then, transformation rules are applied on this model to give the

wanted implementation.

The advantages are obvious:

• Reusability and portability are greatly improved: the model stays valid for each

platform or technology.

• Complexity is decreased: the model can be expressed in a more natural language.

• As a result of reduced complexity, the quality of the applications can be improved,

and the number of error reduced.

The OMG (Object Management Group), because of its strength and influence, was in a good

position to create a standard for MDE. As we can see on their site [OMG], “OMG Task Forces

develop enterprise integration standards for a wide range of technologies, and an even wider

range of industries. OMG’s modeling standards enable powerful visual design, execution and

maintenance of software and other processes”. The OMG tries to cope with the problem of

the lack of systematization and reusability by offering a way of creating programs

independently of the context of use.

Starting from the MDE, the OMG created, in 2000, the MDA [MDA, 6] (Model Driver

Architecture). The MDA provides a systematic framework to develop software using

engineering methods and tools. Its core infrastructure is composed of several OMG standards,

including UML (Unified Modeling Language), XMI (XML Metadata Interchange)and the MOF

(Meta-Object Facility). The MDA offers standards to design models, independently of the

7

platform or technology, which are expressed in a more human-friendly language (like UML or

another MOF-compliant meta-model).

MDA’s principle is to create Platform Independent Models (PIM) that will then be transformed

into Platform Specific Models (PSM), which will be used to generate the application code. PIM

are thus reusable for every platform; this represents a great progress in terms of

interoperability and productivity and, because the language used to create models is less

complex, the risks of errors from the user interface designer is decreased and the maintenance

becomes easier.

The interoperability problem obviously also affects the engineering of Graphical User

Interfaces (GUI’s). The problem not only comes from the number of different contexts of use,

but also from the way graphical interfaces are created. Up to recently, there were two ways of

creating an interface; the first, old-fashioned method, is the programmatic approach: very

slow, and the result is of variable quality due to a high complexity. The second method is using

visual generators or descriptive language editors, which means a highly simplified and fastened

creation process compared to the programmatic approach.

But even the second approach does not resolve the problem of reusability: there is still the

need of “manually” modifying the interface of each context of use; here too, the MDA allows

great benefits in terms of productivity and reusability.

1.2 Hypotheses

Because they represent the biggest part of the interactive software today, we will restrict

ourselves to the information systems.

Here we talk only about HCI (Human-Computer Interfaces), and only the graphical part of it

(we won’t take the vocal, 3-D or multimodal interfaces into consideration) because, once

again, it represents most of the HCI.

So, we will study some transformation engines that focus on the conception of Graphical User

Interfaces (GUI) on information systems. And to do this, we will use several examples, mainly

an example of simple web interface, for which we will try to implement the rules in some

transformation engines.

There exist several user interfaces description languages, so we had to choose one. We will see

in the chapter 2 which language we chose as meta-model, and why.

1.3 Primary goal

The Model Driven Architecture (and model driven engineering in general) is much based on

model-to-model transformations, and there exist a lot of tools to create these. The graphical

user interface designer has to choose one, but these tools are not all equal, or even decide to

8

create a custom one that could better suit his needs. Existing tools can be very different with

respect to their transformation approach (graph on programmatic syntax), implementation

paradigm (declarative, imperative, or both), and many other points. Some are easier to use,

while others allow the creation of more complex rules. Moreover, most of them have their

own programming language.

So, following the needs of the interface designer, his skills in programming and others criteria,

the choice of creation tool will change, and therefore, it is very important to know the

differences between the known techniques, and to see which one is more adapted for each

case.

What we will do is, focusing on graphical interfaces development, review some existing

transformation engines, and create ourself a custom one, implemented in java. And we will

make a comparative analysis of these transformation engines.

1.4 Reading Map

In chapter 2, we will describe the state of the art in transformation engines, as well as our

choices and why we made them.

• In chapter 2.1 we define all the terms relative to the transformation process.

• In chapter 2.2 we give a short list of existing transformation engines and describe

briefly which ones we chose.

• In chapter 2.3 we explain the meta-model which meta-model we chose, and why.

We also describe the transformation engines we selected as well as the reasons

why we selected those.

Then, chapters 3, 4 and 5 are devoted to the description of the transformation engines we

selected. Chapter 5 is shorter than the two others, because the transformation engine we

describe in it hasn’t been used by us, but by another student, that has given us a detailed

description of it, for the sake of the comparison.

Chapter 6 is a detail description of an example of interface created in the transformation

engines we selected.

Chapter 7 is the comparison between the transformation engines.

• In chapter 7.1 we give a short summary of the three transformation engines we

selected.

• In chapter 7.2 we give the tools-specific issues we encountered.

• In chapter 7.3 we enumerate the tools-specifics advantages we notes during the

utilization of them.

9

• In chapter 7.4 we make a global comparison of the tools we used.

• Finally, in chapter 7.5 we give our conclusion and discuss the result.

10

Chapter Two. Model-Driven Engineering of User Interfaces: state of

the art

2.1 Definitions

MDE, Model Driven Engineering: a problem and its solution are modeled through different

levels of abstraction that allows hiding the complexities of a platform. Instead of coping with

all the subtleties of a platform, the software engineer handles simpler models. The models are

conform to a single meta-model, to allow tools automatically dealing with the models, for

example transforming a model into another (model transformation).

OMG, Object Management Group: Consortium originally created for the setting of standard in

object-oriented systems. It is now focused on modeling. OMG is the initiator of the MDA.

MDA, Model driven Architecture:

The following definition was approved unanimously by 17 participants of the ORMSC plenary

session meeting in Montreal on 23-26 August 2004.

The stated purpose of these two paragraphs was to provide principles to be followed in the

revision of the MDA guide.

MDA is an OMG initiative that proposes to define a set of non-proprietary standards that will

specify interoperable technologies with which to realize model-driven development with

automated transformations. Not all of these technologies will directly concern the

transformation involved in MDA.

MDA does not necessarily rely on the UML, but, as a specialized kind of MDD (Model Driven

Development), MDA necessarily involves the use of model(s) in development, which entails

that at least one modeling language must be used. Any modeling language used in MDA must

be described in terms of the MOF language to enable the metadata to be understood in a

standard manner, which is a precondition for any activity to perform automated

transformation.

So, MDA is an application of the MDE. The goal of the MDA is to

create Platform Independent Models (PIM) that can be later

refined into Platform Specific Models (PSM) through

transformations rules. Finally, the final code will be generated

from the PSM.

A model can represent many things; it is an abstract

representation of real world concepts. A model is a formal

representation of data, functions or application behavior. The

UML representation of an application is a model, as well as the

Erreur ! Utilisez l'onglet Accueil pour appliquer

0 au texte que vous souhaitez faire apparaître

ici.-1

 Figure 2-1 The MDA architecture

11

code of the application. A model is simpler than the real world concept it represents; it is

designed for a specific purpose, and allows us to use a concept without having to cope with its

real world complexity.

The MDA is a standard approach of modeling and automated mapping between the models.

The “kernel” of the MDA is a stack of four modeling levels described in Figure 2-2 [Nauwenko]

Figure 2-2 The four levels of MDA

• The level M4 is the meta-meta-model, that is, the model to which all others

models have to conform.

• The level M3 represents the meta-models created for a specific business.

• The level M2 corresponds to the platform-specific implementation. So it can be,

for example, a java program.

• Finally, the level M1 is some kind of “user-specific” data, like an execution of a

platform-specific model of level M2.

• Of course, other levels can be added between the existent ones, to refine them.

To allow systematization, tools must be able to manipulate the models. The meta-meta-model

is some sort of “legend” for all the models. A map uses only what is defined in its legend and

so does a model with respects to its meta-model. So, with a single meta-meta-model,

standardization is possible and we can create tools to manipulate the models.

UML is a possible meta-meta-model, but it isn’t the only one. So, the OMG created the MOF

(Meta-Object Facility) [MOF]. In figure 2-2, the MOF is the level M4. It is a standard addressing

meta-models and their manipulation. So, every model used as a meta-model should conform

to the MOF.

12

And the OMG also provided a way of creating MOF-compatible models: the XMI

recommendation [XMI] (see XMI definition further). Basing on the W3C XML standard, it offers

a widely available tool on which the designers can map their meta-models.

By creating a meta-model that is independent of the used platform or technology, we make it

possible to create model that are also independent of the platform or technology. Then we

have to create a meta-model that is specific to the platform/technology. And because all the

models conform to the MOF, we can create tools that transform the Platform Independent

Model (PIM) into Platform Specific Models (PSM). These tools are based on Model

Transformations (model transformations are explained further).

The OMG also defined a standard for the model-to-model transformations: the

Query/View/Transformations (QVT) [QVT], which is in fact a meta-model of the

transformations.

XMI, XML Metadata Interchange [9]: XMI is an OMG standard that maps the MOF to the W3C's

eXtensible Markup Language (XML) [XMI]. XMI defines how XML tags are used to represent

serialized MOF-compliant models in XML. MOF-based metamodels are translated to XML

Document Type Definitions (DTDs) and models are translated into XML Documents that are

consistent with their corresponding DTDs.

XMI solves many of the difficult problems encountered when trying to use a tag-based

language to represent objects and their associations. Furthermore, the fact that XMI is based

on XML means that both metadata (tags) and the instances they describe (element content)

can be packaged together in the same document, enabling applications to readily understand

instances via their metadata. Communication of content is both self describing and inherently

asynchronous. This is why XMI-based interchange is so important in distributed,

heterogeneous environments.

PIM, Platform Independent Model: model at a high level of abstraction that is independent of

the any platform. It allows creating software more easily, and the result is reusable for each

different platform.

PSM, Platform Specific Model: model at a low level of abstraction the is specific to a given

platform.

Transformation Rule: given a model, a transformation rule gives another model.

Transformations rules can be created by two means:

• Graphically: it is then composed of at least a Left Hand Side (LHS), a Right Hand

Side (RHS) and a precondition (the opposite of the precondition is sometimes

called NAC). The rule searches the LHS in the graph (by pattern matching) and

replaces it by the RHS, is the precondition is verified.

• Programmatically: an algorithm browses the model and modifies it. This is a much

harder method to create a transformation rule, but there are nearly no limitations,

compared to the graph transformation.

13

MOF, Meta-Object Facility: OMG’s standard describing meta-models and their manipulation.

This thesis will focus on automatic transformation of models, using transformation engines.

We will see how we can create transformation rules and execute them either in an existing

transformation engine, or by creating one. There exist a lot of transformation engines today,

so we had to make a choice. This choice and the reasons why we made it will be explained

further.

Finally, once the meta-model and transformation engines are chosen, and the transformation

rules implemented, we will show how they apply on example use cases.

14

2.2 Transformation Engines

 There exist today a lot of model-to-model transformation engines, which can be

classified following six categories [Czarnecki]:

• Direct-manipulation approach

• Relational approach

• Graph-transformation-based approach

• Structure-driven approach

• Hybrid approach

• Other approaches

And the tools of each category can further be classified using other criteria, such as rules

application scoping, rules scheduling and organizing, bi-directionality of the rules and many

others. This really means a great number of different tools.

VIATRA [VIATRA], ATOM³ [ATOM], GreAT [GReAT], UMLX [UMLX], and BOTL [BOTL] are

example of transformation engines; but there are many others.

Obviously, we couldn’t use all of these tools, and our objective was to make a comparative

analysis of transformations engines based on the implementation of rules into them.

The next chapter first explain which meta-model we chose, and why. Then, it explains which

transformation engines we chose, and the reasons for it.

15

2.3 Selected transformation Engines and meta-model

2.3.1 Meta-model

To implement rules in transformation engine, we have to choose a meta-model (the

specification language) to use for the sake of the comparison.

There exist several languages designed for the creation of user interfaces, such as XUL

(www.mozilla.org/projects/xul/), UIML (www.uiml.org), XAML (www.xmals.net), XIML

(www.ximl.org) and UsiXML (www.usixml.org).

All the transformation rules created for this thesis are based on the UsiXML (USer Interface

eXtensible Markup Language) programming language.

UsiXML is a User Interface Description Language (UIDL) that allows the specification of various

types of UIs, based on the Cameleon reference framework for multi-target UIs.

This framework is itself based on four abstraction levels: the Task & concepts level, the

abstract user interface level, the concrete user interface level and the final user interface level

(cf. figure 2-3).

UsiXML is thus based on a transformational approach: the goal of this language is to allow

creating an interface by only giving the tasks of the interface, and the objects it manipulates,

independently of the targeted platform. Then, by means of model-to-model transformations

rules, an abstract interface is created and, with other rules, transformed in a concrete

interface that will serve to generate a final user interface.

Moreover, the underlying formalism of UsiXML is represented under the form of a graph-

based syntax, thus well suited for the use with a tool like AToM³, using graphical

representation of the meta-model and transformation rules.

We chose UsiXML as a meta-model for several reasons:

Figure 2-3 The Cameleon reference framework for multi-target UIs

16

• UsiXML has been proven to be MDA-compliant [7]. It is structured according to the

four basic levels of abstraction defined by the Chameleon reference framework,

and based on a transformational approach (under the form of a graph-based

graphical syntax), which is the main subject of this thesis.

• The underlying unique structure, based on a graph syntax, which is very easy to

represent in graphical tools like AToM³ and ATL (in ATL, meta-model can be

constructed graphically).

• Transformation rules are expressed conforming to the same meta-model as the

transformed models.

UsiXML is composed of eight levels: Task Model, Domain Model, Abstract User Interface

Model, Concrete User Interface Model, Final User Interface, Context Model, Mapping Model

and Transformation Model. For a complete description of the UsiXML user interface

description language, see the Appendix B.

2.3.2 Transformation Engines

2.3.1.1 AToM³

First, we will use a program specifically designed to model transformation rules, named

AToM³. AToM³ belongs to the “graph-transformation-based approach” category; we chose it

because graph transformations are easy to implement, and the subject of this thesis is to

compare transformation engines and see if the increased flexibility of solutions like AToM³

(that uses the declarative paradigm for the implementation of the transformation rules)

involves a decreased powerfulness and completeness compared to harder-to-use, imperative

solutions.

In AToM³, we create, graphically, one or several meta-model(s) and model-to-model

transformation rules that apply on this (these) meta-model(s).

Transformations are coded using graph transformation rules. That is, a transformation is

composed of two graphs (LHS, RHS) and optional condition and action:

• The LHS (Left Hand Side) is a sub-graph that will be found in a graph using the

pattern matching method.

• The RHS (Right Hand Side) is the sub-graph that will replace the LHS in the graph.

• The condition (name of the pre-condition in AToM³) is coded in python

(http://www.python.org/), and must return true for the graph transformation rule

to be executed.

• The action, also coded in Python, is executed after the graph transformation rule, if

this one has been properly executed.

…

17

2.3.1.2 Custom java application

Then, we will try something else by creating our own program and interface, using the java

programming language. It is thus quite the opposite of AToM³. Instead of creating graphs, that

are quite intuitive, here all the transformation rules are coded in java. This means a longer and

more fastidious work (we will see further that it really is hard to implement, at least the way

we made it) as well as the need of good programming skills. The comparison between the two

should allow us to tell in this increased complexity is really rewarding in terms of performance

and completeness of the transformation engine.

The program first reads a UsiXML file and translates it into java objects. Then the

transformation rules apply on these objects and, finally, translate the objects back into

UsiXML.

2.3.1.3 ATL

 The third techniques added for the comparison, is using the ATL plug-in for eclipse to create

transformation rules. ATL can be considered as somewhere between AToM³ and java, as

transformation rules are coded (in the ATL specific language), but the meta-model can be

graphically designed.

ATL is presented in this thesis because it belongs to the “Hybrid approach” category.

ATL is using declarative AND imperative constructions. It is obviously more flexible than java

and the models and rules created in it are far more easily implemented and maintained than in

java. But, unlike AToM³, it is not fully declarative, and allows more complex constructions

thanks to the imperative possibilities. ATL is “in-between” AToM³ and java.

The choices we made allow us to have three very different kinds of transformation engines,

well representative of the three categories they belong to. We will describe the three

techniques, and then, based on two examples, we will try to do a comparison and explain the

pros and cons of each technique.

In the next three chapters, we give the detailed description of each of the transformation

engines we used.

18

Chapter Three. ATOM³

 AToM3 is a tool for multi-paradigm modeling that is used for meta-modeling and

model-transforming. As we can read on AToM³’s site1 : “Meta-modeling refers to the

description, or modeling of different kinds of formalisms used to model systems” and “Model-

transforming refers to the (automatic) process of converting, translating or modifying a model

in a given formalism, into another model that might or might not be in the same formalism”.

