UNIVERSITE CATHOLIQUE DE LOUVAIN

FACULTE DES SCIENCES APPLIQUEES

A Comparative Analysis of Transformation
Engines for User Interface Development

A thesis submitted in fulfillment of the requirement
for the degree of "Licence en Informatique" of the

Université catholique de Louvain

By Jean-Pierre DELACRE

Committee in charge:
Prof. Jean Vanderdonckt, Supervisor
Adrian Stanciulescu, Reader

Prof. Tom Mens, Reader

Academic year 2006-2007

A Comparative Analysis of Transformation Engines for User Interface Development............. 0

(@ F-To1d=Ta @] o [T [} d oo [T o1 Ie] o VUSRS 6
11 CONEEXT ..ttt e 6

1.2 HYPOLNESES. ...ttt e e e e e st a e e e et e e ae e e ataeeesnraees 7

1.3 T o g =YV o - | I 7

14 [OCE o [T gY =01V - T TR 8
Chapter Two. Model-Driven Engineering of User Interfaces: state of the art........................ 10
21 DEfINITIONS ..ttt 10

2.2 Transformation ENGINESuveeiiiiiii et ee e 14

2.3 Selected transformation Engines and meta-modelcccoccveeiiiiiieicciieecccieee s 15
2.3. 1 MeTa-MOAEI ... e e e 15

2.3.2 Transformation ENGINES.....cccuuiiiiiiiiii ettt e e e aree e e 16

2.3 1.1 ATOM? oot eeeees st et 16

2.3.1.2 Custom java appliCatioN.........ceeeeiiiei i e e 17

2,313 AT Lttt e b s s saees 17

Chapter TRree. ATOIME......ooee ettt ettt e et e eate et e ebeebe s esteesbeesteesreesreesnes 18
I 0 I [oY o1 =T 0 =Y o = 1 o o 1SRRI 19

3.2 MEtA-MOAE] ..ttt s ne e e b e e ne e naneas 20

3.3 TranSTOrMATIONS ...coetiiiiieee et s 22
3.3 1 ThE FUIES SEES «.eeeeieeiie ettt ettt et et e e sae e e s r e e e enee e sareesaneeeas 23

3.3 2 ThE FUIES .. ettt sttt e s s b e s b e e snreesreeeas 23

3.3.3 Properties of the 0bJeCts. ... 27
Chapter Four. Custom transformation engine in javacccccceeeieeciiieee s 32
7 N [Y o (=T 0 Y= =1 o] o U USUPE 32

4.2 Details of the implementationooccuieii i e 34
4.2.1 The graphical user interface (UsiXMLTransformationGui)cccecevveeeviveeennns 35

4.2.2 ThE MAIN ClaSS . ueiiuiiiiieii ettt sttt 37

L R I 1= N A {0 (=T o] = 1Y 39

(0 0P o =Yl VT N I PSSR 47
Chapter SiX. Case SEUAIESuuriiiiei it e e e cccrrer e e e e et rre e e e e e e erare e e e e seeeeeeennsssaeeeeeeeennnes 49
6.1 IMPIEMENTEA FUIBS ...eeeieeeeeee e e e e e e e e e e e e e e e e neneeees 49
6.2 Use €ase: CUITENCY CONVEITON c.ocieiieeeeee e ee e e e e e eeee e e e e e e e e e e e e e e e s 50
Step 2: From Task @ to AUIMOdEeluuiiiiiiieieeeeeeee ettt e 51
Sub-step 2.1: Rules for the identification of AUl structure.........ccccceecvvveeeieeennnnen. 51
Sub-step 2.2: Rules for the selection of AICSccoociiiiiciieeicceeeccee e, 52
Sub-step 2.3: Rules for spatio-temporal arrangement of AlOSccccceeeecviveeeennnn. 52
Sub-step 2.4: Rules for the definition of abstract dialog control...........ccccuuueee... 52
Sub-step 2.5: Rules for the derivation of the AUl to domain mappings................. 52
Step 3: From AUl Model to CUI Modeloooeeieiiiiiieeee et 52
Sub-step 3.1: Reification of ACINtO CC......oovviiiiiiiiiiciie e 52
Sub-step 3.2: Selection Of CICS.......cccciii i 52
Sub-step 3.3: Arrangement Of CICS......ccooccieeiieiiiie et 53
Sub-step 3.4: Navigation definition ..., 53
Sub-step 3.5: Concrete Dialog Control Definition..........cccceeeeecciiieeei e, 53
Sub-step 3.6: Derivation of CUI to Domain Relationship........ccccoovveeeeiiiiiiiiinnnnnnnnn. 53
6.2.1 Currency convertor in ATOM3oooieiiiiiicee ettt ettt et 54
6.2.2 Custom java transformation engineccccceecveieeiiiee e 60

6.3 Use €ase: POIlING SYStEMuuiiiiii ettt e e e nrrae e e e e e e e e e nnreees 64
Step 1: The Task and Domain Models..........ceeeeeiiiciiiiiieee e 64
Step 2: From Task and Domain Models to AUI Model..........ccoceeeeiiiiiiniieeecciiee e, 68
Sub-step 2.1: Rules for the identification of AUl structure.........ccccceeveeivecnninennnnnn. 68
Sub-step 2.2: Rules for the selection of AICSccceoeveciiieeeie e, 68
Sub-step 2.3: Rules for spatio-temporal arrangement of AlOSccccceeeecvivieeennnn. 69
Sub-step 2.4: Rules for the definition of abstract dialog control.............cc..c......... 69
Sub-step 2.5: Rules for the derivation of the AUl to domain mappings................. 69
Step 3: From AUl Model to CUI Modelooveiiiieiieieee ettt 69
Sub-step 3.1: Reification of ACINtO CC......oeviiiiiiiieiiie e 69
Sub-step 3.2: Selection Of CICs.........ueeiii i e 69

Sub-step 3.3: Arrangement Of CICS......ccoocieeiieiiiee e e 70

Sub-step 3.4: Navigation definitioncccceeeireiiii e, 70
Sub-step 3.5: Concrete Dialog Control Definition..........cccceeeeeeeciiiieeee e, 70
Sub-step 3.6: Derivation of CUI to Domain Relationship........ccccovveeeeiriiciiinennnnnnn. 70
B.3. L ATOM? .ottt sttt sttt ettt et ne st e e e e 71
6.3.2 Custom java transformation engiNecccceecvverieciiee e 79
Chapter 7: Comparison of the four teChNIQUEScceviiieeciiiiiee e 87
7.1 SUMIMAEIES <oeeeeiiiiee ittt ettt e ettt e e s st e s s r e e s smre e e s smeee e s snneeeeeamreeesanreeessnnens 87
728 05 e SRS 87
70,2 AT L ettt ettt et e be e bt e b e be e she e ehtesatesatesates 88
7.1.3 Custom transformation engine in javacccocveeeeiieccciiieee et 88
72872 @0 3 01 oY= £ o 1 89
7.2.1 TOOIS-SPECIFIC ISSUBS c.cntitieeee ettt et e e e e trrre e e e e e e a e brae e e e e e e e nnnneees 89
T2 1L ATOM? .ottt sttt sttt et ete s b e aeteeseetentenseaeneenen 89
7.2.1.1.1 Meta-model and models creationccceveereerienienic e 89
7.2.1.1.1 RUIES CrEAtION ..eeeieieieeteeeee ettt st e 89
7.2.1.2 Custom java transformation eNgiNeccccccvveeeeciiee e 90
7.2.1.2.1 Meta-model Creation ... iieeiieeeiee et 90
7.2.1.2.2 MOdel Creation.......cccueeeiieeeiiieeee ettt ettt s s e s 90
7.2.1.2.3 RUIES CratioN ..cccueeiiieeiieeeiie ettt e 91
7.2.2 ToOIs-Specific adVaNtagesccuviiiieietieeee e 91
7221 ATOM? .ottt sttt st sttt ettt e b et et eneetesrenaeeeneenen 91
7.2.2.2 Custom java transformation enginecccoveeeeeiieccciiiiei e 92
VAV N €[] oF: 1 WeleTa'] o F-1 5 o] o SRR 92
7.2.3.1 Implementation paradigm and required programming skills........................ 93
7.2.3.2 The model-to-model approach........cccooeeeciiiei e 93
7.2.3.3 Code ZENEIAtiON..ciiii ittt e e e e e e e e e e e e e bbb e e e e e eeeeanns 94
7.2.3.4 Pattern MatChing ..co.ooeeeiieeeee e e e e r e e e e e e 94
7.2.3.5 Rules scheduling and organization, inheritancecccocveeeeiieeciiiieeee e 94

4

7.2.3.6 Bi-dir@ctionNality....cccceeecciiiieee e e 95

A T A <] (1 81 4 = [(1< TR 95
7.2.3.8 Flexibility and maintainabilityccceeiiieeiiiiieee e 95
7.2.3.9 COMPIELENESS. . ueeiieeeeeeciiiiiiee e e eeccectee e e e e e e eertrre e e e e e eeesanreaeeeeessssssssnssseeeeaaeannnns 96

7 T I 0o 1ol [V 1Y o o FR TR 98

271 o] [To =4 =T o] V20 UEURR 100
FAY o 01T 0T [A SRR 103
B T 0 R =1 1Y, oY 1= 103

2.3.1.2 DOMaiNn MOAEIcooiieeeeeeeeeeeeeeeeeeeee e 104

2.3.1.3 Abstract User Interface Model..........ueeeiiiiiiiiiiiieiieiieeeeeeeee s 105

2.3.1.4 Concrete User Interface Model........ceeeiiiiiieieieeiiieiieeeeeeee et 109

2.3.1.5 FINAl USer INTeITaCe ..o iieeeeee et e e 110

2.3.1.6 CoNtEXt MOAEI ...coeeieieeeeeeeeeeeeeeeee e 110

2.3.1.7 Mapping MOel......ccooieieeeeee et e 111

2.3.1.8 Transformation Modelcoooeveeiieiieiiiiiiiiiieeeeeeeeeeeeeeeeee e 112

FAY o] o< o Vo L1 = J SRR 114

Chapter One. Introduction

1.1 Context

Cobol, Visual Basic, C/C++, Java, XML, .net, and many other languages, spread over many OS
like Windows, Unix, MacOS, etc: today’s opulence in computer science leads to an all-time
growing complexity in software engineering. With so many technologies and platforms, a lot of
issues are raised, among those: reusability, interoperability, portability, adaptability.

Reducing the number of those technologies and platforms could be a solution. But the chance
for it to happen is negligible, and there is no technology that prevails on the others.

For that reason, another solution is needed. The object-oriented approach was a first attempt
to decrease the complexity of software engineering, but it proved insufficient.

In this context came the Model Driven Engineering, with an ambitious objective: moving the
development effort from implementation to solution modeling. The MDE refers to the
systematic use of models as first and primary development step. We create a model for our
application that is totally independent of any technology, in a more natural language than
programming language. Then, transformation rules are applied on this model to give the
wanted implementation.

The advantages are obvious:

e Reusability and portability are greatly improved: the model stays valid for each
platform or technology.

¢ Complexity is decreased: the model can be expressed in a more natural language.

e As aresult of reduced complexity, the quality of the applications can be improved,
and the number of error reduced.

The OMG (Object Management Group), because of its strength and influence, was in a good
position to create a standard for MDE. As we can see on their site [OMG], “OMG Task Forces
develop enterprise integration standards for a wide range of technologies, and an even wider
range of industries. OMG’s modeling standards enable powerful visual design, execution and
maintenance of software and other processes”. The OMG tries to cope with the problem of
the lack of systematization and reusability by offering a way of creating programs
independently of the context of use.

Starting from the MDE, the OMG created, in 2000, the MDA [MDA, 6] (Model Driver
Architecture). The MDA provides a systematic framework to develop software using
engineering methods and tools. Its core infrastructure is composed of several OMG standards,
including UML (Unified Modeling Language), XMI (XML Metadata Interchange)and the MOF
(Meta-Object Facility). The MDA offers standards to design models, independently of the

platform or technology, which are expressed in a more human-friendly language (like UML or
another MOF-compliant meta-model).

MDA'’s principle is to create Platform Independent Models (PIM) that will then be transformed
into Platform Specific Models (PSM), which will be used to generate the application code. PIM
are thus reusable for every platform; this represents a great progress in terms of
interoperability and productivity and, because the language used to create models is less
complex, the risks of errors from the user interface designer is decreased and the maintenance
becomes easier.

The interoperability problem obviously also affects the engineering of Graphical User
Interfaces (GUI’s). The problem not only comes from the number of different contexts of use,
but also from the way graphical interfaces are created. Up to recently, there were two ways of
creating an interface; the first, old-fashioned method, is the programmatic approach: very
slow, and the result is of variable quality due to a high complexity. The second method is using
visual generators or descriptive language editors, which means a highly simplified and fastened
creation process compared to the programmatic approach.

But even the second approach does not resolve the problem of reusability: there is still the
need of “manually” modifying the interface of each context of use; here too, the MDA allows
great benefits in terms of productivity and reusability.

1.2Hypotheses

Because they represent the biggest part of the interactive software today, we will restrict
ourselves to the information systems.

Here we talk only about HCI (Human-Computer Interfaces), and only the graphical part of it
(we won’t take the vocal, 3-D or multimodal interfaces into consideration) because, once
again, it represents most of the HCI.

So, we will study some transformation engines that focus on the conception of Graphical User
Interfaces (GUI) on information systems. And to do this, we will use several examples, mainly
an example of simple web interface, for which we will try to implement the rules in some
transformation engines.

There exist several user interfaces description languages, so we had to choose one. We will see
in the chapter 2 which language we chose as meta-model, and why.

1.3 Primary goal

The Model Driven Architecture (and model driven engineering in general) is much based on
model-to-model transformations, and there exist a lot of tools to create these. The graphical
user interface designer has to choose one, but these tools are not all equal, or even decide to

7

create a custom one that could better suit his needs. Existing tools can be very different with
respect to their transformation approach (graph on programmatic syntax), implementation
paradigm (declarative, imperative, or both), and many other points. Some are easier to use,
while others allow the creation of more complex rules. Moreover, most of them have their
own programming language.

So, following the needs of the interface designer, his skills in programming and others criteria,
the choice of creation tool will change, and therefore, it is very important to know the
differences between the known techniques, and to see which one is more adapted for each
case.

What we will do is, focusing on graphical interfaces development, review some existing
transformation engines, and create ourself a custom one, implemented in java. And we will
make a comparative analysis of these transformation engines.

1.4 Reading Map

In chapter 2, we will describe the state of the art in transformation engines, as well as our
choices and why we made them.

¢ In chapter 2.1 we define all the terms relative to the transformation process.

¢ In chapter 2.2 we give a short list of existing transformation engines and describe
briefly which ones we chose.

¢ In chapter 2.3 we explain the meta-model which meta-model we chose, and why.
We also describe the transformation engines we selected as well as the reasons
why we selected those.

Then, chapters 3, 4 and 5 are devoted to the description of the transformation engines we
selected. Chapter 5 is shorter than the two others, because the transformation engine we
describe in it hasn’t been used by us, but by another student, that has given us a detailed
description of it, for the sake of the comparison.

Chapter 6 is a detail description of an example of interface created in the transformation
engines we selected.

Chapter 7 is the comparison between the transformation engines.

¢ In chapter 7.1 we give a short summary of the three transformation engines we
selected.

¢ In chapter 7.2 we give the tools-specific issues we encountered.

¢ In chapter 7.3 we enumerate the tools-specifics advantages we notes during the
utilization of them.

¢ In chapter 7.4 we make a global comparison of the tools we used.

e Finally, in chapter 7.5 we give our conclusion and discuss the result.

Chapter Two. Model-Driven Engineering of User Interfaces: state of
the art

2.1 Definitions

MDE, Model Driven Engineering: a problem and its solution are modeled through different
levels of abstraction that allows hiding the complexities of a platform. Instead of coping with
all the subtleties of a platform, the software engineer handles simpler models. The models are
conform to a single meta-model, to allow tools automatically dealing with the models, for
example transforming a model into another (model transformation).

OMG, Object Management Group: Consortium originally created for the setting of standard in
object-oriented systems. It is now focused on modeling. OMG is the initiator of the MDA.

MDA, Model driven Architecture:

The following definition was approved unanimously by 17 participants of the ORMSC plenary
session meeting in Montreal on 23-26 August 2004.

The stated purpose of these two paragraphs was to provide principles to be followed in the
revision of the MDA guide.

MDA is an OMG initiative that proposes to define a set of non-proprietary standards that will
specify interoperable technologies with which to realize model-driven development with
automated transformations. Not all of these technologies will directly concern the
transformation involved in MDA.

MDA does not necessarily rely on the UML, but, as a specialized kind of MDD (Model Driven
Development), MDA necessarily involves the use of model(s) in development, which entails
that at least one modeling language must be used. Any modeling language used in MDA must
be described in terms of the MOF language to enable the metadata to be understood in a
standard manner, which is a precondition for any activity to perform automated
transformation.

So, MDA is an application of the MDE. The goal of the MDA is to Finance
create Platform Independent Models (PIM) that can be later

Manutacturing E-Commerce

refined into Platform Specific Models (PSM) through
transformations rules. Finally, the final code will be generated
from the PSM.

Space Telecom
A model can represent many things; it is an abstract < >
representation of real world concepts. A model is a formal
representation of data, functions or application behavior. The
UML representation of an application is a model, as well as the
Transportation HealthCare
10 M

More...

Figure 2-1 The MDA architecture

ICl.-1

code of the application. A model is simpler than the real world concept it represents; it is
designed for a specific purpose, and allows us to use a concept without having to cope with its
real world complexity.

The MDA is a standard approach of modeling and automated mapping between the models.
The “kernel” of the MDA is a stack of four modeling levels described in Figure 2-2 [Nauwenko]

Meta-Meta-Model

|
I
I
=4L-M3
1
]
:
Meta-Model I _ (Meta-Model p :4|__|'-.|.-'|2
e T -]
T e - I
e e e S, T
— — - : I
Quotet ;D Qtosei 1) Gosein) _ (ovei 1) (Mosetny) |
: :4L-M’1
\ i !
I
I
Universe of Discourse I Universe of Discourse k =4L-|"-.-"|D
I
I
I

Figure 2-2 The four levels of MDA

e The level M4 is the meta-meta-model, that is, the model to which all others
models have to conform.

¢ The level M3 represents the meta-models created for a specific business.

¢ The level M2 corresponds to the platform-specific implementation. So it can be,
for example, a java program.

¢ Finally, the level M1 is some kind of “user-specific” data, like an execution of a
platform-specific model of level M2.

e Of course, other levels can be added between the existent ones, to refine them.

To allow systematization, tools must be able to manipulate the models. The meta-meta-model
is some sort of “legend” for all the models. A map uses only what is defined in its legend and
so does a model with respects to its meta-model. So, with a single meta-meta-model,
standardization is possible and we can create tools to manipulate the models.

UML is a possible meta-meta-model, but it isn’t the only one. So, the OMG created the MOF
(Meta-Object Facility) [MOF]. In figure 2-2, the MOF is the level M4. It is a standard addressing
meta-models and their manipulation. So, every model used as a meta-model should conform
to the MOF.

11

And the OMG also provided a way of creating MOF-compatible models: the XMl
recommendation [XMI] (see XMI definition further). Basing on the W3C XML standard, it offers
a widely available tool on which the designers can map their meta-models.

By creating a meta-model that is independent of the used platform or technology, we make it
possible to create model that are also independent of the platform or technology. Then we
have to create a meta-model that is specific to the platform/technology. And because all the
models conform to the MOF, we can create tools that transform the Platform Independent
Model (PIM) into Platform Specific Models (PSM). These tools are based on Model
Transformations (model transformations are explained further).

The OMG also defined a standard for the model-to-model transformations: the
Query/View/Transformations (QVT) [QVT], which is in fact a meta-model of the
transformations.

XMI, XML Metadata Interchange [9]: XMl is an OMG standard that maps the MOF to the W3C's
eXtensible Markup Language (XML) [XMI]. XMI defines how XML tags are used to represent
serialized MOF-compliant models in XML. MOF-based metamodels are translated to XML
Document Type Definitions (DTDs) and models are translated into XML Documents that are
consistent with their corresponding DTDs.

XMl solves many of the difficult problems encountered when trying to use a tag-based
language to represent objects and their associations. Furthermore, the fact that XMl is based
on XML means that both metadata (tags) and the instances they describe (element content)
can be packaged together in the same document, enabling applications to readily understand
instances via their metadata. Communication of content is both self describing and inherently
asynchronous. This is why XMlIl-based interchange is so important in distributed,
heterogeneous environments.

PIM, Platform Independent Model: model at a high level of abstraction that is independent of
the any platform. It allows creating software more easily, and the result is reusable for each
different platform.

PSM, Platform Specific Model: model at a low level of abstraction the is specific to a given
platform.

Transformation Rule: given a model, a transformation rule gives another model.
Transformations rules can be created by two means:

e Graphically: it is then composed of at least a Left Hand Side (LHS), a Right Hand
Side (RHS) and a precondition (the opposite of the precondition is sometimes
called NAC). The rule searches the LHS in the graph (by pattern matching) and
replaces it by the RHS, is the precondition is verified.

e Programmatically: an algorithm browses the model and modifies it. This is a much
harder method to create a transformation rule, but there are nearly no limitations,
compared to the graph transformation.

12

MOF, Meta-Object Facility: OMG’s standard describing meta-models and their manipulation.

This thesis will focus on automatic transformation of models, using transformation engines.
We will see how we can create transformation rules and execute them either in an existing
transformation engine, or by creating one. There exist a lot of transformation engines today,
so we had to make a choice. This choice and the reasons why we made it will be explained
further.

Finally, once the meta-model and transformation engines are chosen, and the transformation
rules implemented, we will show how they apply on example use cases.

13

2.2 Transformation Engines

There exist today a lot of model-to-model transformation engines, which can be
classified following six categories [Czarneckil:

e Direct-manipulation approach

¢ Relational approach

¢ Graph-transformation-based approach
e Structure-driven approach

e Hybrid approach

e Other approaches

And the tools of each category can further be classified using other criteria, such as rules
application scoping, rules scheduling and organizing, bi-directionality of the rules and many
others. This really means a great number of different tools.

VIATRA [VIATRA], ATOM?® [ATOM], GreAT [GReAT], UMLX [UMLX], and BOTL [BOTL] are
example of transformation engines; but there are many others.

Obviously, we couldn’t use all of these tools, and our objective was to make a comparative
analysis of transformations engines based on the implementation of rules into them.

The next chapter first explain which meta-model we chose, and why. Then, it explains which
transformation engines we chose, and the reasons for it.

14

2.3 Selected transformation Engines and meta-model

2.3.1 Meta-model

To implement rules in transformation engine, we have to choose a meta-model (the
specification language) to use for the sake of the comparison.

There exist several languages designed for the creation of user interfaces, such as XUL
(www.mozilla.org/projects/xul/), UIML (www.uiml.org), XAML (www.xmals.net), XIML
(www.ximl.org) and UsiXML (www.usixml.org).

All the transformation rules created for this thesis are based on the UsiXML (USer Interface
eXtensible Markup Language) programming language.

UsiXML is a User Interface Description Language (UIDL) that allows the specification of various
types of Uls, based on the Cameleon reference framework for multi-target Uls.

Task & Concepts \

Abstract User Interface

Concrete User Interface

Final User Interface /

/ Context of use \

Figure 2-3 The Cameleon reference framework for multi-target Uls

This framework is itself based on four abstraction levels: the Task & concepts level, the
abstract user interface level, the concrete user interface level and the final user interface level

(cf. figure 2-3).

UsiXML is thus based on a transformational approach: the goal of this language is to allow
creating an interface by only giving the tasks of the interface, and the objects it manipulates,
independently of the targeted platform. Then, by means of model-to-model transformations
rules, an abstract interface is created and, with other rules, transformed in a concrete

interface that will serve to generate a final user interface.

Moreover, the underlying formalism of UsiXML is represented under the form of a graph-
based syntax, thus well suited for the use with a tool like AToM?3, using graphical
representation of the meta-model and transformation rules.

We chose UsiXML as a meta-model for several reasons:

15

e UsiXML has been proven to be MDA-compliant [7]. It is structured according to the
four basic levels of abstraction defined by the Chameleon reference framework,
and based on a transformational approach (under the form of a graph-based
graphical syntax), which is the main subject of this thesis.

¢ The underlying unique structure, based on a graph syntax, which is very easy to
represent in graphical tools like AToM3?® and ATL (in ATL, meta-model can be
constructed graphically).

e Transformation rules are expressed conforming to the same meta-model as the
transformed models.

UsiXML is composed of eight levels: Task Model, Domain Model, Abstract User Interface
Model, Concrete User Interface Model, Final User Interface, Context Model, Mapping Model
and Transformation Model. For a complete description of the UsiXML user interface
description language, see the Appendix B.

2.3.2 Transformation Engines

2.3.1.1 ATom®

First, we will use a program specifically designed to model transformation rules, named
AToM3. AToM? belongs to the “graph-transformation-based approach” category; we chose it
because graph transformations are easy to implement, and the subject of this thesis is to
compare transformation engines and see if the increased flexibility of solutions like AToM?
(that uses the declarative paradigm for the implementation of the transformation rules)
involves a decreased powerfulness and completeness compared to harder-to-use, imperative
solutions.

In AToM?3, we create, graphically, one or several meta-model(s) and model-to-model
transformation rules that apply on this (these) meta-model(s).

Transformations are coded using graph transformation rules. That is, a transformation is
composed of two graphs (LHS, RHS) and optional condition and action:

e The LHS (Left Hand Side) is a sub-graph that will be found in a graph using the
pattern matching method.

¢ The RHS (Right Hand Side) is the sub-graph that will replace the LHS in the graph.

* The condition (name of the pre-condition in AToM3) is coded in python
(http://www.python.org/), and must return true for the graph transformation rule

to be executed.
¢ The action, also coded in Python, is executed after the graph transformation rule, if
this one has been properly executed.

16

2.3.1.2 Custom java application

Then, we will try something else by creating our own program and interface, using the java
programming language. It is thus quite the opposite of AToM3. Instead of creating graphs, that
are quite intuitive, here all the transformation rules are coded in java. This means a longer and
more fastidious work (we will see further that it really is hard to implement, at least the way
we made it) as well as the need of good programming skills. The comparison between the two
should allow us to tell in this increased complexity is really rewarding in terms of performance
and completeness of the transformation engine.

The program first reads a UsiXML file and translates it into java objects. Then the
transformation rules apply on these objects and, finally, translate the objects back into
UsiXML.

2.3.1.3 ATL

The third techniques added for the comparison, is using the ATL plug-in for eclipse to create
transformation rules. ATL can be considered as somewhere between AToM? and java, as
transformation rules are coded (in the ATL specific language), but the meta-model can be
graphically designed.

ATL is presented in this thesis because it belongs to the “Hybrid approach” category.
ATL is using declarative AND imperative constructions. It is obviously more flexible than java
and the models and rules created in it are far more easily implemented and maintained than in
java. But, unlike AToM?3, it is not fully declarative, and allows more complex constructions
thanks to the imperative possibilities. ATL is “in-between” AToM3 and java.

The choices we made allow us to have three very different kinds of transformation engines,
well representative of the three categories they belong to. We will describe the three
techniques, and then, based on two examples, we will try to do a comparison and explain the
pros and cons of each technique.

In the next three chapters, we give the detailed description of each of the transformation
engines we used.

17

Chapter Three. ATOM?

