

A Methodological Framework
for Multi-Fidelity Sketching

of User Interfaces

By Adrien Coyette

A dissertation submitted in fulfillment of the requirements for
the degree of

Doctor of Philosophy in
Management Sciences

of the Université catholique de Louvain

Committee in charge:

Prof. Jean Vanderdonckt, Advisor
Prof. Manuel Kolp, Advisor

Prof. Stéphane Faulkner, FUNDP, Examiner
Prof. Laurence Nigay, Université J. Fourier, Reader
Prof. Pierre Leclercq, Université de Liège, Reader

Autumn 2007

Table of content

TABLE OF CONTENT... 5
CHAPTER 1 INTRODUCTION .. 13

1.1 THESIS ... 20
1.1.1 Thesis statement ... 20
1.1.2 Validation... 21
1.1.3 Scope .. 21

1.2 READING MAP ... 22
CHAPTER 2 STATE OF THE ART.. 25

2.1 PROTOTYPING.. 26
2.1.1 Levels of fidelity ... 27
2.1.2 Prototyping development paths ... 29
2.1.3 Prototyping types ... 33
2.1.4 Scope of prototyping .. 36
2.1.5 Prototype executability .. 36

2.2 ANALYSIS GRID ... 38
2.3 CLASSICAL APPROACHES... 40

2.3.1 The Paper prototyping... 40
2.3.2 Tiny fingers prototyping .. 43

2.4 UI SKETCHING APPLICATIONS .. 45
2.4.1 Silk.. 45
2.4.2 Denim ... 48
2.4.3 Gabbeh ... 50
2.4.4 CrossWeaver .. 52
2.4.5 JavaSketchIt ... 54
2.4.6 FreeForm 2 .. 57
2.4.7 Inkkit... 60
2.4.8 GUI Design Studio... 63
2.4.9 Visio.. 65
2.4.10 stpBA Storyboarding... 67
2.4.11 MockUpScreens .. 69
2.4.12 Axure RP ... 72
2.4.13 GUILayout... 74
2.4.14 EasyPrototype ... 76

2.5 OTHER SKETCH BASED APPLICATIONS... 79

2.5.1 EsQUIse ... 79
2.5.2 SketchRead... 80

2.6 SUMMARY.. 81
2.7 REQUIREMENTS FOR SKETCHIXML.. 82

CHAPTER 3 SKETCHIXML DEVELOPMENT .. 87
3.1 DEVELOPING USER INTERFACES FOR MULTIPLE CONTEXTS OF USE 87

3.1.1 A unifying reference framework for multi-target user interfaces....................... 87
3.1.2 Multi-path UI development: UsiXML.. 89
3.1.3 Concrete User Interface .. 91

3.2 AGENT AND MULTI-AGENT SYSTEMS... 96
3.2.1 Definition ... 96
3.2.2 Multi-agent systems design pattern... 98

3.3 ARCHITECTURAL DESCRIPTION... 100
3.3.1 General architecture.. 101
3.3.2 Shape recognition module ... 103
3.3.3 Shape interpretation module ... 111

3.4 PRESENTATION OF THE APPLICATION.. 118
3.4.1 Parameterize the application .. 118
3.4.2 Elements of the SketchiXML Environment .. 119
3.4.3 Interacting with SketchiXML... 120
3.4.4 Building Widgets.. 121
3.4.5 Editing functions .. 122
3.4.6 Gesture training... 123
3.4.7 Grammar edition.. 125
3.4.8 Level of fidelity... 126
3.4.9 Navigation Editor .. 127
3.4.10 Preview.. 128
3.4.11 UsiXML output.. 129

3.5 CONCLUSION ... 131
CHAPTER 4 A SUPPORT PROTOTYPE FRAMEWORK FOR DEVELOPMENT
METHODOLOGIES... 133

4.1 REFERENCE FRAMEWORK.. 133
4.1.1 High fidelity prototyping ... 134
4.1.2 Medium fidelity prototyping .. 137
4.1.3 Low fidelity prototyping... 139
4.1.4 A prototyping framework... 141

4.2 APPLICATION TO DEVELOPMENT METHODOLOGIES .. 142
4.2.1 The waterfall model ... 147
4.2.2 Spiral model ... 149
4.2.3 Extreme Programming (XP).. 153

4.3 CONCLUSION ... 156
CHAPTER 5 SURVEYS .. 159

5.1 BUILDING A WIDGET CATALOGUE ... 159
5.1.1 Participants.. 160
5.1.2 Methodology .. 160
5.1.3 Results .. 163

5.2 TESTING THE APPLICATION ... 165
5.2.1 Participants.. 165

5.2.2 Methodology .. 165
5.3 EXPERIMENTAL STUDY ON FIDELITY LEVELS .. 173

5.3.1 Participants.. 173
5.3.2 Apparatus and experimental task environment... 174
5.3.3 Methodology .. 175
5.3.4 Results .. 175
5.3.5 Interpretation and discussion .. 177

5.4 EVALUATING THE REPRESENTATIONS ... 178
5.4.1 Widgets Taxonomy: an a priori classification .. 178
5.4.2 Current study objectives .. 180
5.4.3 Methodology .. 181
5.4.4 Results .. 182

5.5 CASE STUDIES.. 190
5.5.1 E-media .. 190
5.5.2 Find a movie .. 201
5.5.3 Designing a wizard .. 208

5.6 USER TESTING LIMITATIONS... 213
5.7 CONCLUSION ... 214

CHAPTER 6 CONCLUSION ... 217
6.1 CONTEXT OF THIS WORK .. 217
6.2 CONTENT OF THIS DISSERTATION... 218
6.3 VALIDATION .. 219

6.3.1 External Validation.. 219
6.3.2 Internal Validation... 220

6.4 CONTRIBUTIONS .. 227
6.5 FUTURE WORK... 228

6.5.1 Extending the coverage of sketching artifacts .. 229
6.5.2 Improving the Text Divider.. 230
6.5.3 Tuning the Recognition Engine more extensively ... 230
6.5.4 Support for Multi-windowing Design.. 230
6.5.5 Augmenting the Support for Design Memory.. 231
6.5.6 Extending to other domains than Computer Science.. 231
6.5.7 Extension of UCWorkBench [Ucwo]: a requirements engineering tool.......... 233
6.5.8 General Improvement of sketching facilities... 235

APPENDIX A - USIXML 1.8 CLASS DIAGRAMS.. 237
APPENDIX B - USIXML COMPLIANT TOOLS... 242
APPENDIX C – WIDGETS CATALOGUE... 251
APPENDIX D – USIXML SPECIFICATION.. 257
APPENDIX E – SKETCHIXML USER GUIDE ... 273
REFERENCES... 291

To my grand-fathers, Bon-papa Louis Lemoine and Dr. Papy Francis Coyette

Acknowledgement

I would like to express my thanks to:

− My advisors, Professor Jean Vanderdonckt and Professor Manuel Kolp,
for their constant support.

− My colleagues from IAG school of management at Université

catholique de Louvain.

− My family and Amélie for their permanent enthusiasm and support.

− Professors Pierre Leclercq, Laurence Nigay and Stéphane Faulkner for
accepting to participate to the jury of this dissertation.

− Professor J.A. Jorge and his team for allowing us to use JavaSketchIt

and the CALI library in our research

− Suzanne Kieffer and Mickaël Nicolay for conducting the surveys and
providing the results.

− My friends.

− The WIST (Wallonie Information Société Technologies) program under

convention n°031/5592 RW REQUEST.

Abstract

Designing the right User Interface (UI) of an Information System the first time is
very unlikely to occur. Instead, UI design is recognized as a process that remains
intrinsically open, iterative, and incomplete. Most designers consider hand sketches on
paper as one of the most effective means to represent the first drafts of a future
UI. This kind of unconstrained approach presents many advantages: sketches can
be drawn at anytime, it is fast to learn and quick to produce, it lets the sketcher
focus on basic structural issues instead of unimportant details, and it encourages
creativity. The idea of developing a computer-based tool for sketching UIs
naturally emerged from these observations. Such a tool would extend the
advantages provided by sketching techniques by: easy creating, deleting, updating
or moving of UI elements, thus encouraging typical activities in the design process
such as exploratory design, checking and revision. In this thesis, we introduce
SketchiXML, a multi-platform interactive application that enable designers and
end users to sketch user interfaces with different levels of fidelity and support for
different contexts of use. The results of the sketching are analyzed to produce
interface specifications independently of any context. These specifications are
exploited to progressively produce one or several interfaces, for several contexts
of use. Moreover, this tool is integrated in a complete prototyping solution that
can provide effective support to most software development methodologies.

 13

Chapter 1 Introduction

Interactive applications are typically composed of two main parts: a functional
core which contains the various semantic functions (or methods) of the
application and the User Interface (UI) which gives access to these functions. If
the first aspect attracted much interest in the past, very little attention was given
to the problem raised by UI development as this part was treated as any other
piece of software. This can be surprising, as a UI seems to be an indispensable
component of any interactive software. It determines how easy a user input data,
navigate among them, and control semantic functions of a software. Thus, a
software equipped with powerful functions but a low quality UI may be under-
exploited or misused. Several figures suggest that the UI part is important:

- The amount of Lines of Code (LOC) for a UI may represent from
50% to 70 % of the total application code [Myer00].

- In a waterfall development life cycle, the time devoted to UI design,

implementation, and evaluation respectively represents 45%, 50%,
37% of the total development time, which gives an average number of
44% of the total time devoted to the UI [Boeh88].

- In an interactive application, the UI is probably the portion which

affects the most the general acceptability of the system by end users
[Niel93].

Given the above importance of UI design, industrial and scientific communities
have dedicated significant effort on the development of new techniques to reduce
the time needed to obtain the right user interface.

Chapter 1 Introduction

 14

As a result, many graphical editors, also called user interface builders, came on the
scene for most of the existing programming and mark-up languages to develop
the final UI faster. Although these tools have been proved to be very efficient for
building a UI, designers were still looking for a precise methodology to guide
them in the steps required to have a UI development life cycle resulting into a
quality UI.

Many researchers working on that topic shared the same source of inspiration to
rationalize the UI development method [Pala97, Unge96, Chat99, Pate00]
primarily the UI design step: Software Engineering (SE). Undoubtedly, SE
presents all the aspects required for a UI development method, as it is recognized
to be structured, principle-based, and relying on explicit design knowledge.

Unfortunately, the attempt to bridge the Human-Computer Interaction (HCI)
discipline and the software engineering domain have raised a set of hardly
manageable difficulties, as the standard approaches for UI development was
mainly empirical, experience-based, and relying on implicit knowledge. Many
attempts for bridging the gap between HCI and SE have been conducted, but still
nobody knows exactly how this should be achieved. Despite huge efforts,
researches have never reached the expected results when trying to bridge both
domains. [Limb05] summarizes some reasons why such a bridge did not produce
the expected results:

 Lack of rigor: The development life cycle of interactive systems found in HCI

does not necessarily involve the same level of rigor that is typically reached in
SE [Brow97]. In addition, HCI development life cycle is estimated to involve
an order of complexity higher than those found in SE since UI development
does not adhere to an algorithmic approach [Wegn97]. Many attempts have
been done to bring formal methods in HCI for this purpose [Pala97].

 Lack of systematization: as SE dreamed of a well-structured methodology for

developing highly complex systems and to prove their correctness, so did HCI
for developing UIs. However, the systematization, and the reproducibility
found in SE methods cannot be transposed straightforwardly in HCI: the
development life cycle remains inherently open, ill-defined, and highly
iterative [Sumn97] as opposed to the domain of SE where it is structured,
well-defined, and progressive [DSou99].

Chapter 1 Introduction

 15

 Lack of a principle-based approach: SE development methods typically define
system development as a series of stages or steps according to well-established
principles such as rigor and formality, scalability, incrementality, separation on
concerns…. In contrast, HCI usually progresses in a more opportunistic way
when the current result is usable enough to proceed to the next stage
[Puer97].

 Lack of explicitness: the knowledge required to properly conduct the UI

development is not as principled as in SE, but also is it implicitly maintained
in the mind of experienced designers. This knowledge is therefore harder to
communicate from one person to another, although initiatives exist that make
this knowledge more explicit through design patterns, usability guidelines, etc.
[Szek96, Pate00]. Even more, when this knowledge is made more explicit,
nothing can guarantee that it is applied uniformly and consistently within the
same development project or across various development projects.

With respect to these issues, it turns out that the research for a new UI
development method that addresses the aforementioned shortcomings was maybe
attacking the problem from the wrong side. Rather than trying to define yet
another method for UI development, it could be more realistic and appropriate to
focus on existing techniques and provide an effective support for these methods
which are already well established in corporate environments. Based on the
existing techniques, attention should be paid on the best manner to get the right
design rather than getting the design right.[Tohi06] Based on this observation, we
try to understand what are the problems really faced during UI design and how
designers manage them.

The first major observations came from Nanard and Nanard [Nana95] when they
reported that the development life cycle of an interactive application consists of a
sophisticated process that does not always proceed linearly in a predefined way.
They present it as an interconnected set of development paths continuously
alternating bottom-up and top-down approaches.

From this consideration, any development method (or methodology) or
development tool is expected to effectively and efficiently support a flexible
development life cycle, which does not lock the mental process of expert
designers in a fixed procedural schema. Additionally, since UI design is likely to
involve moderately experienced designers and end user (e.g., in participatory

Chapter 1 Introduction

 16

design), the method and its supporting tool should enforce a minimum number of
priority constraints.

[Sumn97] and [Luo95] emphasize the observation made by Nanard and Nanard as
they consider the UI development process, as usually conducted in HCI, to be
eminently open. On one hand, several development steps can be conducted or
considered simultaneously, and on the other hand the process is ill-structured as
the initial requirements are often incomplete, ambiguous, with poorly defined
goals and vary depending on multiple variables, among which time is the most
determinant. Unsurprisingly, this process is iterative because conducting any
development step does not produce output which remains definitive. In contrast,
new elements come into play that directly affect the output produced by this
development step, thus requiring the output to be updated by conducting the
development step again, or a sub-step of it. In practice, the most prevailing UI
development method consists of a series of cycles being iterated. This process is
referred to as iterative design [Cons99].

