
SketchiXML: An Informal Design Tool for
User Interface Early Prototyping

Adrien Coyette, Jean Vanderdonckt, and Quentin Limbourg

Belgian Lab. of Computer-Human Interaction (BCHI), Information Systems Unit (ISYS)
Louvain School of Management, Université catholique de Louvain,

Place des Doyens 1, B−1348 Louvain-la-Neuve (Belgium)
{coyette, vanderdonckt, limbourg}@isys.ucl.ac.be – http://www.isys.ucl.ac.be/bchi

Abstract. Sketching consists of a widely practised activity during early design
phases of product in general and for user interface development in particular in
order to convey informal specifications of the interface before actually imple-
menting it. It is quite interesting to observe that designers as well as end users
have abilities to sketch parts or whole of the final user interface they want,
while discussing the advantages and shortcomings. SketchiXML consists of a
multi-platform multi-agent interactive application that enables designers, devel-
opers, or even end users to sketch user interfaces with different levels of details
and support for different contexts of use. The results of the sketching are then
analyzed to produce interface specifications independently of any context, in-
cluding user and platform. These specifications are exploited to progressively
produce one or several interfaces, for one or many users, platforms, and envi-
ronments.

1 Introduction

Designing the right User Interface (UI) the first time is very unlikely to occur. In-
stead, UI design is recognized as a process that is intrinsically open (new considera-
tions may appear at any time), iterative (several cycles are needed to reach an accept-
able result), and incomplete (not all required considerations are available at design
time). Consequently, means to support early UI design has been extensively re-
searched [12] to identify appropriate techniques such as paper sketching, prototypes,
mock-ups, diagrams, etc. Most designers consider hand sketches on paper as one of
the most effective ways to represent the first drafts of a future UI [4,7,12, 15,16,17].
Indeed, this kind of unconstrained approach presents many advantages: sketches can
be drawn during any design stage, it is fast to learn and quick to produce, it lets the
sketcher focus on basic structural issues instead of unimportant details (e.g., exact
alignment, typography, and colors), it is very appropriate to convey ongoing, unfin-
ished designs, and it encourages creativity, sketches can be performed collaboratively
between designers and end-users. Furthermore, the end user may herself produce
some sketches to initiate the development process and when the sketch is close
enough to the expected UI, an agreement can be signed between the designer and the
end user, thus facilitating the contract and validation. Van Duyne et al. [20] reported

 Adrien Coyette, Jean Vanderdonckt, and Quentin Limbourg 2

that creating a low-fidelity UI prototype (such as UI sketches) is at least 10 to 20
times easier and faster than its equivalent with a high-fidelity prototype (such as pro-
duced in UI builders). The idea of developing a computer-based tool for sketching
UIs naturally emerged from these observations [12,17]. Such tools would extend the
advantages provided by sketching techniques by: easily creating, deleting, updating or
moving UI elements, thus encouraging typical activities in the design process [3] such
as model-checking and revision. Some research was carried out in order to propose a
hybrid approach, combining the best of the hand-sketching and computer assisted in-
terface design, but this marriage highlights five shortcomings:

1. Some tools only support sketching activities, without producing any output: when
the designer and the end user agreed upon a sketch, a contract can be signed be-
tween them and the development phase can start from the early design phase, but
when the sketch is not transformed, the effort is lost.

2. Sketching tools that recognize the drawing do produce some output, but not in a
reusable format: the design output is not necessarily in a format that is directly re-
usable as development input, thus preventing reusability.

3. Sketching tools are bound to a particular programming language, a particular UI
type, a particular computing platform or operating system: when an output is pro-
duced, it is usually bound to one particular environment, therefore preventing de-
velopers from re-using sketches in new contexts, such as for various platforms.

4. Sketching tools do not take into account the sketcher’s preferences: as they impose
the same sketching scheme, the same gestures for all types of sketchers, a learning
curve may prevent these users from learning the tool and efficiently using it.

5. Sketching tools do not allow a lot of flexibility in the sketch recognition: the user
cannot choose when recognition will occur, degrading openness and when this oc-
curs, it is difficult to return to a previous state.