AToM3 is a graph transformation tool. This means that formalisms and models are

described as graphs, and the transformations themselves are declaratively expressed as graph-

grammar models.

 First, we modeled UsiXML in AToM³ as a meta-model. As we could not represent

completely UsiXML, we chose the classes concerned by the examples explained further2.

Instead of creating multiples meta-model (i.e. for tasks&concepts model, abtract user interface

model, etc.), we created only one to represent everything.

 AToM³ works as follows: a source model (graph) is submitted to transformations rules

that modify it to build the target model.

The source and target models each conform to a meta-model (the source and target

meta-model can be distinct or grouped in a single meta-model), and the transformation rules

use pattern conforming to source and target meta-models.

In AToM³, no distinction is made between source and target model. The source model

itself is transformed by the transformation rules.

1
 http://atom3.cs.mcgill.ca/

2
 « Polling System », p.8 and « Conversion system », p.8

19

Figure 3-1 AToM³ execution engine

3.1 Implementation

All the transformation rules we implemented in AToM³ are described in our rules

catalog (see Appendix B). The complete documentation of the AToM³ rules can be found in the

file Rules_AToM³.pdf on the CD joint to this thesis.

The transformations are expressed as graph-grammar models (a graph grammar is the

combination of a set of graph rewriting rules and the graph on which they apply, called host

graph). In AToM³, a transformation can be from a meta-model to another. But, as we

represented every class (from UsiXML) we had to use in a single meta-model, we didn’t use

this possibility.

As in other graph-based transformation tools, the implementation of the meta-models,

models and transformation rules is (almost) strictly declarative. But a few things can be coded

in python (www.python.org), as we will describe further.

 The only things that are obligatorily “coded” in AToM³ are pre- and post-conditions, as

well as some algorithms to give new variables a name based on other variables or change the

name of existing variables, for example (in AToM³, we can also add constraints on objects, and

action triggered by certain events). These are coded here in Python, with a very simple syntax.

In the next section, we present the meta-model as we implemented it in AToM³, and in

the section after, we present all the transformations we implemented, each time with the

precondition, postcondition, and the transformation itself.

20

3.2 Meta-model

As we can see on the figure 3-2, the meta-model is presented as an entity-relationship schema.

The classes are represented as squares with the name above, and attributes under, and the

relationships are represented by rhombuses. The cardinalities can also be implemented, and

are here represented as sorts of attributes of the classes and relationships.

To create a meta-model in AToM³, we first have to choose in which formalism we want to

create it. This formalism will be our “meta-meta-model”. And we have of course here to

choose the entity-relationship model.

Now we can create our “meta-model”, with classes and relationships. For each class of

relationship, we can (by double-clicking on it) create attributes, constraints, actions and a

graphical representation.

Constraints are properties of the object that are checked by AToM³ at some specific moments

(instantiation, connection, etc.). Actions are, as we can expect, actions that will be performed

by AToM³ at specific moments (same possibilities as for constraints). Finally, the graphical

representation will allow recognizing objects only with their appearing.

Inheritance is supported by AToM³, but not composition. To tackle with this limitation, we had

to create bidirectional relationships instead of each composition relation. This is less readable

and practical, but allows us to have the same result.

Another problem in AToM³ is the representation of the model itself. To create the model, we

have a canvas of a limited size, and the objects we create in it are quite big. What’s more, the

representation of the cardinalities as attributes of the objects makes it even bigger. So we

have soon a not very clear schema, with arrows crossing objects, and this is not very readable

and forces us to lose much time reorganizing the schema to have something clear.

Figure 3-2 is the entire meta-model implemented in AToM³. As the graph of figure 3-2 is too

small to be readable, the figure 3-3 takes only the “task model” part of the meta-model as an

example.

21

Figure 3-2. UsiXML meta-model in AToM³

22

Figure 3-3. Task Model in AToM³

3.3 Transformations

When we have finished creating our meta-model, we can generate buttons in AToM³ to

instantiate the objects of this meta-model. The objects will be instantiated with the graphical

representation we gave it, or a default one. With this meta-model generated, we can now

create the transformation rules.

Figure 3-4. Rules set

23

3.3.1 The rules sets

In AToM³, creating rules sets is very simple. As we can see in the figure 3-4, there is a field to

give the rule set a name, and a list in which we can very simply add (or remove) rules.

So it is very simple to create distinct rules sets in AToM³, and to save them. Re-loading them is

very easy too.

When we have created our rule set, clicking on “Generate GG code” will generate python code

from our rules. This code is the code that will be executed for our model transformations.

3.3.2 The rules

Here we show how the rules are implemented in AToM³. For a complete listing of all the rules

we implemented in AToM³, see the appendix A.

Transformation rules are mainly composed of six components:

• The Left Hand Side (LHS)

• The Right Hand Side (RHS)

• The condition

• The action

• The order of the rule

• The name of the rule

24

Figure 3-5. Transformation rules

There is no NAC in AToM³, since it is replaced by a condition in python code. If this condition

returns true, then the rule is executed.

The action is also a python code block, which is executed after the rule. The fact that, in

AToM³, condition and action are python code is very useful: while being a little harder to use

and understand for an interface designer that has no (or few) programming skills, it allows

things that couldn’t be done graphically. In fact, everything could be done with only the action

and condition, since AToM³ allows implementing programmatically everything it can make

graphically. But this is not a good idea, since code is harder to implement than graph and so,

more subject to errors.

However, condition and action also allows (and that’s their real purpose, in addition to the

NAC role of the condition) determining values by browsing the model (indifferently source or

target model, since there is no distinction) and computing the values from it. The condition can

be constructed exactly like a NAC, but the pair condition/action can use a simple mechanism to

ensure the rule is executed only one on a given object: the action adds the object an attribute

and if the condition sees it, it means that the rule has already been executed, and the

execution of this rule is stopped.

25

Finally, AToM³ allows determining a fixed total order on the rules, but this order cannot be

dynamically modified. There is no explicit flow control; the condition only allows preventing a

rule to execute but, in that case, the rule will never be executed on the same pattern of the

source model.

On figure 3-6, we can see a model transformation that corresponds to the following schema:

 NAC LHS RHS

Figure 3-6. Graphical rule description

The main fields are name, and order, to give the rule an order in the rules set. There is also a

checkbox: “subtype matching”: by checking it, we allow AToM³ to recognize inheritance in the

transformations, so for example if a box is a subtype of “GraphicalContainer”, it can be

recognized as a graphical container in the LHS.

Then we come to the rule itself. It is divided into two parts: Left Hand Side (LHS, framed in red)

and Right Hand Side (RHS, framed in red). The LHS is a pattern that will be searched by AToM³

in the graph we want to transform. When AToM³ finds it, it replaces it by the RHS.

26

Figure 3-7. Condition

The (pre)condition of figure 3-7 corresponds to the NAC of figure 3-6. The first line,

 node = self.getMatched(graphID, self.LHS.nodeWithLabel(2))

 simply takes the object in the LHS that has the label 2 : it is the AbstractIndividualComponent.

 for link in node.out_connections_:

means that we explore every link starting from the object. And

for SemObj in link.out_connections_

 means that we explore every object that is a target of this link. We do this to find if there is

already a link between the AbstractIndividualComponent and a GraphicalContainer, which is

well the NAC (precondition) of our transformation. If we find one, the precondition is not met,

and we return 0, which means that the rule will not be executed.

The second part of the precondition is used to prevent the rule to be executed twice on the

same objects. When the rule is executed on the object, we give it an attribute

“_visitedForRule” (cf. action, figure 3-8): this allows AToM³ to see it hasn’t to execute the rule

once more.

27

Figure 3-8. Action

The rule of the action here is to give the node an attribute, which will allow AToM³ to see later

that it has already executed the rule on this node.

3.3.3 Properties of the objects

AToM³ also allows editing the properties of the objects in the RHS. Once more, this is very

simple.

Figure 3-9 shows how we edit the properties of the object with label 11 in the RHS. As we can

see in the edition window there are three possibilities to give a variable a value: “copy from

LHS”, “Specify code”, or giving directly a value in the field next to the variable’s name.

Copy from LHS means that the variable will simply have the same value than it the object with

the same label in the LHS. Specify code will allow us to create a small algorithm to determine

the variable’s value.

28

Figure 3-9. Object properties in transformation rule

In figure 3-10, we see the small algorithm that we used here to give the variable a value. In

fact, it takes the name of the object will label 8 in the LHS as value. The syntax for such

algorithms in AToM³ is still very simple.

29

Figure 3-10. Value computing in transformation rule

Sometimes, the fact that we can, in AToM³, use Python for pre-and post-conditions help us

create simpler transformation rules.

Let us take for example the rule 8. The role of this task is : if two tasks are [linked] to,

respectively an abstract container and an abstract individual component and if these two tasks

are linked together by a dialog control relation, then the same dialog control relation must be

created to link the abstract container and the abstract individual component.

But in the graph of the LHS, there is apparently no link between the task with label 1 and the

task with label 2. We created it so because there can be several types of dialog control

relations between two tasks. So, by putting it in the graph, we would have had to create a

transformation rule for each type of dialog control relation.

Instead, we used the precondition to verify the relation. The execution of the rule is then as

follows:

• AToM³ finds the LHS pattern in the source graph.

• It then executes the precondition. This one says: if there is a link between the two

tasks, and if this link is no of type “composition”, then add an attribute “link type”

to the first task, and continue the transformation rule.

• AToM³ now replaces the LHS by the RHS, and so creates a link between the

abstract container and the abstract individual component.

30

• Finally, the symbol of the new dialog control relation is set by another python

algorithm, that takes the value of the attribute “linkType” the precondition had

added to the first task.

So, with only one transformation rule, all types of tasks relationships are processed.

This way of working is however a little “artificial”: instead of really creating a graph

transformation rule in a declarative manner, we use python to make it more “polyvalent”. This

means that the rule was harder to create, and doesn’t really respect the point of view of

AToM³, that should be (almost) strictly declarative. However, the earning in terms of time is

here worth the implementation complexity.

Figure 3-11: the rule in AToM³ to derive abstract dialog control relationships

31

Finally, to help the reader understanding the models we implement in AToM³, we give in figure

3-12 the graphical representation of all the objects that will be met in the examples.

Figure 3-12. AToM³ Objects graphical representation

32

Chapter Four. Custom transformation engine in java

 Instead of using an existing tool, as AToM³, the second possibility was to create a

project entirely coded in the Java programming language. The goal here was to have a

program that could take a UsiXML file as input, apply transformations on it, and give the result

as an output, still in UsiXML format.

4.1 Implementation

The program itself is composed of five main classes, plus the classes created by jaxb. These

four classes are:

• The GUI class

• The main class, which reads the UsiXML file, translates it in java objects, and

instantiates the rules class. After all the rules are executed, the main class

recreates a UsiXML file with the result.

• The rules class, which contains the methods of all the transformation rules

• The rulesHelpers class, which contains methods to help create transformation

rules, for example “findAC(Iterator auiIter, string id)” that allows to find an abstract

container of id id with an iterator. This allows the rules in the rules class to be

slightly shorter, and avoids a part of the redundancy.

• The rulesTree class, which contains a tree of all the transformation rules

When the GUI designer wants to implement new transformation rules, he has to modify the

last two classes. Figure 4-1 and 4-2 are respectively the UML diagram of our transformation

engine, and the sequence diagram of the execution of transformation rules in our

transformation engine.

33

Figure 4-1. UML schema of the application

34

When executing transformations rules, the sequence is like below:

Figure 4-2. Sequence diagram of the application

First, using the GUI, we open the source file. When asking to execute rules, the interface

instantiates Main, that will marshall the file (convert it into java objects). Then, the main

instance will instantiate the Rules class and ask executeRules() to executes all the

transformations rules. The Rules class, for some transformation rules, instantiates the

RulesHelpers class to use one of its helper rules. Finally, the main class re-converts the java

objects into an XML file, that is displayed on the graphical user interface.

All the classes have access to the model, which is directly modified. The source model then

becomes at the end the target model; there is no distinction between them. All classes also

have access to the graphical user interface, to be able to know which transformations rules are

selected.

In the next chapter, we explain each class in detail.

4.2 Details of the implementation

Here, we explain the way each class is implemented, but we don’t show the code. This one is

given in appendix.

35

4.2.1 The graphical user interface (UsiXMLTransformationGui)

Figure 4-3. Graphical User Interface

The graphical user interface of our program has been made using swing. It is very simple, as we

can see on the figure. Mainly, it has two big text areas that are used to show the source and

target files:

• Source file is the UsiXML file before the execution of the transformation rules

• Target file is the UsiXML file obtained after applying the transformation rules on

the source file

At the right side of the interface, we can see a tree containing all the implemented

transformation rules, each with a checkbox aside. The checkboxes allow deciding whether or

not the rule will be executed.

Between the two big text areas, are two buttons: “Execute rules” and “switch with console”.

36

• “Execute rules” will execute all the transformation rules that have their

checkboxes checked, or all of them if the checkbox of “All transformation rules”

above is checked.

• Switch with console will simply take the text of the console and put it in the in-low

text area, and vice-versa. It is just a small convenience for reading easily the text of

the console.

Finally, important messages, such as errors, executed rules and time to execute them are

displayed in the console.

The interface has three menus: the first has only one element: “quit”, to exit the application.

The second is used to open the source file, or save it if we made changes in it. Finally, the third

is used to save the target file after the execution of the rules.

37

4.2.2 The main class

Many things are done in this class. It has to:

• Read the source UsiXML file and translate it into java objects.

• Instantiate the rules class, and call each rule.

• Create the target UsiXML file with the result.

First, we used JAXB to automatically create java classes corresponding to all entities in

UsiXML3. JAXB can, with a schema in an *.xsd file as input, create java classes for all entities

present in the schema. These classes have getters and setters for all attributes, and can thus be

easily used as is (in fact, because of a compatibility problem with some type of lists, some

attributes were missing, and we had to add them manually).

Figure 4-4. using JAXB

The program reads the UsiXML file (*.usi), and instantiates the classes (created by JAXB) to

internally represent the file (thus, using java objects), using the Castor project.

3
 Cf. Figure 1 p. 5

38

Figure 4-5. Reading and translating a UsiXML file

As we see in the code, Castor needs a mapping file
4 to correctly read the UsiXML file (and

create the new file after the transformation rules have been applied). A mapping file is a file

that contains rules (expressed in XML) to create an XML file from java objects. For example,

the code in the mapping file for the AbstractContainer object is:

We can see in the code that it corresponds to the class “usixml.po.AbstractContainer”. It will

be mapped in the new XML file with the name “abstractContainer”. Then we see each

attribute of the class AbstractContainer, and for each one, we see the name of it in the new

XML file, as well as how it will be formatted (attribute or node).

The last attribute is a little special: this attribute is a list. And, at the end of the “bind-xml”

element, we see the attribute “auto-naming=”deriveByClass”. This means that the name of the

attribute (in the new xml file) will be dynamically chosen by Castor, following the name of the

class. As an AioType can be an instance of AbstractContainer as well as

AbstractIndividualComponent or Input (all extend AioType), the name can be one of the three.

4

39

4.2.3 The Rules class

In this class, we find all the methods for the transformation rules. To make the program easier

to read and modify, there is one method per transformation rule. Of course, this means a small

loss of performance, coming from the fact that different rules can apply on the same object,

and each one will have to do the search to find this object. But it was the only way to allow the

maintainability of the code.

The main difficulty in the java programming method for the creation of transformation rules is

that Java isn’t designed for pattern matching. That forbids us to take a transformation rule

expressed in UsiXML to automatically execute it by searching its LHS in the UsiXML file and

replacing it with the RHS. Each transformation rule has to be coded “by hand”.

Here, we see an example of such a transformation rule expressed in Java:

Figure 4-6. Abstract Adjacency Rule

In the figure 4-6, we see the rule. The goal of this one is to create a relation of type

“AbstractAdjacency” for each couple of sister tasks executed into AIOs that will thus be next to

each other in the Final User Interface.

Expressing transformation rules in java is much more complex than in AToM³ or ATL. To show

how these rules work, we will show here three of them, in ascending order of complexity.