Another crucial and obvious aspect is creativity, which is often claimed by
designers as a key aspect of their role that could not be automated or reproduced
equally [Xiao02]. The authors suggest that the design phase should allow the
designers to concentrate on their creative ideas instead of symbols used to deliver
their thoughts. However, most of the current software used for this purpose
require designers to input graphic components using mouse/keyboard with lots of
toolbar buttons or menu items for selection. This approach based on a predefined
set of objects and commands seems to be contradicting with creative task
performance.

Moreover, the User Centered Design (UCD) paradigm [Cons99] suggests that
new constraints are introduced in the UI development life cycle to support the
participatory design. UCD aims at fostering the participation of users in designing
and evaluating systems, in order to obtain products that suit better to users’
expectations. UCD is important because:

- In a study of 74 interactive software development projects in industry
and academia [Myer02], 87% of interviewed designers and developers
reported a use of UI iterative design.

Chapter 1 Introduction

 17

- Successful interactive software that is commercialized today have
adopted UCD in their development life cycle, thus demonstrating that
it significantly affects the final results.

- UCD engages the user, its activities and its environment in all stages of

an interactive application development. Although user involvement in
the UI development life cycle provides a very valuable input, the end
user may be unable to understand all the method steps and techniques
that will be used to ensure UCD.

With regards to these elements, most designers usually agree that prototyping of
either the interactive application [Boar84] or its UI [Baum96] are activities to be
considered seriously. Prototyping provides a potential answer to most
shortcomings outlined earlier and enables, amongst all, discovering in a short time
the gap between the user’s requirements and the UI specifications or the UI itself
[Snyd02, Plim04, Berk00].

Several types of prototyping tools exist today that achieve different goals. The
rapid prototyping is often recommended to be the easiest way to interact with the
end user. This technique is used to conduct the requirements elicitation from the
end user perspective so as to structure, refine and present them in a convenient
manner [Boar84]. Applied to the UI, it consists in having precise specifications of
what is needed as fast as possible. To this aim, the designer prefers to avoid
coding any UI, and waste time on expensive activity, and focusing on more
affordable means. The primary goal of UI prototyping is therefore to reduce the
cost and risk involved in developing the UI [Szek96, Mccu06]. The solution
adopted should be preferably based on graphical representation, rather than on
abstract specifications, so as to remove any potential barrier between the end user
and the designer.

Among all prototyping techniques, hand sketches on paper turns out to be one of
the most effective ways to represent the first drafts of a future UI [Bail03, Land01,
Newm03, Snyd04, Lim06]. Sketching ideas on paper represents a familiar and
unconstrained approach with many advantages: sketches can be drawn at any
design stage, it is fast to learn and quick to produce, it is easy to modify, it lets the
sketcher focus on basic structural issues instead of secondary details (e.g., exact
alignment, typography, and colors), it is very appropriate to convey ongoing,
unfinished designs, and it encourages creativity, sketches can be performed
collaboratively between designers and end-users.

Chapter 1 Introduction

 18

Furthermore, the end user may herself produce some sketches to initiate the
development process and when the sketch is close enough to the expected UI, an
agreement can be signed between the designer and the end user, thus facilitating
contract and validation. Paper prototyping therefore appears to be a very viable
answer to the requirements gathered earlier, since this approach does not impose
any constraint on the representation and does facilitate the participation of end
users as no complex or rigid semantics are considered.

Creating a low-fidelity UI prototype, such as UI sketches, is at least 10 to 20 times
easier and faster than its equivalent with a high-fidelity prototype (such as
produced in UI builders) [Vand02]. Indeed, low-fidelity UI prototype allows to
dramatically decrease the time and resources needed for completing a
development cycle, which is decomposed into three main stages: design when a
new UI design comes into play, prototype when the new UI design is made
concrete, and evaluate when the concrete prototype is evaluated against user’
requirements (Figure 1-1).

Figure 1-1 A simplistic representation of the spiral development cycle model [Vand02]

Unfortunately, paper prototyping is not the ultimate technique for UI prototyping
as non-negligible drawbacks also exist. For instance, when sketching on paper,
changes are hard to accomplish as the design evolves because of the intrinsic
format of the paper support; the designer has to redraw the common features that
the design retains… But the major drawback seems to be the lack of interaction
between paper-based design and user [Land95]. In order to have a global
overview of the interaction, a designer needs to ”play the computer” (e.g., through
a Wizard of Oz technique) and manipulate several sketches in response to a user's
verbal or gesture actions [Rett94]. Another drawback lies in the way the end users
consider paper sketch: the design process seems to be reduced to a set of small
sketches and thus seems to be too simple and cheap to do anything valuable.

Chapter 1 Introduction

 19

Given these observations, we consider that some improvement could be brought
to the user interface design process. Rather than developing a brand new
methodology we would like to present another approach based on the existing
methodologies.

Consequently, the contents of this dissertation will be twofold:

1. The primary goal of this thesis consists of identifying the tools that are used
for UI rapid prototyping. Indeed, prototypes are frequently used as they
proved to be very helpful and valuable, but it appears that the tools support
is far from being totally adequate. What are the current alternatives for a
designer? To address the difficulty of modifying an existing paper prototype,
prototyping software have introduced editing functions. The idea of
developing a computer-based tool for sketching UIs naturally emerged from
these observations [Hong01, Plim04, Szek96]. Such tools would extend the
advantages provided by sketching techniques by easily creating, deleting,
updating or moving UI elements, thus encouraging typical activities in the
design process [Sumn97] such as checking and revision. Some research
[Plim04, Land95, Caet02] was carried out in order to propose a hybrid
approach, combining the best of the hand-sketching and computer assisted
interface design. Despite these efforts, all the solutions provided do not
appear as promising as wished: most of the tool tend to address one of the
issue usually faced with current approaches but none of the tool propose a
general solution that could be efficiently applied to existing methodologies.
For instance, one tool may propose a very good compromise between paper
prototype and computer assisted design in term of sketching, but once the
sketch is completed someone has to code the UI in a programming language
since the output is just a static picture. Other tools offer the possibility to
instantly generate the corresponding code in Java or other language, but do
no support the scenario editing [Plim04, Caet02]. Therefore, we will detail
the drawbacks that were identified on existing prototyping tools and
requirements to be met for a more suitable prototype based application will
be listed. Based on this requirements list, with a tool for UI rapid
prototyping, named SketchiXML, will be discussed

2. The second goal consists in proposing a way to integrate the UCD and

prototyping in existing methodologies. Nowadays, UI development
methodologies and software development methodologies are flourishing:
iterative design, user centered design, iterative user centered design… the

Chapter 1 Introduction

 20

purpose of this document is to integrate, in the latest methodologies, the
systematic use of prototyping as a mean of requirements gathering and
participatory design between the major stakeholders of the development.
Rather than starting the development process from the top with a high level
description of the application, we consider that the opposite approach is
more relevant. Describing the application at a high level, involve the use of
specific notations, tools, concepts hardly understandable for end users. Most
of them do not know anything about the applications they are frequently
using. How many end users wonder what programming language was used
to develop the application they are using? I may be wrong, but I would not
bet on a large percentage. So, questioning the end user on high level
functionalities only is maybe inadequate since it requires a level of
abstraction that is not familiar to everybody. Providing comments on an
application in term of presentation is much more natural to most of the
computer user. Everybody can make comments on a user interface and
evaluate its usability, without the precise terms used by specialists or with
solid argumentation.

1.1 Thesis

The following sub-sections describe the contents of this thesis. Firstly we provide
a description of the thesis statement. Then, we explain how the validity of this
thesis will be assessed. Lastly, the scope of this work is defined.

1.1.1 Thesis statement

This thesis demonstrates how designers could interact more efficiently with end
users using low fidelity communication mean. The thesis proposes a new concrete
approach, part of a complete prototyping framework, to support the current
methodologies thanks to a better integration of the prototyping techniques.

This dissertation favors the use of low fidelity prototype as a communication
means between the end users and the designers. Throughout this document, a
better integration of the prototyping techniques and the current UI methodologies
and software development will be recommended. To this end, the aforementioned
shortcomings related to prototyping tool and methodologies will be discussed and
two contributions will be achieved:

Chapter 1 Introduction

 21

1. A sketching tool for user interface prototyping. SketchiXML aimed at

solving all shortcomings identified in the existing tools into a single tool,
allowing the designer to sketch the user interfaces as easily as on paper. In
addition, the output generated is independent of any programming
language as it generates UI specifications written in UsiXML (User
Interface eXtensible Markup Language – http://www.usixml.org)
[Limb05]), a platform-independent User Interface Description Language
(UIDL) that will be exploited to produce code for one or several UIs, for
one or many contexts of use simultaneously. Moreover, this tool is the
only prototyping tool allowing smooth switching between several levels of
fidelity.

2. Add-in to existing methodologies: the goal of this thesis is not to

propose yet another new methodology; instead we propose to integrate
the low fidelity prototyping based on SketchiXML in the existing
methodologies. Thanks to the functionalities of the application, the time
needed between the different iterations can be drastically reduced. Indeed
moving from the low fidelity prototype to a runnable version is very fast.

1.1.2 Validation

Two kinds of validation are provided to assess the validity of this thesis:

First, the external validation will test the performance of the application in real
situation on a large number of users of any types. To this end, several survey were
conducted during this thesis in order to evaluate the performance of the
application and to improve the drawbacks that were identified during this tests.

Second, the internal validation of the tool consists in assessing its characteristics
against a set of selected criteria. The relevant criteria or requirement, for our tools
are elicited after the state of the art of Chapter 2.

1.1.3 Scope

The scope of this thesis is delineated by the following hypotheses:

 The first hypothesis of this dissertation is to primarily cover the early
design of graphical user interfaces. Indeed, UIs are an essential part of any
application as they nearly always used in recent application. Moreover, we

Chapter 1 Introduction

 22

aim at covering UI prototyping for multiple contexts of use; the context of
use is defined as a triple of the form (E, P, U) where E is an envisioned or
existing environment considered for a software system, P is any
computing platform, and U is a user stereotype [Thev01]. This is
consistent with the observation that the number of context of use is really
exploding these days.

 The second hypothesis of this dissertation focuses on a specific kind of

software i.e., information systems. An information systems(IS) is “a means of
recording and communicating information to satisfy the requirements of
all users, the business activities they are engaged in and the objectives
established for them”. Such computer based system represent the majority
of the entire set of systems, its proportion is estimated around 70%
[Olle88]. IS deals with the practical and theoretical problems of providing
information to an organisation and its members using computer systems,
thus a video game cannot be considered as an IS.

 This dissertation predominantly targets the research community and to

people involved in web design and early prototyping. Indeed, web
designers are the ones that are likely to use prototype the most frequently.

1.2 Reading Map

In addition to the introduction and the conclusion, this dissertation is organized in
five chapters.

Chapter 2 first we explore the different types of prototype and the different
development paths for prototyping. Based on the literature on prototyping, we
extend the theoretical framework with a set of new concepts and we propose a
reference framework for prototyping. Then, we report on some significant work
related to the paradigm of user centered design and early prototyping tools. Based
on a presented evaluation grid, we survey in this chapter 14 different approaches
and try to identify and compare their conceptual content along with their design
process. For each tool, a set of advantages and shortcomings will be identified so
as to be used to establish a list of requirements to be addressed. This requirements
list will help us to assess the appropriateness of our solution.

Chapter 1 Introduction

 23

Chapter 3 presents the technical aspects of SketchiXML. The multi agent
architecture for shape recognition is presented, and the different libraries used for
this purpose are detailed. This chapter also introduces the USIXML (USer
Interface eXtensible Markup Language) language, a user interface specification
language allowing describing user interfaces independently of any computing
platforms or modalities. Many tools and other particularities of this language are
also presented in this chapter. The last concept presented in this chapter is the
agent paradigm. Indeed, SketchiXML is a based on a multi-agent system providing
support for the shape recognition and interpretation. For this purpose with
introduce the paradigm and a set of design patterns used for multi-agent system
development.

The gesture recognition algorithm that was designed especially for SketchiXML is
also thoroughly explained, initially designed for signature recognition, this
algorithm was enhanced to match SketchiXML specific requirements. The shape
interpretation process is also presented with a special attention to the grammar
edition module, allowing to specify custom representation for the widgets. This
part of the application takes also advantage of the multi-agent technology,
allowing to provide real time interpretation of complex shapes combination.
Following the technical presentation of the tool, we provide an extensive
presentation of SketchiXML based on a set of captures.

Chapter 4 shows how this tool could be integrated to existing methodologies.
Based on the prototyping reference framework described in chapter 2, we
propose a set of UsiXML tools supporting this approach. Based on this
framework, we provide a set of recommendations to be applied when using this
prototyping framework with traditional methodologies. This chapter is concluded
with examples of well known methodologies extended with the prototyping
framework.

Chapter 5 presents all the tests that were carried out during this work. The
purposes of these tests were headed to validate the approach proposed thanks to
usability tests and performances benchmarks. Additionally, a test phase was
conducted to evaluate the performances of the user with regards to the type of
representation used (fidelity level). In order to give a better understanding of
SketchiXML and validates the general diverse case studies are illustrated for
different context of use and different development path. Amongst all, the first
case study illustrated consists in the e-commerce web site development that will
be used in the state of the art presented in Chapter 2.

Chapter 1 Introduction

 24

Chapter 6 concludes by discussing the appropriateness of the solution proposed in
this dissertation and addressing the validity of this work. Our contributions are
summarized and some ideas for future work and extensions are proposed.

Figure 1-2. Thesis reading map

Chapter 1
Introduction

Chapter 2
State of the art

Chapter 3
SketchiXML Design

Chapter 4
Methodologies

Chapter 5
Surveys

Chapter 6
Conclusion

 25

Chapter 2 State of the art

As stated in the introduction, several tools are already available for UI computer
assisted design. The following section introduces the different alternatives existing
in computer-aided sketching tool. All of the tools and techniques presented are
based on the same case study: e-media, a web site selling digital media, books and
more. This chapter is divided into six subsections.