AToM3 is a tool for multi-paradigm modeling that is used for meta-modeling and
model-transforming. As we can read on AToM%¥s sitel : “Meta-modeling refers to the
description, or modeling of different kinds of formalisms used to model systems” and “Model-
transforming refers to the (automatic) process of converting, translating or modifying a model
in a given formalism, into another model that might or might not be in the same formalism”.

AToM3 is a graph transformation tool. This means that formalisms and models are
described as graphs, and the transformations themselves are declaratively expressed as graph-
grammar models.

First, we modeled UsiXML in AToM3 as a meta-model. As we could not represent
completely UsiXML, we chose the classes concerned by the examples explained further’.
Instead of creating multiples meta-model (i.e. for tasks&concepts model, abtract user interface
model, etc.), we created only one to represent everything.

AToM?3 works as follows: a source model (graph) is submitted to transformations rules
that modify it to build the target model.

The source and target models each conform to a meta-model (the source and target
meta-model can be distinct or grouped in a single meta-model), and the transformation rules
use pattern conforming to source and target meta-models.

In AToM3, no distinction is made between source and target model. The source model
itself is transformed by the transformation rules.

! http://atom3.cs.mcgill.ca/
2« Polling System », p.8 and « Conversion system », p.8
18

UsiXML UsiXML
Meta— Model Meta—Mode]
Souree arget
A .
! UsiXML graph T
o inaid ; is instance of
'8 inslence of Meta-Model in Atom? :
UsiXML //’(T “x\ UsiXML
Model . - | Model,,_,
isin Sgaﬁéé of | is ifisance of Iy
_ : o LHS/RHS Tl
[Siansilmed o] -~ imess of ~. [Erenstmedim]
- is submitied fo /‘\ generales ;
Grap hsou:'ce =@ g Grap htarget

l:l Not implemented

Figure 3-1 AToM? execution engine

3.1 Implementation

All the transformation rules we implemented in AToM? are described in our rules
catalog (see Appendix B). The complete documentation of the AToM? rules can be found in the
file Rules_AToM3.pdf on the CD joint to this thesis.

The transformations are expressed as graph-grammar models (a graph grammar is the
combination of a set of graph rewriting rules and the graph on which they apply, called host
graph). In AToM3, a transformation can be from a meta-model to another. But, as we
represented every class (from UsiXML) we had to use in a single meta-model, we didn’t use
this possibility.

As in other graph-based transformation tools, the implementation of the meta-models,
models and transformation rules is (almost) strictly declarative. But a few things can be coded
in python (www.python.org), as we will describe further.

The only things that are obligatorily “coded” in AToM?3 are pre- and post-conditions, as
well as some algorithms to give new variables a name based on other variables or change the
name of existing variables, for example (in AToM3, we can also add constraints on objects, and
action triggered by certain events). These are coded here in Python, with a very simple syntax.

In the next section, we present the meta-model as we implemented it in AToM3, and in
the section after, we present all the transformations we implemented, each time with the
precondition, postcondition, and the transformation itself.

19

3.2 Meta-model

As we can see on the figure 3-2, the meta-model is presented as an entity-relationship schema.
The classes are represented as squares with the name above, and attributes under, and the
relationships are represented by rhombuses. The cardinalities can also be implemented, and
are here represented as sorts of attributes of the classes and relationships.

To create a meta-model in AToM3, we first have to choose in which formalism we want to
create it. This formalism will be our “meta-meta-model”. And we have of course here to
choose the entity-relationship model.

Now we can create our “meta-model”, with classes and relationships. For each class of
relationship, we can (by double-clicking on it) create attributes, constraints, actions and a
graphical representation.

Constraints are properties of the object that are checked by AToM? at some specific moments
(instantiation, connection, etc.). Actions are, as we can expect, actions that will be performed
by AToM? at specific moments (same possibilities as for constraints). Finally, the graphical
representation will allow recognizing objects only with their appearing.

Inheritance is supported by AToM3, but not composition. To tackle with this limitation, we had
to create bidirectional relationships instead of each composition relation. This is less readable
and practical, but allows us to have the same result.

Another problem in AToM? is the representation of the model itself. To create the model, we
have a canvas of a limited size, and the objects we create in it are quite big. What’s more, the
representation of the cardinalities as attributes of the objects makes it even bigger. So we
have soon a not very clear schema, with arrows crossing objects, and this is not very readable
and forces us to lose much time reorganizing the schema to have something clear.

Figure 3-2 is the entire meta-model implemented in AToM3. As the graph of figure 3-2 is too

I”

small to be readable, the figure 3-3 takes only the “task model” part of the meta-model as an

example.

20

— oy
i o
ok
*Corairen Cromictatin Mzbplicies: prrEes o ipicias
[e i oo - Todorrairiclis: 1 o To eomiCi: 1124 “psmairClsis 1o | | -TodeminCless 110N
—— i —— - From domainCass: 1 oM "~ - From omanilam: 12N - From domeinilass: 1 oM |, - From domainClss 10 N

dansintise - To domaniiass: 110 b
- From somaniClass: 1 b K
plutizhaies: Jhtvicto.
‘Tatask: s ~TebommnCian 11 - TodavainCiess 10N fulibais
« Fomtask: 1 12 ~ Fumstibat: § N - FrondemainCims 10 W -5
~ra =Sty
TREpre
« Foom atrbusdt DN
Foorn resthcdCE- Qo B
- Ta gerecaliorion Dol
Lt Foare i
Ta aggregan DN
-atindeCardar - ltige - Foore et 00
e G nisger Ta inlanciziaa: A la W
i -ai¥buinDaaType - Shing o b, 2 W
- Toakiwse: 1 i1 -atvidalnanC isduiben; Sy -Ta resterakiabor 00 N
- Fiita sbaastinlnnctee Dtpet o -] » Foors rasterskrebon: 0 1o H
Pl -Fr nan ~Tasaudio N
RN o praghicindidunlorporent: o W ul':“_i:'”g —Pars e ¥
Py Ta drbudsd% Dizhl +Ta o Qo
- Fan maspelkes DN cl ﬂ
-Tersmpused st (sl
- Fxon peales 0104
—— e
— b composed of {1 granta 1101
I [—masbsios Pommrat 15 H
Mutipbctis
- ! r m:'! . -Ta :(iok
. 5 - et 0 o - From atrbure 140 1
_ - Fio Do | « From bskc 1l § o [
:) prrr— and
. - Frernsamscsducarcy: Ca N ahed
- Ta sisTRECamian: Bl j::__‘(_c." _*L:_-TAM
~Frormobaract et o | Tabiges 64N Putizbais: - 7
; «To mebod: 1121 - Mstproses:
= et e T N E— T e ——————
~From graphicalladrafuiCompenent 190 1 -Tomesdtan N -
i TEH
MRy - Frone W Ol
—— ~Tratniracd ridpcanibysd Ta W
Ty Sy vk o -Frem e 11 K [[e—
| oo ouEn pErbake: LR
P ng ot oM - fornds - tiefautState - Bocksn
.:u___,nu Fia AT 1 o . T~
Py —— Ta Gompantt Nia M P e grougham -
o B . Fl:'nd.lm_n\i'.ou:ﬂn e oyl ———
MCumarsAC e o .ﬁm_mn‘h [
indavprianl e < Bovkem ~ ekl - Sing
- To e Coirad 113 K - e - B - Satmutyparlnk Targe - Sung
pam. *Tilvmdmb I = g BBt
e st L M +Ti wincow D11 6 '“M :
- Fiomn abatac i s gt | g
fecet e —
ovitan
+ acsori Tem = Siing -
-~ aclonTyps = Sring + T praphbsCir O i | - Frors iRedisdBy: 31 W
STH : o
+ e - Sy P i i
pluriplitics: L -l Ol H
- From slamgesadat Dish » From faeet: N 3l
« Tas_Cormpmad_OF 013N + "o praghicalingvidualC omporent 0 fa W
-Tos Feifedly 00N - "o graghcalmtarer o W
Fphiatia
« TagraphizaiConainer: 0 io b
» From graphicalCantainer: 0 121 H
- itwnRONTof o Bodleen
i el L - bietacteits | Booiean
"W;""l - To gragheaCorlanar 01 b | B
i _ﬁ' e - From oraghicaConlanar o 1 [—
Hulp By aoue T = 5ang - wilh = imeger
pamiend ; Sirig “acachs Tiatlgn - Sirrg o 4
carenlials - Sig Aond T - Figar - Fom sRelediy 0o N
[T] P - Ty cullmiagCanst 4 N
- debmitiel < Sirng e T Sy - Fom cellialagSonkat Ot K
+ dekauidcon = Srrg : - T GGComanaGic: fa N
- gl - irirg
man) . il « Fom BICis Cortaras Bt 04 N
- i3 “atmits - Bz - Ta GhComainasC; 0o N
:wa::“ o I ——— - Fom BOConnsGE; 01N
L “olpDelnMCnkent - g + Ta GolContaimedByGL: O K
m_s.“n”"‘ etk g « Fuan BOBOunei B0 1l
e vl -Fumis Refiecly Dol
Ta graphcaidmmnay Do N
e
SFrem i Pabacly: § il

Figure 3-2. UsiXML meta-model in AToM?

21

task

Constraints :

Constraints:

SRRl » ConcHoReflex
] o Refles Pouttiplicities:
Constraints: pibattiplicities: - Toptask; 1to N

» EWIENoReflax
ttiplicities:

- From task: 1to N
-Totask: 1to N

-Totask: Tta M
- From task: 110 N

- From task: 110 N

petributes:

- centrality o Integer

- complexity Lewvel o Integer
- cticity oo Integer

- frequency o Integer

- id 1 String

- importance @2 Integer

- name :: String

- structuration Lewel oo Integer
- taskitem :: String

Constraints:
* ChaiceMoReflex

fubiltiplicities:

-Totask: 110 M

- From task: 1to N

[Constraints:

= OloReflex
uitiplicities:

- Totazk: 1to M

Constraints:
» CUIEMoReflex
ttiplicities:

'“’pep;t.E"”f’_'St) - Totask: 1to N - From task: 1 to constraints:
botone - From task: 1te N » disablingMo Reflex
» changelmage w\.l'tip"citie.si
hutiplicities: - Totask: 110 N

- Fromtask: 1to M

- To enabling: Oto M
- From enabling: 0 to W
- To enablingWithinfa Bxchanga: 0to M

T

Constrairts:

:

- From enablingiith Info Exchange: 0to W # Optionho Reflex

- From suspend_Resume: 0 ta N Wiultiplicities: fotions:
- To suspend_Resume: Dto N ~Totask 1to1 * optionBrackets Attributes,

- From orderindependancy: 0ta N * delOption - iterationkumier :: Integer

- From task: 1to0 Miplicities:
-Totask: 1to N
- From task: 1to N

- To orderindependancy: 0to N

- From iteration: 0ta M

- To iteration: 0 to N

- From concumencyWith Information Passing: Dto M
- To concurmencyulith Information Pazsing: 0 to W

- From option: 0 to W

- To option: 0to W

onatraints:
= FINSrcEqual=Dist
ultiplicities:
-Totaszk: 1to M

- Fromtaszk: 1to M

- Fram disabling: 0 ta N Constraint=:

- To disabling: 0to N » sreBquals Dest Constraints:

- From concumrency: 0to N tections: » Enabling No Reflex
- To concumency: Oto H » lerStar bobuttiplicities:

- From choice: 0 to N » dellter - From task: 1ta N
~To choice: 0 to N rolE 5 ipiiies: o toeh: 1o M

- To isExecutedin: Dto M - Totask: 1to 1

- From composition: O to N - From taszk: 1o 1

- T rermnesition: 0t b

Figure 3-3. Task Model in AToM?

3.3 Transformations

When we have finished creating our meta-model, we can generate buttons in AToM3 to
instantiate the objects of this meta-model. The objects will be instantiated with the graphical
representation we gave it, or a default one. With this meta-model generated, we can now
create the transformation rules.

Edifing Graphbrammark dit

WARNING: Name must use Python vaniable syntax
Mame bk T ofuah odel
I Enabled?

Hew |executedinde 1 :]
lexecutedindic 2 —
Rulez Edt WrkACs 4
|
ol ik ACsAndAICs 5 __J

Load GG
Save GG

Generate latex document fiom GG

Generate GG code

Ewecute GG code

[k Cancel

Figure 3-4. Rules set

3.3.1 The rules sets

In AToM3, creating rules sets is very simple. As we can see in the figure 3-4, there is a field to
give the rule set a name, and a list in which we can very simply add (or remove) rules.

So it is very simple to create distinct rules sets in AToM?, and to save them. Re-loading them is
very easy too.

When we have created our rule set, clicking on “Generate GG code” will generate python code
from our rules. This code is the code that will be executed for our model transformations.

3.3.2 The rules

Here we show how the rules are implemented in AToM3. For a complete listing of all the rules
we implemented in AToM?3, see the appendix A.

Transformation rules are mainly composed of six components:
¢ The Left Hand Side (LHS)
¢ The Right Hand Side (RHS)
* The condition
* The action
* The order of the rule

¢ The name of the rule

23

Editing GGruleEdit

Mame [Python variable syntax required] outputlnput 1]
Order _22
TimeDelay 2
Subtypes Matching [if rule matches A then it also matches B if B has all attibutes ina) |
Conditiorn Edit v Enabled? Rl
Actian Edt ¥ Enabled? =
Edit| Help| Mew abstractlnteractionﬂbiect} MNew taski Mew Edit| Help| Mew abstractlnteractionﬂbiect} MNew taski Mew
JC = o
[_F R Mew obiectj Mew domainCIass] Mew altlibutai Mew methodi Mew attribule MHew obiectj Mew domainCIass] Mew altlibutai Mew methodi Mew atiribute
Mew huttnn] Mew radinButtnnl Mew hnx] Mew window Mew huttnn] Mew radinButtnnl Mew hnx] Mew window
K H | H
- - -
L <COPIED> ’ J L
3
<COPIED=
<COPIED>] d
I I
Input . <COPIED>
=ANY> <COPIED=
1
17 1? =TT
: =l - | | Inn i Tend Qutputlexd § |
2|] —]
Editing Monamed' (not modified) |Editing transf ‘Monamed' (not modiﬂed|Editing Monamed' (modified) |Editing transf ‘Monamed' (not modified
£ | i
ok Cancel d
|uiM0deI7MDL.py' {not rodified) |taskTOAuiMudeliGGimdl.py'

Figure 3-5. Transformation rules

There is no NAC in AToM?, since it is replaced by a condition in python code. If this condition
returns true, then the rule is executed.

The action is also a python code block, which is executed after the rule. The fact that, in
AToM?3, condition and action are python code is very useful: while being a little harder to use
and understand for an interface designer that has no (or few) programming skills, it allows
things that couldn’t be done graphically. In fact, everything could be done with only the action
and condition, since AToM?® allows implementing programmatically everything it can make
graphically. But this is not a good idea, since code is harder to implement than graph and so,
more subject to errors.

However, condition and action also allows (and that’s their real purpose, in addition to the
NAC role of the condition) determining values by browsing the model (indifferently source or
target model, since there is no distinction) and computing the values from it. The condition can
be constructed exactly like a NAC, but the pair condition/action can use a simple mechanism to
ensure the rule is executed only one on a given object: the action adds the object an attribute
and if the condition sees it, it means that the rule has already been executed, and the
execution of this rule is stopped.

24

Finally, AToM?® allows determining a fixed total order on the rules, but this order cannot be
dynamically modified. There is no explicit flow control; the condition only allows preventing a
rule to execute but, in that case, the rule will never be executed on the same pattern of the
source model.

On figure 3-6, we can see a model transformation that corresponds to the following schema:

abstractContainment
1:abstractContainer 2:abstractindividualCompaonent
TisRefiedBy isComposedof
" isRejfiedB
abstractContainment #4graphicalContainer i
- - 3facet
5;ab51racﬂndwiduamgmpgnem| |1:abstractContainerl—H2:abstractlndividuaIComponent| araphicaGantainment type=input
- tionType= t
ISCDmﬁDSEdOf graphicalContainer :Et:g:\lgﬂiglf:ﬂ:‘m
isRdifizdBy TisRe(fiedBy *si_type=hox inputDataType=string
3facet type=horizontal
type=input raphicalGdntainment @raphigalContainment
raphicalContainer : i i i - arap
grap 4:graphicalContainer act!DnTypE—create araphicalAdjancency
actionltem=element [araphicalindividualComponent] [araphicalindividualComponent]
inputDataType=string [xs_typ e=outpulText | " [xsi_type=inputTexd |

Figure 3-6. Graphical rule description

The main fields are name, and order, to give the rule an order in the rules set. There is also a
checkbox: “subtype matching”: by checking it, we allow AToM? to recognize inheritance in the
transformations, so for example if a box is a subtype of “GraphicalContainer”, it can be
recognized as a graphical container in the LHS.

Then we come to the rule itself. It is divided into two parts: Left Hand Side (LHS, framed in red)
and Right Hand Side (RHS, framed in red). The LHS is a pattern that will be searched by AToM3
in the graph we want to transform. When AToM? finds it, it replaces it by the RHS.

25

|GlErleEdit

Mame [Python variable spntax required)
Order

TimeDelay

output nput
22
2

Sublypes Matching (if rule matches & then it also matches B if B has all athibutes in&) [

Condition

Actioh

Editing ATOM 3Constraint

Edit W Enabled?
Edit W' Enabled?

EQIT =
© FREcondiion = —
M avE Set Spaces Per Tab | 4 Set Text Box Height {15 Text Editor Menu
condilion & POSTcondiion |EREATE]
COMMELT LJ

= node = self.getMatched (graphID, self.LHS.nodeWichLabel(Z))

for link in node.out connections :

1 for SemCh] in link.out connections :
HEE
[{link.getTypeName () =="isPeificdBy") and (SemCb].getTypelame () =="graphicalContaine
"y o
i Ereturn a
return not [hasattrinode, " wvisitedForInputCutpuc”] |
4
0k, Cancel
= . R P TR
4] S| = T | | &
Editing Manamed® (not madified) |Edi1ing transf. Monamed' (not mudiﬁed|Editing Monamed' (madified) |Editing transf. Monamed' (not madified
Al |
0K Cancel

Jikdodel_MDL py' (not modified)

[taskToAuiModel_GG_mdlpy'

Figure 3-7. Condition

The (pre)condition of figure 3-7 corresponds to the NAC of figure 3-6. The first line,

node = self.getMatched(graphliD, self.LHS.nodeWithLabel(2))

simply takes the object in the LHS that has the label 2 : it is the AbstractindividualComponent.

b‘or link in node.out_connections_ :‘

means that we explore every link starting from the object. And

lfor SemObj in Iink.out_connections_‘

means that we explore every object that is a target of this link. We do this to find if there is
already a link between the AbstractindividualComponent and a GraphicalContainer, which is
well the NAC (precondition) of our transformation. If we find one, the precondition is not met,

and we return 0, which means that the rule will not be executed.

The second part of the precondition is used to prevent the rule to be executed twice on the
same objects. When the rule is executed on the object, we give it an attribute

“"

once more.

26

_visitedForRule” (cf. action, figure 3-8): this allows AToM? to see it hasn’t to execute the rule

Editing GGruleEdit

Mame [Fpthon variable syntax required) outputl nput

Order 22

TimeDelay 2

Subtypes Matching (it rule matches A ther it also matches B if B hag all atributes in &) |

Condition Edit ¥ Enabled?
Action Edit ¥ Enabled?

Editing ATOM3Constraint

=
EDIT %
" PREcandition SaE
Set Spaces Per Tahf!i Set Text Box Height;15 Text Editor kenu
& POSToondtion (CREATE —
COMNECT Lj
node = self.getMatched (graphIl, self.LH3.nodeWVithLalbel(2)) _]
node. wvisitedForInputOutput = True
pass
1
3
|: 0K i Cancel i
l | | InputText F/“ | OUTPULT T l
_:-] [— e L _:J
i — I3 7 T — 2
Editing Monamed' (not modified) ‘Edmng transf ‘Nonamed' (not modiﬁed|Editing ‘Nonared' {modified) |Editing transf. MNonamed' (not modified
< J i
0K Cancel

|uiMUde_MDL.py' (not modified)

[taskToAuiModel_GG_mdl.py’

Figure 3-8. Action

The rule of the action here is to give the node an attribute, which will allow AToM?3 to see later
that it has already executed the rule on this node.

3.3.3 Properties of the objects

AToM? also allows
simple.

editing the properties of the objects in the RHS. Once more, this is very

Figure 3-9 shows how we edit the properties of the object with label 11 in the RHS. As we can
see in the edition window there are three possibilities to give a variable a value: “copy from

LHS”, “Specify code”, or giving directly a value in the field next to the variable’s name.

Copy from LHS means that the variable will simply have the same value than it the object with
the same label in the LHS. Specify code will allow us to create a small algorithm to determine
the variable’s value.

27

Editing GGrleEdit
Mame [Ppthon variable syntax o
Order
TimeDelay

equired)]

selectionalues

Subtypes Matching [if wle matches A then it also matches B if B has &l atiibutes in &) T

Condition

Action

13
2
Edit ¥ Enablzd?
Edit ¥ Enabled?

Edit Helpi Mew abstractlnteractionDbiect| Mew taskl Mew

Mew doma\nCIassI Mew altributel Mew methndl Mew attribute p F (9| MNew object

Edill Help| Mew abstractlnteractionDbiect| Mew taskl Mew

New domainC\assl New attributel New methodi New attribute

Mew object
New button | Mew radioButtonl MNew boxl New windnwl New button | Mew ladioEutlonl Mew boxl MNew windowl
4 | i < | |
= |. -
6 attribute
— — e <COPIED>
WARMNING: use only Copy OR Specify (and not both) <COPED=
Copy % Copyfrom LHS =
actionl Term
Specify I” Enabled?
. Copy ™ Copyfrom LHS
i
SR Srly e ™ Enatled?
- Copy W Copy from LHS Fnurmerated value
id
I Specify & L ™ Enabled? <COPIED=
Copy [Copy from LHS 1
hame naunm
Specify Specify cod ¥ Enabled? :
pec Speci code| Selection value
Copy | Copy from LHS =SPECIFIED=
name
Specity Specify cade | ¥ Enabl=d? =
£l | GLabel |11 = o
Editing ‘honamed' (modified) Editing trang 0K l Pirea| l ansf, Monamed' (not modified

oK ! Carcel

Figure 3-9. Object properties in transformation rule

In figure 3-10, we see the small algorithm that we used here to give the variable a value. In
fact, it takes the name of the object will label 8 in the LHS as value. The syntax for such

algorithms in AToM?3 is still very simple.

28

selectionValues
13
2
_ htches B if B has all atributes ina) T

LaEditmgiselectionalu:
WWARMING: use only Copy OR Specify (and not both)

Copy ¥ Copyfrom LHS

fion| Tem | i i ¥ Enablsd?
SRS Specify “reci o | I~ Enatled? (B0 nane
e i ¥ Enabled?
— Copy ¥ CopyfomlHS il name
tionT,
actionType | Specity Speciy code ™ Enabled? || B
& Copy v Copyfrom LHS Edill Help | Mew abstractlnteractionDbiectI Mew task| Mew
| i .
i Specify Speciy cods I Enobie? [EBEESY| New chioct| New domainCiass] New atibate| New method | New atiibwls
Copy | Copwfrom LHS New button | New radioBution| New box | New window |
nanme
Specify Specify code ¥ Enabled? «| | ol
AP Editing ATOM3Constaint [
1 || name —
EDIT -
e " PREcendtion :J
q GGLabel ——-—w = FAE T SetSpaces Per Tab | 4 Set Text Box Height §15 Text Editar Menu
AttrS pecify * POSTeondtion |SHEATE I i Tt Editor Menu |
COMMECT ~|
waluslode - self.getMatched (graphID, self.LHS.nodeWithLabel (5)) =
& return walueMNode. name.getValue ()
BE|
Editing 'Mona <] J—J
oK Cancel
EX| |
(5] Cancel

Figure 3-10. Value computing in transformation rule

Sometimes, the fact that we can, in AToM3, use Python for pre-and post-conditions help us
create simpler transformation rules.

Let us take for example the rule 8. The role of this task is : if two tasks are [linked] to,
respectively an abstract container and an abstract individual component and if these two tasks
are linked together by a dialog control relation, then the same dialog control relation must be
created to link the abstract container and the abstract individual component.

But in the graph of the LHS, there is apparently no link between the task with label 1 and the
task with label 2. We created it so because there can be several types of dialog control
relations between two tasks. So, by putting it in the graph, we would have had to create a
transformation rule for each type of dialog control relation.

Instead, we used the precondition to verify the relation. The execution of the rule is then as
follows:

* AToM? finds the LHS pattern in the source graph.

¢ It then executes the precondition. This one says: if there is a link between the two
tasks, and if this link is no of type “composition”, then add an attribute “link type”
to the first task, and continue the transformation rule.

* AToM3 now replaces the LHS by the RHS, and so creates a link between the
abstract container and the abstract individual component.

29

e Finally, the symbol of the new dialog control relation is set by another python
algorithm, that takes the value of the attribute “linkType” the precondition had
added to the first task.

So, with only one transformation rule, all types of tasks relationships are processed.

This way of working is however a little “artificial”: instead of really creating a graph
transformation rule in a declarative manner, we use python to make it more “polyvalent”. This
means that the rule was harder to create, and doesn’t really respect the point of view of
AToM?3, that should be (almost) strictly declarative. However, the earning in terms of time is
here worth the implementation complexity.

Rule 8 (Order 8): DialogControlATCAC

s LHS — RIS
s = N

/

<ANY= T <COPIED>

NS = -\ =

Figure & DialogControl ATCAC

Precondition:

nod=l = pelf.getMatched(graphID, self.LHS.ncdeWithLabel(1]))
nodeZ = celf.getMatched(graphID, self.LHS.nodeWithLabel(2])
for link in nodel.out_coonsctionc_:
for Zemlbj in link.out_connections_:
if (Senlbj==node2) and (node.getTypeName()!="compositicn”):
nodel.linkType = link.getTypeNam=(];
return not { hasatbr(ncdel2, "_visitedForDialogControl'))
Teturn O

Post action:

node = self.getMatched{graphID, self.lH3.nod=WithLabel(2]])
nods . _visitedForDialogControl = True
pass

Specify symbol:String in awillialogConirel #5

nodel = celf.getMatched(graphID, s=1f.LHS.nodeWithLabel(1))
return nodel.linkType

Figure 3-11: the rule in AToM3 to derive abstract dialog control relationships

30

Finally, to help the reader understanding the models we implement in AToM?, we give in figure
3-12 the graphical representation of all the objects that will be met in the examples.

Input Mawigation
Output Control

bstractContainer

Task
Domain class Method GraphicalContainer
attribute Enumerated value GraphicalndividualComponent
Selection value InputTesxt OutputText
Button radioButton Box Window

Figure 3-12. AToM? Objects graphical representation

31

Chapter Four. Custom transformation engine in java

Instead of using an existing tool, as AToM3, the second possibility was to create a
project entirely coded in the Java programming language. The goal here was to have a
program that could take a UsiXML file as input, apply transformations on it, and give the result
as an output, still in UsiXML format.

4.1 Implementation

The program itself is composed of five main classes, plus the classes created by jaxb. These
four classes are:

* The GUIclass

e The main class, which reads the UsiXML file, translates it in java objects, and
instantiates the rules class. After all the rules are executed, the main class
recreates a UsiXML file with the result.

¢ The rules class, which contains the methods of all the transformation rules

¢ The rulesHelpers class, which contains methods to help create transformation
rules, for example “findAC(Iterator auilter, string id)” that allows to find an abstract
container of id id with an iterator. This allows the rules in the rules class to be
slightly shorter, and avoids a part of the redundancy.

