

UNIVERSITE CATHOLIQUE DE LOUVAIN

DEPARTEMENT D’ADMINISTRATION ET DE GESTION

Transforming Phone-based Interfaces for Web Access:
from WML to UsiXML

Mémoire-projet

présenté par

CUI Xuefeng

en vue de l’obtention du titre de

Master in Business Administration

Année académique 2004-2005

Promoteur: VANDERDONCKT Jean

PREFACE

Firstly, I would like to give thanks to Professor Jean Vanderdonckt, my promoter. Without his

valuable direction, useful advice, and all-the-time support, I could not have finished this thesis.

Secondly, I would like to give thanks to Laurent Bouillon and Benjamin Michotte who helped me

through the whole project.

Thirdly, I would like to give thanks to all the professors and assistants of IAG who once taught

me and helped me.

Finally, I would like to thank my dear family. Their love and support give me the courage and

strength.

 1

TABLE OF CONTENTS

Chapter 1. INTRODUCTION ..3

1.1 Problem..3
1.2 Challenges ..5
1.2 Related works ...7

1.2.1 Device-specific authoring...7
1.2.2 Multiple-device authoring...7
1.2.3 Client-side navigation ...8
1.2.4 Automatic re-authoring ..8

1.3 Our Solution...11
1.4 Scope and Motivation ...12
1.5 Thesis Structure..14

Chapter 2. USER INTERFACE DESCRIPTION LANGUAGE FOR REVERSE ENGINEERING
..15

2.1 UIML ...15
2.2 XIML ...16
2.3 TERESA ..17
2.4 UsiXML ...17

2.4.1 The Task & Concept level ..18
2.4.2 The Abstract User Interface Level..19
2.4.3 The Concrete User Interface Level...20
2.4.4 The Final User Interface Level ...20

2.5 Conclusion ...20
Chapter 3. XML TRANSFORMATION ...23

3.1 Introduction to XML..23
3.2 Transforming XML documents with Java ...24

3.2.1 SAX ...24
3.2.2 DOM...25
3.2.3 JAXP ...26

3.3 XSLT style sheet ...26
3.4 Java application for XML Transformation...27

3.4.1 Procedure of Transformation ..28
3.4.2 Java application source code...29
3.4.3 Usage of Java application ...30

Chapter 4. INTRODUCTION TO WML 1.1 ..32
4.1 Introduction to WML ...32
4.2 Meta-model of WML 1.1 ..33
4.3 Specification of elements and attributes of WML...38

4.3.1 Card Element...38
4.3.2 User Inputs: select, optgroup, option and input..38
4.3.3 Text presentation and layout ..41
4.3.4 Images, Anchors ..45

4.4 A WML E-mail Application ..48
4.5 Conclusion ..49

Chapter 5. THE TARGET CUI MODEL OF USIXML..50
5.1 Introduction...50
5.2 Specifications for CUI elements ...51

5.2.1 Upper- level elements...52
5.2.2 GraphicalContainer elements ...54
5.2.3 GraphicalIndividualComponent elements...58

5.3 Conclusion ..64
Chapter 6. MAPPING RULES AND ITS CORRESPONDING XSLT TEMPLATES...................65
 ...656.1 Types of mapping rules and its presentation
 ..666.2 The XPath notation for mapping rules

6.2.1 Introduction...67
6.2.2 Location steps..67

 2

 ...706.3 Mapping Rules and XSLT templates
6.3.1 card element :...70
6.3.2 User input elements: ..72
6.3.3 Text presentation and layout ..82

6.4 Conclusion ...93
Chapter 7. TRANSFORMATION EXAMPLES ...97

7.1 Introduction ...97
7.2 Example for element wml, card, p, b, anchor, a ...98
7.3 Example for element input ...100
7.4 Examples for element select, option ...102

7.4.1 Mapping option to linked textComponent..102
7.4.2 Mapping select to drop-down Menu...104
7.4.3 Mapping select to comboBox...105
7.4.4 Mapping option to radioButton..106
7.4.5 Mapping option to checkbox..107

7.5 Example for element img..108
7.6 Example for element table, td ...110

Chapter 8. CONCLUSION ...113
8.1 New results...113
8.2 Advantages and disadvantages ..114
8.3 Future works ..115

REFERENCES ...117
APPENDIX 1. DTD OF WML 1.1 ...120
APPENDIX2. XPATH FUNCTION LIBRARY ...127
APPENDIX 3. MAPPING TABLE OF WML AND USIXML ..129
APPENDIX 4. XSLT Style Sheet...133

 3

Chapter 1. INTRODUCTION

In this chapter, we present the problem, challenges, related works, the solution we have

chosen to address these issues, and thesis scope & motivation. We conclude this chapter

with the structure of this thesis.

1.1 Problem

An inevitable fact is that systems change over time. Original requirements will have to be

modified to account for changing user needs and advances in technology. User interfaces

are no exception to this rule, and current trends in user interface (UI) design are rapidly

evolving. The web, as a vital medium for information transfer, has had an impact on

UI design. Furthermore, the introduction of new platforms and devices, in particular

mobile phones and PDAs, has added an extra layer of complication to required UI

system changes, from where the concept of multiple user interfaces emerges.

In the migration of interactive systems to new platforms and architectures, many

modifications have to be made to the user interface. According to the study of Myers [1]

the development of the User Interface is a difficult process and very costly in time. In

fact, the study shows that, in generally, it spends the 45% of time for the conception of

an application and 48% of code on the creation of User Interface. Further more, the

diversity of the IT device available in the market has greatly enforced this issue. Such

diversity includes different categories as following: Smartphones, Pocket PC, Tablet PC,

classic PC, Laptop PC, and so on.

The rapid growth of Web services has led to a situation where companies and individuals

rely more and more on material that is available on the Web. For the users of web service,

they want to use the same services with different devices depending on their current

context of use. The services have to adapt their contents and presentation according to

the constraints imposed by the target platform such as: operating system, programming

language, screen resolution, interaction capabilities. It is beneficial to maintain the look

and feel of the service for all the possible platforms.

Until now the wireless Internet access service is not yet widely distributed comparing

with wired Internet services in common applications. However, in the near future we

may see that small portable personal devices including smart phones and other

sub-palm-sized devices outnumber traditional Internet terminals in generating Internet

traffic. To facilitate Internet access via wireless mobile devices, the Wireless Application

Protocol (WAP) and Wireless Markup Language (WML) were released.

As each device has its own characters, the restrictions imposed by different device for the

User Interface are significantly different. For instance, the main user interface restrictions

of WAP devices are: small screen, limited input techniques, limited amount of memory,

and slow network connections, while the personal computer with broadband cable

network connection have much more capability in all the above categories. As a result,

the users of mobile device try to overcome these problems by avoiding complex content.

A number of service providers maintain separate and lighter versions of their web service

for mobile users. This issue explains that why the User Interfaces are so various

depending on the different target platforms.

The following figure shows three different User Interfaces presented in three different

platforms for the same information content.

Fig.1 presentations for the same resource in different platforms

 4

 5

The upper two User Interfaces are respectively presented by Trium mobile phone and

Ericsson PDA from left to right. Compare these two User Interfaces, we can conclude

that even two different WAP devices have obviously difference appearance, for instance

the content layout, for the User Interface of the same WAP information content

according to their different capacities. The third one is presented by the Firefox Web

browser on a Gericom laptop PC in windows 2000 OS. This User Interface shows more

graphical components and more complicated structure than the previous two examples.

1.2 Challenges

As the variety of platforms has increased dramatically, to ensure the usability for all the

platforms which support Web by reserving the original WAP UI design is a big challenge

today.

Usability is a measure of the quality of a system from the user’s point of view. Usability

defines whether the system solves the right problems from the user’s point of view, and

whether the system solves the problems in the right way. Usability design implies learning

to know the users and understanding their needs so that the user’s point of view is

properly taken into account in the design.

Usability has multiple components. It is defined by International Organisation for

Standardization (ISO) as “The effectiveness, efficiency and satisfaction with which

specified users can achieve specified goals in particular environments”. [2]

 Effectiveness defines whether the system includes the right features from the

user’s point of view.
 Efficiency defines how quick and easy the system is from the users point of view.
 Satisfaction defines that the system should be pleasant to use, so that the user are

subjectively satisfied when using it.

The effectiveness problems in WAP services are often related to the limited selection of

available services, and the limited contents of these services. There are no general rules

for what kind of content mobile users will need. Mobiles services are often built as

subsets of fixed network services, picking up a small selection of contents based on

assumptions regarding what kind of services mobile users will need. The process often

leads to a general content that can also probably be accessed elsewhere, and more easily

than with the WAP service.

The main efficiency problems in WAP Services are related to the restrictions of mobile

 6

devices, browsers and networks. In current WAP networks, the main efficiency problem

is the time required to establish a connection to the service. On a small screen, only a

limited amount of information can be displayed at a time. Because of memory

restrictions, the device can only receive a limited amount of data at a time. When

accessing the service, the user has to scroll the screen and wait for new downloads every

now and then. Since the information has to be served to the user in “small portions” the

services have to be constructed based on limitations rather than natural classification. As

a result, the services often include artificial classifications, thus causing problems to the

user. For instance, the services are often divided into categories such as “Utilities”,

“Tools” and “Entertainment”, giving the user little idea which category the service he or

she is seeking belongs to. The navigation efficiency in the services can be improved by

trying to make the items that the user is most likely to request the easiest to access. The

user should get good navigation support, including feedback in the page header on where

he/she currently is in the service. There should also be easy access to back and forward.

User satisfaction is based on the total usage experience, ease of use and utility. Mobile

users do not usually browse around but need the information or service quickly;

Compared to fixed network users, mobile users need services that are faster and easier to

use on their much more modest devices. These user requirements are not easy to fulfil.

To adapt WAP services to platforms other than mobile phone, it should concern all

these three mentioned categories according to the constraints posed by different

platforms. As a result, the content authors can no longer afford to develop a content that

is targeted for use via a single access mechanism only. There is a need for common

guidelines on how to provide multiplatform web services.

While there are WAP gateways (for example, the Nokia WAP Server) that are capable of

converting HTML pages into WML decks, this technology is still pretty much in its

infancy stage. A direct HTML to WML conversion often results in a clumsy user

interface on the WAP device and vice versa. In any case, usability issues on the Web and

WAP environments are totally distinct. It is thus difficult to transform an HTML page

that is designed to be displayed on a web browser to be displayed on a WAP device

without some loss of usability and vice versa.

Toward to a platform independent Web for WML User Interface, the following section

will present you several existing solutions to adapt a WML User Interface to different

 7

platforms for the Web.

1.2 Related works

There are four general approaches to displaying Web UIs on various devices:

device-specific authoring; multiple-device authoring; client-side navigation; and automatic

re-authoring.

1.2.1 Device-specific authoring

Device-specific authoring involves authoring a set of Web UIs for a particular display

device, for example a cellular phone outfitted with a display and communications

software such as the Nokia 9000. The basic philosophy in this approach is that users of

such specialty devices will only have access to a select set of services, and the UIs for

these services can all be designed up-front for the device's particular display. The desired

UIs must be pre-defined and custom information extraction and UIs formatting software

must be written to deliver the information to the target device. This is the approach

taken in Unwired Planet's UP.Link service [3] which uses a proprietary mark-up language

(HDML).

Device-specific authoring will typically yield the best-looking results, but limits the user's

access to a small select set of web pages.

1.2.2 Multiple-device authoring

In multiple-device authoring, a range of target devices is identified, and mappings from a

single source document to a set of rendered documents are defined to cover the devices

within the range. One example of this is the StretchText approach [4], in which portions

of the document (potentially down to the word level) can be tagged with a 'level of

abstraction' measure. Upon receiving the UI document, users can specify the level of

abstraction they wish to view and are presented with the corresponding detail or lack

thereof. Another example of multiple-device authoring is HTML cascading style sheets

(CSS) [5]. In CSS, a single style sheet defines a set of display attributes for different

structural portions of a document (e.g., all top-level section headings are to be displayed

in red 18-point Times font). A series of style sheets may be attached to a document, each

with a weight describing its desirability to the document's author. The user can also

 8

specify a style sheet, as can the WWW browser (the 'default' style sheet). Although the

author's style sheets normally override the user's, the user can selectively enable or

disable the author's, providing the ability to tailor the rendering of the document to their

particular display.

Multiple-device authoring, while it spends less total effort per document than

device-specific authoring, still requires significantly more manual design work than

simply authoring for a single desktop platform.

1.2.3 Client-side navigation

In client-side navigation, the user is given the ability to interactively navigate a single web

page by altering the portion of it that is displayed at any given time. A very trivial

example of this is the use of scroll bars on the document display area. A much more

sophisticated approach is that taken in the PAD++ system [6], in which the user is free

to zoom and pan the device display over the document with infinite resolution. Active

Outlining

Client-side navigation holds promise if a good set of techniques can be developed, but

the 'peephole' approach taken in PAD++ seems very awkward to use for large

documents, and the active outlining technique has limited applicability since most web

pages do not use a strict section/sub-section organization.

1.2.4 Automatic re-authoring

Automatic re-authoring involves developing software which can take an arbitrary web UI

designed for the original platform, along with characteristics of the target display device,

and re-author the web UIs through a series of transformations so that it can be

appropriately displayed on the device. This process can be performed either on the client,

on the server, or on an intermediary HTTP proxy server [7] which exists solely for the

purpose of providing these transformation services.

As we’ve discussed above, according to the shortcomings of other solutions, automatic

re-authoring is thus the ideal approach to providing broad access to the web from a wide

range of devices, if it can be made to produce legible, navigable and aesthetically pleasing

re-authored documents without loss of information.

Within this solution, there is a popular technology which is called Transcoding

Technology. For the transcoding technology, the transcoding applications automatically

transform a UI code from the original platform to a new UI code for the target platform.

This transformation can occur at design-time (i.e., the transformation is made only once

and re-inserted in the formation is made only once and re-inserted in the new platform)

or at run-time (i.e., the transformation is performed on demand when the UI is

requested).

Fig.2 Example for Transcoding

The Fig.2 presents an application [8] as an example for transcoding approach. It uses an

HTML/WML conversion proxy server, which converts HTML-based Web contents

automatically and on-line to WML. This application gives the mobile user transparent

access to their familiar Web pages from their mobile phones and other mobile devices. If

HTML-based Web services follow certain guidelines, they can be converted automatically

to WML and adapted to the client device.

The HTML to WML conversion consists of two main tasks: dividing the document into

parts that may reasonably be viewed on a display of the target device, and converting the

document type to the markup language supported by the target device. The conversion

should have knowledge about the target device, such as display size, supported image

formats, and the markup language support.
 9

The layout of an HTML page must be modified, and images are either discarded or

simplified. Most HTML pages are useful even without images, and the layout may be

mimicked by the suitable organisation of WML cards. The danger is that the user may

not find the desired information even though it is somewhere in the card set. The

division into cards makes the presentation simpler, but the cards do not generally render

the information unavailable. The practice has confirmed the usefulness of converted

HTML pages.

The conversion first checks and validates the HTML document. Then, the server parses

the document, converts the contents and rearranges the contents as WML decks and

cards (Figure 3).

Fig. 3 HTML/WML transcoding

HTML WML Description

 line break

<i> <i> italic

<u> <u> underline

<p> <p> paragraph

 bold

<small> <small> small text

 strong text

<a> <a> hyperlinks

<select>,<option> <select>,<option> choices

<table>,<td>,<tr> <table>,<td>,<tr> tables

<textarea>,<input> <input>
text area

extboxes,submit buttons

META

HTTP-EQUIV="refresh"
<onevent> timed site redirection

Table 1. Mapping table from HTML to WML

The above table is a mapping table from HTML tags to WML tags. The parsing breaks

the HTML data into its logical elements, such as start-tags and end-tags, attributes and

text. The parser also checks the document against the given Document Type Definition
 10

 11

(DTD) and it corrects errors. When converting from HTML to WML, some data is

inevitably lost. The terminal adaptation phase may work optimally only if it has access to

all information in the original HTML.

To help the transcoding process to get extra information which is not contained in the

original HTML, the application using annotations can resolve this problem. For example,

the conversion tool [9] which transcoding HTML to VoiceXML firstly codify external

information structures in an XML annotation language called VXPL that can be used to

annotate existing HTML code to indicate where these information structures exist.

VXPL is designed so that it can be used for manual of automatic annotation of HTML

code. Secondly, they use automated transcoder to converts VXPL into VoiceXML with

increased support for navigation and usability of the resulting interface.

However, we assumed that these transcoding tools would not produce results as good as

services designed specially for the mobile clients. Because these two transcoding tools

above are about to transform a final UI to another final UI, both of them lack flexibility

with no design alternatives.

Another shortcoming for transcoding technology is that it is too specific. It needs several

one-to-one mappings, such as HTML/WML, XHTML/WML and XML/cHTML. Each

mapping is very specific and can not be generalized to other platforms. Therefore, this

approach is limited in that it is very specific to the problem raised and should be

multiplied by the amount of platforms.

1.3 Our Solution

In considering the shortcomings of above solutions, we choose the User Interface

Re-engineering technology to be the solution of the platform independent access of

WEB User Interfaces. The reason will be explained as following.

User Interface Re-engineering transforms a final user interface into a logical

representation that has enough information to allow forward engineering to port a UI

from one computing platform to another with maximum flexibility and minimal effort.

Re-engineering is used to adapt a UI to another context. This adaptation is governed by

two main tasks: the adaptation of the code itself to the new computing plating platform

and the redesign of the UI to better suit the new constraints of the target platform

(interaction capabilities, screen size.). [10]

 12

The user interface reengineering process can be divided into two phases: Reverse

engineering and Forward Engineering.

The general definition of Reverse engineering is the process of analyzing a subject system

to: “identify the system’s components and their interrelationships, and create

representations of the system in another form or at a higher level of abstraction.”[21]

Forward Engineering is the process of generating and implementing the user interface

from high-level models.

In reverse engineering, the challenge is to understand the interface code for building a

high-level UI model. This UI model represents all the relevant aspects of a UI. Various

high-level models have been suggested in the literature including object-oriented models

and abstract UI specification, as well as general task models for the problem domain and

environment dependent task models. All these models can drive the interface

development process [11].

Comparing to the transcoding technology, the re-engineering technology has three

advantages. Firstly, at the reverse-engineering stage, it transforms the original final UI to

a logical presentation which is platform independent and modality independent. So it can

be more flexible for more alternative design possibilities corresponding to different target

platforms and modalities such as graphical UIs, virtual UIs etc. Secondly, not like the

transcoding method which inevitable loss some design information in transforming to

another target language, with the logical presentation model can store all the design

information before performing the forward engineering. Thirdly, with this logical

presentation model, the original UI design could be reused for all the target platforms of

the transformation, as a result, it realize the reusability of resulted UIs.

1.4 Scope and Motivation

Nowadays, the web service providers are doing great efforts to satisfy the growing variety

of mobile clients. As a result, the diversity of mobile Internet services and devices is

rapidly increasing.

However, most of the currently available WAP services are not generic but they have

been tailored to specific WAP devices. The selection of WAP devices is expected to

range from mobile phones to palmtop computers. Even if the service is generic, it has

 13

been designed according to the minimum client device. Then the service cannot utilize

the more advanced features of other devices. As more devices will be available on the

market, it will require more and more efforts to maintain device-specific services.

Adapting the contents to different devices, networks and user preferences will be a big

challenge for service designers.

In a WAP study [12], Marc Ramsay and Jakob Nielsen describe a situation where two

users access the same site with different phones. One of the users describes the site as

“fantastic”, and the other says that the site makes him feel “aggrieved”. The latter user

could see the index of a restaurant guide but every time he tried to access the information

itself, he got the message “wrong address”. These kinds of problems arise when

designers have omitted to take into account the different capabilities of the WAP devices

and the different interpretations of WML code on the browsers.

Different from WAP, the Japanese i-mode is a closed specification. The operator (NTT

DoCoMo) [13] is both in charge of delivering the devices and offering the services, and

the operator also selects the services to be provided. In this approach, service providers

do not need to worry about the adaptation of services

Focus on this issue, within the scope of this thesis, we only concern about the adaptation

of WAP User Interface for Web access. As the contents of the WAP services are

implemented in Wireless Markup Language (WML) and WMLScript, to be more

concrete, we take the User Interfaces which is written in WML 1.1 as the start point for

the User interface adaptation for the case of this thesis. A description of WML is

presented in the chapter 4.

As we taking the User Interface reengineering techniques to facilitate the adaptation of

WML User Interface, within the scope of this thesis, we only concentrates in the first

stage, in other words, in the reverse engineering process in order to transform the

existing WML UIs developed for a mobile phone into a logical representation for other

platform that was not initially planned without loosing the development effort. So we

don’t consider constraints imposed by the target platform such as: operating system,

programming language, screen resolution, interaction capabilities. The goal is to reuse the

existing design if possible.

To support the reverse engineering process, we have developed a reverse engineering

 14

tool that allows a flexible recovery of the presentation model from the WML UIs. For

the target language of the presentation model, we choose the Concret User Interface

(CUI) model of USer Interface eXtensible Markup Language (USIXML) among the

different User Interface Description Languages (UIDLs). The reason for the choices of

technology is presented in the chapter 2.

1.5 Thesis Structure

The chapter 2 present the User Interface Description Language (UIDL) that we choose

to support the User Interface Reverse Engineering among other UIDLs.

The chapter 3 introduce the XML transformation tool developed for the User Interface

Reverse Engineering and its related technologies.

The chapter 4 provides introduction about WML as well as its meta-model and the

detailed specification. At the same time, we show the UIs by different emulators for

some major widgets from “real world” examples.

The chapter 5 introduce CUI model of USIXML with its specification especially for the

USIXML element which can be mapped from WML. We also show some concrete CUI

Model examples for the major elements.

The chapter 6 defines the mapping rule from WML 1.1 to CUI model of USIXML with

the help of XPATH notation. It also presents the corresponding XSLT template to each

mapping rule which can be combined to be a complete XSLT style sheet which serves as

the input file for the XSLT transformation application.

The chapter 7 presents some concrete transformation examples by using the

implemented transformation application and the XSLT style sheet. Each example also

serves to test the result of transformation.

The chapter 8 is dedicated to conclude this thesis.