Section 1 introduces the different kinds of prototypes; we detail the prototyping
paths that can be considered for user interface prototyping and the level of
fidelity.

The second subsection introduces the comparison grid defined for comparing
tools providing support for UI prototyping. This grid contains a set of basic
information such as the author name, required libraries…etc and all the relevant
criteria that should be considered when comparing such applications.

In order to highlight the differences between computer assisted design tools and
non-computer assisted design alternative, we explain first what we define as the
classical approaches. These approaches mainly based on pens, pencils, paper, glue,
scissors, post-it… are described through the second subsection.

The fourth subsections present the prototyping tools, each tool is described with a
short description, a set of captures to present the tool itself and the output
generated and eventually we conclude with a short summary of the main
advantages and drawbacks of this tool. All the tools presented in this section
address the UI prototyping process, thus high fidelity editor such as Borland
JBuilder, Macromedia Dreamweaver or .net framework are not presented as they
are only aimed at building concrete UI.

Chapter 2 State of the Art in Informal Design

 26

The fifth subsections briefly introduces a set of tools not directly linked with early
prototyping of user interface, but addressing issues directly or indirectly linked to
our domain of interest.

Finally, we conclude this chapter with a general summary of the previous
subsections. We structure all the data gathered in the previous subsection into a
single and shortest grid. Based on the previous analysis we elicit the requirements
that should be met by the new prototyping tool.

2.1 Prototyping

The difference between prototyping and mock-ups in the literature does not
appear straightforward. Therefore, the following definition is adopted.

A prototype is a model of the system delivered in the medium of the system. For
example, a web site prototype would be delivered as a web site, using the standard
web protocols, so that it could be interacted with in the same medium as the
project's product. Prototypes do not have to be fully functioning; they merely
have to be illustrative of what the product should look and feel like [Clem99].

In contrast, we consider a mock-up as a UI representation delivered in a medium
that is different from the system. A web site mock-up might be a paper-based
representation of how the pages should look like. Another web site mock-up
could be a representation drawn collaboratively on a white board.

Apart from the medium, the difference between a mock-up and a prototype is
difficult to characterize. Indeed prototyping can be divided into several levels of
granularity, ranging from low-fidelity to high-fidelity. The definition of a low-
fidelity prototype is interpreted similarly to the description of a mock-up.
Therefore, the mock-up and low-fidelity prototype concepts will be used
indifferently to define the early prototyping phase, and (late-) prototype to define
a running prototype of the application.

The following subsections introduce a set of concepts related to the prototyping.
The first subsection covers the level of fidelity associated to a prototype. Based on
this description, prototyping in various development paths, which are not
necessarily linear, could be analyzed.. The second subsection briefly defines the
different kinds of prototype while the third subsection examines a standard

Chapter 2 State of the Art in Informal Design

 27

approach for prototyping development. The two remaining subsections detail the
scope of the prototype and the prototype executability: a concern of high
importance.

2.1.1 Levels of fidelity

The low-fidelity (Lo-Fi) prototype is a limited function and limited interaction
prototype. They are constructed to depict concepts, design alternatives, and
screen layouts rather than to model the user interaction with the system. The most
standard approaches for Lo-Fi prototyping are the “paper and pencil technique”,
the “whiteboard/blackboard and post-it approach” [Vand02]. Such approaches
provide access to all the components, and prevent the designer from being
distracted from the primary task of design. This type of prototyping lets you
iterate through an entire cycle of design, prototype, and evaluate in less than a day
[Rett94].

The medium-fidelity (Me-Fi) prototype consists in building a UI mock-up giving
importance to the content, but keeping secondary all the information regarding
the typography, color scheme or others minor details. A typical example is
Microsoft Visio [Micr07] where only the type, the size and the contents of UI
widgets can be specified graphically. Medium fidelity prototypes are a good
compromise when a mockup representation is required.

The high-fidelity (Hi-Fi) prototype is a set of screens that provide a dynamic,
computerized, working model of the planned system. High fidelity prototyping
tools are thus equipped with a wide range of editing functions for all UI widgets:
erase, undo, move, specify physical attributes, etc… This kind of software allows
the designer to build a complete GUI from which is produced an accurate image
(e.g., Adobe Photoshop, PowerPoint) or the code in a determined programming
language (e.g., Visual Basic, DreamWeaver).

A low level of fidelity is applicable during the early stage of the development life
cycle of an interactive application, especially when the specifications of the user
interface are still unknown, incomplete and still need to be discovered. Under
these conditions, the purpose is mainly to explore the design alternatives without
going into details. As this step is repeated frequently, it must stay light in term of
time and money.

Oppositely, a highest fidelity level is more appropriate for the late stage of
development. Either, the domain is sufficiently understood and mastered so as to

Chapter 2 State of the Art in Informal Design

 28

propose a user interface sufficiently close to the expected final user interface; or
the repeated iteration of the prototype have permitted to identify the relevant
aspect to integrate in the final result. The purpose is then to refine the current
prototype until we obtain the final user interface as finalized as possible.
Consequently the cost and production time is higher.

 Low Medium High

Content Mainly presentation Presentation, content,
basic navigation

Presentation, navigation, content,
layout, functionalities

Use, discovery Exploration, evocation,
communication, discovery

Simulation, refinement,
iteration, improvement,
usability validation, user
testing

Final specifications,
documentation, marketing,
propagation to the application

Type of prototype Horizontal Diagonal Vertical
Cost Low Average High
Time Low Average High
Approach Bottom-up Middle-out Top-down
Naturalness Very high Average Low
Detail level Low Average high
Iteration frequency Very high Average Low

Appearance
Sketchy
Little visual detail

- Simple
- medium level of detail,
close to the appearance of
the Final UI

-Definitive, refined
- Look and Feel of final UI

Advantages

- Low development cost
- Short production time
- Easy communication
- Basic drawing skills
needed

- Medium development
cost
- Average production time
- May involve some basic
graphical aspects as
specified in style guide:
labels, icons,…
- Limited drawing skills
- Understandable for end
user

- Fully interactive
- Serves for usability testing
- Supports user-centered design
- Serves for prototype validation
and contract
- Attractive for end users
- Code generation

Shortcomings

- Is facilitator-driven
- Limited for usability
tests
-Limited support of
navigational aspects
- Low attractiveness for
end users
- No code generation

- Is Facilitator-driven
- Limited for usability
tests
- Medium support of
navigational aspects
- No code generation

- High development cost
- High production time
- Advanced drawing and
specification skills needed
- Very inflexible with respect to
changing requirements

Table 2-1 Summary of the different levels of fidelity

Chapter 2 State of the Art in Informal Design

 29

Figure 2-1 Prototype development paths

The prototype at a high level of fidelity may be consecutive to a lower fidelity
prototype but not necessary (Fig. 2-1). All the development paths for prototyping
are possible in theory [Vand06] with any initial point and any ending point. In
principle the prototype can be initiated from any level of fidelity as long is
corresponds to the end user needs and it can end at any level. Practically, we
mostly observe development paths starting from low fidelity to a high fidelity in
order to support an iterative and progressive prototype. The iteration can occur at
any level, but as the level of fidelity increase simultaneously with the time needed
to build the prototype, the number of iteration should decrease. Also, there is no
need to go through all the levels, depending of the type of user interface to be
built some paths will be more appropriate.

2.1.2 Prototyping development paths

The prototypes differ according to their levels of realism. A horizontal prototype
only presents the visible part of the software: the windows or the home page for a
web site. It allows conducting a perception test. Then, the main functionalities of
the application are developed in a vertical prototype in order to run user tests.
Based on these two notions, a new development path for prototype that is
diagonal is introduced: it alternates between horizontal and vertical prototyping.

An interactive application can be divided into three layers: the UI, the abstraction
and control layer and the functional kernel. This kind of architecture can be found
in the typical MVC (model – view – controller) [Beck87] or PAC (presentation –
abstraction – controller) patterns [Cout87].

High fidelity
prototype

Medium fidelity
prototype

Low fidelity
prototype

Chapter 2 State of the Art in Informal Design

 30

Nielsen distinguishes two levels of prototyping according to the level of
interaction provided by the prototype [Mack93]. These two levels are presented d
hereunder, and are extended with other alternative for prototyping path:

a. Horizontal

The horizontal prototype is the 'surface interface'. Software functionalities are
not working, but it allows achieving a perception test. It can even be a sketch
on paper. It is a prototype that models many features but with little details. It
can be seen as a horizontal slice of a system structure chart from the top
down to a specific depth.

Figure 2-2 Illustration of the horizontal and vertical prototyping process

Such prototype allows conducting the perception test consisting in evaluating
the ease of understanding the interface. The windows are shown to the user.
Without letting him using the mouse, the observer is asking the user to explain
how he understands the information displayed and which sort of behavior is
expected. This first stage allows to check the local behavior of the interface
and to identify the critical points where usability problems are likely to appear.
Such technique is thus very helpful in the first stages of the design, since it
allows to quickly collect relevant information. The purpose is to test the
overall interaction metaphor, so includes common functions that the user is
expected to perform frequently. We will try to prototype as many
functionalities of the application through its user interface.

b. Vertical

A vertical prototype implements a consistent set of functionalities in
order to allow the user to achieve a typical use of scenario. Some of
these functionalities could be simulated. It can be seen as a vertical

View (HCI)

Controller

Model

Interactive
application

Vertical prototype Horizontal prototype

Chapter 2 State of the Art in Informal Design

 31

slice of a system structure chart from top to bottom. Obviously, such
approach appears to be more useful in the later design stages.
This second stage of the prototyping phase consists in a series of user
tests details of the design during which the critical points previously
raised are evaluated.
User testing allows to identify usability problems and to analyze their
cause with the users. Solutions are elaborated and implemented in the
following version of the prototype which will be the subject of a new
series of tests and so on.

c. Diagonal

Unfortunately, things are not always that clear. When developing a
project, attention must be given to the past experience of the designer.
Indeed the designer might be used to build some functionalities
(functionalities already developed in other projects previously) while
other are completely unknown (impossible to reuse past development,
no system like this exist, …). Under these specific conditions, it seems
natural to consider other alternatives combining both approaches in
what we would call a “diagonal prototype” [Vand06]. In this kind of
prototype all the functionalities that are already well mastered are
developed with vertical prototype while the functionalities that are not
mastered are submitted to a horizontal prototyping phase. By doing
so, the advantages of both approaches can be coupled without to
suffer from the drawbacks. In this situation, the propagation of the
prototype is called “expensive” as the prototype can spread in all
directions. That is the reason why the medium fidelity prototype
seems more appropriate for diagonal prototyping while a low level of
fidelity is most suitable for a bottom-up approach and a high fidelity
prototype is more adequate with a top-down approach.

Figure 2-3 Illustration of the diagonal prototyping process

View (HCI)

Controller

Model

Interactive
application

Diagonal prototype

Chapter 2 State of the Art in Informal Design

 32

d. Specific to user interface

We can pursue de description with a decomposition of the human-
computer interface layer in three parts: the presentation, the local
navigation and the global navigation. Local navigation refers to the
internal navigation of a UI, i.e. actions performed on components
that change the content of the UI. Global navigation refers to the
navigation from one UI to another. Based on this new splitting, new
paths can be considered. The most frequent situation consists in
initiating the prototyping of the user interface with the easiest part,
the most visual and the more natural for the end user: the
presentation of the information. This kind of prototype is called a
presentation prototype (2.1.3.d). Figure 2-4 shows a larger cover of
the presentation phase that reflects the important role given to the
presentation aspect of the user interface in this prototype.

Figure 2-4 Presentation prototype first

Less frequently, the prototype process is initiated from the global
navigation. In such perspective, the designer elaborates an
architecture of interaction units or information specified with their
goals and linked together with regards to the informational needs of
the end users. As the global navigation evolve, attention can be
dedicated to the presentation of the interaction unit and some
elements of the local navigation can be defined. Figure 2-5 illustrates
such process; it appears that most of the efforts are concentrated on
the global navigation, then the presentation and eventually the local
navigation.

Controller

Model

Interactive
application

Presentation prototype first

Presentation Global
Navigation

Local
Navigation

Chapter 2 State of the Art in Informal Design

 33

Figure 2-5. Global navigation prototype first

Finally, a third alternative consist in starting the prototype with the
local navigation aspect. In this case, the end user specifies the
interaction he desires with the particular interaction units, i.e. specify
the order of a sequence of dialog in a wizard. Once the local
navigation is defined, this information is imported in the
presentation prototype and eventually the process closes on the
definition of the major elements of the global navigation. This
development path is presented on Figure 2-6

Figure 2-6 Local navigation prototype first

2.1.3 Prototyping types

Another aspect of interest of the prototyping relies in its type. Indeed, software
prototyping appears to have many variants even if some are considered more
frequently than other. Among the 6 types of prototyping approaches presented in
this subsection, the first three approaches corresponds to the Floyd classification
known as the 3E model that is widely accepted and used [Floy84]. This model
classifies the three main approaches generally considered for prototyping.

a. Throwaway Prototyping (Exploratory)

Throwaway or Rapid Prototyping is the most easily understood
prototyping method. After preliminary requirements gathering is

Controller

Model

Interactive
application

Local navigation prototype

Presentation Global
Navigation

Local
Navigation

Controller

Model

Interactive
application

Global navigation prototype

Presentation Global
Navigation

Local
Navigation

Chapter 2 State of the Art in Informal Design

 34

accomplished, a simple working model of the system is constructed
to visually show the users what their requirements may look like
when they are implemented into a finished system. Such a prototype
can be used to clarify project goals, to examine alternative designs, or
to investigate a large and complex system. It results in discussions of
what should be achieved by a task and how it can be supported with
the current techniques.

Rapid Prototyping involves creating a working model of various
parts of the system at a very early stage, after a relatively short
investigation. The method used in building it is usually quite
informal, the most important factor being the speed with which the
model is provided. The model then becomes the starting point from
which users can re-examine their expectations and clarify their
requirements. When this has been achieved, the prototype model is
'thrown away', and the system is formally developed based on the
identified requirements.

