
 - 27 -

Prototyping Digital, Physical, and Mixed User Interfaces
by Sketching

Adrien Coyette, Jean Vanderdonckt

Université catholique de Louvain, Louvain School of Management, Place des Doyens, 1
B-1348 Louvain-la-Neuve (Belgium)

{adrien.coyette, jean.vanderdonckt}@uclouvain.be

ABSTRACT
Sketching digital and physical user interfaces present many
benefits such as naturalness, intuitiveness, ability to elicit
user requirements, and ability to discover usability prob-
lems. These advantages are confirmed in MIXEDSKETCH, a
software for prototyping any type of user interface by
sketching: a digital interface such as a graphical user inter-
face, a physical interface such as a tangible user interface,
and, more uniquely, mixed user interfaces that combine el-
ements from both digital and physical worlds, simultane-
ously or at different design stages. As the development pro-
cess proceeds from early design to detailed development,
MIXEDSKETCH ensures a smooth transition from a low-
fidelity representation to a high-level representation of the
UI being sketched through mid-fidelity. In the last stage, a
precise presentation and a dialog can be sketched that au-
tomatically generate a description of the future interface for
one or multiple toolkits. In addition, MIXEDSKETCH enables
the designer to transform a digital, a physical, or a mixed
user interface in a counterpart in another world, e.g. mov-
ing from digital to physical to mixed.

Author Keywords
Level of fidelity, shape recognition, sketching, user inter-
face design, user interface prototyping.

General Terms
Design, Human Factors, Languages.

ACM Classification Keywords
D.2.2 [Software Engineering]: Design Tools and Tech-
niques – User interfaces. H.5.2 [Information Interfaces
and Presentation]: User Interfaces – Graphical user inter-
faces. I.3.6 [Computer Graphics]: Methodology and
Techniques – Interaction techniques.

INTRODUCTION
Prototyping a digital user interface (UI), such as a Graph-
ical User Interface (GUI), is typically conducted in a GUI
builder by dragging interaction objects or widgets (such as
radio buttons, push buttons, and sliders) from a palette and
dropping them onto a working surface area. In order to fine
tune the presentation (i.e., the UI static part), the designer
specifies physical properties of these widgets such as loca-
tion, dimensions, colors, and layout. When it comes to de-
fining the dialog (i.e., the UI dynamic part), the drawing
visual paradigm stops: the designer needs to open every
widget of concern and program its behavior in the pro-

gramming, markup or scripting language supported by the
Integrated Development Environment (IDE).

Prototyping a physical User Interface (UI), such as a Tan-
gible User Interface (TUI) [4], is even more challenging:
the objects are by definition physical, thus difficult to pro-
totype unless a digital counterpart exists. Both their presen-
tation and their dialog are complex to specify, existing
IDEs offer little or no help, everything is often coded by
hand, leaving little or no space for prototyping outside cod-
ing.

We hereby define a Mixed User Interface (MUI) as a UI
that combines digital and physical objects to be designed
and developed in a coordinated way, by ensuring consisten-
cy across both worlds and integrating them [10]. MUI pro-
totyping is even more complex since there is a need to
bridge the gap between softwired and hardwired worlds
[25] and make a correspondence between them.

Sketching is universally recognized for its natural [11], un-
constrained [27], and informal [9] virtues in multiple areas
of human activity, such as layout design [12], multimedia
design [1], and UI design [3,5,11,16,20]. As long as the
sketching is not submitted to any recognition engine, the
end user does not perceive any shortcoming apart from lit-
tle or no reusability of the sketches for future steps in the
design process [18]. When the sketches need to be recog-
nized, e.g. for beautification [3] or interpretation [22], the
end user may feel again constrained as she knows that eve-
ry gesture should be performed correctly in order to be
properly recognized, thus reducing the virtue of natural-
ness.

UI design by sketching has already demonstrated several
advantages: UI sketching is preferred over traditional inter-
face builders, especially by end users [11,16], it can be per-
formed at different levels of fidelity without loosing ad-
vantages [17,26], the amount of usability problems discov-
ered through a sketched design is not inferior to those cor-
responding to a genuine UI [26], the expressive power of a
sketched UI remains the same [27], a sketched UI provides
quantitative and qualitative results that are comparable to
traditional UI prototypes except that the cost is reduced
[18], UI sketching encourages exploratory design and fos-
ters communication between stakeholders more than any
other prototypes [22], flexibility is superior to UI builders
[27], authoring tools [1], and paper prototypes [27]. There-

In Faure, D., Vanderdonckt, J., (Eds.), Proc. of 1st Int. Workshop on User Interface Extensible Markup Language UsiXML’2010 (Ber-
lin, 20 June 2010), Thales Research and Technology France, Paris, 2010. ISBN 978-2-9536757-0-2

 - 28 -

fore, sketching is an interaction technique that could be ef-
fectively and efficiently used for prototyping UIs, but has
never been considered extensively for designing GUIs, TU-
Is, and mixed UIs at the same time.