 15

Chapter 2. USER INTERFACE DESCRIPTION LANGUAGE
FOR REVERSE ENGINEERING

A UI Description Language (UIDL) consists of what a high-level computer language for

describing characteristics of interest of a UI with respect to the rest of an interactive

application. Such a language involves defining a syntax (i.e., how these characteristics can

be expressed in terms of the language) and semantics (i.e., what do these characteristics

mean in the real world). It can be considered as a common way to specify a UI

independently of any target language (e.g. programming or markup) that would serve to

implement this UI. [15]

Today, the challenge of the UI development is brought by Diversity of users, Richness of

cultures, Complexity of interaction devices and styles, Heterogeneousness of computing

platforms, Multiplicity of working environments, and Multiplicity of contexts of use. [23]

With the help of UIDLs, we can achieve various goals concerning the above challenges,

for instance: Ensuring portability of UIs from one computing platform to another while

preserving some consistency between or with the target computing platform; Making one

UI design for multiple device, platforms, or appliances; Using a UI description to enable

automated generation of UI code; Improving the reusability of UI design, etc. [16]

As we’ve presented in the previous section, we use the Reverse Engineering approach to

attain the goal of this thesis. The Reverse Engineering is the process of analyzing

software code with the objective of recovering its design and specification. In the reverse

engineering of interactive systems, the ideal behavioural specification of the system is an

abstract UI model with enough detail to allow appropriate user interface techniques, in

particular model-based approaches, to be chosen in the new interface domain [14].

With the guide of the discipline of Human-Computer Interaction (HCI), in addition to

the above goals, User Interface Description Languages (UIDLs) can also support the

reverse engineering. To present our choice of the UIDL, we firstly introduce some

UIDLs such as UIML, XIML, TERESAXML. Secondly, we will present the UsiXML in

depth to show its advantages over the other UIDLs.

2.1 UIML

 16

User Interface Markup Language (UIML) is a meta-language that allows designers to

describe the user interface (UI) in generic terms, and to use a style description to map the

UI to various operating systems, languages and devices. [15] UIML is used to define

interface elements such as buttons, menus, lists, and other controls. It also defines the

layout and design of the controls, and actions to take place when certain events occur.

Events may be created by the user interacting with the interface. Developing user

interface using UIML involves writing UIML code which is a low level specification of

the user interface. The advantages of using UIML include using UIML to describe the

UI’s behavior in a device independent manner, its ability to give as much power to a UI

implementer as a native toolkit, its ability to describe content, structure, behavior and

style of UI separately.

UIML supports all the features pertaining to a platform. This complete support is made

possible by defining vocabularies. A vocabulary is a set of names, properties and

associated behaviors for UI elements. Just like a programmer would use pre-defined

libraries, UI designer can use pre-defined vocabularies to create user interfaces using

UIML. UIML is a language to describe user interfaces for multiple devices; However,

UIML does not provide any facility to write one description for multiple platforms. A UI

designer has to create separate UIs for each platform using its own vocabulary. [24]

2.2 XIML

eXtensible Interface Markup Language, maintained by XIML

Forum(http://www.ximl.org) – an independent Consortium, is an XML-based language

for developing multiple user interfaces by transforming and refining user tasks and UI

models. It provides representation framework for industry and universal support of

functionality across interface lifecycle which includes phases of “design, development,

operation, management, organization and evaluation” [17].

XIML is very abstract interface definition language which divides definition of interface

into “components”, high level building blocks of an interface. Examples of components

include task(business process), domain(defines a hierarchy of components), user(defines

hierarchy of end-users), presentation, and dialog(defines actions within the interface).

XIML supports task modeling, that is, it has the ability to represent abstract concepts

such as user tasks, domain objects, and user profiles. Components are mapped to

“elements” which are concrete representations such as “widgets”. XIML representation

framework provides support for relational modeling between components.

 17

XIML can specify any type of model, of model element, and relationships between.

Although some predefined models and relationships exist, one can expand the existing

set to fit a particular context of use. XIML has been used in MANNA for platform

adaptation, in VAQUITA to support reverse engineering, and in Envir3D to transform

graphical UI into a virtual one [18]

2.3 TERESA

The TERESA (Transformation Environment for interactive Systems representations)

exploits a UIDL called TERESAXML produces different UIs for multiple computing

platform from a general task model which is progressively refined for the different

platforms. Then, various presentation and dialogues techniques are used to map the

general specifications expressed into XHTML code for each platform such as web,

PocketPC, and mobile phones. [19]

The TERESAXML is the XML-compliant language that was developed inside the Teresa

project, which is intended to be a transformation-based environment designed and

developed at the HCI Group of ISTI-C.N.R. It composed of two parts: (i) a

XML-description of CTT notation which was the first XML language for task models; (ii)

a language for describing user interfaces. This last part will be more deeply investigated.

Teresa XML for describing UIs specifies how the various AIO composing the UI are

organized, along with the specification of the UI dialog. [15]

2.4 UsiXML

USer Interface eXtensible Markup Language (UsiXML) defined by the ISYS unity of

IAG consists of a User Interface Description Language (UIDL) allowing designers to

specify a user interface at multiple levels of abstraction depending on the development

path they are following: task and concepts, abstract user interface (AUI), concrete user

interface (CUI), and final user interface (FUI) [16]. USIXML can be used to specify a

platform-independent, a context-independent, and a modality-independent UI. For

instance, a UI that is defined at the AUI level is assumed to be independent of any

modality and platform. Therefore, it can be reified into different situations. Conversely, a

UI that is defined at the CUI level can be abstracted into the AUI level so as to be

transformed for another context of use.

UsiXML is structured according to the four basic levels of abstractions defined in the

Cameleon reference framework [20] that is intended to express the UI development life

cycle. The following picture shows this framework.

Fig.4 Cameleon framework

2.4.1 The Task & Concept level

At the top of the framework is the Task & Concepts level where the interactive task to

be carried out by the end user is defined according to her viewpoint, along with the

various objects that are manipulated by these tasks. These objects are considered as

instances of classes representing the concepts manipulated. Within this level, there are

three different models which are task model, domain model and context model.

Task model

This model describes the various tasks to be carried out by a user in interaction with an

interactive system. An extended version of ConcurTaskTree (CTT) [27] has been chosen

as a task modeling technique to represent user’s tasks and their logical and temporal

ordering. A task model is therefore composed of tasks and task relationships. Each task

is described by a name, a type, a frequency value, and an importance value. The task

could be decomposed to sub-task until the possible lowest level.

Domain model

A domain model describes the real-world concepts and their inter-actions as understood

 18

 19

by users. USIXML domain model has the form of a UML class diagram. Domain model

concepts are classes, attributes, methods and domain relationships. Concepts contained

in USIXML domain model are at a certain point manipulated by users. By manipulated, it

is meant that either attribute values are rendered through the UI or that methods

attached to classes of objects are used by a user.

Context model

A context model describes all the entities that may influence carrying out the interactive

task of user with the intended UI. It is assumed to capture any relevant attribute of the

context of use, in which the user is. A context model consists of:

• A user model that recursively decomposes the user population into stereotypes (or

profiles) and sub-stereotypes, each stereo-type sharing a same series of attributes and

associated values.

• A platform model captures relevant attributes for each couple software-hardware

platform that may significantly influence the context-sensitivity.

• An environment model describes any property of interest of the physical environment

where the user is using the UI on the computing platform to accomplish her interactive

tasks. Such attributes may be lighting conditions, level of stress, etc.

2.4.2 The Abstract User Interface Level

In this level, the AUI model represents a canonical expression of the renderings and

manipulation of the domain concepts and functions independently from any modality

and computing platform. An AUI is populated by abstract interaction objects and

abstract user interface relationship. An AIO describes an abstraction of widgets found in

most toolkits like windows, buttons but, also, vocal output widget in auditory interface.

As a result, the AIO is independent of any modality of interaction and any platform. For

the Abstract User Interface Relationship, it is an abstract relationship among AUI objects

that indicate the existence of some spatio-temporal setting among them. The

Spatio-temporal relationships characterise the physical constraints between AIOs as they

are presented in time and space.[19]

 20

2.4.3 The Concrete User Interface Level

In this level, the CUI model concretises an abstract UI for a given context of use into

Concrete Interaction Objects (CIOs) so as to define widgets layout and interface

navigation. Like the AUI level, the CUI level is also independent of any computing

platform.

A CUI is also an abstraction of the FUI. We can realize the FUI by concretizing the

different widgets defined in the CUI level. For the reverse engineering, we can transform

the source final UI to the CUI level. And as the resulted CUI is platform independent,

Preparing for the further forward engineering, we can modified the resulted CUI to

another CUI which can better abstract a new FUI according to the constraints brought

by the target platform.

2.4.4 The Final User Interface Level

At the Final UI level, The UI is expressed as source code. It is produced at the very last

step of the reification process which is supported by a multi-target development

environment. The Final UI can be seen with the help of interpreter according to a

particular platform.

2.5 Conclusion

One theorytical resson to choose USIXML is that not like UIML and XIML, the

USIXML is platform independent. For instance, one big shortcoming of UIML is that, as

it just offers a single language to define the different types of user interfaces, it does not

allow the creation of user interfaces for the different languages or for different devices

from a single description: there is still a need to design separate UIs for each device.[15]

On the other side, as USIXML is platform indepenedent, it ensures portability of UIs

from one computing platform to another while preserving some consistency between or

with the target computing platform. [19]

The other theorytical reson is that USIXML has a context model which describes all the

entities that may influence carrying out the interactive task of user with the intended UI.

This context model consists of user model, platform model and environment model,

while other UIDLs, such as UIML and XIML, don’t have.

 21

The practical reason to choose USIXML is that for the USIXML has already a complet

list of supporting tools such as editors, generators, iterpretors and also transformation

tools, such as ReversiXML which transforms html to USIXML. The work of this thesis

can enrich such tools for USIXML.

The methodological reason to choose USIXML is that above UIDLs except USIXMl

only represent an instance with some degree of coverage and restrictions of the

multi-path UI development, while USIXML supports the multi-path UI development in

order to better support the change of the IT environment. The multi-path UI

development is characterised by the following principles [16]:

• Formal definition of UI models: any UI is expressed through to a suite of models that

are analysable, editable, and exploitable by software.

• Transformational approach: each model stored according to the ontological format can

be subject to transformations realizing various development steps.

• Multiple development paths: development steps can be combined together to form

development paths that are compatible with the organisation’s development scenario.

For example, a series of transformations can be applied to progressively move from a

task model to a dialog model, to recover a domain model from a presentation model, or

to derive a presentation model from both the task and domain models.

• Flexible development approaches: development scenarios (e.g., forward engineering,

reverse engineering, wide spreading, or middle-out) are supported by flexibly following

alternate development paths. The wide spreading approach tends to apply in parallel all

the required adaptations where they occur. And the middle-out approach relies on an

intermediate model and propagates changes to all artefacts exploited in the development

process.

Regarding the UI expressiveness for multiple contexts of use, UIML, XIML, and

TERESA are UIDLs that address the basic requirements of UI modelling and

expressivity. XIML is probably the most expressive one as a new model; element or

relationship can be defined internally. However, there is no systematic support of these

relationships until they are covered by specific software. Regarding the transformational

approach, TERESA include some transformation mechanism to map a model onto

another one, but the logics and the definition of transformation rules are completely hard

coded with little or no control by designers. In addition, the definition of these

representations is not independent of the transformation engine.

 22

The principle advantage of USIXML is that as a UIDL it permits a multi-path UI

development. [19] According to the multi-path development of UI, USIXML supports a

flexible development process based on transformations. USIXML is a collection of

integrated models expressed in a formal and uniform format, such as task model, CUI

model, AUI model, FUI model, etc. Each of these models can be derived by each other

thanks for the mapping model. In addition, USIXML can be used to specify a

platform-independent, a context-independent, and a modality-independent UI. As

USIXML has such advantages over other UIDLs, we choose it to support our User

Interface Reverse Engineering.

Further, as it is not necessary to define the whole collection of USIXML models to get a

User Interface, we can choose one USIXML model to be the target abstraction model

for the User Interface Reverse Engineering. From the definition of the Reverse

Engineering, we can know that the target model is a high-level UI model which

represents all the relevant aspects of a UI and can be further forward engineered to a

Final UI. According to this issue, we have two candidates (CUI and AUI) within the

collection of USIXML models. Today, as the most popular UIs are graphical UIs, to be

more concrete and direct within the scope of this thesis, we choose the CUI model

which could be directly forward engineered to a graphical User Interface.

For the further forward engineering, if the target UIs are not graphical UIs such as vocal

UIs, multimodal UIs, and virtual reality UIs, instead of directly perform the forward

engineering on the transformed CUI model, we can firstly build a AUI model specifying

constraints in time and space by the mapping of the transformed CUI model. Then we

can build a new CUI in turn mapped onto more precise relationships from the AUI level

which is applicable to the modalities other than graphical UIs.

For futher details of USIXML, there is a list of publications located in the following

address: (http://www.usixml.org/index.php?view=page&idpage=22)

 23

Chapter 3. XML TRANSFORMATION

The former chapters have already introduced that both of WML and USIXML are XML.

This chapter introduce the related technologies that we use to perform the XML

transformation. To perform the transformation, we developed a transformation tool

which uses a XSL style sheet as input to define the transformation rules. The

programming language is Java.

In this chapter, we firstly introduce XML. Secondly, we present the XML processing

APIs with Java that we used in our transformation tool, such as SAX, DOM and JAXP.

Thirdly, we present the technologies related to XSLT style sheet which serves as input of

our transformation tool. Lastly, we present the transformation application and its usage.

3.1 Introduction to XML

XML is a standard textual markup language suitable for encoding almost any sort of data.

It works very well for both unstructured narrative data written by people and for the

record-oriented data common in computer applications. About the only thing it’s not

really suitable for are bitmapped things such as photographs and recorded sound.

Logically an XML document is made up of nested elements. Each element has a name, a

set of attributes and some content. The content can include plain text and/or other

elements. The attributes are name value pairs associated with the element. Each

document has a single topmost element called the root or document element. Since all

non-root elements nest completely inside other elements, an XML document has a

natural tree structure. Besides elements and text nodes, XML documents can also contain

comments, processing instructions, an XML declaration, and a document type

declaration.

Physically, an XML document is divided into storage units called entities. These entities

can be files, database records, data structures in memory, or something else. The

document entity contains the root element of the document. Parsed entities contain

XML markup and that will be merged to form the entire document. Parsed entities are

located via general entity references such as &anaconda; in the document entity or another

parsed entity. Unparsed entities contain non-XML, possibly binary data that will be

identified by ENTITY type attributes in the document.

 24

Every XML document must be well-formed. Among other things this means, every

start-tag must have a matching end-tag, every attribute value must be quoted, and only

certain characters can be used in element names. If a document is not well-formed, it is

not an XML document; and XML parsers will not accept it. Beyond well-formedness,

documents that have a schema may be (but do not have to be) valid. A valid document

adheres to all the constraints listed in the schema. Schema languages include Document

Type Definitions (DTDs), the W3C XML Schema Language, and the XPath-based

Schema.

Since XML markup normally focuses on the structure and semantics of the contained

information, before a document can be shown to a human reader, it must first be

associated with a style sheet that tells the browser or other tool how to format the

document for display to a person. The two most popular style languages are Cascading

Style Sheets (CSS) and the Extensible Style sheet Language (XSL). CSS is a non-XML

declarative language for applying simple styles such as font-weight to elements of certain

types. XSL is actually two separate XML applications, the XSL-FO page description

language and the XSLT Turing-complete functional language. An XSLT style sheet is

used to transform a source XML document into other XML vocabularies such as

USIXML.

3.2 Transforming XML documents with Java

Java is the ideal language for transforming XML documents. Its strong Unicode support

in particular made it the preferred language for many early implementers. Consequently,

more XML tools have been written in Java than in any other language. More open source

XML tools are written in Java than in any other language. More programmers process

XML in Java than in any other language.

As following, we present the three major standard APIs for processing XML documents

with Java, the Simple API for XML (SAX), the Document Object Model (DOM), Java

API for XML Processing (JAXP).

3.2.1 SAX

SAX, the Simple API for XML, was the first standard API shared across different XML

parsers. SAX is unique among XML APIs in that it models the parser rather than the

document. In particular the parser is represented as an instance of the XMLReader

interface. The specific class that implements this interface varies from parser to parser.

 25

Most of the time you only access it through the common methods of the XMLReader

interface.

A parser reads a document from beginning to end. As it does so it encounters start-tags,

end-tags, text, comments, processing instructions, and more. Parsing is the process of

reading an XML document and reporting its content to a client application while

checking the document for well-formedness.

SAX represents parsers as instances of the XMLReader interface.The parser tells the

client application what it sees as it sees it by invoking methods in a ContentHandler

object. ContentHandler is an interface the client application implements to receive

notification of document content. The client application will instantiate a client-specific

instance of the ContentHandler interface and register it with the XMLReader thats going

to parse the document. As the reader reads the document, it calls back to the methods in

the registered ContentHandler object.

3.2.2 DOM

The Document Object Model, DOM, provides a standard set of objects for representing

HTML and XML documents, and a standard interface for accessing and manipulating

them. It is the second major standard API for XML parsers. Most major parsers

implement both SAX and DOM. DOM programs start off similarly to SAX programs,

by having a parser object read an XML document from an input stream or other source.

However, where the SAX parser returns the document broken up into a series of small

pieces, the equivalent DOM method returns an entire Document object that contains

everything in the original XML document. One can read information from the document

by invoking methods on this Document object or on the other objects it contains. This

makes DOM much more convenient when random access to widely separated parts of

the original document is required.

The DOM is separated into different parts (Core, XML, and HTML)

 Core DOM - defines a standard set of objects for any structured document
 XML DOM - defines a standard set of objects for XML documents
 HTML DOM - defines a standard set of objects for HTML documents

The XML DOM views XML documents as a tree structure of elements embedded within

other elements. All elements, their containing text and their attributes, can be accessed

 26

through the DOM tree. Their contents can be modified or deleted, and new elements can

be created by the DOM. The elements, their text, and their attributes are all known as

nodes.

3.2.3 JAXP

Starting in Java 1.4, Sun bundled the Crimson XML parser and the SAX2, DOM2, and

TrAX APIs into the standard Java class library. (TrAX is an XSLT API that sits on top

of XML APIs like SAX and DOM.) They also threw in a couple of factory classes, and

called the whole thing the “Java API for XML Processing” (JAXP).

The reason about include the JAXP to the XML processing API is explained as

following:

DOM represents a document tree fully held in memory. It is a large API designed to

perform almost every conceivable XML task. It also must have the same API across

multiple languages. Because of those constraints, DOM does not always come naturally

to Java developers who expect typical Java capabilities such as method overloading, the

use of standard Java object types, and simple set and get methods. DOM also requires

lots of processing power and memory, making it untractable for many lightweight Web

applications and programs.

SAX does not hold a document tree in memory. Instead, it presents a view of the

document as a sequence of events. For example, it reports every time it encounters a

begin tag and an end tag. That approach makes it a lightweight API that is good for fast

reading. However, the event-view of a document is not intuitive to many of today's

server-side, object oriented Java developers. SAX also does not support modifying the

document, nor does it allow random access to the document.

JAXP attempts to incorporate the best of DOM and SAX. It's a lightweight API

designed to perform quickly in a small-memory footprint. JAXP also provides a full

document view with random access but, surprisingly, it does not require the entire

document to be in memory. The API allows for future flyweight implementations that

load information only when needed. Additionally, JAXP supports easy document

modification through standard constructors and normal set methods.

3.3 XSLT style sheet

XSLT, the Extensible Style sheet Language for Transformations is an official

recommendation of the World Wide Web Consortium (W3C). An XSLT style sheet is

 27

used to transform a source XML document into other XML vocabularies such as

USIXML. It describes how documents in one format are converted to documents in

another format. Both input and output documents are represented by the XPath data

model. XPath expressions select nodes from the input document for further processing.

Templates containing XSLT instructions are applied to the selected nodes to generate

new nodes that are added to the output document.

XSLT is based on the notion of templates. An XSLT style sheet contains

semi-independent templates for each element or other node that will be processed. An

XSLT processor parses the style sheet and an input document. Then it compares the

nodes in the input document to the templates in the style sheet. When it finds a match, it

instantiates the template and adds the result to the output tree.

The biggest difference between XSLT and traditional programming languages is that the

input document drives the flow of the program rather than the style sheet controlling it

explicitly. When designing an XSLT style sheet, you concentrate on which input

constructs map to which output constructs rather than on how or when the processor

reads the input and generates the output.

As XSLT is not a procedural language, it does have the advantage of being much more

robust against unexpected changes in the structure of the input data. An XSLT transform

rarely fails completely just because an expected element is missing or misplaced or

because an unexpected, invalid element is encountered.

The W3C has defined another standard for stylesheet which is Cascading Style Sheets

(CSS), a mechanism used to define various properties of markup elements. Although CSS

worked for XHTML at present, it has some drawbacks:

· CSS can't change the order in which elements appear in a document.

· CSS can't do computations.

· CSS can't combine multiple documents

3.4 Java application for XML Transformation

In this section, at first, we show the transformation procedure which has 4 steps to

realise the transformation. Then, we present the transformation application’s source code

which includes some short comments corresponding to the 4 steps of the transformation

procedure. At last, we explain how to use the java application and its requirements.

3.4.1 Procedure of Transformation

Fig. 5 Transforming Procedure

To transform the original WML file to USIXML file, we have implemented a

transformation application using Java programming language. The development

environment is Java 2 SDK V1.4. The Fig. 5 presents the transformation procedure

which involves four steps:

1. Using the factory class “DocumentBuilderFactory” defined in the javax.xml.parsers

package to instantiate a DocumentBuilder object.

2. Parsing the WML source document into a document object model (DOM), where it

is represented as a tree where each node in the tree is a tag in the original WML.

3. Using the factory class “TransformerFactory” defined in javax.xml.transform

package to instantiate a transformer object. The transformer is created from a set of

transformation instructions. The set of transformation instructions is defined by the

 28

 29

XSLT Style sheet which indicates in which case the specified transformations are

carried.

4. Transforming the Dom Document by the transformer. These can either insert new

tags into the DOM tree or remove some nodes altogether. Positions of elements to

be processed from the DOM tree are specified in terms of their XPATH. The

XPATH of a node is a unique path to that node in the DOM tree.