40

First, let us describe a simple rule:

void abstractContainment(Iterator taskIter){

/* For each abstract container, an abstract containment relationship
* is created, with this abstract container as source, and, as
* targets, all the abtract individual component corresponding to the
* tasks that compose the task corresponding to the abstract ontainer.
 */

while (taskIter.hasNext()){
//

Task t = (Task)taskIter.next();
 String id = t.getId();
 if (!(t.getTask().isEmpty())){
 // Tasks is composed of subtasks.
 abstractContainment(t.getTask().iterator());
 }

 Iterator subTasksIterator = t.getTask().iterator();
 // We browse all the subtasks composing the task t
 while (subTasksIterator.hasNext()){
 Task subT = (Task)subTasksIterator.next();
 Target tar = new Target();
 if (subT.getTask().isEmpty())
 // If the subtask has no subtasks,
 // it is an Abstract Individual Component,
 // so we give it "AIC_" plus the task id as id.
 tar.setTargetId("AIC_" + subT.getId());
 else
 // If the subtask has subtasks,
 // it is an Abstract Container,
 // so we give it "AC_" plus the task id as id.
 tar.setTargetId("AC_" + subT.getId());
 AbstractContainment aCont = new RulesHelpers(ui,

UXTG).findACont(ui.getAuiModel().
getAuiRelationshipOrAbstractContainmentOrAbstractAdjacency().

iterator(),"AC_"+id);
// We search for an already existing abstract
// containment relationship with the abstract
// container as source.

 if (aCont!=null){
// If there is already a relationship, we simply add
// the target to it.

 aCont.getTarget().add(tar);
 }
 else {
 // else, we create a new relationship with the

// abstract container as source,and the
// abstract individual component (or abstract
//container) corresponding to the subtask
//as target.
AbstractContainment AbsCont = new

 AbstractContainment();
 Source src = new Source();
 src.setSourceId("AC_" + id);

41

 AbsCont.getSource().add(src);
 AbsCont.getTarget().add(tar);
 AbsCont.setId("ACont_" + src.getSourceId());

 ui.getAuiModel()

 .getAuiRelationshipOrAbstractContainmentOrAbstractAdjacency()
.add(AbsCont);

 }

 }
 this.AbstractContainment=true;
 }

 }

This rule creates abstract containment relationships for abstract containers containing abstract

individual components.

We first have to navigate all the tasks of the task model with an iterator to find ones that are

composed of subtasks. For each of them, we create an abstract containment relationship with

the abstract container corresponding to the task as source, and abstract containers of abstract

individual components corresponding to the subtasks as targets. We recursively call the

method on the subtasks that are also composed of subtasks.

The following code block:

if (subT.getTask().isEmpty())
 // If the subtask has no subtasks,
 // it is an Abstract Individual Component,
 // so we give it "AIC_" plus the task id as id.
 tar.setTargetId("AIC_" + subT.getId());
 else
 // If the subtask has subtasks,
 // it is an Abstract Container,
 // so we give it "AC_" plus the task id as id.
 tar.setTargetId("AC_" + subT.getId());
 AbstractContainment aCont = new RulesHelpers(ui,

UXTG).findACont(ui.getAuiModel().
getAuiRelationshipOrAbstractContainmentOrAbstractAdjacency().

iterator(),"AC_"+id);

is used to give an id to the abstract objects. The id’s are always defined the same way:

• The abstract containers have “AC_” + the id of the task as id

• The abstract individual components have “AIC_” + the id of the task as id

This first rule itself is very simple but, as we can see, the implementation is already quite long.

For the comparison, the figure 4-7 shows the same rule implemented in AToM³:

42

Figure 4-7. The rule in AToM³

43

With more complex rules, things become worse.

NAC LHS RHS

Figure 4-8. Generation of a control button

For each abstract individual component AIC composed of a control fact, and contained by an

abstract container AC reified by graphical container GC, the following is done:

• A Button graphical individual component is created.

• A graphical containment relationship is created with GC as source, and the button

as target.

• A is reified by relationship is created with AIC as source and the Button as target.

In AToM³, this rule is still quite simple because it doesn’t involve many objects, and only one is

created. But the method in java is very long, the figure 4-9 shows it:

void controlButtonForControlFacet(){

 UXTG. console .append
 ("Creating Control Button for Control Facet... \n");

 Iterator RelIter = ui .getAuiModel().
 getAuiRelationshipOrAbstractContainmentOrAbstractA djacency()
 .iterator();
 Vector<IsReifiedBy> irbs = new Vector<IsReifiedBy>();

 // 1. We browse all the relations to find "abstract
 // containment" relations
 while (RelIter.hasNext()){

 Object rel = RelIter.next();
 if (rel.getClass().equals
 (new AbstractContainment().getClass())){

 AbstractContainment contains =
 (AbstractContainment)rel;
 Source src = contains.getSource().get(0);
 // "AbstractContainment" relationships
 // always have only one source.
 Iterator mapIter =
 ui .getMappingModel().

44

 getInterModelRelationshipOrManipulatesOrIsExecuted In().
 iterator();
 // 2.2 We search all the "is reified by"
 // relations with src as source
 while (mapIter.hasNext()){

 Object map = mapIter.next();
 if ((map.getClass()).equals(new
 IsReifiedBy().getClass())){

 IsReifiedBy IR = (IsReifiedBy) map;

 Source IRSrc = IR.getSource().get(0);
 Target IRTar = IR.getTarget().get(0);
 if (IRSrc.getSourceId().equals(src.getSourceId())){
 // 2.4 We search a Graphical Container that has the
 // same id as the target.
 String id = IRTar.getTargetId();
 // 2.5 for that,we browse all the graphical
 // containers
 Iterator cioIter =

 ui .getCuiModel().getCioOrFinalComponentOrAuditoryCio().
 iterator();

 GraphicalContainerType gc =
 new RulesHelpers(ui , UXTG,
 rulesTree).findGC(cioIter, id);

 if (gc!= null){
 // We have a GraphicalContainer
 String cioId = id;

 // Ok, Src is reified by a graphical container
 // Now we browse all the targets, and if one is
 // composed of an input facet (create, string),
 // then we execute the rule.
 Iterator tarIter = contains.getTarget().iterat or();
 while (tarIter.hasNext()){
 Target tar = (Target)tarIter.next();
 //Target tar = ((Target)(tarIter.next()));
 String tarId = ((Target)tar).getTargetId();

 // Now we browse all the AIO's to find a AIC
 // that is composed of an i nput facet (create)
 // and that has the ID of t arget.

 AbstractContainer ac = new RulesHelpers(ui ,
 UXTG, rulesTree).
 findAC(ui .getAuiModel().getAioOrAbstractContainer().
 iterator(), tarId);
 AbstractIndividualComponent aic = null;
 if (ac== null){
 aic = new RulesHelpers(ui , UXTG, rulesTree).
 findAIC(ui .getAuiModel().getAioOrAbstractContainer().
 iterator(), tarId);
 if (aic!= null){
 controlButtonForControlFacetHelper
 (src, cioId, aic, irbs);
 } } } } } } } } }

45

 Iterator irbIter = irbs.iterator();
 while (irbIter.hasNext()){
 IsReifiedBy IRB = (IsReifiedBy)irbIter.next();
 ui .getMappingModel().

 getInterModelRelationshipOrManipulatesOrIsExecuted In().add(IRB);
 }
 }

 void controlButtonForControlFacetHelper
 (Source src, String CioId, AbstractIndividualCompo nent aic,
 Vector<IsReifiedBy> irbs){

 // We browse all the facets of the AIC to find an i nput
 // facet (create, string)
 Iterator FaIter = aic.getFacetOrInputOrOutput().i terator();
 //System.out.println("3.3. BOUTON !");
 System. out.println("AIC : " + aic.getName());
 while (FaIter.hasNext()){
 Object FA = FaIter.next();
 System. out.println("type : " + FA.getClass());
 if (FA.getClass().equals(new Control().getClass())){
 // We found an output
 Control control = (Control)FA;

 if ((control.getActionType().equals("start"))){
 // It is the type of input we were
 // looking for
 ButtonType button = new ButtonType();
 button.setId("Button_" +control.getId());

 IsReifiedBy irb = new IsReifiedBy();
 Source irbSource = new Source();
 irbSource.setSourceId(aic.getId());
 Target irbTarget = new Target();
 irbTarget.setTargetId(button.getId());
 irb.getSource().add(irbSource);
 irb.getTarget().add(irbTarget);

 // We cannot directly add it in the
 // mapping model beca use an iterator is
 // currently browsing it, so it create a
 // ConcurrentMOdifica tionException.
 // So we had it in a vector, that will
 //further be browsed to add all irbs
 // into the mapping model.
 irbs.add(irb);

 GraphicalContainmentType butGCT = new
 GraphicalContainmen tType();

 Source butSrc = new Source();
 butSrc.setSourceId(CioId);
 butGCT.getSource().add(butSrc);
 Target outTar = new Target();
 outTar.setTargetId(button.getId());
 butGCT.getTarget().add(outTar);

 ui .getCuiModel().getCioOrFinalComponentOrAuditoryCio().add(butto

46

n);
 ui .getCuiModel().

 getCuiRelationshipOrCuiDialogControlOrGraphicalAdj acency().add(b
utGCT);

 }
 }
 }
 }

Figure 4-9. A complex transformation rule in java

Obviously, maintaining such a code is a very difficult task. So, the maintainability and flexibility

of our custom java transformation engine is very poor compared to the one of AToM³. Because

of this complexity, implementing the whole rules set we decided to has been very long, around

three man-months. That is more than two times more than AToM³ requires for the same task.

47

Chapter Five: ATL

First, let us remind that we didn’t use ATL, so the description here is only intended to show

how ATL executes the transformation rules to add to it the comparison.

ATL come under the form of an Eclipse (www.eclipse.org) plug-in. It is in fact composed of

three things:

• The ATLAS transformation language

• The ATL execution engine

• ATL development tools (ADT)

ATL is a transformation tool for model driven engineering, implemented as an Eclipse plug-in

and using its own transformation language. ATL follows a hybrid approach: transformation

rules can be fully declarative, fully imperative or both declarative and imperative.

Figure 5-1 ATL execution engine

Each model conforms to a meta-model. The source model, transformation model and target

model are all models conforming to their respective meta-models, which conform to the MOF

recommendations.

The meta-model of the transformation is the ATLAS transformation language. It is both

declarative, which allows simple and quite intuitive specification of transformation patterns,

and imperative to help design complex rules which couldn’t be with only declarative

constructs.

48

The declarative rules are called “matched rules”. These are executed each time their source

pattern is matched with a part of the source model. When the rule is executed, its target

pattern is created in the target model.

Imperative rules are “called rules”. They are used in ATL to provide some mechanisms needed

to create more complex rules.

Instead of a source pattern, like the matched rules have, imperative rules have parameters

(and can be explicitly called). But called rules can have a target (like matched rules) instead of

imperative code.

And declarative rules can also have imperative blocks, which can serve and entry or exit point.

Called rules allow explicit control of the execution, which declarative rules don’t (see the

execution engine section).

ATL supports different model handlers that allow it to use different formats as sources and

targets, such as XMI, XML documents, binary files and textual representations5 of models.

The ADT (ATL Development Tools) bring a certain number of facilities for the designer [ATL

Desc.], such as syntax highlighting, error reporting and a debugger (Source-level debugging,

Stepping through elementary operations and Breakpoints support). It also benefits from the

use of the Eclipse IDE, will all the facilities this implies.

We didn’t implement our rules catalog in ATL, but ATL is one of the currently most used

transformation engines, so we add to the comparison.

5
 ATL can serialize models to text format (using the TCS model handler)

49

Chapter Six. Case studies

In this section, we will show how the transformation rules we implemented are applied on

models. We will begin by two very simple examples and describe in detail the execution of the

transformations, as well as specific issues for each tool.

Each example will be executed using AToM³ and our custom java transformation engine (we

didn’t implement the transformation rules in ATL, so we cannot show the ATL execution).

For each example, we first describe it in natural and graphical language, then show the source

model used with each tool and finally, the result of the execution of the transformation rules.

The chapter will be structured as follows:

• First, we will describe the rules we implemented in AToM³ and our custom

transformation engine, and why we implemented these ones.

• Then we will illustrate some rules by two simple examples.

• Finally, we will apply our rule set to a bigger example: the virtual polling system.

But first, we describe the transformation rules we implemented.

6.1 Implemented rules

The set of rules we implemented is the same for AToM³ and our java transformation engine. It

is in fact originally taken out from [Limbourg], but the example has been a little developped in

[Stanciulescu], so we based ourselves on both to create our rule set.

The whole rules catalog is described in Appendix B, and rules are explained in the examples

below.

50

6.2 Use case: Currency convertor6

This use case is intended to show how the currency convertor that can be found at the

site http://www.xe.com/ucc/ could have been implemented using the MDA approach. The

way this currency convertor works is very simple: the user enters an amount in a text field,

chooses the source and target currency and ask the conversion.

Here is the task model designed with the tool idealXML:

The task model is graphically described using IdealXML tool. The figure 6-1 depicts a CTT

representation of the task model of the system. The root task consists of converting

currencies. The user has to provide the amount he wants to convert, as well the current and

the wanted currencies. Then the user launch the conversion and finally, the system displays

the result.

Figure 6-1. Currency convertor task model

The objective here is to have a simple example to show how the transformation rules work. So,

we won’t model the domain and mapping models.

6
 The currency convertor can be found at the site : http://www.xe.com/ucc/

51

Here is the UsiXML specification generated by idealXML.:

<?xml version="1.0" encoding="UTF-8"?>
<uiModel>
 <taskModel id="tm0" name="taskmodel">
 <task id="Root" name="Convert currency" type="abs tract">
 <task id="task1" name="Insert data"
 type="interaction">
 <task id="task2" name="Insert amount"
 type="interaction" />
 <task id="task3" name="Select FROM currency"
 type="interaction" />
 <task id="task4" name="Select TO currency"
 type="interaction" />
 </task>
 <task id="task6" name="Launch conversion"
 type="interaction" />
 <task id="task7" name="Show converted currency"
 type="application" />
 </task>
 <enabling id="e1">
 <source sourceId="task1" />
 <target targetId="task6" />
 </enabling>
 <enabling id="e2">
 <source sourceId="task6" />
 <target targetId="task7" />
 </enabling>
 <orderIndependence id="OI1">
 <source sourceId="task2" />
 <target targetId="task3" />
 </orderIndependence>
 <orderIndependence id="OI2">
 <source sourceId="task3" />
 <target targetId="task4" />
 </orderIndependence>
 </taskModel>
</uiModel>

Step 2: From Task a to AUI Model

The second transformation step involves a transformation system that contains rules applied

in order to realize the transition from the task to the abstract model. This step is subdivided

into five sub-steps according to [Limb04b]. We give here the set of rules that will be executed

on this example (there are only a few, because here we only modeled the task model).

Sub-step 2.1: Rules for the identification of AUI structure

Rules 1 and 2 create abstract containers for tasks that have task children and abstract

individual components for leaf tasks. Tasks 4 and 5 reconstruct the containment relationships

for these AC’s and AIC’s.

The result of the application of these rules over the task model structure consists in a

hierarchical decomposition of the AUI into abstract containers and abstract individual

components.

52

Sub-step 2.2: Rules for the selection of AICs

These rules aren’t executed here because there is no domain model. The rules 6 to 10 apply on

patterns with attributes or methods. For an example of execution of these rules, see the

“virtual polling system” example.

Sub-step 2.3: Rules for spatio-temporal arrangement of AIOs

For each couple of sister tasks executed into AIOs, we generate an abstractAdjacency

relationship between these AIOs. As AIOs can be of two types (i.e., ACs or AICs), there are four

possible rules to be applied (Rule 11-14).

Sub-step 2.4: Rules for the definition of abstract dialog control

By analogy with the previous sub-step, for each couple of sister tasks executed into AIOs, we

generate an abstractDialogControl relationship between these AIOs that have the same

semantics as the temporal relationship defined between the tasks. As AIOs can be of two types

(i.e., ACs or AICs), there are four possible combination that are considered by Rules 15-18.

Sub-step 2.5: Rules for the derivation of the AUI to domain mappings

This corresponds to rules 19 and 20. For the same reason as for sub-step 2.2, they aren’t

executed.

Step 3: From AUI Model to CUI Model

The third step implies a transformational system that is composed of necessary rules for

realizing the transition from AUI to CUIs. Only GUI is taken into account (no vocal or

multimodal UI), so the modality used to interact with the system is entirely graphical

(monomodal UI).

Sub-step 3.1: Reification of AC into CC

Rule 21 creates a GC which will be the main box of the UI associated to the AC found

one level under the root AC in the abstract hierarchy. This main box contains the main window

of the UI.