There are a number of problems that traditional sketching
methods pose which are challenging for novice users and
inefficient for expert users. The first problem is related to
the meaningfulness of representations: what is the best ob-
ject representation? Should multiple representations of the
same object be offered? How should it be sketched? Should
it be sketched in one stroke or several strokes? If a repre-
sentation is not meaningful enough for an end user, the rep-
resentation will be forgotten or badly drawn. The second
problem is that the result of the chosen representation is of-
ten far from what is expected by the novice user and diffi-
cult to reproduce [16]. The third problem with traditional
recognition engines is that the representations should be
different enough [12] and sketched precisely enough to be
efficiently recognized [3,9,12].

To address these problems, we developed MIXEDSKETCH, a
multi-platform sketching tool that provides original func-
tionalities with respect to state-of-the-art software (as de-
scribed in the following section) and that supports design-
ing GUIs, TUIs, and MUIs. These three UI types will be
addressed respectively in the next sections, as well as the
link between. A summary of the main contributions of this
paper and a description of the planned follow-up work con-
clude the paper.

RELATED WORK
During the UI development life cycle, the design step is of-
ten characterized as a process that is intrinsically open (new
designs may appear at any time that require further explora-
tion), iterative (several cycles are performed to reach a so-
lution), and incomplete (not all information is available at
design time) [11]. The area of UI design by sketching has
been extensively researched to identify appropriate tech-
niques such as paper sketching, prototypes, mock-ups, dia-
grams [1,3,5,9,11,13,16,20]. Several software for UI design
by sketching emerged from this research: DENIM [13],
DEMAIS [1], FreeForms [16], InkKit [16], JavaSketchIt [5],
Satin [9], Silk [11] to name the most representative ones.

Since the needs of rapid UI prototyping vary depending on
the project and allocated resources, it makes sense to rely
on the level of fidelity. The level of fidelity expresses the
similarity between the final UI and the prototyped UI. The
UI prototype fidelity is said to be high if the prototype rep-
resentation is the closest possible to the final UI, or almost
in the same representation (based on [16]). This means that
the prototype should be of high-fidelity in terms of presen-
tation (what layout, what are the UI elements used), of
global navigation and dialog (how to navigate between in-
formation spaces), of local navigation (how to navigate
within an information space). More precisely, McCurdy et
al. [14] identified five independent dimensions along which
the level of fidelity could be more rigorously defined: the

level of visual refinement, the breadth of functionality, the
depth of functionality, the richness of interactivity, and the
richness of the data model. In the remainder of this paper,
the four first dimensions will be considered, the last one re-
quiring a connection to a data model containing data.

Similarly to the above definition, the level of fidelity is said
to be low if the prototype representation only partially
evokes the final UI without representing it in full details.
Between high-fidelity (Hi-Fi) and low-fidelity (Lo-Fi) [17],
we can introduce medium-fidelity (Me-Fi). We usually ob-
serve that a UI prototype only involves one representation
type, i.e. one fidelity level at a time. But due to the variety
of stakeholders’ inputs, several levels of fidelities could be
combined together, thus leading to the concept of mixed-
fidelity, where several different fidelities are mixed in the
same UI design [13]. Beyond mixed-fidelity, we introduce
multi-fidelity that is reached when a prototype simultane-
ously involves elements belonging to different levels of fi-
delity, but only one level of fidelity is acted upon at a time,
thus assuming that a transition is always possible for an el-
ement from one level of fidelity to another.

Another system to support UI design on tangible surfaces is
shown in The Designer’s Outpost [10]. The system tracks
multiple post-it notes on a surface and is used to support the
designing of web sites. Several post-its are added, labeled
and recognized by computer-vision. Electronic sketching is
hereby used to add hierarchy to the post-its on the surface.
Digital pen input is used to describe functional dependen-
cies between the different post-its.

Similarly to The Designer’s Outpost, the Pin&Play envi-
ronment [3,23,25], the VoodooIO toolkit [25,26] support
the arrangement of multiple physical TUI elements on a rig-
id or flexible surface area and connect them togeth so as to
form a working interface, e.g. for music [28], for sound de-
sign [27] based on a TUI. However, instead of using pas-
sive post-its, the aforementioned systems system use active
elements like buttons, sliders, or dials.

Successful examples of prototyping environments for vari-
ous UI types are demonstrated their feasibility and applica-
bility: DEMAIS for multimedia applications [1], iStuff for
ubiquitous computing [2], JavaSketchIt for Java applica-
tions [4], d.Tools for TUIs [8], The Designer’s Outpost for
web sites [10], PALETTE for presentations [14], Paper-
Buttons for physical UIs [15], PaperPoint [19], and Voo-
dooFlash for TUIs [21].