¢ The rulesTree class, which contains a tree of all the transformation rules

When the GUI designer wants to implement new transformation rules, he has to modify the
last two classes. Figure 4-1 and 4-2 are respectively the UML diagram of our transformation
engine, and the sequence diagram of the execution of transformation rules in our
transformation engine.

32

Main

-LliModel wi

-usizmiTransformationsGui TG

-RulesTree rulesTree

-executeRules{File)

—executeRules{arravlist<Task = tasks, AbstractContainer bighc)

uses

Rules

#UiModel ui

#usizmlTransformationsGui UxTG

-CAll the transFormation rules)

RulesHelpers

#findAaCont()
#FindGConk))
#findIrbl)
#FindTask()
#findaic)
#findac()
#findGeo()
#findEciol)

usiXmiTransformationsGui

-Main main
-File source

instanciates

Figure 4-1. UML schema of the application

33

instanciates

RulesTree

-Jdiree tree
-int rulestb
-DefaultMutableMode parent

When executing transformations rules, the sequence is like below:

JUXTG SMain /Rules /RulesHelpers

11 adress the source Filed) 2.
B

1 1 conwert source File into java objects()

3 1 executes rules on java objects()

1 execute selected ru!es(}l

1 optional - call helper(L E
I

: = "U
I_rI 7+ return modified model() -,LJ &t return asked object()

E & : convert java object inko XML Filed)

LI-' 9 adress the target Filed)

Figure 4-2. Sequence diagram of the application

First, using the GUI, we open the source file. When asking to execute rules, the interface
instantiates Main, that will marshall the file (convert it into java objects). Then, the main
instance will instantiate the Rules class and ask executeRules() to executes all the
transformations rules. The Rules class, for some transformation rules, instantiates the
RulesHelpers class to use one of its helper rules. Finally, the main class re-converts the java
objects into an XML file, that is displayed on the graphical user interface.

All the classes have access to the model, which is directly modified. The source model then
becomes at the end the target model; there is no distinction between them. All classes also
have access to the graphical user interface, to be able to know which transformations rules are
selected.

In the next chapter, we explain each class in detail.

4.2 Details of the implementation

Here, we explain the way each class is implemented, but we don’t show the code. This one is
given in appendix.

34

4.2.1 The graphical user interface (UsiXMLTransformationGui)

Menu SourceFile Target File

<2l version="1.0" encoding="UTF-8"7=
=uiModel id="UiM1" name="PollingSysterm"=
=taskModel id="TW1" name="FirsiTaskhodel">
<task id="Root' narne="Participate to poll" importances=" ne="ahstract'=
=task id="T1" name="Insert personal data" importance="3" type="interactive"=
=taski 11" name="Insert name" userAction="create" tasklitem="element’ importance="8" type="interactive"/=
<taskid="T12" name="Insenzip code" userAction="create" taskitern="element" importance="5" type="interactive"=

=taski 13" name="Selact gender" userbction="selact’ tasklterm="element" importance="5" type="interactive"l=
=taskid="T14" name="Select age categony" userAction="select’ tasklitem="element’ importance="5" type="interactive"/>
<itask=
=task id="T2" name="Answer guestion” importance="3" type="abstract'=

=taskid="T21" name="Show guestion” userAction="create" tasklitern="collection” importance="5" type="systern"i=
<taskid="T22" narme="Select answer" useriction="select’ taskitem="¢element’ importance="5" type="interactive"t=
=fask=
=task it="T3" name="8end guestionnaire” useraction="start’ taskitem="operation" impontance="3" type="interactive"/=
“itasks

=gnahling id="e1"=

[»

<s0UrEe Sourceld="T1">
mmatiuns Rules \11 | | Switch with console
=Pl version="1.0" encoding="lUTF-8"7= =
=yiModel id="UiM1" name="FollingSysterm= =
<taskModel id="Th1" name="FirstTaskModel"s
=task id="Root' name="Paricipate to pol" type="abstract’ importance="a"=
=taskid="T1" name="Insert personal data" type="interactive" importance="3"»
<taskid="T11" name="Insert name" type="interactive"
irmportan taskitern="element' userdction="create"’=
=task it="T12" name="Insert zip code" type="interactive"
impartan taskitems="elerment’ useraction="create"i=
=task id="T13" name="3elact gender” type="interactive"
impotance="5"taskitern="element’ userdction="selectr=
<task id="T14" name="Select age categony’
type="interaclive” importance="5" taskltem="element’ userAction="select"/=
=ftask=
<taskid="T2" name="Answer guestion’ type="abstract' importance="3"=
=task id="T21" name="Show guestion" type="system"
impottance="5" taskitern="collection” userAction="create"= B
-
Rules executed in: 78ms
ou can nove save the farget model in a file,
using the menu "Target File" --= "Save" =l
-

Figure 4-3. Graphical User Interface

(&1

Execute all rules
bstract Interaction Level
Ahstract Containers and Abstra
Abstract Containment
Input Facets For Create Tasks
[] select Facets and Selection valu
D Output Facets For Convey Task:
« [[] Contral Facets For Start Tasks
[] abstract adjacency Relationship
« [] Abstract Dislog Control Relation;
[[] Updates Relationship For AIC's
- [] Triggers Relationship For AIC's
Concrete Interaction Level
Main bo: and window
Boxes contained by the main ba;
« [] Input text and output text for cf
[Box For radio buttons
- [[] Radio buttons For selection valug
« [] Oukput kext for output Facet
[ontral button far cantral facet |
- [] Graphical adjcacericy
- [] Conerete dialog contral
[[] Updates Relationship For GIC's
« [] Triggers Relstionship For GIC's

= | 53

The graphical user interface of our program has been made using swing. It is very simple, as we
can see on the figure. Mainly, it has two big text areas that are used to show the source and

target files:

¢ Source file is the UsiXML file before the execution of the transformation rules

e Target file is the UsiXML file obtained after applying the transformation rules on

the source file

At the right side of the interface, we can see a tree containing all the implemented

transformation rules, each with a checkbox aside. The checkboxes allow deciding whether or

not the rule will be executed.

Between the two big text areas, are two buttons: “Execute rules” and “switch with console”.

35

e “Execute rules” will execute all the transformation rules that have their
checkboxes checked, or all of them if the checkbox of “All transformation rules”

above is checked.
e Switch with console will simply take the text of the console and put it in the in-low
text area, and vice-versa. It is just a small convenience for reading easily the text of

the console.

Finally, important messages, such as errors, executed rules and time to execute them are

displayed in the console.

The interface has three menus: the first has only one element: “quit”, to exit the application.
The second is used to open the source file, or save it if we made changes in it. Finally, the third
is used to save the target file after the execution of the rules.

36

4.2.2 The main class

Many things are done in this class. It has to:

e Read the source UsiXML file and translate it into java objects.
¢ Instantiate the rules class, and call each rule.
e Create the target UsiXML file with the result.

UsiXML®. JAXB can, with a schema in an *.xsd file as input, create java classes for all entities
present in the schema. These classes have getters and setters for all attributes, and can thus be
easily used as is (in fact, because of a compatibility problem with some type of lists, some
attributes were missing, and we had to add them manually).

e+, Sélectionner E:\WINDDWSAspstem3I2icmd. exe

Figure 4-4. using JAXB

The program reads the UsiXML file (*.usi), and instantiates the classes (created by JAXB) to
internally represent the file (thus, using java objects), using the Castor project.

3 Cf. Figure 1 p. 5
37

A4 mappingUsiZml.xml contains rules to translate XML objects into
S Java objects, and vice-versa.

Happing map = new Mappingi):

map. loadMapping ("oappingUsiZml . xml™) ;-

Tmmarshaller h unmarshaller = new Tnmarshaller (map) :

S The file in translated into java ohijects.

ui = (UiModel)h unmarshaller.unmarshal (in);

Figure 4-5. Reading and translating a UsiXML file

As we see in the code, Castor needs a mapping file * to correctly read the UsiXML file (and
create the new file after the transformation rules have been applied). A mapping file is a file
that contains rules (expressed in XML) to create an XML file from java objects. For example,
the code in the mapping file for the AbstractContainer object is:

<lass name="usixml.po.AbstractContainer” suto-complete="false™:>

<descriptionsDefault mapping for class usixml.po.bbstractContainer</description:

<map-to ¥xml="shstractContainer™/ >

<field name="orderType" type="string” regquired="false"
direct="false" transient="false">
<hind-xml name="order-type" node="attribute” reference="false" />

</field>

<field name="name" type="string" reguired="false" direct="false" transient="false">
<bind-xml namwe="name" node="attribute" reference="false"/>

</fields

<field name="splittability"™ type="hboolean"™ regquired="false"
direct="falze" transient="falze">
<hind-xml name="splittability™ node="attribute” reference="false"/>

</field>

<field name="id"™ type="string"™ required="false" direct="false" transient="false":>
<bind-xml name="id" node="attribute" reference="false"/>

</field>

<field name="shstractContainerOribstractIndividualComponentOr Input™ type="usixml.po.LioType"

hollection="arraylist” required="false" direct="false" transient="false:

<bind-xml node="element”™ reference="false” auto-naming="deriveEyClass"/>

<ffields

<fclass>

We can see in the code that it corresponds to the class “usixml.po.AbstractContainer”. It will
be mapped in the new XML file with the name “abstractContainer”. Then we see each
attribute of the class AbstractContainer, and for each one, we see the name of it in the new
XML file, as well as how it will be formatted (attribute or node).

The last attribute is a little special: this attribute is a list. And, at the end of the “bind-xml”
element, we see the attribute “auto-naming="deriveByClass”. This means that the name of the
attribute (in the new xml file) will be dynamically chosen by Castor, following the name of the
class. As an AioType can be an instance of AbstractContainer as well as
AbstractindividualComponent or Input (all extend AioType), the name can be one of the three.

38

4.2.3 The Rules class

In this class, we find all the methods for the transformation rules. To make the program easier
to read and modify, there is one method per transformation rule. Of course, this means a small
loss of performance, coming from the fact that different rules can apply on the same object,
and each one will have to do the search to find this object. But it was the only way to allow the

maintainability of the code.

The main difficulty in the java programming method for the creation of transformation rules is
that Java isn’t designed for pattern matching. That forbids us to take a transformation rule
expressed in UsiXML to automatically execute it by searching its LHS in the UsiXML file and
replacing it with the RHS. Each transformation rule has to be coded “by hand”.

Here, we see an example of such a transformation rule expressed in Java:

void shstractidjacency (] {
PR
* For each couple of sister tasks executed into AIOs,
¥ we define an abstracthidijacency relationship between these AI0s

"
this.UXTG.console.append ("ibhstract Adjacency...™):;
Iterator rellter = ui.getTaskModell)

.getTaskRelationshipOrlecompositionOrTemporal i) - iterator () ;
while (rellter.hasNext (1)1
£4 SBearching through the list of TaskRelationShip's,

TaskRelationshipType rel = [TaskRelationshipType)rellter.next():
ff we try to find & relation of type "EnablingType™
if (rel.getClass(i==((new EnablingType()).getClass())]1{

Tterator sourcelter = rel.getlourcel() .iterator (]

/f and we create a abstractidjacency relation for every tasks
f4 that are linked by an enabling relation.

while (sourcelter.hasNext()){
Source sro = [(Source) sourcelter.nexti()
Iterator targetlter = rel.getTarget () .iterator():
while (targetIter.hasMNexti)){
Target tar = (Target)targetlter.next(]:
if (! (sre.getiourceldl) .equals(tar.getTargetId{1))14

Ibstractidjacency LL = new Abstractidjacency():
Li,.setId("AL" 4+ rel.getId()):
Ab,.getSource) .add(sre) 2
Li,.getTarget () .additar) ;

ui.getbuiModel ()

cadd (L&) ;

.getiuiRelationshiplribstractContainmentoribstractidjacency i)

Figure 4-6. Abstract Adjacency Rule

In the figure 4-6, we see the rule. The goal of this one is to create a relation of type
“AbstractAdjacency” for each couple of sister tasks executed into AlOs that will thus be next to
each other in the Final User Interface.

Expressing transformation rules in java is much more complex than in AToM? or ATL. To show
how these rules work, we will show here three of them, in ascending order of complexity.

39

First, let us describe a simple rule:

voi d abstract Contai nment(lterator tasklter){

/* For each abstract container, an abstract containnment relationship

* is created, with this abstract container as source, and, as

* targets, all the abtract individual conponent corresponding to the
* tasks that conpose the task corresponding to the abstract ontainer.
*/

whil e (tasklter.hasNext()){
11
Task t = (Task)tasklter.next();
String id = t.getld();
if (!(t.getTask().isEmty())){
/'l Tasks is composed of subtasks.
abstract Contai nnent (t. getTask().iterator());

}

Iterator subTaskslterator = t.getTask().iterator();
/1 W browse all the subtasks conposing the task t
whi | e (subTaskslterator.hasNext()){
Task subT = (Task)subTaskslterator.next();
Target tar = new Target();
if (subT.getTask().isEmpty())
/[l 1f the subtask has no subtasks,
/1 it is an Abstract Individual Conponent,
/1 so we give it "AIC " plus the task id as id.
tar.setTargetld("AIC " + subT.getld());
el se
/1 1f the subtask has subtasks,
/1 it is an Abstract Contai ner,
/1 so we give it "AC " plus the task id as id.
tar.setTargetld("AC " + subT.getld());
Abst ract Cont ai nment aCont = new Rul esHel pers(ui,
UXTG) . fi ndACont (ui . get Aui Model ().
get Aui Rel ati onshi pOr Abst ract Cont ai nnent O Abst ract Adj acency().
iterator(),"AC "+id);
/1 We search for an already existing abstract
/1l containnent relationship with the abstract
/'l container as source.
if (aCont!=null){
/1 1f there is already a relationship, we sinply add
/1l the target to it.
aCont . get Target (). add(tar);
}
el se {
/'l else, we create a new relationship with the
/'l abstract container as source, and the
/'l abstract individual conponent (or abstract
[l container) corresponding to the subtask
/las target.
Abst ract Cont ai nment AbsCont = new
Abst ract Cont ai nment () ;
Source src = new Source();
src.setSourceld("AC " + id);

40

AbsCont . get Sour ce() . add(src);
AbsCont . get Target (). add(tar);
AbsCont . setld("ACont " + src.getSourceld());

ui . get Aui Model ()

. get Aui Rel at i onshi pOr Abst ract Cont ai nment Or Abst r act Adj acency()
. add(AbsCont) ;

t hi s. Abstract Cont ai nnent =t r ue;

This rule creates abstract containment relationships for abstract containers containing abstract
individual components.

We first have to navigate all the tasks of the task model with an iterator to find ones that are
composed of subtasks. For each of them, we create an abstract containment relationship with
the abstract container corresponding to the task as source, and abstract containers of abstract
individual components corresponding to the subtasks as targets. We recursively call the
method on the subtasks that are also composed of subtasks.

The following code block:

i f (subT.getTask().isEmpty())
/1 1f the subtask has no subtasks,
/1 it is an Abstract Individual Conponent,
/1 so we give it "AIC " plus the task id as id.
tar.setTargetld("AIC " + subT.getld());
el se

/1 1f the subtask has subtasks,
/1 it is an Abstract Contai ner,
/1 so we give it "AC " plus the task id as id.
tar.setTargetld("AC " + subT.getld());
Abst ract Cont ai nment aCont = new Rul esHel pers(ui,
UXTQ) . fi ndACont (ui . get Aui Model ().

get Aui Rel ati onshi pOr Abst ract Cont ai nnent O Abst ract Adj acency().
iterator(),"AC "+id);

is used to give an id to the abstract objects. The id’s are always defined the same way:
¢ The abstract containers have “AC_" + the id of the task as id
¢ The abstract individual components have “AIC_" + the id of the task as id
This first rule itself is very simple but, as we can see, the implementation is already quite long.

For the comparison, the figure 4-7 shows the same rule implemented in AToM3:

41

Rule 1 (Order 1): executedInAc

s LHS -
s N\

L\ e T)

RHS

ﬁ'

<COPIED=

<CIOPIED:

o

=SPECIFIED=

=

Figure 1: executedInfe

Precondition:

node = self.getMatched(graphlD, self.1H3.nood=WithLakel(11)

return not { hasattr(node, "_vicitedForiC"))

Post action:

node = gelf.getMatched{graphID, se1f.LHS. node=WithLakel(11)

node . _visitedForAC = Trus=
pass

Specify name:String in abatrac Container #5

return self.getMatched(graphID, self.1H3.ood=WithLabel(1)).nane.getValus ()

Figure 4-7. The rule in AToM?

42

With more complex rules, things become worse.

NAC LHS RHS

S:abstractContainment
| |2:abstractContainer|—D{1:abstractlndividualComponent

S:abstractContainment

2:abstractContainer 1:abstractindividualComponent

isComyosedof 4isRafizdBy isComposedof
|1:abstractlndividualCompunent| LisReifiedBy isReifiedBy
) Gfacet . Gifacet
|sF{eiﬂedEly 3:graphicalContainer type=control type=contral
actionType=start |graph\callndividuaICDmpDnEnt| actionType=start
|graphicallndividuaICumponent| actionltem=operation |type=bution | |actionftem=operation

Figure 4-8. Generation of a control button

For each abstract individual component AIC composed of a control fact, and contained by an
abstract container AC reified by graphical container GC, the following is done:

e A Button graphical individual component is created.

¢ A graphical containment relationship is created with GC as source, and the button
as target.

* Aisreified by relationship is created with AIC as source and the Button as target.

In AToM3, this rule is still quite simple because it doesn’t involve many objects, and only one is
created. But the method in java is very long, the figure 4-9 shows it:

voi d controlButtonForControlFacet(){

UXTG console .append

("Creating Control Button for Control Facet... \n");

Iterator Rellter = ui .getAuiModel().

getAuiRelationshipOrAbstractContainmentOrAbstractA djacency()
.iterator();

Vector<IsReifiedBy> irbs = new Vector<IsReifiedBy>();

/I 1. We browse all the relations to find "abstract
/I containment" relations
whi | e (Rellter.hasNext()){

Object rel = Rellter.next();
i f (rel.getClass().equals
(newAbstractContainment().getClass())}{

AbstractContainment contains =
(AbstractContainment)rel;
Source src = contains.getSource().get(0);
/I "AbstractContainment"” relationships
/I always have only one source.
Iterator maplter =
ui .getMappingModel().

43

getinterModelRelationshipOrManipulatesOrlsExecuted In().
iterator();
/I 2.2 We search all the "is reified by"
/I relations with src as source
whi | e (maplter.hasNext()){

Object map = maplter.next();
i f ((map.getClass()).equals(new
IsReifiedBy().getClass()))}{

IsReifiedBy IR = (IsReifiedBy) map;

Source IRSrc = IR.getSource().get(0);
Target IRTar = IR.getTarget().get(0);
i f (IRSrc.getSourceld().equals(src.getSourceld()){
/I 2.4 We search a Graphical Container that has the
/I same id as the target.
String id = IRTar.getTargetld();
/I 2.5 for that,we browse all the graphical
/I containers
Iterator ciolter =

ui .getCuiModel().getCioOrFinalComponentOrAuditoryCio().
iterator();

GraphicalContainerType gc =
new RulesHelpers(ui, UXTG
rulesTree).findGC(ciolter, id);

i f (gc!= null){
/I We have a GraphicalContainer
String ciold = id;

/I Ok, Src is reified by a graphical container
/I Now we browse all the targets, and if one is
/I composed of an input facet (create, string),
/I then we execute the rule.
Iterator tarlter = contains.getTarget().iterat or();
whi | e (tarlter.hasNext()){
Target tar = (Target)tarlter.next();
/[Target tar = ((Target)(tarlter.next()));
String tarld = ((Target)tar).getTargetld();

/I Now we browse all the AlO's to find a AIC

/I that is composed of an i nput facet (create)
/I and that has the ID of t arget.
AbstractContainer ac = new RulesHelpers(ui ,
UXTG rulesTree).
findAC(ui .getAuiModel().getAioOrAbstractContainer().
iterator(), tarld);
AbstractindividualComponent aic = nul | ;
i f (ac== nul |){
aic = new RulesHelpers(ui, UXTG rulesTree).

findAIC(ui .getAuiModel().getAioOrAbstractContainer().
iterator(), tarld);
if (aic'= null)
controlButtonForControlFacetHelper
(src, ciold, aic, irbs);

} } } } } } } } }

44

Iterator irblter = irbs.iterator();
whi | e (irblter.hasNext()){
IsReifiedBy IRB = (IsReifiedBy)irblter.next();
ui .getMappingModel().

getinterModelRelationshipOrManipulatesOrlsExecuted In().add(IRB);
}

}

voi d controlButtonForControlFacetHelper

(Source src, String Ciold, AbstractindividualCompo nent aic,

Vector<IsReifiedBy> irbs){

/I We browse all the facets of the AIC to find an i nput
/I facet (create, string)
Iterator Falter = aic.getFacetOrIinputOrOutput().i terator();
/ISystem.out.printin("3.3. BOUTON !");
System. out .printin("AIC ;" + aic.getName());

whi | e (Falter.hasNext(){
Object FA = Falter.next();
System. out .printin("type : " + FA.getClass());
i f (FA.getClass().equals(new Control().getClass()))X{
/I We found an output
Control control = (Control)FA;

i f ((control.getActionType().equals("start")

/I 1t is the type of input we were
/l'looking for

ButtonType button = new ButtonType();
button.setld("Button_" +control.getld());
IsReifiedBy irb = new IsReifiedBy();
Source irbSource = new Source();
irbSource.setSourceld(aic.getld());

Target irbTarget = new Target();

irbTarget.setTargetld(button.getld());
irb.getSource().add(irbSource);
irb.getTarget().add(irbTarget);

/I We cannot directly add it in the
/I mapping model beca use an iterator is
/I currently browsing it, so it create a
/I ConcurrentMOdifica tionException.
/' So we had it in a vector, that will
[[further be browsed to add all irbs
/I into the mapping model.
irbs.add(irb);

GraphicalContainmentType butGCT = new
GraphicalContainmen tType();
Source butSrc = new Source();

butSrc.setSourceld(Ciold);
butGCT.getSource().add(butSrc);
Target outTar = new Target();
outTar.setTargetld(button.getld());
butGCT.getTarget().add(outTar);

ui .getCuiModel().getCioOrFinalComponentOrAuditoryCio().add(butto

45

n);
ui .getCuiModel().

getCuiRelationshipOrCuiDialogControlOrGraphical Adj acency().add(b
utGCT);

Figure 4-9. A complex transformation rule in java

Obviously, maintaining such a code is a very difficult task. So, the maintainability and flexibility
of our custom java transformation engine is very poor compared to the one of AToM3. Because
of this complexity, implementing the whole rules set we decided to has been very long, around
three man-months. That is more than two times more than AToM?3 requires for the same task.

46

Chapter Five: ATL

First, let us remind that we didn’t use ATL, so the description here is only intended to show
how ATL executes the transformation rules to add to it the comparison.

ATL come under the form of an Eclipse (www.eclipse.org) plug-in. It is in fact composed of

three things:
¢ The ATLAS transformation language
¢ The ATL execution engine

e ATL development tools (ADT)

ATL is a transformation tool for model driven engineering, implemented as an Eclipse plug-in
and using its own transformation language. ATL follows a hybrid approach: transformation
rules can be fully declarative, fully imperative or both declarative and imperative.

MOF

v v.
- - ..
]
15 instancs of is .'"?Sﬂ?ncﬁ' of is instance of

‘ Transformuation language ‘

i ‘ Meta—Mode]
ry

SOLFCE

Meta— Model

— N o iyt
15 Instance of Isinstance of Iy instaricy uf
] N]

i]]
] i !
' i
[

I is submittad fn N — anarataz
Model_,,, 4“ Transformaiion rules AR, *?"JOdGZta%et

Figure 5-1 ATL execution engine

Each model conforms to a meta-model. The source model, transformation model and target
model are all models conforming to their respective meta-models, which conform to the MOF
recommendations.

The meta-model of the transformation is the ATLAS transformation language. It is both
declarative, which allows simple and quite intuitive specification of transformation patterns,
and imperative to help design complex rules which couldn’t be with only declarative
constructs.

47

The declarative rules are called “matched rules”. These are executed each time their source
pattern is matched with a part of the source model. When the rule is executed, its target
pattern is created in the target model.

Imperative rules are “called rules”. They are used in ATL to provide some mechanisms needed
to create more complex rules.

Instead of a source pattern, like the matched rules have, imperative rules have parameters
(and can be explicitly called). But called rules can have a target (like matched rules) instead of
imperative code.

And declarative rules can also have imperative blocks, which can serve and entry or exit point.

Called rules allow explicit control of the execution, which declarative rules don’t (see the
execution engine section).

ATL supports different model handlers that allow it to use different formats as sources and
targets, such as XMI, XML documents, binary files and textual representations5 of models.

The ADT (ATL Development Tools) bring a certain number of facilities for the designer [ATL
Desc.], such as syntax highlighting, error reporting and a debugger (Source-level debugging,
Stepping through elementary operations and Breakpoints support). It also benefits from the
use of the Eclipse IDE, will all the facilities this implies.

We didn’t implement our rules catalog in ATL, but ATL is one of the currently most used
transformation engines, so we add to the comparison.

> ATL can serialize models to text format (using the TCS model handler)
48

Chapter Six. Case studies

In this section, we will show how the transformation rules we implemented are applied on
models. We will begin by two very simple examples and describe in detail the execution of the
transformations, as well as specific issues for each tool.

Each example will be executed using AToM3 and our custom java transformation engine (we
didn’t implement the transformation rules in ATL, so we cannot show the ATL execution).

For each example, we first describe it in natural and graphical language, then show the source
model used with each tool and finally, the result of the execution of the transformation rules.

The chapter will be structured as follows:

* First, we will describe the rules we implemented in AToM3® and our custom
transformation engine, and why we implemented these ones.

¢ Then we will illustrate some rules by two simple examples.
¢ Finally, we will apply our rule set to a bigger example: the virtual polling system.

But first, we describe the transformation rules we implemented.

6.1 Implemented rules

The set of rules we implemented is the same for AToM?® and our java transformation engine. It
is in fact originally taken out from [Limbourg], but the example has been a little developped in
[Stanciulescu], so we based ourselves on both to create our rule set.

The whole rules catalog is described in Appendix B, and rules are explained in the examples
below.

49

6.2 Use case: Currency convertoro®

This use case is intended to show how the currency convertor that can be found at the
site http://www.xe.com/ucc/ could have been implemented using the MDA approach. The

way this currency convertor works is very simple: the user enters an amount in a text field,
chooses the source and target currency and ask the conversion.

Here is the task model designed with the tool idealXML:

The task model is graphically described using ldealXML tool. The figure 6-1 depicts a CTT
representation of the task model of the system. The root task consists of converting
currencies. The user has to provide the amount he wants to convert, as well the current and
the wanted currencies. Then the user launch the conversion and finally, the system displays
the result.

B IdealAt Interface Development Environment fon Applications specitied i usirl

| task model | abstract UI model mapping model concreke LT model final UT model
Relationships
E e M 3

T* [1]

o) -

Conwert currency -

b ” =R : =

Insert data Lauch conwversion Show result

P ——

Inzert amount zlect FROM curmency Select TO curency

[

Figure 6-1. Currency convertor task model

The objective here is to have a simple example to show how the transformation rules work. So,
we won’t model the domain and mapping models.