In the remainder of this paper, Section 2 demonstrates that state-of-the-art UI
sketching tools all suffer from some of the above shortcomings. Section 3 provides an
overview of the Concrete User Interface (CUI) used in the sketching process, which
results from widget abstraction. In Section 4, these widgets are recognized on de-
mand. The multi-agent architecture of SketchiXML is outlined to support various
scenarios in different contexts of use with examples. Section 5 concludes the paper.

2 Related Work

UI prototypes usually fall into three categories depending on their degree of fide-
ity, that is the precision to which they reproduce the reality of the desired UI.

The high-fidelity (Hi-Fi) prototyping tools support building a UI that looks com-
plete, and might be usable. Moreover, this kind of software is equipped with a wide
range of editing functions for all UI widgets: erase, undo, move, specify physical at-
tributes, etc… This software lets designers build a complete GUI, from which is pro-
duced an accurate image (e.g., Adobe Photoshop, PowerPoint) or code in a deter-
mined programming language (e.g., Visual Basic, DreamWeaver). Even if the final
result is not executable, it can still be considered as a high fidelity tool given that the

SketchiXML: An Informal Design Tool for User Interface Early Prototyping 3

result provided looks complete.
The medium-fidelity (Me-Fi) approach builds UI mock-ups giving importance to

content, but keeping secondary all information regarding typography, color scheme or
others minor details. A typical example is Microsoft Visio, where only the type, the
size and the contents of UI widgets can be specified graphically.

Low-fidelity (Lo-Fi) drafting tools are used to capture the general information
needed to obtain a global comprehension of what is desired, keeping all the unneces-
sary details out of the process. The most standard approaches for Lo-Fi prototyping
are the “paper and pencil technique”, the “whiteboard/blackboard and post-it ap-
proach” [16]. Such approaches provide access to all the components, and prevent the
designer from being distracted from the primary task of design. Research shows that
designers who work out conceptual ideas on paper tend to iterate more and explore
the design space more broadly, whereas designers using computer-based tools tend to
take only one idea and work it out in detail [20]. Many designers have reported that
the quality of the discussion when people are presented with a Hi-Fi prototype was
different than when they are presented with a Lo-Fi mock up. When using Lo-Fi pro-
totyping, the users tend to focus on the interaction or on the overall site structure
rather than on the color scheme or others details irrelevant at this level.

Consequently, Lo-Fi prototyping offers a clear set of advantages compared to the
Hi-Fi perspective, but at the same time suffers from a lack of assistance. For instance,
if several screens have a lot in common, it could be profitable to use copy and paste
instead of rewriting the whole screen each time. A combination of these approaches
appears to make sense, as long as the Lo-Fi advantages are maintained. This consid-
eration results two families of software tools which support UI sketching and repre-
senting the scenarios between them, one with and one without code generation.

DENIM [15] helps web site designers during early design by sketching information
at different refinement levels, such as site map, story board and individual page, and
unifies the levels through zooming views. DENIM uses pen input as a natural way to
sketch on screen, but do not produce any final code or other output.

In contrast, SILK [12], JavaSketchIt [4] and Freeform [16,17] are major applications
for pen-input based interface design supporting code generation. SILK uses pen input
to draw GUIs and produce code for OpenLook operating system. JavaSketchIt pro-
ceeds in a slightly different way than Freeform, as it displays the shapes recognized in
real time, and generates Java UI code. JavaSketchIt uses the CALI library [4] for the
shape recognition, and widgets are formed on basis of a combination of vectorial
shapes. The recognition rate of the CALI library is very high and thus makes JavaS-
ketchIt easy to use, even for a novice user. Freeform only displays the shapes recog-
nized once the design of the whole interface is completed, and produces Visual Basic
6 code. The technique used to identify the widgets is the same than JavaSketchIt, but
with a slightly lower recognition rate. Freeform also supports scenario management
thanks to a basic storyboard view similar to that provided in DENIM.

To enable sketching of widgets which are traditionally found in window managers,
there is a need to have an internal representation of the UI being built, in terms of
those widgets. Therefore, the next section introduces a means for specifying such a UI
in terms of concrete interaction objects, instead of widgets.