3.4.2 Java application source code

// import the JAXP APIs:
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

// for the exceptions that can be thrown when the XML document is parsed:
import org.xml.sax.SAXException;

// import the W3C definition for a DOM:
import org.w3c.dom.Document;
// for reading and writing:
import java.io.*;
public class transformer {
 // Global value so it can be used by the tree-adapter
 static Document document;
 public static void main (String argv [])
 {
 if (argv.length != 3) {
 System.err.println ("Usage: java transformer stylesheet sourceFileName
targetFileName");
 System.exit (1);
 }

// to obtain an instance of a factory that can give us a document builder:
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 //factory.setNamespaceAware(true);
 //factory.setValidating(true);

 try {
 File stylesheet = new File(argv[0]);
 File datafile = new File(argv[1]);
 File transformedfile= new File(argv[2]);
 DocumentBuilder builder = factory.newDocumentBuilder();

// Parsing the WML source document into a DOM
 document = builder.parse(datafile);
 // Using a Transformer for output

 30

 TransformerFactory tFactory = TransformerFactory.newInstance();
 StreamSource stylesource = new StreamSource(stylesheet);

// to instantiate a transformer object
 Transformer transformer = tFactory.newTransformer(stylesource);
 DOMSource source = new DOMSource(document);
 StreamResult result = new StreamResult(argv[2]);
 //Transforming the Dom Document by the transformer
 transformer.transform(source, result);

 } catch (TransformerConfigurationException tce) {
 // Error generated by the parser
 System.out.println ("\n** Transformer Factory error");
 System.out.println(" " + tce.getMessage());
 Throwable x = tce;
 if (tce.getException() != null)
 x = tce.getException();
 x.printStackTrace();
 } catch (TransformerException te) {
 // Error generated by the parser
 System.out.println ("\n** Transformation error");
 System.out.println(" " + te.getMessage());
 Throwable x = te;
 if (te.getException() != null)
 x = te.getException();
 x.printStackTrace();

 } catch (SAXException sxe) {
 // Error generated by this application
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();
 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }
 }
}

3.4.3 Usage of Java application

To execute the java Transformation Application which is named as transformer.java,

suppose you’ve installed the Java 2 Software Development Kit which can be free

downloaded from the www.java.sun.com Web site and connected to internet, you can just

input the command line, shown in Fig. 6, under the directory which includes

transformer.java, the XSLT style sheet file and the source WML file. The result target

USIXML file will be created under the same directory. For the XSLT style sheet, we will

present it in the chapter 6, and you can find the complete XSLT style sheet source code

in the appendix 4.

Fig. 6 The Execution of Transformation App. (1)

Another option instead of DOS to run the Java program is to use a Java develop tool, for

more platforms other than windows, such as Eclipse which can be free downloaded from

www.eclipse.com. The following picture shows you where to input the arguments.

Fig. 7 The Execution of Transformation App. (2)

 31

Chapter 4. INTRODUCTION TO WML 1.1

As our goal is to reverse engineering the existing design for WML UIs, we dedicate this

chapter to introduce WML. We firstly choose the ideal WML version as the source for

the reverse engineering. Then, we will explore the structure of WML for the chosen

version by showing the meta-model of WML to explain the inter-relationship between

WML elements. And further more, we will present each element and its attributes related

for the transformation by showing the detailed specification for each element on which

we perform the transformation.

4.1 Introduction to WML

The contents of the WAP services are implemented in Wireless Markup Language (WML)

and WMLScript. WML is an XML-based markup language designed for low-end devices

and slow, unreliable networks. WML provides basic means for document formatting and

user interaction but presupposes little of how they are actually implemented. Developers

of WAP services only design the interaction logic in the application. Each client device

then implements these interactions in its own way.

Fig.8 Three popular WAP sites with WML 1.1

The Fig.8 shows the three most demanding WAP sites are all developed by WML 1.1.

Although the current WML standard is WML 1.3, the most WML resource is written in

 32

 33

WML 1.1. However, today there are very few mobile sites adapting WML 1.3-specific

features.

The WML 2.0 document type extends XHTML Mobile Profile is a compact core module,

which is to be supported by most of the browsers the WML documents written using

earlier WML versions (WML 1.x) can be transformed into WML 2 format. The WML 2.0

is a document type with an XHTML core and WAP extensions. The core document type,

known as XHTML Mobile Profile, can be used to author content convergent with W3C

specifications. The WML2 document type (XHTML core plus WAP extensions) can be

used to deliver WML1 content to WAP 2 clients, achieving backward compatibility with

WML1 in a manner that is transparent to the end user. The structure and relationship of

the document types allows an efficient implementation of a user agent that supports both

types.[22]

The principle differences between WML1.1 and WML 2.0 are explained as following:

 While WML1.1 has noting to do with XHTML, WML 2.0 defers to

XHTML in the case of duplicated semantics (elements, attributes, and attribute

values). (eg.., optgroup, table)

 WML 2.0 includes some XHTML elements and attributes which WML

1.1 don’t has (eg.., textarea, lable, h1).

 WML 2.0 removes WML elements, attributes, and attribute values when

they can be expressed in XHTML and CSS (eg.., wml, template) .

 WML 2.0 includes WML1 elements and attributes when WML1 features

cannot be expressed in XHTML and CSS. These elements are included using

the WML namespace, identified by the “wml:” prefix (eg.., wml:card)

The new WML 2.0 user interface has been introduced to support the forthcoming WAP

2.0 compliant mobile phones. But the time of writing this thesis, there are few WAP 2.0

devices and services on the market. There are no guidelines either for developing usable

mobile services with WML 2.0 today. As a result, many mobile devices support only the

WML 1.1 standard. So we choose the UIs of WML 1.1 as the source UIs for the reverse

engineering.

4.2 Meta-model of WML 1.1

In the last section, we have decided to choose the WML1.1 as the source WAP UIs

development language for the further transformation. In this section, we present the

 34

meta-model of WML 1.1 to show the structure of WML and explore the

inter-relationship between WML elements. For constructing the meta-model of WML

1.1, we use UML class diagram which is implemented by Rational Rose. There are several

remarks for this meta-model. Firstly, the normal classes present the elements of WML

1.1. Secondly, the classes begin with “%” are the entities defined in the WML 1.1

Document Type Definition (DTD) (see Appendix 1). Thirdly, for avoiding too much

inter-relationships in order to improve the readability of the meta-model, we invent some

classes which begin with “+” to aggregate some elements with similar nature. The

Fig.9 below shows the meta-model of WML 1.1

Fig. 9 Meta-model of WML1.1

 35

 36

Having the meta-model shown in the Fig.9, we can further conclude its four major

functional areas. Firstly, it is Deck/card organisational metaphor, in other words, all

information in WML is organised into a collection of cards and decks. Cards specify one

or more units of user interaction (e.g., a choice menu, a screen of text or a text entry

field). Logically, a user navigates through a series of WML cards, reviews the contents of

each, enters requested information, makes choices and moves on to another card. Cards

are grouped together into decks. A WML deck is similar to an HTML page, in that it is

identified by a URL. Secondly, WML includes text and image support, including a variety

of formatting and layout commands. For example, boldfaced text may be specified.

Thirdly, WML includes support for explicitly managing the navigation between cards and

decks. WML also includes provisions for event handling in the device, which may be

used for navigation. Lastly, all WML decks can be parameterised using a state model.

Variables can be used in the place of strings and are substituted at run-time. This

parameterisation allows for more efficient use of network resources.

There are some WML 1.1 elements, such as prev, refresh, template, and timer etc., for

which the directly mapping to the CUI Model of USIXML is not currently available, in

other word, there are not such corresponding elements exist in USIXML. As a result, we

can not map all the WML 1.1 elements to the USIXML. The following figure will show

the potion of the meta-model which can be mapped to USIXML at the time of this

thesis.

Fig. 10 Potion of Interest of WML 1.1

The Fig.10 above shows the potion of interest of the WML 1.1 meta-model which can be

mapped to the CUI Model of USIXML (USer Interface eXtensible Markup Language).

In the next section, we will give the specification for all the elements in this potion of the

Meta-model.
 37

4.3 Specification of elements and attributes of WML

In the former section, we have presented the meta-model of WML. In this section, we

will show the detailed specification for each of the element in the portion of interest

meta-model of WML 1.1 as well as its attributes. All these elements and its

corresponding attributes are related for the later transformation.

This specification is referred to the Wireless Markup Language (WML) 1.1 Document

Type Definition (DTD) (see Appendix 1) and the official WML specification developed

and maintained by the WAP Forum.

4.3.1 Card Element

ELEMENT card

Specification: The card element is a container of text and input elements that is

sufficiently flexible to allow presentation and layout in a wide variety of devices, with a

wide variety of display and input characteristics. Its attribute title specifies advisory

information about the card. The title may be rendered in a variety of ways by the user

agent.

4.3.2 User Inputs: select, optgroup, option and input

ELEMENT select

Specification: The select element lets users pick from a list of options. The title attribute

specifies a title for this element, which may be used in the presentation of this object.

The ivalue attribute indicates the default-selected option element. The multiple attribute

indicates that the select list should accept multiple selections. When not set, the select list

 38

should only accept a single selected option.

ELEMENT optgroup

Specification: The optgroup element allows the author to group related option elements

into a hierarchy. The title attribute specifies a title for this element, which may be used in

the presentation of this object.

ELEMENT option

Specification: This element specifies a single choice option in a select element. The title

attribute specifies a title for this element, which may be used in the presentation of this

object. The onpick attribute occurs when the user selects or deselects this option. A

multiple-selection option list generates an onpick event whenever the user selects or

deselects this option. A single-selection option list generates an onpick event when the

user selects this option.

<wml>
<card>

Fig. 11 Example for “selection”

<p align="center">Select Boxes
<select>

<option onpick="link1.wml">Selection1</option>

<option onpick="link2.wml">Selection2</option>

<option onpick="link3.wml">Selection3</option>
</select>

 39

Fig.12 “Real World” Example for “selection”

ELEMENT input

Specification: The input element specifies a text entry object. The type attribute specifies

the type of text-input area. ("text", "password"); The value attribute indicates the default

value of the variable named in the name; The size attribute specifies the width, in

characters, of the text-input area. The maxlength attribute specifies the maximum

number of characters that can be entered by the user in the text-entry area; The title

attribute specifies a title for this element, which may be used in the presentation of this

object.

<wml>
<card>
<p align="center">Input Box

<input name="Name"
value="Template"/>

</p>
</card>

 40

Fig.13 Example for “input”

Fig.14 “Real World” Example for “input”

From Fig.14, we can see for input field the different devices have very different

presentations.

ELEMENT fieldset

Specification: The fieldset element allows the grouping of related fields and text.

Remarks: The title attribute specifies a title for this element, which may be used in the

presentation of this object.

4.3.3 Text presentation and layout

ELEMENT table

Specification: The table element is used together with the tr and td elements to create

sets of aligned columns of text and images in a card. The title attribute specifies a title for

this element, which may be used in the presentation of this object. The align attribute

 41

specifies the layout of text and images within the columns of a row set. The columns

attribute specifies the number of columns for the row set.

ELEMENT tr

Specification: The tr element is used as a container to hold a single table row. Table rows

may be empty . Empty table rows are significant and must not be ignored.

ELEMENT td

Specification: The td element is used as a container to hold a single table cell data within

a table row.

<wml>

Fig.15 Example for “table, tr, td”

<card>
<p align="center">Table
<table title="Title" columns="3">
 <tr>
 <td>L1C1</td>
 <td>L1C2</td>
 <td>L1C3</td>
 </tr>
 <tr>
 <td>L2C1</td>
 <td>L2C2</td>
 <td>L2C3</td>
 </tr>
</table>

 42

Fig.16 ”Real world” Example for “table, tr, td”

The Fig.16 shows different ways of visualising table. The two devices are Nokia 9210 and

Ericsson R380. The original table does not have visible table borders, but the Nokia 9210

uses them. The Ericsson R380 opts to drop the borders off in every table.

ELEMENT strong

Specification: Render with emphasis.

ELEMENT b

Specification: Render with a bold font.

ELEMENT i & em

Specification: Render with an italic font.

ELEMENT u

Specification: Render with underline.

ELEMENT big

Specification: Render with a large font.

 43

ELEMENT small

Specification: Render with a small font.

<wml>
<card>

<p>normalemstrong</p>

<p>normal b <i>i</i> <u>u</u></p>

<p>normal<big>big</big><small>small</small></p>

Fig.17 Example for Inline Layout elements

From Fig.17 above, we can see all the presentation of the inline layout elements.

ELEMENT p

Specification: The p element establishes both the line wrap and alignment parameters for

a paragraph. If the text alignment is not specified, it defaults to left. If the line-wrap

mode is not specified, it is identical to the line-wrap mode of the previous paragraph in

the current card. The align attribute defines horizontal alignment of content. The default

value is "left".

<wml>
<card>

<p align="left">First paragraph</p>

<p align="center">Second paragraph</p>

<p align="right">Third paragraph</p>
</card>
</wml>

 44

Fig.18 Example for “p” element

From Fig. 18 above, we can see the different horizontal alignments for the p element.

Fig.19 “Real world” Example for “p” element

From Fig.19, we can realize that the device with bigger screen can show more lines and

more words per line for the element p.

4.3.4 Images, Anchors

ELEMENT img

Specification: The img element indicates that an image is to be included in the text flow.

Image layout is done within the context of normal text layout. The attribute src specifies

the URI for the image; The vspace attribute specify the amount of white space to be

inserted to the above and below an image or object. The hspace attribute specify the

amount of white space to be inserted to the left and right an image or object; The align

 45

attribute specifies image alignment within the text flow and with respect to the current

insertion point; The height attribute give user agents an idea of the height of an image or

object so that they may reserve space for it and continue rendering the card while waiting

for the image data. User agents may scale objects and images to match these values if

appropriate; The width attribute give user agents an idea of the width of an image or

object so that they may reserve space for it and continue rendering the card while waiting

for the image data.

<wml>

Fig.20 “Real world” Example for “img” element

From Fig.20 above, we can see the M3Gate simulator can not show the image as

openwave emulator doing. As instead of, it show an alternative text content.

ELEMENT anchor

Specification: The anchor element specifies the head of a link. The title attribute specifies

a brief text string identifying the link.

<card id="splash"
title="Hollywood.com">
<p align="center">
<small>Welcome To</small>
</p>
<p align="center">

<img src="images\logo_holly.gif"
alt="Hollywood.com" align="middle"
/>

</p>
</card>
</wml>

 46

ELEMENT a

Specification: Element “a” provides basic hypertext linking capabilities. You can make

conections between individual cards or WML decks. All WML elements can contain two

core attributes, id and class. Attribute id in “card” element serves as anchor for intercard

links. The href attribute specifies the destination URI. The title attribute specifies a brief

text string identifying the link.

<wml>
<card id='card_aaa'>
<p>This is card aaa</p>
<p>Go to bbb</p>
<p>Go to target
address</p>
</card>

<card id='card_bbb'>
<p>This is card bbb</p>
<p>Go to aaa</p>
</card> Forever Young
</wml>

 Fig.21 Example for “a”

 47

Fig.22 “Real world” Example for “a” element

From Fig.22 above, we can see for the a element these two devices have the same

appearance.

4.4 A WML E-mail Application

Web mail accounts such as the ubiquitous 'Hotmail', or 'Yahoo! Mail' are fast becoming

the most popular kind of e-mail. There are almost 170 million subscribers to this type of

account. Web-based mail allows users convenient web access to their mail account

without any messy machine configuration issues. The WML E-mail application on the

yahoo WAP site - http://home.mobile.yahoo.com implements a WAP mail system,

allowing access to an SMTP/POP3-based e-mail account.

This WAP e-mail application conclude services such as:

 Compose, send and reply to mail via an SMTP server

 View an inbox and read mail using a POP3 service

 Determine the number of messages waiting in the inbox

 48

 Delete mail, etc.

There are some screen shots to show the above services by this application as following:

Fig.23 WML1.1 WAP E-mail Application

4.5 Conclusion

In this chapter, we have presented the detailed specifications about the elements of

interest of the WML 1.1 for the mapping to CUI elements. To illustrate WML’s element,

we have presented some examples to show the different appearances which are not only

caused by different attribute but also by different devices. We also present a “real world”

WAP application using WML 1.1 to show the feel and look of WML UIs.

 49

Chapter 5. THE TARGET CUI MODEL OF USIXML

In the chapter 2, we we’ve chosen CUI model as the target model of the UI Reverse

Engineering for the WML UIs. And in the last chapter, we’ve introduce the WML

elements which could be mapped to that of CUI model. Before we define the mapping

rules in the next chapter, in this chapter, we will present the components and the detailed

specification for the mapped elements of CUI Model.

5.1 Introduction

A CUI is a UI model allowing a specification of an appearance and behaviour of a UI

with elements that can be perceived by users. A CUI consists of:

1. Modality dependent i.e., an instance of a CUI addresses a single modality at a time.

Two modalities lie in the intended scope of USIXML: graphical and auditory.

2. Platform independent i.e., elements populating a CUI realize an abstraction of

common languages used to program UIs.

Fig. 24 Example for CUI Model

Fig. 24 shows a simple declaration of a window containing a top-centred label and a

 50

button.

Before we define the mapping rules from WML to CUI Model level which define

widgets layout and interface navigation, we present the components of CUI model and

the specification of elements which is related to the mapping.

5.2 Specifications for CUI elements

All the following specification for CUI elements refers to the USIXML V1.4.5

documentation downloaded from the official USIXML site www.usixml.org. For some

elements we present some USIXML code to illustrate them.

 51

5.2.1 Upper- level elements

auditoryCiographicalCio
isVisible : boolean
isEnabled : boolean
statusBarContent : uri
defaultStatusBarContent : string
fgColor : string
bgColor : string
borderWidth : integer
borderType : integer
borderTitle : String
defaultBorderTitle : String
borderTitleAlign : String
borderColor : String
toolTipDefaultContent : string
toolTipContent : uri
transparencyRate : integer

cio
id : string
name : string
icon : uri
content : uri
defaultContent : string or uri
defaultIcon : uri
defaultHelp : uri
help : string
currentValue : string

1..*

1cuiModel

Fig.25 upper-level elements

Element cio

Specification: Is an entity of the UI that users can perceive (e.g., text, image, animation)

and/or manipulate (e.g., a push button, a list box, a check box). A widget provided by a

toolkit, physical interactor and physical interaction object.

Attributes:

 Id: Identifies a cio. An id is internally attributed to a cio and is, consequently, not

supposed to reflect its cio type, or content,...

 52

 Name: Is a name given to a cio. A name gives a first insight on a cio's type, function

or content.

 Icon: Is a context dependent icon associated with a cio.

 Content: Is text content associated with any cio. All cios content are defined in a

remote file to allow a run-time language content selection to work easily.

 defaultContent: Is a default caption for any cio.

 defaultIcon: Is a default icon for any cio.

 defaultHelp: Is the default help for any cio.

 Help: Is the help for any cio.

 currentValue

Element graphicalCio

Inherits from: cio

Specification: Is an element composing a graphical user interface. It may be either a

container or an individual component.

Attributes:

 isVisable: Is set to true if a graphicalCio is visible.

 isEnable: Is set to true if a graphicalCIO is enabled.

 statusBarContent: Is the status bar content of a graphical CIO.

 isDefaultStatusBarContent: Is the default status bar content of a graphical CIO.

 fgColor: Is a graphicalCio foreground color expressed with html color codes.

 BgColor: Is a graphicalCio backgroung color expressed with html color codes.

 borderWidth: Is the width of the border.

 borderType: Is the type of the border.

 borderTitle: Is the title of the border(i.e., a label appearing in the border of this

component).

 defaultBorderTitle: Is the context dependent border title.

 borderTitleAlign: Indicates the alignment of the title of the border. Allowed values:

left, middle, right.

 53

 BorderColor: Is the color of the border. Expressed with html color codes.

 defaultToolTipContent: Is the default tooltip associated with a CIO.

 toolTipContent: Is the context dependent tooltip associated with a CIO.

 transparencyRate: Is the transparency rate of a CIO. Is expressed in percent.

5.2.2 GraphicalContainer elements

graphicalContainer
width : integer
heigth : integer
bgImage : uri
isAlwaysOnTop : boolean
repetition : integer
isDetachable : boolean
isMigrateable : boolean

box
type : string
relativeWidth : integer
relativeHeight : integer
isSplitable : boolean
isBalanced : booolean
isResizableHorizontal : boolean
isResizableVertical : boolean
relativeMinWidth : integer
relativeMinHeight : integer
isFlow : boolean
isScrollable : boolean
gridWidth : string
gridHeight : string

table
xSize : integer
ySize : integer
zSize : integer

window
windowLeftMargin : integer
windowTopMargin : integer
isResizable : boolean

cell
xIndex : integer
yIndex : integer
zIndex : integer

1

0..n

0..n

0..1

Fig.26 Portion of interest graphicalContainer elements

Element graphicalContainer

Fig.26 shows the graphicalContainer element and its portion of interest children elements

which can be mapped from WML 1.1.

Inherits from: graphicalCio

Specification: Contains a collection of cio's (either graphicalIndividualComponents or

graphicalContainers) that support the execution of a set of logically/semantically

 54

connected tasks.

Attributes:

 width: Is the width of the graphicalContainer.

 Height: Is the height of the graphicalContainer.

 bgImage: Is the background image of the graphicalContainer.

 isAlwaysOnTop: Is true if is always on the top.

 Repetition: Indicates how many times a graphicalContainer is repeated in the

specification.

 isDetachable: Indicates if a container may be detached or not from its

graphicalContainer. This attribute may help for multi-surface distributed interfaces.

 IsMigrateable: Indicates is the container can pass from one platform to another.

Element window

Inherits from: graphicalContainer

Specification: Is a window

Attributes:

 windowLeftMargin: Indicates a left margin size in pixel.

 windowRightMargin: Indicates a right margin size in pixel.

 isResizable: Specifies if a window is resizable or not. Default : true.

Element box

Inherits from: graphicalContainer

Specification: Is a containers that enables an unambiguous structuring of

graphicalIndividualComponents within a window, a tabbedItem, a dialogBox. Boxes are

embedded one into each other. They may be of type main (the topmost box in a

container), horizontal, or vertical.

Attributes:

 type: Equals horizontal, vertical, horizontalGrid or verticalGrid.

 relativeWidth: Expresses in percent the relative width of a box container.

 relativeHeight: Expresses in percent the relative height of a box container.

 55

 isSplitable: Indicates if a box is splitable or not. This information is notably used

during adaptation heuristics to reshuffle containers and potentially redistribute boxes

between several abstract containers.

 isBalanced: Indicates that all graphicalIndividualComponents are topologically

balanced within a box.

 isResizableHorizontal: indicates if a box is horizontally resizable.

 isResizableVertical: indicates if a box is vertically resizable.

 relativeMinWidth: Indicates a minimal width in percentage of the initial size of a

box.

 relativeMinHeight: Indicates a minimal height in percentage of the initial size of a

box.

 isFlow: Indicates if the layout algorithm should create a new line in the box if all

components belonging to one box can not be displayed in one line.

 isScrollable: Indicates if a box may be equipped with a scrollbar if its content cannot

be displayed on its surface.

 gridWidth: Indicates the width (in absolute number) of the box in case it is of type

grid.

 gridHeight: Indicates the width (in absolute number) of the box in case it is of type

grid.

Element table

Inherits from: graphicalContainer

Specification: Is composed of cells. A table is characterized by its size. It may be

uni,bi,tri-dimensionnal.

Attributes:

 xSize: Designates a number of lines of a table.

 ySize: Designates a number of column of a table.

 zSize: Designates a number of layer of a table.

Element cell

 56

Inherits from: graphicalContainer

Specification: Composes a table (and may contain a table). It is a container in itself but it

must always be part of a table.