® The currency convertor can be found at the site : http://www.xe.com/ucc/
50

Here is the UsiXML specification generated by idealXML.:

———

<?xml version="1.0" encoding="UTF-8"?>
<uiModel>
<taskModel id="tm0" name="taskmodel">
<task id="Root" name="Convert currency" type="abs tract">
<task id="task1" name="Insert data"
type="interaction">
<task id="task2" name="Insert amount"
type="interaction" />
<task id="task3" name="Select FROM currency"
type="interaction" />
; <task id="task4" name="Select TO currency" !
type="interaction" />
</task>
<task id="task6" name="Launch conversion"
type="interaction" />
<task id="task7" name="Show converted currency"
type="application" />
</task>
<enabling id="e1">
<source sourceld="task1" />
<target targetld="task6" />
</enabling>
<enabling id="e2">
<source sourceld="task6" />
<target targetld="task7" />
</enabling>
<orderindependence id="0OI1">
<source sourceld="task2" />
<target targetld="task3" />
</orderindependence>
! <orderindependence id="0I12"> !
' <source sourceld="task3" /> '
<target targetld="task4" />
</orderindependence>
</taskModel>
1 </uiModel>

Step 2: From Task a to AUI Model

The second transformation step involves a transformation system that contains rules applied
in order to realize the transition from the task to the abstract model. This step is subdivided
into five sub-steps according to [Limb04b]. We give here the set of rules that will be executed
on this example (there are only a few, because here we only modeled the task model).

Sub-step 2.1: Rules for the identification of AUI structure

Rules 1 and 2 create abstract containers for tasks that have task children and abstract
individual components for leaf tasks. Tasks 4 and 5 reconstruct the containment relationships
for these AC’s and AIC’s.

The result of the application of these rules over the task model structure consists in a
hierarchical decomposition of the AUl into abstract containers and abstract individual
components.

51

Sub-step 2.2: Rules for the selection of AlICs

These rules aren’t executed here because there is no domain model. The rules 6 to 10 apply on
patterns with attributes or methods. For an example of execution of these rules, see the
“virtual polling system” example.

Sub-step 2.3: Rules for spatio-temporal arrangement of AlOs

For each couple of sister tasks executed into AlOs, we generate an abstractAdjacency
relationship between these AlOs. As AlOs can be of two types (i.e., ACs or AlICs), there are four
possible rules to be applied (Rule 11-14).

Sub-step 2.4: Rules for the definition of abstract dialog control

By analogy with the previous sub-step, for each couple of sister tasks executed into AlOs, we
generate an abstractDialogControl relationship between these AlOs that have the same
semantics as the temporal relationship defined between the tasks. As AlOs can be of two types
(i.e., ACs or AICs), there are four possible combination that are considered by Rules 15-18.

Sub-step 2.5: Rules for the derivation of the AUl to domain mappings

This corresponds to rules 19 and 20. For the same reason as for sub-step 2.2, they aren’t
executed.

Step 3: From AUI Model to CUI Model

The third step implies a transformational system that is composed of necessary rules for
realizing the transition from AUl to CUls. Only GUI is taken into account (no vocal or
multimodal Ul), so the modality used to interact with the system is entirely graphical
(monomodal Ul).

Sub-step 3.1: Reification of AC into CC

Rule 21 creates a GC which will be the main box of the Ul associated to the AC found
one level under the root AC in the abstract hierarchy. This main box contains the main window
of the Ul.

Rule 22 creates a GC of type box for each AC contained into an AC that was reified into
a main box.

Sub-step 3.2: Selection of CICs

The current sub-step generates different GICs depending on the type of facets of the

corresponding AlCs:

. Generation of an outputText and an inputText that enable to insert the name and the
zipCode: Rule 23 is applied each time an AIC with an input facet of type create element
is encountered.

. Generation of a GC of type box that will embed a group of radio buttons and a GIC of
type outputText representing the label associated to this group when an input facet of
type select element is encountered: Rule 24; The radio buttons associated to this group
are created by applying Rule 25. The rules are used in order to select the gender of the
user, the ageCategory and also his answers to the questions

52

. Generation of a GIC of type outputText each time an output facet of type create is
encountered. For this purpose Rule 26 has to be applied in order to ensure the display of
the titles of the questions.

. Generation a button that will ensure the send questionnaire task each time when a
control facet of type start operation is encountered: rule 27.

Sub-step 3.3: Arrangement of CICs

For each couple of adjacent AIOs that are reified into graphicalClOs, we define a
graphicalAdjencency relationship between these graphicalClOs. As AlOs can be of two types
(i.e., ACs or AICs), there are four possible combination to take into account. For each
combination a specific rule is considered: Rules 28-31.

Sub-step 3.4: Navigation definition

The rules that ensure the navigation definition are not applied in the current case study as all
the sub-tasks of the virtual polling system are presented combined into the same window.
Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AlOs with a dialog control relationship, a transposition of this relationship
to the graphicalCIOs that reify them is realized. As AlOs are of two types (i.e., ACs and AICs),
four rules describing the four possible combinations are considered: Rules 32-35.

Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 36 and 37 are used to transpose the updates and triggers relationships from the abstract
to the concrete level. These relationships map GICs with attributes and methods from the
Domain Model.

53

6.2.1 Currency convertor in AToM3

The task model created in AToM3 to represent the currency convertor gives the

following graph:

T oM LS Osing mHodel”H

File Menu Model Menu Transformation Menu Layout Menu Export Menu

uitdodel_META
i ﬂ ﬂ Mew abslractlnteracliunﬂbiect‘ Mew task‘ Mew abstrachontainer‘ Mew abstractlndividua\CompDnenl| Mew facet ‘ Mew imput| Mew outpul
[& ,- .-ﬂr-" MNew nh|ecl| MNew dnmalnEIass| Mew attnbute| New methnd| Mew attnhule\nstan:e| Mew anumeraled\f'alue| Mew cio ‘ MNew graph\caIE|n| MNew graphicalContainer
“@# Mew button| News ladiDButtDn| My box| New wmdow| i
< | 2
-
Abstract

Convert Curregicy

Enter data sk convertion Show resul

nter amoun Enter FROM currency nter TO currency

=]
< |]

|Ed|tmg transf. Monamed' (not modified) in file Monamed

Editing Monarmed' (rodified)

Figure 6-2. Currency convertor task model in AToM?

The graph in AToM3 is easy to understand because, here, the relations representations are the
same as the UsiXML standard and so, the same as in idealXML (as said before, AToM? allows
giving any graphical representation to the objects).

We will now apply the rules set described in the point 6.1 (rule set description):

54

File Menu Model Menu TramsfFormation Menu Layout Menu Export Menu
| uitdodel META,
e Ed\ti Help| Mew abslractlnteracliunﬂbiecti Mew taskg Mew abstrachontainer; Mew abstractlndividua\CompDnenl! Mew faceli Mew imputi Mew outpul
L]
@ ,- I r‘ Mew object [Mew dnmalnEIassI Mew attnbutel New methndl Mew attnhule\nstan:e] Mew anumeraled\f'aluel Mew EIDI MNew graph\calEml MNew graph\calEnntamer!
&= Mew button | New ladiDButtDn! RED box! New wmdowl
< | |
Abstract
JUnE! LRI L
My |[FaskT ctuiodel GE_ewec. py =
Transformations Edit
STEPLYSTER v |
LetEntitiestdove [
Animate r
Enter data i+ Sequential Random Show resul
Execution " Sequential Manual
" Parallel
(5] Cancel
. paaaa—————m_
nter amoun Enter FROM curtency !nterTO currency
4] | It
Editing 'Monamed' imadified) |taskTOAuwModeliGGimdl.py'

Figure 6-3. Editing grammar execution

As described in chapter 3, we have already generated python code for our transformation
rules; AToM3 thus generated one file for each rules set. Now we have to add this file to the list
of rules sets AToM?® will apply on our model, as we see on figure 6-3. AToM3 also allows
applying the rules step by step to see the effects of each one. So we will show here the
screenshots of the model after each rule execution.

ATOMSSIsIng N oael” MET R

File Menu Model Menu Transformation Menu Layout Menu Export Menu

| uiModel META
— Edit| Helo| Mew abstractinteractionDbiect | New task | New absiraciContainer | New absticiindvidualComponent | Mew facet | New input | New outpus
R New obisct | Mew domainClass | New atiibute| New method | New atrbutelnstance | Mew snumeratediialue | New cia| Mew graphicalCio | Mew graphicalCartainer | |
“@# New buttonl Hew ladiDButtDnI Hew boxl New wmdowl
.| | I
=
Abstract

onvert Currency

Corert Curregicy

‘nter data

Enter data

sk convertion Show resul

1

nter amoLr Enter FROM currency nter TO currency

N | =

Editing ‘Monamed' (rmodified) |Edltmg transf. Monamed' (hot modified) in file MNonamed®

Figure 6-4. Currency convertor after execution of rule 1

55

After the execution of the first rule (Rule 1: executedINAC, figure 9.1), AToM? has created an
abstract container for each task that has sub-tasks.

Then, as we see on the figure 6-5, AToM? executes the second rule (Rule 2: executedInAlC,

figure 9.2) and creates an abstract individual component for each task that has no sub-task.

uikdodel _META
Edit| Hep Newahsnacnmeracmnun|ect| MNew taskl MNew ahstractEnntalnarJ New ahstractlndlwdual[lnmpnnemtI New fa:etJ Mew |npul| Mew nulputl Me

New object| New domainClass | New attibute| New method | New atiibutelnstance | New enumeratedvialue | New cio| Mew graphicaiCio| New giaphicaiContaine: | New .

New button | Hew radicButton | New box | New window |

«| | |

Last executed mwle:

stes)

Graph-Grammar Exec oo Controts

Evecuting Graph-Grammar: taskToAiModel_GE_eres
enecutedindic_GG_ue forder 2]

Abstract onvert Currency

Contiruous | Close Convert Currel

Enter data

nter armou

nter FROM cufre nter TO currgne

Figure 6-5. Currency convertor after execution of rule 2

56

uiblodel WETA
Edit| Help Newabslracllnleract\onﬂbiect] MNew task] MNew abstractContainErJ Mew abstractlndiwduaIComponemtI Mew facet] Mew inpull Mew oulput] Me

Mew Dbiect1 Mew doma\nC\assi MNew allributel Mew method] MNew allributelnstancel Mew enumeraledVaIueI MNew cioj Mew glaphicaIEioi Mew glanhica\tomla\nel] Mew

Mew huttnnj Hew radinButlnn] Mew hnx] Wew wmdﬂw]

4 | _.'_l

-

Erecuting Graph-Grammar. taskToduiModel GG_exec
Last executed uls: linkACsAndAICs_ GG_rule (order: 4] Abstract anvert Currency

Step Continuous i Cloze g k

Enter data

Ll | i
|Ed|tmg Nonarned" (rmodified) |taskTOAu|ModeliGGimdl.py'

Figure 6-6. Currency convertor after execution of rule 3 and 4

Then, as we see on the figure 6-6, AToM?® executes the two rules intended to creates
bidirectional links between abtract objects (abstract containers and abstract individual
components) when one contains the other (rules 3 and 4, figure 9-3 and 9-4). We already
become to see one of the problems with AToM3: even small graphs quickly become very hard
to read because of the arrows and objects crossing each other, and because the objects do not
move to make the graph more readable during the execution of the transformations.

The problem becomes even more obvious on the figure 6-7. Here, for each pair of tasks linked
by a dialog control relation, the same relation has been created between the abstract
containers or abstract individual component that these tasks are executed in (figure 9-15 to 9-
18). It really becomes hard to understand the graph, and the only way of knowing what a
relation represents is now clicking on it to see its properties.

One the figure 6-8, abstract adjacency relations have been created between abstract
containers of individual components corresponds to tasks linked by an « enabling » relation
(rules 14 to 17, figure 9.14 t0 9.17).

For this simple example, we didn’t implement the domain model, so there is no attribute or
methods, and the transformation engine won’t thus create any facets for the abstract
individual components. This is done in the next example (virtual polling system). We didn’t set

the user actions of the tasks, so AToM?® won’t create facets for the abstract individual
57

components either. One the figure 6-9, we see that a box named « main box » has been
created and reify the abstract container of the root task, « convert currency ». A window has
also been created and is contained by the mainbox (rule 20, figure 9-20).

uitdodel _META
Edit| Help| New abstlacllnteractianﬂb\ecl| Mew task| Mew abstractCantainer‘ Mew abstract\ndwiduaICDmDonent| Mew facet| Mew \nput| Mew output| Me

Mew nh\ecl| New dnmaml:\ass| New atlribut5| New melhnd| Mew atmhulelnstance| Mew enumeraled‘\falue‘ MNew cin| Mew graph\ca\Eiﬂ| Mew graphica\[nnlamer| New ¢

Mew butlon| MNew radloButlon| Mew box| Mew window

| | i

-

Tamiman execution cono)

Erecuting Graph-Grammar: taskToduiModel GG_exec
Last executed rule: DialogControl&CAIC_GG_rule [order: 7] Lonvert Currency

Contiruous | Close:

Enter data

Enter datg,

4] | i

[Editing TMonamed" fmadified) [taskToAniMadel GG_mdl py’

Figure 6-7. Currency convertor after execution of rule 6 and 7

Executing Graph-Grammar: taskTosubodel GG_exec
Last executed wle: AbstractddiacencysCaC_GG_rule [order: 17) Abstract

} Lonvert Currency
Continuous | Close \

Figure 6-8. Currency convertor after execution of rule 11, 12, 13 and 14 (14, 15, 16 and 17 in AToM3)

58

Uikdodel_META

MNews buttunj New radiDButlon] MNews box] New wmdowl
4 | i3

Erecuting Graph-Grammar. taskToduiModel GG_exec

Last executed ule: mainBoxCreation GG nule [order. 20)

Step Ennlinunus! Cloze

orwvert Currency

A

\
Y

mainBox

]

P
R\

Enter datg

Enter data

Ask convertion

nter amoul

Figure 6-9. Currency convertor after execution of rule 21 (20 in AToM3)

Abstract

orvert Currency

NN

Box

Enter data

Ask conver‘[io

Executing Graph-Grammar. Execution finished!

Last executed rule:

Cantinuous ‘ Close

Figure 6-10. Currency convertor after execution of rule 22 (21 in AToM?3)

Finally, a box is created for each abstract container contained by another abstract container
(figure 6-10).

59

Edit| Help Newabslra:llnleracl\unﬂbiecl‘ Hew laskl Mew abslrachDnlainErJ MHew abstractlndiwduaICUmpDnemlI MHew fa:el] Mew inpull Mew Uulput] Me

Mew Dbiecti Mew doma\nC\assi Mew allributel Mew methodl Mew allributelnstancel Mew enumeraledVaIue] Mew cioj Mew glaphicaICioj Mew glanhica\Comla\nelI Mew

- — -

|4

6.2.2 Custom java transformation engine

Our custom java transformation engine takes directly the UsiXML files as input. This file is
described above in the example description.

We launch the application and open the file as « source file ». On the next screen, we see the
source file has been opened and is showed in the first text area.

At the right of the figure 6-11, we see the tree of all transformation rules implemented in the

program. First, we only select the rules to create the abstract objects, namely « Abstract
Interaction Level » in the application.

Menu Source File Target File

|~| Select here Rules To Execute :

Transformation Rules

i [Exeute all rules

Abstract Interaction Level

- [v] Abstract Containers and Abstra

bistract Conbainment

put Facets

elect Facets and Selection Yalu)

utput Facets

ontrol Facets

bstract Adjacency Relationship

bstract Dialog Contral Relation:

pdates Relationship For AIC's

iggers Relationship For AIC's

Concrere Inkeraction Level

Main box and window

oxes contained by the main ba;

Input text and output text for cf

Box For radio buttons

Radio buttons for selection valug

Qukput kext for output Facet

- [w] Cortrol button for control Facet |
Graphical adjcacency

f

=7xml version="1.0" encoding="UTF-8"7>
=uitdodel=
staskModel id="trm0" name="taskmodel"=
=task id="Root’ name="Convert currency” type="abstract'=
“taskid="task1" name="Insert data" type="interaction"=
<task id="task2" name="Insert amount' tyoe="interaction" i=
=fask id="task3" name="Select FROM currency" type="interaction" 1=
“task id="task4" name="Select TO currency” type="interaction” >

“itasks
=taskid="taski" name="Launch conversion" type="interaction" 1=
“taskid="task?" name="Show converted currency’ type="application” i= i
=ftagk=
=gnabling id="e1"=
“s0Urce sourceld="task1" i=
=target targetld="taskg" 1=

=fenahling=
<ghabling id="e2"=
=source sourceld="taskg" /=

V Execute Transformations Rules v | | Switch with console

4

) m |]

Figure 6-11. Source model and transformation rules selection in custom java transformation engine

We then click on the button « Execute Transformations Rules » located between the two text
areas, and the transformation engines applies all the selected rules (of course, the one that
can be applied) on the source model, then put the result in the bottom text area.

This result is shown in figure 6-12. We see in the console that the transformation rules have
been executed properly, in 15ms time.

60

Menu SourceFile Target File

“itask=
=enabling id="g1"=
=g0Urce sourceld="task1" i=
<target targetid="taske" j=
=fenahling=
=enabling id="e2"=
<s0Urce soUrceld="taske" /=
=target targetld="task?" 1=
<ienabling=
=orderindependence id="01"=
=source sourceld="tagkz" /=
<target targetid="task3" j=
<inrderindependences
=orderindependence id="0[2">
<s0Urce soUrceld="taska" i=
=target targetid="task4" 1=
=forderindependence=
<faskmodel=
=fuiodel=

| »

Select here Rules To Execute :
Transformation Rules

© [Execute all rules

Abstract Inkeraction Level

- [v] Abstract Containers and Abstra
Abstract Containment

Input Facets

Select Farets and Selection Yaly
Qutput Facets

Cantrol Facets

bstract Adjacency Relationship
bstract Dialog Control Relation:
pdates Relationship For AIC's
Triggers Relstionship For AIC's
Conecrete Inkeraction Level

; Main boz and window

oxes contained by the main ba;
put text and output kext for of
ox For radio buttons

V Ezecute Transformations Rules ¥ | | Switch with console

adio buttons For selection valug
ukpit text For autput Facet

=JauiDialogControl=
<iauiModel=
=cuibodel=
=hox name="main_hox' id="box_00"/=
=window id="window_00"=
=hoxid="Box AC_taski"f=
=graphicalContainment=
<s0Urce sourceld="box_00"=
=target targetid="window_ 00"=
=jgraphicalContainment=
=<graphicalContainmments
=source sourceld="hox_00"=
=target targetid="Bom_AC_taskl"/=
<jgraphicalContainments
=fcuibiodel=
=fuitdodel=

ontrol button For control facet |
Graphical adjcacency
- [v] Comerete dialog control

Rules execyted in : 15ms
ou can novw save the farget model in a file,
using the menu "Target File" --= "Save"

]

Ed il

<l m ! 3]

6-12. Custom java transformation engine after rules execution

The file resulting from the execution is shown in figure 6-13:

<?xml version="1.0" encoding="UTF-8"?>
<uiModel>
<taskModel id="tm0" nhame="taskmodel">
<task id="Root" name="Convert currency" typ
<task id="task1" name="Insert data" typ
<task id="task2" name="Insert amoun
type="interaction"/>
<task id="task3" name="Select FROM
type="interaction"/>
<task id="task4" name="Select TO cu
type="interaction"/>
</task>
<task id="task6" name="Launch conversio
type="interaction"/>
<task id="task7" name="Show converted c
type="application"/>
</task>
<enabling>
<source sourceld="AC_task1"/>
<target targetld="AIC_task6"/>
</enabling>
<enabling>
<source sourceld="AIC_task6"/>
<target targetld="AIC_task7"/>
</enabling>
<orderindependence id="0OI1">
<source sourceld="AIC_task2"/>
<target targetld="AIC_task3"/>

e="abstract">
e="interaction">
t

currency"

rrency"

n

urrency"

61

</orderindependence>
<orderindependence id="0I12">
<source sourceld="AIC_task3"/>
<target targetld="AIC_task4"/>
</orderindependence>
</taskModel>
<domainModel/>
<mappingModel>
<isReifiedBy>
<source sourceld="AC_Root"/>
<target targetld="box_00"/>
</isReifiedBy>
<isReifiedBy>
<source sourceld="AC_task1"/>
<target targetld="Box_AC_task1"/>
</isReifiedBy>
<isReifiedBy>
<source sourceld="AIC_task6"/>
<target targetld="Box_AIC_task6"/>
</isReifiedBy>
<isReifiedBy>
<source sourceld="AIC_task7"/>
<target targetld="Box_AIC_task7"/>
</isReifiedBy>
</mappingModel>
<auiModel>
<abstractContainer name="Convert currency"
<abstractContainer name="Insert data" i
<abstractindividualComponent name="
id="AIC_task2"/>
<abstractindividualComponent name="
currency" id="AIC_task3"/>
<abstractindividualComponent name="
id="AIC_task4"/>
</abstractContainer>
<abstractindividualComponent name="Laun
id="AIC_task6"/>
<abstractindividualComponent name="Show
currency" id="AIC_task7"/>
</abstractContainer>
<abstractContainment id="ACont_AC_task1">
<source sourceld="AC_task1"/>
<target targetld="AIC_task2"/>
<target targetld="AIC_task3"/>
<target targetld="AIC_task4"/>
</abstractContainment>
<abstractContainment id="ACont_AC_Root">
<source sourceld="AC_Root"/>
<target targetld="AC_task1"/>
<target targetld="AIC_task6"/>
<target targetld="AIC_task7"/>
</abstractContainment>
<abstractAdjacency id="AA_AC_taskl1">
<source sourceld="AC_task1"/>
<target targetld="AIC_task6"/>
</abstractAdjacency>
<abstractAdjacency id="AA_AIC_task6">
<source sourceld="AIC_task6"/>
<target targetld="AIC_task7"/>
</abstractAdjacency>

id="AC_Root">
d="AC taskl">
Insert amount”
Select FROM

Select TO currency

ch conversion"

converted

62

<auiDialogControl control="EnablingType" id
<source sourceld="AC_task1"/>
<target targetld="AIC_task6"/>

</auiDialogControl>

<auiDialogControl control="EnablingType" id
<source sourceld="AIC_task6"/>
<target targetld="AIC_task7"/>

</auiDialogControl>

<auiDialogControl control="OrderIndependenc

id="AuiDCOI1">
<source sourceld="AIC_task2"/>
<target targetld="AIC_task3"/>

</auiDialogControl>

<auiDialogControl control="OrderIndependenc

id="AuiDCOI2">
<source sourceld="AIC_task3"/>
<target targetld="AIC_task4"/>

</auiDialogControl>
</auiModel>
<cuiModel>

<box name="main_box" id="box_00"/>

<window id="window_00"/>
<box id="Box_AC_task1"/>
<box id="Box_AIC_task6"/>
<box id="Box_AIC_task7"/>
<graphicalContainment>
<source sourceld="box_00"/>
<target targetld="window_00"/>
</graphicalContainment>
<graphicalContainment>

<source sourceld="box_00"/>

<target targetld="Box_AC_task1"/>
</graphicalContainment>
<graphicalContainment>

<source sourceld="box_00"/>

<target targetld="Box_AIC_task6"/>
</graphicalContainment>
<graphicalContainment>

<source sourceld="box_00"/>

<target targetld="Box_AIC_task7"/>
</graphicalContainment>
<graphicalAdjacency>

<source sourceld="Box_AC_taskl"/>

<target targetld="Box_AIC_task6"/>
</graphicalAdjacency>
<graphicalAdjacency>

<source sourceld="Box_AIC_task6"/>

<target targetld="Box_AIC_task7"/>
</graphicalAdjacency>
<cuiDialogControl>

<symbol>EnablingType</symbol>

<source sourceld="Box_AC taskl"/>

<target targetld="Box_AIC_task6"/>
</cuiDialogControl>

<cuiDialogControl>
<symbol>EnablingType</symbol>
<source sourceld="Box_AIC_task6"/>
<target targetld="Box_AIC_task7"/>

</cuiDialogControl>

</cuiModel>

="AuiDCnull">

="AuiDCnull">

eType"

eType"

63

| </uiModel>

Figure 6-14 : execution result on the currency convertor

As we can see, the UsiXML syntax is respected, and the file is automatically indented. The
transformation engine created a mapping model, an abtract user interface model, and a
concrete user interface model. Because there is no domain model in our example, no facet has
been created for the abstract individual objects, as said before for AToM3.

6.3 Use case: Polling System

The virtual polling system based is based on a web interface. Here is the complete description
of the example and the transformation rules needed [Limbourg, Stanciulescu]

This example is more complete than the previous one because here, task, domain and
mapping models have been implemented, which leads to the execution of more
transformation rules.

Here is the detailed description of the polling system [Limbourg, Stanciulescul:

This case study applies our transformational approach for developing a Ul on an
opinion polling system aiming at collecting opinions of users regarding a certain subject. The
scenario of this case study (Figure 5-1) is the following: from the Task and Domain Models, an
AUl is produced, from which GUIs is derived.

Task and . Abstract User .| Concrete User Interface .| Final User Interface
Domain Interface {graphical) {graphical)

Figure 6-15. Polling system transformation approach

Step 1: The Task and Domain Models

The task model, the domain model and the mappings between them are graphically described
using IdealXML tool. The upper part of Figure 5-2 depicts a CTT representation of the task
model envisioned for the future system. The root task consists of participating to an opinion
poll. The user has to provide her personal data like name, zip code, gender, age category.
Further, the user iteratively answers some questions. Answering a question is composed of a
system task showing the title of the question and of an interactive task consisting in selecting
one answer among several proposed ones. Once the questions are answered, the
questionnaire is sent back to its initiator. The bottom part of Figure 5-2 illustrates the domain
model of our Ul. The domain model has the appearance of a class diagram and can be
described as follow: a participant participates to a questionnaire, a questionnaire is made of
several questions and a question is attached to a series of answers.

64

dealXML: Interface I]ewl.'npmmll Environment for ﬁppl ications ‘.p(-cmud in usiXML r_“]mc‘]

[
ik

Parlicipate to poll
¥ : s ™

Irsert persanal data Arewer question® Send questionnaine
o

Insem pame]
7 Insert gip code Selectgender Selech age category Shcq\u‘lueshon Sqeetavyn{el

0l T T B i L % Tl

< |dealXML: Interface Development Environment for ﬁpm ications spﬂ:‘h?d i..

150

'sbs,uﬁf l 5 154 e | ..__

fi ” T Y oy
s i 3
#mlcl ion
frtspge ﬂ | s S e
i e £ vabe Sri l: private String ftle; private String itle;
private ¥t zipgode] | Privete Sinng e, frate Siring e, Tl Siring
private Strind pend” 7 = » o < private int percent]
private String aged™ Pt void sendty puble irt cilcuats|
v
d »

Figure 6-16. Mappings between the Task Model and the Domain Model

The dashed arrows between the two models in Fig. 5-2 depict the mappings relationships
between the elements of the Task and the Domain Model. The sub-tasks of Insert personal
data task is mapped onto the correspondent attributes of Participation class (name, zipCode,
gender and ageCategory). Show question is mapped onto the attribute title of class Question.
The task Select answer is mapped onto the attribute title of the class Answer. Finally, the task
Send questionnaire is mapped onto the method sendQuestionnaire of the class
Questionnaire. Figure 5-3 illustrates the graphical editor of the Mapping Model in IdealXML
tool. Each leaf tasks is mapped on the corresponding attribute or method of the classes
contained in the Domain Model.