 Adrien Coyette, Jean Vanderdonckt, and Quentin Limbourg 4

3 The Concrete User Interface in UsiXML

The need for abstracting widgets existing in various toolkits, window managers, or
Integrated Development Environments (IDEs) has appeared since the early nineties.
At that time, the main goal for introducing an abstraction for widgets was the desire to
specify them independently of any underlying technology, mainly the different oper-
ating systems and the different window managers working with the same operating
system. For this purpose, the notion of Abstract Interaction Object (AIO) has been in-
troduced to provide an abstraction of the same widget across those different toolkits,
window managers, and operating systems so as to manipulate one single specification
of this widget [18]. Another goal was the desire to entirely specify the presentation
and the behavior of the widget [6,8].

Since that time, much progress has been accomplished towards improving the ex-
pressiveness of these abstractions, to the ultimate point of having extensive specifica-
tions of an entire UI in a User Interface Description Language (UIDL). The most rep-
resentative examples are XML-compliant UIDLs such as UIML [1], UsiXML [13,14],
and XIML [9]. A noticeable example is also the effort of specifying domain-oriented
widgets such as those covered by the ARINC 661 Specifications in the domain of
widgets for automated cockpits [2,3]. In order to be rigorous for the abstraction with
respect to which the specification needs to be expressed, a reference framework is
first introduced.

3.1 A Reference Framework for User Interfaces in Multiple Contexts

The foundation of the approach adopted here is to rely constantly on the same User
Interface Description Language (UIDL) throughout the development life cycle. This
UIDL is UsiXML (User Interface eXtensible Markup Language – http://www.usi
xml.org) which is characterized by the following principles [13,14]:

• Expressiveness of UI: any UI is expressed depending on the context of use thanks
to a suite of models that are analyzable, editable, and manipulable by a software
agent.

• Central storage of models: each model is stored in a model repository where all UI
models are expressed similarly.

• Transformational approach: each model stored in the model repository may be
subject to one or many transformations supporting various development steps.
Each transformation is itself specified thanks to UsiXML [14].

Contrarily to other UIDLs such as UIML and XIML, UsiXML [12] enables speci-
fying various levels of information and details until a final UI is obtained and depend-
ing on the project. It is not necessary to specify all models at all levels involved in the
UI development life cycle. For this purpose, UsiXML is structured according to four
basic levels of abstractions defined by the Cameleon reference framework [5] (Figure
1).

SketchiXML: An Informal Design Tool for User Interface Early Prototyping 5

Fig. 1. The four levels of the Cameleon reference framework (source: [5]).

At the top level is the Task & Concepts level that describes the various interactive
tasks to be carried out by the end user and the domain objects that are manipulated by
these tasks. These objects are considered as instances of classes representing the con-
cepts.

An Abstract UI (AUI) provides a UI definition that is independent of any modality
of interaction (e.g., graphical interaction, vocal interaction, 3D interaction etc.). An
AUI is populated by Abstract Containers (ACs), Abstract Individual Components
(AICs) and abstract relationships between. AICs represent basic system interactive
functions, which are referred to as facets (i.e., input, output, navigation, and control).
In this sense, AICs are an abstraction of widgets found in graphical toolkits (like win-
dows, buttons) and in vocal toolkits (like vocal input and output widgets in the vocal
interface). Two AUI relationships that can be defined between AICs:

1. Dialog transition: specifies a navigation transition within a abstract container or
across several abstract containers.

2. Spatio-temporal relationship: characterizes the physical constraints between AICs
as they are presented in time and space.

As an AUI does not refer to any particular modality, we do not know yet how this
abstract description will be concretized: graphical, vocal or multimodal. This is
achieved in the next level.

The Concrete UI (CUI) concretizes an AUI for a given context of use into Con-
crete Interaction Objects (CIOs) so as to define layout and/or interface navigation of
2D graphical widgets and/or vocal widgets. Any CUI is composed of CIOs, which re-
alize an abstraction of widgets sets found in popular graphical and vocal toolkits (e.g.,
Java AWT/Swing, HTML 4.0, Flash DRK6, VoiceXML, and VoxML). A CIO is de-
fined as an entity that users can perceive and/or manipulate (e.g., push button, text
field, check box, vocal output, vocal input, vocal menu). The CUI abstracts a Final UI
in a way that is independent of any toolkit peculiarities.

