
Generating Abstract User Interfaces from an Informal Design

Adrien Coyette Jean Vanderdonckt Stéphane Faulkner Manuel Kolp

Université Catholique de Louvain, School of Management (IAG)
Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)

{Coyette, Vanderdonckt, Faulkner, Kolp}@isys.ucl.ac.be
www.isys.ucl.ac.be/staff

Abstract. Sketching activities are widely adopted
during early design phases of user interface develop-
ment to convey informal specifications of the interface
presentation and dialog. Designers or even end users
can sketch parts or whole of the future interface they
want. With the ever increasing availability of different
computing platforms, a need arises to continuously
support sketching across these platforms having vari-
ous programming languages, interface development
environments and operating systems. To address the
needs along these dimensions that pose new chal-
lenges to user interface sketching tools, SketchiXML
is a multi-platform multi-agent interactive application
enabling designers and end users to sketch user inter-
faces with different levels of details and support for
different contexts of use. The results of the sketching
are then analyzed to produce interface specifications
independently of any context, including user and plat-
form. These specifications are exploited to progres-
sively produce one or many interfaces, for one or
many users, platforms, and environments.

1 Introduction

Designing the right User Interface (UI) the first time
is very unlikely to occur. Instead, UI design is recog-
nized as a process that is [12] eminently open (new
considerations may appear at any time), iterative (sev-
eral cycles are needed to reach an acceptable result),
and incomplete (not all required considerations are
available at design time). Consequently, means to
support early design of UI has been extensively re-
searched [13] to identify appropriate techniques such
as paper sketching, prototypes, mock-ups, diagrams,
etc. Most designers consider hand sketches on paper
as one of the most effective ways to represent the first
drafts of the future UI [1,8]. Indeed, this kind of un-
constrained approach presents many advantages:
sketches can be drawn during any design stage, it is
fast to learn and quick to produce, it allows the
sketcher to focus on basic structural issues instead of
unimportant details (e.g., exact alignment, typogra-

phy, and colors), it is very appropriate to convey on-
going, unfinished designs, it encourages creativity,
sketches can be performed collaboratively between
designers and end-users. Even more, the end user may
herself produce some sketches to initiate the devel-
opment process and when the sketch is close enough
to the expected UI, an agreement can be signed be-
tween the designer and the end user, thus facilitating
the contract and validation. Van Duyne et al. [13]
reported that creating a low-fidelity UI prototype
(such as UI sketches) is at least 10 to 20 times easier
and faster than its equivalent with a high-fidelity pro-
totype (such as produced in UI builders). The idea of
developing a computer-based tool for sketching UIs
naturally emerged from these observations [6,11].
Such tools would add on top of the advantages pro-
vided by sketching techniques a wide range of advan-
tages: easily creating, deleting, updating or moving UI
elements, thus encouraging checking and revision,
typical activities in the design process [12]. Some
research was carried out in order to propose a hybrid
approach taking the best of the hand-sketching and
computer assisted interface design, but this wedding
made some shortcomings preeminent:
− Some sketching tools only support the sketching

activities without producing any output: when the
designer and the end user agreed upon a sketch, a
contract can be signed between them and the devel-
opment phase can start from the early design phase,
but when the sketch is not transformed, the effort is
lost.

− Sketching tools that recognize the drawing do pro-
duce some output, but not in a reusable format: the
design output is not necessarily in a format that is
directly reusable as development input, thus forbid-
ding reusability.

− Sketching tools are bound to a particular program-
ming language, a particular UI type, a particular
computing platform or operating system: when an
output is produced, it is usually bound to one par-
ticular environment, therefore preventing developers

to reuse sketches from one case to another, such as
for various platforms.

− Sketching tools do not take into account the
sketcher’s preferences: as they impose the same
sketching scheme, the same gestures for all types of
sketchers, a learning curve may prevent these users
to learn the tool and efficiently use it.