65

domain model task mods!

abstract U model

mapping model

concrete UL model

final UT model

rtask

rabstract Ul model

= B Participation

B ageCategory
= B questionnaire

B name = ﬁlnsert personal data [}\
B zipcode ﬁlnsert narme
B gender ﬁlnsert zip cade

|2 3 Participate to pol

&-‘f Select gender
&-‘f Select age cateqgory

n abstract U

B e Bl (3 Answer question
B sendQuestionnaire || B Show question
= B Guestion B select answer
B title ﬁ Send questionnaire
= B Answer [+
mapping domain task abstract

narme (delal)
zipCode (idc0at)
gender (idc0a2)
ageCategory (de0ad)

Insert name (taska)
Insertzip code (tasks)
Select gender (taskf)
Select age catenary (task?)
title (idc1al) Show nuestion (tasks)

‘mle (ide2al) Select answer (taskd)
|sendQuestionnaire (ide1m0y [Send guestionnaire (fask3)

ranipulates (dmo)
manipulates dmi)
manipulates (idm2)
manipulates (dma3)
manipulates (idm4)
rmanipulates (dma)
manipulates (dme)

a delete mapping

Figure 6-17. Mapping model for the virtual polling system

IdealXML generates automatically the UsiXML specifications for the Task, Domain and
Mapping Models. Figure 5-4 describes the UsiXML specification corresponding to the Task
Model. The first 14 lines describe the hierarchical decomposition of the Task Model, while lines
15 to 43 describe the relationships between the tasks.

1<taskModel id="TaskModelCS51" name="TaskModel">

2 «task id="Root" name="Participate to poll" importance= pe="abstract'>
3 <task id "' name="Insert personal data" importanc type="interactive'>
4 <task id="T11" name="Insert name" userAction="create" taskltem="element" importance="5" type="linteractive">
5 <task id="T12" name="Insert zip code" userAction=""create" taskltem="element" impeortanc nteractive'’t>
6 <task id="T13" name="Select gender" userAction="select" taskltem="element" importance="5" type="interactive'f>
7 <task id="T14" name="Select age category" userAction="select" taskltem="element" importance="5" type="linteractive"f>
8 <Mtask>
9 <task id="T2" name="Answer question" importance="3" type="abstract'>
10 <task id="T21" name="Show guestion" userAction=""create" taskitem="collection" importance="5" type=""system"¥>
1" <task id="T22" name="Select answer" userAction="select" taskltem="element" importance="5" type="interactive'i>
12 <ltask>
13 <task id="T3" name="Send guestionnaire" userAction="start" taskitem="operation" impeortance="3" type="interactive'>
14 <ltask>
16 <enabling id="e1">
16 <gource sourceld="T1"

17 <target targetld="T2">

18 <lenabling>

18 <disabling id="e2">

20 <source sourceld="T2"\>

21 <target targetld="T3"f>

22 <ldisabling>

23 <independentConcurrency id="e11">
24 <source sourceld="T11"f>

25 <target targetld="T12"}>

26 <lindependentConcurrency>

27 <independentCencurrency id="e12"»
28 <gource sourceld="T12"

29 <target targetld="T13"f>

30 <lindependentConcurrency>

31 <independentCencurrency id="e13">
32 <gource sourceld="T13"

33 <target targetld="T14"}>

34 <lindependentConcurrency>

35 «iteration id="e3">

36 <source sourceld="T2"\>

37 <target targetld="T2"f>

38 «literation>

39 <enabling id="e21">

40 <source sourceld="T21"}>

41 <target targetld="T22"}>

42 «<lenabling>

43 <MtaskModel>

Figure 6-18. Task model expressed in UsiXML

66

Figure 5-5 illustrates the Domain Model expressed in UsiXML. Lines 1 to 31 define the classes
that are involved into the class diagram. Lines 9 to 12 describe the attribute “ageCategory”
that can have different values expressed under the form of an enumerated domain (the
possible values are “18-35”, “35-45”, “more than 45”). Lines 27 to 30 define a method with its
two parameters i.e., an input and an output parameter). Lines 32 to 44 describe the
relationships between the above described classes.

1<d inModel id="d inModelCS2" name="domainModel'>
2 <domainClass id="DC1" name="Participation'>
3 <attribute id="A1DC1" name="name" attributeDataType="string" attribute CardMin=""1" attributeCardMax=""1""1>

4 <attribute id="A2DC1" name="zipCode" attributeDataType="integer" attributeCardMin="1" attributeCardMax=""1"">
5 <attribute id="A3DC1" name="gender" attributeDataType="string" attributeCardMin="1" attributeCardMax=""1"f>

6 <enumeratedyalue name="Male"/>
7 <enumeratedValue name="Female'f>
8 <fattribute>

9 <attribute id="A4DC1" name="ageCategory" attributeDataType="string" attributeCardMin="1" attributeCardMax=""1"1>

10 <enumeratedValue name=""18-35"/>
11 <enumeratedyalue name="35-45">
12 <enumeratedyalue name="45+"f>
13 <fattribute>

14 <ldomainClass>

15 <domainClass id="DC2" name="Guestionnaire">

16 <attribute id="A1DC2" name="title' attributeDataType=""string" attributeCardMin=""1" attributeCardMax=""1"">
17 <method id="M1DC2" name="sendGuestionnaire'>

18 <param id="P1M1DC1" dataType="GQuestionnaire" name="qu" paramType="input'f>

19 </method>

20 <jdomainClass>

21 <domainClass id="DC3" name="Gluestion"»

22 <attribute id="A1DC3" name="title" attributeDataType="string" attributeCardMin="1" attributeCardMax=""1""/>
23 <idomainClass>

24 <domainClass id="DC4" name="Answer">

25 <attribute id="AI1DC4" name="title" attributeDataType="string' attributeCardin="1" attributeCardMax="1">

26 <enumerated¥alue name="Questionl' />
27 <enumeratedValue name="Question2'" />
2 <fattribute>

29 <attribute id="A2DC4" name="percentage" attributeDataType="integer" attributeCardMin="0" attribute CardMax=""1""»

30 <method id="M1DC4" name="calculateProcentage’>

31 <param id="P1M1DC4" dataType="Guestion" name="qu" paramType="input'/>
32 <param id="P2M1DC4" dataType="linteger" name="qu" paramType=""output'/f>
33 <imethod>

34 <IldomainClass>

35 <adHoc id="DA1" name="participation" roleACardMin="0" roleACardMax="n" roleBCardMin="0" roleBCardMax=""n"»

36 <source sourceld="DC1"f>
37 <target targetld="DC2"f>
38 </fadHoc>
39 <aggregation id="DA2" roleACardMin="1" roleACardMax="n" roleBCardMin="1" roleBCardMax="1">
40 <source sourceld="DC2"f>
41 «<target targetld="DC3"f>
42 «<laggregation>
43 <aggregation id="DA3" roleACardMin="1" roleACardMax="n" roleBCardMin="1" roleBCardMax="1">
<source sourceld="DC3"f>
<target targetld="DC4"f>
<laggregation>
<I.fdomainModeI>

Figure 6-19. Domain Model expressed in UsiXML

Figure 5-6 illustrates the mappings established between the Task Model and the Domain
Model. These mappings are specified in UsiXML with the use of two tags (i.e., <source> and
<target>) that identify which task will manipulate which attribute/method from the domain
model.

67

1<mappingModel id="MappingDomainC52" name="mappingDomain'*>

<manipulates id="MA1">
<source sourceld="T11"f=
<target targetld="A1DC1"/>

<fmanipulates>

<manipulates id="MA2">
<source sourceld="T12"f»
<target targetld="A2DC1"}>

<fmanipulates>

10 <manipulates id="MA3">

" <source sourceld="T13"/»

12 <target targetld="A3DC1"}>

13 <Imanipulates>

14 <manipulates id="MA4">

15 <source sourceld="T14"f=

16 <target targetld="A4DC1"/>

17 <Imanipulates>

18 <manipulates id="MAS"»>

19 <source sourceld="T21"f>

20 <target targetld="A1DC3" />

21 <Imanipulates>

22 <manipulates id="MAG">

23 <source sourceld="T22"/»

24 <target targetld="A1DC4"}>

25 <Imanipulates>

26 <manipulates id="MA7">

27 <source sourceld="T3"f>

28 <target targetld="M1DC2"f>

28 </manipulates>

30<imappingModel>

Figure 6-20. Mapping Model expressed in UsiXML

Step 2: From Task and Domain Models to AUI Model

The second transformation step involves a transformation system that contains rules applied
in order to realize the transition from the task and domain model to the abstract model. This
step is subdivided into five sub-steps according to [Limb0O4b]. We are improving this work by
offering the complete set of rules and by adapting them to the needs of a multimodal UL.

Sub-step 2.1: Rules for the identification of AUI structure

Rules 1 and 2 create abstract containers for tasks that have task children and abstract
individual components for leaf tasks. Tasks 4 and 5 reconstruct the containment relationships
for these AC’s and AIC’s.

The result of the application of these rules over the task model structure consists in a
hierarchical decomposition of the AUl into abstract containers and abstract individual
components.

Sub-step 2.2: Rules for the selection of AICs

The current sub-step generates facets for AlCs that support the execution of the leaf task:

. Input facet of type create element for create name and create zipCode tasks: Rule 6

. Input facet of type select element for select gender, select ageCategory and select
Answer tasks: Rule 7; for each enumerated value of an attribute, a selection value with

68

the same name as the enumerated value, will be attached to the above created facet:
Rule 8

. Output facet of type convey element for the AIC assigned to the task Show Question
Title: Rule 9

= Control facet of type start operation for the Send Questionnaire task: rule 10.

Sub-step 2.3: Rules for spatio-temporal arrangement of AlOs

For each couple of sister tasks executed into AlIOs, we generate an abstractAdjacency
relationship between these AlOs. As AlOs can be of two types (i.e., ACs or AlCs), there are four
possible rules to be applied (Rule 11-14).

Sub-step 2.4: Rules for the definition of abstract dialog control

By analogy with the previous sub-step, for each couple of sister tasks executed into AlOs, we
generate an abstractDialogControl relationship between these AlIOs that have the same
semantics as the temporal relationship defined between the tasks. As AlOs can be of two types
(i.e., ACs or AlCs), there are four possible combination that are considered by Rules 15-18.

Sub-step 2.5: Rules for the derivation of the AUI to domain mappings

In order to ensure the synchronization between the AICs and attributes of objects from the
Domain Model, Rule 19 generates the updates relationship. Moreover, Rule 20 enables the
triggering of methods by AICs through the triggers relationship.

Step 3: From AUI Model to CUI Model

The third step implies a transformational system that is composed of necessary rules for
realizing the transition from AUl to CUls. Only GUI is taken into account (no vocal or
multimodal Ul), so the modality used to interact with the system is entirely graphical
(monomodal Ul).

For the generation of GUIs the designer takes into consideration just the abstract and concrete
graphical part of each transformation rule.

Sub-step 3.1: Reification of AC into CC

Rule 21 creates a GC which will be the main box of the Ul associated to the AC found one level
under the root AC in the abstract hierarchy. This main box contains the main window of the UL.

Rule 22 creates a GC of type box for each AC contained into an AC that was reified into a main
box.

Sub-step 3.2: Selection of CICs

The current sub-step generates different GICs depending on the type of facets of the

corresponding AlCs:

. Generation of an outputText and an inputText that enable to insert the name and the
zipCode: Rule 23 is applied each time an AIC with an input facet of type create element
is encountered.

69

. Generation of a GC of type box that will embed a group of radio buttons and a GIC of
type outputText representing the label associated to this group when an input facet of
type select element is encountered: Rule 24; The radio buttons associated to this group
are created by applying Rule 25. The rules are used in order to select the gender of the
user, the ageCategory and also his answers to the questions

. Generation of a GIC of type outputText each time an output facet of type create is
encountered. For this purpose Rule 26 has to be applied in order to ensure the display of
the titles of the questions.

. Generation a button that will ensure the send questionnaire task each time when a
control facet of type start operation is encountered: rule 27.

Sub-step 3.3: Arrangement of CICs

For each couple of adjacent AIOs that are reified into graphicalClOs, we define a
graphicalAdjencency relationship between these graphicalClOs. As AlOs can be of two types
(i.e., ACs or AICs), there are four possible combination to take into account. For each
combination a specific rule is considered: Rules 28-31.

Sub-step 3.4: Navigation definition

The rules that ensure the navigation definition are not applied in the current case study as all
the sub-tasks of the virtual polling system are presented combined into the same window.
Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AlOs with a dialog control relationship, a transposition of this relationship
to the graphicalClOs that reify them is realized. As AlOs are of two types (i.e., ACs and AICs),
four rules describing the four possible combinations are considered: Rules 32-35.

Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 36 and 37 are used to transpose the updates and triggers relationships from the abstract
to the concrete level. These relationships map GICs with attributes and methods from the
Domain Model.

70

6.3.1 ATom?

Abstract

Participate to Pall

Abstract

Apswer question Send guestionnairs

l!DW fuesti Egct ansW\r
TAEAFo

Domain clsss omdin class Dnmaln class
} Guestionnaire uestion Answver calculate
Firibute

title title: title percent

Enumersted valus
category 2

Sofect ane catedory

Inzert NamE_Jl

Domain class

Participation ‘
attribute . StEribute -]

gencer

0

sendQuestionnaire

ZipCode

Enumerated value
category 1

Figure 6-21. Virtual Polling System source model in AToM3

Figure 6-21 is the AToM? representation of the Polling System example.

// Abstract

Participate to P
Paicipate to P

) Abstract
nsert Personnal Binswer question
\\ﬂ ISWEE e n

Send uestionnaire

l!ow fuesti el#ct ansW\r
TEThio

Domsin class oméin class Doma\n class
’ Guestionnaire uestion Anawer calculate

title: title percent

Domain class

Participation \
attribite l Ci T Caa s

gender

0

sendGuestionnaire

fattribute
title:
Enutmerated value
category 2

aftribLte
a0 catenory
Enutmerated value
category 1

Tiptode

Figure 6-22. Virtual Polling System after execution of rule 1
For each task that has sub-tasks, an abstract container has been created with the same name

(Figure 6-22).

71

Graph-Grammar execution controls

fostract Executing Graph-Grammar. taskTcduiModel GG_exec

Participate to P - o

Last executed nle: executedingic_GG_mle [order: 2)

Continuaus | Close

n=ert Persannal L nswer question

frizert zip code
nsert Name

Domain class
Questionnaire

Oomaif class

FAbUe

attnbute
gender age category
Enumeratay walue Enumerated value
category 1 category 2

Figure 6-23. Virtual Polling System after execution of rule 2

On figure 6-23 we see that an abstract individual component has been created for each task
that doesn’t have sub-tasks. As we can see, we are only at the beginning of the transformation
set, and the graph already becomes unreadable.

Graph-Grammar execution controls =
F'arncmate toF st Executing Graph-Grammar: taskToduiModel GG_exec
o . Last executed rule linkACzAndalCs GG_rule [order: 5]

Step Continuous | Clase

Hbstract
nd questionire

sert Personn 2

e
nserteersonnal \ _
bnswer question

Insert zip co R oae et how questiol
7 g elect answer
Domain class Domaingelass Domair
Questionnaire Quegtion s
Oomain glass
b Eiglar)
[FEribute
Eigr
name Fnbuts age categery . o s
DT title ith title
gender nduestionnai i
Er d walue

zipCode
Enumerated value
cateqory 2
category |

Figure 6-24. Virtual Polling System after execution of rule 4 and 5

Bidirectional links (“contains” and “is contained by”) have been created between AC’s and the
AC’s or AIC’s they contain on the figure 6-24.

72

EXECUING Larapr-LATAMmar: (83K | GeUIMO0e)_lala_Bxec
Last executed rule: DialogContioldCAIC_GG_rule [oder: 8]

Step Continuous| C\ose‘

\\,_

,.A‘

Participate to P

‘ e tPersonbal
»"-'

e rthame

ae cargory

genckr — Erame 3k vale

Figure 6-25. Virtual Polling System after execution of rule 15 to 18

Figure 6-25: For each task of type “create” that manipulates an attribute, an input facet of type
create has been created.

COEELUUNIY ATGPTFadindl. Lk L WHEumoue_ 30 exes
Last executed rule: inputFacetSelect_GG_mle (order 12]
Patticipate to P
p Step Continuous | Close
5é rtPersont Busner qun gz ton

nsefdgersonnal
nswer guestion

It
Input
Iz rtzip cod] ChoN et
b rthame
kctgenck
Domal chss
Crestonnalre [
Ceston
Danal chEs
| Partcpaton Ay
i e cakgory
ang —& d ginp i)
T genck1 . ;n|ﬂDUE action| Tem ™
pcak E"':;‘z'r""‘"" drad actionT ype select
0
id
inputCardhd ax
inputCardhdin
inputCharacterization
inputD ataT ppe string
J - N
=diting Nonamed' (modified) [taskToALiModel_GG ok | | concel |

Figure 6-26. Virtual Polling System after execution of rule 6

On figure 6-26 we see that for each task of type “select” that manipulates an attribute, an
input facet of type create has been created (for the sake of readability, the properties window
of the input has been open here, and we see it is well an input with action type “select”).

73

CRELLUNY 1 dpr I inigl. sk, | S e a0 _ERes

Last executed rule: selectionValues GG_iule [order: 13)

Faticipate to P

Step Continuous | Close

Damal ciass
Cestian
Dcmal chs
Partichatin

Extme raed vaie

Exime e walte caegory 2

cakqony |

Selection value Selection value
categary 1 categary 2

Figure 6-27. Virtual Polling System after execution of rule 8

For each Enumerated value linked to an attribute, a selection value is created and linked to the
AIC corresponding to the (select) task that manipulates the attribute (Figure 6-27).

E®Ecuting Lairaph-larammar: task | oA odel_lala_gxec

Last executed rule: controlF acetStar_GG_rule [order: 15]

Participate to P Cortinuous | Close

Show ues B

y
D
)

bt

Domal clas
Partcyatin

|

senckinestonialr

Extine racval:
kg |

T E
cakgony 2

Selection value ¥ Selectionvalue
categary 1 categany 2

Figure 6-28. Virtual Polling System after execution of rule 10

On figure 6-28 shows that for each task of type “start” that manipulates a method, a control
facet of type start has been created (we can see the control facet at the right side of the
screenshot).

74

ERECUING WISPM-Irammar (35K 1 0AUIMOOE]_L1l_EKEC
Apetact Last executed nile: AbstractadiacencydCAC_GG_nile (order: 19)

Faricipate ta P Step Contintou:

o

nswer question
\ Show g et

Domal clas
eston

Entme mEd vali sekestonalr

cakgoy2

Selection value ¥ Selection value
categary 1 categary 2

Figure 6-29. Virtual Polling System after execution of rule 11, 12, 13 and 14

We can’t see it on the screenshot because AToM® make arrows override each other, but an
abstract adjacency link has been created between each couple of sister tasks that are linked by
an enabling link, which means that the two objects in the final user interface corresponding to
those tasks will be next to each other (Figure 6-29).

Executing Graph-Grammar. taskToduiMode] GE_exec
Apetract Last executed nile: Derivelpdates GG_nle [order: 20]
Paicipate to P "
Partpat © P Step Continuous | Close
.l]ﬁﬁ»
HLUT e Al restion|

cert Personnal .
nswer guestion

Input
I o
b
S ()
[N
kctgesdr cuestn i T S— ketaanet| [ONE0|
eithon
mualk ol Bl Dﬂf‘“ s
o i o
ek ' e caggary
i} = W
i N - serkiestonal 7)
Eii i gerer AT \ﬂpUt Evime ed vahe e A ATETE

cakgory2

f IpCok cakgor | e perceat
i 1 g pdate

Selection value / ¥ Selectionvalue
category 1 category 2

=
ﬂ | 0K Cancel ﬂ

Figure 6-30. Virtual Polling System after execution of rule 19

75

For each task that manipulates an attribute, and that has been linked to an AIC, the AIC is link
to the attribute with an updates relation (Figure 6-30).

Executing Graph-Grammar. taskToduiModel GG_exec

Anstract Last executed rule: DeriveTriggers_GG_ule [order: 21)

Participate to P Step Cantinuaus | Clase

Partcyat £ P

P
7 N\
7

-

il 03

Shoi 1 16£ 101

cak

-

EilE) <

“ : -\n Lt P
genkn ErvnertaEe P E--:;;;l_.;wlk

2

eakgory |

Selection valle / Selection valle
categony 1 categary 2

Figure 6-31. Virtual Polling System after execution of rule 20

For each task that manipulates a method, and that has been linked to an AIC, the AIC is linked
to the attribute with a triggers relation (Figure 6-31).

For each task that manipulates an attribute, and that has been linked to an AIC, the AIC is link

to the attribute with an updates relation.

76

Executing Graph-Grammar: taskToéwiModel_GG_exec

Last executed rule: mainBoxCreation_GG_rule [arder: 22)

Participate to P Continuous ‘ Close

D“

Box
mainBox

Windony

= 4l
nsen:vw
oy

eerthiame Demalk o
partcyation ‘

Entme ik valie

Enume e wane
" cakgor2

cakgory |

Selection valle ! k Selection value
category 1 category 2

Figure 6-32. Virtual Polling System after execution of rule 21

Here, a box named mainbox (containing the window that will contain the entire graphical user
interface) is created and linked to the root task. This will be the main graphical container
(Figure 6-32).

L g

Last executed ule: araphContBox_GG_rule [order: 23] I

Participate to Step Contimuous|E|ose
v \ \B@\N

L Qi
: 7
nswer guestion
- ﬂ" e Show g 1es il

XN

Input [#

Box

mainBox
Window /

rg

‘ :
ee e S - ‘

L _ I A,

ekt

Entime ke ale m sErk el
cakgory

Enmerkdvaie
exkgony |

Selection value / Selection value
ratarnan 1 ratannne 2

Figure 6-33 Virtual Polling System after execution of rule 22

On figure 6-33 we see that for each abstract container, a graphical container of type box is
created, and linked to it (by a reify relation).

77

Executing Liraph-irammar: task | oauModel Al exec
BoxFoiRadioButtons_GG_rule [order: 25)

Conlinuous ‘ Cl
\!\’_N’\
m\

nswer guestion

BO%
mainBomx

Last executed ls:

Step

nseft Bersonnal

Tt Input
Il I
kctag! Shoiw ques tiol
Inze rtzip oo Domalt i
Ectgeide Crestonsali
Demah class
ozt
Domale chs
Partcipation . il i3
e cavgory
o _ _.
I gerckr Input E"“;.j:,“":’,‘?"é m: sero estonalr m'
L opook Ex e (o Qo2
ane ol |
Box Soed I / I Sslectionvalue
election value cateqory 7
OutputText catogory 1 gory

Figure 6-34. Virtual Polling System after execution of rule 24

Figure 6-34: A box is created that will contain the radio buttons corresponding to the selection
values previously created. The Box also contains an output text graphical component, which
will in fact contain a message telling the user what to do (“select an age category” for

example).

IngertName

7

InpLt

G ItPersonTa

v/‘ nsrsonna\

vttt e
cakgon |

OutputText

nswer guestion
Show (|ees ol
halie

Evimerakdvali: senkestonal

cakgo 2

} Selectionvalue
categaony 2

Box /
3 Selection value
\ category 1
radioButton \ radioButton

Figure 6-35. Virtual Polling System after execution of rule 25

78

For each selection value, a radio button is created, and contained by the box previously created

for it (Figure 6-35).

Biox

Patticipate ta P

mainBox

B

|

Winelowy

Y

Input

eridp cole

Domaln clarg
Parlclpal

B[

Apcode

B

lecfgendet

IngArt Personnal

Input

ctage

Ak
|0e cakgor
Input

Ei 0

cakaon 1

#hs Fac)

Alpa

#hskar

A ques 1o

ZUIer qUastion

Thowgrestin

Domalh ches
etonal

Domal cigk

e

umerated valie
category 2

election value
category 2

questiohnai

fmal clacs
Ariwer

sewiestonalr | e
e b

title

Ectans:

e 1t

Selection value
category 1

caknlat

e

radioBLtton radicBLtton

Figure 6-36. Virtual Polling System final result

Figure 6-36 shows the final result.