The Final UI (FUI) is the operational UI, i.e. any UI running on a particular com-
puting platform either by interpretation (e.g., through a Web browser) or by execution
(e.g., after the compilation of code in an interactive development environment). The
Context of use describes all the entities that may influence how the user’s task is car-
rying out with the future UI. It takes into account three relevant aspects, each aspect
having its own associated attributes contained in a separate model: user type (e.g.,
system experience, task experience, task motivation), computing platform type (e.g.,
mobile platform vs. stationary), and physical environment type (e.g., office condi-
tions, outdoor conditions). These attributes initiate transformations that are applicable
depending on the current context of use. In order to map different elements belonging

 Adrien Coyette, Jean Vanderdonckt, and Quentin Limbourg 6

to the models described above, UsiXML provides the designer with a set of pre-
defined mappings [14]:
• Manipulates: maps a task onto a domain concept.
• Updates: maps an interaction object and a domain model concept (specifically, an

attribute).
• Triggers: maps an interaction object and a domain model concept (specifically an

operation).
• Is Executed In: maps a task onto an AUI or CUI element.
• Is Reified By: maps an abstract object into a concrete one through an abstraction

transformation.

3.2 The Concrete User Interface in UsiXML

The semantics of the UsiXML are defined in a UML class diagram (Fig. 2 is illus-
trating a portion of this metamodel). Each class, attribute or relation of this class dia-
gram is transformed into a XML Schema defining the concrete syntax of the UsiXML
language in general. All other levels of the reference framework depicted in Figure 1
are equally expressed in UsiXML to support seamless transition between any level of
abstraction to any other one. A CUI is assumed to be expressed without any reference
to any particular computing platform or toolkit of that platform. A CUI model con-
sists of a hierarchical decomposition of CIOs (any UI entity that users can perceive
such as text, image, animation and/or manipulate such as a push button, a list box, or
a check box) that are linked together with cuiRelationships between. A CIO is charac-
terized by [14]:

- id: an internally attributed identifier of a CIO;
- name: a name given to the CIO to reflect its function, purpose;
- icon: a reference to an icon attached to the CIO, if any;
- content: a reference to the textual contents of a CIO, if any;
- defaultContent: the default value of its textual contents, if any;
- defaultIcon: the default icon of this CIO, if any;
- defaultHelp: the default text for helping the user on this CIO;
- help: the extended help system for helping the user on this CIO;
- currentValue: the current value of the CIO at run-time, if any.

At the second level, each CIO is sub-typed into sub-CIOs depending on the interac-
tion modality chosen: graphicalCIO for GUIs, auditoryCIO for vocal interfaces, etc.
Each graphicalCIO inherits from the above properties of the CIO. Specific attributes
include, but are not limited to:

- isVisible: is set to true if a graphicalCio is visible;
- isEnabled: is set to true if a graphicalCIO is enabled;
- fgColor and bgColor: are the foreground and background colors;
- toolTipDefaultContent: for the default content of the tooltip;
- toolTipContent: the contents of the tooltip depending on the context of use, which
may vary from one user to another;

- transparencyRate: for supporting translucid interfaces;

SketchiXML: An Informal Design Tool for User Interface Early Prototyping 7

Each graphicalCIO can then belong to one category: graphicalContainer for all
widgets containing other widgets such as window, frame, dialog box, table, box and
their related decomposition or graphicalIndividualComponent for all other traditional
widgets that are typically found. UsiXML supports (Figure 2) textComponent, video-
Component, imageComponent, imageZone, radioButton, toggleButton, icon, check-
box, item, comboBox, button, tree, menu, menuItem, drawingCanvas, colorPicker,
hourPicker, datePicker, filePicker, progressionBar, slider, and cursor.

Thanks to this progressive inheritance mechanism, every final elements of the CUI
inherits from the upper properties depending on the category they belong to. The
properties that have been chosen in UsiXML have been decided because they belong
to the intersection of property sets of major toolkits and window managers, such as
Windows GDI, Java AWT and Swing, HTML. Of course, only properties of high
common interest were kept. In this way, a CIO can be specified independently from
the fact that it will be further rendered in HTML, VRML or Java. This quality is often
referred to as the property of platform independence. Therefore, the CIOs defined at
the CUI level remain independent of any computing platform (and thus of any under-
lying toolkit) since the same CUI could be specified in principle for different comput-
ing platforms and devices.

In the next section, we will see how this Concrete User Interface can be sketched in
SketchiXML and stored internally in terms of UsiXML tags.