− Sketching tools do not allow a lot of flexibility in
the sketch recognition: the user cannot choose when
recognition will occur, thus contradicting the open-
ness [12] and when this occurred, it is difficult to
come back to a previous state.
To unleash the power of informal UI design based

on sketches, there is a need to address the above
shortcomings observed on existing UI sketching tools.
It is expected that in this way, UI sketching will be
lead to its full potential. SketchiXML consists of a
new informal prototyping tool solving all these short-
comings, allowing the designer to sketch the user
interfaces as easily as on paper. In addition,
SketchiXML provides the designer with on-demand
design critique and assistance during early design.
Instead of producing code that is peculiar to a particu-
lar case or environment, SketchiXML generates UI
specifications written in UsiXML (User Interface
eXtensible Markup Language – www.usixml.org), a
platform-independent User Interface Description
Language (UIDL) that will be in turn exploited to
produce code for one or several UIs, for one or many
contexts of use simultaneously.

The structure of the paper is the following: section
2 proves that state-of-the-art UI sketching tools all
suffer from some of the above shortcomings. Section
3 reports on an experimental study conducted to iden-
tify the sketchers’ preferences, such as the most pre-
ferred and appropriate UI representations. These re-
sults feed the development of SketchiXML in Section
4, where these widgets are recognized on demand.
The multi-agent architecture of SketchiXML is out-
lined to support various scenarios in different contexts
of use with examples. Section 5 discusses some future
work and concludes.

2 Related work

UI prototypes usually fall into three categories de-
pending on their degree of fidelity, that is the preci-
sion to which they reproduce the reality of the desired
UI.

The high-fidelity (Hi-Fi) prototyping tools denote
software allowing to build a UI that looks complete,
and might be usable. Moreover, this kind of software
is equipped with a wide range of editing functions for
all UI widgets: erase, undo, move, specify physical
attributes, etc… This software allows the designer to
build a complete GUI from which is produced an

accurate image (e.g., Adobe Photoshop, PowerPoint)
or the code in a determined programming language
(e.g., Visual Basic, DreamWeaver). Even if the final
result is not executable, it can also be considered as a
high fidelity tool given that the result provided looks
complete.

The medium-fidelity (Me-Fi) consists in building a
UI mock-up giving importance to the content, but
keeping secondary all the information regarding the
typography, color scheme or others minor details. A
typical example is Microsoft Visio where only the
type, the size and the contents of UI widgets can be
specified graphically.

The low-fidelity (Lo-Fi) drafting tools are used to
capture the general information needed to obtain a
global comprehension of what is desired, keeping all
the unnecessary details out of the process. The most
standard approaches for Lo-Fi prototyping are the
“paper and pencil technique”, the “whiteboard/black-
board and post-its approach” [13]. Such approaches
provide access to all the components, and prevent the
designer from being distracted from the primary task
of design. Research shows that designers who work
out conceptual ideas on paper tend to iterate more and
explore the design space more broadly, whereas de-
signers using computer-based tools tend to take only
one idea and work it out in detail [6,11,12]. Many
designers have reported that the quality of the discus-
sion when people are presented with a Hi-Fi prototype
was different than when they are presented with a Lo-
Fi mock up. When using Lo-Fi prototyping, the users
tend to focus on the interaction or on the overall site
structure rather than on the color scheme or others
details irrelevant at this level [13].

Consequently, Lo-Fi prototyping offers a clear set
of advantages compared to the Hi-Fi perspective, but
at the same time suffers from a lack of assistance. For
instance, if several screens have a lot in common, it
could be profitable to use copy and paste instead of
rewriting the whole screen each time. The combina-
tion between these approaches appears to make sense,
as long as the Lo-Fi advantages are maintained. This
consideration basically initiated two software fami-
lies: tools allowing to sketch the UI and to represent
the scenarios between them, with or without any code
generation.