Throwaway prototyping are not necessary low fidelity prototype
even if the paper prototyping seems to be the most natural approach
for building throwaway prototype. A method to easily build high
fidelity throwaway prototypes is to use a GUI Builder and create a
click dummy, that means a prototype that looks like the target
system, but does not provide any functionality.

Developing such prototype consists naturally in developing a
horizontal prototype as no functional aspect needs to be developed
at this stage.

b. Evolutionary Prototyping

Evolutionary Prototyping is quite different from Throwaway
Prototyping. The main goal when using Evolutionary Prototyping is
to build a very robust prototype in a structured manner and
constantly refine it. "The reason for this is that the Evolutionary
prototype, when built, forms the heart of the new system, and the
improvements and further requirements will be built on to it"
[Crin91].

Chapter 2 State of the Art in Informal Design

 35

When developing a system using Evolutionary Prototyping, the
system is continually refined and rebuilt. "…evolutionary
prototyping acknowledges that we do not understand all the
requirements and builds only those that are well
understood"[Davi92]. This technique allows the development team
to add features, or make changes that could not be conceived during
the requirements and design phase. But in order to capture the first
requirements, the use of low fidelity makes sense. These two
approaches appear thus to be complementary since they do not
focus on the same issues.

Such prototype can be considered as a diagonal prototyping, all the
aspects of the applications will be developed incrementally. User
interface and functionalities development will alternate along the
process.

c. Functional prototypes (Experimental)

Functional prototypes implement strategically important parts of
both the user interface and the functionality of a planned
application. Contrary to the presentation prototype, this kind of
prototype is mainly vertical, even if some user interface development
need to be done in order to address the issue of interest. So,
functional prototype could considered either as diagonal prototype
or vertical prototype depending on the importance of the user
interface in the issue addressed.

d. Presentation prototypes

Presentation prototypes are built to illustrate how an application
may solve given requirements. As they are often used as part of the
project proposal, they are strongly focused on the user interface.
Naturally, this kind of prototype is always a horizontal prototype.

e. Breadboards

Breadboards serve to investigate technical aspects such has system
architecture or system functionality of a planned application. They

Chapter 2 State of the Art in Informal Design

 36

are built to investigate certain aspect of special risk. They are not
intended to be evaluated by end users. Similarly to the functional
prototype, this kind of prototype is mainly vertical.

f. Pilot systems

Pilot systems are very mature prototype which can be practically
applied.

In addition to this classification, prototype can also be classified according to
other criteria such as the scope associated to the prototype. Even if this aspect is
implicitly present in the previous definitions, a clear definition is proposed in next
subsection.

2.1.4 Scope of prototyping

a. Local

A prototype of a single usability-critical system component

• a vertical prototype that is focused on one feature
• useful at some specific stage of the design process

b. Global

 prototype of the entire system
• an expanded horizontal prototype that models a

greater number of features and covers multiple levels
of the system's structure chart

• useful throughout the design process

2.1.5 Prototype executability

Will the prototype be runnable and, if so, what does that mean? Indeed several
types of interaction techniques between the prototype and the users exist. Here
are the five alternatives usually considered.

a. Chauffeured prototype

This kind of prototype"runnable" in the very loose sense that the
prototype allows a walkthrough to be performed. Typically, the

Chapter 2 State of the Art in Informal Design

 37

designer walks through with the user and manually demonstrates
how the interface would respond to user actions. For example, the
user might say "I'd click this button", and the designer would pull
out a dialog box on paper that would appear. The advantage of a
chauffeured prototype is that not all pieces need to be assembled
but interactivity can still be tested; the designer can spontaneously
create any missing pieces based on what the user needs in any
given scenario.

b. Animation prototype

This kind of technique is “runnable” in the loose sense that it is
executed frame by frame in "slide show" mode on a computer.
For instance a designer designing a web site using Microsoft
PowerPoint, obtain a set of slides for each user interface and the
possible transition between the user interfaces. Then, Microsoft
PowerPoint permit to emulate the navigation between the screens,
even if the user interfaces are just empty shells.

Figure 2-7 Illustration of the wizard of oz experiment, the user test the application when a designer

(wizard on the picture) emulates the interaction of the application

c. Wizard of Oz

A wizard of Oz prototype is "runnable" in the sense that it
executes in "slide show" mode but allows a third party, hidden
from view that is pulling the levers and flipping the switches. The
wizard of oz technique in user testing has a user interacting with
an interface without knowing that the responses are being
generated by a human, not a computer. This allows testing of
some difficult interface concepts before a system is fully working.

Chapter 2 State of the Art in Informal Design

 38

For example, in a search system, a user may type in a query, and an
expert behind the scenes rewrites the query in a formal syntax or
hand-selects search results. This allows you to test theories in
query formulation and filtering of results. Similarly, the wizard of
oz technique is popular in testing natural language interfaces
where, for instance, the choice of what syntax to support in the
system is driven by what syntax users actually use during the tests.

d. Interactive prototype

This is a runnable prototype in the strict sense that it executes on
the computer and responds to user input in real time but do not
perform any computations. It corresponds to the horizontal
prototype, only the visible layer is developed.

e. Functional prototype

This is a runnable in the very strict sense that it executes on the
computer, responds to live input, and performs some of the
expected computations.

Thought this section we have presented most of the prototyping alternatives;
depending of the goal pursued, the prototyping choice appears thus of high
importance. These concepts will be useful for the understanding of this thesis, as
the prototyping aspects are very redundant.

2.2 Analysis grid

The analysis grid is divided into six main categories:

1. The tool identification section contains all the relevant information on the tool
such as its name, url, manufacturer…

2. Install and first use section contains all the information related to the

installation of the tools. What are the hardware and software requirements
to run the application correctly…

Chapter 2 State of the Art in Informal Design

 39

3. The general functions section details the general functionalities such as the
export functionalities, the code generation, the possibility to describe the
navigational aspects…

4. Shape recognition and shape interpretation section are related to the previous

category. If the previous category identifies shapes recognition and
interpretation, then these categories provide information on the process to
be applied for this purpose.

5. The UI editor section describes the UI editor in terms of functionalities, the

editing function, handwriting capabilities, layout mechanism… are listed in
this last category.

Tool Name Tool name
Tested Version Version x.x
Last Version Version x.x
Company Name Company name
Brief description Brief description
URL www.sketchtool.org To

ol
 Id

en
tif

ica
tio

n

Licensing Open source or not / type of license

Required libraries List of required libraries
Required software List of required software
Recommended
hardware

List of recommended input/output devices, minimum processing
power

In
st

all
 a

nd
 F

irs
t

U
se

Install time None = that the software is provided with an auto-install procedure
Shape recognition Yes or no
Shape interpretation Interpret shape with respect to a specific context
Code or specification
generators VB, java, XHTML, C#

Level of fidelity High, average, low

Navigation editor Enables to specify navigation walkthrough corresponding to different
scenarios

Preview Is it possible to switch to a run mode or a simulation
Pattern manager Stores template description

To
ol

 fu
nc

tio
ns

Usability adviser Criticize the usability while sketching the UI
Shape recognition
library Cali, Rubine’s algorithm...

Type of shapes Rectangle, diamond, ellipse, circle, line, arrow, cross,…

Flexibility of
recognition

Multiple stroke shapes and single stroke shapes. Closed forms or open
forms. Dashed lines. Rotated shapes.

Sh
ap

e
re

co
gn

iti
on

Performance We propose two metrics: accuracy and average recognition time

pe

in
te rp
r

et
at Conceptual coverage Concrete presentation (widgets), navigation links

Chapter 2 State of the Art in Informal Design

 40

Number of recognized
elements (widgets) Absolute number of recognized widgets

Interpretation
mechanism Grammar, Bayesian grammar, not known

Process type Batch mode= shapes are interpreted in sets after a certain time, run-
time mode = shapes are interpreted directly

Disambiguation
mechanism

Contextualized (takes into account surrounding elements), non-
contextualized. A contextualized disambiguation enables the possibility
of having elements composed of multiple shapes

Extensibility of
interpretation
mechanism

Some tools allow the extension of the exiting interpretation mechanism

User adaptive grammar Choice of a grammar depending on user preferences
Interaction style Pen-based, property sheets

Layout Absolute coordinates, relative coordinates, embedded boxes
mechanism

Granularity Multi-window/frame, Mono-window/frame, .
Zooming Possibility to zoom
Hand writing
recognition Does the tool support handwriting recognition

Editing functions Does the tool support a wide set of editing functions such as copy,
paste, move

Colors User defined or fixed
Assistance Contextualized help, manual,…

U
I

E
d

it
or

Language Mono or Multi-language

Table 2-2 Evaluation grid for early design tools

2.3 Classical approaches

As the two approach depicted in the following section are very similar, the
evaluation grid is only applied to the first alternative as the results are almost the
same for the two approaches considered hereunder. Indeed, the main difference
between these two approaches lies in the re-use of pre-constructed component. In
the same way, we do not detail the white board approach as it is very similar to
the two methods presented in the following subsection.

2.3.1 The Paper prototyping

[Snyd02] presents paper prototyping as a useful method of usability testing for
Web sites, Web applications, and conventional software. The main principles are
the following:

Chapter 2 State of the Art in Informal Design

 41

• You first decide on the tasks that you'd like the user to accomplish.

• Next, you make screen shots and/or hand-sketched drafts of the

windows, menus, dialog boxes, pages, popup messages, etc. that are
needed to perform those tasks.

• Then you conduct a usability test by having one or two developers play

the role of "computer," manipulating the pieces of paper to simulate how
the interface would behave. Users are given realistic tasks to perform by
interacting directly with the prototype -- they "click" by touching the
prototype buttons or links and "type" by writing their data in the
prototype's edit fields. (Using transparency or removable tape prevents the
prototype from being written on directly.)

Figure 2-8 An example of paper prototype

A facilitator (usually someone trained in usability) conducts the session while
other members of the development team observe and take notes. The “computer”
does not explain how the interface is supposed to work, but merely simulates
what the interface would do. In this manner, you can identify which parts of the
interface are self-explanatory and which parts are confusing.

Chapter 2 State of the Art in Informal Design

 42

In addition to the relative complexity associated to the run-mode, paper
prototyping also shows a set of drawbacks such as the difficulty to accomplish
changes or the need to redraw the common features that the design retains.

a. Advantages:

 Support for scenario-based design
 Inexpensive
 Few constraints on widget representation
 Very natural
 No preparation required
 No prerequisite knowledge needed

b. Shortcomings:

 No shape recognition and interpretation, thus loosing the effort
 No code generation
 No preview mode
 “Run-mode” need several persons
 After several iteration on the same sheet of paper a deterioration of the

support might occur
 Sketching not scalable, difficult to have a global overview of UIs
 Changes hard to accomplish

c. Tool Specifications

Tool Name Paper prototyping

Tested Version -

Last Version -

Company Name -

Brief description Prototype the future interfaces on paper

URL http://www.snyderconsulting.net To
ol

 Id
en

tif
ica

tio
n

Licensing Free

Required libraries Not applicable

Required software Not applicable

Recommended hardware Not applicable

In
st

all
 a

nd
 F

irs
t

U
se

Install time Not applicable

l fu
n

ct
io Shape recognition no

Chapter 2 State of the Art in Informal Design

 43

Shape interpretation no

Code or specification
generators

no

Level of fidelity no

Navigation editor Yes

Preview Mimics a run mode

Pattern manager no

Usability adviser no

Interaction style Pen

Layout
Absolute coordinates, relative coordinates (embedded boxes

mechanism)

Granularity Multi-window/frame, Mono-window/frame, .

Zooming Not applicable

Hand writing recognition Not applicable

Editing functions Yes

Colors Gum

Assistance Free

U
I

E
d

it
or

Language Not applicable

Table 2-3 Evaluation grid for paper prototyping

2.3.2 Tiny fingers prototyping

The tiny fingers method presented in [Rett94] use of simple materials and
equipment in order to create a paper-based simulation of an interface or system.
Paper prototypes provide a valuable and cost-effective means to evaluate and
iterate design options before a team gets committed to one implementation.
Interface elements such as menus, windows, dialogues and icons can be sketched
on paper or created in advance using card, acetate, pens etc.

When the paper prototype has been prepared a member of the design team sits
before a user and ‘plays the computer’ by moving interface elements around in
response to the user’s actions. The user makes selections and activates interface
elements by using their finger as a mouse and writing ‘typed’ input. A further
person facilitates the session by providing task instructions and encouraging the
user to express their thoughts and impressions. [Rett94]

Chapter 2 State of the Art in Informal Design

 44

Figure 2-9 An example of UI build with the tiny fingers method

a. Advantages:

 Support for scenario-based design
 Inexpensive
 Few constraints on widget representation
 Very natural

b. Shortcomings:

 No shape recognition and interpretation, thus loosing the effort
 No code generation
 No preview mode
 Need to build all the widget in a first phase, even if a kit is available on the

web.
 Difficulty to change the size of the pre-constructed widgets, explosion of

the number of widget required.
 Difficulty to have a global overview for large set of UI

Chapter 2 State of the Art in Informal Design

 45

 Might become messy as number of paper increase very fast
 Not scalable
 “Run-mode” need several persons

2.4 UI Sketching Applications

Throughout this chapter we introduce a set of computer-based tools for sketching
UIs naturally. As explained in the introduction, the need for this kind of
application emerged from the observations elicited in Chapter 1.1. Such tools
would add on top of the advantages provided by sketching techniques a wide
range of advantages: easily creating, deleting, updating or moving UI elements,
thus encouraging checking and revision, typical activities in the design process.

2.4.1 Silk

Silk (Figure 3-5) presented in [Land96] is a UNIX application based on a gesture
library and a gesture recognition, based on the Rubine’s Algorithm, system that
allows the designer to draw predefined widgets (typically, GUI widgets) and apply
command by gesture on these widgets. Silk is also, able to interpret shapes in
order to obtain a widget representation. It does so partially or totally. That is: if
the designer wants to preserve the initial sketching, it is possible to cancel the
interpretation and leaves the drawing as it is.

If the designer wants to recognize the shape, it can be transformed into its
corresponding widget. Silk is also equipped with storyboarding capabilities: by
drawing arrows, the designer can express mini-scenarios like: “if the end user
clicks on this button, she will go to that window”, “if the end user selects this
radio button, it will affect that push button”. Once recognized, Silk automatically
generates a UNIX resource file containing the definition of the UI. If some
objects or shapes have not been recognized, they are left out.