In the next sections, we will demonstrate that MIXED-
SKETCH departs from the state-of-the-art, in particular the
aforementioned works, in that it:

 Supports simultaneously the rapid prototyping of digital
UIs (such as GUIs), physical UIs (such as TUIs), and
mixed UIs (MUIs) that combine elements belonging to
both worlds, digital and physical.

 Enables designers to sketch these UIs in multiple levels
of fidelity, to transform each element from one level of

 - 29 -

fidelity to another, and to apply fusion of elements.
 Enables designers to smoothly switch from one world to

another in order to prototype a behaviorally-equivalent
UI in another world (for instance, a GUI as a MUI).

 Exports a representation of such UIs that can be imported
in a IDE, an appropriate toolkit, or rendering engine.

DIGITAL INTERFACE PROTOTYPING
This section describes how MIXEDSKETCH supports the pro-
totyping life cycle of a GUI belonging to the digital world.
The original features of the tool are progressively motivat-
ed, described, and discussed. This sketching tool today con-
sists of about 122,000 lines of Java 1.5 code and can be
freely downloaded from www.anonymized.org, both the
executable software and its full source code. This tool ena-
bles designers to sketch a UI as easily as on paper, while
keeping advantages of computer-based design as identified
and confirmed in [1,16,26,27]. At any time, the designer
may ask the tool to recognize the UI being sketched and
generate a working UI from the sketches. At any time, it
provides the facilities detailed in the following sub-
sections.

World modeling. MIXEDSKETCH models the design space
as a simplified object-oriented world, i.e. a set of objects
linked by typed relationships. Each object can be described
by its location (X,Y), its dimensions (length and height),
and additional properties that can be specified through
property sheets (e.g., design annotations, color). Each rela-
tionship is characterized by its type (e.g., spatial constraint,
decomposition, navigation link), by its edges (i.e., how
many source and target edges, what types of objects are ac-
cepted for each edge), and by additional properties (e.g.,
one-way or two-ways transitions). Therefore, both digital
and physical design worlds will be represented in the same
way with connections between.

Figure 1. Three UIs for lighting and heating control: a TUI

(a), a physical UI (b, left), a software GUI (b, right).

Fig. 1 depicts three different UIs for a simple home control
of lighting and heating: a TUI sketched in terms of the
Voodoo toolkit [4] in MIXEDSKETCH (a), a physical UI
made of physical devices (b, left), and a GUI made of cor-
responding widgets in Windows environment (b, right)
rendered in a 3D scene. Each time a UI is designed, its un-
derlying model is automatically generated for the end user
in an appropriate User Interface Description Language
(UIDL).

Object recognition. An object recognition engine recog-
nizes and interprets 32 different types of widgets (ranging
from check boxes and spin button to search buttons, pro-
gress bar, calendar, and video input), 8 basic predefined
shapes (i.e., triangle, rectangle, cross, line, wavy line, ar-
row, ellipse, and circle), and 6 basic commands (i.e., undo,
redo, copy, paste, cut, new window). This amount of rec-
ognized objects is superior to what can be found in other
software equipped with a recognition engine in the same
domain [3,11]. Each object is rigorously defined in terms of
constituent shapes (any of the 8 aforementioned basic
shapes) and constraints between them.

Each constraint should belong to the set of the 31 con-
straints supported today: areParallel, cross, hasInside, has-
InsideInLowerRightCorner, hasInsideInTheCenter, has-
InsideInTop, hasInsideInUpperRightCorner, hasInsid-
eOnTheLeft, hasInsideOnTheRight, hasPositiveSlope, in-
tersect, isCrossedBy, isHorizontal, isInside, isInsideInBot-
tom, isInsideInLowerRightCorner, isInsideInTheCenter,
isInsideInTop, isInsideInUpperRightCorner, isInsid-
eOnTheLeft, isInsideOnTheRight, isOnTheLeftOf, isOn-
TheRightOf, isOnUpperLeftCorner, isSmall, isSquare,
isThin, isUnder, isVertical. Any object representation is
expressed in a XML format stored in a graphical grammar
[3] that is parsed and interpreted at run-time [11]. In this
way, any custom object could be easily added by adding a
new representation in the grammar. Each UI element can be
sketched and recognized or not depending on its shape and
the wish for the user to see it recognized or not. The object
recognition is only on-demand. Those shapes which are not
recognized are simply added and maintained throughout the
process. Fig. 2 shows a design session where some UI ob-
jects have been sketched in Lo-Fi mode. In this mode, ob-
jects which have been correctly recognized are beautified
and the name is added.

Figure 2. A typical GUI design session with sketched objects.

(a)

(b)

 - 30 -

Multiple object representations. Existing software incor-
porating an object recognition engine typically support only
one single representation per object, most frequently
through a mono-directional single-stroke gesture [3]. Our
tool accommodates several representations for a single ob-
ject, without affecting significantly the system response
time. Fig. 3 reproduces an excerpt of the radio button repre-
sentation. In addition, thanks to this logical definition, each
representation could be sketched in a multi-stroke manner
that is independent of the direction. In this way, left-handed
or right-handed persons are equally supported.