DENIM [6] helps web site designers during early
design by sketching information at different refine-
ment levels, such as site map, story board and indi-
vidual page, and unifies the levels through zooming
views. DEMAIS [1] is similar in principle, but aimed at
prototyping interactive multimedia applications. It is
made up of an interactive multimedia storyboard tool
that uses a designer's ink strokes and textual annota-
tions as an input design vocabulary. Both DENIM and
DEMAIS use pen input as a natural way to sketch on

screen, but do not produce any final code or other
output.

In contrast, SILK [8], JavaSketchIt [2] and Freeform
[10,11] are major applications for pen-input based
interface design supporting code generation. SILK
uses pen-input to draw GUIs and produce code for
OpenLook operating system. JavaSketchIt proceeds in
a slightly different way than Freeform, as it displays
the shapes recognized in real time, and generates Java
UI code. JavaSketchIt uses the CALI library [6] for
the shape recognition, and widgets are formed on
basis of a combination of vectorial shapes. The recog-
nition rate of the CALI library is very high and thus
makes JavaSketchIt easy to use, even for a novice
user. Freeform only displays the shapes recognized
once the design of the whole interface is completed,
and produces Visual Basic 6 code. The technique used
to identify the widgets is the same than JavaSketchIt,
but with a slightly lower recognition rate. Freeform
also supports scenario management thanks to a basic
storyboard view similar to that provided in DENIM.

SketchiXML’s main goal is to combine in a flexi-
ble way the advantages of the tools just presented into
a single application, but also to add new features for
this kind of application. Thus SketchiXML should:
produce UI specifications and generate from them
several UI codes to avoid binding with a particular
environment and to foster reusability; support UI
sketching with recognition and translation of this
sketching into UI specifications in order not to loose
the design effort; support sketching for any context of
use instead of only one platform, one context; be
based on UI widget representations that are significant
for the designer and/or the end-user; and perform
sketch recognition at different moments, instead of at
an imposed moment.

Others vital facilities to be provided by
SketchiXML are the possibility to handle input from
different sources, such as direct sketching on a tablet
or a paper scan, and the possibility to receive real time
advice on two types of issues, if desired: the first type
of advice occurs in a post-sketching phase, and pro-
vides a set of usability advice based on the UI drawn.
For the second type of advice, the system operates in
real time, looking for possible patterns, or similarities
with previously drawn UIs. The objective of such an
analysis is to supplement the sketching for the de-
signer when a pattern is detected. Since the goal of
SketchiXML is to incite designers to be creative and
to express evaluative judgments, we infer the rules
enunciated in [12] to the global architecture, and let
the designer parameterizes the behavior of the whole
system through a set of parameters (Section 3).

3 SketchiXML Development

In the previous sections, we have introduced the
different requirements to be met in SketchiXML. The
application has to, amongst other things, carry out
shape recognition, provide spatial shape interpreta-
tion, provide usability advice, handle several kinds of
inputs, generate UsiXML specifications, and operate
in a flexible way.

On basis of these requirements, we have considered
that a BDI (Belief-Desire-Intention) agent-oriented
architecture was particularly judicious. Indeed, such
architectures allow to build robust and flexible appli-
cations by distributing the responsibilities among
autonomous and cooperating agents. In that situation
each of the agents is in charge of a specific part of the
process, and cooperate together in order to provide the
service required according to the designer’s prefer-
ences. This kind of approach presents the advantage
of being more flexible, modular and robust than tradi-
tional architecture including object-oriented ones [5].

3.1 SketchiXML Architecture

Fig. 1 models the SketchiXML architecture using i*

[14]. i* is a graph, where each node represents an
actor (or system component) and each link between
two actors indicates that one actor depends on the
other for some goal to be attained. A dependency
describes an “agreement” (called dependum) between
two actors: the depender and the dependee. The de-
pender is the depending actor, and the dependee, the
actor who is depended upon. The type of the depend-
ency describes the nature of the agreement. Goal
dependencies represent delegation of responsibility
for fulfilling a goal; softgoal dependencies are similar
to goal dependencies, but their fulfillment cannot be
defined precisely; task dependencies are used in situa-
tions where the dependee is required.