Fig. 2. The Concrete User Interface level defined in UsiXML as a UML Class Diagram [14].

 Adrien Coyette, Jean Vanderdonckt, and Quentin Limbourg 8

4 SketchiXML Development

The main requirements to address are the following: to support shape recognition,
to provide spatial shape interpretation, to provide usability advice at design time, to
handle several kinds of input, to generate UsiXML specifications at design-time, and
to operate in a flexible way. To address these requirements, a BDI (Belief-Desire-
Intention) agent-oriented architecture [7] was considered appropriate: such architec-
ture allows building robust and flexible applications by distributing the responsibili-
ties among autonomous and cooperating agents. Each agent is in charge of a specific
part of the process, and cooperates with the others in order to provide the service re-
quired according to the designer’s preferences. This kind of approach has the advan-
tage of being more flexible, modular and robust than traditional architecture including
object-oriented ones [7].

4.1 SketchiXML Architecture

The application was built using the SKwyRL-framework (its usage is summarized in
[7]), a framework aimed at defining, formalizing and applying socially based cata-
logues of styles and patterns to construct agent and multi-agent architectures. The
joint-venture organizational style pattern was applied to design the agent-architecture
of SketchiXML. It was chosen on basis of non-functional requirements Ri, as among
all organizational styles defined in the SKwyRL framework, the joint venture clearly
matches the aforementioned requirements as the most open and distributed organiza-
tional style.

The architecture (Fig. 3) is structured using i* [7], a graph where each node repre-
sents an actor (or system component) and each link between two actors indicates that
one actor depends on the other for some goal to be attained. A dependency describes
an “agreement” (called dependum) between two actors: the depender and the de-
pendee. The depender is the depending actor, and the dependee, the actor who is de-
pended upon. The type of the dependency describes the nature of the agreement. Goal
dependencies represent delegation of responsibility for fulfilling a goal; softgoal de-
pendencies are similar to goal dependencies, but their fulfillment cannot be defined
precisely; task dependencies are used in situations where the dependee is required.

When a user wishes to create a new SketchiXML project, she contacts the Broker
agent, which serves as an intermediary between the external actor and the organiza-
tional system. The Broker queries the user for all the relevant information needed for
the process, such as the target platform, the input type, the intervention strategy of the
Adviser agent,... According to the criteria entered, the coordinator chooses the most
suitable handling and coordinates all the agents participating in the process in order to
meet the objectives determined by the user. For clearness, the following section only
considers a situation where the user has selected real time recognition, and pen-input
device as input. So, the Data Editor agent then displays a white board allowing the
user to draw his hand-sketch interface. All the strokes are collected and then transmit-
ted to the Shape Recognizer agent for recognition. The recognition engine of this
agent is based on the CALI library [4], a recognition engine able to identify shapes of
different sizes, rotated at arbitrary angles, drawn with dashed, continuous strokes or
overlapping lines.

SketchiXML: An Informal Design Tool for User Interface Early Prototyping 9

Fig. 3. i* representation of SketchiXML architecture as a Joint-Venture.

Subsequently, the Shape Recognizer agent provides all the vectorial shapes identi-
fied with relevant information such as location, dimension or degree of certainty asso-
ciated to the Interpreter agent. Based on these shape sets, the Interpreter agent at-
tempts to create a component layout. The technique used for the creation of this layout
takes advantage of the knowledge capacity of agents. The agent stores all the shapes
identified as his belief, and each time a new shape is received all the potential candi-
dates for association are extracted. Using its set of patterns the agent then evaluates if
shape pairs form a widget or a sub-widget. The conditions to be tested are based on a
set of fuzzy spatial relations allowing to deal with imprecise spatial combinations of
geometric shapes and to fluctuate with user preferences. Based on the widgets identi-
fied by the Interpreter, the Adviser agent assists the designer with the conception of the
UIs in two different ways.

Firstly, by providing real-time assistance to the designer by attempting to detect UI
patterns in the current sketch in order to complete the sketch automatically. Secondly
in a post operational mode, the usability adviser provides usability advice on the inter-
face sketched. If the Interpreter fails to identify all the components or to apply all the
usability rules, then the Ambiguity Solver agent is invoked. This agent evaluates how to
solve the problem according to the initial parameters entered by the user.