Figure 3. A representation for the radio button.

Multi-fidelity representation. Thanks to the object recogni-
tion process, the designer can input any UI object in any
level of fidelity and see the result in any other level as the
interpretation is immediate. In the same way, any custom
object could be drawn in Lo-Fi and a predefined widget
could be added in Me-Fi or Hi-Fi. Therefore, four fidelity
levels are supported as recommended by [14]: none (only
the drawing is displayed), Lo-Fi (the drawing is displayed
with recognized portions), Me-Fi (the drawing is beautified
where portions are recognized, including for basic shapes),
and Hi-Fi (a genuine UI is produced with widgets for those
recognized portions). Fig. 4 exemplifies multi-fidelity rep-
resentations for a subset of the 32 widgets supported. To
our knowledge, no existing software today supports so
many widgets in different levels of fidelity as we have here.

Figure 4. A set of widgets with the representations corre-

sponding to the four levels of fidelities (none, low, medium,
high).

Fidelity transition. A slider allows the designer to easily
switch between the four levels of fidelity (Fig. 5). Fig. 6
shows a GUI prototype after the designer moved from No-
Fi (a) to Lo-Fi (b), to Me-Fi (c), and Hi-Fi (d). Note that the
representation of Fig. 6c is platform agnostic: it does not
produce any representation that would suggest any particu-
lar window manager or UI builder. In Fig. 6d, the represen-
tation is made up of genuine widgets belonging to the
widget set of the currently being used platform (here, Java).
In order to identify the parts recognized by the engine, la-
bels of recognized widgets can be turn on (as in Fig. 6b and
d) or off (as in Fig. 6a and c). Different widget sets and
look & feel could be used alternatively that mimic a Hi-Fi
representation in other window managers and operating
systems. If a UI element has not been recognized, it is
simply kept as it is. For instance, if a histogram would have
been sketched, it would not be altered so as to respect the
naturalness of the design process as recommended in [13].

Figure 5. Slide to switch between levels of fidelity.

- <widget type="RadioButton">
- <representation id="0">

<constraint id="0" shape1="Line_1"
shape2="Circle_0" condition="isOnTheRightOf"
/>
<constraint id="1" shape1="Line_1" shape2="-"
condition="isHorizontal" />

 <shape id="Circle_0" type="Circle" />
 <shape id="Line_1" type="Line" />

</representation>
…

</widget>

 - 31 -

Figure 6. Transition between the four levels of fidelity.

Gesture recognition. Sketching tool users sometimes
complained that they are forced to learn a graphical repre-
sentation [12] for every widget, shape or command. In or-
der to support this user flexibility, each such object could of
course give rise to a new representation in the graphical
grammar. Some user studies revealed the need for the user
to interactively define personalized representations [12].
For this purpose, a gesture recognition system has been im-
plemented based on hand gesture decomposition in order to
customize the representation of all widgets, shapes, and
commands according to each user’s preferences (Fig. 7).
One or several occurrences of a new gesture could be
graphical defined that will then serve as a redundant input
technique for every widget, shape, or command.

Figure 7. A graphical editor for a new object representation

and a gesture recognition system where a new gesture re-
places a predefined object (here, a gesture is drawn, added,

and activated to represent a toggle button
in a personalized way).

Multiple output formats. At any time, the tool produces UI
specifications in terms of a User Interface Description Lan-
guage (UIDL) instead of UI code, which is the prevalent
approach of most tools [3,13,16,19]. As opposed to many
tools where little or no portions of the sketch could be re-
used, our tool always maintains up-to-date UI specifica-
tions, including the description of custom objects. It is also
possible to define the navigation between these objects in
the same way to address the second and third dimensions of

McCurdy [14] (Fig. 8). Whereas Fig. 5 graphically depicts
the four levels of fidelity for expressing the presentation of
a GUI, Fig. 7 shows how to define the corresponding dialog
(or behavior) in terms of Event-Condition Action (ECA)
systems. Predefined transitions exist, such as in DEMAIS
[1], to express behaviors like: if the user clicks on this but-
ton, then this control is activated (or deactivated), if the
value v is selected among the values of the widget w, then
that information is displayed. Other behaviors include cou-
pled widgets, like coupling a slider and the value represent-
ing a percentage (as in Fig. 1). These predefined transitions
are specified in graphical direct manipulation. Other transi-
tions are expressed in the ECA rule language inspired from
the state chart mechanism in [8].

Figure 8. Definition of the dialog of UI objects.