Rule 22 creates a GC of type box for each AC contained into an AC that was reified into

a main box.

Sub-step 3.2: Selection of CICs

The current sub-step generates different GICs depending on the type of facets of the

corresponding AICs:

� Generation of an outputText and an inputText that enable to insert the name and the

zipCode: Rule 23 is applied each time an AIC with an input facet of type create element

is encountered.

� Generation of a GC of type box that will embed a group of radio buttons and a GIC of

type outputText representing the label associated to this group when an input facet of

type select element is encountered: Rule 24; The radio buttons associated to this group

are created by applying Rule 25. The rules are used in order to select the gender of the

user, the ageCategory and also his answers to the questions

53

� Generation of a GIC of type outputText each time an output facet of type create is

encountered. For this purpose Rule 26 has to be applied in order to ensure the display of

the titles of the questions.

� Generation a button that will ensure the send questionnaire task each time when a

control facet of type start operation is encountered: rule 27.

Sub-step 3.3: Arrangement of CICs

For each couple of adjacent AIOs that are reified into graphicalCIOs, we define a

graphicalAdjencency relationship between these graphicalCIOs. As AIOs can be of two types

(i.e., ACs or AICs), there are four possible combination to take into account. For each

combination a specific rule is considered: Rules 28-31.

Sub-step 3.4: Navigation definition

The rules that ensure the navigation definition are not applied in the current case study as all

the sub-tasks of the virtual polling system are presented combined into the same window.

Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this relationship

to the graphicalCIOs that reify them is realized. As AIOs are of two types (i.e., ACs and AICs),

four rules describing the four possible combinations are considered: Rules 32-35.

Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 36 and 37 are used to transpose the updates and triggers relationships from the abstract

to the concrete level. These relationships map GICs with attributes and methods from the

Domain Model.

54

6.2.1 Currency convertor in AToM³

 The task model created in AToM³ to represent the currency convertor gives the

following graph:

Figure 6-2. Currency convertor task model in AToM³

The graph in AToM³ is easy to understand because, here, the relations representations are the

same as the UsiXML standard and so, the same as in idealXML (as said before, AToM³ allows

giving any graphical representation to the objects).

We will now apply the rules set described in the point 6.1 (rule set description):

55

Figure 6-3. Editing grammar execution

As described in chapter 3, we have already generated python code for our transformation

rules; AToM³ thus generated one file for each rules set. Now we have to add this file to the list

of rules sets AToM³ will apply on our model, as we see on figure 6-3. AToM³ also allows

applying the rules step by step to see the effects of each one. So we will show here the

screenshots of the model after each rule execution.

Figure 6-4. Currency convertor after execution of rule 1

56

After the execution of the first rule (Rule 1: executedINAC, figure 9.1), AToM³ has created an

abstract container for each task that has sub-tasks.

Then, as we see on the figure 6-5, AToM³ executes the second rule (Rule 2: executedInAIC,

figure 9.2) and creates an abstract individual component for each task that has no sub-task.

Figure 6-5. Currency convertor after execution of rule 2

57

Figure 6-6. Currency convertor after execution of rule 3 and 4

Then, as we see on the figure 6-6, AToM³ executes the two rules intended to creates

bidirectional links between abtract objects (abstract containers and abstract individual

components) when one contains the other (rules 3 and 4, figure 9-3 and 9-4). We already

become to see one of the problems with AToM³: even small graphs quickly become very hard

to read because of the arrows and objects crossing each other, and because the objects do not

move to make the graph more readable during the execution of the transformations.

The problem becomes even more obvious on the figure 6-7. Here, for each pair of tasks linked

by a dialog control relation, the same relation has been created between the abstract

containers or abstract individual component that these tasks are executed in (figure 9-15 to 9-

18). It really becomes hard to understand the graph, and the only way of knowing what a

relation represents is now clicking on it to see its properties.

One the figure 6-8, abstract adjacency relations have been created between abstract

containers of individual components corresponds to tasks linked by an « enabling » relation

(rules 14 to 17, figure 9.14 to 9.17).

For this simple example, we didn’t implement the domain model, so there is no attribute or

methods, and the transformation engine won’t thus create any facets for the abstract

individual components. This is done in the next example (virtual polling system). We didn’t set

the user actions of the tasks, so AToM³ won’t create facets for the abstract individual

58

components either. One the figure 6-9, we see that a box named « main box » has been

created and reify the abstract container of the root task, « convert currency ». A window has

also been created and is contained by the mainbox (rule 20, figure 9-20).

Figure 6-7. Currency convertor after execution of rule 6 and 7

Figure 6-8. Currency convertor after execution of rule 11, 12, 13 and 14 (14, 15, 16 and 17 in AToM³)

59

Figure 6-9. Currency convertor after execution of rule 21 (20 in AToM³)

Figure 6-10. Currency convertor after execution of rule 22 (21 in AToM³)

Finally, a box is created for each abstract container contained by another abstract container

(figure 6-10).

60

6.2.2 Custom java transformation engine

Our custom java transformation engine takes directly the UsiXML files as input. This file is

described above in the example description.

We launch the application and open the file as « source file ». On the next screen, we see the

source file has been opened and is showed in the first text area.

At the right of the figure 6-11, we see the tree of all transformation rules implemented in the

program. First, we only select the rules to create the abstract objects, namely « Abstract

Interaction Level » in the application.

Figure 6-11. Source model and transformation rules selection in custom java transformation engine

We then click on the button « Execute Transformations Rules » located between the two text

areas, and the transformation engines applies all the selected rules (of course, the one that

can be applied) on the source model, then put the result in the bottom text area.

This result is shown in figure 6-12. We see in the console that the transformation rules have

been executed properly, in 15ms time.

61

6-12. Custom java transformation engine after rules execution

The file resulting from the execution is shown in figure 6-13:

<?xml version="1.0" encoding="UTF-8"?>
<uiModel>
 <taskModel id="tm0" name="taskmodel">
 <task id="Root" name="Convert currency" typ e="abstract">
 <task id="task1" name="Insert data" typ e="interaction">
 <task id="task2" name="Insert amoun t"
 type="interaction"/>
 <task id="task3" name="Select FROM currency"
 type="interaction"/>
 <task id="task4" name="Select TO cu rrency"
 type="interaction"/>
 </task>
 <task id="task6" name="Launch conversio n"
 type="interaction"/>
 <task id="task7" name="Show converted c urrency"
 type="application"/>
 </task>
 <enabling>
 <source sourceId="AC_task1"/>
 <target targetId="AIC_task6"/>
 </enabling>
 <enabling>
 <source sourceId="AIC_task6"/>
 <target targetId="AIC_task7"/>
 </enabling>
 <orderIndependence id="OI1">
 <source sourceId="AIC_task2"/>
 <target targetId="AIC_task3"/>

62

 </orderIndependence>
 <orderIndependence id="OI2">
 <source sourceId="AIC_task3"/>
 <target targetId="AIC_task4"/>
 </orderIndependence>
 </taskModel>
 <domainModel/>
 <mappingModel>
 <isReifiedBy>
 <source sourceId="AC_Root"/>
 <target targetId="box_00"/>
 </isReifiedBy>
 <isReifiedBy>
 <source sourceId="AC_task1"/>
 <target targetId="Box_AC_task1"/>
 </isReifiedBy>
 <isReifiedBy>
 <source sourceId="AIC_task6"/>
 <target targetId="Box_AIC_task6"/>
 </isReifiedBy>
 <isReifiedBy>
 <source sourceId="AIC_task7"/>
 <target targetId="Box_AIC_task7"/>
 </isReifiedBy>
 </mappingModel>
 <auiModel>
 <abstractContainer name="Convert currency" id="AC_Root">
 <abstractContainer name="Insert data" i d="AC_task1">
 <abstractIndividualComponent name=" Insert amount"
 id="AIC_task2"/>
 <abstractIndividualComponent name=" Select FROM
 currency" id="AIC_task3"/>
 <abstractIndividualComponent name=" Select TO currency"
 id="AIC_task4"/>
 </abstractContainer>
 <abstractIndividualComponent name="Laun ch conversion"
 id="AIC_task6"/>
 <abstractIndividualComponent name="Show converted
 currency" id="AIC_task7"/>
 </abstractContainer>
 <abstractContainment id="ACont_AC_task1">
 <source sourceId="AC_task1"/>
 <target targetId="AIC_task2"/>
 <target targetId="AIC_task3"/>
 <target targetId="AIC_task4"/>
 </abstractContainment>
 <abstractContainment id="ACont_AC_Root">
 <source sourceId="AC_Root"/>
 <target targetId="AC_task1"/>
 <target targetId="AIC_task6"/>
 <target targetId="AIC_task7"/>
 </abstractContainment>
 <abstractAdjacency id="AA_AC_task1">
 <source sourceId="AC_task1"/>
 <target targetId="AIC_task6"/>
 </abstractAdjacency>
 <abstractAdjacency id="AA_AIC_task6">
 <source sourceId="AIC_task6"/>
 <target targetId="AIC_task7"/>
 </abstractAdjacency>

63

 <auiDialogControl control="EnablingType" id ="AuiDCnull">
 <source sourceId="AC_task1"/>
 <target targetId="AIC_task6"/>
 </auiDialogControl>
 <auiDialogControl control="EnablingType" id ="AuiDCnull">
 <source sourceId="AIC_task6"/>
 <target targetId="AIC_task7"/>
 </auiDialogControl>
 <auiDialogControl control="OrderIndependenc eType"
 id="AuiDCOI1">
 <source sourceId="AIC_task2"/>
 <target targetId="AIC_task3"/>
 </auiDialogControl>
 <auiDialogControl control="OrderIndependenc eType"
 id="AuiDCOI2">
 <source sourceId="AIC_task3"/>
 <target targetId="AIC_task4"/>
 </auiDialogControl>
 </auiModel>
 <cuiModel>
 <box name="main_box" id="box_00"/>
 <window id="window_00"/>
 <box id="Box_AC_task1"/>
 <box id="Box_AIC_task6"/>
 <box id="Box_AIC_task7"/>
 <graphicalContainment>
 <source sourceId="box_00"/>
 <target targetId="window_00"/>
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="box_00"/>
 <target targetId="Box_AC_task1"/>
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="box_00"/>
 <target targetId="Box_AIC_task6"/>
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="box_00"/>
 <target targetId="Box_AIC_task7"/>
 </graphicalContainment>
 <graphicalAdjacency>
 <source sourceId="Box_AC_task1"/>
 <target targetId="Box_AIC_task6"/>
 </graphicalAdjacency>
 <graphicalAdjacency>
 <source sourceId="Box_AIC_task6"/>
 <target targetId="Box_AIC_task7"/>
 </graphicalAdjacency>
 <cuiDialogControl>
 <symbol>EnablingType</symbol>
 <source sourceId="Box_AC_task1"/>
 <target targetId="Box_AIC_task6"/>
 </cuiDialogControl>
 <cuiDialogControl>
 <symbol>EnablingType</symbol>
 <source sourceId="Box_AIC_task6"/>
 <target targetId="Box_AIC_task7"/>
 </cuiDialogControl>
 </cuiModel>

64

</uiModel>
Figure 6-14 : execution result on the currency convertor

As we can see, the UsiXML syntax is respected, and the file is automatically indented. The

transformation engine created a mapping model, an abtract user interface model, and a

concrete user interface model. Because there is no domain model in our example, no facet has

been created for the abstract individual objects, as said before for AToM³.

6.3 Use case: Polling System

The virtual polling system based is based on a web interface. Here is the complete description

of the example and the transformation rules needed [Limbourg, Stanciulescu]

This example is more complete than the previous one because here, task, domain and

mapping models have been implemented, which leads to the execution of more

transformation rules.

Here is the detailed description of the polling system [Limbourg, Stanciulescu]:

This case study applies our transformational approach for developing a UI on an

opinion polling system aiming at collecting opinions of users regarding a certain subject. The

scenario of this case study (Figure 5-1) is the following: from the Task and Domain Models, an

AUI is produced, from which GUIs is derived.

Figure 6-15. Polling system transformation approach

Step 1: The Task and Domain Models

The task model, the domain model and the mappings between them are graphically described

using IdealXML tool. The upper part of Figure 5-2 depicts a CTT representation of the task

model envisioned for the future system. The root task consists of participating to an opinion

poll. The user has to provide her personal data like name, zip code, gender, age category.

Further, the user iteratively answers some questions. Answering a question is composed of a

system task showing the title of the question and of an interactive task consisting in selecting

one answer among several proposed ones. Once the questions are answered, the

questionnaire is sent back to its initiator. The bottom part of Figure 5-2 illustrates the domain

model of our UI. The domain model has the appearance of a class diagram and can be

described as follow: a participant participates to a questionnaire, a questionnaire is made of

several questions and a question is attached to a series of answers.

65

Figure 6-16. Mappings between the Task Model and the Domain Model

The dashed arrows between the two models in Fig. 5-2 depict the mappings relationships

between the elements of the Task and the Domain Model. The sub-tasks of Insert personal

data task is mapped onto the correspondent attributes of Participation class (name, zipCode,

gender and ageCategory). Show question is mapped onto the attribute title of class Question.

The task Select answer is mapped onto the attribute title of the class Answer. Finally, the task

Send questionnaire is mapped onto the method sendQuestionnaire of the class

Questionnaire. Figure 5-3 illustrates the graphical editor of the Mapping Model in IdealXML

tool. Each leaf tasks is mapped on the corresponding attribute or method of the classes

contained in the Domain Model.

66

Figure 6-17. Mapping model for the virtual polling system

IdealXML generates automatically the UsiXML specifications for the Task, Domain and

Mapping Models. Figure 5-4 describes the UsiXML specification corresponding to the Task

Model. The first 14 lines describe the hierarchical decomposition of the Task Model, while lines

15 to 43 describe the relationships between the tasks.

Figure 6-18. Task model expressed in UsiXML

67

Figure 5-5 illustrates the Domain Model expressed in UsiXML. Lines 1 to 31 define the classes

that are involved into the class diagram. Lines 9 to 12 describe the attribute “ageCategory”

that can have different values expressed under the form of an enumerated domain (the

possible values are “18-35”, “35-45”, “more than 45”). Lines 27 to 30 define a method with its

two parameters i.e., an input and an output parameter). Lines 32 to 44 describe the

relationships between the above described classes.

Figure 6-19. Domain Model expressed in UsiXML

Figure 5-6 illustrates the mappings established between the Task Model and the Domain

Model. These mappings are specified in UsiXML with the use of two tags (i.e., <source> and

<target>) that identify which task will manipulate which attribute/method from the domain

model.

68

Figure 6-20. Mapping Model expressed in UsiXML

Step 2: From Task and Domain Models to AUI Model

The second transformation step involves a transformation system that contains rules applied

in order to realize the transition from the task and domain model to the abstract model. This

step is subdivided into five sub-steps according to [Limb04b]. We are improving this work by

offering the complete set of rules and by adapting them to the needs of a multimodal UI.

Sub-step 2.1: Rules for the identification of AUI structure

Rules 1 and 2 create abstract containers for tasks that have task children and abstract

individual components for leaf tasks. Tasks 4 and 5 reconstruct the containment relationships

for these AC’s and AIC’s.

The result of the application of these rules over the task model structure consists in a

hierarchical decomposition of the AUI into abstract containers and abstract individual

components.

Sub-step 2.2: Rules for the selection of AICs

The current sub-step generates facets for AICs that support the execution of the leaf task:

� Input facet of type create element for create name and create zipCode tasks: Rule 6

� Input facet of type select element for select gender, select ageCategory and select

Answer tasks: Rule 7; for each enumerated value of an attribute, a selection value with

69

the same name as the enumerated value, will be attached to the above created facet:

Rule 8

� Output facet of type convey element for the AIC assigned to the task Show Question

Title: Rule 9

� Control facet of type start operation for the Send Questionnaire task: rule 10.

Sub-step 2.3: Rules for spatio-temporal arrangement of AIOs

For each couple of sister tasks executed into AIOs, we generate an abstractAdjacency

relationship between these AIOs. As AIOs can be of two types (i.e., ACs or AICs), there are four

possible rules to be applied (Rule 11-14).

Sub-step 2.4: Rules for the definition of abstract dialog control

By analogy with the previous sub-step, for each couple of sister tasks executed into AIOs, we

generate an abstractDialogControl relationship between these AIOs that have the same

semantics as the temporal relationship defined between the tasks. As AIOs can be of two types

(i.e., ACs or AICs), there are four possible combination that are considered by Rules 15-18.