6.3.2 Custom java transformation engine

As for the previous example, we open the source file containing the virtual polling system
model in UsiXML (see example description above). The result is the following (to gain space,
we have withdrawn the task and domain model, since they aren’t modified by the
transformation engine):

<?xml version="1.0" encoding="UTF-8"?>
<uiModel id="UiM1" name="PollingSystem">

<mappingModel>

<manipulates id="MA1">
<source sourceld="T11"/>
<target targetld="A1DC1"/>

</manipulates>

<manipulates id="MA2">
<source sourceld="T12"/>
<target targetld="A2DC1"/>

</manipulates>

<manipulates id="MA3">
<source sourceld="T13"/>
<target targetld="A3DC1"/>

</manipulates>

<manipulates id="MA4">
<source sourceld="T14"/>
<target targetld="A4DC1"/>

</manipulates>

79

<manipulates id="MA5">
<source sourceld="T21"/>
<target targetld="A1DC3"/>
</manipulates>
<manipulates id="MA6">
<source sourceld="T22"/>
<target targetld="A1DC4"/>
</manipulates>
<manipulates id="MA7">
<source sourceld="T3"/>
<target targetld="M1DC2"/>
</manipulates>
<updates>
<source sourceld="AIC_T13"/>
<target targetld="A3DC1"/>
</updates>
<updates>
<source sourceld="AIC_T14"/>
<target targetld="A4DC1"/>
</updates>
<updates>
<source sourceld="AIC_T22"/>
<target targetld="A1DC4"/>
</updates>
<triggers>
<source sourceld="AIC_T3"/>
<target targetld="M1DC2"/>
</triggers>
<isReifiedBy>
<source sourceld="AC_Root"/>
<target targetld="box_00"/>
</isReifiedBy>
<isReifiedBy>
<source sourceld="AC_T1"/>
<target targetld="Box_AC_T1"/>
</isReifiedBy>
<isReifiedBy>
<source sourceld="AC_T2"/>
<target targetld="Box_AC_T2"/>
</isReifiedBy>
<isReifiedBy>
<source sourceld="AIC_T3"/>
<target targetld="Box_AIC_T3"/>
</isReifiedBy>
<isReifiedBy>
<source sourceld="AIC_T11"/>
<target targetld="Box_create_AIC_T11"/>
</isReifiedBy>
<isReifiedBy>
<source sourceld="AIC_T12"/>
<target targetld="Box_create_AIC_T12"/>
</isReifiedBy>
<isReifiedBy>
<source sourceld="AIC_T21"/>
<target targetld="Box_create_AIC_T21"/>

</isReifiedBy>
<isReifiedBy>

<source sourceld="AIC_T13"/>

<target targetld="Box_Selection_AIC_T13 ">
</isReifiedBy>

80

<isReifiedBy>
<source sourceld="AIC_T14"/>
<target targetld="Box_Selection_AIC_T14
</isReifiedBy>
<isReifiedBy>
<source sourceld="AIC_T22"/>
<target targetld="Box_Selection_AIC_T22
</isReifiedBy>
<isReifiedBy>
<source sourceld="AIC_T3"/>
<target targetld="Button_FAT3"/>
</isReifiedBy>
<updates>
<source sourceld="Box_Selection_AIC_T13
<target targetld="A3DC1"/>
</updates>
<updates>
<source sourceld="Box_Selection_AIC_T14
<target targetld="A4DC1"/>
</updates>
<updates>
<source sourceld="Box_Selection_AIC_T22
<target targetld="A1DC4"/>
</updates>

</mappingModel>
<auiModel>

<abstractContainer name="Participate to pol
<abstractContainer name="Insert persona
<abstractindividualComponent name="
id="AIC_T11">
<input id="FAT11" actionType="c
actionltem="element"/>
</abstractindividualComponent>
<abstractindividualComponent name="
id="AIC_T12">
<input id="FAT12" actionType="c
actionltem="element"/>
</abstractindividualComponent>
<abstractindividualComponent name="
id="AIC_T13">
<input id="FAT13" actionType="s
actionltem="element">
<selectionValue name="Male"
<selectionValue name="Femal
</input>
</abstractindividualComponent>
<abstractindividualComponent name="
category" id="AIC_T14">
<input id="FAT14" actionType="s
actionltem="element">
<selectionValue name="18-35
<selectionValue name="35-45
<selectionValue name="45+"/
</input>
</abstractindividualComponent>
</abstractContainer>
<abstractContainer name="Answer questio
<abstractindividualComponent name="
id="AIC_T21">
<input id="FAT21" actionType="c

||/>

">

||/>

||/>

">

I"id="AC_Root">
| data" id="AC_T1">
Insert name"

reate"

Insert zip code"

reate”

Select gender”
elect"

/>

e"/>

Select age
elect"

">

">
>

n"id="AC_T2">
Show question”

reate"

81

actionltem="element"/>
</abstractindividualComponent>
<abstractindividualComponent name="
id="AIC_T22">
<input id="FAT22" actionType="s
actionltem="element">
<selectionValue name="Quest
<selectionValue name="Quest
</input>
</abstractindividualComponent>
</abstractContainer>
<abstractindividualComponent name="Send
id="AIC_T3">
<control id="FAT3" actionType="star
actionltem="operation"/>
</abstractindividualComponent>
</abstractContainer>
<abstractContainment id="ACont_AC_T1">
<source sourceld="AC_T1"/>
<target targetld="AIC_T11"/>
<target targetld="AIC_T12"/>
<target targetld="AIC_T13"/>
<target targetld="AIC_T14"/>
</abstractContainment>
<abstractContainment id="ACont_AC_T2">
<source sourceld="AC_T2"/>
<target targetld="AIC_T21"/>
<target targetld="AIC_T22"/>
</abstractContainment>
<abstractContainment id="ACont_AC_Root">
<source sourceld="AC_Root"/>
<target targetld="AC_T1"/>
<target targetld="AC_T2"/>
<target targetld="AIC_T3"/>
</abstractContainment>
<abstractAdjacency id="AA_AC_T1">
<source sourceld="AC_T1"/>
<target targetld="AC_T2"/>
</abstractAdjacency>
<abstractAdjacency id="AA_AIC_T21">
<source sourceld="AIC_T21"/>
<target targetld="AIC_T22"/>
</abstractAdjacency>
<auiDialogControl control="EnablingType" id
<source sourceld="AC_T1"/>
<target targetld="AC_T2"/>
</auiDialogControl>
<auiDialogControl control="DisablingType" i
<source sourceld="AC_T2"/>
<target targetld="AIC_T3"/>
</auiDialogControl>
<auiDialogControl control="IndependentConcu
id="AuiDCnull">
<source sourceld="AIC_T11"/>
<target targetld="AIC_T12"/>
</auiDialogControl>
<auiDialogControl control="IndependentConcu
id="AuiDCnull">
<source sourceld="AIC_T12"/>
<target targetld="AIC_T13"/>

Select answer"
elect"

ionl"/>
ion2"/>

guestionnaire"

t

="AuiDCnull">

d="AuiDCnull">

rrencyType"

rrencyType"

82

</auiDialogControl>
<auiDialogControl control="IndependentConcu
id="AuiDCnull">
<source sourceld="AIC_T13"/>
<target targetld="AIC_T14"/>
</auiDialogControl>
<auiDialogControl control="EnablingType" id
<source sourceld="AIC_T21"/>
<target targetld="AIC_T22"/>
</auiDialogControl>
</auiModel>
<cuiModel>
<box name="main_box" id="box_00"/>
<window id="window_00"/>
<box id="Box_AC_T1"/>
<box id="Box_AC_T2"/>
<box id="Box_AIC_T3"/>
<box id="Box_create_AIC_T11"/>
<inputText textSize="12" id="Input_text_FAT
textColor="#000000"/>
<outputText textSize="12" id="Output_text F
textColor="#000000"/>
<box id="Box_create_AIC_T12"/>
<inputText textSize="12" id="Input_text_FAT
textColor="#000000"/>
<outputText textSize="12" id="Output_text F
textColor="#000000"/>
<box id="Box_create_AIC_T21"/>
<inputText textSize="12" id="Input_text_FAT
textColor="#000000"/>
<outputText textSize="12" id="Output_text F
textColor="#000000"/>
<box id="Box_Selection_AIC_T13"/>
<outputText textSize="12" id="Output_text F
textColor="#000000">
<defaultContent>Select gender</defaultC
</outputText>
<box id="Box_Selection_AIC_T14"/>
<outputText textSize="12" id="Output_text F
textColor="#000000">
<defaultContent>Select age category</de
</outputText>
<box id="Box_Selection_AIC_T22"/>
<outputText textSize="12" id="Output_text F
textColor="#000000">
<defaultContent>Select answer</defaultC
</outputText>
<radioButton id="radioButton_FAT14 1" group
category">
<textSize>12</textSize>
<defaultContent>18-35</defaultContent>
<textColor>#000000</textColor>
</radioButton>
<radioButton id="radioButton_FAT14 2" group
category">
<textSize>12</textSize>
<defaultContent>35-45</defaultContent>
<textColor>#000000</textColor>
</radioButton>
<radioButton id="radioButton_FAT14 3" group

rrencyType"

="AuiDCnull">

11"

AT11"

12"

AT12"

21"

AT21"

AT13"

ontent>

AT14"

faultContent>

AT22"
ontent>

Name="Select age

Name="Select age

Name="Select age

83

category">
<textSize>12</textSize>
<defaultContent>45+</defaultContent>
<textColor>#000000</textColor>
</radioButton>

<radioButton id="radioButton_FAT22_1" group Name="Select
answer">

<textSize>12</textSize>

<defaultContent>Questionl</defaultConte nt>

<textColor>#000000</textColor>
</radioButton>

<radioButton id="radioButton_FAT22_2" group Name="Select
answer">

<textSize>12</textSize>

<defaultContent>Question2</defaultConte nt>

<textColor>#000000</textColor>
</radioButton>
<button id="Button_FAT3">

<textSize>12</textSize>

<textColor>#000000</textColor>
</button>
<graphicalContainment>

<source sourceld="box_00"/>

<target targetld="window_00"/>
</graphicalContainment>
<graphicalContainment>

<source sourceld="box_00"/>

<target targetld="Box_AC_T1"/>
</graphicalContainment>
<graphicalContainment>

<source sourceld="box_00"/>

<target targetld="Box_AC_T2"/>
</graphicalContainment>
<graphicalContainment>

<source sourceld="box_00"/>

<target targetld="Box_AIC_T3"/>
</graphicalContainment>
<graphicalContainment>

<source sourceld="Box_create_AIC_T11"/>

<target targetld="Output_text FAT11"/>
</graphicalContainment>
<graphicalContainment>

<source sourceld="Box_create_AIC_T11"/>

<target targetld="Input_text FAT11"/>
</graphicalContainment>
<graphicalAdjacency>

<source sourceld="Input_text FAT11"/>

<target targetld="Output_text FAT11"/>
</graphicalAdjacency>
<graphicalContainment>

<source sourceld="Box_create AIC_T12"/>

<target targetld="Output_text FAT12"/>
</graphicalContainment>
<graphicalContainment>

<source sourceld="Box_create AIC T12"/>

<target targetld="Input_text FAT12"/>
</graphicalContainment>
<graphicalAdjacency>

<source sourceld="Input_text FAT12"/>

<target targetld="Output_text FAT12"/>

84

</graphicalAdjacency>
<graphicalContainment>

<source sourceld="Box_create_AIC_T21"/>

<target targetld="Output_text FAT21"/>
</graphicalContainment>
<graphicalContainment>

<source sourceld="Box_create AIC_T21"/>

<target targetld="Input_text FAT21"/>
</graphicalContainment>
<graphicalAdjacency>

<source sourceld="Input_text FAT21"/>

<target targetld="Output_text FAT21"/>
</graphicalAdjacency>
<graphicalContainment>

<source sourceld="Box_Selection_AIC_T13

<target targetld="Output_text FAT13"/>
</graphicalContainment>
<graphicalContainment>

<source sourceld="Box_AC T1"/>

<target targetld="Box_Selection_AIC_T13
</graphicalContainment>
<graphicalContainment>

<source sourceld="Box_Selection_AIC_T14

<target targetld="Output_text FAT14"/>
</graphicalContainment>
<graphicalContainment>

<source sourceld="Box_AC _T1"/>

<target targetld="Box_Selection_AIC_T14
</graphicalContainment>
<graphicalContainment>

<source sourceld="Box_Selection_AIC_T22

<target targetld="Output_text_FAT22"/>
</graphicalContainment>
<graphicalContainment>

<source sourceld="Box_AC_T2"/>

<target targetld="Box_Selection_AIC_T22
</graphicalContainment>
<graphicalContainment>

<source sourceld="Box_Selection_AIC_T14

<target targetld="radioButton_FAT14_1"/
</graphicalContainment>
<graphicalContainment>

<source sourceld="Box_Selection_AIC_T14

<target targetld="radioButton_FAT14 2"/
</graphicalContainment>
<graphicalContainment>

<source sourceld="Box_Selection_AIC_T14

<target targetld="radioButton_FAT14 3"/
</graphicalContainment>
<graphicalContainment>

<source sourceld="Box_Selection_AIC_T22

<target targetld="radioButton_FAT22_1"/
</graphicalContainment>
<graphicalContainment>

<source sourceld="Box_Selection_AIC_T22

<target targetld="radioButton_FAT22_2"/
</graphicalContainment>
<graphicalContainment>

<source sourceld="box_00"/>

<target targetld="Button_FAT3"/>

">

">

||/>

||/>

">

">

||/>

||/>

">

">

">

85

</graphicalContainment>
<graphicalAdjacency>
<source sourceld="Box_AC T1"/>
<target targetld="Box_AC_T2"/>
</graphicalAdjacency>
<graphicalAdjacency>
<source sourceld="Box_create AIC_T21"/>
<target targetld="Box_Selection_AIC_T22
</graphicalAdjacency>
<cuiDialogControl>
<symbol>EnablingType</symbol>
<source sourceld="Box_AC _T1"/>
<target targetld="Box_AC_T2"/>
</cuiDialogControl>
<cuiDialogControl>
<symbol>DisablingType</symbol>
<source sourceld="Box_AC_T2"/>
<target targetld="Box_AIC_T3"/>
</cuiDialogControl>
<cuiDialogControl>
<symbol>DisablingType</symbol>
<source sourceld="Box_AC_T2"/>
<target targetld="Button_FAT3"/>
</cuiDialogControl>
<cuiDialogControl>
<symbol>IndependentConcurrencyType</sym
<source sourceld="Box_create AIC_T11"/>
<target targetld="Box_create_AIC_T12"/>
</cuiDialogControl>
<cuiDialogControl>
<symbol>IndependentConcurrencyType</sym
<source sourceld="Box_create AIC_T12"/>
<target targetld="Box_Selection_AIC_T13
</cuiDialogControl>
<cuiDialogControl>
<symbol>IndependentConcurrencyType</sym
<source sourceld="Box_Selection_AIC_T13
<target targetld="Box_Selection_AIC_T14
</cuiDialogControl>
<cuiDialogControl>
<symbol>EnablingType</symbol>
<source sourceld="Box_create AIC_T21"/>
<target targetld="Box_Selection_AIC_T22
</cuiDialogControl>

</cuiModel>
</uiModel>

||/>

bol>

bol>

||/>

bol>
">
II/>

||/>

Figure 6-37. Result of the virtual polling system

description) have been executed.

86

As we can see, all the rules of the rule set that are relevant for the example (see example

Chapter 7: Comparison of the four techniques

First, we will give a short summary of each of the three techniques. Then we will make
a global comparison, using criterion taken from the work of [mister x]. ... Thirdly, we will
resume each transformation engine, reminding the specific issues with each of them. Finally,
we will make a short conclusion based on what we experienced with each tool, and what
needs are fulfilled by each of them.

7.1 Summaries

7.1.1 AToM?

AToM?3 is graph transformation tool. It means that the meta-model (here, the one of
UsiXML) has to be graphically designed, as well as the transformations we want to implement.
The only thing that is implemented using a programming language (actually Python), are pre-
and post-conditions for the transformations, as well as some things that can’t be graphically
specified, such as changing the name of a variable, or specifying a variable’s value basing on
other variables.

The structure of UsiXML is easily represented as an oriented graph, which means that
AToM? suits well the needs of this language.

Graph transformation rules consist of a Left Hand Side (LHS) matching a graph G, a
Right Hand Side that has the be the result of the transformation of the graph G, and pre-and
post-conditions, coded in the Python programming language. The graphical representation of
the rules is very intuitive, and only small things have to be coded in Python, so the GUI
designer doesn’t have to be highly skilled in programming languages.

From the point of view of the time needed to implement everything, though, AToM? is
not as good as we might think, for some reasons:

e First, the program itself is coded in Python, which means that it is quite slow, and
the GUI designer loses some time during graph layout processing and some other
things. This is not a major matter, though.

¢ The way of creating the rules, with one window for each rule, plus two windows
for the pre-condition and the post-action, also means a small loss of time,
compared to programming in a single environment, like we would do for a java
project for example.

* More importantly, in AToM?® more transformation rules have to be coded than in a
wholly java-programmed project for example. The reason is simple: suppose we
want a rule that apply on each couple of task linked by a relation, no matter the
type of the relation. In AToM3, if there exist different relations that do not extend
the same “parent” relation (by inheritance), we have to create one rule per type of

87

relation. In java, at the other hand, we can simply do it in a single method, with
something like (in pseudo-code): if(exists(relation) & relation.source = A &
relation.target=B) { ... }
This means an important loss of time, and an increased complexity.

* Finally, AToM? is still in development, which means is has some problems of
stability that can also make GUI designer lose time.

But, despite all those negative points, it makes no doubt that the graphical approach of AToM3
is the simplest and more intuitive way of creating transformation rules.

7.1.2 ATL

ATL is some kind of “hybrid” approach: it uses graphs to implement the meta-model,
but the user can use the ATL specific language to design the transformation rules.

For the same reason as for AToM3, the graph representation of the meta-model is
particularly well suited to UsiXML.

7.1.3 Custom transformation engine in java

Here, everything is coded “by hand” in the java programming language. That means
that, from the reading of the UsiXML file, to the writing of the result in UsiXML, everything is
coded in java. The UsiXML file is read with the unmarshaller of the Castor api. It is transformed
in java objects that can thus be manipulated through java methods.

Castor needs a mapping file, which contains the mapping between the XML and the
java objects representation of the file. This mapping file is creating from the xsd schema of
UsiXML.

After the UsiXML file has been read, and transformations have been applied of the
internal representation (java objects) of the file, the internal representation is translated back
into UsiXML, using the mapping file to respect the syntax of the UsiXML language.

88

7.2 Comparison

7.2.1 Tools-specific issues

7.2.1.1 AToM?

7.2.1.1.1 Meta-model and models creation

The meta-model and all models have to be created using a UML-like
diagram, in an add-hoc canvas. However, this raises two issues:

= The UML relations are restricted in AToM3: there is no
composition relation. To create a composition relation, we have to
create ourselves a bidirectional relation between the two objects.
What’s more, AToM?® cannot handle two relations having the same
name, so each “fake” composition relation must have a name
different from the others.

= The canvas is too small: big models are hard to design in Atom3.
To do this, we have to use the zoom to reduce it and be able to
add objects. But this shows another problem of AToM3: it is no
perfectly stable; using the zoom can lead to unexpected things like
objects cross (or cover) each others, which further reduce the
already poor readability of the models in AToM3,

These two issues mean that AToM?3 isn’t as fast as expected to create
big projects.

7.2.1.1.1 Rules creation

Rules are creating in AToM? using the window showed in figure 3-5.
This also raises some issues:

= The canvas to create the LHS and RHS patterns are very small,
which can lead to room problems.

= Closing a rule, then opening it again can lead to problems with
indexes of the objects : trying to add a new one in the LHS or RHS
pattern will most of the time create an object with index “1” (it
starts back from 0), which we can change after. But deleting an
object in an open-then-closed rule, and then creating a new one
with the same index will cause an “interference”: AToM3 then
thinks that two objects have the same index (which is not true). So
in general, to avoid problems we have to create a rule in one time
(this is not always easy, and reduce the easiness maintenance of
our transformation engine).

= Condition and action, as well as algorithms in python to compute
the value of variables are all created in separate windows. Because
the program itself (written in python) is quite slow, the windows

89

can take some times to open, and most of the time the windows
that opens is too small and we have to resize it. While not being a
severe problem, this makes the rule long to create because we
have to use many different windows, even for a very small rule.
There is no inheritance mechanism for the rules.

7.2.1.2 Custom java transformation engine

7.2.1.2.1 Meta-model creation

7.2.1.2.2 Model creation

Our tool has no internal mechanism to create a meta-model. In
our case, this has been done with [jaxb]. Taking an .xsd schema of
the meta-model, it creates java objects for each met entity, and
accessors for each attribute of these objects. But, the process is
not easy :

¢ The user has to be able to use jaxb

¢ An .xsd schema of the meta-model must obligatorily be

available.

The program needs, to be able to read and write XML files, a
mapping file. With a meta-model like UsiXML, this mapping is very
long (more than 10000 lines). There exist tools to automatically
create it, but they don’t work perfectly: because the tool we used
[tool] was not able to create “array list” items in the mapping file,
we had to modify manually the mapping file to add all the lists.
This is long, and forces us to learn the syntax of the mapping file.
Because of precedent, the application is not really flexible: ours is
designed for only one meta-model, and creating another means
long and hard work.

There isn’t either an internal tool to create models in our java
transformation engine. The only way to create a model in our
application is by writing it directly in the source text area. This is
not easy, because it offers no correction facility or syntax
highlighting. However, there exist external tools like idealXML
[idealXML] that are very intuitive and easy to use to create models
in UsiXML. The lack of an internal tool of our application is thus not
really a problem.

90

7.2.1.2.3 Rules creation

= Rules are created programmatically, which means programming
skills are mandatory.

= QOptimization is now up to the programmer if he wants his engine
not to be too slow.

= Creating a rule not only means coding it, but also modifying the
rules tree (at the right of the figure 4-3) and calling it in the main
program.

7.2.2 Tools-specific advantages

7.2.2.1 AToM?

* Very fast for small projects: designing small models in AToM3 is very fast because
of its graphical syntax.

e Easy pattern representation: the graphical syntax is intuitive and easy to use and
understand.

e Python programming and templates: conditions, actions and computing are easy
to implement because of the easy syntax of Python and, what’s more, templates
are present in AToM?3 to help the user.

¢ Automatically generated interface for model creation: once a meta-model is
created, AToM? generate an interface to create models conforming to the meta-
model, and transformation rules using the concepts of the meta-model.

» Cardinalities verification: when creating or modifying a relation in a model, AToM3
checks that the cardinalities (number of sources and targets) are respected. So, the
meta-model cannot be violated in a model.

e Step-by-step execution: the transformation rules can be executed one at a time,
which can help finding the ones that are not working.

91

7.2.2.2 Custom java transformation engine

¢ Completeness of the transformation engine: at the price of a harder syntax than in
AToM3, any kind of transformations can be implemented, and there are no
limitations in the creation of meta-models.

e Explicit flow control: because transformation rules are methods, any
transformation rule can call any other.

¢ Code generation: our transformation engine generates UsiXML files only but any
kind of XML-based code can be generated using the Castor project as we did and
even any kind of code can be generated but at the cost of a harder
implementation.

¢ The interface can be adopted by the user (at the price of modifying the interface
source code) to meet his needs.

e Because our custom transformation engine takes UsiXML files as input, any
external tool can be used to create models, like [idealXML].

¢ Numerous existing java technologies: we didn’t use them, but many technologies
exist in java (like JMI) to help designing a custom transformation engine.

e Better error codes: error codes in java are easier to understand. This allows the
user to find more easily not working transformation rules. What’s more, the user
can take profit of facilities offered by the IDE used (such as Eclipse), like the
debugger, error checking, and so on.

7.2.3 Global comparison

We won'’t compare here the tools regarding the implementation details of each, or the
problems we had using it. The point 7.2.1 was devoted to it. We will instead compare the
concepts promoted by each one. For this, we will use seven criteria inspired by the work of
[Czarnecki] and [Schaefer]:

¢ Implementation paradigm, and the need of programming skills
¢ Model-to-model approach

¢ Code generation

e Pattern matching

¢ Rules ordering and Rules organization

92

e (Bi-)Directionality
e Performance

¢ Flexibility, maintainability

7.2.3.1 Implementation paradigm and required programming skills

First major difference between the transformation engines is whether they are imperative or
declarative. Like all graph transformation tools, AToM3 is strictly declarative; the java
application is in imperative style, and ATL can use both paradigms.

AToM3 needs almost no programming skills. There are a few things to code in python, like
conditions, actions, constraints and variables’ valuing, but these are coded in a very simple
syntax (the python language itself is quite simple), and the syntax is most of the time explained
in AToM3,

ATL needs higher programming skills, because the transformation rules use OCL syntax. But
the GUI designer is helped in ATL by several facilities provided: the meta-model can be created
graphically, and there is a pattern matching instruction. What’s more, the syntax is far easier
than the syntax of a rule coded in java.

The easiness of AToM® and ATL makes them more flexible, because even GUI designers with
(almost) no programming skills can use it, and also because maintaining the rules is much
simplified by the fact that the representation of those is clear and easy to understand.
However, in both AToM?® and ATL, the transformation rules as specified specifically for the
meta-model that we have graphically created, and a change to this meta-model will make the
transformations not work anymore.

Java seems thus a worse approach to the creation of the transformations here, especially for
non-programmers, while ATL looks more like an “in-between” solution, suitable for people
with few programming skills.

7.2.3.2 The model-to-model approach

AToM3 uses graph transformation. The models are created graphically, and so are the
transformation rules. The latter are composed of two parts: a LHS graph pattern, and a RHS
graph pattern. The LHS graph pattern will be searched in the source graph, and replace by the
RHS. This is a very intuitive, and easy to read and maintain, way of creating rules.

The java application uses another approach. Instead of transforming the model into a graph, it
directly modifies it. In fact, the XML file is read and transformed into java objects. These
objects are then modified by the transformation rules, and finally the java objects are

93

translated back into XML. In our java application, a method is created for each transformation
rule. As this is code, this is much harder to read and maintain.

The ATL approach is some kind of hybrid: the meta-model is created graphically (it can also be
created programmatically), and the transformation rules are coded. These ones can be coded
declaratively of imperatively. If keeping with the declarative approach, the code is still simple
to read and maintain, even if it requires a bit more programming knowledge than AToM?3.

7.2.3.3 Code generation

In java, code generation is straightforward and simple. We used the Castor api for this
purpose, and it causes no major problems.

ATL can also generated code, with help of an external model handler.

Finally, AToM3 hasn’t any commodity to generate code, nor reading it. To generate XML code
for a model in AToM3, we should use transformation rules, with the “action” code writing XML
code to a text file. This would be long and fastidious, if possible.

7.2.3.4 Pattern matching

This is a big difference between AToM3, ATL and our java application. While the pattern
matching is obviously supported by AToM3, and given with a simple syntax in ATL, java doesn’t
provide it. Pattern matching is still usable in java, but with the help of an existing external
project, or at the price of a long and fastidious implementation. This is much more complex to
implement than in AToM?® and ATL, and we didn’t use it. This also makes the java approach
more complex than the two others.

7.2.3.5 Rules scheduling and organization, inheritance

AToM? only allows determining a fixed order on the rules. There is no possibility of explicit
flow control in AToM3. And there isn’t a “call” instruction for a rule to call another. In fact, the
precondition allows deciding whether or not the rule will be executed, but if it’s not executed
in its turn, then the rule will never be, so the precondition cannot be used for explicit flow
control.

In AToM3, we can create distinct rules sets, and execute one after another. But there is no rule
inheritance mechanism, and no import mechanism either: this means that a rules set cannot
import a rule of another set. And a rule can neither use another.

On the opposite, ATL allows both implicit and explicit flow control. In purely declarative rules,
the flow control is implicit, and non deterministic. But we can add imperative code in a rule to
call others rules, and thus make explicit flow control. ATL even allows calling external, native
code.

94

Java, finally, obviously allows rules organization (for example one class for each rules set), and
the flow control is of course explicit. We can also call a rule in another, because each rule is a
method in java.

7.2.3.6 Bi-directionality

None of the three supports bi-directionality, which means they are not suited for reverse
engineering.

7.2.3.7 Performance

Here shows AToM? his big disadvantage: it is very slow. AToM3 is entirely coded in Python, and
compiled at execution. It means that the execution is much slower that, for instance, code
compiled in java. Furthermore, the fact that the transformations are graphically designed
means that the user has no possibility to optimize how they are executed. It’s up to AToM3 to
do it. And finally, because each transformation rule is created independently of the others, the
pattern matching for the LHS will be executed for each rule, even if two of them have the same
LHS.

Java is much more convenient to make something fast at the execution. Not only because the
compiled code is faster than the interpreted code of AToMS3, but also and mainly because here
the programmer can choose himself exactly how the transformation will be executed, to find
the faster execution. He can also for example eliminate redundancy by grouping
transformation rules that have code in common, preventing the program from doing it twice.

But, once again, we have to make a choice between performance and flexibility: choosing to
optimize the java code by grouping transformations means that the code will be harder to read
and maintain. That’s the reason why we chose to use one method per transformation rule in
our project, even if this means a loss in terms of performance.

As we didn’t use ATL ourselves, we cannot measure its performance, so this criterion will be
left empty for ATL.

7.2.3.8 Flexibility and maintainability

The most readable the models, the easiest to maintain they are. And it also means they are
easier to modify, thus making the tool the more flexible.

According to this, AToM? offers the best to modify and maintains meta-models, models and
transformation rules. However, two issues moderate that a little:

e First, and that is the case for each tool we used, modifying a meta-model means
that the transformation rules designed for that meta-model are potentially not
working anymore (because they can apply on objects that do not exist anymore, or
have been modified).

95

* Second, modifying rules is sometimes difficult because of a problem of AToM3:
modifying a previously saved rule in AToM?® sometimes leads to unexpected
behavior (cf. chapter three).

ATL, because of its slightly more complex syntax for the transformation rules (meta-models are
graphical), may be less readable and a little more difficult to maintain.

Finally, because of its fully programmatic approach and more complex syntax, the java
application is the most difficult to maintain. And modifying it is very difficult because if implies
several modification in several classes in addition to coding the transformation rule. So,
flexibility is worse than for the two other tools.

7.2.3.9 Completeness

With “completeness, we mean ability to handle complex rules and generate code. Internal
tools for the creation of meta-models and models are not part of this criterion.

Because AToM? allows doing many things in python, it is able of executing more complex rules
than strict graph-transformation rules (with only NAC, LHS and RHS). Still, the lack of explicit
flow control, and the absence of imperative constructs limit it. Because the source and target
model are not distinct, they both obviously can be navigated and modified. Finally, the lack of
code generation makes AToM3 less complete.