As this tool is not available anymore, Figure 2-10 shows an example that was
proposed by the creator. Oppositely, the following tools are all based on the same
case study.

Chapter 2 State of the Art in Informal Design

 46

F
Figure 2-10 An example of UIs build Silk

a. Advantages:

 Support for scenario-based design
 Several levels of granularity
 Good documentation
 Gesture Library for sketch editing
 Mature product, based on experimental testing
 Zooming facility from local design (e.g. a web page) to a global design

(e.g., a portion of a web site or n entire web site)
 Storyboarding facilities based on patterns
 Widgets Recognition
 Presentation close to the final user interface, but not runnable

b. Shortcomings:

 No code generation
 No preview mode
 Only dedicated to web sites

Chapter 2 State of the Art in Informal Design

 47

c. Grid

Tool Name Silk

Tested Version 1.0

Last Version Version 1.0

Company Name Carnegie Mellon University

Contact Person James Landay

Brief description -

URL
http://www.cs.berkeley.edu/~landay/research/publications/SILK_CH

I/jal1bdy.html

To
ol

 Id
en

tif
ica

tio
n

Licensing No

Required libraries None

Required software Unix, OSF/Motif

Recommended hardware Pointing device

In
st

all
 a

nd
 F

irs
t

U
se

Install time None

Shape recognition Yes

Shape interpretation Yes

Code or specification generators Yes

Level of fidelity low

Navigation editor Yes

Preview Yes

Pattern manager No

To
ol

 fu
nc

tio
ns

Usability adviser No

Shape recognition library Grammar

Type of shapes Circles, squares, rectangles.

Flexibility of recognition Low, due to Rubine’s Algorithm limitations Sh
ap

e
re

co
gn

iti
on

Performance No estimated

Conceptual coverage Widgets

Number of recognized elements
(widgets)

10

Interpretation mechanism Grammar

Process type Unknown

Disambiguation mechanism Not contextualized

Extensibility of interpretation
mechanism

Possibility to extend gesture library Sh
ap

e
in

te
rp

re
ta

tio
n

User adaptive grammar Yes

Interaction style Pen-based

Layout -

U
I

E
d

it
or

Granularity Multi-window/frame, .

Chapter 2 State of the Art in Informal Design

 48

Zooming Yes

Hand writing recognition No

Editing functions Yes

Colors Yes

Assistance User defined

Language No

Table 2-4 Silk Specifications

2.4.2 Denim

Denim [Lin2000, Land01] is the successor of Silk in its main principles, except for
stroke recognition based on gestures. It is thus an informal pen-based system that
helps web site designers in the early stages of design. It allows designers to
quickly sketch web pages, view them at different levels of detail, create links
among them, and interact with them in a run mode.

Denim supports sketching input with very little sketch recognition and allows
design at different refinement levels, and unifies the levels through zooming.

Note that the last version of Denim (v 2.0 Beta ver8) tool proposes, in addition to
sketching, a toolbox containing a set of generic widget representations as it can be
seen on picture 2-11.

a. Advantages:

 Support for scenario-based design
 Several levels of granularity
 Good documentation
 Toolbox of generic widgets
 Mature product, based on experimental testing
 Zooming facility from local design (e.g. a web page) to a global design

(e.g., a portion of a web site or n entire web site)
 Storyboarding facilities based on patterns

b. Shortcomings:

 No shape recognition and interpretation, thus loosing the effort
 No code generation
 No preview mode
 Only dedicated to web sites

Chapter 2 State of the Art in Informal Design

 49

Figure 2-11 An example of UI build with Denim

c. Tool Specifications

Tool Name Denim

Tested Version 1.1

Last Version Version 2.0 Beta ver 8

Company Name University of Berkley

Contact Person James Lin

Brief description -

URL http://guir.cs.berkeley.edu/projects/denim/

To
ol

 Id
en

tif
ica

tio
n

Licensing No

Required libraries None

Required software Java 1.4.1_02

Recommended hardware Pointing device

In
st

all
 a

nd
 F

irs
t

U
se

Install time None

Shape recognition little

Shape interpretation little

Code or specification
generators

No

To
ol

 fu
nc

tio
ns

Level of fidelity No

Chapter 2 State of the Art in Informal Design

 50

Navigation editor Yes

Preview Yes

Pattern manager
Yes, possibility to store user defined shapes and re-use them across

projects.

Usability adviser No

Interaction style Pen-based

Layout
Free

Granularity Multi-window/frame, .

Zooming Yes

Hand writing recognition No

Editing functions Well defined editing functions

Colors User defined

Assistance Yes (documentation, help files)

U
I

E
d

it
or

Language English

Table 2-5 Denim Specifications

2.4.3 Gabbeh

Gabbeh [Nagh04, Nagh05] is a prototype tool that extends the capabilities of
existing tools by supporting dialogues between different designers, or between
designers and other stakeholders. Gabbeh is an extension to Denim that allows
different stakeholders to add arbitrary annotations in the form of comments either
when the model is being designed or when the model is being executed.
Comments can be associated with any arbitrary number of design components,
such as panels, labels, texts and scribbles. Moreover, comments are given a
background color to allow development teams to distinguish between different
types of comments, or perhaps between comments from different speakers.

Gabbeh allows end-users to view and add comments while they are reviewing the
design in ‘run mode’. This functionality is intended to allow end-users to give
feedback through the prototyping medium.

a. Advantages:

 Support for scenario-based design
 Support for annotations
 Several levels of granularity
 Good documentation

Chapter 2 State of the Art in Informal Design

 51

 Toolbox of generic widgets
 Mature product, based on experimental testing
 Zooming facility from local design (e.g. a web page) to a global design
 Storyboarding facilities based on patterns

b. Shortcomings:

 No shape recognition and interpretation, thus loosing the effort
 No code generation
 No preview mode
 Only dedicated to web sites

Figure 2-12 An example of UI build with Gabbeh

c. Tool Specifications

Tool Name Gabbeh

Tested Version 1

To
ol

Id

en
tif

ica
tio

n

Last Version 1

Chapter 2 State of the Art in Informal Design

 52

Company Name Sheffield Hallam University

Contact Person Amir M Naghsh

URL http://extra.shu.ac.uk/paperchaste/gabbeh-hci04.htm

Licensing No

Required libraries None

Required software Java 1.4.1_02

Recommended hardware Pointing device

In
st

all
 a

nd
 F

irs
t

U
se

Install time None

Shape recognition little

Shape interpretation little

Code or specification
generators

No

Level of fidelity No

Navigation editor
Yes

Preview Yes

Pattern manager
Yes, possibility to store user defined shapes and re-use them across

projects.

To
ol

 fu
nc

tio
ns

Usability adviser No

Interaction style Pen-based

Layout Free

Granularity Multi-window/frame, .

Zooming Yes

Hand writing recognition No

Editing functions Well defined editing functions

Colors User defined

Assistance Yes (documentation, help files)

U
I

E
d

it
or

Language English

Table 2-6 Gabbeh Specifications

2.4.4 CrossWeaver

CrossWeaver [Sinh03] is a tool aimed at helping designers to prototype
multimodal and multi-device user interfaces. This tool relies on the same
paradigm than denim and prone the use of informal prototypes and to create a
working prototype from these sketches. This prototypes can run across multiple
standalone devices simultaneously, processing multimodal input from each one.
CrossWeaver captures all of the user interaction when running a test of a
prototype. This input log can quickly be viewed for the details of the users’

Chapter 2 State of the Art in Informal Design

 53

multimodal interaction, and it can be replayed across all participating devices,
giving the designer information to help him or her iterate the interface design.

For each individual UI, the designer can specify navigation based on multiple
modalities, also, the designer can specify region of interaction and apply specific
behavior to multimodal action done on these particular region.

Figure 2-12 An example of UI build with CrossWeaver

a. Advantages:

 Support for scenario-based design
 Mature product, based on experimental testing
 Run mode
 Storyboarding allowing to specify multi-modal naviagation

b. Shortcomings:

 No shape recognition and interpretation, thus loosing the effort
 No code generation
 Only dedicated to web sites
 Editing functions could be improved, erasing should be easier
 No zooming facilities

Chapter 2 State of the Art in Informal Design

 54

c. Tool Specifications

Tool Name CrossWeaver

Tested Version 1

Last Version 1

Company Name University of Berkley

Contact Person Anoop Sinha, James Landay

URL http://guir.berkeley.edu/projects/crossweaver/ To
ol

 Id
en

tif
ica

tio
n

Licensing No

Required libraries None

Required software Java 1.4.1_02

Recommended hardware Pointing device

In
st

all
 a

nd
 F

irs
t

U
se

Install time None

Shape recognition No

Shape interpretation No

Code or specification generators No

Level of fidelity low

Navigation editor
Yes

Preview Yes

Pattern manager No

To
ol

 fu
nc

tio
ns

Usability adviser No

Interaction style Pen-based

Layout Free

Granularity Single window

Zooming No

Hand writing recognition No

Editing functions No zoom, delete uneasy

Colors User defined

Assistance Yes (documentation, help files)

U
I

E
d

it
or

Language English

Table 2-7 CrossWeaver Specifications

2.4.5 JavaSketchIt

JavaSketchIt [Caet02] is a tool allowing UI prototyping by sketching the UI in a
pen-based interaction style. JavaSketchIT is a visual approach to layout static
components of UIsas hand-drawn compositions of simple geometric shapes,

Chapter 2 State of the Art in Informal Design

 55

based on sketch recognition. The sketch recognition process is done thanks to the
Cali library[Fons02]. This library is able to identify shapes of different sizes,
rotated at arbitrary angles, drawn with dashed, continuous strokes or overlapping
lines, and use fuzzy logic to associate degrees of certainty to recognized shapes to
overcome uncertainty and imprecision in shape sketches

Figure 2-13 An example of UI build with JavaSketchIt

[Caet02] have defined a visual grammar using drawing data from target users,
where they tried to figure out how people sketch interfaces and what
combinations of shapes are more commonly used to define widgets. From these
they built a grammar and implemented a prototype, JavaSketchIt, which allows
creating UIsthrough hand-drawn geometric shapes, identified by a gesture
recognizer.

This prototype generates a Java interface, whose layout can be beautified using an
a posteriori set of grammar rules (e.g. to align and group objects). Unfortunately,
the layout used for the java UI is based on absolute coordinates.

a. Advantages:

 Performance (speed and accuracy)
 Multi-stroke gestures
 Recognizes rotated shapes

Chapter 2 State of the Art in Informal Design

 56

 Computationally light
 Open source
 Requires standard and freely available libraries
 Extensible shape interpretation grammar

b. Shortcomings:

 Mono-window
 No scenario editor
 Only generates java (and no UI spec)
 Limited widget set
 Shape interpretation can only take as input a construct made of a

maximum of two vectorial shapes
 No zoom

c. Tool Specification

Tool Name JavaSketchIt 1.0

Tested Version 1.0

Last Version 1.0

Company Name Instituto Technico Lisboa / INESC

Contact Person Joachim A. Jorge

Brief description -

URL http://immi.inesc.pt/project_page.php?project_id=21

To
ol

 Id
en

tif
ica

tio
n

Licensing Yes, GNU licence

Required libraries Based on the Cali library (provided with the tool)

Required software JavaSketchIT, Java Run Time Environment.

Recommended
hardware

Tablet PC, pointing device. minimum PII 300Mhz

In
st

all
 a

nd
 F

irs
t

U
se

Install time None

Shape recognition Yes

Shape interpretation Yes

Code or specification
generators

Java AWT + beautification (widgets are laid out elegantly at code

generation)

Level of fidelity No

Navigation editor No

Preview Yes

Pattern manager No

To
ol

 fu
nc

tio
ns

Usability adviser No

Chapter 2 State of the Art in Informal Design

 57

Shape recognition
library

Fuzzy logic (Cali libraries)

Type of shapes
Rectangle, triangle, diamond, ellipse, circle, line, arrow, cross, V, wavy line

(low oscillation movement), delete (high oscillation movement)

Flexibility of
recognition

Closed forms, open forms, dashed lines , rotated shapes

Sh
ap

e
re

co
gn

iti
on

Performance

Accuracy: 92%

Average recognition time: less than 50 ms (using

A Pentium II @ 233 MHz)

Conceptual coverage Widgets

Number of
recognized elements
(widgets)

10

Interpretation
mechanism

Explicit grammar

Process type Real time

Disambiguation
mechanism

Contextualized

Extensibility of
interpretation
mechanism

Yes

Sh
ap

e
in

te
rp

re
ta

tio
n

User adaptive
grammar

No

Interaction style Pen-based

Layout Absolute coordinates

Granularity Mono-window/frame, .

Zooming No

Hand writing
recognition

No

Editing functions Well defined

Colors Fixed

Assistance None

U
I

E
d

it
or

Language Mono (English)

Table 2-7 JavaSketchIt Specifications

2.4.6 FreeForm 2

FreeForm2 [Plim02, Plim04] provides a pen-based interactive environment for
drawing UI forms and then interacting with the design while it is rendered as a
sketch. Freeform runs as a Visual Basic 6 add-in and can interpret sketched shapes
and convert these shapes into a VB forms. FreeForm uses a single stroke
recognizer and then a rule base and dictionary for combining simple strokes into

Chapter 2 State of the Art in Informal Design

 58

Visual Basic widgets and words. The rule base also includes beautification size
constraints. In addition to size, widgets are aligned on to a grid and grouped
appropriately. Even if Freeform is integrated to Visual Basic consider it as a single
tool and do not take all the possibilities of Visual Basic into account.