Attributes:

 xIndex: Designates a line number.

 yIndex: Designates a column number.

 zIndex: Designates a layer number.

Fig. 27 Example for element “table & cell” of CUI Model

The Fig.27 shows the code of CUI Model for table and cell elements. The table has two

lines and two columns. The position of each cell is marked by the content of the cell, for

instance, L1C1 present the data in the first line and first column.

 57

5.2.3 GraphicalIndividualComponent elements

graphicalIndividualComponent
glueVertical : string
glueHorizontal : string
defaultMnemonic : String
mnemonic : String

imageComponent
imageHeight : integer
imageWidth : integer
imageHorizSpace : integer
imageBorder : integer
hyperLinkTarget : uri
defaultHyperLinkTarget : uri

checkBox
defaultState : boolean
groupName : string

textComponent
textFont : string
isBold : boolean
isItalic : boolean
isUnderline : boolean
isStrikeThrough : boolean
isSubScript : boolean
isSuperScript : boolean
isPreformatted : boolean
textSize : integer
defaultHyperLinkTarget : uri
hyperLinkTarget : uri
linkVisitedColor : string
activelinkColor : string
textMargin : integer
textColor : String
isEditable : boolean
wordWrapped : boolean
forceWordWrapped : boolean
maxLength : integer
numberOfColumns : integer
numberOfLines : integer
scrollstyle : string
scrollDirection : string
scrollWidth : integer
scrollHeigth : integer
scrollHorizSpace : integer
scrollVertSpace : integer
scrollDelay : integer
scrollAmount : integer
textVerticalAlign : String
textHorizontalAlign : String
filter : String

radioButton
defaultState : boolean
groupName : string

Item

0..n

0..1

comboBox
isEditable : boolean
maxlineVisible : integer

1..n

1

menu
popUpMenu : boolean
toolBarMenu : boolean

menuItem
type : string
keyboardShortcut : string
defaultKeyboardShortcut : string

1

1..n

Fig.28 Portion of interest of graphicalIndividualComponent elements

Element graphicalIndividualComponent

Fig.28 shows the graphicalIndividualComponent element and its portion of interest

children elements which can be mapped from WML 1.1.

Inherits from: graphicalCio

Specification: Is a GraphicalCio contained in a graphicalContainer. Its specific attributes

 58

(offsetVertical and offsetHorizintal) enable to specify its layout relationship with its

graphicalContainer.

Attributes:

 glueVertical: Is the specification of a layout constraint (on a vertical axis) between

a graphicalIndivudualComponent and its graphicalContainer. Allowed values : top,

middle, bottom.

 glueHorizontal: Is the specification of a layout constraint (on a horizontal axis)

between a graphicalIndivudualComponent and its graphicalContainer. Allowed

values : left, middle, right.

 defaultMnemonic: Is the default mnemonic for a control graphical individual

component.

 Mnemonic: Is the mnemonic depending on the context (especially the language).

Element textComponent

Inherits from: graphicalIndividualComponent

Specification: Is a graphicalIndividualComponent specialized for handling textual

content.

Attributes:

 textFont: Specifies a font style for the textComponent.

 isBold: Specifies if a textComponent is bold or not.

 isItalic: Specifies if a textComponent is italic or not.

 isUnderline: Specifies if a textComponent is underlined or not.

 isStrikeThrough: Specifies if a textComponent is striked through or not.

 isSubScript: Specifies if a textComponent is subscripted or not.

 isSuperScript: Specifies if a textComponent is superscripted or not.

 isPreformatted: If is set to true no style attribute can be modified from outside a

specification.

 textSize: Specifies a size in points for a textComponent.

 defaultHyperLink: Is the default hyperLink.

 defaultHyperLinkTarget: Designates a hyperlink target file.

 59

 linkVisitedColor: Is a hyperlink color after being visited one time.

 activeLinkColor: Is a color of an hyperLink textComponent when clicking on it.

 textMargin: Specifies a textmargin size in pixels.

 textColor: Specifies a text color.

 isEditable: Specifies if a textComponent is editable or not i.e., subject to user input

or not.

 wordWrapped: Indicates if a text is wrapped or not.

 forceWordWrapped: Is a graphicalIndividualComponent specialized for handling

textual content.

 maxLength: Is a maximum length for a content of a textComponent. Expressed in

number of characters.

 numberOfColumns: Is a number of columns of a textComponent.

 numberOfLines: Is a number of lines of a textComponent.

 scrollStyle: Is the style of the scroll. Allowed values : scroll, slide, alternate.

 scrollDirection: Is the scroll direction. Alllowed values : left, right.

 scrollWidth: Indicates a width in pixel of a scrolling textComponent.

 scrollHeight: Indicates a height in pixel of a scrolling textComponent.

 scrollHorizSpace: Indicates a blank space in pixel at the right and the left of a

scrolling textComponent.

 scrollVertSpace: Indicates a blank space in pixel left, bellow and above a scrolling

textComponent.

 scrollDelay: Expresses a scrolling delay in millisecond.

 scrollAmount: Expresses in pixel scrolled distance after each delay.

 textVerticalAlign: Indicates a vertical alignment constraint of the text contained in a

textComponent. Allowed values : top, middle, bottom.

 textHorizontalAlign: Indicates an horizontal alignment constraint of the text

contained in a textComponent. Allowed values: left, middle, right.

 Filter: Is a regular expression constraining the content of a textComponent.

Elelment imagComponent

 60

Inherits from: graphicalIndividualComponent

Specification: Is a graphicalIndividualComponent specialized for handling image content.

Attributes:

 imageHeight: Is the heigth of an ImageComponent expressed in pixels.

 imageWidth: Is the width of an ImageComponent expressed in pixels.

 imageHorizSpace: Expresses an horizontal offset (in pixels) with respect to an

imageComponent's container.

 imageBorder: Expresses a border width in pixels.

 defaultHyperLinkTarget: Specifies a target file reachable from an imageComponent

(depends of the context).

 defaultDefaultHyperLinkTarget: Is the default hyperLink.

Element radioButton

Inherits from: graficalIndividualContainer

Specification: Enables a Boolean choice by checking a circle aside of a label. A

radioButton may be differentiated from a checkBox by the fact that when grouped

optionButton selection is mutually exclusive while checkBox allows multiple choices.

Attributes:

 defaultState: Is true if a radioButton is selected.

 groupName: Is the name of the group.

Fig.29 Appearance of radioButton

 61

Fig. 30 Example for element “radioButton” of CUI Model

Element checkBox

Inherits from: graficalIndividualContainer

Specification: Enables a boolean choice by checking a square box aside of a label. A

checkBox may be differentiated from an radioButton by the fact that when grouped

checkBoxes allow multiple choices while radioButton selection is mutually exclusive.

Attributes:

 defaultState: Indicates a default state for a checkbox..

 groupName: Is the name of the group.

Option 1

Option 2

Option 3

Fig.31 Appearance of checkBox

 62

Element comboBox

Inherits from: graphicalIndividualComponent

Specification: Enables a direct selection over a collection of sequentially ordered items.

Attributes:

 isEditable: Specifies if the content of the textbox (composing a comboBox) is

editable or not.

 maxLineVisible: Indicates the number of visible lines.

ComboBox

Fig.32 Appearance of comboBox

Element item

Inherits from: graphicalIndividualComponent

Specification: Specifies an item populating either a comboBox or a spin.

Fig. 33 Example for elements “comboBox & item” of CUI Model

 63

5.3 Conclusion

Comparing to the structure and elements of source WML 1.1 explored in the chapter 4,

in this chapter, we present the components and elements of the target CUI Model of

USIXML preparing for the mapping to WML 1.1 elements.

Concrete Interaction Objects realize an abstraction of widget sets found in popular

graphical toolkits (Java AWT/Swing, HTML 4.O, Flash DRK6). A CIO is defined as an

entity that users can perceive and/or manipulate (e.g., a push button, a list box, a check

box). Orthogonally to AIOs, CIOs are divided into two types graphicalContainers (e.g.,

window, panel, table, cell, dialog box, etc.) and graphicalIndividual-Components (e.g., a

button, a text component, a video component, a menu, a spin button, etc.).

The layout of the CUI is defined without any absolute coordinates. A box embedding

mechanisms is used to specify a lay-out. Alignments between CIOs are defined with a

special relationship called alignment

The elements chosen to be mapped from those of WML1.1 are the graphicalContainer

and graphicalIndividualComponent elements and its children elements. In the next

chapter, we present the mapping rules from WML 1.1 to CUI model.

 64

Chapter 6. MAPPING RULES AND ITS CORRESPONDING

XSLT TEMPLATES

As we’ve introduced the Java transformation application in the chapter 3, the rest work

for the transformation is to create a XSLT style sheet which combines all the XSLT

templates. For building the XSLT style sheet, we deduct the XSLT templates concerning

to the mapping rules from WML to CUI Model. In this chapter, we firstly present the

mapping types and the way we organise the mapping rules. Secondly, we introduce the

XPath notation with which we can express the mapping rules in a concise and logic way.

Lastly, we will show the mapping rules of each chosen element of WML and its

corresponding XSLT template.

6.1 Types of mapping rules and its presentation

For the mapping between WML element and CUI element, there are four types of

mapping. The first two types are element to element mapping which are respectively

one-to-one mapping, one-to-several mapping. In the case of one-to-several mapping, for

instance, the select element of WML 1.1 can be mapped to comboBox or a drop down

menu according to different conditions. Another example is the option element of WML

1.1 can be optionally mapped to check box, radio button, linked textComponent,

combBox item, and menu item in CUI by checking different conditions. These will be

shown in the section 6.3.2.2 for the detailed mapping rules. The third type is

element-to-attribute mapping specially for the element such as i, em, b, strong, u, big and

small. The detailed mapping will be presented in the section 6.3.3.4. The last type is

text-content- to-element mapping which will be presented in detailed in the section

6.3.3.4.

To determine the value of attribute of the mapped CUI element, there are three

possibilities. The first one is to directly determine the value by the corresponding

attribute of the mapping WML element. The second one is to determine the value by

 65

calculating using XPath functions when there is not a correspondent attribute of the

mapping WML element. The functions of XPath are included in the function library (see

Appendix 2). Unlike the first two possibilities which are not conditional, the third one is

to determine the value depending on the condition of the source WML element’s

context.

To present the mapping rules in a comprehensive way in considering the different

possibilities of determination of attribute value, we divide the mapping table into three

sub-mapping tables.

The WMLelementName_table 1 presents the mapping elements from WML to CUI for

the one-to-one mapping and several-to-one mapping without “condition” field while for

one-to-several mapping with “condition” field. It also presents the attributes that could

be determined its value by directly mapping from WML attributes.

The WMLelementName_table 2 presents the attributes of the mapped CUI element

which can not be directly mapped from an attribute of WML element. These attributes

have unconditional values which are determined only by calculation.

Comparing to The WMLelementName_table 2, the WMLelementName_table 3 has an

additional “condition” field to present the attributes with conditional values.

6.2 The XPath notation for mapping rules

As we’ve introduced in the section 3.3, XPath expressions select nodes from the input

XML document for further transforming into other XML vocabularies. Both input and

output documents are represented by the XPath data model. For the mapping rules,

some attribute value and mapping conditions are complicated and hard to be expressed

by normal language. As XPath expression can express the attribute value and mapping

 66

conditions in a robust and understandable way, we use the XPath notation in our

mapping rules.

6.2.1 Introduction

XPath is a language for addressing parts of an XML document, designed to be used by

both XSLT and XPointer. In general, an XPath expression specifies a pattern that selects

a set of XML nodes. There are different types of nodes, including element nodes,

attribute nodes and text nodes. XSLT templates then use those patterns when applying

transformations.

Much of the notation of directory paths is carried over intact:

 The forward slash (/) is used as a path separator.

 An absolute path from the root of the document starts with a /.

 A relative path from a given location starts with anything else.

 A double period (..) indicates the parent of the current node.

 A single period . indicates the current node.

In an xHTML document, for example, the path /h1/h2/ would indicate an h2 element

under an h1. In a pattern-matching specification like XSLT, the specification /h1/h2

selects all h2 elements that lie under an h1 element. To select a specific h2 element,

square brackets ([]) are used for indexing (like those used for arrays). The path /h1[4]/h2[5]

would therefore select the fifth h2 element under the fourth h1 element.

A name in XPath specification refers to an element. To refer to attribute, you prefix its

name with an "@" sign. For example, @type refers to the type attribute of an element.

Assuming you have an XML document with list elements, for example, the expression

list/@type selects the type attribute of the list element. Since the expression does not begin

with /, the reference specifies a list node relative to the current context

6.2.2 Location steps

The location step for a specific node has three parts:

 67

 an axis, which specifies the tree relationship between the nodes selected by the

location step and the context node,

 a node test, which specifies the node type and expanded-name of the nodes

selected by the location step, and

 zero or more predicates, which use arbitrary expressions to further refine the set

of nodes selected by the location step.

6.2.2.1 Axes

The following axes are available:

 the child axis contains the children of the context node.

 the descendant axis contains the descendants of the context node; a descendant

is a child or a child of a child and so on; thus the descendant axis never contains

attribute or namespace nodes

 the parent axis contains the parent of the context node, if there is one.

 the ancestor axis contains the ancestors of the context node; the ancestors of

the context node consist of the parent of context node and the parent's parent and

so on; thus, the ancestor axis will always include the root node, unless the context

node is the root node

 the following-sibling axis contains all the following siblings of the context node;

if the context node is an attribute node or namespace node, the following-sibling

axis is empty

 the preceding-sibling axis contains all the preceding siblings of the context node;

if the context node is an attribute node or namespace node, the preceding-sibling

axis is empty

 the following axis contains all nodes in the same document as the context node

that are after the context node in document order, excluding any descendants and

excluding attribute nodes and namespace nodes

 the preceding axis contains all nodes in the same document as the context node

that are before the context node in document order, excluding any ancestors and

excluding attribute nodes and namespace nodes

 68

 the attribute axis contains the attributes of the context node; the axis will be

empty unless the context node is an element

 the namespace axis contains the namespace nodes of the context node; the axis

will be empty unless the context node is an element

 the self axis contains just the context node itself

 the descendant-or-self axis contains the context node and the descendants of

the context node

 the ancestor-or-self axis contains the context node and the ancestors of the

context node; thus, the ancestor axis will always include the root node

6.2.2.2 Node Tests

Every axis has a principal node type. If an axis can contain elements, then the principal

node type is element; otherwise, it is the type of the nodes that the axis can contain.

Thus,

 For the attribute axis, the principal node type is attribute.

 For the namespace axis, the principal node type is namespace.

 For other axes, the principal node type is element.

The attribute node text can be expressed as @nameOfAttribute. For example, @href

selects the href attribute of the context node; if the context node has no href attribute, it

will select an empty set of nodes.

6.2.2.3 Predicates

A predicate filters a node-set with respect to an axis to produce a new node-set. For each

node in the node-set to be filtered, the PredicateExpr is evaluated with that node as the

context node, with the number of nodes in the node-set as the context size, and with the

proximity position of the node in the node-set with respect to the axis as the context

position; if PredicateExpr evaluates to true for that node, the node is included in the new

node-set; otherwise, it is not included.

 69

6.3 Mapping Rules and XSLT templates

For the scale of mapping which we’ve presented in the section 4.3, we present the

mapping rules for elements of WML 1.1 which could be mapped to that of CUI model

of USIXML.

According to the structure of WML 1.1, we organise the WML 1.1 elements into four

categories which are respectively card element, user input elements, text presentation and

layout elements and image & anchor elements. Following each mapping rule, we deduct a

XSLT template which we will use to construct the XSLT stylesheet for the

transformation.

6.3.1 card element :

Language WML USIXML
Element Card Window
Attribute Title Name

card_table 1

As the card element of WML is a top level container of text and input elements. The

most proper mapping element for USIXML is window element. The window’s attribute

name’s value equals to the title attribute of card element.

Element Attribute Value

Id window_"number of preceding card +1"

isVisible TRUE
isEnable TRUE

windowLeftMargin 0
window

windowTopMargin 0
card_table 2

We identify the window element by its presenting position of window element in the

target USIXML file. To get the value of id, we first find out the position of the

corresponding window element in the source WML file by calculating the number of

 70

preceding card elements plus 1. As there are not corresponding attributes for isVisible,

isEnable, widowLeftMargin and widowTopMargin within card element in WML, we give

the value of these attributes as default in considering the properties of the mapping. Here,

the window are both visible and enable. And the window is full screen, so the left and

top margin equal zero.

Template deal with the card element

<xsl:template match="card">
 <!--set condition for the card element which has the p element inside-->

<xsl:if test="descendant::p">
 <xsl:element name="window">
 <xsl:attribute name="id"><xsl:value-of
select="concat('window_',string(count(preceding::card)+1))"/></xsl:attribute>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="windowLeftMargin"><xsl:value-of
select="0"/></xsl:attribute>
 <xsl:attribute name="windowTopMargin"><xsl:value-of
select="0"/></xsl:attribute>
 <xsl:if test="@title">
 <xsl:attribute name="name"><xsl:value-of
select="@title"/></xsl:attribute>
 </xsl:if>
 <!--add a box element inside the window element-->

<xsl:element name="box">
 <xsl:attribute name="id"><xsl:value-of
select="concat('box_','1')"/></xsl:attribute>
 <xsl:if test="@title">
 <xsl:attribute name="borderTitle"><xsl:value-of
select="@title"/></xsl:attribute>
 </xsl:if>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:apply-templates/>
 </xsl:element>

 71

 </xsl:element>
 </xsl:if>
 </xsl:template>

The concrete example in the section 7.2 shows the resulted CUI Model from WML by

this template.

6.3.2 User input elements:

All the following elements of WML we will present in this section, such as optgroup,

select, option and input, are all serve to collect the user input.

6.3.2.1 optgroup element

Language WML USIXML
Element optgroup Box

Name
Attribute title

borderTitle

optgroup_table 1

The optgroup element which groups related option elements into a hierarchy which is

very similar to box element in USIXML which is a container that enables an

unambiguous structuring of all graphicalIndividualComponents within a window.

Therefor, we map the optgroup element of WML to the box element of USIXML. The

reason to map title attribute of WML to both name and borderTitle attributes is for box

element description and the presentation of the title of the box in the final UI of

USIXML.

Element Attribute Value

box id box_"number of preceding fieldset+ancestor fieldset+preceding optgroup+2"

Optgroup_table 2

 72

The explication of the value of id attribute for the box element of USIXML is shown at

fieldset_table 2.

Template deal with the optgroup element

<xsl:template match="optgroup">
 <xsl:element name="box">
 <xsl:attribute name="id"><xsl:value-of
select="concat('box_',string(1+count(preceding::optgroup)+count(preceding::fieldset)
+count(ancestor::fieldset)+1))"/></xsl:attribute>
 <xsl:if test="@title">
 <xsl:attribute name="borderTitle"><xsl:value-of
select="@title"/></xsl:attribute>
 <xsl:attribute name="name"><xsl:value-of
select="@title"/></xsl:attribute>
 </xsl:if>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>

6.3.2.2 select & option element

The select element lets users pick from a list of options whereas the option element is a

single choice option in a select element. As the mappings for selection and option

elements are one-to-several mappings which engage 3 checking points to decide which

element it should map to. According to the complexity of this issue, before we introduce

the table of mapping rules, we present you the decision procedure for the mapping.

 73

Fig. 34 Decision procedure for mapping of select and option

As we’ve shown in the fig.34, the first condition to check is the value of multiple

attribute of select element. If the value is true, it means that the selection could be one or

more than one. In this case, on the other side, only the checkbox element of USIXML

allows multiple selection, for this reason, we map all the enclosed option elements to

checkbox elements of USIXML.

Then, we reach to the second check point which is whether the total option number is

less than 7. If the answer is yes, there will be two possibilities for the mapping of the

option element. The two possibilities are radioButton and linked textComponent of

USIXML. If the answer is not, there are also two possibilities. The first possibility is

select maps to menu and option maps to menuItem. The other one is select maps to

comboBox and option maps to item. The reason is that each of radioButton and

textComponent takes one line place, so if there are too many this kind of widgets in one

 74

UI, it will be take a lot of place which may make the resulted UI very crowded. Instead of

radioButton and textComponent, the comboBox and drop-down menu can take only

one line place by hiding comboBox items and menu items.

The reasons for choosing between radioButton and linked textComponent and between

menuItem and comboBox item are the same. If the option element has onpick arttribute,

to select this option means to navigate to the address corresponding to the value of

onpick attribute. As the menuItem with drop-down menu and the linked textComponent

has the function to direct navigate to another address when they are chosen, it is better

to map the option element to them than to the comboBox item and radioButton.

We can draw some conclusion as following:

1. If the value of multiple attribute is true, option elements map to checkBox.

2. Else, Mapping elements of USIXML for option and select are shown in the following

table.

 @onpick Not(@onpick)

options>6 Menu ComboBox

Mapping table for select

 Not(@onpick) @onpick

options<7 radioButton textComponent

options>6 menuItem ComboBox item

Mapping table for option

The complete mapping rules with XPath notation are shown as following:

Language WML USIXML Condition

comboBox
not(@multiple="true") & count(option)>6 &
not(./option[@onpick])

Element select
menu

not(@multiple="true") & count(option)>6
& ./option[@onpick]

Attribute @title @defaultContent

 75

select_table 1

The value of the defaultContent attribute of comboBox and menu element of USIXML

equals to the string value of the title attribute of select element.

Language WML USIXML Condition
checkBox ../@multiple="true"

radioButton
not(../@multiple="true") & count(option)<7 &
not(@onpick)

textComponent
not(../@multiple="true") & count(option)<7 &
@onpick

menuItem
not(../@multiple="true") & count(option)>6 &
@onpick

Element option

item
not(../@multiple="true") & count(option)>6 &
not(@onpick)

option_table 1

Element Attribute Value

checkBox id checkBox_”number of preceding checkBox's option +1"
radioButton id radioButton_"number of preceding radioButton option+1"

id item_"number of preceding item option +1"
item

defaultContent text content enclosed in option

id menuItem_"number of preceding menu item option +1"
menuItem

defaultContent text content enclosed in option

id textComponent_"number of preceding textComponent+1"

defaultContent text content enclosed in option textComponent

defaultHyperLinkTarget Value of @onpick

option_table 2

We identify elements of USIXML by its presenting position of such element in the

target USIXML file. To get the value of id, we find out the position of the

corresponding option element in the source WML file by calculating the number of

preceding corresponding option elements plus 1.

 76

option_table 3

Element Attribute Value Condition

defaultState TRUE
select/@ivalue contains the checkBox's position

number.

defaultState FALSE
select/@ivalue doesn't contain the checkBox's

position number.

glueHorizontal p/@align
text enclosed in p element &

p has align attribute

checkBox &

radioButton

glueHorizontal Left
text enclosed in p element &
p doesn’t have align attribute

The value of the defaultState attribute depends on whether the ivalue attribute of the

outer select element contains the checkBox or radioButton’s positon number. If yes, the

value is “true”, and “false” vice versa. For the value of glueHorizontal attribute, it

equals to the value of the align attribute of the outer p element. If the outer p element

has not align attribute. The value is “left” as default.