ATL can handle more complex rules than AToM3® because of its imperative constructs and
explicit flow control (in the imperative blocks), but there are still limitations: the source model
can be navigated, but not modified and the target model cannot even be navigated. This
means we cannot make rules depending on the result of others.

Finally, in java, the limit is in fact the programming skills of the graphical interface designer.

Figure 7.1 summarizes all these criterion.

96

AToMm? ATL Java
Implementation Declarative Declarative and Imperative
paradigm Imperative
Programming skills Few, short Slightly more than High, long
needed, learning learning period AToM3, medium learning
time learning period period
Model-to-model Graph Direct model Hybrid

approach transformation transformation
Pattern matching Supported Supported Supported via
external tools

Code generation Not supported Supported through Natively
external model supported
handlers

Rules scheduling Fixed order, no Scheduling by ATL for Explicit flow

dynamic flow declarative rules, control

control

explicit flow control for
imperative constructs.

Rules organization

Distinct rules

Distinct rules sets,

No limitations

sets, no inheritance supported
inheritance
Bi-directionality Not supported Not supported Not supported

Figure 7-1 Tools classification

The last four criteria showed in the figure 7.2, namely completeness, performance, flexibility

and maintainability are scored from very poor to very good: (thus very poor, poor, average,

good or very good)

Completeness | Performance Flexibility Maintainability
AToMm? Average Poor Very good Good
Java Very good Good* Very poor Very poor
ATL Good - Good Very good

Figure 7-2 Tools classification (part 2)

97

* Depending on how the user optimize the code.

7.3.3 Conclusion

In the next graph, we merge completeness and performance on the x axis, and flexibility and
maintainability on the y axis.

12

10

8 /
>

6 / \ = Performance/completeness

— aintainability/Flexibility
4 \
2

AToM? ATL Java

Figure 7-3 Tools comparison

As we can see on figure 7.3, no solution is simply better than the others, because our
preference will depend on our needs.

AToM?3 is certainly by far the simplest and easiest solution for model-to-model transformation,
and it is also the most flexible. But it is unable of code generation, so it is unable of XML-
transformation.

ATL is slightly harder to use than AToM3, because it requires higher programming skills. But
ATL is more “powerful” than AToM3. First, while AToM3 only allows giving a fixed order on the
rules, ATL allows implicit or explicit scheduling. Explicit scheduling is possible in ATL because of
its rules inheritance support, which AToM?® doesn’t have.

What’s more, ATL supports both declarative and imperative programming, while AToM? is
strictly declarative. Imperative programming, while being harder to use and potentially less
optimized, is useful for more complex rules (for example, it allows flow control with “if” and

|”

“call” instructions).

Java is certainly the hardest solution to implement, but is also offers the widest possibilities of
the three “tools” we used.

In java, rules scheduling and organization is of course possible. Because of java’'s imperative
style and the [absence] of limitations [propres a un outil], the GUI designer can implement
almost any kind of transformation on the model. But this has a [revers de la médaille]:

98

e Rules ordering is now up to the programmer, which is not [forcément] good in
terms of optimization.

e The program is not guaranteed anymore to be deterministic (because Source and
Target models are modifiable).

¢ Termination is not guaranteed anymore either.
e Readability is poor and,

¢ The most important: maintainability is very complex, mainly because of the lack of
readability.

However, in java we can make complex rules, and code generation is easy to implement (we
implemented it with the castor project).

What we said shows that, while being the most complete and powerful solution, the java
application we wrote isn’t really usable. But it would have been different if we had used
pattern matching.

Using pattern matching means that the java application reads a model in (Usi)XML, transform
it into java objects, and then do the same with the transformations also in (Usi)XML. The
application then search (by pattern matching) the LHS pattern in the source model and
replaces it by the RHS pattern. Finally, the application writes back the modified model into
(Usi)XML.

With this solution, we never modify the java application to add rules of modify ones. It is then
much more readable and easy to maintain. But this solution also means that we do not use the
imperative possibilities of java. So the java application is less powerful with pattern matching
than without it, but much more usable and maintainable, much more flexible.

The conclusion is then that, inevitably, more flexibility and maintainability means, for the GUI
designer, more sacrifices to accept in terms of completeness (and functionality) of the
application.

But if we need to write very complex rules, and need for example an explicit flow control,
AToM?3 is insufficient, and harder to use tools are mandatory, with the implementation time it
implies.

99

Bibliography

[OMG] Official site of the Object Management Group, omg.org
[MDA] Official site of the OMG Model Driven Architecture, www.omg.org/mda

[1] K. Czarnecki and S. Helsen. Feature-Based Survey of Model Transformation Approaches.

IBM Systems Journal, special issue on Model-Driven Software Development. 45(3), 2006, pp.
621-645

[Czarnecki] K. Czarnecki and S. Helsen. Classification of Model Transformation Approaches. In

online proceedings of the 2nd OOPSLA’03 Workshop on Generative Techniques in the Context
of MDA. Anaheim, October, 2003

[Stanciulescu] Adrian Stanciulescu, A Methodology for Developing Multimodal User Interfaces
of Information Systems, 2007

[4] MDA journal, may 2004, http://www.bptrends.com/publicationfiles/05-
04%20C0L%20I1BM%20Manifesto%20-%20Frankel%20-3.pdf

[Favre] Jean-Marie Favre, Meta-Model and Model Co-evolution within the 3D Software Space,
2004

[GreAT] A. Agrawal, G. Karsai and F. Shi., Graph Transformations on Domain-Specific
Models. Under consideration for publication in the Journal on Software and Systems
Modeling, 2003

[UMLX] E. D. Willink, UMLX: A graphical transformation language for MDA. In [Ren03],
pp. 13-24

[VIATRA] D. Varro, G. Varro and A. Pataricza, Designing the automatic transformation of
visual languages. Science of Computer Programming, vol. 44(2):pp. 205--227, 2002.

[BOTL] P. Braun and F. Marschall, The Bi-directional Object-Oriented Transformation
Language. Technical Report, Technische Universitat Miinchen, TUM-10307, May
2003

[Nauwenko] Andrey Naumenko, Alain Wegmann, two approaches in system modeling and their
illustrations with mda and rm-odp, Laboratory of Systemic Modeling, Swiss Federal Institute of
Technology — Lausanne, http://lcawww.epfl.ch/Publications/Naumenko/NaumenkoW03.pdf

[ATL] The Eclipse Foundation, ATL Subproject, www.eclipse.org/gmt/atl/

[ATL Desc.] Model transformation with ATL, ATLAS group (INRIA & LINA), University of Nantes,
France, http://www.sciences.univ-nantes.fr/lina/atl/

[EMF] The Eclipse Foundation, Eclipse Modeling Framework (EMF), www.eclipse.org/emf/

100

[5] Jean Bezivin, Towards a Precise Definition of the OMG/MDA Framework,
http://www.sciences.univ-nantes.fr/lina/atl/www/papers/ASE01.0G.JB.pdf

[6]The official MDA Guide Version 1.0.1, http://www.omg.org/docs/omg/03-06-01.pdf

[7] Jean Vanderdonckt, A MDA-Compliant Environment for Developing User Interfaces of
Information Systems

[MOF] OMG’s Meta-Object Facility: http://www.omg.org/mof/

[QVT] OMG, MOF QVT Final Adopted Specification, 2005, http://www.omg.org/docs/ptc/05-
11-01.pdf

[XMI] OMG, The XMI recommendation, 2002, http://www.omg.org/cgi-bin/doc?formal/2003-
05-02

[9] OMG, Model-Driven Architecture: Vision, Standards
And Emerging Technologies, http://www.omg.org/mda/mda_files/Model-

Driven_Architecture.pdf

[Schaefer] Schaefer, R., A Survey on Transformation Tools for Model Based User Interface
Development, Proc. of 12th Int. Conf. on Human-Computer Interaction HCI International'2007

(Beijing, 22-27 July 2007), Part I, Lecture Notes in Computer Science, Vol. 4550, Springer-
Verlag, Berlin, 2007, pp. 1178-
1187. http://www.usixml.org/index.php5?mod=download&file=Schaefer-HCIInt2007.pdf

[10] Jean Bezivin, Fabian Buttner, Martin Gogolla, Frederic Jouault, lvan Kurtev, Arne Lindow,
Model Transformations? Transformation Models!, University of Nantes, Computer Science
Department & INRIA(A), University of Bremen, Computer Science Department & TZI(B)

[11] Shane Sendall and Wojtek Kozaczynski, Model Transformation — the Heart and Soul of
Model-Driven Software Development, Swiss Federal Institute of Technology in Lausanne

[12] Aditya Agrawal, Metamodel Based Model Transformation Language, Institute for Software
Integrated Systems (ISIS) Vanderbilt UniversityNashville, TN — 37235, 2003

[13] Anonymous author, Model Driven Architecture on Wikipedia,
http://en.wikipedia.org/wiki/Model-driven_architecture

[14] John D. Poole, Model-Driven Architecture: Vision, Standards And Emerging Technologies,
Position Paper Submitted to ECOOP 2001 Workshop on Metamodeling and Adaptive Object
Models, april 2001

[15] M. Bohlen, QVT and multi metamodel transformations in MDA, 2006,
http://galaxy.andromda.org/jira/secure/attachment/10780/QVT+article+mbohlen+2006.pdf

101

[16] Johanna Ambrosio, Tools for the code generation, 2003,
http://www.adtmag.com/article.aspx?id=7850&page=

[17] Mikko Kontio, Architectural manifesto: Choosing MDA tools, Three categories for
evaluation, sep. 2005, http://www-128.ibm.com/developerworks/wireless/library/wi-
arch18.html

[18] Mike Rosen, Which MDA Tools are Right for You?, M2VP Inc.,, 2003,
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/03-1_Rosen.pdf

[mdaTools] Anonymous author, Etat de l'art des outils MDA,
http://www2_lifl.fr/~bonde/exploration.html

[19] Jodo Paulo Almeida, Luis Ferreira Pires and Marten van Sinderen, Costs and Benefits of
Multiple Levels of Models in MDA Development, Centre for Telematics and Information
Technology, University of Twente PO Box 217, 7500 AE Enschede, The Netherlands,
http://www.cs.kent.ac.uk/projects/kmf/mdaworkshop/submissions/Almeida.pdf

[20] Jean Bézivin, From Object Composition to Model Transformation with the MDA, University
of Nantes, http://www.sciences.univ-nantes.fr/info/lrsg/Recherche/mda/TOOLS.USA.pdf

[21] Desmond DSouza, Model-Driven Architecture and Integration, Opportunities and
Challenges, Version 1.1, 2002, ftp://ftp.omg.org/pub/docs/ab/01-03-02.pdf

102

Appendix A

Here we give the detailed description of the UsiXML interface description language.

2.3.1.1 Task Model

The Task Model describes the interactive tasks as viewed by the end user interacting
with the system. The task model is expressed here according to our extended version of
ConcurTaskTree notation [Pate97]. The Task Model is composed of tasks and task
relationships. Tasks are, notably, described with attributes like name and type. The name of
the task is generally expressed as a combination of a verb and a substantive (e.g., consult
patient file). The type refers to four basic types of tasks: user's, interactive, system and
abstract task. For leaf task we consider two attributes (i.e., userAction and taskitem) that
enable a refined expression of the nature of the task. This expression is based on the
taxonomy introduced by [Cons03] that allows to qualify a Ul in terms of abstract actions it
supports. The userAction is represented by a verb that indicates a user action required to
perform the task and the taskitem which refers to a type object or subject of an action. The
possible values and their associated definition are presented in Section 2.3.1.2.

Task relationships are relationships involving several occurrences of different (or the
same in some cases) tasks. Task relationships are of two main types:

e Decomposition: enables to represent a hierarchical structure of the task tree.
Decomposition relationship is implicit within the XML syntax of the language and it
is represented by simple embedding of elements.

e Temporal: allows specifying temporal relationships between tasks. We use LOTOS
operators as they have been applied to task modeling in [Pate97].

A Transformational Approach for Developing Multimodal Web User Interfaces

103

uilodel

EcreationDate © string
schematersion @ string

tagkhdodel
I
N

k source
tas B,

sourceld © strin
&id - string g

Spname : string taskReIalionshi/
Etype : string p 1.n target

frequency © integer - - -
Q}imgunan};e imgeger id : string ———— Stargetld : string
. name : string

Q}structurat\onLevel sinteger
SpcomplaxityLevel : integer
Q}crmmty T integer

Bpcantrality © intager

&termination'/alue - string |

EpuzerAction : string 7 |

Eptaskltem : string iR
— @precondnion : event
1

&

binaryRelationship
e ——

unaryRelationship

[I [
enabling disabling suspendResume ordetlndependence optional iteration
[| [| [

[i i] ‘

concurrencyWithinformationPassing | ‘ independentConcurrency ‘
111]
1 []

finitelteration
ShiterationNumber integer

enablingW¥ithinformationPassing | ‘ deterministicChoice | | undeterministicChoice ‘
1 I 1 [1

Figure 8-1. Meta-model of the Task Model

2.3.1.2 Domain Model

The Domain Model is a description of the classes of objects manipulated by a user
while interacting with a system. It consists of one or many domainClasses, and potentially one
or many domainRelationships between these classes.

A class describes the characteristics of a set of objects sharing a set of common
properties. The concepts identified at the level of a class are the following: attributes,
methods, and objects. An attribute is a particular characteristic of a class. Attributes are further
described by the elements constituting the attribute class. The attributeDataType refers to
basic data types as string, integer, real, boolean or enumerated. An enumeratedValue
describes in extension an attribute that has the characteristic of being enumerated. The
attributeCardMin and attributeCardMax describes, respectively, the lower and upper bound of
the attribute cardinality (0 means that the attribute is not mandatory, 1 means that it is
mandatory). A method is the description of a process able to change the system's state. Here,
the methods are described by its signature (i.e., its name, input and output parameter(s)). An
object is an instance of a class and is composed of attribute instances and can call methods.

A domainRelationship describes various types of relationships between classes. They
can be classified in three types: generalization, aggregation, ad hoc. Class relationships are
described with several attributes that enable to specify its role names and cardinalities.

104

uibdodel

attributelnstance &

Swalue String

craationDate © string
schemaersion : string

b
O.n

ohject

id string
name : string
&classname string

domainClass |71

source

& sourceld string

dornainRelationship

Eid : string

target

123

Bidl : string &nama © string Rytargetld © string

&narme : string

V. g

O..n D\D n ‘ I
attribute method generalization usage
id . string . 8bid - string &RoleAName : "IsA”" BpusageType : string
Bpriame : string Epname : string
gaﬁnbuteDalaType : string
attributeCardivin : integer
EattributeCardhiay - integer 1 ! materialization 1 1 instanciation
& attributeDomainCharacterization : string L I 1
adHoc aggregation

1<?’D..n

enumeratedvalue
Bpriarne © string

0.n

param

&id : string

&dataType : string

&name : string

BppararType | string
EpassingType : {byRef, byVall

ErolesMame : string
&roleACardMin - integer
EroleACardhay ; integer
&roleBMame - string
EroleECardMin integer
&roleBCardMa - integer
EroledinstantiatedCard ; integer
&roleBinstantiatedCard - integer

&roleAName | "is_composed”
EproleACardhin integer
&roleACardMay integer

& roleBMame "cornposes”
&roleBCardMin © integer
EroleBCardhay integer

Figure 8-2. Meta-model of the Domain Model

2.3.1.3 Abstract User Interface Model

graphical, vocal or multimodal. This is achieved in the next level.

AUl Model (Figure 8-1) is populated by Abstract Interaction Objects (AlIO) and Abstract

User Interface Relationships between them.

105

Abstract User Interface (AUI) Model is a model that represents a canonical expression
of the renderings and manipulations of the domain concepts and functions in a way that is
independent of any interaction modality and computing platform. As an AUI does not refer to
any particular modality, we do not know yet how this abstract description will be concretized:

uitdadel

&creationDate : string
schema\arsion : string

auibdodel | | R
|

1 0..n| auiR i 1.n|8 string
1
/d K)\\‘&;wd string ||

1.n &name - string |1

i

targst
: string

abstractContainer T T
&orderType : string ‘ mutualEmphasis ‘ auiDialogCantrol
&sy boalean| ! | &symbol © string

7 spatioTemporal
&, 1 - integer
01 O.n O.n & 2 : integer
| § H betraciCi
facet ; Il |
&id - string
name : string
& actionType - string
(&actionltem : string
I

input [navigation | cantral
inputDataT ype - string event - string
&inputCardMin : string &vaction : string
&pinputCardhdax : string &cantrolPriorit Y« integer
&pinputCharacterization : string initistive : {system, user}

string
? T
il

selectionalug output
&name : string | [&outputContent - uri

Figure 8-3. Meta-model of the AUI Model

An AlO is an element populating an AUl model consisting in an abstraction of widgets
found in graphical toolkits (e.g., windows, buttons) and vocal toolkits (e.g., prompts, vocal
menus). It can be of two types: Abstract Individual Component (AIC) or Abstract Container (AC).

An AIC is any individual element populating an AC. An AIC assumes at least one basic
system interaction function described as facet in the Ul. As AICs are composed of multiple
facets, we call them multi-faceted. Each facet describes a particular function an AIC may
assume. We identify four main facets:

1. Input facet: describes the type of input that may be accepted by an AIC

2. Output facet: describes what data may be presented to the user by an AIC

3. Navigation facet: describes the possible container transition a particular AIC may
enable

4. Control facet: describes possible methods from the Domain Model that may be
triggered from a particular widget.

An AIC may assume several facets simultaneously. For instance an AIC may display an

output while accepting an input from a user, trigger a container transition and a method
defined in the Domain Model.

The actionType attribute of a facet enables the specification of the type of action an AIC
allows to perform. The possible values (Table 8-1) are the same as for the userAction attribute
of a task from the Task Model. The view value allows in [USIXMLO5] to express information by
displaying it and can be reified in the Concrete level only by a graphical object. In order to keep
the AUl Model independent of any modality, we replace this value by introducing in [USIX06]
convey, a more appropriate value for actionType attribute, as it does not specify the employed
modality.

106

actionType Definition

start/go Specifies that the AIC triggers an action

stop/exit Specifies that the AIC puts an end to an action

select Specifies that the AIC allows a selection action over multiple options

create Specifies that the AIC is creating an item

delete States that the AIC is dedicated to the deletion of items

modify States that the AIC is dedicated to the modification of items

move States that the AIC allows the movement of an item

duplicate States that the AIC allows the creation of copies of an item

toggle States that the AIC specifies the existence of two different states of an
item

convey States that the AIC expresses an information without specifying the
employed modality: graphical, vocal, etc.[USIX06]

Table 8-1. Definition of possible values for the actionType attribute of a facet

The actionltem characterizes the item that is manipulated by the AIC. The possible values

(Table 3-2) are identical to those of taskltem attribute of a task from the Task Model.

actionltem Definition
element Specifies that the item has a single characteristic
container Specifies that the item is an aggregation of elements
operation Specifies that the item is a function
collection of | Specifies that the item is composed of a list of elements
elements
collection of | Specifies that an item is composed of a list of containers
containers

Table 8-2. Definition of possible values for the actionltem attribute of a facet

By combining these two attributes a series of possible cases will appear. Table 8-3

exemplifies several possible associations.

107

actionType actionltem Example

start operation Search a definition of a word in an online
dictionary

stop operation Stop searching the definition

select element Select the gender of a person

create element Input a new email address in a form

delete collection of elements Erase a list of phone numbers

modify collection of containers Modify a list of addresses

move element Drag and drop a predefined shape from a
toolbar to the working area

duplicate collection of elements Copy the coordinates of a person (name, email,
fax, phone number)

toggle element Switching on/off the connection with a
network

convey element Express the result of a computational
operation (the result can be expressed
graphically by displaying it on the screen or
vocally by system utterance)

convey container Express the starting date of a conference (the
day, month and year can be displayed on the
screen or can be uttered by the system)

convey collection of elements Express the authors list of a book (the list of
authors can be displayed or can be uttered by
the system)

convey collection of containers Express the starting and ending date of a

conference (the day, month and year of the
staring date and, respectively the ending date
can be displayed or can be uttered by the
system)

Table 8-3. Examples of combinations between actionType and actionltem attribute

values

108

AUI Relationships are abstract relationships among AUl objects. Relationships may
have multiple sources and multiple targets. There are a couple of types of relationships,
between which:

e AbstractAdjacency: allows to specify an adjacency constraint between two AlOs

e AbstractContainment: allows to specify that an AC embeds one or more ACs or one
or more AlCs

e AuiDialogControl: enables the specification of a dialog control in terms of LOTOS
operators between AlOs.

2.3.1.4 Concrete User Interface Model

Concrete User Interface (CUI) Model is a model that allows the specification of the
presentation and behavior of a Ul with elements that can be perceived by the users [Limb04b].
The CUI abstracts a Final Ul in a definition that is independent of programming toolkit
peculiarities.

CUI Model (Figure 8-2) concretizes the AUI for a given context of use into Concrete
Interaction Objects/Components (ClOs/Components) and Concrete User Interface Relationships
so as to define layout and/or interface navigation of 2D graphical widgets and/or vocal
widgets.

ClOs realize an abstraction of widget sets found in popular graphical and vocal toolkits
(e.g., Java AWT/Swing, HTML 4.0, Flash DRK 6, VoiceXML). A CIO is defined as an entity that
users can perceive and/or manipulate (e.g., window, push button, text field, check box, vocal
output, vocal input, vocal menu). Because UsiXML considers both graphical and vocal
modalities, CIOs are further divided into two types: graphicalClOs and vocalClOs. A detailed
explanation regarding the types of graphicalClOs, vocalClOs and the corresponding Concrete
User Interface Relationships between them, along with their semantics and syntax is presented
in the following sections.

Any CIO can have any number of behaviors. A behavior is the description of the triplet
event-action-condition that determines the Ul change. In the following we offer a brief
description for each of the terms involved in the triple, but a more detailed documentation can
be found in [USIX06]:

e Event: specifies an expression triggering one or several actions. Events are
restricted to a specific event language. Graphical eventsTypes are described in
Section 8.3.2.1. The attribute eventContext allows mentioning the concerned CIO,
depending on the type of event. The attribute device is a reference to the device
with which the event is triggered.

e Action: is a process triggered by an event performed on a CIO. An action may be a
method call, a Ul internal change, etc.

* Condition: enables to specify a pre/post-condition attached to an action. A
condition is expressed as a graph patters (i.e., a rule term) that must be fulfilled in
the specification before or after the application of an action. Conditions may be
combined with Boolean operators to compose complex conditions.

109

m“--“

condition

BhizF ositive boolean
Q)isNegatiue tboalean
Q?conditionType “{pre,post}

%description cstring

event
Eid : string
Q}eventType :string
BheventContent : string
%de\rice :string

cio

%id :string

name :string
Bhicon ; uii
Bcantent : uri
%default[:ontent catring or uri
%defaultlcon suri
Q}defaultHelp suri
Q}help 1 string
%current\!alue : string
Bperror: string
%‘feedback :string
Q}ishﬂandatory: boolean

uitdodel

%creationDate cstring
chema'fersion : string

cuiRelationzhip
id : string
name : string

araphizalCia

Bhizvizible : boalean
%isEnabled :boolean
BpstatusBarCantent : uri
%defaultStatusBarContent : string

i %fgColol:string
\\Q BebgCalor ; string

%bordeﬂ.ﬂl’idth tinteger
%borderType sinteger
BpborderTitle String
%defaultBorderTitle : String
BoborderTitledlign ; String
%borderColor: String
%foolTipDefaultContent :string
QﬂoolTipContent: uri
%{lansparenc’yRate tinteger

B

vocalCio
C—

£

wacalContainer

wocallndividualComponent

EisDrderlndependent tboolean

pe———| Eeyboardshor{cut : string
d

Eidth vinteger

Q}heigth sinteger
%bglmage T
%isAluuaysDnTop :boolean
Q}repetition sinteger
Q}isDetachable :boolean 4
1 %ishﬂigrateable tboolean

graphicalContainer

graphicallndividualComponent

glueferical : string
Q}glueHolizontal string
%defaulthﬂnemonic: String

mnemaonic: String
Q}{extFont :shring
BhizBold : boolean
Bpizitalic: boolean
%isUnderlined :boolean
%isStlikeThrough choolean
Q?isSubScript: boolean
%isSuperScript: boalean
BhizFreformatied ; boolean

extSize :integer
BbtesdCalor: String

Figure 8-4. Excerpt of the CUl Meta-model

2.3.1.5 Final User Interface

The Final Ul (FUI) is the operational Ul, i.e. any Ul running on a particular computing

2.3.1.6 Context Model

platform either by interpretation (e.g., through a web browser) or by execution (e.g., after the
compilation of code in an interactive development environment).

The Context Model (Figure 8-5) describes all the entities that may influence how the

110

user’s task is carrying out with the future Ul. It takes into account three relevant aspects, each
aspect having its own associated attributes: user type (e.g., experience with device and/or
system, task motivation), computing platform type (e.g., desktop, PocketPC, PDA, GSM), and

physical environment type (e.g., lighting level, stress level, noise level). These attributes initiate

transformations that are applicable depending on the current context of use.

emironment
Etype : string
&id string
&name - string
&isNoisy : boolean
%IlgmmgLevel s string

T ——&id - string

N |&name : string

context

browserUA

uikodel

creationDate : string
@ schemaversion : string

contextMadel

plasticityDomainSet)

0.1

&id - string

1
TW n
plasticityDarain

&id string
& contestid : string

1 7 1
0.1

0.n

0.1

platformPlasticityDormail

userPlasticityDamain

prviramentPlasticityD omai

0.n

: Literal
ersion : Literal

sHtmiversion : Literal

1 iptt

htmVersion : Literal
Rochtmitodules : Literal

yisFramesCapable : Boolean

1 bled : Boolean
1 bled : Boolean
Literal
&yisTablesCapable - Boolean

softwareP atform

Q)lsstressmg “hoolean 1.n 1
ton 1.n
hardwareP latform
“string
EposlarCapability : integer
E q:u stri:a ole - boot 0.1 userstereotype
< boslean o
ShinputCharSet : shiing o1 1 8id - string
Bhkeyboard : string platform Spsteretypailame : string
& Char: integer EX a.n Q;laskExperience string
& model : shin 1.n| id: string SpsystemExperience : strin
model a tring 0.1 i P [’}
: harSet : string /"‘O NS 2 deviceExperience string
2 s‘”“fmng on] 1.n Sptaskhiotivation : siring
& iy n 1.n
& ght : integer 1.n 0n
& har : integer
=% Capable boolean o.n
& OutputCapable : boalzan 0.n
P ey sty netwokCharacteristics
EpisTestinputCapable : boalean Epcapasity : Number wapCharasteristics
&hasT suchSereen : hoolean @eestPaniolums : Literal EhsupportedPictogramSet : Literal (bag)
& putCapable : boolean EcostParTime : Literal AiapDeviceClass : Literal
& string EmIDeckSize : Number
EWimISenipiLibraries ; Literal (bag)

Es\imlSeripiversion ;: Literal (bag)
Aimiversion @ Literal (hag)

< string

d string

i string

Name : string

T

os\endor : string
os\ersion : string

string

R string
lQ)p\atfnrr’nlrj : string

Sid : string
userStereotypeld : string

id : string
Senviromentid : string

1
1.n

1
1.n

1
1.n

platiormPlasticityAspect|

userPlasticityAspect

envirormentPlasticityAspect

Soid : string

id : string

&id - string

1

screenSizeAspect

EallowedOperations : et of strings

&pcomers : set of coordinates
& shape : string

Figure 8-5. Meta-model of the Context Model

2.3.1.7 Mapping Model

The Mapping Model (Figure 8-6) contains a series of related mappings between

models or elements of models. A mapping model serves to gather a set of pre-defined, inter-

model

interModelRelationships,

relationships

that are se

transformational approach:

mantically

related.