Sub-step 2.5: Rules for the derivation of the AUI to domain mappings

In order to ensure the synchronization between the AICs and attributes of objects from the

Domain Model, Rule 19 generates the updates relationship. Moreover, Rule 20 enables the

triggering of methods by AICs through the triggers relationship.

Step 3: From AUI Model to CUI Model

The third step implies a transformational system that is composed of necessary rules for

realizing the transition from AUI to CUIs. Only GUI is taken into account (no vocal or

multimodal UI), so the modality used to interact with the system is entirely graphical

(monomodal UI).

For the generation of GUIs the designer takes into consideration just the abstract and concrete

graphical part of each transformation rule.

Sub-step 3.1: Reification of AC into CC

Rule 21 creates a GC which will be the main box of the UI associated to the AC found one level

under the root AC in the abstract hierarchy. This main box contains the main window of the UI.

Rule 22 creates a GC of type box for each AC contained into an AC that was reified into a main

box.

Sub-step 3.2: Selection of CICs

The current sub-step generates different GICs depending on the type of facets of the

corresponding AICs:

� Generation of an outputText and an inputText that enable to insert the name and the

zipCode: Rule 23 is applied each time an AIC with an input facet of type create element

is encountered.

70

� Generation of a GC of type box that will embed a group of radio buttons and a GIC of

type outputText representing the label associated to this group when an input facet of

type select element is encountered: Rule 24; The radio buttons associated to this group

are created by applying Rule 25. The rules are used in order to select the gender of the

user, the ageCategory and also his answers to the questions

� Generation of a GIC of type outputText each time an output facet of type create is

encountered. For this purpose Rule 26 has to be applied in order to ensure the display of

the titles of the questions.

� Generation a button that will ensure the send questionnaire task each time when a

control facet of type start operation is encountered: rule 27.

Sub-step 3.3: Arrangement of CICs

For each couple of adjacent AIOs that are reified into graphicalCIOs, we define a

graphicalAdjencency relationship between these graphicalCIOs. As AIOs can be of two types

(i.e., ACs or AICs), there are four possible combination to take into account. For each

combination a specific rule is considered: Rules 28-31.

Sub-step 3.4: Navigation definition

The rules that ensure the navigation definition are not applied in the current case study as all

the sub-tasks of the virtual polling system are presented combined into the same window.

Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this relationship

to the graphicalCIOs that reify them is realized. As AIOs are of two types (i.e., ACs and AICs),

four rules describing the four possible combinations are considered: Rules 32-35.

Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 36 and 37 are used to transpose the updates and triggers relationships from the abstract

to the concrete level. These relationships map GICs with attributes and methods from the

Domain Model.

71

6.3.1 AToM³

Figure 6-21. Virtual Polling System source model in AToM³

Figure 6-21 is the AToM³ representation of the Polling System example.

Figure 6-22. Virtual Polling System after execution of rule 1

For each task that has sub-tasks, an abstract container has been created with the same name

(Figure 6-22).

72

Figure 6-23. Virtual Polling System after execution of rule 2

On figure 6-23 we see that an abstract individual component has been created for each task

that doesn’t have sub-tasks. As we can see, we are only at the beginning of the transformation

set, and the graph already becomes unreadable.

Figure 6-24. Virtual Polling System after execution of rule 4 and 5

Bidirectional links (“contains” and “is contained by”) have been created between AC’s and the

AC’s or AIC’s they contain on the figure 6-24.

73

Figure 6-25. Virtual Polling System after execution of rule 15 to 18

Figure 6-25: For each task of type “create” that manipulates an attribute, an input facet of type

create has been created.

Figure 6-26. Virtual Polling System after execution of rule 6

On figure 6-26 we see that for each task of type “select” that manipulates an attribute, an

input facet of type create has been created (for the sake of readability, the properties window

of the input has been open here, and we see it is well an input with action type “select”).

74

Figure 6-27. Virtual Polling System after execution of rule 8

For each Enumerated value linked to an attribute, a selection value is created and linked to the

AIC corresponding to the (select) task that manipulates the attribute (Figure 6-27).

Figure 6-28. Virtual Polling System after execution of rule 10

On figure 6-28 shows that for each task of type “start” that manipulates a method, a control

facet of type start has been created (we can see the control facet at the right side of the

screenshot).

75

Figure 6-29. Virtual Polling System after execution of rule 11, 12, 13 and 14

We can’t see it on the screenshot because AToM³ make arrows override each other, but an

abstract adjacency link has been created between each couple of sister tasks that are linked by

an enabling link, which means that the two objects in the final user interface corresponding to

those tasks will be next to each other (Figure 6-29).

Figure 6-30. Virtual Polling System after execution of rule 19

76

For each task that manipulates an attribute, and that has been linked to an AIC, the AIC is link

to the attribute with an updates relation (Figure 6-30).

Figure 6-31. Virtual Polling System after execution of rule 20

For each task that manipulates a method, and that has been linked to an AIC, the AIC is linked

to the attribute with a triggers relation (Figure 6-31).

For each task that manipulates an attribute, and that has been linked to an AIC, the AIC is link

to the attribute with an updates relation.

77

Figure 6-32. Virtual Polling System after execution of rule 21

Here, a box named mainbox (containing the window that will contain the entire graphical user

interface) is created and linked to the root task. This will be the main graphical container

(Figure 6-32).

Figure 6-33 Virtual Polling System after execution of rule 22

On figure 6-33 we see that for each abstract container, a graphical container of type box is

created, and linked to it (by a reify relation).

78

Figure 6-34. Virtual Polling System after execution of rule 24

Figure 6-34: A box is created that will contain the radio buttons corresponding to the selection

values previously created. The Box also contains an output text graphical component, which

will in fact contain a message telling the user what to do (“select an age category” for

example).

Figure 6-35. Virtual Polling System after execution of rule 25

79

For each selection value, a radio button is created, and contained by the box previously created

for it (Figure 6-35).

Figure 6-36. Virtual Polling System final result

Figure 6-36 shows the final result.

6.3.2 Custom java transformation engine

As for the previous example, we open the source file containing the virtual polling system

model in UsiXML (see example description above). The result is the following (to gain space,

we have withdrawn the task and domain model, since they aren’t modified by the

transformation engine):

<?xml version="1.0" encoding="UTF-8"?>
<uiModel id="UiM1" name="PollingSystem">

 <mappingModel>
 <manipulates id="MA1">
 <source sourceId="T11"/>
 <target targetId="A1DC1"/>
 </manipulates>
 <manipulates id="MA2">
 <source sourceId="T12"/>
 <target targetId="A2DC1"/>
 </manipulates>
 <manipulates id="MA3">
 <source sourceId="T13"/>
 <target targetId="A3DC1"/>
 </manipulates>
 <manipulates id="MA4">
 <source sourceId="T14"/>
 <target targetId="A4DC1"/>
 </manipulates>

80

 <manipulates id="MA5">
 <source sourceId="T21"/>
 <target targetId="A1DC3"/>
 </manipulates>
 <manipulates id="MA6">
 <source sourceId="T22"/>
 <target targetId="A1DC4"/>
 </manipulates>
 <manipulates id="MA7">
 <source sourceId="T3"/>
 <target targetId="M1DC2"/>
 </manipulates>
 <updates>
 <source sourceId="AIC_T13"/>
 <target targetId="A3DC1"/>
 </updates>
 <updates>
 <source sourceId="AIC_T14"/>
 <target targetId="A4DC1"/>
 </updates>
 <updates>
 <source sourceId="AIC_T22"/>
 <target targetId="A1DC4"/>
 </updates>
 <triggers>
 <source sourceId="AIC_T3"/>
 <target targetId="M1DC2"/>
 </triggers>
 <isReifiedBy>
 <source sourceId="AC_Root"/>
 <target targetId="box_00"/>
 </isReifiedBy>
 <isReifiedBy>
 <source sourceId="AC_T1"/>
 <target targetId="Box_AC_T1"/>
 </isReifiedBy>
 <isReifiedBy>
 <source sourceId="AC_T2"/>
 <target targetId="Box_AC_T2"/>
 </isReifiedBy>
 <isReifiedBy>
 <source sourceId="AIC_T3"/>
 <target targetId="Box_AIC_T3"/>
 </isReifiedBy>
 <isReifiedBy>
 <source sourceId="AIC_T11"/>
 <target targetId="Box_create_AIC_T11"/>
 </isReifiedBy>
 <isReifiedBy>
 <source sourceId="AIC_T12"/>
 <target targetId="Box_create_AIC_T12"/>
 </isReifiedBy>
 <isReifiedBy>
 <source sourceId="AIC_T21"/>
 <target targetId="Box_create_AIC_T21"/>
 </isReifiedBy>
 <isReifiedBy>
 <source sourceId="AIC_T13"/>
 <target targetId="Box_Selection_AIC_T13 "/>
 </isReifiedBy>

81

 <isReifiedBy>
 <source sourceId="AIC_T14"/>
 <target targetId="Box_Selection_AIC_T14 "/>
 </isReifiedBy>
 <isReifiedBy>
 <source sourceId="AIC_T22"/>
 <target targetId="Box_Selection_AIC_T22 "/>
 </isReifiedBy>
 <isReifiedBy>
 <source sourceId="AIC_T3"/>
 <target targetId="Button_FAT3"/>
 </isReifiedBy>
 <updates>
 <source sourceId="Box_Selection_AIC_T13 "/>
 <target targetId="A3DC1"/>
 </updates>
 <updates>
 <source sourceId="Box_Selection_AIC_T14 "/>
 <target targetId="A4DC1"/>
 </updates>
 <updates>
 <source sourceId="Box_Selection_AIC_T22 "/>
 <target targetId="A1DC4"/>
 </updates>
 </mappingModel>
 <auiModel>
 <abstractContainer name="Participate to pol l" id="AC_Root">
 <abstractContainer name="Insert persona l data" id="AC_T1">
 <abstractIndividualComponent name=" Insert name"
 id="AIC_T11">
 <input id="FAT11" actionType="c reate"
 actionItem="element"/>
 </abstractIndividualComponent>
 <abstractIndividualComponent name=" Insert zip code"
 id="AIC_T12">
 <input id="FAT12" actionType="c reate"
 actionItem="element"/>
 </abstractIndividualComponent>
 <abstractIndividualComponent name=" Select gender"
 id="AIC_T13">
 <input id="FAT13" actionType="s elect"
 actionItem="element">
 <selectionValue name="Male" />
 <selectionValue name="Femal e"/>
 </input>
 </abstractIndividualComponent>
 <abstractIndividualComponent name=" Select age
 category" id="AIC_T14">
 <input id="FAT14" actionType="s elect"
 actionItem="element">
 <selectionValue name="18-35 "/>
 <selectionValue name="35-45 "/>
 <selectionValue name="45+"/ >
 </input>
 </abstractIndividualComponent>
 </abstractContainer>
 <abstractContainer name="Answer questio n" id="AC_T2">
 <abstractIndividualComponent name=" Show question"
 id="AIC_T21">
 <input id="FAT21" actionType="c reate"

82

 actionItem="element"/>
 </abstractIndividualComponent>
 <abstractIndividualComponent name=" Select answer"
 id="AIC_T22">
 <input id="FAT22" actionType="s elect"
 actionItem="element">
 <selectionValue name="Quest ion1"/>
 <selectionValue name="Quest ion2"/>
 </input>
 </abstractIndividualComponent>
 </abstractContainer>
 <abstractIndividualComponent name="Send questionnaire"
 id="AIC_T3">
 <control id="FAT3" actionType="star t"
 actionItem="operation"/>
 </abstractIndividualComponent>
 </abstractContainer>
 <abstractContainment id="ACont_AC_T1">
 <source sourceId="AC_T1"/>
 <target targetId="AIC_T11"/>
 <target targetId="AIC_T12"/>
 <target targetId="AIC_T13"/>
 <target targetId="AIC_T14"/>
 </abstractContainment>
 <abstractContainment id="ACont_AC_T2">
 <source sourceId="AC_T2"/>
 <target targetId="AIC_T21"/>
 <target targetId="AIC_T22"/>
 </abstractContainment>
 <abstractContainment id="ACont_AC_Root">
 <source sourceId="AC_Root"/>
 <target targetId="AC_T1"/>
 <target targetId="AC_T2"/>
 <target targetId="AIC_T3"/>
 </abstractContainment>
 <abstractAdjacency id="AA_AC_T1">
 <source sourceId="AC_T1"/>
 <target targetId="AC_T2"/>
 </abstractAdjacency>
 <abstractAdjacency id="AA_AIC_T21">
 <source sourceId="AIC_T21"/>
 <target targetId="AIC_T22"/>
 </abstractAdjacency>
 <auiDialogControl control="EnablingType" id ="AuiDCnull">
 <source sourceId="AC_T1"/>
 <target targetId="AC_T2"/>
 </auiDialogControl>
 <auiDialogControl control="DisablingType" i d="AuiDCnull">
 <source sourceId="AC_T2"/>
 <target targetId="AIC_T3"/>
 </auiDialogControl>
 <auiDialogControl control="IndependentConcu rrencyType"
 id="AuiDCnull">
 <source sourceId="AIC_T11"/>
 <target targetId="AIC_T12"/>
 </auiDialogControl>
 <auiDialogControl control="IndependentConcu rrencyType"
 id="AuiDCnull">
 <source sourceId="AIC_T12"/>
 <target targetId="AIC_T13"/>

83

 </auiDialogControl>
 <auiDialogControl control="IndependentConcu rrencyType"
 id="AuiDCnull">
 <source sourceId="AIC_T13"/>
 <target targetId="AIC_T14"/>
 </auiDialogControl>
 <auiDialogControl control="EnablingType" id ="AuiDCnull">
 <source sourceId="AIC_T21"/>
 <target targetId="AIC_T22"/>
 </auiDialogControl>
 </auiModel>
 <cuiModel>
 <box name="main_box" id="box_00"/>
 <window id="window_00"/>
 <box id="Box_AC_T1"/>
 <box id="Box_AC_T2"/>
 <box id="Box_AIC_T3"/>
 <box id="Box_create_AIC_T11"/>
 <inputText textSize="12" id="Input_text_FAT 11"
 textColor="#000000"/>
 <outputText textSize="12" id="Output_text_F AT11"
 textColor="#000000"/>
 <box id="Box_create_AIC_T12"/>
 <inputText textSize="12" id="Input_text_FAT 12"
 textColor="#000000"/>
 <outputText textSize="12" id="Output_text_F AT12"
 textColor="#000000"/>
 <box id="Box_create_AIC_T21"/>
 <inputText textSize="12" id="Input_text_FAT 21"
 textColor="#000000"/>
 <outputText textSize="12" id="Output_text_F AT21"
 textColor="#000000"/>
 <box id="Box_Selection_AIC_T13"/>
 <outputText textSize="12" id="Output_text_F AT13"
 textColor="#000000">
 <defaultContent>Select gender</defaultC ontent>
 </outputText>
 <box id="Box_Selection_AIC_T14"/>
 <outputText textSize="12" id="Output_text_F AT14"
 textColor="#000000">
 <defaultContent>Select age category</de faultContent>
 </outputText>
 <box id="Box_Selection_AIC_T22"/>
 <outputText textSize="12" id="Output_text_F AT22"
 textColor="#000000">
 <defaultContent>Select answer</defaultC ontent>
 </outputText>
 <radioButton id="radioButton_FAT14_1" group Name="Select age
 category">
 <textSize>12</textSize>
 <defaultContent>18-35</defaultContent>
 <textColor>#000000</textColor>
 </radioButton>
 <radioButton id="radioButton_FAT14_2" group Name="Select age
 category">
 <textSize>12</textSize>
 <defaultContent>35-45</defaultContent>
 <textColor>#000000</textColor>
 </radioButton>
 <radioButton id="radioButton_FAT14_3" group Name="Select age