Figure 2-14 An example of UI build with free form

a. Advantages:

 Performance (speed and accuracy)
 Scenario editor
 Multi-windows
 Handwriting recognition (but not very precise)
 Possibility to specify navigation

b. Shortcomings:

 Only works with VB6
 Mono-stroke shapes

Chapter 2 State of the Art in Informal Design

 59

 No rotated shapes
 Limited widget set
 Not open source
 Shape interpretation can only take as input a construct made of a

maximum of two vectorial shapes
 No zooming possibilities

c. Tool Specification

Tool Name FreeForm 2
Tested Version 2.0
Last Version 2.0
Company Name University of Oakland
Contact Person Beryl Plimmer
URL http://www.cs.auckland.ac.nz/~beryl/ To

ol
 Id

en
tif

ica
tio

n

Licensing No
Required libraries Free Form libraries
Required software Visual Basic 6
Recommended
hardware Tablet PC, pointing device

In
st

all
 a

nd
 F

irs
t

U
se

Install time None
Shape recognition Yes
Shape interpretation Yes
Code or specification
generators Visual Basic 6

Level of fidelity No
Navigation editor Yes
Preview Yes
Pattern manager No

To
ol

 fu
nc

tio
ns

Usability adviser No
Shape recognition
library Rubine’s algorithm

Type of shapes
Not listed exhaustively. Rectangle, triangle, diamond, ellipse, circle, line,
arrow, cross, V, wavy line (low oscillation movement), delete (high
oscillation movement)

Flexibility of
recognition Single stroke shapes, no support for rotated shapes

Sh
ap

e
re

co
gn

iti
on

Performance Accuracy: 90%
Average recognition time: not estimated

Conceptual coverage Widgets + Navigation

Number of recognized
elements (widgets) 10 with a maximum of two strokes/widget

Sh
ap

e
in

te
rp

re
ta

tio
n

Interpretation
mechanism Implicit grammar

Chapter 2 State of the Art in Informal Design

 60

Process type Batch
Disambiguation
mechanism Contextualized (only for grouping radio buttons together)

Extensibility of
interpretation
mechanism

No information

User adaptive
grammar No

Interaction style Pen-based
Layout Absolute coordinates
Granularity Multi-window/frame
Zooming No
Hand writing
recognition

Yes (but limited, it recognizes lowercase characters formed with a single
stroke)

Editing functions Well defined
Colors Fixed
Assistance None

U
I

E
d

it
or

Language Mono (English)

Table 2-8 FreeForm Specifications

2.4.7 Inkkit

InkKit [Plim07], the successor of Freeform, is a sketch toolkit designed to
support diagramming across a wide range of domains. It consists of two main
components: UI and a customizable recognition engine. The UI has two main
views: sketch pages and portfolios. On a sketch page the user can draw and write
much as they would on a piece of paper, yet supported by usual computer editing
functionality. The portfolio is a place where a collection of sketches is displayed
and links can be used to establish relationships between sketches.

The main interest of InkKit is its recognition engine. Advanced recognition
techniques mean that users can draw and write on a page without having to
change modes. Recognition of a particular type of diagram is achieved by creating
a diagram domain and providing a few hand-drawn examples of the different
types of diagrams components. Software add-ins can be written to convert the
recognized sketch to another format or support intelligent interaction with the
sketch.
Unfortunately, we had some difficulties to test this application as the pre-beta
version we received was still bugged: we did not manage to install this easily, and
many editing function did not act as they were supposed to. However, based on
what we have read and seen so far, the next versions should be promising.

Chapter 2 State of the Art in Informal Design

 61

Figure 2-15 An example of UI build with InkKit

Even if based on the Rubine’s algorithm, InkKit is able to recognize multi-stroke
gestures. We interpreting the sketch, InkKit tries to group the strokes together in
order to build more complex shape. Obviously, a lot of combinations have to be
tested and it takes a lot of time. Real time recognition is thus incompatible with
the approach adopted.

a. Advantages:

 Performance (speed and accuracy)
 Scenario editor
 Multi-windows
 Handwriting recognition
 Multi-strokes gesture recognizer
 Extendable

Chapter 2 State of the Art in Informal Design

 62

b. Shortcomings:

 No rotated shapes (use of Rubine’s algorithm)
 Extendable (require manual coding)
 Current version bugged, makes it difficult to install and use
 Recognition slow (many shapes combinations are tested)

c. Tool Specification

Tool Name InkKit

Tested Version 1

Last Version 1

Company Name University of Oakland

Contact Person Beryl Plimmer

URL http://www.cs.auckland.ac.nz/~beryl/ To
ol

 Id
en

tif
ica

tio
n

Licensing No

Required libraries Microsoft Handwriting recognition pack 1.7

Required software Microsoft .net

Recommended hardware Tablet PC, pointing device

In
st

all
 a

nd
 F

irs
t

U
se

Install time
Some libraries to install, installation was

straightforward

Shape recognition Yes

Shape interpretation Yes

Code or specification generators Java, HTML…

Level of fidelity Low

Navigation editor Yes

Preview (rendering)

Pattern manager No

To
ol

 fu
nc

tio
ns

Usability adviser No

Shape recognition library Rubine’s algorithm

Type of shapes User defined

Flexibility of recognition
Multiple-strokes shapes, no support for rotated

shapes

Sh
ap

e
re

co
gn

iti
on

Performance not estimated

Conceptual coverage Widgets + Navigation

Number of recognized elements (widgets)
User defined (require manual coding for

extension) Sh
ap

e
in

te
rp

re
ta

tio
n

Interpretation mechanism Implicit grammar

Chapter 2 State of the Art in Informal Design

 63

Process type Batch

Disambiguation mechanism Contextualized

Extensibility of interpretation mechanism No information

User adaptive grammar No

Interaction style Pen-based

Layout Absolute coordinates

Granularity Multi-window/frame

Zooming No

Hand writing recognition Yes (based on Microsoft recognition pack)

Editing functions Well defined

Colors Fixed

Assistance None

U
I

E
d

it
or

Language Mono (English)

Table 2-9 InkKit Specifications

2.4.8 GUI Design Studio

GUI Design Studio [Car] is a graphical UI design tool for Microsoft Windows
that you can use to rapidly create demonstration prototypes without any coding or
scripting.

It permits to draw individual screens, windows and components using standard
elements, connect them together to storyboard operational workflow then run the
simulator to test your designs.

This commercial product is very mature as many version of the application were
released in the past. The result provided consist in a medium fidelity output,
many aspect of the UI can be represented, while only a small subset of attributes
can be defined to each components.

a. Advantages:

 Automatic detection of the type of the prototype being built
 Easy integration with other office tools such as Microsoft Excel, data can

be copied and pasted from one tool to the other very easily.
 Preview mode very convenient, conditions can be provided in order to

test different alternatives.
 Easy to edit the properties of each of the elements present on the user

interface. Interaction done via properties sheet.

Chapter 2 State of the Art in Informal Design

 64

 Possibility to align elements easily

b. Shortcomings:

 No code generation
 Few widgets for web page creation
 Expensive

Figure 2-16 An example of UI build with GUI Design Studio

c. Tool Specification

Tool Name GUI Design Studio
Tested Version 2.2.59.0
Last Version 2.2.59.0
Company Name Caretta Software Ltd

Contact Person

Caretta Software Ltd
74 Meadow View Road
Kennington
Oxford
OX1 5QX
United Kingdom

To
ol

 Id
en

tif
ica

tio
n

URL http://www.carettasoftware.com/

Chapter 2 State of the Art in Informal Design

 65

Licensing $497
Required libraries none
Required software Microsoft Windows XP/NT/2000
Recommended hardware Small configuration

In
st

all
 a

nd

Fi
rs

t
U

se

Install time fast
Shape recognition none
Shape interpretation none
Code or specification generators none
Level of fidelity High
Navigation editor Yes
Preview Yes
Pattern manager no

To
ol

 fu
nc

tio
ns

Usability adviser No
Interaction style Mouse
Layout Absolute coordinates
Granularity Zooming functions
Zooming yes
Hand writing recognition None
Editing functions Complete coverage
Colors User defined
Assistance None

U
I

E
d

it
or

Language English

Table 2-10 GUI Design Studio Specifications

2.4.9 Visio

Microsoft Visio [Micr07] is diagramming software for Microsoft Windows. It uses
vector graphics to create diagrams and cover a wide set of different diagrams. As
an example, Visio permits to build UML diagrams, but also to build medium
fidelity mock up for user interfaces. In order to build the UI, the designer drag
and drop the components needed and specify the attributes of each of the
components.

Microsoft Visio, alike other Microsoft products, is well developed and very user
friendly. Its usage is very similar to the other Microsoft tools and makes it easy to
use. In addition to the basic functionalities that are understood by most of the end
users, the designer has also the opportunity to use advanced features in order to
simulate navigation for instance. This can be done thanks to the use of VBA
language supported by Microsoft Visio.

Chapter 2 State of the Art in Informal Design

 66

Figure 2-17 An example of UI build with Microsoft Visio

a. Advantages:

 Very mature product
 User friendly
 Good documentation
 Possibility to build several UIs simultaneously
 Possibility to add dynamic behavior with macro
 A new editor for a specific domain can be developed easily
 Easy to develop new plug-in

b. Shortcomings:

 No preview of the current work
 Navigation cannot be easily specified
 Expensive

Chapter 2 State of the Art in Informal Design

 67

c. Tool Specification

Tool Name Microsoft Visio 2007
Tested Version Visio 2007
Last Version Visio 2007
Company Name Microsoft Corporation

Contact Person

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399
USA

URL http://office.microsoft.com/en-
us/visio/HA101656401033.aspx

To
ol

 Id
en

tif
ica

tio
n

Licensing
Required libraries none
Required software Microsoft Windows

Recommended hardware 500 megahertz (MHz) processor or higher and 256
megabyte (MB) RAM or higher

In
st

all
 a

nd
 F

irs
t

U
se

Install time Low
Shape recognition none
Shape interpretation none
Code or specification generators none
Level of fidelity medium
Navigation editor none
Preview none
Pattern manager Can be added

To
ol

 fu
nc

tio
ns

Usability adviser no
Interaction style Mouse / keyboard
Layout Absolute coordinates
Granularity multi windows
Zooming Well supported
Hand writing recognition Not applicable (keyboard)
Editing functions Well defined
Colors User defined
Assistance Forums, online help…

U
I

E
d

it
or

Language Many languages proposed
Table 2-11 Microsoft Visio Specifications

2.4.10 stpBA Storyboarding

stpBA Storyboarding [StpBA] is a Microsoft Visio based requirements tool to
capture and visually validate requirements with users through GUI storyboarding.
The tool can be used standalone or integrated with stpsoft Quew, IBM Rational
RequisitePro or Borland CaliberRM. In addition to the functionality of Microsoft
Visio present before, such as easy UI prototyping, stpBA Storyboarding permits
to build GUI storyboards so as to help end users to visualize how an application
will behave.

Chapter 2 State of the Art in Informal Design

 68

Figure 2-18 An example of UI build with stpBA StoryBoarding

stpBA Storyboarding generates screen flow diagrams, functional specifications
and test scripts. Any changes to the storyboard are synchronized with the
documentation. The tool is said to generate XHTML output, but in practice this
output is only used for the run mode as the output generated is a web page
containing a single picture of the prototype. Thus, this tool does not provide any
export facilities as the output produced can only be used to validate global
navigation between the UIs prototyped.

a. Advantages:

 Benefit from advantages of Microsoft Visio
 Good documentation
 Support for navigation
 Automatic generation of the documentation
 Export to several formats

b. Shortcomings:

 Export (fake html - not reusable export)
 No real code generation
 Run mode

Chapter 2 State of the Art in Informal Design

 69

 The version proposed (tested on several computers) is bugged, impossible
to specify a behavior between screens

 Cost, require both Microsoft Visio and stpBA Storyboarding

c. Tool Specification

Tool Name stpBA Storyboarding
Tested Version -
Last Version -
Company Name stpSoft

Contact Person

stpsoft Limited
17 - 21 George Street
Croydon
Surrey
United Kingdom

URL http://www.stpsoft.co.uk/story/index.html

To
ol

 Id
en

tif
ica

tio
n

Licensing $ 495
Required libraries none
Required software Microsoft Windows + Microsoft Visio

Recommended hardware 500 megahertz (MHz) processor or higher and 256
megabyte (MB) RAM or higher In

st
all

 a
nd

Fi

rs
t

U
se

Install time Low
Shape recognition none
Shape interpretation none
Code or specification generators Word, « XHTML », Excel
Level of fidelity medium
Navigation editor none
Preview none
Pattern manager Can be added To

ol
 fu

nc
tio

ns

Usability adviser no
Interaction style Mouse / keyboard
Layout Absolute coordinates
Granularity multi windows
Zooming Well supported
Hand writing recognition Not applicable (keyboard)
Editing functions Well defined
Colors User defined
Assistance online help…

U
I E

di
to

r

Language English
Table 2-12 stpBA StoryBoarding Specifications

2.4.11 MockUpScreens

MockUpScreens [Mock] is a wireframe editor that permits the designer to sketch
screen mockups and organize them in scenarios. Next, MockUpScreens lets the
designer experiment interactively with the end users, and quickly visualize
scenarios of the application.

Chapter 2 State of the Art in Informal Design

 70

Figure 2-19 An example of UI build with MockupScreens

Through the use of a simple graphical interface, the designers define common
screen elements such as buttons, fields, tables, etc. and populate them with data.
For web-pages, elements are available such as a web-browser toolbar, links and
predefined dummy images. Users can copy and reuse the existing screens,
transform screens to and from web pages, move them among scenarios and use
predefined templates.

As a result, the designer can choose to export a single screen, scenario or whole
project to images for presentation, printing, embedding in documents or similar.
Mock-ups purposefully avoid the possibility of being mistaken for the real
application screens, but on the other hand there is no reusable output. The html
produced only consist in a single picture based web page.