Multi-platform UIs. By specifying project properties, the
sketching tool enables designers to sketch UIs for a particu-
lar computing platform at a time (e.g., a desktop) or for
several platforms in a coordinated way (e.g., a PDA, a lap-
top, and a desktop computer). It exports UI specifications in
UIML (www.uiml.org), UsiXML (www.usixml.org –
which is able to automatically generate code for XHTML,
Java, and XUL). As opposed to some tools which are dedi-
cated to a particular environment (e.g., Visual Basic in
FreeForms [16], Java in JavaSketchIt2 [5]), MIXEDSKETCH
is shipped with predefined profiles covering a wide range
of different computing platforms, including but not limited
to: mobile phone, smartphone, PocketPC, Tablet PC, lap-
top, and desktop. Each profile not only expresses con-
straints imposed by a particular platform (e.g., the screen
resolution, a restricted widget set), but could also have a
particular gesture data base for sketching those UI elements
which are peculiar to this platform (e.g., a gesture associat-
ed to a histogram). Such specific UI elements are added by
the gesture recognizer agent (Fig. 7). MIXEDSKETCH also
renders a sketched UI for some particular Look & Feel of a
computing platform (Fig. 9).

 - 32 -

Figure 9. Rendering for different platforms.

PHYSICAL INTERFACE PROTOTYPING
This section describes how MIXEDSKETCH supports the pro-
totyping life cycle of a TUI belonging to the physical
world. In addition to the features presented in the previous
section, other features are introduced to support prototyping
TUIs belonging to the physical world.

Multiple input formats. At any time, a particular TUI ob-
ject set can be specified in order to rely on the definitions
available in the object set. If for instance, a TUI object set
like Phidgets [7] offers predefined TUI objects, a represen-
tation can be defined for each such object that can be rec-
ognized either in the object recognition engine or in the
gesture recognition engine. As long as the TUI objects of
the set are defined according to the rules defined in the
world modeling, they can be part of the sketching process
whatever their purpose is. Examples are Pin & Play [6,23]
and Voodoo [24]. Pin&Play [23] is a toolkit that allows de-
veloping physical interfaces by integrating software widg-
ets and physical devices such as slider, toggle button, and
potentiometer. Since the toggle button is not a standard el-
ement, is has been defined through a new custom gesture
(Fig. 7), which could then be associated with the descrip-
tion of the genuine physical toggle button (such as a
switch) belonging to the TUI object set. Fig. 10 respective-
ly reproduces such a physical UI in Lo-Fi (a), Me-Fi (b),
and Hi-Fi (c) with a smooth transition between these modes
as previously described.

Figure 10. A simple TUI sketched in Lo-Fi mode (a), then

transformed into Me-Fi mode (b), and represented in terms of
TUI elements in Hi-Fi mode (c).

 - 33 -

Multiple output formats. Once a particular TUI has been
specified, its internal model is automatically generated and
augmented depending on information provided during the
design stage. A mapping system exists that links each inter-
nal model object to the corresponding representation of the
target output, like a description in Voodoo or in Pin&Play.
Other TUI object sets could be equally supported provided
they can define their design space in terms of objects and
relationships as explained before. For the moment, the
model is expressed in terms of a UIDL such as UsiXML
(User Interface eXtensible Markup Language – http://www.
usixml.org).

MIXED USER INTERFACE PROTOTYPING
Multiple rendering. In the two previous sections, we have
seen that each UI corresponding to the digital or physical
worlds can be sketched in exactly the same way: start at a
particular level of fidelity (there is no need to start from Lo-
Fi), move to any other level of fidelity as appropriate, and
refine in the last Hi-Fi level. When the prototype has been
validated by the end user, its specifications can be exported
to a rendering engine. Two kinds of rendering engines ex-
ist:

1. An interpreter reads the generated specifications and
graphically renders the corresponding UI in the environ-
ment. Fig. 1b shows a rendering engine in virtual reality
so as to prototype UIs for ambient intelligence. If the TUI
of Fig. 1a has been drawn, then a physical wall UI could
be render (Fig. 1b – left) or a software counterpart (Fig.
1b- right). This is achieved in a very small amount of
time by reinterpreting the UI specifications in the desired
engine. Fig. 11 shows a screen shot of the VRML render-
ing engine where the same UI is projected on a wall, thus
allowing the designer to explore alternative designs.

Figure 11. A projected GUI corresponding to the GUI (Fig. 1).

2. A code compiler reads the generated specifications and
generate the code corresponding to the UI. Fig. 12 has
transformed the TUI depicted in Fig. 10c into a GUI by
relying on the mapping system. In this case, there is a
mapping between GUI widgets and TUI objects. If such a
mapping cannot be established, the initial object remains
unchanged or is erased depending on preferences.

Figure 12. A simple GUI corresponding to the TUI of Fig. 10.

Therefore, not only it is possible to sketch a digital or phys-
ical UI at different levels of fidelity, but it is always possi-
ble to switch from one world to another and immediately
see the corresponding UI in the other world. When no spe-
cific world is designated, a same UI being prototyped may
involve GUI controls as well as TUI objects since their in-
ternal representation in the underlying model remains the
same. In this way, a mixed UI could be similarly proto-
typed.