84

 category">
 <textSize>12</textSize>
 <defaultContent>45+</defaultContent>
 <textColor>#000000</textColor>
 </radioButton>
 <radioButton id="radioButton_FAT22_1" group Name="Select
 answer">
 <textSize>12</textSize>
 <defaultContent>Question1</defaultConte nt>
 <textColor>#000000</textColor>
 </radioButton>
 <radioButton id="radioButton_FAT22_2" group Name="Select
 answer">
 <textSize>12</textSize>
 <defaultContent>Question2</defaultConte nt>
 <textColor>#000000</textColor>
 </radioButton>
 <button id="Button_FAT3">
 <textSize>12</textSize>
 <textColor>#000000</textColor>
 </button>
 <graphicalContainment>
 <source sourceId="box_00"/>
 <target targetId="window_00"/>
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="box_00"/>
 <target targetId="Box_AC_T1"/>
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="box_00"/>
 <target targetId="Box_AC_T2"/>
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="box_00"/>
 <target targetId="Box_AIC_T3"/>
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="Box_create_AIC_T11"/>
 <target targetId="Output_text_FAT11"/>
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="Box_create_AIC_T11"/>
 <target targetId="Input_text_FAT11"/>
 </graphicalContainment>
 <graphicalAdjacency>
 <source sourceId="Input_text_FAT11"/>
 <target targetId="Output_text_FAT11"/>
 </graphicalAdjacency>
 <graphicalContainment>
 <source sourceId="Box_create_AIC_T12"/>
 <target targetId="Output_text_FAT12"/>
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="Box_create_AIC_T12"/>
 <target targetId="Input_text_FAT12"/>
 </graphicalContainment>
 <graphicalAdjacency>
 <source sourceId="Input_text_FAT12"/>
 <target targetId="Output_text_FAT12"/>

85

 </graphicalAdjacency>
 <graphicalContainment>
 <source sourceId="Box_create_AIC_T21"/>
 <target targetId="Output_text_FAT21"/>
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="Box_create_AIC_T21"/>
 <target targetId="Input_text_FAT21"/>
 </graphicalContainment>
 <graphicalAdjacency>
 <source sourceId="Input_text_FAT21"/>
 <target targetId="Output_text_FAT21"/>
 </graphicalAdjacency>
 <graphicalContainment>
 <source sourceId="Box_Selection_AIC_T13 "/>
 <target targetId="Output_text_FAT13"/>
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="Box_AC_T1"/>
 <target targetId="Box_Selection_AIC_T13 "/>
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="Box_Selection_AIC_T14 "/>
 <target targetId="Output_text_FAT14"/>
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="Box_AC_T1"/>
 <target targetId="Box_Selection_AIC_T14 "/>
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="Box_Selection_AIC_T22 "/>
 <target targetId="Output_text_FAT22"/>
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="Box_AC_T2"/>
 <target targetId="Box_Selection_AIC_T22 "/>
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="Box_Selection_AIC_T14 "/>
 <target targetId="radioButton_FAT14_1"/ >
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="Box_Selection_AIC_T14 "/>
 <target targetId="radioButton_FAT14_2"/ >
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="Box_Selection_AIC_T14 "/>
 <target targetId="radioButton_FAT14_3"/ >
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="Box_Selection_AIC_T22 "/>
 <target targetId="radioButton_FAT22_1"/ >
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="Box_Selection_AIC_T22 "/>
 <target targetId="radioButton_FAT22_2"/ >
 </graphicalContainment>
 <graphicalContainment>
 <source sourceId="box_00"/>
 <target targetId="Button_FAT3"/>

86

 </graphicalContainment>
 <graphicalAdjacency>
 <source sourceId="Box_AC_T1"/>
 <target targetId="Box_AC_T2"/>
 </graphicalAdjacency>
 <graphicalAdjacency>
 <source sourceId="Box_create_AIC_T21"/>
 <target targetId="Box_Selection_AIC_T22 "/>
 </graphicalAdjacency>
 <cuiDialogControl>
 <symbol>EnablingType</symbol>
 <source sourceId="Box_AC_T1"/>
 <target targetId="Box_AC_T2"/>
 </cuiDialogControl>
 <cuiDialogControl>
 <symbol>DisablingType</symbol>
 <source sourceId="Box_AC_T2"/>
 <target targetId="Box_AIC_T3"/>
 </cuiDialogControl>
 <cuiDialogControl>
 <symbol>DisablingType</symbol>
 <source sourceId="Box_AC_T2"/>
 <target targetId="Button_FAT3"/>
 </cuiDialogControl>
 <cuiDialogControl>
 <symbol>IndependentConcurrencyType</sym bol>
 <source sourceId="Box_create_AIC_T11"/>
 <target targetId="Box_create_AIC_T12"/>
 </cuiDialogControl>
 <cuiDialogControl>
 <symbol>IndependentConcurrencyType</sym bol>
 <source sourceId="Box_create_AIC_T12"/>
 <target targetId="Box_Selection_AIC_T13 "/>
 </cuiDialogControl>
 <cuiDialogControl>
 <symbol>IndependentConcurrencyType</sym bol>
 <source sourceId="Box_Selection_AIC_T13 "/>
 <target targetId="Box_Selection_AIC_T14 "/>
 </cuiDialogControl>
 <cuiDialogControl>
 <symbol>EnablingType</symbol>
 <source sourceId="Box_create_AIC_T21"/>
 <target targetId="Box_Selection_AIC_T22 "/>
 </cuiDialogControl>
 </cuiModel>
</uiModel>

Figure 6-37. Result of the virtual polling system

As we can see, all the rules of the rule set that are relevant for the example (see example

description) have been executed.

87

Chapter 7: Comparison of the four techniques

 First, we will give a short summary of each of the three techniques. Then we will make

a global comparison, using criterion taken from the work of [mister x]. … Thirdly, we will

resume each transformation engine, reminding the specific issues with each of them. Finally,

we will make a short conclusion based on what we experienced with each tool, and what

needs are fulfilled by each of them.

7.1 Summaries

7.1.1 AToM³

 AToM³ is graph transformation tool. It means that the meta-model (here, the one of

UsiXML) has to be graphically designed, as well as the transformations we want to implement.

The only thing that is implemented using a programming language (actually Python), are pre-

and post-conditions for the transformations, as well as some things that can’t be graphically

specified, such as changing the name of a variable, or specifying a variable’s value basing on

other variables.

 The structure of UsiXML is easily represented as an oriented graph, which means that

AToM³ suits well the needs of this language.

 Graph transformation rules consist of a Left Hand Side (LHS) matching a graph G, a

Right Hand Side that has the be the result of the transformation of the graph G, and pre-and

post-conditions, coded in the Python programming language. The graphical representation of

the rules is very intuitive, and only small things have to be coded in Python, so the GUI

designer doesn’t have to be highly skilled in programming languages.

 From the point of view of the time needed to implement everything, though, AToM³ is

not as good as we might think, for some reasons:

• First, the program itself is coded in Python, which means that it is quite slow, and

the GUI designer loses some time during graph layout processing and some other

things. This is not a major matter, though.

• The way of creating the rules, with one window for each rule, plus two windows

for the pre-condition and the post-action, also means a small loss of time,

compared to programming in a single environment, like we would do for a java

project for example.

• More importantly, in AToM³ more transformation rules have to be coded than in a

wholly java-programmed project for example. The reason is simple: suppose we

want a rule that apply on each couple of task linked by a relation, no matter the

type of the relation. In AToM³, if there exist different relations that do not extend

the same “parent” relation (by inheritance), we have to create one rule per type of

88

relation. In java, at the other hand, we can simply do it in a single method, with

something like (in pseudo-code): if(exists(relation) & relation.source = A &

relation.target = B) { … }

This means an important loss of time, and an increased complexity.

• Finally, AToM³ is still in development, which means is has some problems of

stability that can also make GUI designer lose time.

But, despite all those negative points, it makes no doubt that the graphical approach of AToM³

is the simplest and more intuitive way of creating transformation rules.

7.1.2 ATL

 ATL is some kind of “hybrid” approach: it uses graphs to implement the meta-model,

but the user can use the ATL specific language to design the transformation rules.

 For the same reason as for AToM³, the graph representation of the meta-model is

particularly well suited to UsiXML.

7.1.3 Custom transformation engine in java

 Here, everything is coded “by hand” in the java programming language. That means

that, from the reading of the UsiXML file, to the writing of the result in UsiXML, everything is

coded in java. The UsiXML file is read with the unmarshaller of the Castor api. It is transformed

in java objects that can thus be manipulated through java methods.

 Castor needs a mapping file, which contains the mapping between the XML and the

java objects representation of the file. This mapping file is creating from the xsd schema of

UsiXML.

 After the UsiXML file has been read, and transformations have been applied of the

internal representation (java objects) of the file, the internal representation is translated back

into UsiXML, using the mapping file to respect the syntax of the UsiXML language.

89

7.2 Comparison

7.2.1 Tools-specific issues

7.2.1.1 AToM³

7.2.1.1.1 Meta-model and models creation

The meta-model and all models have to be created using a UML-like

diagram, in an add-hoc canvas. However, this raises two issues:

� The UML relations are restricted in AToM³: there is no

composition relation. To create a composition relation, we have to

create ourselves a bidirectional relation between the two objects.

What’s more, AToM³ cannot handle two relations having the same

name, so each “fake” composition relation must have a name

different from the others.

� The canvas is too small: big models are hard to design in Atom³.

To do this, we have to use the zoom to reduce it and be able to

add objects. But this shows another problem of AToM³: it is no

perfectly stable; using the zoom can lead to unexpected things like

objects cross (or cover) each others, which further reduce the

already poor readability of the models in AToM³.

These two issues mean that AToM³ isn’t as fast as expected to create

big projects.

7.2.1.1.1 Rules creation

Rules are creating in AToM³ using the window showed in figure 3-5.

This also raises some issues:

� The canvas to create the LHS and RHS patterns are very small,

which can lead to room problems.

� Closing a rule, then opening it again can lead to problems with

indexes of the objects : trying to add a new one in the LHS or RHS

pattern will most of the time create an object with index “1” (it

starts back from 0), which we can change after. But deleting an

object in an open-then-closed rule, and then creating a new one

with the same index will cause an “interference”: AToM³ then

thinks that two objects have the same index (which is not true). So

in general, to avoid problems we have to create a rule in one time

(this is not always easy, and reduce the easiness maintenance of

our transformation engine).

� Condition and action, as well as algorithms in python to compute

the value of variables are all created in separate windows. Because

the program itself (written in python) is quite slow, the windows

90

can take some times to open, and most of the time the windows

that opens is too small and we have to resize it. While not being a

severe problem, this makes the rule long to create because we

have to use many different windows, even for a very small rule.

� There is no inheritance mechanism for the rules.

7.2.1.2 Custom java transformation engine

7.2.1.2.1 Meta-model creation

� Our tool has no internal mechanism to create a meta-model. In

our case, this has been done with [jaxb]. Taking an .xsd schema of

the meta-model, it creates java objects for each met entity, and

accessors for each attribute of these objects. But, the process is

not easy :

• The user has to be able to use jaxb

• An .xsd schema of the meta-model must obligatorily be

available.

� The program needs, to be able to read and write XML files, a

mapping file. With a meta-model like UsiXML, this mapping is very

long (more than 10000 lines). There exist tools to automatically

create it, but they don’t work perfectly: because the tool we used

[tool] was not able to create “array list” items in the mapping file,

we had to modify manually the mapping file to add all the lists.

This is long, and forces us to learn the syntax of the mapping file.

� Because of precedent, the application is not really flexible: ours is

designed for only one meta-model, and creating another means

long and hard work.

7.2.1.2.2 Model creation

� There isn’t either an internal tool to create models in our java

transformation engine. The only way to create a model in our

application is by writing it directly in the source text area. This is

not easy, because it offers no correction facility or syntax

highlighting. However, there exist external tools like idealXML

[idealXML] that are very intuitive and easy to use to create models

in UsiXML. The lack of an internal tool of our application is thus not

really a problem.

91

7.2.1.2.3 Rules creation

� Rules are created programmatically, which means programming

skills are mandatory.

� Optimization is now up to the programmer if he wants his engine

not to be too slow.

� Creating a rule not only means coding it, but also modifying the

rules tree (at the right of the figure 4-3) and calling it in the main

program.

7.2.2 Tools-specific advantages

7.2.2.1 AToM³

• Very fast for small projects: designing small models in AToM³ is very fast because

of its graphical syntax.

• Easy pattern representation: the graphical syntax is intuitive and easy to use and

understand.

• Python programming and templates: conditions, actions and computing are easy

to implement because of the easy syntax of Python and, what’s more, templates

are present in AToM³ to help the user.

• Automatically generated interface for model creation: once a meta-model is

created, AToM³ generate an interface to create models conforming to the meta-

model, and transformation rules using the concepts of the meta-model.

• Cardinalities verification: when creating or modifying a relation in a model, AToM³

checks that the cardinalities (number of sources and targets) are respected. So, the

meta-model cannot be violated in a model.

• Step-by-step execution: the transformation rules can be executed one at a time,

which can help finding the ones that are not working.

92

7.2.2.2 Custom java transformation engine

• Completeness of the transformation engine: at the price of a harder syntax than in

AToM³, any kind of transformations can be implemented, and there are no

limitations in the creation of meta-models.

• Explicit flow control: because transformation rules are methods, any

transformation rule can call any other.

• Code generation: our transformation engine generates UsiXML files only but any

kind of XML-based code can be generated using the Castor project as we did and

even any kind of code can be generated but at the cost of a harder

implementation.

• The interface can be adopted by the user (at the price of modifying the interface

source code) to meet his needs.

• Because our custom transformation engine takes UsiXML files as input, any

external tool can be used to create models, like [idealXML].

• Numerous existing java technologies: we didn’t use them, but many technologies

exist in java (like JMI) to help designing a custom transformation engine.

• Better error codes: error codes in java are easier to understand. This allows the

user to find more easily not working transformation rules. What’s more, the user

can take profit of facilities offered by the IDE used (such as Eclipse), like the

debugger, error checking, and so on.

7.2.3 Global comparison

 We won’t compare here the tools regarding the implementation details of each, or the

problems we had using it. The point 7.2.1 was devoted to it. We will instead compare the

concepts promoted by each one. For this, we will use seven criteria inspired by the work of

[Czarnecki] and [Schaefer]:

• Implementation paradigm, and the need of programming skills

• Model-to-model approach

• Code generation

• Pattern matching

• Rules ordering and Rules organization

93

• (Bi-)Directionality

• Performance

• Flexibility, maintainability

7.2.3.1 Implementation paradigm and required programming skills

First major difference between the transformation engines is whether they are imperative or

declarative. Like all graph transformation tools, AToM³ is strictly declarative; the java

application is in imperative style, and ATL can use both paradigms.

AToM³ needs almost no programming skills. There are a few things to code in python, like

conditions, actions, constraints and variables’ valuing, but these are coded in a very simple

syntax (the python language itself is quite simple), and the syntax is most of the time explained

in AToM³.

ATL needs higher programming skills, because the transformation rules use OCL syntax. But

the GUI designer is helped in ATL by several facilities provided: the meta-model can be created

graphically, and there is a pattern matching instruction. What’s more, the syntax is far easier

than the syntax of a rule coded in java.

The easiness of AToM³ and ATL makes them more flexible, because even GUI designers with

(almost) no programming skills can use it, and also because maintaining the rules is much

simplified by the fact that the representation of those is clear and easy to understand.

However, in both AToM³ and ATL, the transformation rules as specified specifically for the

meta-model that we have graphically created, and a change to this meta-model will make the

transformations not work anymore.

Java seems thus a worse approach to the creation of the transformations here, especially for

non-programmers, while ATL looks more like an “in-between” solution, suitable for people

with few programming skills.

7.2.3.2 The model-to-model approach

AToM³ uses graph transformation. The models are created graphically, and so are the

transformation rules. The latter are composed of two parts: a LHS graph pattern, and a RHS

graph pattern. The LHS graph pattern will be searched in the source graph, and replace by the

RHS. This is a very intuitive, and easy to read and maintain, way of creating rules.

The java application uses another approach. Instead of transforming the model into a graph, it

directly modifies it. In fact, the XML file is read and transformed into java objects. These

objects are then modified by the transformation rules, and finally the java objects are

94

translated back into XML. In our java application, a method is created for each transformation

rule. As this is code, this is much harder to read and maintain.

The ATL approach is some kind of hybrid: the meta-model is created graphically (it can also be

created programmatically), and the transformation rules are coded. These ones can be coded

declaratively of imperatively. If keeping with the declarative approach, the code is still simple

to read and maintain, even if it requires a bit more programming knowledge than AToM³.

7.2.3.3 Code generation

In java, code generation is straightforward and simple. We used the Castor api for this

purpose, and it causes no major problems.

ATL can also generated code, with help of an external model handler.

Finally, AToM³ hasn’t any commodity to generate code, nor reading it. To generate XML code

for a model in AToM³, we should use transformation rules, with the “action” code writing XML

code to a text file. This would be long and fastidious, if possible.