The agent can either attempt to solve the ambiguity itself by using its set of disam-
biguation algorithms, or to delegate it to a third agent, the Graphical Editor agent. The
Graphical Editor displays all the widget recognized at this point, as classical element-
based software, and highlights all the components with a low degree of certainty for
confirmation. Once one of these last three agents evoked has sufficient certainty about
the overall widget layout, the UI is sent to the XML Parser agent for UsiXML genera-
tion.

 Adrien Coyette, Jean Vanderdonckt, and Quentin Limbourg 10

4.2 Low-Fidelity Prototyping with SketchiXML

The first step in SketchiXML consists of specifying parameters that will drive the
low-fidelity prototyping process (Fig. 4): the project name, the input type (i.e. on-line
sketching or off-line drawing that is scanned and processed in one step-Fig. 5), the
computing platform for which the UI is prototyped (a predefined platform can be se-
lected such as mobile phone, PDA, TabletPC, kiosk, ScreenPhone, laptop, desktop,
wall screen, or a custom one can be defined in terms of platform model [10]), the out-
put folder, the time when the recognition process is initiated (ranging from on-
demand manual to fully automatic each time a new widget can be detected- this flexi-
bility is vital according to experiments), the intervention mode of the usability advisor
(manual, mixed-initiative, automatic), and the output quality stating the response time
vs. quality of results of the recognition and usability advisor processes. In Fig. 7, the
UsiXML parsing is set on fully manual mode, and the output quality is set on medium
quality. The quality level affects the way the agents consider a widget layout to be ac-
ceptable, or the constraints used for the pattern matching between vectorial shapes.
The sketching phase in that situation is thus very similar to the sketching process of
an application such as FreeForms [17]. Of course, the designer is always free to
change these parameters while the process is running.

 Fig. 4. Creating a new SketchiXML prototype Fig. 5. Scanned UI sketching

Fig. 6 illustrates the SketchiXML workspace configured for designing a UI for a
standard personal computer. On the left part we can observe that shape recognition is
disabled as none of the sketches is interpreted, and the widget layout generated by the
Interpreter agent remains empty. The right part represents the same UI with shape
recognition and interpretation. Fig. 7 depicts SketchiXML parameterized for a Pock-
etPC platform and its results imported in GrafiXML, a UsiXML-compliant graphical
UI editor that can generate code for HTML, XHTML, and Java (http://www.usixml.
org/index.php?view=page&idpage=10).

SketchiXML: An Informal Design Tool for User Interface Early Prototyping 11

Fig. 6. SketchiXML workspace.

When shape recognition is activated, each time a new widget is identified the color of
the shapes turns to green, and the widget tree generated by the Interpreter is updated.
Changing the context has a deep impact on the way the system operates. As an exam-
ple, when a user builds a user interface for one platform or another, adaptations need
to be based on the design knowledge that will be used for evaluation, by selecting and
prioritizing rule sets, and on the set of available widgets. As the size of the drawing
area is changing, the set of constraints used for the interpretation needs to be tailored
too, indeed if the average size of the strokes drawn is much smaller than on a standard
display, the imprecision associated with each stroke follows the same trend. We can
thus strengthen the constraints to avoid any confusion.

Fig. 7. SketchiXML workspace configured for a PDA and its import in GrafiXML.

Once the design phase is complete, SketchiXML parses the informal design to pro-

duce UsiXML specifications. Fig. 8 gives an overview of the UsiXML specifications
generated from UI drawn in Fig. 7. Each widget is represented with standard values
for each attribute, as SketchiXML is only aimed at capturing the UI core properties.
In addition, the UsiXML specifications integrate all the information related to the
context of use as specified in the wizard depicted on Fig. 7: information for the user
model, the platform model, and the environment model [10]. As UsiXML allows de-

 Adrien Coyette, Jean Vanderdonckt, and Quentin Limbourg 12

fining a set of transformation rules for switching from one of the UsiXML models to
another, or to adapt a model for another context, such information is thus required.
Fig. 7 illustrates the SketchiXML output imported in GrafiXML, a high fidelity UI
graphical editor. On basis of the informal design provided during the early design, a
programmer can re-use the output without any loss of time to provide a revised ver-
sion of the UI with all the characteristics that can and should not be defined during the
early design phase. This contrasts with a traditional approach, where a programmer
had to implement user interfaces on basis of a set of blackboard photographs or sheets
of paper, and thus start the implementation process from the beginning.