When a user wishes to create a new project, he
contacts the Broker agent, which serves as an inter-
mediary between the external actor and the organiza-
tional system. The Broker queries the user for all the
relevant information needed for the process, such as
the target platform, the input type, the intervention
strategy of the Adviser agent,... According to the crite-
ria entered, the coordinator chooses the most suitable
handling and coordinates all the agents participating
in the process in order to meet the objectives deter-
mined by the user.

For clearness, the following section only considers a
situation where the user has selected real time recogni-
tion, and pen-input device as input. So, the Data Editor
agent then displays a white board allowing the user to
draw his hand-sketch interface. All the strokes are
collected and then transmitted to the Shape Recognizer

agent for recognition. The recognition engine of this
agent is based on the CALI library [5], a recognition
engine able to identify shapes of different sizes, rotated
at arbitrary angles, drawn with dashed, continuous
strokes or overlapping lines. Subsequently, the Shape
Recognizer agent provides all the vectorial shapes
identified with relevant information such as location,
dimension or degree of certainty associated to the In-
terpreter agent. Based on these shape sets, the Inter-
preter agent attempts to create a component layout.
The technique used for the creation of this layout takes
advantage of the knowledge capacity of agents. The
agent stores all the shapes identified is his belief, and
each time a new shape is received all the potential
candidates for association are extracted. Using its set
of patterns the agent then evaluates if the shape cou-
ples forms a widget or a sub-widget. The conditions to
be tested are based on a set of fuzzy spatial relations
allowing to deal with imprecise spatial combinations of
geometric shapes and to fluctuate with user prefer-
ences.

Based on the widgets identified by the Interpreter,
the Adviser agent assists the designer with the concep-
tion of the UIs in two different ways. Firstly, by pro-
viding real-time assistance to the designer by attempt-
ing to detect UI patterns in the current sketch in order
to complete the sketch automatically. Secondly in a
post operational mode, the usability adviser provides
usability advice on the interface sketched.

If the Interpreter fails to identify all the compo-
nents or to apply all the usability rules, then the Ambi-
guity Solver agent is invoked. This agent evaluates
how to optimally solve the problem according to the

initial parameters entered by the user. The agent can
either attempt to solve the ambiguity itself by using its
set of disambiguation algorithms, or to delegate it to a
third agent, the Graphical Editor agent. The Graphi-

cal Editor displays all the widget recognized at this
point, as a classical element-approach software, and
highlights all the components with a low degree of
certainty for confirmation. Once one of the last three
agents evoked considers the degree of certainty asso-
ciated to the overall widget layout sufficient, the user
interface is transmitted to the XML Parser agent for
UsiXML generation

3.2 SketchiXML prototype

As described in the previous section, the first step

of the process is the gathering of all the information
needed for the process.

Fig. 2. Settings interface.

Fig. 2 displays the settings interface where the de-

signer has to provide all the parameters for the in-
stance. Here, Fig. 2 depicts a situation where the de-
signer wants to obtain all the advice during the proc-

ess, but does not want the recognition engine to dis-
turb him with real-time recognition. The UsiXML
parsing is set on fully manual mode, and the output
quality is set on medium quality. The quality level

Fig. 1. i* representation of SketchiXML architecture

affects the way the agents consider a widget layout to
be acceptable, or the constraints used for the pattern
matching between vectorial shapes. The sketching
phase in that situation is thus very similar to the
sketching process of an application such as Freeform.
Of course, the designer is always free to re-
parameterize the system while the process is running,
or to execute it manually.

Figure 3 illustrates the SketchiXML workspace
configured for designing a user interface for a stan-
dard personal computer. On the first figure we can
observe that shape recognition is disabled as none of
the sketches is interpreted, and the widget layout gen-
erated by the Interpreter agent remains empty. The
second figure represents the same user interface with
shape recognition and interpretation.