7.2.3.4 Pattern matching

This is a big difference between AToM³, ATL and our java application. While the pattern

matching is obviously supported by AToM³, and given with a simple syntax in ATL, java doesn’t

provide it. Pattern matching is still usable in java, but with the help of an existing external

project, or at the price of a long and fastidious implementation. This is much more complex to

implement than in AToM³ and ATL, and we didn’t use it. This also makes the java approach

more complex than the two others.

7.2.3.5 Rules scheduling and organization, inheritance

AToM³ only allows determining a fixed order on the rules. There is no possibility of explicit

flow control in AToM³. And there isn’t a “call” instruction for a rule to call another. In fact, the

precondition allows deciding whether or not the rule will be executed, but if it’s not executed

in its turn, then the rule will never be, so the precondition cannot be used for explicit flow

control.

In AToM³, we can create distinct rules sets, and execute one after another. But there is no rule

inheritance mechanism, and no import mechanism either: this means that a rules set cannot

import a rule of another set. And a rule can neither use another.

On the opposite, ATL allows both implicit and explicit flow control. In purely declarative rules,

the flow control is implicit, and non deterministic. But we can add imperative code in a rule to

call others rules, and thus make explicit flow control. ATL even allows calling external, native

code.

95

Java, finally, obviously allows rules organization (for example one class for each rules set), and

the flow control is of course explicit. We can also call a rule in another, because each rule is a

method in java.

7.2.3.6 Bi-directionality

None of the three supports bi-directionality, which means they are not suited for reverse

engineering.

7.2.3.7 Performance

Here shows AToM³ his big disadvantage: it is very slow. AToM³ is entirely coded in Python, and

compiled at execution. It means that the execution is much slower that, for instance, code

compiled in java. Furthermore, the fact that the transformations are graphically designed

means that the user has no possibility to optimize how they are executed. It’s up to AToM³ to

do it. And finally, because each transformation rule is created independently of the others, the

pattern matching for the LHS will be executed for each rule, even if two of them have the same

LHS.

Java is much more convenient to make something fast at the execution. Not only because the

compiled code is faster than the interpreted code of AToM³, but also and mainly because here

the programmer can choose himself exactly how the transformation will be executed, to find

the faster execution. He can also for example eliminate redundancy by grouping

transformation rules that have code in common, preventing the program from doing it twice.

But, once again, we have to make a choice between performance and flexibility: choosing to

optimize the java code by grouping transformations means that the code will be harder to read

and maintain. That’s the reason why we chose to use one method per transformation rule in

our project, even if this means a loss in terms of performance.

As we didn’t use ATL ourselves, we cannot measure its performance, so this criterion will be

left empty for ATL.

7.2.3.8 Flexibility and maintainability

The most readable the models, the easiest to maintain they are. And it also means they are

easier to modify, thus making the tool the more flexible.

According to this, AToM³ offers the best to modify and maintains meta-models, models and

transformation rules. However, two issues moderate that a little:

• First, and that is the case for each tool we used, modifying a meta-model means

that the transformation rules designed for that meta-model are potentially not

working anymore (because they can apply on objects that do not exist anymore, or

have been modified).

96

• Second, modifying rules is sometimes difficult because of a problem of AToM³:

modifying a previously saved rule in AToM³ sometimes leads to unexpected

behavior (cf. chapter three).

ATL, because of its slightly more complex syntax for the transformation rules (meta-models are

graphical), may be less readable and a little more difficult to maintain.

Finally, because of its fully programmatic approach and more complex syntax, the java

application is the most difficult to maintain. And modifying it is very difficult because if implies

several modification in several classes in addition to coding the transformation rule. So,

flexibility is worse than for the two other tools.

7.2.3.9 Completeness

With “completeness, we mean ability to handle complex rules and generate code. Internal

tools for the creation of meta-models and models are not part of this criterion.

Because AToM³ allows doing many things in python, it is able of executing more complex rules

than strict graph-transformation rules (with only NAC, LHS and RHS). Still, the lack of explicit

flow control, and the absence of imperative constructs limit it. Because the source and target

model are not distinct, they both obviously can be navigated and modified. Finally, the lack of

code generation makes AToM³ less complete.

ATL can handle more complex rules than AToM³ because of its imperative constructs and

explicit flow control (in the imperative blocks), but there are still limitations: the source model

can be navigated, but not modified and the target model cannot even be navigated. This

means we cannot make rules depending on the result of others.

Finally, in java, the limit is in fact the programming skills of the graphical interface designer.

Figure 7.1 summarizes all these criterion.

97

 AToM³ ATL Java

Implementation

paradigm

Declarative Declarative and

Imperative

Imperative

Programming skills

needed, learning

time

Few, short

learning period

Slightly more than

AToM³, medium

learning period

High, long

learning

period

Model-to-model

approach

Graph

transformation

Direct model

transformation

Hybrid

Pattern matching Supported Supported Supported via

external tools

Code generation Not supported Supported through

external model

handlers

Natively

supported

Rules scheduling Fixed order, no

dynamic flow

control

Scheduling by ATL for

declarative rules,

explicit flow control for

imperative constructs.

Explicit flow

control

Rules organization Distinct rules

sets, no

inheritance

Distinct rules sets,

inheritance supported

No limitations

Bi-directionality Not supported Not supported Not supported

Figure 7-1 Tools classification

The last four criteria showed in the figure 7.2, namely completeness, performance, flexibility

and maintainability are scored from very poor to very good: (thus very poor, poor, average,

good or very good)

 Completeness Performance Flexibility Maintainability

AToM³ Average Poor Very good Good

Java Very good Good* Very poor Very poor

ATL Good - Good Very good

Figure 7-2 Tools classification (part 2)

98

* Depending on how the user optimize the code.

7.3.3 Conclusion

In the next graph, we merge completeness and performance on the x axis, and flexibility and

maintainability on the y axis.

Figure 7-3 Tools comparison

As we can see on figure 7.3, no solution is simply better than the others, because our

preference will depend on our needs.

AToM³ is certainly by far the simplest and easiest solution for model-to-model transformation,

and it is also the most flexible. But it is unable of code generation, so it is unable of XML-

transformation.

ATL is slightly harder to use than AToM³, because it requires higher programming skills. But

ATL is more “powerful” than AToM³. First, while AToM³ only allows giving a fixed order on the

rules, ATL allows implicit or explicit scheduling. Explicit scheduling is possible in ATL because of

its rules inheritance support, which AToM³ doesn’t have.

What’s more, ATL supports both declarative and imperative programming, while AToM³ is

strictly declarative. Imperative programming, while being harder to use and potentially less

optimized, is useful for more complex rules (for example, it allows flow control with “if” and

“call” instructions).

Java is certainly the hardest solution to implement, but is also offers the widest possibilities of

the three “tools” we used.

In java, rules scheduling and organization is of course possible. Because of java’s imperative

style and the [absence] of limitations [propres à un outil], the GUI designer can implement

almost any kind of transformation on the model. But this has a [revers de la médaille]:

99

• Rules ordering is now up to the programmer, which is not [forcément] good in

terms of optimization.

• The program is not guaranteed anymore to be deterministic (because Source and

Target models are modifiable).

• Termination is not guaranteed anymore either.

• Readability is poor and,

• The most important: maintainability is very complex, mainly because of the lack of

readability.

However, in java we can make complex rules, and code generation is easy to implement (we

implemented it with the castor project).

What we said shows that, while being the most complete and powerful solution, the java

application we wrote isn’t really usable. But it would have been different if we had used

pattern matching.

Using pattern matching means that the java application reads a model in (Usi)XML, transform

it into java objects, and then do the same with the transformations also in (Usi)XML. The

application then search (by pattern matching) the LHS pattern in the source model and

replaces it by the RHS pattern. Finally, the application writes back the modified model into

(Usi)XML.

With this solution, we never modify the java application to add rules of modify ones. It is then

much more readable and easy to maintain. But this solution also means that we do not use the

imperative possibilities of java. So the java application is less powerful with pattern matching

than without it, but much more usable and maintainable, much more flexible.

The conclusion is then that, inevitably, more flexibility and maintainability means, for the GUI

designer, more sacrifices to accept in terms of completeness (and functionality) of the

application.

But if we need to write very complex rules, and need for example an explicit flow control,

AToM³ is insufficient, and harder to use tools are mandatory, with the implementation time it

implies.

100

Bibliography

[OMG] Official site of the Object Management Group, omg.org

[MDA] Official site of the OMG Model Driven Architecture, www.omg.org/mda

[1] K. Czarnecki and S. Helsen. Feature-Based Survey of Model Transformation Approaches.

IBM Systems Journal, special issue on Model-Driven Software Development. 45(3), 2006, pp.

621-645

[Czarnecki] K. Czarnecki and S. Helsen. Classification of Model Transformation Approaches. In

online proceedings of the 2nd OOPSLA’03 Workshop on Generative Techniques in the Context

of MDA. Anaheim, October, 2003

[Stanciulescu] Adrian Stanciulescu, A Methodology for Developing Multimodal User Interfaces

of Information Systems, 2007

[4] MDA journal, may 2004, http://www.bptrends.com/publicationfiles/05-

04%20COL%20IBM%20Manifesto%20-%20Frankel%20-3.pdf

[Favre] Jean-Marie Favre, Meta-Model and Model Co-evolution within the 3D Software Space,

2004

[GreAT] A. Agrawal, G. Karsai and F. Shi., Graph Transformations on Domain-Specific

Models. Under consideration for publication in the Journal on Software and Systems

Modeling, 2003

[UMLX] E. D. Willink, UMLX: A graphical transformation language for MDA. In [Ren03],

pp. 13-24

[VIATRA] D. Varro, G. Varro and A. Pataricza, Designing the automatic transformation of

visual languages. Science of Computer Programming, vol. 44(2):pp. 205--227, 2002.

[BOTL] P. Braun and F. Marschall, The Bi-directional Object-Oriented Transformation

Language. Technical Report, Technische Universität München, TUM-I0307, May

2003

[Nauwenko] Andrey Naumenko, Alain Wegmann, two approaches in system modeling and their

illustrations with mda and rm-odp, Laboratory of Systemic Modeling, Swiss Federal Institute of

Technology – Lausanne, http://lcawww.epfl.ch/Publications/Naumenko/NaumenkoW03.pdf

[ATL] The Eclipse Foundation, ATL Subproject, www.eclipse.org/gmt/atl/

[ATL Desc.] Model transformation with ATL, ATLAS group (INRIA & LINA), University of Nantes,

France, http://www.sciences.univ-nantes.fr/lina/atl/

[EMF] The Eclipse Foundation, Eclipse Modeling Framework (EMF), www.eclipse.org/emf/

101

[5] Jean Bezivin, Towards a Precise Definition of the OMG/MDA Framework,

http://www.sciences.univ-nantes.fr/lina/atl/www/papers/ASE01.OG.JB.pdf

[6]The official MDA Guide Version 1.0.1, http://www.omg.org/docs/omg/03-06-01.pdf

[7] Jean Vanderdonckt, A MDA-Compliant Environment for Developing User Interfaces of

Information Systems

[MOF] OMG’s Meta-Object Facility: http://www.omg.org/mof/

[QVT] OMG, MOF QVT Final Adopted Specification, 2005, http://www.omg.org/docs/ptc/05-

11-01.pdf

[XMI] OMG, The XMI recommendation, 2002, http://www.omg.org/cgi-bin/doc?formal/2003-

05-02

[9] OMG, Model-Driven Architecture: Vision, Standards

And Emerging Technologies, http://www.omg.org/mda/mda_files/Model-

Driven_Architecture.pdf

[Schaefer] Schaefer, R., A Survey on Transformation Tools for Model Based User Interface

Development, Proc. of 12th Int. Conf. on Human-Computer Interaction HCI International'2007

(Beijing, 22-27 July 2007), Part I, Lecture Notes in Computer Science, Vol. 4550, Springer-

Verlag, Berlin, 2007, pp. 1178-

1187. http://www.usixml.org/index.php5?mod=download&file=Schaefer-HCIInt2007.pdf

[10] Jean Bezivin, Fabian Buttner, Martin Gogolla, Frederic Jouault, Ivan Kurtev, Arne Lindow,

Model Transformations? Transformation Models!, University of Nantes, Computer Science

Department & INRIA(A), University of Bremen, Computer Science Department & TZI(B)

[11] Shane Sendall and Wojtek Kozaczynski, Model Transformation – the Heart and Soul of

Model-Driven Software Development, Swiss Federal Institute of Technology in Lausanne

[12] Aditya Agrawal, Metamodel Based Model Transformation Language, Institute for Software

Integrated Systems (ISIS) Vanderbilt UniversityNashville, TN – 37235, 2003

[13] Anonymous author, Model Driven Architecture on Wikipedia,

http://en.wikipedia.org/wiki/Model-driven_architecture

[14] John D. Poole, Model-Driven Architecture: Vision, Standards And Emerging Technologies,

Position Paper Submitted to ECOOP 2001 Workshop on Metamodeling and Adaptive Object

Models, april 2001

[15] M. Bohlen, QVT and multi metamodel transformations in MDA, 2006,

http://galaxy.andromda.org/jira/secure/attachment/10780/QVT+article+mbohlen+2006.pdf

102

[16] Johanna Ambrosio, Tools for the code generation, 2003,

http://www.adtmag.com/article.aspx?id=7850&page=

[17] Mikko Kontio, Architectural manifesto: Choosing MDA tools, Three categories for

evaluation, sep. 2005, http://www-128.ibm.com/developerworks/wireless/library/wi-

arch18.html

[18] Mike Rosen, Which MDA Tools are Right for You?, M2VP Inc., 2003,

http://www.omg.org/news/meetings/workshops/UML_2003_Manual/03-1_Rosen.pdf

[mdaTools] Anonymous author, Etat de l'art des outils MDA,

http://www2.lifl.fr/~bonde/exploration.html

[19] João Paulo Almeida, Luís Ferreira Pires and Marten van Sinderen, Costs and Benefits of

Multiple Levels of Models in MDA Development, Centre for Telematics and Information

Technology, University of Twente PO Box 217, 7500 AE Enschede, The Netherlands,

http://www.cs.kent.ac.uk/projects/kmf/mdaworkshop/submissions/Almeida.pdf

[20] Jean Bézivin, From Object Composition to Model Transformation with the MDA, University

of Nantes, http://www.sciences.univ-nantes.fr/info/lrsg/Recherche/mda/TOOLS.USA.pdf

[21] Desmond DSouza, Model-Driven Architecture and Integration, Opportunities and

Challenges, Version 1.1, 2002, ftp://ftp.omg.org/pub/docs/ab/01-03-02.pdf

103

Appendix A

Here we give the detailed description of the UsiXML interface description language.

2.3.1.1 Task Model

The Task Model describes the interactive tasks as viewed by the end user interacting

with the system. The task model is expressed here according to our extended version of

ConcurTaskTree notation [Pate97]. The Task Model is composed of tasks and task

relationships. Tasks are, notably, described with attributes like name and type. The name of

the task is generally expressed as a combination of a verb and a substantive (e.g., consult

patient file). The type refers to four basic types of tasks: user's, interactive, system and

abstract task. For leaf task we consider two attributes (i.e., userAction and taskItem) that

enable a refined expression of the nature of the task. This expression is based on the

taxonomy introduced by [Cons03] that allows to qualify a UI in terms of abstract actions it

supports. The userAction is represented by a verb that indicates a user action required to

perform the task and the taskItem which refers to a type object or subject of an action. The

possible values and their associated definition are presented in Section 2.3.1.2.

Task relationships are relationships involving several occurrences of different (or the

same in some cases) tasks. Task relationships are of two main types:

• Decomposition: enables to represent a hierarchical structure of the task tree.

Decomposition relationship is implicit within the XML syntax of the language and it

is represented by simple embedding of elements.

• Temporal: allows specifying temporal relationships between tasks. We use LOTOS

operators as they have been applied to task modeling in [Pate97].

A Transformational Approach for Developing Multimodal Web User Interfaces

104

Figure 8-1. Meta-model of the Task Model

2.3.1.2 Domain Model

The Domain Model is a description of the classes of objects manipulated by a user

while interacting with a system. It consists of one or many domainClasses, and potentially one

or many domainRelationships between these classes.

A class describes the characteristics of a set of objects sharing a set of common

properties. The concepts identified at the level of a class are the following: attributes,

methods, and objects. An attribute is a particular characteristic of a class. Attributes are further

described by the elements constituting the attribute class. The attributeDataType refers to

basic data types as string, integer, real, boolean or enumerated. An enumeratedValue

describes in extension an attribute that has the characteristic of being enumerated. The

attributeCardMin and attributeCardMax describes, respectively, the lower and upper bound of

the attribute cardinality (0 means that the attribute is not mandatory, 1 means that it is

mandatory). A method is the description of a process able to change the system's state. Here,

the methods are described by its signature (i.e., its name, input and output parameter(s)). An

object is an instance of a class and is composed of attribute instances and can call methods.