Template deal with the select & option element

<xsl:template match="select">
 <xsl:choose>
 <xsl:when test="@multiple='true'">
<!--Mapping option to checkBox -->
 <xsl:for-each select="./option">
 <xsl:element name="checkBox">
 <xsl:attribute name="id"><xsl:value-of
select="concat('checkBox_',string(count(preceding::option[../@multiple='true'])+1))"/
></xsl:attribute>
 <xsl:choose>
 <xsl:when test="ancestor::p[@align]">
 <xsl:attribute
name="glueHorizontal"><xsl:value-of
select="ancestor::p[@align]/@align"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute
name="glueHorizontal"><xsl:value-of select="'left'"/></xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:if test="../@title">
 <xsl:attribute name="groupName"><xsl:value-of
select="../@title"/></xsl:attribute>
 </xsl:if>

 77

 <xsl:attribute name="defautContent"><xsl:value-of
select="./text()"/></xsl:attribute>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:choose>
 <xsl:when
test="contains(string(../@ivalue),string(position()))">
 <xsl:attribute name="defaultState"><xsl:value-of
select="true()"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="defaultState"><xsl:value-of
select="false()"/></xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:element>
 </xsl:for-each>
 </xsl:when>
 <xsl:otherwise>
 <xsl:if test="count(./option) > 6">
 <xsl:choose>
 <xsl:when test="./option[@onpick]">
<!--Mapping select to menu -->
 <xsl:element name="menu">
 <xsl:attribute name="id"><xsl:value-of
select="concat('menu_',string(count(preceding::select[count(./option) >
6])+1))"/></xsl:attribute>
 <xsl:attribute name="defaultContent"><xsl:value-of
select="@title"/></xsl:attribute>
<!--Mapping option to menuItem -->

 <xsl:for-each select="./option">
 <xsl:element name="menuItem">
 <xsl:attribute name="id"><xsl:value-of
select="concat('menuItem_',string(count(preceding::option)+1))"/></xsl:attribute>
 <xsl:attribute
name="defautContent"><xsl:value-of select="./text()"/></xsl:attribute>
 </xsl:element>
 </xsl:for-each>
 </xsl:element>
 </xsl:when>
 <xsl:otherwise>

 78

<!--Mapping select to comboBox -->
 <xsl:element name="comboBox">
 <xsl:attribute name="id"><xsl:value-of
select="concat('comboBox_',string(count(preceding::select[count(./option) >
6])+1))"/></xsl:attribute>
 <xsl:attribute name="defaultContent"><xsl:value-of
select="@title"/></xsl:attribute>
 <xsl:for-each select="./option">
<!--Mapping option to item -->
 <xsl:element name="item">
 <xsl:attribute name="id"><xsl:value-of
select="concat('item_',string(count(preceding::option)+1))"/></xsl:attribute>
 <xsl:attribute
name="defautContent"><xsl:value-of select="./text()"/></xsl:attribute>
 </xsl:element>
 </xsl:for-each>
 </xsl:element>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:if>
 <xsl:if test="count(./option) < 7">
 <xsl:choose>
 <xsl:when test="./option[@onpick]">
 <xsl:for-each select="child::option">
<!--Mapping option to textComponent -->
 <xsl:apply-templates/>
 </xsl:for-each>
 </xsl:when>
 <xsl:otherwise>
 <xsl:for-each select="child::option">
<!--Mapping select to radioButton -->
 <xsl:element name="radioButton">
 <xsl:attribute name="id"><xsl:value-of
select="concat('radioButton_',string(count(preceding::option)-count(preceding::option
[../@multiple='true'])+1))"/></xsl:attribute>
 <xsl:choose>
 <xsl:when test="ancestor::p[@align]">
 <xsl:attribute
name="glueHorizontal"><xsl:value-of
select="ancestor::p[@align]/@align"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute
name="glueHorizontal"><xsl:value-of select="'left'"/></xsl:attribute>

 79

 </xsl:otherwise>
 </xsl:choose>
 <xsl:if test="../@title">
 <xsl:attribute
name="groupName"><xsl:value-of select="../@title"/></xsl:attribute>
 </xsl:if>
 <xsl:attribute
name="defautContent"><xsl:value-of select="./text()"/></xsl:attribute>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:choose>
 <xsl:when
test="position()=number(../@ivalue)">
 <xsl:attribute
name="defaultState"><xsl:value-of select="true()"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute
name="defaultState"><xsl:value-of select="false()"/></xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:element>
 </xsl:for-each>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:if>
 </xsl:otherwise>
 </xsl:choose>

 </xsl:template>
The concrete example in the 7.4 shows the resulted CUI Model from WML by this

template.

6.3.2.3 input element

Language WML USIXML
Element Input textComponent

Title name
Size size

Maxlength maxlength
Value defaultContent

Attribute

type="password" isPassword="true"

 80

input_table 1

As the input element specifies a text entry object of WML, we map it to an empty

textComponent element which also defines a textual content of USIXML. There is not a

widget which specifically presents a password field. Instead, if the type attribute of input

element equals to “password”, the value of ispassword attribute of textComponent

element equals to “true” which makes the empty textComponent to present the

password field.

Element Attribute Value

Id
textComponent_"number of preceding input preceding text() +

ancestor text()+1"
isEditable TRUE

Text

Component

isVisible TRUE
input_table 2

We identify the textComponent element of USIXML by its presenting position of

textComponent element in the target USIXML file. To get the value of id, we find out

the position of the corresponding img element in the source WML file by calculating

the number of preceding img elements plus 1.

Template deal with the input element

<xsl:template match="input">

 <xsl:element name="textComponent">
 <xsl:attribute name="id"><xsl:value-of
select="concat('textComponent_',string(count(preceding::input)+count(preceding::tex
t())+count(ancestor::text())+1))"/></xsl:attribute>
 <xsl:choose>
 <xsl:when test="ancestor::p[@align]">
 <xsl:attribute name="glueHorizental"><xsl:value-of
select="ancestor::p[@align]/@align"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="glueHorizental"><xsl:value-of
select="'left'"/></xsl:attribute>
 </xsl:otherwise>

 81

 </xsl:choose>
 <xsl:if test="@title">
 <xsl:attribute name="name"><xsl:value-of
select="@title"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="@size">
 <xsl:attribute name="size"><xsl:value-of
select="@size"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="@maxlength">
 <xsl:attribute name="maxlength"><xsl:value-of
select="@maxlength"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="@type='password'">
 <xsl:attribute name="isPassword"><xsl:value-of
select="true()"/></xsl:attribute>
 </xsl:if>
 <xsl:attribute name="defaultContent"><xsl:value-of
select="@value"/></xsl:attribute>
 <xsl:attribute name="isEditable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 </xsl:element>
 </xsl:template>

The concrete example in the section 7.3 shows the resulted CUI Model from WML by this

template

6.3.3 Text presentation and layout

All the following elements of WML we will present in this section, such as table, td,

fieldset and text content, etc., are all related to text presentation and layout.

6.3.3.1 table element

Language WML USIXML
Element Table table

Title name
columns ySize Attribute

Align glueHorizontal

 82

table_table 1

Both the WML and USIXML have table element which has similar definition. But the

names of its attributes are different. The table 1 shows the attributes that can be directly

mapped from WML to USIXML.

Element Attribute Value

Id table_"number of preceding table +1"
table

xSize number of tr inside the table
table_table 2

We identify the table element of USIXML by its presenting position of the table

element in the target USIXML file. To get the value of id, we first find out the position

of the corresponding table element in the source WML file by calculating the number of

preceding table elements plus 1. For the value of xSize, we calculate the number of tr

inside the corresponding table of WML file.

Template deal with the table element

<xsl:template match="table">

 <xsl:element name="table">
 <xsl:attribute name="id"><xsl:value-of
select="concat('table_',string(count(preceding::table)+1))"/></xsl:attribute>
 <xsl:attribute name="ySize"><xsl:value-of
select="@columns"/></xsl:attribute>
 <xsl:attribute name="xSize"><xsl:value-of
select="count(child::tr)"/></xsl:attribute>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:if test="@title">
 <xsl:attribute name="name"><xsl:value-of
select="@title"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="@align">
 <xsl:attribute name="glueHorizontal"><xsl:value-of
select="@align"/></xsl:attribute>
 </xsl:if>
 <xsl:apply-templates/>

 83

 </xsl:element>
 </xsl:template>
The concrete example in the section 7.6 shows the resulted CUI Model from WML by

this template.

6.3.3.2 td element

Language WML USIXML
Element td Cell

td_table 1

As the td element is where to put the data in the table of WML, we map it to the cell

element of USIXML which can contain not only graphicalIndividualComponent, but

also graphicalContainer for the table element.

Element Attribute Value

Id cell_"number of preceding td + 1"

xIndex number of preceding-cibling tr of parent node + 1 cell

yIndex number of preceding-cibling td + 1

td_table 2

We identify the cell element of USIXML by its presenting position of cell element in

the target USIXML file. To get the value of id, we first find out the position of the

corresponding td element in the source WML file by calculating the number of

preceding td elements plus 1. For the value of xIndex, we calculate the line position of

the corresponding td in the table of WML file. We can get the value by calculate the

number of preceding-cibling tr of parent node plus 1 for the parsed DOM tree of

source WML file. For the value of yIndex, we calculate the column position of the

corresponding td in the table of WML file. We can get the value by calculate the

number of preceding-cibling td of current node plus 1 for the parsed DOM tree of

source WML file.

Template deal with the td element

<xsl:template match="td">

 <xsl:element name="cell">
 <xsl:attribute name="id"><xsl:value-of

 84

select="concat('cell_',string(count(preceding::td)+1))"/></xsl:attribute>
 <xsl:attribute name="xIndex"><xsl:value-of
select="count(../preceding-sibling::tr)+1"/></xsl:attribute>
 <xsl:attribute name="yIndex"><xsl:value-of
select="count(preceding-sibling::td)+1"/></xsl:attribute>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>

The concrete example in the section 7.6 shows the resulted CUI Model from WML by

this template.

6.3.3.3 fieldset element

Language WML USIXML
Element Fieldset box

name
Attribute Title

borderTitle
fieldset_table 1

The fieldset element of WML, which allows the grouping of related fields and text,

maps to the box element of USIXML. The reason to map title attribute of WML to

both name and borderTitle attributes is for box element description and the

presentation of the title of the box in the final UI of USIXML.

Element Attribute Value

box id box_"number of preceding fieldset+ancestor fieldset+ preceding optgroup+2"

fieldset_table 2

We identify the box element of USIXML by its presenting position of box element in

the target USIXML file. As all the fieldset and optgroup element of WML can map to

the box element of USIXML, the value of id equals to the number of preceding fieldset

and ancestor fieldset and preceding optgroup elements of current node plus 2 for the

parsed DOM tree of source WML file. The reason to add the number of ancestor

 85

fieldset is that the fieldset element can be self nested. And the reason to add 2 is that

the first box element is always automatically added under the window element.

Template deal with the fieldset element

<xsl:template match="fieldset">

 <xsl:element name="box">
 <xsl:attribute name="id"><xsl:value-of
select="concat('box_',string(1+count(preceding::fieldset)+count(ancestor::fieldset)+co
unt(preceding::optgroup)+1))"/></xsl:attribute>
 <xsl:if test="@title">
 <xsl:attribute name="borderTitle"><xsl:value-of
select="@title"/></xsl:attribute>
 <xsl:attribute name="name"><xsl:value-of
select="@title"/></xsl:attribute>
 </xsl:if>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>

6.3.3.4 text content
Language WML USIXML

Content & Element Text Content textComponent
text_content_table 1

The text content of WML maps to the textComponent element of USIXML. The

reason is that in USIXML the textual content is present by textComponent element.

Element Attribute Value

textComponent id
textComponent_"number of preceding input +

preceding text()+ ancestor text() + 1"
text_content_table 2

The explication of the value of id attribute for the textComponent element of USIXML

is shown at input_table 2.

 86

Element Attribute Value Condition

isItalic TRUE text enclosed in the i or em element

isBold TRUE
text enclosed in the b or strong
element

isUnderline TRUE text enclosed in the u element

textSize 12 text enclosed in the big element

textSize 8 text enclosed in the small element

defaultDefaultHyperLinkTarget go/@href text enclosed in the anchor element

defaultDefaultHyperLinkTarget a/@href text enclosed in the a element
text enclosed in the p element &

glueHorizontal p/@align
the p has align attribute
text enclosed in the p element &

textComponent

glueHorizontal left
the p doesn’t have align attribute

text_content_table 3

The text content can be nested in the inline layout elements of WML such as i, em, b,

strong, big and small element. When it happens the corresponding additional attributes

will be added to the textComponent. For the value of defaultDefaultHyperLinkTarget

attribute, it equals to that of the href attribute of outer a element or go element which

enclosed in the anchor element. For the value of glueHorizontal attribute, it equals to

that of the align attribute of the outer p element. If the outer p element has not align

attribute. The value is “left” as default.

Template deal with the text content

<xsl:template match="text()">

 <xsl:element name="textComponent">
 <xsl:attribute name="id"><xsl:value-of
select="concat('textComponent_',string(count(preceding::text())+count(ancestor::text(
))+count(preceding::input)+1))"/></xsl:attribute>
 <xsl:choose>
 <xsl:when test="ancestor::p[@align]">
 <xsl:attribute name="glueHorizental"><xsl:value-of
select="ancestor::p[@align]/@align"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="glueHorizental"><xsl:value-of
select="'left'"/></xsl:attribute>

 87

 </xsl:otherwise>
 </xsl:choose>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:for-each select="ancestor::*">
 <xsl:if test="local-name(.)='anchor'">
 <xsl:attribute
name="defaultHyperLinkTarget"><xsl:value-of select="*/@href"/></xsl:attribute>
 <xsl:if test="@title">
 <xsl:attribute name="name"><xsl:value-of
select="@title"/></xsl:attribute>
 </xsl:if>
 </xsl:if>
 <xsl:if test="local-name(.)='a'">
 <xsl:attribute
name="defaultHyperLinkTarget"><xsl:value-of select="@href"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="local-name(.)='b'">
 <xsl:attribute name="isBold"><xsl:value-of
select="true()"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="local-name(.)='em'">
 <xsl:attribute name="isItalic"><xsl:value-of
select="true()"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="local-name(.)='strong'">
 <xsl:attribute name="isBold"><xsl:value-of
select="true()"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="local-name(.)='i'">
 <xsl:attribute name="isItalic"><xsl:value-of
select="true()"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="local-name(.)='u'">
 <xsl:attribute name="isUnderline"><xsl:value-of
select="true()"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="local-name(.)='small'">
 <xsl:attribute name="textSize"><xsl:value-of
select="8"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="local-name(.)='big'">

 88

 <xsl:attribute name="textSize"><xsl:value-of
select="12"/></xsl:attribute>
 </xsl:if>
 </xsl:for-each>
 <xsl:attribute name="defaultContent"><xsl:value-of
select="normalize-space()"/></xsl:attribute>
 </xsl:element>
 </xsl:template>

The concrete example in the section 7.2 shows the resulted CUI Model from WML by

this template.

6.3.4 Images and Navigations

In this category, we have four elements which are img, anchor, a, and navigational

option.

6.3.4.1 img element

Language WML USIXML
Element Img imageComponent

Height imageHeight
Width imageWidth

Src defaultHyperLinkTarget
vspace(default:0) imageVertSpace
hspace(default:0) imageHorizSpace

Attribute

align(default:bottom) glueVertical
img_table 1

The img element of WML maps to the imageComponent element of USIXML both of

them serve to present imag. As the default value for vspace and hspace in WML are

both zero, if the img element doesn’t has these attribute, the value of imageVertSpace

and imageHorizontal are both zero.

Element Attribute Value

imageComponent id
imageComponent_"number of preceding

img + 1"
img_table 2

We identify the imageComponent element of USIXML by its presenting position of

imageComponent element in the target USIXML file. To get the value of id, we find

 89

out the position of the corresponding img element in the source WML file by

calculating the number of preceding img elements plus 1.

Element Attribute Value Condition

glueHorizontal p/@align
text enclosed in p element &

p has align attribute
imageComponent

glueHorizontal left
text enclosed in p element &
p doesn’t have align attribute

img_table 3

For the value of glueHorizontal attribute, it equals to the value of the align attribute of

the outer p element. If the outer p element has not align attribute. The value is “left” as

default.

Template deal with the img element

<xsl:template match="img">
 <xsl:element name="imageComponent">
 <xsl:attribute name="id"><xsl:value-of
select="concat('imageComponent_',string(count(preceding::img)+1))"/></xsl:attribute
>
 <xsl:choose>
 <xsl:when test="ancestor::p[@align]">
 <xsl:attribute name="glueHorizental"><xsl:value-of
select="@align"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="glueHorizental"><xsl:value-of
select="'left'"/></xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:attribute name="defaultHyperLinkTarget"><xsl:value-of
select="@src"/></xsl:attribute>
 <xsl:choose>
 <xsl:when test="@vspace">
 <xsl:attribute name="imageVertSpace"><xsl:value-of
select="@vspace"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="imageVertSpace"><xsl:value-of
select="0"/></xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>

 90

 <xsl:choose>
 <xsl:when test="@hspace">
 <xsl:attribute name="imageHorizSpace"><xsl:value-of
select="@hspace"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="imageHorizSpace"><xsl:value-of
select="0"/></xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="@align">
 <xsl:attribute name="glueVertical"><xsl:value-of
select="@align"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="glueVertical"><xsl:value-of
select="'bottom'"/></xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:if test="@height">
 <xsl:attribute name="imageHeight"><xsl:value-of
select="@height"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="@width">
 <xsl:attribute name="imageWidth"><xsl:value-of
select="@width"/></xsl:attribute>
 </xsl:if>
 </xsl:element>
 </xsl:template>

The concrete example in the section 7.5 shows the resulted CUI Model from WML by

this template.

6.3.4.2 Navigation elements

There are three navigation element in WML such as anchor, a, and navigational option.

The navigation element specify a hyper text link for a UI transition.

Language WML USIXML

graphicalTransition
Source element

a or anchor or
navigational option

Target

 91

navigationElements_table 1

The navigation elements, such as a, anchor, navigational option, map to

graphicalTransition, source, and target which define the UI transition in USIXML.

Element Attribute Value

id
textLink_"number of (preceding a + preceding

anchor+ preceding option)+1" graphicalTransition
type Open

source sourceId
textComponet_"number of(preceding & ancestor

text() + preceding input)+1"
a/@href or option/@onpick

target targeted
anchor/go/@href

navigationElements_table 2

The sourceId attribute of source element equals to the id attribute of the corresponding

textComponent element in the USIXML file.

Template deal with the a element

<xsl:template name="transition_a">
 <xsl:for-each select="//a">
 <xsl:element name="graphicalTransition">
 <xsl:attribute name="id"><xsl:value-of
select="concat('textLink_',string(count(preceding::a)+count(preceding::anchor)+1))"/
></xsl:attribute>
 <xsl:attribute name="type"><xsl:value-of
select="'open'"/></xsl:attribute>
 <xsl:element name="source">
 <xsl:attribute name="sourceId"><xsl:value-of
select="concat('textComponent_',string(count(preceding::text())+count(ancestor::text(
))+count(preceding::input)+1))"/></xsl:attribute>
 </xsl:element>
 <xsl:element name="target">
 <xsl:attribute name="targetId"><xsl:value-of
select="@href"/></xsl:attribute>
 </xsl:element>
 </xsl:element>
 </xsl:for-each>
 </xsl:template>

 92

Template deal with the anchor element

<xsl:template name="transition_anchor">

 <xsl:for-each select="//anchor">
 <xsl:element name="graphicalTransition">
 <xsl:attribute name="id"><xsl:value-of
select="concat('textLink_',string(count(preceding::a)+count(preceding::anchor)+1))"/
></xsl:attribute>
 <xsl:attribute name="type"><xsl:value-of
select="'open'"/></xsl:attribute>
 <xsl:element name="source">
 <xsl:attribute name="sourceId"><xsl:value-of
select="concat('textComponent_',string(count(preceding::text())+count(ancestor::text(
))+count(preceding::input)+1))"/></xsl:attribute>
 </xsl:element>
 <xsl:element name="target">
 <xsl:attribute name="targetId"><xsl:value-of
select="child::go/@href"/></xsl:attribute>
 </xsl:element>
 </xsl:element>
 </xsl:for-each>
 </xsl:template>

The concrete example in the section 7.2 shows the resulted CUI Model from WML by

this template.

To present the mapping rules in a whole picture, we put the complete mapping table in

Appendix 3. For the complete code of XSLT style sheet, see Appendix 4.

6.4 Conclusion

Based on the earlier chapter, such as chapter 4 for the source WML, and chapter 5 for

the target CUI we implement the mapping rules with XPATH notation. We implement

the complete XSLT style sheet by combining all the XSLT templates deducted by the

mapping rules.

 93

WML USIXML Mapping Condition

card window

table table

td cell

fieldset,optgroup box

input

text content
textComponent

comboBox <option> don't has @onpick & has more than 6 options
select

menu <option> has @onpick & has more than 6 options

radioButton <option> don't has @onpick & has less than 7 options

item <option> don't has @onpick & has more than 6 options

menuItem <option> has @onpick & has more than 6 options

textComponent <option> has @onpick & has less than 7 options

option

checkBox <select> has @multiple="true"

img imageComponent

a,anchor

option
source,target,graphicalTransition

<option> has @onpick

Table 2. Element-to-element Mapping table

The above table shows the mapping from WML elements to USIXML elements which

include one-to-one mapping and one-to-several mapping. For the one-to-several

mapping, we use the explicite mapping condition to decide which USIXML element will

be mapped from certain WML element.

USIXML
WML

textComponent's attribute

i,em isItalic="true"

b,strong isBold="true"

u isUderline="true"

big textSize="12"

small textSize="8"

Table 3. Element-to-attribute Mapping table

The element-to-attribute mapping is specially for the element such as i, em, b, strong, u,

big and small. All these element map to a textComponent attribute.