Fig. 3. SketchiXML workspace

Figure 4 depicts SketchiXML parameterized for
another context of use, a pda, and its importation to
GrafiXML[9]. We can observe that shape recognition
is activated, each time a new widget is identified the
color of the shapes turns to green, and the widget tree
generated by the Interpreter is updated.

Changing the context has a deep impact on the way
the system operates. As an example, when a user
builds a user interface for one platform or another,
adaptations need to be reflected on the design knowl-
edge that should be used for evaluation, by selecting
and prioritizing rule sets [12], and on the set of avail-
able widgets. As the size of the drawing area is chang-
ing, the set of constraints used for the interpretation

needs to be tailored too, indeed if the average size of
the strokes drawn is much smaller than on a standard
display, the imprecision associated with each stroke
follows the same trend. We can thus strengthen the
constraints in order to avoid confusion.

 Once the design phase is complete,
SketchiXML parses the informal design to UsiXML
specification [3]. Each widget is represented with
standard values for its attributes, as SketchiXML is
only aimed at capturing the core properties of the
interface. Additionally, the UsiXML specification
integrates all the information related to the context. As
UsiXML allows to define a set of transformation rules
for switching from one of the UsiXML models to
another, or to adapt a model for another context, such
information is thus required.

Fig.4. SketchiXML workspace configured for a PDA and its
importation to GrafiXML

Figure 4 illustrates the SketchiXML output im-

ported in GrafiXML, a high fidelity user interface
graphical editor. On basis of the informal design pro-
vided during the early design, a programmer can re-
use the output without any loss of time in order to
provide a complete revised version of the user inter-
face with all the characteristic that cannot and must
not be defined during the early design phase. This
contrasts with a traditional approach, where a pro-
grammer had to implement the user interfaces on basis
of a set of blackboard photographs or sheets of paper,
and thus start the implementation process from the
beginning.

4 Future Work and Conclusion

Even if the SketchiXML prototype integrates a
wide set of features, many evolutions have to be done.
Out of many ideas, three major ones retain our atten-
tion. One of the biggest drawbacks of the current
version of SketchiXML is the lack of scenario editor.
Capturing such information is very profitable, and is
quite natural to represent, even for a novice designer.
Moreover such information can be directly stored in
the UsiXML model, and can be re-used just as easily
as the code generated for each user interface. A sec-
ond high potential evolution consists in developing an
evolutionary recognition engine. SketchiXML uses
the CALI library and a set of spatial constraints be-
tween the vectorial shapes recognized to build the
widget. Even if the recognition rate is very high, the
insertion of new widget representation is restricted to
a combination of the set of vectorial shape supported.
To this aim, research in the biometric domain such as
handwriting recognition [2], could provide valuable
answers, taking full advantage of the multi-agent
architecture.

During the sketching process, the possibility to
have a runable overview of the current project would
be useful. Extensions could be developed in order to
invoke external interpreters directly from
SketchiXML. Interpreters already exist for Flash,
Java, XHTML and Tcl-Tk.

So, with SketchiXML we have introduced a new
and innovative tool. Firstly, SketchiXML is the first
informal design tool that generates a platform and
environment independent output and thus provides a
solution to the language neutrality weakness of exist-
ing approaches. Secondly, the application is based on
a BDI multi-agent architecture where each require-
ment is assumed by an autonomous and collaborative
agent part of an organizational system. Based on the
criteria provided by the designer at the beginning of
the process, the experts (agents) adapt the way they
act and interact with the designer and the other agents
in order to meet the global objectives.

Eventually, SketchiXML extends a set of tools al-
lowing to start the design process from the early de-
sign phase to the final concrete user interface, with
tools supporting every stage. The complete widgets
catalogue, screen shots, demonstration of
SketchiXML and implementation are available at
http://www.usixml.org/. SketchiXML is developed in
Java, on top SKwyRL-framework [7] and JACK
Agent platform, with recognition based on CALI
library [5].