Transition from any world to another one. When a GUI
is sketched in the digital world, MIXEDSKETCH is able to
automatically generate a corresponding TUI (here a physi-
cal UI) in the physical world by searching the closest be-
haviorally-equivalent element in the target world. For in-
stance, a slider widget (belonging to the digital world) can
be mapped onto a physical slider (belonging to the physical
world). The technique works also in the other direction: a
TUI can be transformed into a GUI whose elements are
found to be the closest behaviorally-equivalent to those
found in the TUI.

In order to determine the closest behaviorally-equivalent
element from one world to another, a UML class diagram
has been realized that abstracts the most frequent elements
into abstract user interface objects (Fig. 13). These objects
are the core elements of a abstract user interface model, a
model that describes canonically a user interface in terms of
abstract interactors, containers and relationships in a way
that is independent from the concrete interactors available
on the target platforms. In practical terms this means that an
abstract UI model is independent of any world, digital or
physical. An Abstract User Interface Object is the root of
the hierarchy of User Interface object. AuiObjects are the
elements populating the AUI Model, they may be of two
types:

AuiContainer is a container for grouping elements in order
to define group of tasks that have to be presented together,
in the same window or panel, for example. The container
could contains AuiInteractor elements or another AuiCon-
tainer element. The relationship between AuiContainer and
AuiInteractor is declared with a AuiRelationship object.

AuiInteractor is any individual element that populates an
abstract container. It could be either a DataInteractor (i.e.,
an aggregation of the different types of elements that inter-
acts with the user to present or obtain data which could be
(input or output) and (PredefinedSet or UndefinedSet) or a
TriggerInteractor (i.e., an aggregation of the different types
of elements that triggers actions).

 - 34 -

 Figure 13. The meta-model used for the abstract user interface characterization.

An AuiInteractor cannot be simultaneously a DataInterac-
tor and a TriggerInteractor. A DataInteractor could of
course be attached to a particular behaviour depending on
the data manipulated (i.e., entered, deleted, or modified).

Input is an element used for obtaining values from the user,
Output is an element used for presenting values to the user,
PredefinedSet describes the set of values valid for the ele-
ment, UndefinedSet describes a set of open values (without
predefined values). In this way, each AuiInteractor may
hold one or several facets that are represented by the sub-
classes. The UML class diagram of Fig. 13 does not repre-
sent the constraint that each DataInteractor should have at
least one facet represented by a sub-class.

Of course, an AuiInteractor may have until four facets: In-
put, Output, PredefinedSet, and UndefinedSet. Indeed, an
interactor can serve for input only (no feedback), output on-
ly (only display), input/output (input that gives some sys-
tem feedback) and still have a mixed domain of values: one
part that is known at design-time (PredefinedSet) and an-
other part that is unknown at run-time (UnderfinedSet).

TriggerInteractor is an aggregation of the different types of
elements that triggers actions, while CommandInteractor is
a element used for trigger a command. NavigatorInteractor
is a trigger used for indicating a navigation to manage. Oth-
er classes and relationships are detailed at http://www.-
anonymous.org. Here, we only detail the classes useful for
searching the closest element.

Basically, any element, whether it is a GUI element belong-
ing to the digital world or a TUI element belonging to the
physical world, is linked to an abstraction expressed in the

terms outlined in Fig. 13. For instance, a slider widget is
characterized as a DataInteractor that is applicable for both
Input and Output, based on a PredefinedSet. A physical
slider is characterized exactly in the same way.

By definition, the closest behaviorally-equivalent element is
any element that maximizes the matching in terms of the
AuiModel. For this purpose, the system checks all the facets
of existing elements in order to find any other element
matching the same facets with any sub-set or super-set of
values for them. The facets are examined first one by one
(i.e., Input, Output, PredefinedSet, and UndefinedSet), then
in combination of 2 (i.e., Input and Output, Input and Pre-
definedSet, Input and UndefinedSet), 3, or 4, if possible.

In the case of our slider, the answer is obvious since a per-
fect match exists. If this is not the case, the system searches
the graph for the element that matches the best the input el-
ement by checking all facets and associated constraints.
Therefore, one initial UI element of a source world can be
mapped onto zero, one, or many UI element of the target
world. When zero matching exists, the initial UI element is
only replicated or erased depending on options set by the
designer. When only one match exists, thus meaning a bi-
jection, the mapping is straightforward: the corresponding
element is selected and added in the UI model correspond-
ing to the new UI of the new world. When many matches
exist, they are ranked by level of similarity of behavior and
the designer is then allowed to choose any of them. This
metric consists of the sum of similarities for all properties
hold in each facet of each element. The designer can speci-
fy a threshold beyond which this similarity is considered

 - 35 -

reached since, in general, no perfect match exist for all val-
ues for all properties. Fig. 14 shows some mappings be-
tween GUI elements and TUI elements maintained in on-
tology of MIXEDSKETCH.