Chapter 2 State of the Art in Informal Design

 71

MockUpScreens integrates very useful and original feature that was not found in
other UI prototyping tools so far, it permits to associate element to several pages
simultaneously. Then, changes on the common part of the UI is reflected to the
whole set.

a. Advantages:

 Easy to discover and to use
 Fast to install, does not require an heavy configuration
 Possibility to transform a widget into another. Designer does not have to

remove the first widget before drawing the new one.
 All changes are tracked, so the designer can restore its work to a previous

state
 Possibility to annotate the design

b. Shortcomings:

 Widgets cannot be combined together (no groupbox, only text in a
table…)

 Table are hard to use
 No export mode (only “fake xtml”)
 Some bugs in the UI when resizing the main window
 Difficulties to position widget when dropping them of the window (always

appears in top of the interface)
 Simulation consist in a simple slide show, no interaction

c. Tool Specification

Tool Name Mockupscreens
Tested Version 3.9
Last Version 3.9
Company Name Igor Ješe

Contact Person
Brief description

Igor Ješe
B.Magovca 30
10000 Zagreb
CROATIA
igor@mockupscreens.com
igor@jeseonline.com

URL http://www.mockupscreens.com/

To
ol

 Id
en

tif
ica

tio
n

Licensing 79$
Required libraries none

In
st

all

an
d

Fi
rs

t
U

se

Required software Win98/ME/2000/XP

Chapter 2 State of the Art in Informal Design

 72

Recommended hardware Small configuration
Install time Small, automatic
Shape recognition None
Shape interpretation None
Code or specification generators None
Level of fidelity Medium
Navigation editor Yes
Preview Yes
Pattern manager No

To
ol

 fu
nc

tio
ns

Usability adviser No
Interaction style Mouse – keyboard
Layout Absolute coordinate
Granularity One single UI at a time
Zooming yes
Hand writing recognition No (keyboard input)

Editing functions Good coverage

Colors User defined
Assistance

U
I

E
d

it
or

Language English

Table 2-13 MockUpScreens Specifications

2.4.12 Axure RP

Axure RP [Axur] is a prototyping tool that enables application designers to create
wireframes, flow diagrams, prototypes, and specifications for applications and
web sites. The approach proposed by this tool is thus very similar to several of the
tools described earlier with MockUpScreens.

The UIs or diagrams are build using a drag and drop approach, while few
attributes of the elements can be specified. Axure RP permit to specify more
details than MockUpScreens, but far less than Microsoft Visio that permit to
specify almost all the attributes that can be associated to a component.

Alike other similar tool, Axure RP permits to specify the global navigation, but it
is the only one that supports the local navigation specification. Based on the
prototypes, the designer can test the application with the end user thanks to a run
mode (export mode). Axure RP covers html code generation, but the code
generated cannot be reused since it only consists in a large picture and a set
interactive components.

Chapter 2 State of the Art in Informal Design

 73

Figure 2-20 An example of UI build with Axure RP

a. Advantages:

 Mature commercial products
 Good documentation
 Support for global and local navigation
 Automatic generation of the documentation
 Export to several formats
 Custom widgets support
 Easy integration with other tools (easy copy from a table from access to

the tool)

b. Shortcomings:

 Export (not reusable export)
 Run mode
 Expensive

Chapter 2 State of the Art in Informal Design

 74

c. Tool Specification

Tool Name Axure RP Pro

Tested Version 4.4.0.741
Last Version 4.4.0.741
Company Name Axure software solutions, Inc

Contact Person
Axure Software Solutions, Inc.
2667 Camino Del Rio South, Suite 208
San Diego, CA 92108
contactus@axure.com

URL http://www.axure.com/

To
ol

 Id
en

tif
ica

tio
n

Licensing $589

Required libraries None

Required software Microsoft Windows XP/NT/2000

Recommended hardware At least 128 Mb memory recommended

In
st

all
 a

nd
 F

irs
t

U
se

Install time fast

Shape recognition none

Shape interpretation none

Code or specification generators Html, Microsoft Word file, csv file

Level of fidelity high

Navigation editor yes

Preview Run-mode

Pattern manager No

To
ol

 fu
nc

tio
ns

Usability adviser no

Interaction style Mouse / keyboard

Layout Absolute coordinates

Granularity Multi windows

Zooming Well supported

Hand writing recognition No

Editing functions Well defined

Colors User defined

Assistance Online and mail

U
I

E
d

it
or

Language English

Table 2-14 Axure RP Specifications

2.4.13 GUILayout

GUILayout [Blan04] consists in a Java application allowing the designer to draw
screens and screen areas, containing other types of regions. This tool is very
similar to MockUpScreens, the main difference being the level of granularity of

Chapter 2 State of the Art in Informal Design

 75

the output produced. In GUILayout, each region is assigned to an information
type: image, text, title, logo, link, form, navigation, and workspace (e.g., an editor).
Oppositely, MockUpScreens permit to specify the UI deeper into details.
Moreover, this tool does not provide any support for the navigation.

However, this simple application is very easy to use and permit to produces rough
CSS sheets as output or a PhotoShop image.

Figure 2-21 An example of UI build with GUILayout

a. Advantages:

 Free
 Easy to use
 Generate html as output

b. Shortcomings:

 Does not produce any re-usable output

c. Tool Specification

Tool Name GUI Layout
Tested Version 1.0 To

ol

Id
en

tif
ica

ti
on

Last Version 1.0

Chapter 2 State of the Art in Informal Design

 76

Company Name University of Applied Sciences in Furtwangen
Contact Person Kai Blankenhorn

URL http://www.bitfolge.de/pubs/thesis/
Licensing -
Required libraries Java web start
Required software Java 1.4.2
Recommended hardware Small configuration

In
st

all
 a

nd

Fi
rs

t
U

se

Install time Very fast
Shape recognition none
Shape interpretation none
Code or specification generators Xhtml and psd
Level of fidelity low
Navigation editor yes
Preview Based on xhtml generation
Pattern manager No

To
ol

 fu
nc

tio
ns

Usability adviser Ni
Interaction style Mouse / keyboard
Layout absolute

Granularity Zooming from a single screen to complete
overview

Zooming yes
Hand writing recognition No

Editing functions No undo/ redo but other editing functionalities
are present

Colors default
Assistance No

U
I

E
d

it
or

Language English
Table 2-15 GUILayout Specifications

2.4.14 EasyPrototype

The main principle in EasyPrototype [Easy] consists in letting designers assemble
existing paper sketches, whiteboard photos or screenshots into dynamic HTML
simulations. The idea is thus to create a UI prototype with some dynamic
behavior, but not one that can possibly be mistaken for finished software, and
then use it as a tool to drive to agreement with clients and other stakeholders on a
project. Similarly to some of the tools presented earlier, EasyPrototype makes it
very simple to get a quick storyboard but doesn't include any extra features.

The workflow consists in acquiring pictures of your user interface, saved as JPG,
GIF, or BMP. These might be screenshots of Photoshop or Visio mockups,
drawings done in Paint, or scans or digital photos of sketches done paper. As we
stated earlier, the main drawback associated to paper prototype lied in its

Chapter 2 State of the Art in Informal Design

 77

interactivity, this tool propose thus to solve this major drawback easily. A simple
point-and-click interface lets you add tags each screen, a tag is associated to a
description, a name, and can trigger a transition from one page to another. Once
the tagging phase is completed, you can convert the project into interactive
HTML, and optionally build a RTF document describing everything with
screenshots.

Figure 2-22 An example of UI build with EasyPrototype

a. Advantages:

 Cheap
 Simple solution to the lack of interaction of other tools
 Run-mode in html well developed

b. Shortcomings:

 Limited interest (only navigation)
 Impossible to modify the UI, need to use external tool
 No facilities to acquire paper scan easily

Chapter 2 State of the Art in Informal Design

 78

c. Tool Specification

Tool Name EasyPrototype

Tested Version 1.5

Last Version 1.5

Company Name ExtremePlanner Software

Contact Person

ExtremePlanner Software

9811 Kika Court

San Diego, CA 92129

URL http://www.extremeplanner.com

To
ol

 Id
en

tif
ica

tio
n

Licensing 70$

Required libraries None

Required software Drawing tool or pictures acquisition software

Recommended hardware Small configuration

In
st

all
 a

nd
 F

irs
t

U
se

Install time Low

Shape recognition None

Shape interpretation None

Code or specification generators None

Level of fidelity Any

Navigation editor Yes, only real functionality

Preview Yes (run mode in mode)

Pattern manager No

To
ol

 fu
nc

tio
ns

Usability adviser No

Interaction style Mouse / keyboard

Layout n.a.

Granularity n.a.

Zooming No

Hand writing recognition n.a.

Editing functions Yes, but not really useful

Colors n.a.

Assistance n.a.

U
I

E
d

it
or

Language English

Table 2-16 EasyPrototype Specifications

Chapter 2 State of the Art in Informal Design

 79

2.5 Other Sketch Based Applications

This subsection introduces a set of tools that are not directly linked to the UI
prototyping. However, these tools are presented in this section as they address
issues and concepts that have a significant interest for this thesis.

2.5.1 EsQUIse

EsQUIsE [http://www.lema.ulg.ac.be/tools/esquise/] is an interpretative tool for
free-hand sketches to support early architectural design. As depicted on fig 3.15,
the EsQUIse environment uses pen computer technologies, an electronic pen and
a digital tablet-screen, featuring the virtual blank sheet [Juch04]

Figure 2-23 The EsQUIse environment and a description of the general system operations

EsQUIsE allows the user to graphically describe an architectural plan and to enter
the main elements without describing them. Keyboard is never used. No relation
is given. No detailed property is feed. Thought, the internal representation of the
architectural model knows all the semantic, topological and geometric information
to feed classical evaluators of the architectural production.

The working principle of the tool consists in composing the spatial semantic
representation of the architectural project in order to feed a computer
architectural design environment.

Chapter 2 State of the Art in Informal Design

 80

EsQUIsE can then give the geometrical model and the topologic diagram of the
design, as needed by basic evaluators and classical tools of architectural
production (cost evaluation, future thermal behaviour, 3D models...).

As it can be seen on the general system description showed in fig 3.15, EsQUIsE
is based on a multi-agent architecture that extracts characters, words and some
symbols recognition which are translated to captions and icons. Then, the graphic
model is used by EsQUIse to construct the architectural model, a veritable
“semantic” representation of the building on which the evaluator of the project
can work. [Juch04, Mora06]

2.5.2 SketchRead

SketchREAD[Alva04a] is a multi-domain sketch recognition engine capable of
recognizing freely hand-drawn diagrammatic sketches. It can be applied to a
variety of domains by providing structural descriptions of the shapes in that
domain; no training data or programming is necessary. Robustness to the
ambiguity and uncertainty inherent in complex, freely-drawn sketches is achieved
through the use of context. The system uses context to guide the search for
possible interpretations and uses a novel form of dynamically constructed
Bayesian networks to evaluate these interpretations. SketchREAD was evaluated
on real sketches in two domains— family trees and circuit diagrams—and found
that in both domains the use of context to reclassify low-level shapes significantly
reduced recognition error over a baseline system that did not reinterpret low-level
classifications.

Figure 2-25 An example of UI build with the tiny fingers method

The author pretend in [Alva04b] that SketchREAD can be used to build graphical
user interface, but not a single example of such application was found.

 C
ha

pt
er

 2
 S

ta
te

 o
f t

he
 A

rt
 in

 In
fo

rm
al

 D
es

ig
n

81

2.
6

Su
m

m
ar

y

Pa
pe

r p
ro

to
typ

eTi
ny

 fi
ng

er
s

Sil
k

D
en

im
G

ab
be

h

Ja
va

Sk
etc

hi
tFr

ee
Fo

rm
 2

In
kk

itG
UI D

es
ign

 st
ud

io

Vi
sio

Vi
siostp

BA
 S

to
ry

bo
ar

di
ng

M
oc

kU
pS

cr
ee

nsAx
ur

e R
P

G
UI L

ay
ou

tEa
sy

Pr
ot

ot
yp

e

Sh
ap

e
 r

ec
og

ni
tio

n
N

o
N

o
Y

es
no

no
Y

es
Y

es
ye

s
no

no
no

no
no

no
no

no

Sh
ap

e
in

te
rp

re
ta

tio
n

N
o

N
o

Y
es

no
no

Y
es

Y
es

ye
s

no
no

no
no

no
no

no
no

C
od

e
or

 s
pe

ci
fic

at
io

n
ge

ne
ra

to
rs

N
o

N
o

Y
es

no
no

j
v

j,
x

no
no

no
x

x
x,

 c
sv

x,
 p

sd
no

L
ev

el
 o

f
fid

el
ity

Lo
w

Lo
w

lo
w

lo
w

lo
w

lo
w

lo
w

lo
w

hi
gh

hi
gh

m
ed

m
ed

m
ed

hi
gh

lo
w

an
y

N
av

ig
at

io
n

ed
ito

r
Y

es
no

ye
s

ye
s

ye
s

N
o

N
o

ye
s

ye
s

ye
s

no
ye

s
ye

s
ye

s
ye

s
ye

s

P
re

vi
ew

+
-

+
-

ye
s

ye
s

ye
s

Y
es

Y
es

no
ye

s
ye

s
no

ye
s

ye
s

ye
s

ye
s

ye
s

P
at

te
rn

 m
an

ag
er

no
no

no
ye

s
ye

s
N

o
N

o
no

no
no

no
no

no
no

no
no

U
sa

bi
lit

y
ad

vi
se

r
N

o
N

o
N

o
N

o
N

o
N

o
N

o
no

no
no

no
no

no
no

no
no

T
yp

e
of

 s
ha

pe
s

al
l

al
l

ge
al

l
al

l
p

ge
ge

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

F
le

xi
bi

lit
y

of
 r

ec
og

ni
tio

n
n.

a.
n.

a.
lo

w
n.

a.
n.

a.
hi

gh
hi

gh
hi

gh
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.

P
er

fo
rm

an
ce

n.
a.

n.
a.

n.
a.

n.
a.

hi
gh

hi
gh

hi
gh

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

C
on

ce
pt

ua
l c

ov
er

ag
e

la
rg

e
la

rg
e

lo
w

la
rg

e
la

rg
e

lo
w

lo
w

(la
rg

e)
m

ed
m

ed
la

rg
e

la
rg

e
la

rg
e

la
rg

e
m

ed
m

ed

N
um

be
r

of
 r

ec
og

ni
ze

d
el

em
en

ts
n.

a.
n.

a.
10

n.
a.

n.
a.

10
10

N
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.

In
te

rp
re

ta
tio

n
m

ec
ha

ni
sm

n.
a.

n.
a.

g
n.

a.
n.

a.
g

g
g

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

D
is

am
bi

gu
at

io
n

m
ec

ha
ni

sm
n.

a.
n.

a.
no

n.
a.

n.
a.

ye
s

ye
s

no
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.