A domainRelationship describes various types of relationships between classes. They

can be classified in three types: generalization, aggregation, ad hoc. Class relationships are

described with several attributes that enable to specify its role names and cardinalities.

105

Figure 8-2. Meta-model of the Domain Model

2.3.1.3 Abstract User Interface Model

Abstract User Interface (AUI) Model is a model that represents a canonical expression

of the renderings and manipulations of the domain concepts and functions in a way that is

independent of any interaction modality and computing platform. As an AUI does not refer to

any particular modality, we do not know yet how this abstract description will be concretized:

graphical, vocal or multimodal. This is achieved in the next level.

AUI Model (Figure 8-1) is populated by Abstract Interaction Objects (AIO) and Abstract

User Interface Relationships between them.

106

Figure 8-3. Meta-model of the AUI Model

An AIO is an element populating an AUI model consisting in an abstraction of widgets

found in graphical toolkits (e.g., windows, buttons) and vocal toolkits (e.g., prompts, vocal

menus). It can be of two types: Abstract Individual Component (AIC) or Abstract Container (AC).

 An AIC is any individual element populating an AC. An AIC assumes at least one basic

system interaction function described as facet in the UI. As AICs are composed of multiple

facets, we call them multi-faceted. Each facet describes a particular function an AIC may

assume. We identify four main facets:

1. Input facet: describes the type of input that may be accepted by an AIC

2. Output facet: describes what data may be presented to the user by an AIC

3. Navigation facet: describes the possible container transition a particular AIC may

enable

4. Control facet: describes possible methods from the Domain Model that may be

triggered from a particular widget.

An AIC may assume several facets simultaneously. For instance an AIC may display an

output while accepting an input from a user, trigger a container transition and a method

defined in the Domain Model.

The actionType attribute of a facet enables the specification of the type of action an AIC

allows to perform. The possible values (Table 8-1) are the same as for the userAction attribute

of a task from the Task Model. The view value allows in [USIXML05] to express information by

displaying it and can be reified in the Concrete level only by a graphical object. In order to keep

the AUI Model independent of any modality, we replace this value by introducing in [USIX06]

convey, a more appropriate value for actionType attribute, as it does not specify the employed

modality.

107

actionType Definition

start/go Specifies that the AIC triggers an action

stop/exit Specifies that the AIC puts an end to an action

select Specifies that the AIC allows a selection action over multiple options

create Specifies that the AIC is creating an item

delete States that the AIC is dedicated to the deletion of items

modify States that the AIC is dedicated to the modification of items

move States that the AIC allows the movement of an item

duplicate States that the AIC allows the creation of copies of an item

toggle States that the AIC specifies the existence of two different states of an

item

convey States that the AIC expresses an information without specifying the

employed modality: graphical, vocal, etc.[USIX06]

Table 8-1. Definition of possible values for the actionType attribute of a facet

The actionItem characterizes the item that is manipulated by the AIC. The possible values

(Table 3-2) are identical to those of taskItem attribute of a task from the Task Model.

actionItem Definition

element Specifies that the item has a single characteristic

container Specifies that the item is an aggregation of elements

operation Specifies that the item is a function

collection of

elements

Specifies that the item is composed of a list of elements

collection of

containers

Specifies that an item is composed of a list of containers

Table 8-2. Definition of possible values for the actionItem attribute of a facet

By combining these two attributes a series of possible cases will appear. Table 8-3

exemplifies several possible associations.

108

actionType actionItem Example

start operation Search a definition of a word in an online

dictionary

stop operation Stop searching the definition

select element Select the gender of a person

create element Input a new email address in a form

delete collection of elements Erase a list of phone numbers

modify collection of containers Modify a list of addresses

move element Drag and drop a predefined shape from a

toolbar to the working area

duplicate collection of elements Copy the coordinates of a person (name, email,

fax, phone number)

toggle element Switching on/off the connection with a

network

convey

element Express the result of a computational

operation (the result can be expressed

graphically by displaying it on the screen or

vocally by system utterance)

convey container Express the starting date of a conference (the

day, month and year can be displayed on the

screen or can be uttered by the system)

convey collection of elements Express the authors list of a book (the list of

authors can be displayed or can be uttered by

the system)

convey collection of containers Express the starting and ending date of a

conference (the day, month and year of the

staring date and, respectively the ending date

can be displayed or can be uttered by the

system)

Table 8-3. Examples of combinations between actionType and actionItem attribute

values

109

AUI Relationships are abstract relationships among AUI objects. Relationships may

have multiple sources and multiple targets. There are a couple of types of relationships,

between which:

• AbstractAdjacency: allows to specify an adjacency constraint between two AIOs

• AbstractContainment: allows to specify that an AC embeds one or more ACs or one

or more AICs

• AuiDialogControl: enables the specification of a dialog control in terms of LOTOS

operators between AIOs.

2.3.1.4 Concrete User Interface Model

Concrete User Interface (CUI) Model is a model that allows the specification of the

presentation and behavior of a UI with elements that can be perceived by the users [Limb04b].

The CUI abstracts a Final UI in a definition that is independent of programming toolkit

peculiarities.

CUI Model (Figure 8-2) concretizes the AUI for a given context of use into Concrete

Interaction Objects/Components (CIOs/Components) and Concrete User Interface Relationships

so as to define layout and/or interface navigation of 2D graphical widgets and/or vocal

widgets.

CIOs realize an abstraction of widget sets found in popular graphical and vocal toolkits

(e.g., Java AWT/Swing, HTML 4.0, Flash DRK 6, VoiceXML). A CIO is defined as an entity that

users can perceive and/or manipulate (e.g., window, push button, text field, check box, vocal

output, vocal input, vocal menu). Because UsiXML considers both graphical and vocal

modalities, CIOs are further divided into two types: graphicalCIOs and vocalCIOs. A detailed

explanation regarding the types of graphicalCIOs, vocalCIOs and the corresponding Concrete

User Interface Relationships between them, along with their semantics and syntax is presented

in the following sections.

Any CIO can have any number of behaviors. A behavior is the description of the triplet

event-action-condition that determines the UI change. In the following we offer a brief

description for each of the terms involved in the triple, but a more detailed documentation can

be found in [USIX06]:

• Event: specifies an expression triggering one or several actions. Events are

restricted to a specific event language. Graphical eventsTypes are described in

Section 8.3.2.1. The attribute eventContext allows mentioning the concerned CIO,

depending on the type of event. The attribute device is a reference to the device

with which the event is triggered.

• Action: is a process triggered by an event performed on a CIO. An action may be a

method call, a UI internal change, etc.

• Condition: enables to specify a pre/post-condition attached to an action. A

condition is expressed as a graph patters (i.e., a rule term) that must be fulfilled in

the specification before or after the application of an action. Conditions may be

combined with Boolean operators to compose complex conditions.

110

Figure 8-4. Excerpt of the CUI Meta-model

2.3.1.5 Final User Interface

The Final UI (FUI) is the operational UI, i.e. any UI running on a particular computing

platform either by interpretation (e.g., through a web browser) or by execution (e.g., after the

compilation of code in an interactive development environment).

2.3.1.6 Context Model

The Context Model (Figure 8-5) describes all the entities that may influence how the

user’s task is carrying out with the future UI. It takes into account three relevant aspects, each

aspect having its own associated attributes: user type (e.g., experience with device and/or

system, task motivation), computing platform type (e.g., desktop, PocketPC, PDA, GSM), and

111

physical environment type (e.g., lighting level, stress level, noise level). These attributes initiate

transformations that are applicable depending on the current context of use.

Figure 8-5. Meta-model of the Context Model

2.3.1.7 Mapping Model

The Mapping Model (Figure 8-6) contains a series of related mappings between

models or elements of models. A mapping model serves to gather a set of pre-defined, inter-

model relationships that are semantically related. It consists of one to many

interModelRelationships, a part of them being used throughout the steps of the

transformational approach:

• Manipulates: maps a task onto a domain concept (i.e., a class, an attribute, a

method or any combination of these types).

• Updates: is a mapping between any UI component (at abstract or concrete level)

and a domain attribute or instantiated attribute (at run time). Updates enables to

specify that a UI component provides a value for the related domain concept.

• Triggers: indicates a connection between a method of the Domain Model and a UI

individual component (either at the abstract or at the concrete level)

• IsExecutedIn: indicates that a task is performed through one or several ACs and

AICs.

• IsReifiedBy: maps the elements of an AUI onto elements of a CUI. This relationship

specifies how any AIO can be reified by a CIO.

112

Figure 8-6. Meta-model of the Mapping Model

2.3.1.8 Transformation Model

Transformation Model (Figure 8-7) contains a set of rules enabling the transformation

of one specification (at a certain level of abstraction) into another or to adapt a specification

for a new context of use. A transformation rule realizes a unit transformation operation on a

model. It is composed of a:

• Lhs (Left Hand Side): models the pattern that will be matched in the host model

• Rhs (Right Hand Side): models the part that will replace the LHS in the host model

• NAC (Negative Application Condition): models the condition that have to hold false

before trying to match LHS into the host model

• AttributeCondition: is a textual expression indicating a condition scoping on

element attributes of the lhs of a transformation rule

• RuleMapping: defines the source and the target models of the transformation rule.

For instance, a rule may establish a mapping between a Task Model and an

Abstract Model. In this case, the source indicates the source model of the

mapping, while the target indicates the target model.

Transformation rules are applied in order to develop UIs following a specific

development path (e.g., forward engineering, reverse engineering, adaptation to context of

use). A development path is composed of development steps that can imply three types of

transformations depending on the development direction:

• Reification: consists in the derivation of the next lower model in our reference

framework

• Abstraction: consists in the derivation of the next upper model in our reference

framework

• Translation: is a type of model transformation adapting a set of UI models to a

target context of use.

A development step is decomposed into development sub-steps. A development sub-step is

realized by one (and only one) transformation system. A transformation system is composed of

a set of sequentially applied transformation rules. One transformation system applies one sub-

derivation unit [Limb04]. A sub-derivation unit is defined as a collection of derivation rules

that realize a basic development activity. A basic development activity has been identified to

113

sub-goals assumed by the developer while constructing a system, for instance choosing

widgets, defining navigation structure, etc

Figure 8-7. Meta-model of the Transformation Model

114

Appendix B

NAC LHS RHS

Figure 9-1. Rule 1: Create an AC for task that has task children

NAC LHS RHS

Figure 9-2. Rule 2: Create an AIC for leaf tasks

NAC LHS RHS

Figure 9-3. Rule 3: Iterative tasks are mapped onto repetitive AC

115

NAC LHS RHS

Figure 9-4. Rule 4: Reconstruct containment relationship between ACs

 NAC LHS RHS

Figure 9-5. Rule 5: Reconstruct containment relationship between ACs and AICs

NAC LHS RHS

Figure 9-6. Rule 6: Create an input facet for AIC executed in tasks of type create

 NAC LHS RHS

Figure 9-7. Rule 7: Create an input facet of type select element when an enumerated value

attribute is encountered

116

NAC LHS RHS

Figure 9-8. Rule 8: Create selection values for facets of type select for each enumerated value

of an attribute

 NAC LHS RHS

Figure 9-9. Rule 9: Create an output facet that conveys an element

NAC LHS RHS

Figure 9-10. Rule 10: Create a control facet of type start operation when a method is

manipulated by a task

117

NAC LHS RHS

Figure 9-11. Rule 11: Creating abstract adjacency for <AIC, AIC> couple

NAC LHS RHS

Figure 9-12. Rule 12: Creating abstract adjacency for <AC, AIC> couple

NAC LHS RHS

Figure 9-13. Rule 13: Creating abstract adjacency for <AIC, AC> couple

NAC LHS RHS

Figure 9-14. Rule 14: Creating abstract adjacency for <AC, AC> couple

118

NAC LHS RHS

Figure 9-15. Rule 15: Deriving Abstract Dialog Control for <AIC, AIC> couple

NAC LHS RHS

Figure 9-16. Rule 16: Deriving Abstract Dialog Control for <AC, AIC> couple

NAC LHS RHS

Figure 9-17. Rule 17: Deriving Abstract Dialog Control for <AIC, AC> couple

119

NAC LHS RHS

Figure 9-18. Rule 18: Deriving Abstract Dialog Control for <AC, AC> couple

NAC LHS RHS

Figure 9-19. Rule 19: Deriving updates relationships for an AIC

NAC LHS RHS

Figure 9-20. Rule 20: Deriving trigger relationships for AICs

NAC LHS RHS

Figure 9-21. Rule 21: Creation of windows derived from abstract containment relationship

120

NAC LHS RHS

Figure 9-22. Rule 22: Generation of graphical containers of type box

Sub-step 3.2: Selection of CICs

The rule illustrated in Figure 8-23 generates a GC of type box that will embed two

GICs: an outputText and an inputText representing respectively the label and the associated

text field.

Figure 5-24 describes the rule applied in order to create a GC of type box that will

embed a group of radio buttons when an input facet of type select element is encountered. A

GIC of type outputText representing the label associated to this group is also created. The

defaultContent of the GIC is the same as the name of the AIC. The radio buttons associated to

this group are created by executing the rule described in Figure 5-25. For each selection value

of a facet of type select, a radio button, that has the same content as the name of the

selection value, is created

 NAC LHS RHS

Figure 9-23. Rule 23: Generation of an outputText and an inputText for AIC with create input

facet

121

NAC LHS RHS

Figure 9-24. Rule 24: Generation of a graphical container of type box that will contain a group

of radio buttons

 NAC LHS RHS

Figure 9-25. Rule 25: Generation of radioButtons for each selection value of a facet of type

select

Figure 8-26 presents the rule applied to generate a GC of type outputText, each time

an output facet of type create is encountered.

NAC LHS RHS

Figure 9-26. Rule 26: Generation of an outputText for an output facet with create action type

122

The GIC of type button is created when a control facet of type start operation is

encountered.

NAC LHS RHS

Figure 9-27. Rule 27: Generation of a control button

 Sub-step 3.3: Arrangement of CICs

For each couple of adjacent AIOs that are reified into graphicalCIOs, we define a

graphicalAdjencency relationship between these graphicalCIOs. As AIOs can be of two types

(i.e., ACs or AICs), there are four possible combination to take into account. For each

combination a specific rule is considered (Figures 8-28, 8-29, 8-30 and 8-31).

NAC LHS RHS

Figure 9-28. Rule 28: Generation of Graphical Adjacency relationships for <GIC, GIC> couples

NAC LHS RHS

Figure 9-29. Rule 29: Generation of Graphical Adjacency relationships for <GC, GIC> couples

123

NAC LHS RHS

Figure 9-30. Rule 30: Generation of Graphical Adjacency relationships for <GC, GC> couples

NAC LHS RHS

Figure 9-31. Rule 31: Generation of Graphical Adjacency relationships for <GIC, GC> couples

Sub-step 3.4: Navigation definition

The rules that ensure the navigation definition are not exemplified for this case study

as all the components of the virtual polling system are presented into the same window.

Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this

relationship to the graphicalCIOs that reify them is realized. As AIOs are of two types (i.e., ACs

and AICs), four rules describing the four possible combinations are considered (Figures 8-32, 8-

33, 8-34 and 8-35).

NAC LHS RHS

Figure 9-32. Rule 32: Generation of Concrete Dialog Control relationships for <GIC, GIC>

couples

124

NAC LHS RHS

Figure 9-33. Rule 33: Generation of Concrete Dialog Control relationships for <GC, GIC>

couples

NAC LHS RHS

Figure 9-34. Rule 34: Generation of Concrete Dialog Control relationships for <GC, GC> couples

 NAC LHS RHS

Figure 9-35. Rule 35: Generation of Concrete Dialog Control relationships for <GIC, GC>

couples

 Sub-step 3.6: Derivation of CUI to Domain Relationship

Figure 8-36 illustrates the rule used to map GICs with the corresponding attribute of an

object from the Domain Model. The updates relationship is transposed from the AIC that is

reified by the GIC.

NAC LHS RHS

Figure 9-36. Rule 36: Transposition of update relationship

125

Figure 8-37 illustrates the rule used to map GICs with the corresponding method of an

object from the Domain Model. The triggers relationship is transposed from the AIC that is

reified by the GIC.

NAC LHS RHS

Figure 9-37. Rule 37: Transposition of triggers relationship