 94

source:WML1.1 target:USIXML

Element Attribute Attribute Element

card title name window

title name

columns ySize table

align glueHorizontal

table

title name
fieldset

title borderTitle

title name
optgroup

title borderTitle

box

title name

size size

maxlength maxlength

value defaultContent

input

type="password" isPassword="true"

anchor title name

anchor/go herf hyperLinkTarget

a herf hyperLinkTarget

p align glueHorizontal

textComponent

comboBox
select title defaultContent

menu

../@title groupName

p/@align glueHorizontal
checkBox

../@title groupName

ivalue defaultState

p/@align glueHorizontal

radioButton
option

onpick defaultHyperLinkTarget textComponent

vspace imageVertSpace

hspace imageHorizSpace

align glueVertical

height imageHeight

width imageWidth

img

src hyperLinkTarget

p align glueHorizontal

imageComponent

a href targetId

anchor/go href targetId

navigational

option
onpick targetId

target

Table 4. Attribute-to-attribute Mapping table

The above mapping table shows the attribute-to-attribute mapping, in which the value of

 95

USIXML attribute is directly determined by the value of the corresponding attribute of

the WML element. For more detailed mapping rules which also include the attribute

which has not direct mapping, you can consult the appendix 3.

In the next chapter, with the transformation application and the XSLT style sheet, we

will perform the transformation on the “real world” WML UIs to get the corresponding

CUI model of USIXML.

 96

Chapter 7. TRANSFORMATION EXAMPLES

From previous chapters, we get the transformation application and the XSLT style sheet

for the transformation from WML 1.1 to USIXML. In this chapter, we will present some

resulted CUI Model from the transformation with the source “real world” WAP UIs.

Then, we verify the result of the transformations preformed by our transformation

application in considering the mapping rules.

7.1 Introduction

In this chapter, we have realised 5 examples to compare the original WML code and the

target USIXML code. Each example shows the result of transformation for certain

WML elements. For showing the final UIs, we use The GraphiXML application. As the

GraphiXML tool is an on going project with limited capacity, for instance, for the

radioButton, combobox, item and cell elements it can’t display properly yet, we use it to

show the final UI of USIXML comparing the UI of WML only for the first 2 examples.

We use both Openwave V7 Simulator and M3Gate Wap Simulator or Wapsilon V2.4 to

show all the WML UIs from which we can also see the different look and feel by

different WAP devices.

For the source of the first 4 examples, we present the results of the transformation for

the real mobile site http://home.mobile.yahoo.com which is written in WML 1.1. For

the last one, we write a WML file to show the transformation for table and td elements.

The transformation is performed by the transformation application in using the XSLT

style sheet (see section 3.4).

These examples cover all the major mapping from WML1.1 to USIXML. Further more,

we show all the possible choices of mapping for WML elements through these

 97

examples.

7.2 Example for element wml, card, p, b, anchor, a

This example shows a WML card which includes three kinds of basic elements: (1) The

structure elements are wml element and card element. (2) The text layout elements are p

element and b element. (3) The navigation elements are anchor element and a element.

Through this example, we can test the transformation program and the XSLT style

sheet for the above elements.

Th

file

UI

res

tha

is b

e

 a

i

u

t

o

Fig. 35 UI of WML Vs. UI of USIXML

Fig. 35 shows the comparable UIs displayed in the mobile simulator for the WML

nd in the GraphiXML application for the transformed USIXML file. The mobile

s the main card which has several web services provide to the user. From the

lted UI in the GraphiXML, we can see that it has just the same layout comparing

of GSM. For example, all the text links are left aligned, and the style of “Hi, [Guest]

ld.

98

(5)

<wml>
 <card id="c1" title="Yahoo!">

(1)

 (2)

 <p mode="nowrap">
 Hi, [Guest]
 </p>
 <p>
 <anchor title="OK">Sign In
 <go href="href1">
 <setvar
name="src" value="home"/>
 </go>
 </anchor>

 …
 <a title="YAHOO"
href="href13">Yahoo! Home
 </p>
 </card>
</wml>

(6)

(5)

(4)

(3)

Fig. 36 WML Code

The Fig.36 shows the resulted CUI Model

perfectly corresponding the mapping rule

USIXML file: (1) the “CuiModel” eleme

mapping to the “wml” element; (2) The o

default attributes, and two mapped attrib

respectively corresponding the “card” elem

the source WML file; (3) For the “textC

<CuiModel xmlns="http://www.usiXML.org"
xmlns:xsi="http://www.w3.org/2001/XMLSch
ema-instance">
<window xmlns="" id="window_1"
isVisible="true" isEnable="true"
windowLeftMargin="0"
windowTopMargin="0" name="Yahoo!">
<box id="box_1" borderTitle="Yahoo!"
isVisible="true" isEnable="true">
<textComponent id="textComponent_1"
glueHorizontal="left" isVisible="true"
isEnable="true" isBold="true"
defaultContent="Hi, [Guest]"/>
<textComponent
id="textComponent_2" …defaultHyperLinkTar
get="href1" name="OK" defaultContent="Sign
In"/>
…
<textComponent id="textComponent_14"
glueHorizontal="left" isVisible="true"
isEnable="true"
defaultHyperLinkTarget="href13”
defaultContent="Yahoo! Home"/>
</box>
</window>

<graphicalTransition xmlns=""
id="textLink_1" type="open">
<source sourceId="textComponent_2"/>
<target targetId="href1 "/>
</graphicalTransition>

 Vs. CUI Model Code

 transformed from the original WML code is

s presented in the chapter 6. In the resulted

nt is created with the namespace attribute

nly “window” element is created with three

utes: id = “window_1” , name = “Yahoo”

ent’s position and the value of title attribute in

omponent” element, taking the text content

99

“Hi, [guest]” for example, it create a “textComponent” element with defaultContent =

“Hi, [guest]”, also with isBold = “true” as the text is enclosed in a tag, and with the

value of glueHorizontal is equal to default value “left” as the <p> tag which enclose the

text has not alignment attribute. (4) The “textComponent” with id =

“textComponent_2”, defaultContent= “Sign in”, name = “ok” and

defaultHyperLinkTarget = “href1” corresponding the “Sign in” text link enclosed in the

“anchor” element. (5) The “textComponent” with id = “textComponent_14”,

defaultContent= “Yahoo! Home”, and defaultHyperLinkTarget = “href13”

corresponding the “Yahoo! Home” text link enclosed in the “a” element. (6) The

“graphicalTransition” element with id = “ textLink_13”, the enclosed “source” element

with sourceId = “textComponent_14” and “target” element with targetId = “href13” are

created corresponding the “Yahoo! Home” text link.

7.3 Example for element input

This example shows a WML card with two types of input element. One is textual input

element which maps to an empty textComponent element of USIXML. The other one

is the password input element which maps to an empty textComponent element with

isPassword attribute.

 100

Fig.37 UI of WML Vs. UI of USIXML

The Fig. 37 shows the comparable UIs for the input example displayed in the mobile

simulator for the WML file and in the GraphiXML application for the transformed

USIXML file. The mobile UI ask for the user to input his Yahoo ID and corresponding

password in the input fields. After input these information. The user can push the

Submit text to send these information to the web service provider.

Fig. 38 WML Code

<wml>
 <card id="c2" title="Y! Sign
In">
 …
 <p>
 Yahoo! ID:
 <input name="login"
value="" format="*m" />
 Password:
 <input type="password"
name="passwd" value=""
format="*m" />
 <anchor
title="OK">Submit
 <go method="post"
href="href1">
 <postfield
name="dp" value="auth"/>
 …
 </go>
 </anchor>

 <a title="OK"
href="href2">Help

…
 </p>
 </card>
</wml>

(1)

(2)

The Fig.38 shows the resulted CUI Mode

<CuiModel xmlns="http://www.usiXML.org"
xmlns:xsi="http://www.w3.org/2001/XMLSch
ema-instance">
<window xmlns="" id="window_1"
isVisible="true" isEnable="true"
windowLeftMargin="0"
windowTopMargin="0" name="Y! Sign In">
<box id="box_1" borderTitle="Y! Sign In"
isVisible="true" isEnable="true">
<textComponent id="textComponent_1"
glueHorizontal="left" isVisible="true"
isEnable="true" defaultContent="Yahoo!
ID:"/>
<textComponent id="textComponent_2"
defaultContent=""… >
<textComponent id="textComponent_3"
defaultContent="Password:" … />
<textComponent id="textComponent_4"
isPassword="true" defaultContent="" … />
<textComponent id="textComponent_5"
defaultHyperLinkTarget="href1" name="OK"
defaultContent="Submit" … />
<textComponent id="textComponent_6"
defaultHyperLinkTarget="href2"
defaultContent="Help"…/>
…
</box>
</window>
<graphicalTransition xmlns=""
id="textLink_1" type="open">
<source sourceId="textComponent_5"/>
<target targetId="href1"/>
</graphicalTransition>

hi l i i l ""

 Vs. CUI Model Code

l transformed from the original WML code is

101

perfectly corresponding the mapping rules presented in the chapter 6. In the resulted

USIXML file: (1) The “textComponent” element with id = “textComponent_2”,

defaultContent= “ ” is created corresponding the first “input” element in the source

WML file. (2) The “textComponent” element with id = “textComponent_4”,

defaultContent= “ ”, and isPassword = “true” is created corresponding the second

“input” element whose type attribute equals to password in the source WML file.

7.4 Examples for element select, option

As we’ve mentioned in the last chpter, the mappings for the select and option are

one-to-several depending on different conditions. In this section, we present a series of

examples to show all the possibilities for the mapping of select and option. For select

there are two different mapping elements in USIXML which are comboBox and

drop-down menu. For option there are 5 possibilities which are linked textComponent,

comboBox item, menuItem, radioButton and checkbox.

7.4.1 Mapping option to linked textComponent

In this section, we show and test the resulted transformation for the mapping from

option to linked textComponent. The mapping conditions are as following: (1) the value

of multiple attribute is not equals to true; (2) there are no more than 6 options; (3) the

option element has onpick attribute.

Fig.3 I of WML 9 U

 102

The Fig. 39 shows the UI for the select and option example displayed in the mobile

Fig. 40 WML C

he Fig.40 shows the resulted CUI Mode

simulator. It shows a game application. The user has three choices respectively for

Playing game, checking the highest score, and consulting the game’s rules.

(1)

(2)
(3)

<wml>
 …
 <card title="Wordaholic">
 <do type="options"
label="MENU">
 <p align="center">
 Wordaholic(tm)
 </p>
 <p align="left"
mode="nowrap">
 <select>
 <option onpick="href1
">Play Now</option>
 <option onpick="href2
">High Scores</option>
 <option onpick="href3
">Rules</option>
 </select>
 </p>
 </card>
</wml>

(1)

(2)

(3)

T

perfectly corresponding the mapping rule

USIXML file: (1) The “textComponen

defaultContent= “Wordaholic(tm)”, an

<CuiModel ...>
<window id="window_1"
name="Wordaholic"…>
<box id="box_1"
borderTitle="Wordaholic" …>
<textComponent id="textComponent_1"
glueHorizontal="center" isVisible="true"
isEnable="true" isBold="true"
defaultContent="Wordaholic(tm)"/>
<textComponent id="textComponent_2"
glueHorizontal="left"
defaultHyperLinkTarget="href1 "
defaultContent="Play Now"/>
<textComponent id="textComponent_3"
defaultHyperLinkTarget="href2"
defaultContent="High Scores" …/>
<textComponent id="textComponent_4"
defaultHyperLinkTarget="href3"
defaultContent="Rules"/>
</box>
</window>
…
<graphicalTransition xmlns=""
id="textLink_3" type="open">
<source sourceId="textComponent_4"/>
<target targetId="href3"/>
</graphicalTransition>
</CuiModel>
ode Vs. CUI Model Code

l transformed from the original WML code is

s presented in the chapter 6. In the resulted

t” element with id = “textComponent_1”,

d glueHorizontal = “center” is created

103

corresponding the “Wordaholic(tm)” text in the source WML file. (2) The linked

“textComponent” element with id = “textComponent_1”, defaultContent= “Play

Now”, and glueHorizontal = “left” is created corresponding the first “option” element

in the source WML file as the outer “select” element has not “multiple” attribute. (3)

The “graphicalTransition” element with id = “ textLink_3”, the enclosed “source”

7.4.2 Mapping select to drop-down Menu

ion to liked textComponent and mapping it

element with sourceId = “textComponent_4” and “target” element with targetId =

“href3” are created corresponding to the third choice option “Rules” .

The different condition between mapping opt

to menuItem is whether there are more than 6 options. With a little modification of last

example, we add to 7 options such that it transforms the select element to the

drop-down menu and the option element to menu item.

<wml>
 <card title="Wordaholic">
 …
 <select title="options">
 <option
onpick="href1">Play Now</option>
 <option
onpick="href2">High Scores</option>
 <option
onpick="href3">Rule1</option>
 <option
onpick="href4">Rule2</option>
 <option
onpick="href5">Rule3</option>
 <option
onpick="href6">Rule4</option>
 <option
onpick="href7">Rule5</option>
 </select>
 </p>
 </card>
</wml>

(1)

(2)

<CuiModel ...>
<window id="window_1"…>
<box id="box_1" …>
…
<menu id="menu_1"
defaultContent="options">
<menuItem id="menuItem_1"
defautContent="Play Now"/>
<menuItem id="menuItem_2"
defautContent="High Scores"/>
<menuItem id="menuItem_3"
defautContent="Rule1"/>
<menuItem id="menuItem_4"
defautContent="Rule2"/>
<menuItem id="menuItem_5"
defautContent="Rule3"/>
<menuItem id="menuItem_6"
defautContent="Rule4"/>
<menuItem id="menuItem_7"
defautContent="Rule5"/>
</menu>
</box>
</window>
</CuiModel>
104

Fig. 41 WML Code Vs. CUI Model Code

The Fig.41 shows the result iginal WML code is

7.4.3 Mapping select to comboBox

le by not having onpick attribute for the option

The Fig. 42 shows the UI for the sele le isplayed in the mobile

ed CUI Model transformed from the or

perfectly corresponding the mapping rules presented in the chapter 6. In the resulted

USIXML file: (1) The “menu” element with id = “menu_1”, and

defaultContent=”options” is created corresponding the select element in the source

WML file. (2) The “menuItem” element with id = “menuItem_1” and

defaultContent=”Play Now” is created in the resulted USIXML code.

Deferent from the above two examp

element, by the following example, we will show the transformation from select to

comboBox and from option to comboBox item with the condition that there are more

than 6 options.

Fig. 42 UI of WML

ct and option examp d

simulator. It shows a weather report application. The user has more than 6 options to

choose the first character for the city in which the user is interested.

 105

Fig. 43 WML C

From The Fig.43 above, w

7.4.4 Mapping option to radioButton

Similar to the last example with no onpick

)

e can see the w

single “select” element. The resulted CU

code is perfectly corresponding the map

resulted USIXML file: (1) The “combo

created corresponding the “select” elem

options are more than 6. It is defined in

“select” element. (2) The “item” elemen

“Play Now” is created corresponding the

the number of options to 6 such that the t

to radioButton with the condition that ther

<CuiModel ...>
<window name="Y! Weather" … >
<box id="box_1" borderTitle="Y! Weather"
isVisible="true" isEnable="true">
…
<comboBox id="comboBox_1"
defaultContent="">
<item id="item_1" defautContent="Enter
City"/>
<item id="item_2" defautContent="ABC"/>
<item id="item_3" defautContent="DEF"/>
<item id="item_4" defautContent="GHI"/>
<item id="item_5" defautContent="JKL"/>
<item id="item_6" defautContent="MNO"/>
<item id="item_7" defautContent="PQRS"/>
<item id="item_8" defautContent="TUV"/>
<item id="item_9" defautContent="WXYZ"/>
</comboBox>
</box>
</window>
</CuiModel>

<wml>
…
<card id="c1" title="Y! Weather">
…
<p>
<select name="let">

<option title="OK" >Enter City</option>
<option title="OK" >ABC</option>
<option title="OK" >DEF</option>
<option title="OK" >GHI</option>
<option title="OK" >JKL</option>
<option title="OK" >MNO</option>
<option title="OK" >PQRS</option>
<option title="OK" >TUV</option>
<option title="OK" >WXYZ</option>
</select>
</p>
</card>
</wml>

(1)

(2
ode Vs. CUI Model Code

 than 6 options in a

 attribute for the option element, we decrease

ml source code has more

I Model transformed from the original WML

ping rules presented in the chapter 6. In the

Box” element with id = “comboBox_1” is

ent in the source WML file as the enclosed

our mapping rules for alternative mapping of

t with id = “item_1” and defaultContent =

first option in the source WML file.

ransformation program can transform option

e are not more than 6 options.

106

Fig. 44 WML Cod

From The Fig.44 above, we can see the

7.4.5 Mapping option to checkbox

Deferent from all the above examples by h

<wml>
…
<card id="c1" title="Y! Weather">
…
<p align=”left”>
<select name="let">
<option title="OK" >Enter City</op tion>
<option title="OK" >ABC</option>
<option title="OK" >DEF</option>
<option title="OK" >GHI</option>
<option title="OK" >JKL</option>
<option title="OK" >MNO</option>
</select>
</p>
</card>
</wml>

(1)

single “select” element. The resulted CU

code is perfectly corresponding the map

resulted USIXML file: (1) The “radioBut

with defaultContent = “enter city” is crea

source WML file as the enclosed options a

element, Through the following multiple se

from option elemenet to checkbox eleme

there is onpick attribute in the option eleme

<CuiModel >
<window name="Y! Weather"…>
<box id="box_1" borderTitle="Y! Weather" …
>…
<radioButton id="radioButton_1"
glueHorizontal="left" defautContent="Enter
City" isVisible="true" isEnable="true"
defaultState="false"/>
<radioButton id="radioButton_2"
defautContent="ABC".../>
<radioButton id="radioButton_3"
defautContent="DEF"…/>
<radioButton id="radioButton_4"
defautContent="GHI" … />
<radioButton id="radioButton_5"
defautContent="JKL" … />
<radioButton id="radioButton_6"
defautContent="MNO".../>
</box>
</window>
</CuiModel>
e Vs. CUI Model Code

wml source code has less than 7 options in a

aving attribute multiple = “true” for the select

I Model transformed from the original WML

ping rules presented in the chapter 6. In the

ton” element with id = “radioButoon_1” and

ted corresponding the “select” element in the

re less than 7.

lection example, we show the transformation

nt ignoring how many options and whether

nt.

107

Fig. 45 WML Code Vs. CUI Model Code

From The Fig.45 above bute multiple = “true”

7.5 Example for element img

e resulted transformation for img element to

<CuiModel ...>
<window id="window_1"
name="Wordaholic"…>
<box id="box_1"
borderTitle="Wordaholic" … >
…
<checkBox id="checkBox_1"
glueHorizontal="left"
defautContent="Rule1" isVisible="true"
isEnable="true" defaultState="false"/>
<checkBox id="checkBox_2"
defautContent="Rule2" … />
<checkBox id="checkBox_3"
defautContent="Rule3" … />
</box>
</window>
</CuiModel>

<wml>
 …
 <card title="Wordaholic">
 …
 <p align="left"
mode="nowrap">
 <select multiple="true">
 <option
onpick="href1">Rule1</option>
 <option
onpick="href2">Rule2</option>
 <option
onpick="href3">Rule3</option>
 </select>
 </p>
 </card>
</wml>

(1)

, we can see the select element has attri

which means enable multiple choices for the following options. The resulted CUI

Model transformed from the original WML code is perfectly corresponding the

mapping rules presented in the chapter 6. In the resulted USIXML file: (1) The

“checkBox” element corresponding to the multiple choice option. The glueHorizontal

= “left” because it is enclosed in a p element with align=”left” .The defaultContent =

“Rule 1” which is the enclosed text content. And the defaultState = “false” is created

which means this option is not pre-selected.

The following example shows th

imageComponent in USIXML.

 108

Fig.46 UI of WML

The Fig. 46 shows the UI for the “img” element example displayed in the mobile

simulator. It shows a game application. The image shows the players pokers.

Fig.47 WML C

From The Fig.47 above, we can see the

original WML code is perfectly corresp

chapter 6. In the resulted USIXML file: (

corresponding the “img” element in

glueHorizontal , imageVertSpace and

hyperLinkTarget equals to the src attribut

<wml>
 <card title="Y! Blackjack">
 <p align="center">
 <img src="hrefOfImage
" alt="P:JS7S D:? 8C"/>
 </p>
 …
 </card>
</wml>

(1)

<CuiModel ... >
<window name="Y! Blackjack" … >
<box borderTitle="Y! Blackjack" … >
<imageComponent
id="imageComponent_1"
glueHorizontal="bottom"
hyperLinkTarget="hrefOfImage”
imageVertSpace="0"
imageHorizSpace="0"
glueVertical="bottom"/>
…
</box>
</window>
</CuiModel>
odel Code

 resulted CUI Model transformed from the

onding the mapping rules presented in the

ode Vs. CUI M

1) The “imageComponent” element is created

 the source WML file. The values of

imageHorizSpace are set by default and

e of “img” element.

109

7

The following example shows the transformation result for the table and td element.

.6 Example for element table, td

Fig. 48 UI of WML

As the example is not stored on the Web, the emulator other than Openwave can not

locate to the wml file. We only show e emulator. The Fig. 48 shows

the UI for the “table” & “td” elements example displayed in the mobile simulator. It

shows a employee information table. The first column is the employee’s id, and the

second is the employee’s name.

this UI by Openwav

 110

From The Fig.38 above, we can see the re

Fig

he

original WML code is perfectly corresp he

hapter 6. In the resulted USIXML file:

Fig.38 ML Co

.46 WML C

From The Fig.46 above, we can see the

c

Fig.49 WML C
Fig.49 WML C

<wml>
 …

<card id="c1" title="Yahoo!">
 <p mode="nowrap">
 employee_info
 </p>
 <p>
 <table
title="employee_info" align="center"
columns="2">
 <tr>
 <td>ID</td>
 <td>NAME</td>
 </tr>
 <tr>
 <td>7839</td>
 <td>KING</td>
 </tr>
 <tr>
 <td>7788</td>
 <td>SCOTT</td>
 </tr>
 </table>
 </p>
 </card>
</wml>

(1)

(2)

(3)

(7)

(6)

(4)

(5)

s

t

onding the mapping rules presented in t

de Vs. CUI Model Code

ulted CUI Model transformed from the

ode Vs. CUI Model Code

 resulted CUI Model transformed from

<Cu del ... > iMo
<wi w name="Yahoo!" … > ndo
<bo ="box_1" … > x id
<textComponent id="textComponent_1"
defaultContent="employee_info" … />
<table id="table_1" ySize="2" xSize="3"
isVisible="true" isEnable="true"
name="employee_info"
glueHorizontal="center">
<cell id="cell_1" xIndex="1" yIndex="1"
isVisible="true" isEnable="true">
<textComponent id="textComponent_2"
glueHorizontal="left" isVisible="true"
isEnable="true" defaultContent="ID"/>
</cell>
<cell id="cell_2" xIndex="1" yIndex="2" … >
<textComponent id="textComponent_3"
defaultContent="NAME" … />
</cell>
<cell id="cell_3" xIndex="2" yIndex="1" …>
<textComponent id="textComponent_4"
defaultContent="7839" … />
</cell>
<cell id="cell_4" xIndex="2" yIndex="2"
isVisible="true" isEnable="true">
<textComponent id="textComponent_5"
defaultContent="KING" … />
</cell>
<cell id="cell_5" xIndex="3" yIndex="1"
isVisible="true" isEnable="true">
<textComponent id="textComponent_6"
defaultContent="7788" … />
</cell>
<cell id="cell_6" xIndex="3" yIndex="2" … >
<textComponent id="textComponent_7"
defaultContent="SCOTT" … />
</cell>
</table>
</box>
</window>
</CuiM

odel>
ode Vs. CUI Model Code
ode Vs. CUI Model Code

111

(1) The “table” element with id = “table_1”, xSize = “3” which equals to the

number of lines, yS of columns, name =

“employee_info” and glueHorizontal = “center” is created corresponding the

(2)

onding the “td” element in line 1,

(3)

 corresponding the “td” element in line 1,

(4)

(5)

ement in line 2,

(6)

(7)

 corresponding the “td” element in line 3,

ize = “2” which equals to the number

“table” element in the source WML file.