This ontology has been created by exporting the UML class
diagram of Fig. 13 in XMI, along with the mappings to re-
spective elements. Although this file can be edited manual-
ly, it is the responsibility of the designer to maintain con-
sistency between the mappings in order to avoid any mis-
take. MIXEDSKETCH then parses this ontology at run-time
in order to browse the relationships between AuiInterac-
tors. Actually, each UI element used in one world is ab-
stracted into a corresponding AuiInteractor. Relationships
between AuiInteractors are then exploited to find out the
closest one.

AuiInteractor Digital world Physical world
PushButton

Slider

CheckBox

RadioButton

TextArea

ProgressBar

ToggleBut-
ton

ListBox

Rotator

Figure 14. Some mappings between GUI and TUI elements.

Figure 15 shows the two families of input devices support-
ed by MIXEDSKETCH: tactile screens (fig. 15a) and graphic
tablets (fig. 15b). Graphic tablets impose less physical arm
fatigue than tactile screens, but are intrinsically indirect in-
put devices: the end user only sees the results on the main
screen, not on the tablet.

CONCLUSION AND FUTURE WORK
Regarding to the MIXEDSKETCH tool, we demonstrated that
it provides a user interface that is specifically de-signed to
support hand gestures on a graphics tablet or any other in-
teractive surface, such as electronic whiteboards. White-
boards usually fall into two categories: Integrated back-
projected electronic whiteboards and Modular front-
projected electronic whiteboards. Gestures are pen strokes
that are drawn by the user with a pen or mouse, and which
are then interpreted by the program and replaced by a cor-
responding symbol (e.g., a widget representation, a diagram
symbol).

Figure 15. Typical devices supported by MIXEDSKETCH.

For instance, if one sketches the outline of a double box in
MIXEDSKETCH, the tool will immediately interpret this as
the gesture for a push button and replace this stroke with
the representation corresponding to this widget. This repre-
sentation may vary depending on the level of fidelity: none,
low, medium, or high. The designer can then explore alter-
native designs by switching from one world to another.
This switching is supported thanks to an ontology of ab-
stract interactors, along with their relationships, that is
maintained and exploited by MIXEDSKETCH. Currently,
there are only two worlds (i.e., digital and physical).

Thanks to this ontology, one can imagine any new repre-
sentation world that would introduce a new dimension with
respect to the other ones. This new world should then be in-
troduced in the ontology in terms of new element connected
to an AuiInteractor along with its facets, its relationships,
its representation in Hi-Fi (multiple representations of the
same interactor are possible depending on some conditions
to be stated), and the name of a corresponding element for
export (e.g., the name of the objet in Voodoo), and its basic
properties (e.g., dimensions, location, format).

In this way, we demonstrated that any person who is inter-
ested in sketching can actually draw a sketch of objects, re-
gardless the world they are input (object recognition on
multiple inputs), see them refined (multi-fidelity) and ren-
dered (multi-rendering). Any object can be represented in
the worlds it is supported (multi-world representation). Any
object input in any world can initiate an object in any other

 - 36 -

corresponding world, provided that such a transition via the
ontology exists (transition between worlds), and then be
exported in a XML-compliant format for being recuperated
in a toolkit. This transition ensures consistency between de-
signs across worlds since the software naturally maintains
this property thanks to the notion of behavior equivalence.
When this property cannot be established, the closest one is
selected instead. When objects belong to the digital world,
the prototype covers main aspects of GUI prototyping, but
for multi computing platforms with the ability to switch
from one fidelity (e.g., the level at which the GUI was
drawn) to another (e.g., Mi-Fi, Hi-Fi). When all objects be-
long to the physical world, the prototype covers main as-
pects of UI prototyping for ambient intelligence, home au-
tomation, virtual reality, etc. When both types of objects are
present, the UI being prototyped is said to be mixed since it
combines objects from both worlds.

REFERENCES
1. Bailey, B.P. and Konstan, J.A. Are informal tools bet-

ter? Comparing DEMAIS, pencil and paper, and Author-
ware for early multimedia design. In Proc. of CHI’03,
ACM Press, New York (2003), 313-320.

2. Ballagas, R., Ringer, M. Stone, M., and Borchers, J.
iStuff: a physical user interface toolkit for ubiquitous
computing environments. In Proc. of CHI’2003, ACM
Press, New York (2003) 537-544.

3. Caetano, A., Goulart, N., Fonseca, M., and Jorge, J. Ja-
vaSketchIt: Issues in Sketching the Look of User Inter-
faces. In Proc. of AAAI’02 Spring Symp. on Sketch Un-
derstanding, AAAI Press, Menlo Park, 9-14.

4. Fitzmaurice, G., Ishii, H. and Buxton, W. Bricks: Lay-
ing the Foundations for Graspable User Interfaces. In
Proc. of CHI’95, ACM Press, NY (1995) 442-449.