Fig. 8. Excerpt of the UsiXML specifications generated by SketchiXML.

As the Usability Advisor intervention time has been specified as “automatic” (Fig.

4), each time a usability deviation is detected with respect to usability guidelines, a
tool tip message is produced in context, attached to the widget on concern. For this
purpose, a set of form-based usability guidelines have been encoded in GDL (Guide-
line Definition Language), a XML-compliant description of guidelines that can be di-
rectly related to UsiXML widgets.

SketchiXML: An Informal Design Tool for User Interface Early Prototyping 13

5 Conclusion

The main difference between SketchiXML considered here as a tool for sketching the
UI during the prototyping phase is that the effort done during this phase is not lost: it
is automatically transformed into specifications written in UsiXML in order to pass
them to other software which communicate by exchanging UsiXML files. It could be
in particular a high-fidelity UI editor such as GrafiXML (as illustrated in Fig. 7) or
any other UsiXML-compliant editor. Therefore, the current level of fidelity of the
prototyped UIs may be increased by recuperating these specifications into another
editor and continuing to refine their specifications until a final UI is reached. From
this moment, any UsiXML-compliant rendering engine (such as a code generator or
interpreter) could render the UI at run-time, even if this is during the prototyping
phase [11,19].

It is obvious that at the beginning of the UI development life cycle, the UI re-
quirements are not yet well done, especially if the UI concerns a new domain of activ-
ity, where little or no previous experience or history exists. For those cases where a
substantive experience already exists, this prototyping phase may be reduced to re-
opening previously existing UI specifications and tailoring them to the new project. In
both cases, the sketching tool is able to support designers, developers, or even end-
users to refine their ideas until a final UI is obtained with consensus between the
stakeholders

ACKNOWLEDGMENTS

We gratefully thank the support from of the Request research project under the um-
brella of the WIST (Wallonie Information Société Technologies) program under con-
vention n°031/5592 RW REQUEST) and from the SIMILAR network of excellence
(The European research taskforce creating human-machine interfaces SIMILAR to
human-human communication), supported by the 6th Framework Program of the
European Commission, under contract FP6-IST1-2003-507609 (http://www.similar.
cc). We warmly thank J.A. Jorge, F.M.G. Pereira and A. Caetano for allowing us to
use JavaSketchIt and the CALI library in our research.

REFERENCES

1. Ali M.F., Pérez-Quiñones M.A., Abrams M.: Building Multi-Platform User Interfaces with
UIML. In: Seffah, A., Javahery, H. (eds.): Multiple User Interfaces: Engineering and Appli-
cation Framework. John Wiley, Chichester (2004) 95–118.

2. Barboni, E., Navarre, D., Palanque, Ph., Basnyat, S.: Model-Based Engineering of Widgets,
User Applications and Servers Compliant with ARINC 661 Specification. In: Proceedings
of the 13th Conference on Design, Specification, and Verification of Interactive Systems
DSV-IS’2006 (Dublin, July 26-28, 2006). Lecture Notes in Computer Science, Springer
Verlag, Berlin (2006).

 Adrien Coyette, Jean Vanderdonckt, and Quentin Limbourg 14

3. Bastide, R., Navarre, D., Palanque, P.A.: A Tool-supported Design Framework for Safety
Critical Interactive Systems. Interacting with Computers 15,3 (2003) 309–328.

4. Caetano, A., Goulart, N., Fonseca, M., Jorge, J.: JavaSketchIt: Issues in Sketching the Look
of User Interfaces. In: Proc. of the 2002 AAAI Spring Symposium - Sketch Understanding
(Palo Alto, March 2002). AAAI Press, Menlo Park (2002) 9–14.

5. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A Uni-
fying Reference Framework for Multi-Target User Interfaces. Interacting with Computer
15,3 (2003) 289–308.

6. Carr, D.A., Specification of Interface Interaction Objects. In: Proc. of ACM Conf. on Hu-
man Aspects in Computing Systems CHI’94 (Boston, April 24-28, 1994). Vol. 2, ACM
Press, New York (1994) p. 226.