The “cell” element with id = “cell_1”, xIndex = “1”, yIndex = “1” and

enclosed “textComponent” element with id = “textComponent_2” and

defaultContent = “ID” is created corresp

column 1 of the source WML table.

The “cell” element with id = “cell_2”, xIndex = “1”, yIndex = “2” and

enclosed “textComponent” element with id = “textComponent_3” and

defaultContent = “NAME” is created

column 2 of the source WML table.

The “cell” element with id = “cell_3”, xIndex = “2”, yIndex = “1” and

enclosed “textComponent” element with id = “textComponent_4” and

defaultContent = “7839” is created corresponding the “td” element in line 2,

column 1 of the source WML table.

The “cell” element with id = “cell_4”, xIndex = “2”, yIndex = “2” and

enclosed “textComponent” element with id = “textComponent_5” and

defaultContent = “KING” is created corresponding the “td” el

column 2 of the source WML table.

The “cell” element with id = “cell_5”, xIndex = “3”, yIndex = “1” and

enclosed “textComponent” element with id = “textComponent_6” and

defaultContent = “7788” is created corresponding the “td” element in line 3,

column 1 of the source WML table.

The “cell” element with id = “cell_6”, xIndex = “3”, yIndex = “2” and

enclosed “textComponent” element with id = “textComponent_7” and

defaultContent = “SCOTT” is created

column 2 of the source WML table.

 112

Chapter 8. CONCLUSION

Today, the web services are growing at full speed with the development of information

technology. At the other hand, the diversity of mobile devices is dramatically increasing.

More and more people want to not only reach any information, anywhere, at anytime on

the web, but also use as much different devices as possible. At the same time, the web

service provider desire distributing their service for all the mobile devise. Therefore, the

adaptation for the web UI to other platforms is a very hot issue.

As the WAP content authors can no longer afford to develop a content that is targeted

for use for every platform. There is a need for common guidelines on how to provide

multiplatform web services. In this thesis, our goal is to transform the WML, which is

the dominant language for WAP service and therefore supported by all the mobile devise,

to the CUI model of USIXML for adapt the WML UIs from one platform to others

using according to the reverse-engineering approach. As the CUI model is more general

than the Final UI, it can not only provide more flexibility for other platform adaptation,

but also reserve the original design for the UIs without loosing information during the

process of transformation. Therefore, by this way we can increase the WML UIs

portability for remain the UIs usability by minimal efforts.

8.1 New results

For the UI reverse engineering, we firstly build the WML 1.1 meta-model with rational

rose in comparing that of the USIXML. Then, we describe the mapping rules for WML

1.1 and USIXML. These mappings have four different types, which are

element-to-element, element-to-attribute, text-to-element and attribute-to-attribute. In

the element-to-element mapping, there are one-to-one mapping and one-to-several

mapping. As for the one-to-several mapping, we use XPath and XSLT technology to

perform the complex mapping procedure with respecting different mapping conditions.

 113

For the attribute’s value which can not be directly mapped from WML1.1, we use

XPATH fuction to calcul

sformation using XSLT,

we found that the XSLT is not only an efficient but also an elegant tool which can satisfy

implement with Transformer

based on XSLT as long as the corresponding transformation rule can be expressed in

ate it.

8.2 Advantages and disadvantages

To perform the transformation, we’ve developed a transformation tool in Java using JAXP. For

the input style sheet, we use XSLT style sheet, which is an official recommendation of

the World Wide Web Consortium (W3C) for XML transformation, to execute the

transformation. It is a flexible, powerful language for transforming one XML document

into another XML document. With the experience of XML tran

most of the need for transformation from WML to USIXML.

One advantage of our approach is that, with the help of reverse engineering, we can

reserve the original UIs design by CUI model which is platform-independent. Another

advantage is that the transformation is very flexible. Especially for the transformations of

select and option element, shown in the last chapter, we have a lot of choices for the

mapped USIXML elements. For instance, the select element of WML may maps to

comboBox or drop-down menu, while the option element of WML may maps to

checkbox, textComponent, radioButton, menuItem, and comboBox item. In addition,

there is no transformation that would be impossible to

XPath notation.

In order to evaluate the performance of our transformation tool, average processing time

of transformation from WML to USIXML, and mean transformation delay are measured.

Table 1 shows the processing time of transformation, the average size of the input and

output documents, and the number of WML document’s nodes. As shown in Table 1, it

shows similar processing time for the transformation of examples in last chapter, which

shows the additional overhead due to number of source document’s node is negligible.

On average the average number of nodes is about 57, and the processing delay is about

 114

0.88 seconds, which is relatively short considering the number of node. As a result, the

transformation has a relative good performace with a short execution time.

 document is relatively larger than the input

Table 1 also shows that the output USIXML

WML document. This is because the USIXML, which is multiple models language, is

relatively more expressive than WML.

Example7.2 Example7.3 Example7.4.1 Example7.5 Example7.6 Average Length

WML Document Size 1865 2017 735 969 750 1267.2(bytes)

WML Document nodes 81 95 31 33 43 57

USI 1829 2492(bytes) XML Document Size 5429 1926 1380 1896

Transformation Time 0.99 1.02 0.58 0.91 0.92 0.88(secs)

Table 1 Results of transformation

 on the side of USIXML, it can implement a mechanism which

orresponds the WML refresh and prev elements such that we can hold the original WMl

As the mapping is not very complete, due to that there is not always a USIXML element

could be mapped to WML element, the disadvantage of this approach is lost of

information after the transformation. For instance, as we didn’t map the task elements,

such as prev and refresh, to USIXML elements, if the target platform is also a small

screen device which need such inter-navigation function, it should rebuild such

mechanism for the final UIs.

8.3 Future works

In the future work,

c

UIs design for small screen devices. An additional ontimer element is also very helpful

for automatic redirection for the target devices which have limited bandwidth access

capability.

Because of XSLT contains semi-independent templates for each element or other node

that will be processed, it is easier to modify or add transformation rules using XSLT than

 115

other procedural programming language. On the other side of XSLT, if there has a new

mapping, it should only add a semi-independent template for such elements in the XSLT

yle sheet without change the other part of it. st

 116

REFERENCES

1. MYER BRAD A., ROSSON M. B., Survey on user interface programming, Proceedings

of CHI’92, May 3-7 1992, 195-202.

2. ISO9241 :1998. Ergonomic requirements for office work with visual display terminals.

International Standard. The International Organization for Standardization. 1998.

3. REDWOOD SHORES, Link Developer's Guide Version 1.0., Unwired Planet, Inc.

UP. California, July 1996.

4. COOPER and R. SHUFFLEBOTHAM, PDA Web Browsers: Implementation

Issues, University of Kent at Canterbury Computing Laboratory WWW Page,
November 1995.

5. H. LIE and BERT BOS, Cascading Style Sheets, WWW Consortium, September

1996.

6. B. BEDERSON and J. HOLLAN, Pad++: A Zooming Graphical Interface for

Exploring Alternate Interface Physics. Proceedings of ACM UIST '94, ACM Press,
1994.

7. C. BROOKS, M. MAZER, S. MEEKS, J. MILLER, Application-Specific Proxy

Servers as HTTP Stream Transducers, Fourth International World Wide Web
Conference, Boston, December 1995.

8. JUHA KOLARI, TIMO LAAKKO, EIJA KAASINEN, Net in Pocket? Personal

mobile access to web services, VTT Publications 464, ESPOO 2002.

9. ZHIYAN SHAO, ROBERT CAPRA, MANUEL A. PEREZ-QUINONES, Transcoding

HTML to VoiceXML Using Annotation, 15th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI'03), Sacramento, California, USA, 2003

10. BOUILLON, L., VANDERDONCKT, J., CHOW, K.C., FLEXIBLE

RE-ENGINEERING OF WEB SITES, PROC. OF 8TH ACM INT. CONF. ON
IN-TELLIGENT USER INTERFACES IUI’2004 (FUNCHAL, 13-16 JANUARY
2004), ACM PRESS, NEW YORK, 2004, PP. 132-139.

11. BOMSDORF, B., SZWILLUS, G.: From Task to Dialogue: Task-Based User Interface

Design. SIGCHI Bulletin 30, 4, 1998.

12. RAMSAY, M. AND NIELSEN, J. WAP Usability. Déjà Vu: 1994 All Over Again. Report

 117

from a Field Study in London, Fall 2000.
13. NTT DoCoMo, Inc.(2001) All ab

4. MOORE, M.: Representation Issues for Reengineering Interactive Systems

out i-mode.

1 , ACM

5. SOUCHON, N., VANDERDONCKT, J., A Review of XML-Compliant User

Computing Surveys, 28(4), 199-es, 1996.

1
Interface Description Languages, Proc. of 10th Int. Conf. on Design, Specificati
and Verification of Interactive Systems DSV-IS'2003 (Madeira, 4-6 June 20

on,
03), Jorge,

J., Nunes, N.J., Falcao e Cunha, J. (Eds.), Lecture Notes in Computer Science, Vol.

6. LIMBOURG, Q., VANDERDONCKT, J., UsiXML: A User Interface Description

2844, Springer-Verlag, Berlin, 2003, pp. 377-391

1
Language Supporting Multiple Levels of Independence, in Matera, M., Comai, S. (Eds.),
«Engineering Advanced Web Applications», Rinton Press, Paramus, 2004.

7. THEVENIN, D., COUTAZ, J.: Plasticity of User Interfaces: Framework and 1

Research Agenda. In: Sasse, A., Johnson, Ch. (eds.): Proc. of IFIP TC 13 Int. Con
on Hu

f.
man-Computer Interaction Interact’99 (Edinburgh, August 1999). IOS Press,

London (1999) 110–117.

18. f

BOUILLON, L., VANDERDONCKT, J., CHOW, K.C., Flexible Re-engineering o
Web Sites, Proc. of 8th ACM Int. Conf. on In-telligent User Interfaces IUI’2004
(Funchal, 13-16 January 2004), ACM Press, New York, 2004, pp. 132-139.

19. ,
L: A User Interface Description Language

LIMBOURG, Q., VANDERDONCKT, J., MICHOTTE, B., BOUILLON, L.
FLORINS, M., TREVISAN, D., UsiXM
for Context-Sensitive User Interfaces, in Proceedings of the ACM AVI'2004

ams, Limbourg,
Q., Vanderdonckt, J. (Eds.), Gallipoli, 2004, pp. 55-62.

20.

Workshop "Developing User Interfaces with XML: Advances on User Interface
Description Languages" (Gallipoli, May 25, 2004), Luyten, K., M. Abr

CALVARY, G., COUTAZ, J., THEVENIN, D., LIMBOURG, Q., BOUIL-LON,
L., VANDERDONCKT, J., A Unifying Reference Framework for Multi-Target User
Interfaces, Interacting with Computers, Vol. 15, No. 3, June 2003, pp. 289-308.

21.

EJ CHIKOFSKY, JH CROSS, Reverse Engineering and Design Recovery: A
Taxonomy, 7 IEEE. Software 13 (1990) pp.14 -15.

2. www.wapforum.org, WML 2.0 Specification2

23. ompliant Environment for Developing User

VANDERDONCKT, J., A MDA-C
Interfaces of Information Systems, Proc. of 17th Conf. on Advanced Information Systems
Engineering CAiSE'05 (Porto, 13-17 June 2005), O. Pastor & J. Falcão e Cunha (eds.),

 118

Lecture Notes in Computer Science, Vol. 3520, Springer-Verlag, Berlin, 2005, pp. 16-31

4. www.uiml.org

25.

2

ERIC M. BURKE, Java And XSLT, O'Reilly & Associates, Inc. USA, 2001

26. MANGANO S., XSLT Cookbook, O'Reilly & Associates, Inc. USA, 2003

Wireless Application Protocol Wireless Markup Language Specification Version 1.1

27. ,

http://www1.wapforum.org/what/technical/SPEC-WML-19990616.pdf

8. USIXML Documentation Draft2 ,

29. LTI-PLATFORM

http://www.usixml.org/index.php?download=usiXML-documentation-draft.pdf

ALI, M.F., PÉREZ-QUIÑONES M.A., ABRAMS M., BUILDING MU
USER INTERFACES WITH UIML, IN A. SEFFAH & H. JAVA-HERY (EDS.) MULTIPLE
USER INTERFACES: ENGINEERING AND APPLI-CATION FRAMEWORK,
WILEY AND SONS, 2003.

PATERNÒ, F., Model-Ba

JOHN

30. sed Design and Evaluation of Interac-tive Applications,

Springer-Verlag, Berlin, 2000.

31. om
al

Y. GAEREMYNCK, L. D. BERGMAN, T. LAU, “MORE for less: model recovery fr
visual interfaces for multi-device application design”, Proc. of the internation
conference on Intelligent user interfaces, Jan 2003 (Miami, Florida, USA), ACM Press,

32.

New York, USA, 2003, pp. 69-76.

G. MORI, F. PATERNÒ, C. SANTORO, “Tool support for designing nomadic
applications”, Proc. of the 2003 international conference on Intelligent user
interfaces, Jan 2003, (Miami ,USA), ACM Press, New York, USA, pp141-148

3. TIMOTHY W. BICKMORE, Digestor: Device-independent Access to the World 3

Wide Web, Santa Clara, CA, 1997,
http://citeseer.ist.psu.edu/bickmore97digestor.html

4. XML Tutorial3 , http://citeseer.ist.psu.edu/bickmore97digestor.html

35.

XML Path Language (XPath) Version 1.0, http://www.w3.org/TR/xpath

36. XSL Transformations (XSLT) Version 1.0, http://www.w3.org/TR/xslt

 119

APPENDIX 1. DTD OF WML 1.1

<!--Wireless Markup Language (WML) Document Type Definition. Copyright Wireless

WML is an XML language. Typical usage:

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

<w
...

Terms and conditions of use are available from the Wireless Application Protocol
Fo

<!
<!
fo
<!ENTITY % vdata "CDATA">

va
<!ENTITY % HREF "%vdata;">

hy
<!
<!ENTITY % number "NMTOKEN">
<!-- a number, with format [0-9]+ -->

cla
<!
"em | strong | b | i | u | big | small">

<!ENTITY % text "#PCDATA | %emph;">
<!
such as text and images -->

"%text; | %layout; | img | anchor | a | table">

<!ENTITY % task "go | prev | noop | refresh">

<!ENTITY % navelmts "do | onevent">
<!--============= Decks and Cards =============-->
<!ELEMENT wml (head?, template?, card+)>
<!ATTLIST wml

Application Protocol Forum Ltd., 1998,1999. All rights reserved.

<?xml version="1.0"?>

"http://www.wapforum.org/DTD/wml_1.1.xml">
ml>

</wml>

rum Ltd. web site at http://www.wapforum.org/docs/copyright.htm.
-->

ENTITY % length "CDATA">
-- [0-9]+ for pixels or [0-9]+"%"
r percentage length -->

<!-- attribute value possibly containing
riable references -->

<!-- URI, URL or URN designating a
pertext node. May contain variable references -->
ENTITY % boolean "(true|false)">

<!ENTITY % coreattrs "id ID #IMPLIED
ss CDATA #IMPLIED">
ENTITY % emph

<!ENTITY % layout "br">

-- flow covers "card-level" elements,

<!ENTITY % flow

<!-- Task types -->

<!-- Navigation and event elements -->

 120

xml:lang NMTOKEN #IMPLIED
%coreattrs;
>

F; #IMPLIED

 field types -->
NTITY % fields

 input | select | fieldset">

%vdata; #IMPLIED

PLIED

dings =============-->

IED

k;)>

===-->
(access | meta)+>

<!-- card intrinsic events -->
<!ENTITY % cardev
"onenterforward %HREF; #IMPLIED
onenterbackward %HRE
ontimer %HREF; #IMPLIED"
>
<!-- card
<!E
"%flow; |
<!ELEMENT card (onevent*, timer?, (do | p)*)>
<!ATTLIST card
title
newcontext %boolean; "false"
ordered %boolean; "true"
xml:lang NMTOKEN #IM
%cardev;
%coreattrs;
>
<!--============= Event Bin
<!ELEMENT do (%task;)>
<!ATTLIST do
type CDATA #REQUIRED
label %vdata; #IMPLIED
name NMTOKEN #IMPLIED
optional %boolean; "false"
xml:lang NMTOKEN #IMPL
%coreattrs;
>
<!ELEMENT onevent (%tas
<!ATTLIST onevent
type CDATA #REQUIRED
%coreattrs;
>
<!--======== Deck-level declarations =====
<!ELEMENT head
<!ATTLIST head
%coreattrs;
>
<!ELEMENT template (%navelmts;)*>
<!ATTLIST template
%cardev;

 121

%coreattrs;
>
<!ELEMENT access EMPTY>

LIED

LEMENT meta EMPTY>

MPLIED

REQUIRED
D

s ================-->
NT go (postfield | setvar)*>

 go
f %HREF; #REQUIRED

ATA #IMPLIED

LEMENT refresh (setvar)*>

T noop EMPTY>
TTLIST noop

==== postfield =============-->
T postfield EMPTY>

TTLIST postfield

IRED
;

<!ATTLIST access
domain CDATA #IMP
path CDATA #IMPLIED
%coreattrs;
>
<!E
<!ATTLIST meta
http-equiv CDATA #I
name CDATA #IMPLIED
forua %boolean; #IMPLIED
content CDATA #
scheme CDATA #IMPLIE
%coreattrs;
>
<!--================ Task
<!ELEME
<!ATTLIST
hre
sendreferer %boolean; "false"
method (post|get) "get"
accept-charset CD
%coreattrs;
>
<!ELEMENT prev (setvar)*>
<!ATTLIST prev
%coreattrs;
>
<!E
<!ATTLIST refresh
%coreattrs;
>
<!ELEMEN
<!A
%coreattrs;
>
<!--=========
<!ELEMEN
<!A
name %vdata; #REQUIRED
value %vdata; #REQU
%coreattrs

 122

>
<!--============= variables =============-->

Fields =============-->
t (optgroup|option)+>

D
a; #IMPLIED

ltiple %boolean; "false"

oup|option)+ >

TOKEN #IMPLIED
oreattrs;

ion (#PCDATA | onevent)*>
 option

ue %vdata; #IMPLIED

PLIED
TOKEN #IMPLIED

oreattrs;

t EMPTY>
 input

e NMTOKEN #REQUIRED

LIED

number; #IMPLIED

<!ELEMENT setvar EMPTY>
<!ATTLIST setvar
name %vdata; #REQUIRED
value %vdata; #REQUIRED
%coreattrs;
>
<!--============= Card
<!ELEMENT selec
<!ATTLIST select
title %vdata; #IMPLIED
name NMTOKEN #IMPLIED
value %vdata; #IMPLIED
iname NMTOKEN #IMPLIE
ivalue %vdat
mu
tabindex %number; #IMPLIED
xml:lang NMTOKEN #IMPLIED
%coreattrs;
>
<!ELEMENT optgroup (optgr
<!ATTLIST optgroup
title %vdata; #IMPLIED
xml:lang NM
%c
>
<!ELEMENT opt
<!ATTLIST
val
title %vdata; #IMPLIED
onpick %HREF; #IM
xml:lang NM
%c
>
<!ELEMENT inpu
<!ATTLIST
nam
type (text|password) "text"
value %vdata; #IMPLIED
format CDATA #IMP
emptyok %boolean; "false"
size %number; #IMPLIED
maxlength %

 123

tabindex %number; #IMPLIED

D

; | do)* >
 fieldset

e %vdata; #IMPLIED

Y>

IED

 =============-->
bottom)" >

T img EMPTY>
TTLIST img

RED
D

gth; "0"
n %IAlign; "bottom"

LIED
PLIED

============-->
T anchor (#PCDATA | br | img

o | prev | refresh)*>

LIED

 | br | img)*>

title %vdata; #IMPLIED
xml:lang NMTOKEN #IMPLIE
%coreattrs;
>
<!ELEMENT fieldset (%fields
<!ATTLIST
titl
xml:lang NMTOKEN #IMPLIED
%coreattrs;
>
<!ELEMENT timer EMPT
<!ATTLIST timer
name NMTOKEN #IMPL
value %vdata; #REQUIRED
%coreattrs;
>
<!--============= Images
<!ENTITY % IAlign "(top|middle|
<!ELEMEN
<!A
alt %vdata; #REQUIRED
src %HREF; #REQUI
localsrc %vdata; #IMPLIE
vspace %length; "0"
hspace %len
alig
height %length; #IMPLIED
width %length; #IMP
xml:lang NMTOKEN #IM
%coreattrs;
>
<!--============= Anchor =
<!ELEMEN
| g
<!ATTLIST anchor
title %vdata; #IMP
xml:lang NMTOKEN #IMPLIED
%coreattrs;
>
<!ELEMENT a (#PCDATA
<!ATTLIST a
href %HREF; #REQUIRED
title %vdata; #IMPLIED

 124

xml:lang NMTOKEN #IMPLIED
%coreattrs;
>
<!--=====
<!E

======== Tables =============-->
LEMENT table (tr)+>

ED

TOKEN #IMPLIED
oreattrs;

)+>

LEMENT td

IED

reaks ==-->

 #IMPLIED

;)*>

TOKEN #IMPLIED
oreattrs;

 #IMPLIED

T i (%flow;)*>
TTLIST i

>

<!ATTLIST table
title %vdata; #IMPLI
align CDATA #IMPLIED
columns %number; #REQUIRED
xml:lang NM
%c
>
<!ELEMENT tr (td
<!ATTLIST tr
%coreattrs;
>
<!E
(%text; | %layout; | img | anchor | a)*>
<!ATTLIST td
xml:lang NMTOKEN #IMPL
%coreattrs;
>
<!--== Text layout and line b
<!ELEMENT em (%flow;)*>
<!ATTLIST em
xml:lang NMTOKEN
%coreattrs;
>
<!ELEMENT strong (%flow
<!ATTLIST strong
xml:lang NM
%c
>
<!ELEMENT b (%flow;)*>
<!ATTLIST b
xml:lang NMTOKEN
%coreattrs;
>
<!ELEMEN
<!A
xml:lang NMTOKEN #IMPLIED
%coreattrs;
>
<!ELEMENT u (%flow;)*

 125

<!ATTLIST u
xml:lang NM
%c

TOKEN #IMPLIED
oreattrs;

>

PLIED

 small
l:lang NMTOKEN #IMPLIED

% TAlign "(left|right|center)">
NTITY % WrapMode "(wrap|nowrap)" >

fields; | do)*>

left"

TOKEN #IMPLIED
oreattrs;

-->

nd -->
NTITY apos "'">

&#60;">

gt ">">
- greater than -->

ing space -->

hen (discretionary hyphen) -->
-

n Protocol Forum Ltd., 1998,1999.All rights reserved. -->

>
<!ELEMENT big (%flow;)*
<!ATTLIST big
xml:lang NMTOKEN #IM
%coreattrs;
>
<!ELEMENT small (%flow;)*>
<!ATTLIST
xm
%coreattrs;
>
<!ENTITY
<!E
<!ELEMENT p (%
<!ATTLIST p
align %TAlign; "
mode %WrapMode; #IMPLIED
xml:lang NM
%c
>
<!ELEMENT br EMPTY>
<!ATTLIST br
xml:lang NMTOKEN #IMPLIED
%coreattrs;
>
<!ENTITY quot """>
<!-- quotation mark
<!ENTITY amp "&#38;">
<!-- ampersa
<!E
<!-- apostrophe -->
<!ENTITY lt "
<!-- less than -->
<!ENTITY
<!-
<!ENTITY nbsp " ">
<!-- non-break
<!ENTITY shy "­">
<!-- soft hyp
<!-
Copyright Wireless Applicatio

 126

APPENDIX2. XPATH FUNCTION LIBRARY

1

F

mber equal to the context position.