Acknowledgements
We gratefully acknowledge the support of the Request
research project under the umbrella of the WIST
(Wallonie Information Société Technologies) program
under convention n°031/5592 RW REQUEST). We
also warmly thank J. A. Jorge, Filipe M. G. Pereira
and A. Caetano for allowing us to use JavaSketchIt in
our research.

References

1 Bailey, B.P., Konstan, J.A.: Are Informal Tools Better?

Comparing DEMAIS, Pencil and Paper, and Authorware
for Early Multimedia Design. In: Proc. of the ACM
Conf. on Human Factors in Computing Systems
CHI’2003. ACM Press, NY (2003) 313–320

2 Caetano, A., Goulart, N., Fonseca, M., Jorge, J.: JavaS-
ketchIt: Issues in Sketching the Look of User Interfaces.
In: Proc. of the 2002 AAAI Spring Symposium - Sketch
Understanding (Palo Alto, March 2002). AAAI Press
(2002) 9–14

3 Coyette, A., Faulkner S., Kolp, M., Vanderdonckt, J.,
Limbourg, Q.: SketchiXML: Towards a Multi-Agent
Design Tool for Sketching User Interfaces Based on
USIXML. In: Proc. of the 3rd Int. Workshop on TAsk
MOdels and DIAgrams for user interface design
TAMODIA’2004 (Prague, November 2004). ACM Press,
New York (2004) 75–82

4 Faulkner, S.: An Architectural Framework for Describ-
ing BDI Multi-Agent Information Systems. Ph.D. The-
sis, UCL-IAG, Louvain-la-Neuve (May 2004)

5 Fonseca, M.J., Jorge, J.A.: Using Fuzzy Logic to Recog-
nize Geometric Shapes Interactively. In: Proc. of the 9th
Int. Conf. on Fuzzy Systems FUZZ-IEEE'00 (San Anto-
nio, 2000). IEEE Computer Society Press, Los Alamitos
(2000) 191–196

6 Hong, J.I., Li, F.C., Lin, J., Landay, J.A.: End-User
Perceptions of Formal and Informal Representations of
Web Sites. In: Extended Abstracts of CHI’2001, 385–
386

7 Kolp, M., Giorgini, P., Mylopoulos, J.: An Organiza-
tional Perspective on Multi-agent Architectures. In:
Proc. of the 8th Int. Workshop on Agent Theories, Archi-
tectures, and Languages ATAL’01 (Seattle, 2001).

8 Landay, J., Myers, B.A.: Sketching Interfaces: Toward
More Human Interface Design. IEEE Computer 34, 3
(March 2001) 56–64

9 Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon,
L., and Lopez-Jaquero, V. USIXML: a Language Sup-
porting Multi-Path Development of User Interfaces. In:
Proc. of 9th IFIP Working Conf. on Engineering for Hu-
man-Computer Interaction EHCI-DSVIS'2004 (Ham-
burg, July 11-13, 2004). Kluwer Academics, Dordrecht
(2004)

10 Plimmer, B.E., Apperley, M. Software for Students to
Sketch Interface Designs. In: Proc. of IFIP Conf. on
Human-Computer Interaction INTERACT’2003. IOS Press
(2003) 73–80

11 Plimmer, B.E., Apperley, M.: Interacting with Sketched
Interface Designs: An Evaluation Study. In: Proc. of
CHI'04. ACM Press, New York (2004) 1337–1340

12 Sumner, T., Bonnardel, N., Kallag-Harstad, B., The
Cognitive Ergonomics of Knowledge-based Design
Support Systems. In: Proc. of CHI'97. ACM Press, New
York (1997) 83–90

13 van Duyne, D.K., J.A. Landay, and J.I. Hong, The De-
sign of Sites: Patterns, Principles, and Processes for
Crafting a Customer-Centered Web Experience. Addi-
son-Wesley (2002).

14 Yu, E.: Modeling Strategic Relationships for Process
Reengineering. Ph.D. thesis. Department of Computer
Science, University of Toronto, Toronto (1995)