5. Fonseca, M., Jorge, J., and Garcia, F.M. Visual Syntax
Analysis for Calligraphc Interfaces. In Proc. of 13th En-
contro Português de Computação Gráfica, Univer-
sidade Trás-Os-Montes e Alto Douro (Vila Real, Oct.
2005).

6. Gellersen, H. Smart-Its: computers for artifacts in the
physical world. Com. of the ACM 48(3), 2005, 66.

7. Greenberg, S and Fitchett, C. Phidgets: easy develop-
ment of physical interfaces through physical widgets. In
Proc. of UIST’01, ACM Press (2001), 209-218.

8. Hartmann, B., Klemmer, S. R., Bernstein, M., and Me-
hta, N. d.tools: Visually Prototyping Physical UIs
through Statecharts. In EA of UIST’2005, ACM Press
(2005).

9. Hong, J.I. and Landay, J.A. Satin: a toolkit for informal
ink-based applications. In Proc. of UIST’00, 63-72.

10. Klemmer, S.R., Integrating Physical and Digital Interac-
tions. IEEE Computer (2005) 111-113.

11. Landay, J.A. and Myers, B.A. Interactive Sketching for
the Early Stages of User Interface Design. In Proc. of
CHI’95, ACM Press, New York (1995), 43-50.

12. Lin, J., Thomsen, M., and Landay, J.A. A visual lan-
guage for sketching large and complex interactive de-
signs. In Proc. of CHI’02, ACM Press, 307-314.

13. Lin, J. and Landay, J.A. Employing patterns and layers
for early-stage design and prototyping of cross-device
user interfaces. In Proc. of CHI'2008, pp. 1313-1322.

14. McCurdy, M., Connors, C., Pyrzak, G., Kanefsky, B.,
and Vera, A. Breaking the Fidelity Barrier: An Exami-
nation of our Current Characterization of Prototypes and
an Example of a Mixed-Fidelity Success. In Proc. of
CHI’06, ACM Press, New York (2006), 1233-1242.

15. Pedersen, E. Sokoler, T. Nelson L. PaperButtons: ex-
panding a tangible user interface. In Proc. of DIS’00,
ACM Press, New York (2000) 216-223.

16. Plimmer, B.E. and Apperley, M. Interacting with
Sketched Interface Designs: an Evaluation Study. In Ex-
tended Proc. of CHI’04, ACM Press, pp. 1337-1340.

17. Rudd, J., Stern, K., and Isensee, S. Low vs. high-fidelity
prototyping debate. Interactions 3(1), 1996, 76-85.

18. Sefelin, R., Tscheligi, M., and Giller, V. Paper Prototyp-
ing – What is it Good for? A Comparison of Paper-and
Computer-based Prototyping. In Proc. of CHI’03, ACM
Press, New York (2003), 778-779.

19. Signer, B. and Norrie, M.C. PaperPoint: A Paper-Based
Presentation and Interactive Paper Prototyping Tool. In
Proc. of TEI’07, ACM Press, New York (2007) 57-64.

20. Snyder, C. Paper Prototyping: The Fast and Easy Way
to Design and Refine User Interfaces. Series in Interac-
tive Technologies, Morgan Kaufmann, 2002.

21. Spiessl, W., Villar, N., Gellersen, H., and Schmidt, A.
VoodooFlash: authoring across physical and digital
form. In Proc. of TEI’2007, ACM Press (2007), 97-100.

22. Tohidi, M., Buxton, W., Baecker, R., and Sellen, A. Us-
er Sketches: a Quick, Inexpensive, and Effective Way to
Elicit more Reflective User Feedback. In Proc. of Nor-
diCHI’06, ACM Press, New York, 105-114.

23. Van Laerhoven, K., Villar, N., Schmidt, A., Gellersen,
H., Håkansson, M., and Holmquist L.E. Pin&Play: The
Surface as Network Medium. IEEE Communications
Magazine 41(4), April 2003, 90-96.

24. Villar, N., Gilleade, K., Raymundy-Ellis, D., and Gel-
lersen, H. The VoodooIO Gaming Kit: A Real-Time
Adaptable Gaming Controller. In Proc. of ACE’06,
ACM Press, New York (2006).

25. Villar, N. and Gellersen, H. A Malleable Control Struc-
ture for Softwired User Interfaces. In Proc. of TEI’07,
ACM Press, New York (2007) 49-56.

26. Virzi, R.A., Sokolov, J.L., and Karis, D. Usability prob-
lem identification using both low- and high-fidelity pro-
totypes. In Proc. of CHI’96, ACM Press, 236-243.

27. Walker, M., Takayama, L., and Landay, J. High-fidelity
or Low-fidelity, Paper or Computer medium? In Proc.
of HFES’02, HFES, Santa Monica (2002), 661-665.