F

e count function returns the number of nodes in the argument node-set.

2

F (string, string, string*)

atenation of its arguments.

Function: boolean contains(string, string)

 if the first argument string contains the second

ing, and otherwise returns false.

F ce(string?)

rns the argument string with whitespace normalized

ing whitespace and replacing sequences of whitespace

 space..

3

F

f its argument is false, and false otherwise.

Function:

 Node Set Functions

unction: number position()

The position function returns a nu

unction: number count(node-set)

Th

 String Functions

unction: string concat

The concat function returns the conc

The contains function returns true

argument str

unction: string normalize-spa

The normalize-space function retu

by stripping leading and trail

characters by a single

 Boolean Functions

unction: boolean not(boolean)

The not function returns true i

boolean true()

 127

The true function returns true.

Function: boolean false()

The false function returns false

 128

APPENDIX 3. MAPPING TABLE OF WML AND USIXML

Mapping table of WML and UsiXML

source:WML1.1 target:USIXML

Element Attribute Attribute ment Ele

 id="window_'number of preceding card +1'"

title name

 isVisible="true"

 isEnable="true"

 windowLeftMargin="0"

card

 windowTopMargin="0"

dow win

 id="table_'number of preceding table +1'"

title name

columns ySize

align glueHorizontal

table

 xSize="number of tr inside"

table

 id="cell_'number of preceding td+1'"

 xIndex="number of preceding-cibling tr of parent node + 1" td

 yIndex="number of preceding-cibling td + 1"

cell

 id="box_'number of preceding fieldset+ancestor fieldset+preceding optgroup+2'"

title name fieldset

title borderTitle

 id="box_'number of (preceding fieldset+ancestor fieldset+preceding optgroup)+2'"

title name optgroup

title borderTitle

box

 129

 id="textComponent_'number of (preceding input+preceding text()+ancestor text())+1'"

title name

size size

maxlength maxlength

value defaultContent

type="password" ="true" isPassword

 isEditable="true"

input

ible="true" isVis

i isItalic="true"

em isItalic="true"

strong isBold="true"

u isUnderline="true"

b isBold="true"

big ize="12" textS

small textSize="8"

 @title anchor/ name

 or/go/@herf anch hyperLinkTarget

 erf a/@h hyperLinkTarget

 p/@align(default:left) glueHorizontal="left" as default

textComponent

 defaultContent="value of text()”

comboBox
select title defaultContent

menu

 id="checkBox_'number of preceding checkBox's option +1'"

../@title groupName

option

ultState="true" only if the ivalue contains the checkBox's position number.

ch x

ivalue defa

eckBo

 130

p/@align(default:left) glueHorizontal="left" as default

 id="radioButton_'number of preceding radioButton option +1'"

select/@title Name group

ivalue defaultState

p/@align(default:left) "left" as default

radioButton

glueHorizontal=

 id=" item_'number of preceding item+1'"

 defaultContent="text content"
item

 id=" menuItem_'number of preceding menuItem+1'"

 defaultContent="text content"
menuItem

 id=" textComponent_'number of preceding textComponent+1'"

 defaultContent="text content"

onpick get defaultHyperLinkTar

textComponent

 id="imageComponent_'number of preceding img + 1'"

vspace(default:0) ="0" as default imageVertSpace

hspace(default:0) ce="0" as default imageHorizSpa

align(default:bottom) ertical="bottom" as default glueV

height imageHeight

width imageWidth

img

src hyperLinkTarget

p align(default:left)

imageComponent

glueHorizontal="left" as default

 id="textLink_'number of (preceding a +preceding anchor+preceding option)+1'" graph tion icalTransi

 type="open"

 souceId="textComponet_'number of(preceding&ancestor text()+preceding input)+1'" source
a

target href targetId

anchor graphicalTransition id="textLink_'number of (preceding a +preceding anchor+preceding option)+1'"

 131

 type="open"

 souceId="textComponet_'number of(preceding&ancestor text()+preceding input)+1'" source

child:go/@href targetId target

 id="textLink_'number of (preceding a +preceding anchor+preceding option)+1'" grap ion hicalTransit

 type="open"

 souceId="textComponet_'number of(preceding&ancestor text()+preceding input)+1'" source

navigational

option

ck onpi targetId target

 132

APPENDIX 4. XSLT Style Sheet

<?x F-8"?> ml version="1.0" encoding="UT
<xs yles et version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> l:st he
 m ="xml" indent="yes"/> <xsl:output ethod
 -sp elements="*"/> <xsl:strip ace
 plat atch="/"> <xsl:tem e m
 < iMo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" Cu del
xm http://www.usiXML.org"> lns="
 <xsl:apply-templates/>
 <!-- tly, call all the templates which are not named --> firs
 <xs mplate name="transition_anchor"/> l:call-te
 <xs mplate name="transition_a"/> l:call-te
 <xs mplate name="transition_optionTextLink"/> l:call-te
 <!-- ondly, call the specific templates which deal the navigation sec
elem ts--en >
 < iM l> /Cu ode
 xsl:templa </ te>
 plat atch="card"> <xsl:tem e m
 < tem l with the card element--> !--1. plate dea
 < :if te descendant::p"> xsl st="
 <!-- condition for the card element which has the p element inside--> set
 <xs ent name="window"> l:elem
 sl:attribute name="id"><xsl:value-of <x
sele concat('window_',string(count(preceding::card)+1))"/></xsl:attribute> ct="
 sl:attribute name="isVisible"><xsl:value-of <x
select="tru ttribute> e()"/></xsl:a
 ttribute name="isEnable"><xsl:value-of <xsl:a
select="tru ttribute> e()"/></xsl:a
 ttribute name="windowLeftMargin"><xsl:value-of <xsl:a
select="0"/></xsl:attribute>
 <xsl:attribute name="windowTopMargin"><xsl:value-of
select="0"/></xsl:attribute>
 <xsl:if test="@title">
 <xsl:attribute name="name"><xsl:value-of
select= title"/></x te> "@ sl:attribu
 </xsl:if>
 lement name="box"> <xsl:e
 <!--add a box element inside the window element-->
 <xsl:attribute name="id"><xsl:value-of
select="conca ,'1')"/></xsl:attribute> t('box_'
 <xsl:if test="@title">
 <xsl:attribute name="borderTitle"><xsl:value-of
select="@title </xsl:attribute> "/>
 </xsl:if>

 133

 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:element>
 </xsl:if>
 </xsl:template>
 <xsl:template match="optgroup">
 <!--2.1template deal with the optgroup element-->
 < l:element name="box"> xs
 <xsl:attribute name="id"><xsl:value-of
select="concat('box_',string(1+count(preceding::optgroup)+count(preceding::fieldset)+co
unt(ancestor::fieldset)+1))"/></xsl:attribute>
 <xsl:if test="@title">
 <xsl:attribute name="borderTitle"><xsl:value-of
select="@title"/></xsl:attribute>
 <xsl:attribute name="name"><xsl:value-of
select="@title"/></xsl:attribute>
 </xsl:if>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>
<xsl:template match="select">
 <!--2.2template deal with the option element-->
 <xsl:choose>
 <xsl:when test="@multiple='true'">
 <xsl:for-each select="./option">
 <xsl:element name="checkBox">
 <xsl:attribute name="id"><xsl:value-of
select="concat('checkBox_',string(count(preceding::option[../@multiple='true'])+1))"/></
xsl:attribute>
 <xsl:choose>
 <xsl:when test="ancestor::p[@align]">
 <xsl:attribute name="glueHorizontal"><xsl:value-of
select="ancestor::p[@align]/@align"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="glueHorizontal"><xsl:value-of
select="'left'"/></xsl:attribute>
 </xsl:otherwise>

 134

 </xsl:choose>
 <xsl:if test="../@title">
 <xsl:attribute name="groupName"><xsl:value-of
select="../@title"/></xsl:attribute>
 </xsl:if>
 <xsl:attribute name="defautContent"><xsl:value-of
select="./text()"/></xsl:attribute>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
se ct true()"/></xsl:attribute> le ="
 <xsl:choose>
 <xsl:when
test="contains(string(../@ivalue),string(position()))">
 <xsl:attribute name="defaultState"><xsl:value-of
select="true()"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="defaultState"><xsl:value-of
select="false()"/></xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:element>
 </xsl:for-each>
 </xsl:when>
 <xsl:otherwise>
 <xsl:if test="count(./option) > 6">
 <xsl:choose>
 <xsl:when test="./option[@onpick]">
 <xsl:element name="menu">
 <xsl:attribute name="id"><xsl:value-of
select="concat('menu_',string(count(preceding::select[count(./option) >
6])+1))"/></xsl:attribute>
 <xsl:attribute name="defaultContent"><xsl:value-of
select="@title"/></xsl:attribute>
 <xsl:for-each select="./option">
 <xsl:element name="menuItem">
 <xsl:attribute name="id"><xsl:value-of
select="concat('menuItem_',string(count(preceding::option)+1))"/></xsl:attribute>
 <xsl:attribute name="defautContent"><xsl:value-of
select="./text()"/></xsl:attribute>
 </xsl:element>
 </xsl:for-each>
 </xsl:element>
 </xsl:when>
 <xsl:otherwise>

 135

 <xsl:element name="comboBox">
 <xsl:attribute name="id"><xsl:value-of
select="concat('comboBox_',string(count(preceding::select[count(./option) >
6])+1))"/></xsl:attribute>
 <xsl:attribute name="defaultContent"><xsl:value-of
select="@title"/></xsl:attribute>
 <xsl:for-each select="./option">
 <xsl:element name="item">
 <xsl:attribute name="id"><xsl:value-of
select="concat('item_',string(count(preceding::option)+1))"/></xsl:attribute>
 <xsl:attribute name="defautContent"><xsl:value-of
select="./text()"/></xsl:attribute>
 </xsl:element>
 </xsl:for-each>
 </xsl:element>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:if>
 <xsl:if test="count(./option) < 7">
 <xsl:choose>
 <xsl:when test="./option[@onpick]">
 <xsl:for-each select="child::option">
 <xsl:apply-templates/>
 </xsl:for-each>
 </xsl:when>
 <xsl:otherwise>
 <xsl:for-each select="child::option">
 <xsl:element name="radioButton">
 <xsl:attribute name="id"><xsl:value-of
select="concat('radioButton_',string(count(preceding::option)-count(preceding::option[../
@multiple='true'])+1))"/></xsl:attribute>
 <xsl:choose>
 <xsl:when test="ancestor::p[@align]">
 <xsl:attribute
name="glueHorizontal"><xsl:value-of
select="ancestor::p[@align]/@align"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute
name="glueHorizontal"><xsl:value-of select="'left'"/></xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:if test="../@title">
 <xsl:attribute name="groupName"><xsl:value-of
select="../@title"/></xsl:attribute>
 </xsl:if>

 136

 <xsl:attribute name="defautContent"><xsl:value-of
select="./text()"/></xsl:attribute>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:choose>
 <xsl:when test="position()=number(../@ivalue)">
 <xsl:attribute
name="defaultState"><xsl:value-of select="true()"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute
name="defaultState"><xsl:value-of select="false()"/></xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:element>
 </xsl:for-each>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:if>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>
 <xsl:template match="input">
 <!--2.3template deal with the input element-->
 <xsl:element name="textComponent">
 <xsl:attribute name="id"><xsl:value-of
select="concat('textComponent_',string(count(preceding::input)+count(preceding::text())
+count(ancestor::text())+1))"/></xsl:attribute>
 <xsl:choose>
 <xsl:when test="ancestor::p[@align]">
 <xsl:attribute name="glueHorizontal"><xsl:value-of
select="ancestor::p[@align]/@align"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="glueHorizontal"><xsl:value-of
select="'left'"/></xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:if test="@title">
 <xsl:attribute name="name"><xsl:value-of
select="@title"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="@size">
 <xsl:attribute name="size"><xsl:value-of

 137

select="@size"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="@maxlength">
 <xsl:attribute name="maxlength"><xsl:value-of
select="@maxlength"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="@type='password'">
 <xsl:attribute name="isPassword"><xsl:value-of
select="true()"/></xsl:attribute>
 </xsl:if>
 <xsl:attribute name="defaultContent"><xsl:value-of
select="@value"/></xsl:attribute>
 <xsl:attribute name="isEditable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 </xsl:element>
 </xsl:template>
 <xsl:template match="table">
 <!--3.1template deal with the table element-->
 <xsl:element name="table">
 <xsl:attribute name="id"><xsl:value-of
select="concat('table_',string(count(preceding::table)+1))"/></xsl:attribute>
 <xsl:attribute name="ySize"><xsl:value-of
select="@columns"/></xsl:attribute>
 <xsl:attribute name="xSize"><xsl:value-of
select="count(child::tr)"/></xsl:attribute>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:if test="@title">
 <xsl:attribute name="name"><xsl:value-of
select="@title"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="@align">
 <xsl:attribute name="glueHorizontal"><xsl:value-of
select="@align"/></xsl:attribute>
 </xsl:if>
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>
 <xsl:template match="td">
 <!--3.2template deal with the td element-->
 <xsl:element name="cell">
 <xsl:attribute name="id"><xsl:value-of

 138

select="concat('cell_',string(count(preceding::td)+1))"/></xsl:attribute>
 <xsl:attribute name="xIndex"><xsl:value-of
select="count(../preceding-sibling::tr)+1"/></xsl:attribute>
 <xsl:attribute name="yIndex"><xsl:value-of
select="count(preceding-sibling::td)+1"/></xsl:attribute>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>
 <xsl:template match="fieldset">
 <!--3.3template deal with the fieldset element-->
 <xsl:element name="box">
 <xsl:attribute name="id"><xsl:value-of
select="concat('box_',string(1+count(preceding::fieldset)+count(ancestor::fieldset)+count
(preceding::optgroup)+1))"/></xsl:attribute>
 <xsl:if test="@title">
 <xsl:attribute name="borderTitle"><xsl:value-of
select="@title"/></xsl:attribute>
 <xsl:attribute name="name"><xsl:value-of
select="@title"/></xsl:attribute>
 </xsl:if>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>
 <xsl:template match="text()">
 <!--3.4template deal with the text content-->
 <xsl:element name="textComponent">
 <xsl:attribute name="id"><xsl:value-of
select="concat('textComponent_',string(count(preceding::text())+count(ancestor::text())+
count(preceding::input)+1))"/></xsl:attribute>
 <xsl:choose>
 <xsl:when test="ancestor::p[@align]">
 <xsl:attribute name="glueHorizontal"><xsl:value-of
select="ancestor::p[@align]/@align"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="glueHorizontal"><xsl:value-of
select="'left'"/></xsl:attribute>
 </xsl:otherwise>

 139

 </xsl:choose>
 <xsl:attribute name="isVisible"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:attribute name="isEnable"><xsl:value-of
select="true()"/></xsl:attribute>
 <xsl:for-each select="ancestor::*">
 <xsl:if test="local-name(.)='anchor'">
 <xsl:attribute name="defaultHyperLinkTarget"><xsl:value-of
select="*/@href"/></xsl:attribute>
 <xsl:if test="@title">
 <xsl:attribute name="name"><xsl:value-of
select="@title"/></xsl:attribute>
 </xsl:if>
 </xsl:if>
 <xsl:if test="local-name(.)='option'">
 <xsl:if test="./@onpick">
 <xsl:attribute name="defaultHyperLinkTarget"><xsl:value-of
select="@onpick"/></xsl:attribute>
 </xsl:if>
 </xsl:if>
 <xsl:if test="local-name(.)='a'">
 <xsl:attribute name="defaultHyperLinkTarget"><xsl:value-of
select="@href"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="local-name(.)='b'">
 <xsl:attribute name="isBold"><xsl:value-of
select="true()"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="local-name(.)='em'">
 <xsl:attribute name="isItalic"><xsl:value-of
select="true()"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="local-name(.)='strong'">
 <xsl:attribute name="isBold"><xsl:value-of
select="true()"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="local-name(.)='i'">
 <xsl:attribute name="isItalic"><xsl:value-of
select="true()"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="local-name(.)='u'">
 <xsl:attribute name="isUnderline"><xsl:value-of
select="true()"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="local-name(.)='small'">
 <xsl:attribute name="textSize"><xsl:value-of

 140

select="8"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="local-name(.)='big'">
 <xsl:attribute name="textSize"><xsl:value-of
select="12"/></xsl:attribute>
 </xsl:if>
 </xsl:for-each>
 <xsl:attribute name="defaultContent"><xsl:value-of
select="normalize-space()"/></xsl:attribute>
 </xsl:element>
 </xsl:template>
 <xsl:template match="img">
 <!--4.1template deal with the img element-->
 <xsl:element name="imageComponent">
 <xsl:attribute name="id"><xsl:value-of
select="concat('imageComponent_',string(count(preceding::img)+1))"/></xsl:attribute>
 <xsl:choose>
 <xsl:when test="ancestor::p[@align]">
 <xsl:attribute name="glueHorizontal"><xsl:value-of
select="@align"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="glueHorizontal"><xsl:value-of
select="'left'"/></xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:attribute name="hyperLinkTarget"><xsl:value-of
select="@src"/></xsl:attribute>
 <xsl:choose>
 <xsl:when test="@vspace">
 <xsl:attribute name="imageVertSpace"><xsl:value-of
select="@vspace"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="imageVertSpace"><xsl:value-of
select="0"/></xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="@hspace">
 <xsl:attribute name="imageHorizSpace"><xsl:value-of
select="@hspace"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="imageHorizSpace"><xsl:value-of
select="0"/></xsl:attribute>

 141

 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="@align">
 <xsl:attribute name="glueVertical"><xsl:value-of
select="@align"/></xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="glueVertical"><xsl:value-of
select="'bottom'"/></xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:if test="@height">
 <xsl:attribute name="imageHeight"><xsl:value-of
select="@height"/></xsl:attribute>
 </xsl:if>
 <xsl:if test="@width">
 <xsl:attribute name="imageWidth"><xsl:value-of
select="@width"/></xsl:attribute>
 </xsl:if>
 </xsl:element>
 </xsl:template>
 <xsl:template name="transition_a">
 <!--4.2template deal with the a element-->
 <xsl:for-each select="//a">
 <xsl:element name="graphicalTransition">
 <xsl:attribute name="id"><xsl:value-of
select="concat('textLink_',string(count(preceding::a)+count(preceding::anchor)+1))"/></
xsl:attribute>
 <xsl:attribute name="type"><xsl:value-of
select="'open'"/></xsl:attribute>
 <xsl:element name="source">
 <xsl:attribute name="sourceId"><xsl:value-of
select="concat('textComponent_',string(count(preceding::text())+count(ancestor::text())+
count(preceding::input)+1))"/></xsl:attribute>
 </xsl:element>
 <xsl:element name="target">
 <xsl:attribute name="targetId"><xsl:value-of
select="@href"/></xsl:attribute>
 </xsl:element>
 </xsl:element>
 </xsl:for-each>
 </xsl:template>
 <xsl:template name="transition_anchor">
 <!--4.3template deal with the anchor element-->
 <xsl:for-each select="//anchor">

 142

 <xsl:element name="graphicalTransition">
 <xsl:attribute name="id"><xsl:value-of
select="concat('textLink_',string(count(preceding::a)+count(preceding::anchor)+1))"/></
xsl:attribute>
 <xsl:attribute name="type"><xsl:value-of
select="'open'"/></xsl:attribute>
 <xsl:element name="source">
 <xsl:attribute name="sourceId"><xsl:value-of
select="concat('textComponent_',string(count(preceding::text())+count(ancestor::text())+
count(preceding::input)+1))"/></xsl:attribute>
 </xsl:element>
 <xsl:element name="target">
 <xsl:attribute name="targetId"><xsl:value-of
select="child::go/@href"/></xsl:attribute>
 </xsl:element>
 </xsl:element>
 </xsl:for-each>
 </xsl:template>
 <xsl:template name="transition_optionTextLink">
 <!--4.4template deal with the option element for linked textComponent-->
 <xsl:for-each select="//option[@onpick]">
 <xsl:if test="count(../option) < 7">
 <xsl:if test="not(string(../@multiple)='true')">
 <xsl:element name="graphicalTransition">
 <xsl:attribute name="id"><xsl:value-of
select="concat('textLink_',string(count(preceding::a)+count(preceding::anchor)+count(pr
eceding::option)+1))"/></xsl:attribute>
 <xsl:attribute name="type"><xsl:value-of
select="'open'"/></xsl:attribute>
 <xsl:element name="source">
 <xsl:attribute name="sourceId"><xsl:value-of
select="concat('textComponent_',string(count(preceding::text())+count(ancestor::text())+
count(preceding::input)+1))"/></xsl:attribute>
 </xsl:element>
 <xsl:element name="target">
 <xsl:attribute name="targetId"><xsl:value-of
select="@onpick"/></xsl:attribute>
 </xsl:element>
 </xsl:element>
 </xsl:if>
 </xsl:if>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

 143