It consists

of one

to many

a part of them being used throughout the steps of the

e Manipulates: maps a task onto a domain concept (i.e., a class, an attribute, a
method or any combination of these types).

e Updates: is a mapping between any Ul component (at abstract or concrete level)
and a domain attribute or instantiated attribute (at run time). Updates enables to
specify that a Ul component provides a value for the related domain concept.

e Triggers: indicates a connection between a method of the Domain Model and a Ul
individual component (either at the abstract or at the concrete level)

e IsExecutedIn: indicates that a task is performed through one or several ACs and
AlCs.

e IsReifiedBy: maps the elements of an AUl onto elements of a CUL. This relationship
specifies how any AIO can be reified by a CIO.

111

uitdodel

%creatmnDate string
&zchemaersion : string

source

Zﬁ i &sourceld string
mterMndeIR’eIati/
mapping onship

Madel —“Q;m : string 1 g
1 Soname smngm target
Q)targetld string

! triggers ! ! obseres 1 \ updates \ \ isReifiedBy | | isAbstractedinto | | isExecutedin | | isTrans|atedinto | \ manipulates | \ hasContext | | isShapedFor |
[] I 1 f 10 | I 1| 1T 1 |
[I o] I] 11 I 1 I I]

Figure 8-6. Meta-model of the Mapping Model

2.3.1.8 Transformation Model

Transformation Model (Figure 8-7) contains a set of rules enabling the transformation
of one specification (at a certain level of abstraction) into another or to adapt a specification
for a new context of use. A transformation rule realizes a unit transformation operation on a
model. It is composed of a:

e Lhs (Left Hand Side): models the pattern that will be matched in the host model
e Rhs (Right Hand Side): models the part that will replace the LHS in the host model
e NAC (Negative Application Condition): models the condition that have to hold false
before trying to match LHS into the host model
e AttributeCondition: is a textual expression indicating a condition scoping on
element attributes of the lhs of a transformation rule
e RuleMapping: defines the source and the target models of the transformation rule.
For instance, a rule may establish a mapping between a Task Model and an
Abstract Model. In this case, the source indicates the source model of the
mapping, while the target indicates the target model.
Transformation rules are applied in order to develop Uls following a specific
development path (e.g., forward engineering, reverse engineering, adaptation to context of
use). A development path is composed of development steps that can imply three types of

transformations depending on the development direction:

e Reification: consists in the derivation of the next lower model in our reference
framework

e Abstraction: consists in the derivation of the next upper model in our reference
framework

e Translation: is a type of model transformation adapting a set of Ul models to a
target context of use.
A development step is decomposed into development sub-steps. A development sub-step is

realized by one (and only one) transformation system. A transformation system is composed of
a set of sequentially applied transformation rules. One transformation system applies one sub-
derivation unit [Limb04]. A sub-derivation unit is defined as a collection of derivation rules
that realize a basic development activity. A basic development activity has been identified to

112

sub-goals assumed by the developer while constructing a system, for instance choosing

widgets, defining navigation structure, etc

uibtodel

creationDate : string
&schemaversion : string

developmentPath

Syid - string transfarmationMade

Enarme ; string
Sesourceviewpoint | {task&dornain, auicuil D1 4
'%flargetviewpnim {task&domain, aui, cui}

1
T
o.n

developmentStep Ed _
abstraction

Gid © string
gname : siring
sourceliewpoint {fask&domain, aui, cui} "

Etarget/iewpnint: {task&domain, aul, cui} [~———] TSI .
&sourceContexd : string

SstargetCantextld ; string

s

(r 1

0.h ransformationSystem)
Hevelopment3uhSte &id - string
Q;id:string_ ks ®onarne ; string
Spname : string 1 0. & description ; string

1.n
__________________ applicationOrder|
————— 1

transformationRule

&id - string
name : string
&escription : string

1 a.n
1 1 -
n K (R \ ruleMapping
attributeCondition LN 0.1 ! Ssourceld : string

Bpaxpragsion : string | nac lhs | ths Sptargatid : string
[[1
[]

ruleTenm
StermStaternent ; string

Figure 8-7. Meta-model of the Transformation Model

113

Appendix B

NAC LHS RHS

isExecutedin

|abstractCuntainer

Figure 9-1. Rule 1: Create an AC for task that has task children

NAC LHS RHS

1:task

abstractCnntainer| |abstractlndividualCumpunent

Figure 9-2. Rule 2: Create an AIC for leaf tasks

NAC LHS RHS
termnpaoral tempaoral
¥si_type="*" KSi_type="*"
task
isExecutedin isExegutedin
L
abstractContainer abstractContainer abstractContainer
repetition="true" repetition="true" repetition="true"

Figure 9-3. Rule 3: Iterative tasks are mapped onto repetitive AC

114

NAC

abstractContainment

4:abstract00ntainer}—P{S:abstractCDnt

ainerl g

sEpecutedin

10:decomposition

LHS

9isExecutedin

RHS

BiisEpecutedin

|4:abstract00ntainer|

|5:abstractContainer|

10:decomposition

SisExecutedin

abstractContainment

[4:anstractcontainer——{:abstiactContainer

Figure 9-4. Rule 4: Reconstruct containment relationship between ACs

NAC

10:abstractContainer

abstractCpntainment

13:isExpcutedin

LHS

12:decomposition

14.isExegutedin

13isExgcutedin

RHS

12:decomp

abstractContainment

osition

14:isExdgeutadin

11:abstractlndividualCnmpnnent||10:abstractContainer| |1'1jabStracﬂndividua|ogmpgnem| |1D:abst|'actContaine|-|—>|11:abstractlndividualComponent

Figure 9-5. Rule 5: Reconstruct containment relationship between ACs and AlICs

NAC

JabstractindividualComponent
osedOf

isCo

facet
actionType=create
type=input

LHS

1task

userAction=create
taskiterm=element

f:manipulates

2:attribute

4.isExs

cutedin

b

|3:abstrac1lndividualCumpunent|

RHS

11ask

userAction=create
taskltern=element

5:manipulates

2:attribute

4:isE£ecutedIn

|3:abstractindividualCamponent]

isConﬁmsedOf

facet

type=input

actionType=create
actionitem=element

Figure 9-6. Rule 6: Create an input facet for AIC executed in tasks of type create

NAC LHS

JabstractindividualComponent
isCor&msedOf

facet
actionType=select
type=input

1:iask

userAction=select
taskltem=element

5lisEx

ecutedin

RHS

f:manipulates

2:attribute

isComposedOf

h
|3:abstractlndividualComponent| |4:enumerated\-’a|ue |

1:task G:manipulates
userAction=select 2:attribute
taskltem=element
isComppsedOf
SisExecutedin i
[3:abstractindividualcomponent] [4:enumeratz dvaluz |
\SCUmbUSEdOf
facet

actionType=select
actionlterm=element
type=input

Figure 9-7. Rule 7: Create an input facet of type select element when an enumerated value

attribute is encountered

115

NAC

LHS

11ask

userAction=selact
taskltem=element

T:manipulates
2:attribute

Afacet

GrisExdeutedin

isComposedOf

h

actionType=select
actionlterm=elament

3:abstl'actlndividualCompnnent|

4:enumeratedvalue

type=input iSCDr‘@DSEdOf name=x
isCDmﬁnsedOf 5-facet
actionType=select

selectionvalue
names=x

actionitem=element
type=input

1task

userAction=select
taskiterm=element

RHS
T:manipulates
2:attribute
isComposedOf

G:isExecutedin

3:abstractlndividuaICompunem|

4:enumeratedyalue

name=x
isCDmiuosedOf
5facet isComposedOf
actionType=select > selectionValue
actionltem=element name=x
type=input

Figure 9-8. Rule 8: Create selection values for facets of type select for each enumerated value
of an attribute

NAC

3.abstractindividualComponent

isComppsedOf
v

facet
actionType=convey
type=output

LHS

1task

taskitern=element

4'isExe
L
|3:abstractlndividualCnmponent|

utedin

S:manipulates
userAction=convey 2:attribute

RHS

1task
userAction=convey
tasklitem=element
4:isExpcutedin
k

Amanipulates
2:attribute

|3:ahst|‘actlndividualCnmponent|

isComposedOf

facet

actionltem=element
type=output

actionType=convey

Figure 9-9. Rule 9: Create an output facet that conveys an element

NAC

LHS

1:task

JabstractindividualComponent

isComposedOf

kA

facet
actionType=start
type=caontrol

userAction=start
taskiterm=operation

4:igExgcutedin
k

|3:abstract|ndividualCnmpnnent|

T:manipulates

RHS

1task

userAction=start
taskitern=operation

T'manipulates

4:isE
N

ecutedin

|3:abstl'actIndividuaICumpDnent|

isCDmtnsedOf

facet

type=control

actionType=star
actionltem=operation

Figure 9-10. Rule 10: Create a control facet of type start operation when a method is

manipulated by a task

116

NAC LHS RHS

temporal
type:":}"

temporal
fypa=">="

isExecptedin

isExgcutedin

v
|3:abstrac1lndividuaICumpnnem|

|3:abstractlndividualCnmpDnent|

ahstracthdjancency

|3:abst|‘actlndividuaICumpnnent|

- ,‘" isExegutedin
|4:abstractlndlwduaICUmpDnent| isExgcutedin abstractAdjaheency
|43abStl'aﬁtmdiVidU3|CUmFJUnEﬂt| |4:abstractlndividualonmponent|
Figure 9-11. Rule 11: Creating abstract adjacency for <AIC, AIC> couple
NAC LHS RHS
temporal temparal
type="==" type="=="
|4:abstract00ntainer| isExe isExecpitedin

isExecidedin

ahstractpdjancency
r |4:abstractContainer| isExe

|3:abstractlndividual0umpnnent|

4:abstractContainer

abstract®djancency

|3:abstractlndividualoumpnnem| |3:ahstractlndividuaICnmponent

Figure 9-12. Rule 12: Creating abstract adjacency for <AC, AIC> couple

NAC LHS RHS

temporal
WFJE="F'>"

temporal
type="=="

|3:abstractlndividualCnmpDnent|

isExegutedin isExedutedin
ahstracttdjancency h 4

v |3:ahstractlndividualCnmponent| isExecutedin

B:abstractContainer
B:ahstractContainer

Figure 9-13. Rule 13: Creating abstract adjacency for <AIC, AC> couple

|3:abstractlndividualComponent| isEXecutedin

abstracthdjanes
S:abstractContainer

NAC LHS RHS

tempaoral
pe:":-—-:"

tempaoral
typ p="=="

|4:abstractCnntainer| isExeqlJtedln

isExecutedin
ahstraclﬁ"djancency v
| |4:abstract00ntainer|

isExecytedin

|4:ahstl'actcnntainer|

isExgcutedin
Y ahstramy

|8:ahstract00ntainer| |8:abstl'actcnntainer|

|B:abstractCnntainer

Figure 9-14. Rule 14: Creating abstract adjacency for <AC, AC> couple

117

NAC

|3:abstl'actlndividuaICDmpunent|

LHS

tempaoral

type=x

isExacutedin

¥

|3:abstractlndividual00mpnnent|

auiDialquControl
¥
|4:abstl'actlndividuaICDmpunent|

RHS

temporal

|4:ahst|'actlndividualCnmpnnent|

|4:abstract|ndividuaICDmpunent

Figure 9-15. Rule 15: Deriving Abstract Dialog Control for <AIC, AIC> couple

NAC

|4:abstl'actcnntainer|

auiDialpgControl

r

|3:abstractlndividualCnmpnnent

| |4:abstractContainer|

RHS

temporal
type=x

isExecpitedin

4:ahstractContainer| jsExecutedin

auiDialmg Control
symhbol=x

|3:abstractindividualComponent]

|3:abstractlndividuaICnmponent

Figure 9-16. Rule 16: Deriving Abstract Dialog Control for <AC, AIC> couple

NAC

|3:abstractlndividualComponent|

auiDialpgControl

isExe

LHS

temporal
type=x
utedin

b

r

k4

|3:abstractlndividualCnmponent| isExecutedin

4:abstractContainer

4-abstractContainer

RHS

temporal

isExedutedin

|3:abstractlndividualCnmponent| isEdecutedin

symbol=x

4:abstractContainer

Figure 9-17. Rule 17: Deriving Abstract Dialog Control for <AIC, AC> couple

118

NAC LHS RHS

termpaoral
type=x

|3:abstractCnntainer|

isExecutedin |3:abstractCnntainer| isExecuytedin

auiDialpgControl
rg _ auiDigtegControl
|4:abstract0nntainer| |3:abstractCunta|ner| symhol=x

isExecutedin

|4:ahstractCnntainer| |4:ahstl'actCnntainer

Figure 9-18. Rule 18: Deriving Abstract Dialog Control for <AC, AC> couple

NAC LHS RHS

T:manipulates

7:manipulates

2:ahstrau:tlndividualCompnnent| 1task

. Jatfribute

updates SlisExecutedin 5iisEx
h

o G
Y
3uattribute |E:ahstl'actlndividualCnmpnnent| |2:abstl'actlndividualComponent|

Figure 9-19. Rule 19: Deriving updates relationships for an AIC

Juattribute

NAC LHS RHS

S9:manipulates

8:method
.

trigpers

SisExecutedin
trighers

Siskyxecutedin

|3:ahstl'actlndi\riduaICDmpDnent| |3:ahst|‘actlndividualCnmpnnent

|3:ahstract|ndividualoomponent|

Figure 9-20. Rule 20: Deriving trigger relationships for AICs
NAC LHS RHS

abhstractContainment
|2:at:ustract(3u:untainer| |1:ahstractCnntainer| |2:ahst|'a|:tCDntainer|-4—{1:ahstractCnntainer|

. isF{e"ﬂedEy
abstractContainment 5 siractCdntainment graphicalContainment
graphicalContainer
¥si_type=box
name=main_hox

. graphicalContainer
|ahst| actContainer | |2:abstl'actCDntainer| ¥si_type=window

Figure 9-21. Rule 21: Creation of windows derived from abstract containment relationship

119

NAC LHS RHS

B:abstractContainment G:abstractContainment
5:abstl'act00ntaine|‘| 1:abstractContainer 5:ahstractCnntainer| |1:abstractContainer 5:abstractContainer
isReifiedBy 4:isRe|fiedBy LisRgfiedBy isReifiedBy
[Y graphicalContainment

- - 2:graphicalContainer 2-graphicalContainer
graphicalContainer| o5 ype=box xs?tﬁaT o |graphicalContainer
¥si_type=hox name=main_box name=rmain_box xsi_type=hox

Figure 9-22. Rule 22: Generation of graphical containers of type box

Sub-step 3.2: Selection of CICs

The rule illustrated in Figure 8-23 generates a GC of type box that will embed two
GICs: an outputText and an inputText representing respectively the label and the associated
text field.

Figure 5-24 describes the rule applied in order to create a GC of type box that will
embed a group of radio buttons when an input facet of type select element is encountered. A
GIC of type outputText representing the label associated to this group is also created. The
defaultContent of the GIC is the same as the name of the AIC. The radio buttons associated to
this group are created by executing the rule described in Figure 5-25. For each selection value
of a facet of type select, a radio button, that has the same content as the name of the
selection value, is created

NAC LHS RHS

abstractContainment

1:abstractContainer 2:abstractindividualCompaonent
TiisReifiedBy i cégposedof
N — isRejfitdBy
abstractContainment 4.graphicalContainer 3facet
5:abstracﬂndwiduaIComponem| |1:abstractContainel'I—b|2:abstractlndividualComponent| graphicalentainment type=input
- - actionType=create
'SC°m£°SEdOf graphicalContainer act\onnzlr]melemem
isRdifizdBy TiisRelfiedBy v ﬁﬁrﬁsﬁzhon:tal inputDataType=string
face =
type=input graphicalGentainment grapmgalContainment
raphicalContainer -graphi iner ; =cr
arap 4:graphicalContainer actionType=create graphicalAdjancency
actionitem=elemnent [arapnicalindividualGompanent| _[araphicalindividualGormponent]|
inputDataType=string [xs_typ e=outpulText | " [xsi_type=inputTexd |

Figure 9-23. Rule 23: Generation of an outputText and an inputText for AIC with create input
facet

120

NAC

LHS

abstractContainment

RHS

abstractContainment

1:abstractContainer g

Z:abstractindividualCompanent

TiisReffiedBy

|2:abstractlndividualCompunent|

isReifiedBy

graphicalContainer

4:graphicalContainer dBy [37acet
|1 ‘abstractContainer 2:abst|‘actlndividua|Component| graphicalsantainment inputDataType=string
A type=input
. ISCDmiDSBdOf grgph\calComamer actionType=select
TisReffiedBy xsi_type=box actionttern=elemant
3facet type=harizontal
type=input g\aphmalcbntainmem

4:graphicalContainer

actionType=select

graphicalindividualCompanent

actionltern=element
inputDataType=string

xsi_type=outputText
defaultContent=y

Figure 9-24. Rule 24: Generation of a graphical container of type box that will contain a group

NAC

d:selectionValue
narme=x

isRejfiedBy

|gl'aphica\lndividua\component‘

LHS

abstractContainment

1:ahstractContainer

of radio buttons

RHS

abstractContainment

1-abstractContainer > 2:abst|actlndividua\ComponentI

name=y

SisReffiedBy

_|Q'ahstractlndividualCDmpDnent‘

9:isReffiedBy

4:graphicalContainer

graphicalCgntainment

G:graphicalContainer
xsi_type=hox
type=horizontal

12iisReifig

" [name=y | 4:graphicalContainar

graphicalConlfainment

125K,

Y isComposedOf
h 4

Jifacet

type=input
actionType=select
actionltem=elemeant
inputDataType=5tring

G:graphicalContainer
¥si_type=hox
type=horizontal

graphicalCgntainment

ledBy

isCofposedOf

Ifacet

type=input
actionType=select
actionltern=element
inputDataType=String

isComposedOf

graphicalindividualComponent

isReifiedBy

isComposedOf

xsi_type=radioButton
defaultContent=x
grouphames=y

f:selectionvalue
name=x

Figure 9-25. Rule 25: Generation of radioButtons for each selection value of a facet of type
select

Figure 8-26 presents the rule applied to generate a GC of type outputText, each time
an output facet of type create is encountered.

NAC LHS RHS

abstractContainment
|1:abstractcuntainerI—D-|2:abstractlnd|\f|dualcomp0nent

abstractContainment
|1 :abstractContainer|—>|2_ab51|actlndividualoumpunem|

|2:abst|‘actlndividuaICUmponent|

isComppsedOf
isComposedOf
isReifizdBy T:isRgifiedBy v
Y facet 3facet
|graphicallndividuaIComponent| 4:graphicalContainer fype=output |graphicalindividualGomponent] type=output

actionType=create
actionltem=element

actionType=create
actionltern=element

|[xsi_type=outputText

Figure 9-26. Rule 26: Generation of an outputText for an output facet with create action type

121

The GIC of type button is created when a control facet of type start operation is
encountered.

NAC LHS RHS

S:abstractContainment

S:abstractContainment — |2'ahstractCDntainer|—D|1'ahstractlndividualCDmpDnent
2:abstractContainer 1:abstractlnmwdualComponent| -
isComposedOf 4 isComposedOf

|1:abStl'actIndi\ridualCDmpunent| 4isRgifiedBy isReifigdBy
G:facet]
. Gfacet
ISREiﬂEdBY J.graphicalContainer type=contral type=control
actionType=start [graphicalindividualComponent| |actionType=start
|graphicalIndividualCumponent| actionltem=operation |type=butt0n | actiontem=operation

Figure 9-27. Rule 27: Generation of a control button

Sub-step 3.3: Arrangement of CICs

For each couple of adjacent AlOs that are reified into graphicalClOs, we define a
graphicalAdjencency relationship between these graphicalClOs. As AlOs can be of two types
(i.e., ACs or AICs), there are four possible combination to take into account. For each
combination a specific rule is considered (Figures 8-28, 8-29, 8-30 and 8-31).

7:abstractAdjancency T:abstractAdjancency
[1:graphicalindividualComponent] - [3abstractindividualComponert}—»f4anstractinaniaualcomponent] 3 abstractindividualcomponent|—b{#:abstractindividualCompan=nt]
graphicalfdjancency 5isRelfizdBy GisRelfiedBy GisRdifiedBy G:isRe(fiedBy
graphicalAdjancency L

v
|2.g|aphicallndividualoumpunem| |1.glaphica\Indwidua\CUmpUnem‘ |2g\aph\callndividualcomponent| |1:gl'aphicallndividualComponentH2_g|aphicaHndividua\Cumpunem|

Figure 9-28. Rule 28: Generation of Graphical Adjacency relationships for <GIC, GIC> couples

10:abstractAdjancency 10:abstractAdjancency
‘B:glaph\calCDntainer| |933b9“'30t00m3m9f|—"|3"‘3“5"3'3"””'\”UUEICDmpnnem| ‘Q:abstractoontainel'|—>|S:abstractlndividualCumponent|
graphicalddjancency 11.isReifiedBy gisRelfiedBy 11:isREgifiedBy SiisReifiedBy
3 h 4 graphicalAdjancency r graphicalAdjancency

|2 graphica\lndiwdualComponent| |4:graphica|Containel'|—>{1_g|aphicallndividua\CUmpunem| |4 graphicalContainer'—Dﬁ glaph\callndividua\Component|

Figure 9-29. Rule 29: Generation of Graphical Adjacency relationships for <GC, GIC> couples

122

NAC LHS RHS

12:abstractAdjancenc

12:ahstractAdjancency

|4:graphicalContainer| [8:abstractContainer g:abstractContainer
graphicalpdjancency 10:isReifiedBy 11:isRifiedBy 10:isReifiedBy) i 11:isReifiedBy
h N graphicalAdjancency

3:graphicalContainer

4:graphicalContainer

|9:g|‘aphica|Container| |3:graphicaloontainer| 4:graphicalContainer

Figure 9-30. Rule 30: Generation of Graphical Adjacency relationships for <GC, GC> couples

NAC LHS RHS

9:abstractAdjancency

9-abstractAdjancenc

1:abstractindividualComponent S:abstractContainer B —
‘E:graph\callndividua\Component| | |1.abstlactlndlwdualoomponent B:abstractContainer
TiisReifiedB i i . " 10isReifiedB:
graphicalddjancency v 10isReifiedBy TisRqifiedBy d
Y graphicalAdjancency
|4:graphicalcomamer| |4:g|'aphica||ndividua|Comp0nent| 3:graphicalContainer |4.g|aphicallndividualoumpunem'—D-|3:graphicaloontainer|

Figure 9-31. Rule 31: Generation of Graphical Adjacency relationships for <GIC, GC> couples

Sub-step 3.4: Navigation definition

The rules that ensure the navigation definition are not exemplified for this case study
as all the components of the virtual polling system are presented into the same window.

Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AlOs with a dialog control relationship, a transposition of this
relationship to the graphicalClOs that reify them is realized. As AlOs are of two types (i.e., ACs
and AICs), four rules describing the four possible combinations are considered (Figures 8-32, 8-
33, 8-34 and 8-35).

&:auiDialogCaontral
A:auiDialogControl symhol=x
sympol=x |3.absl|actlndividualCUmpunentH4 abstlacﬂndividualCumpunem‘
|1 :g|'aphicallndividualcomponent| |3'3hS“'aCt'nd"”d“a'cnmp“”eml—"|43abs“'aC“”di\‘idua‘oﬂmpone”t| 5isRafizdBy GisRelfizdBy
cuiDialogControl fisReifiedBy GisRgifiedBy ‘1 graphlcallndw\dua\CnmpnnemMz g\aphicallndw\dua\Cumpunenl|
r

cuiDialogControl

h
|2'g|‘aphicallndividualCDmpnnent| |1:gl'aphicallndividualoomponent| |2:graphicallndividualComponent| symbol=x

Figure 9-32. Rule 32: Generation of Concrete Dialog Control relationships for <GIC, GIC>
couples

123

NAC LHS RHS

9:auiDialogControl 9:auiDialogControl
symbol=x mbol=x

— - Syl
4.graphicalContainer g:abstl-actw'—q3;abst|'act|nd|v|dualComponent| ‘S.abst\actCunlalnell—blE abst\acﬂnd\wdua\Cumpunem‘
. i " 10:isReifiedBy SisRefiedBy
cuiDialdgControl 10:isReifiedBy SisRe(fiedBy
4 TgraphicaGontaine:

r
|1 :g|'aphicallndividualComponent| tuiDialogContral
symbol=x

v
|1 :gI'aphicallndividuaICDmpDant| |4:graphica|Containel'|

Figure 9-33. Rule 33: Generation of Concrete Dialog Control relationships for <GC, GIC>
couples

NAC LHS RHS

13:auiDialogControl
symbol=x

13:auiDialogControl
bol=
8:abstractContainer Symbex 9:abstractContainer
3:graphicalContainer| |g:ahstractContainer U:ahstractContainer 10:isfeiniedBy 11isReifiedBy
10:isReifiedBy 11:isReifiedBy 3:graphicalContainer 4:graphicalContainer

cuiDialpgControl
- 3 - . ; R h 4 cuiDialogControl
4:graphicalContainer| |3:graphicalContainer 4:graphicalContainer Smbol=x

Figure 9-34. Rule 34: Generation of Concrete Dialog Control relationships for <GC, GC> couples

auiDialogContral auiDialogCantrol

| symhol=x prr——— |

. N v - — 1:abstractlndw\dua\Componem'—"la stractContainer

|4:g|aphicallndividualoomponent| |1.absnactlndmdualComponent abstractContainer P R ety

.) GiisReifiedBy isRdifiedBy
cuiDiajogControl ‘4 g\aphicallnd\wdua\Cumpunem'—FlB'glaphlca\Cnmamer‘

- - - - iDialogControl
|3:g|‘aph|ca|Conta|ner| |4:g|‘aphicallndividualCompDnent| |3:g|‘aph|ca|Conta|ner| w

Figure 9-35. Rule 35: Generation of Concrete Dialog Control relationships for <GIC, GC>
couples

Sub-step 3.6: Derivation of CUI to Domain Relationship

Figure 8-36 illustrates the rule used to map GICs with the corresponding attribute of an
object from the Domain Model. The updates relationship is transposed from the AIC that is

reified by the GIC.

NAC LHS RHS

4:updates

Jattribute

4updates 1:abstractindividual Component
2:g|'aphicallndividualCompanent| |1:abstractlndividualComponentI—b{3:anribute

updates 5risRe|fiedBy SisReifiedBy

Jattribute

|2:g|'aphicallndividualonmponem

[2:graphicalindividualCornpanent|

Figure 9-36. Rule 36: Transposition of update relationship
124

Figure 8-37 illustrates the rule used to map GICs with the corresponding method of an
object from the Domain Model. The triggers relationship is transposed from the AIC that is
reified by the GIC.

NAC LHS RHS
|1'abStl'actlndividuaICDmpnnent?:“.lggerﬁ'memﬂd| ?:n.iggelrs
2:g|'aphicallndividualCDmpDnent| . . |1:abstractlndividualoomponent 6:meth0d|
fisRaifiedBy 5iisRpifiedBy triagdgers

|2:graphicallndividualonmponent|

|2:g|‘aphica|lndividualComponent|

Figure 9-37. Rule 37: Transposition of triggers relationship

125