7. Coyette, A., Vanderdonckt, J.: A Sketching Tool for Designing Anyuser, Anyplatform, Any-
where User Interfaces. In: Proc. of 10th IFIP TC 13 Int. Conf. on Human-Computer Interac-
tion INTERACT’2005 (Rome, 12-16 September 2005), Lecture Notes in Computer Sci-
ence, Vol. 3585, Springer-Verlag, Berlin, 2005, 550–564.

8. Duke, D.J., Harrison, M.D.: Abstract Interaction Objects. Computer Graphics Forum 12,3
(1993) 25–36.

9. Eisenstein, J., Vanderdonckt, J., Puerta, A.: Model-Based User-Interface Development
Techniques for Mobile Computing. In: Lester J. (ed.): Proc. of 5th ACM Int. Conf. on Intel-
ligent User Interfaces IUI’2001 (Santa Fe, January 14-17, 2001). ACM Press, New York
(2001) 69–76.

10. Florins, M., Vanderdonckt, J.: Graceful Degradation of User Interfaces as a Design
Method for Multiplatform Systems. In: Proc. of Int. Conf. on Intelligent User Interfaces
IUI’04 (Funchal, January 13-16, 2004). ACM Press, New York (2004) 140–147.

11. Grolaux, D., Vanderdonckt, J., Van Roy, P.: Attach me, Detach me, Assemble me like You
Work. In: Proc. of 10th IFIP TC 13 Int. Conf. on Human-Computer Interaction INTER-
ACT’2005 (Rome, September 12-16, 2005), Lecture Notes in Computer Science, Vol. 3585,
Springer-Verlag, Berlin (2005) 198–212.

12. Landay, J., Myers, B.A.: Sketching Interfaces: Toward More Human Interface Design.
IEEE Computer 34, 3 (March 2001) 56–64.

13. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez, V.: USIXML: a Lan-
guage Supporting Multi-Path Development of User Interfaces. In: Proc. of 9th IFIP Work-
ing Conf. on Engineering for Human-Computer Interaction jointly with 11th Int. Workshop
on Design, Specification, and Verification of Interactive Systems EHCI-DSVIS’2004
(Hamburg, July 11-13, 2004). Lecture Notes in Computer Science, Vol. 3425. Springer-
Verlag, Berlin (2005) 200–220.

14. Limbourg, Q., Multi-path Development of User Interfaces, Ph.D. thesis, Université catho-
lique de Louvain, Louvain-la-Neuve, November 2004.

15. Newman, M.W., Lin, J., Hong, J.I., Landay, J.A.: DENIM: An Informal Web Site Design
Tool Inspired by Observations of Practice. Human-Computer Interaction 18 (2003) 259–
324.

16. Plimmer, B.E., Apperley, M.: Software for Students to Sketch Interface Designs. In: Proc.
of 9th IFIP TC 13 Int. Conf. on Human-Computer Interaction INTERACT’2003 (Zurich, 1-
5 September 2003). IOS Press, Amsterdam (2003) 73–80.

17. Plimmer, B.E., Apperley, M.: Interacting with Sketched Interface Designs: An Evaluation
Study. In: Proc. of ACM Conf. on Human Aspects in Computing Systems CHI’04 (Vienna,
April 24-29, 2004). ACM Press, New York (2004) 1337–1340.

18. Vanderdonckt, J., Bodart, F.: Encapsulating Knowledge for Intelligent Automatic Interac-
tion Objects Selection. In: Proc. of the ACM Conf. on Human Factors in Computing Sys-
tems INTERCHI’93 (Amsterdam, April 24-29, 1993). ACM Press, New York (1993) 424–
429.

SketchiXML: An Informal Design Tool for User Interface Early Prototyping 15

19. Vanderdonckt, J.: A MDA-Compliant Environment for Developing User Interfaces of In-
formation Systems. In: Pastor, O. & Falcão e Cunha, J. (eds.), Proc. of 17th Conf. on Ad-
vanced Information Systems Engineering CAiSE'05 (Porto, 13-17 June 2005). Lecture
Notes in Computer Science, Vol. 3520. Springer-Verlag, Berlin (2005) 16–31.

20. van Duyne, D.K., Landay, J.A., Hong, J.I..: The Design of Sites: Patterns, Principles, and
Processes for Crafting a Customer-Centered Web Experience. Addison-Wesley, Reading
(2002).