In
te

rp
re

te
r

ex
te

ns
ib

ili
ty

n.
a.

n.
a.

no
n.

a.
n.

a.
no

no
ye

s
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.

U
se

r
ad

ap
tiv

e
gr

am
m

ar
n.

a.
n.

a.
no

n.
a.

n.
a.

no
no

ye
s

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

H
an

d
w

ri
tin

g
re

co
gn

iti
on

no
no

no
no

no
no

no
ye

s
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
no

no

C
ut

, c
op

y,
 p

as
te

no
no

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

un
do

 -
 r

ed
o

no
no

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

no
no

im
po

rt
 -

 e
xp

or
t

no
no

ye
s

ye
s

ye
s

no
no

no
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s

m
ul

ti-
w

in
do

w
s

Y
es

Y
es

ye
s

ye
s

ye
s

no
no

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

(g
)

gr
am

m
ar

 (
p)

 s
ha

pe
 p

rim
iti

ve
 (

ge
)

ge
st

ur
e

(r
)

R
ub

in
e

A
lg

or
itm

h
(o

)
ot

he
r

(j)
 J

av
a

(x
)

X
H

T
M

L
(v

)
V

is
ua

l B
as

ic

Chapter 2 State of the Art in Informal Design

 82

2.7 Requirements for SketchiXML

On basis of the different tools presented throughout this chapter we have
identified a set of requirements that should integrated in a single tool for a better
support of the UI prototyping. These requirements are based on a mix between
the shortcomings and the advantages identified in the tools described earlier.

R 1. Avoidance of Effort loss. Some sketching tools only support the
sketching activities without producing any re-usable output. So, once
the designer and the end user agreed upon a sketch, a contract can be
signed between them and the development phase can start from the
early design phase, but when the sketch is not transformed, the effort
is lost. A better alternative would be to consider a mean to re-use the
output in a efficient manner and avoid any effort or time loss.

R 2. Well defined editing functionalities. The purpose of such tool is to combine

the advantages of the paper prototyping and the computer assisted
design. As the main advantage of computer assisted design seems to
be the possibility to easily move, copy, paste, zoom, undo… these
functionalities have to be present in such tool, and must be well
defined. Such assertion seems to be very natural, but all the tools do
not always propose such functionalities, or just a small subset. Since a
design project is likely to involve more than one single UI at a time, it
is also necessary for a tool to support multi-windows design. Another
significant and obvious functionalities are the import and export
functions. It is very important to have the opportunity to save the
current work and reopen it later, even on a different computer

R 3. Language neutrality. Most of the times, when a sketching tool support

code generation, it is bound to a particular programming language, a
particular UI type, a particular computing platform or operating
system. So, once an output is produced, it is usually bound to one
particular environment, therefore preventing developers to reuse
sketches from one case to another, such as for various platforms. As
the number context of use is increasing extremely fast, being bound
to a specific platform is a clear handicap these days. So, in order to

Chapter 2 State of the Art in Informal Design

 83

meet the designer’s need, the prototyping tool should provide an
output, that is general and context independent. For this purpose we
recommend the use of a specification language for UI description.
Several specification languages were developed these last years
addressing this challenging issue.

R 4. Robust recognition. If a tool proposes shapes or text recognition, the

recognition quality has to be very high, so as to prevent the designer
to waste time with misrecognition. Indeed, if a designer has to rewrite
the text several time before it is recognized, this feature should be
either disabled or improved. Another consideration for text
recognition would be to hide the result from the designer during the
process, so even if it was not recognized properly, the designer is not
tempted to delete and rewrite it.

R 5. Large conceptual coverage. When considering denim or other similar tools,

the conceptual coverage is not a problem since there are not any
kinds of constraint on the drawing. For the other kind of tool the
situation is different, each tool must specify a set of representations
for each widget. These representations can be based on a shapes
combination, a single gesture or a mix. Most of the sketching tools
providing shape recognition only support a small set of widgets
(around 10), preventing to build any complex user interfaces.
Moreover, adding new representation is very difficult since most of
the tools do not provide any functionality to enrich the grammar.
Also, if the designer as the opportunity to add a representation, i.e. a
new gesture associated to a widget, adding a new widget is always
impossible.

R 6. Recognition and process flexibility. Most of the sketching tools providing

shape recognition try to recognize every stroke drawn (either in batch
or real time mode). This prevents the user to represent complex
illustration on the future interfaces, such as diagrams, that cannot be
represented as widget. Moreover, this constraint also exists for the
high-fidelity design tools. For instance, fig 3.19 gives an illustration of
a UI that could not be represented with actual low and hi fidelity
design tools providing shape recognition.

Chapter 2 State of the Art in Informal Design

 84

Figure 2-26 An example of UI that cannot be represented with standard UI builder

In addition to the a flexible recognition, the interpretation process
should also hold a major role. UI Sketching tools do not allow a lot of
flexibility in the sketch process: the user cannot choose when
recognition will occur, degrading openness [Sumn97] and when this
occurs; it is difficult to return to a previous state. Moreover,
depending of the tool, each time a component is recognized, it is
sometimes replaced by a stroke of a different color, left as it was
drawn, replaced with a smooth representation of the component…
According to the authors of these tools, their representation is the
most relevant, even if no research tried to confirm such assertions.
For our point of view, we should leave this decision to designer and
his preferences.

R 7. Design history. As it can be seen in some professional tools, the use of

the design history can be very useful. When prototyping, a designer
will tries to explore many design alternatives in a short time, so the
designs will evolve very fast. Looking back to the previous steps can
be very useful, but such functionalities is rarely supported by the
existing tool for rapid prototyping of user interface. In addition to the
set of editing functionalities such function would be very useful in
this kind of tool.

Chapter 2 State of the Art in Informal Design

 85

R 8. Expressive scenario editor. As stated in the introduction, one of the major
drawbacks of the paper prototyping is the difficulty to represent the
interaction between the windows. So, we consider that a good
prototyping tool should support this feature, since this kind of
information can easily be provided by the end user and is important
for a global comprehension of the user needs. But all the sketching
tools supporting code generation lack of a robust scenario editor.

R 9. Ease of use (naturalness). The key argument for the development of such
tool is the ease of use. Everybody agree on the fact that paper
prototype is fast, easy and do not require an extensive background in
computer science. To this end, if a tool is supposed to capture the
advantage of both computer assisted design and paper prototyping,
the main advantage of paper prototype must have a central role in the
development of the application. So, the tool must be easy to use, use
only natural notation, do not impose any constraints on the
sketching… Otherwise a learning curve may prevent the end users
from learning how to use the tool and efficiently using it.

R 10. Preview (Run-mode). One of the drawbacks of the paper-based

prototyping is the difficulty to switch from the design phase to a
preview or a run mode. The standard approach requires a designer to
play the computer and move the window accordingly to the user
actions. So, if the tool is equipped with a navigation editor, we can
use all the information provided by the end user and build a run
mode based on the sketches or the windows interpreted in a specific
programming language. Such feature is very interesting since it permit
to see how the end users interact with the early prototype.

Based on this list of requirements, we consider having all the elements to unleash
the power of informal UI design based on sketches. Through the next section of
this thesis we will introduce SketchiXML, which was developed so as so provide
an answer to this analysis. SketchiXML lets the designers sketch UIs as easily as
on paper combined with all the advantage associated to computer aided design.

 86

 87

Chapter 3 SketchiXML
Development

The content of this chapter is twofold; first we intend to describe the technical
aspects of SketchiXML. To this end, the key concepts to be used in the
application, the global architecture and the key components are described into
details. Second, we present the application itself, explain the working principles
and illustrate how the requirements that were identified in the previous chapter
are addressed by the application.

3.1 Developing user interfaces for multiple contexts of
use

Nowadays, the developers face a new challenge in the design process, as the
number of computing platforms is really exploding. Simultaneously the number of
programming languages is following the same trend. So, the first subsection
introduces a unifying reference framework for multi-target user interface. Based
on this framework, the second subsection introduces the UsiXML language, a
specifications language for user interfaces description. The last subsection focuses
on a specific abstraction layer, as this thesis mainly focuses this layer.

3.1.1 A unifying reference framework for multi-target user interfaces

The unifying reference framework for multi-target user interfaces [Calv03] serves
as a reference for classifying UIs supporting multiple targets, or multiple contexts
of use in the field of context-aware computing. To this aim, the framework
attempts to provide a unified understanding of context-sensitive user interfaces
rather than a prescription of various ways or methods of tackling different steps
of development.

Chapter 3 SketchiXML Development

 88

The framework (Figure 2-8) presents the development life cycle as a set of levels
structured with reification relationship going from an abstract level to a concrete
one, or going from a concrete level to an abstract one. This is the main reason
why this reference framework has been selected. Other reasons are:

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Source platform Target platform

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Source platform Target platform

Figure 3-1 The Unifying Reference Framework [calv03].

As presented on the figure, we observe that the four levels of abstraction are:

1. The Final User Interface (FUI) level, its rendering materializes how a particular
UI coded in one language is rendered depending on the UI toolkit, the
window manager and the presentation manager.

2. The concrete user interface (CUI) level is assumed to abstract the FUI

independently of any computing platform; this level can be further
decomposed into two sub-levels: platform-independent CIO and CIO
type. For example, a HTML push-button belongs to the type “Graphical
2D push button”. Other members of this category include a Windows
push button and XmButton, the OSF/Motif counterpart.

3. The abstract user interface (AUI) level is assumed to abstract the CUI

independently of any modality of interaction, this level can be further
decomposed into two sub-levels: modality-independent AIO and AIO

Chapter 3 SketchiXML Development

 89

type. For example, a software control and a physical control (e.g., a
physical button on a control panel or a function key) both belong to the
category of control AIO.

4. The Task & Domain level describes the various tasks to be carried out by the

user in interaction with the system along with the domain-oriented
concepts as they are required by these tasks to be performed.

Thanks to this reference framework, understanding and comparing methods and
tools is easier, and can be used to express when, where and how a change of
context is considered and supported in the context-sensitive user interface thanks
to a relationship of translation.

3.1.2 Multi-path UI development: UsiXML

Amongst the different specification languages supporting model based
development of user interface, we considered the use of UsiXML for this thesis.
Indeed, UsiXML proposes a wide coverage of the presentational aspects a of user
interface description. Moreover, UsiXML is really open as new concepts can be
introduced easily and is in continuous development. Also, UsiXML is based on
reference framework, a methodology for user interface in this context is proposed
with UsiXML [Limb05]. UsiXML is intended to cover the specification of
multiple models involved in UI design such as: task, domain, presentation, dialog,
and context of use, which is in turn decomposed into user, platform, and
environment. These models are structured according to the four layers of the
framework depicted in Figure 2-8: task & concepts (T&C), Abstract User
Interface (AUI), Concrete User Interface (CUI), and Final User Interface (FUI).

In order to realize multi-path development, UsiXML proposes an ontology of
concepts defining various viewpoints that can be maintained on a UI system.
Viewpoints are hierarchically structured depending on their level of abstraction.
They describe user tasks, classes of objects, presentational and behavioral aspects
of UIs, context of use, and a set of mappings between these representations.
[Limb05]

Chapter 3 SketchiXML Development

 90

Figure 3-2 Transformation between viewpoints

The downward arrows on Figure 3-2 represent reification steps (forward
engineering), from the more abstract to the operational interface. Reification is the
transformation of a description (or of a set of descriptions) into a description (or a
set of descriptions) whose level of abstraction is lower than that of the source
one(s). In the multi-target reference framework, it is the inference process that
covers the inference process from high-level abstract descriptions to run-time
code.

Upward arrows stand for abstraction steps. This process transforms a description
into a description whose semantic content and scope are richer/higher than the
content and scope of the initial description content. In the context of reverse
engineering, abstraction is the elicitation of descriptions that are more abstract
than the descriptions that serve as input to this process. Finally, horizontal arrows
correspond to the translation of the interface from one type of platform to
another, or more generally, from one context to another.

The underlying mathematical formalism of our ontology being a graph structure
(directed, identified, labeled, constrained, and typed graphs), we transform one
viewpoint into another by applying conditional graph rewriting rules gathered in
graph grammars. These enable us expressing a wide variety of transformational
heuristics to express multiple development paths. Ontology and transformations
may be stored in an XML format allowing the dissemination, the capitalization,
and the consolidation of UI specifications and transformation catalogs [Limb05].

Chapter 3 SketchiXML Development

 91

3.1.3 Concrete User Interface

Amongst the four models present in UsiXML, the concrete level is the only level
considered in this thesis. The final user interface is also considered in this
document, but relies on the interpretation of the CUI via an external tools. The
following subsection briefly introduces this layer while the extensive description
of the other models can be found in [Limb05]. The subsection is divided into
three parts, first the general structure of the concrete layer is introduced, and then
the layout mechanism and the behavioral aspect are explained.

a. Description

A CUI is a UI model allowing a specification of an appearance and behavior of a
UI with elements that can be perceived by users. A CUI consists of:

• Modality dependent i.e., an instance of a CUI addresses a single modality at a
time. Two modalities fall in the intended scope of UsiXML: graphical and
auditory.

• Platform independent i.e., elements populating a CUI realize an abstraction of

common languages used to develop UIs.

• Concrete Interaction Objects (CIOs) realize an abstraction of widget sets found
in popular graphical toolkits (Java AWT/Swing, HTML 4.O, Flash
DRK6). A CIO is defined as an entity that users can perceive and/or
manipulate (e.g., a push button, a list box, a check box). CIOs are divided
into two types: graphical containers (e.g., window, panel, table, cell, dialog
box) and graphical individual components (e.g., a button, a text
component, a menu, a spin button).

Figure 3-3 propose an example of a user interface specified with the concrete
level. Each component is described with a set of attributes specific for each
component. UsiXML allows to specify all the attributes that can generally be
specify for the components in standard toolkit such as Java/Swing. The structure
of the UsiXML file is defined from top to bottom as follow, the head tag contains
all the general information associated to the file and its creation. The abstract user
interface tags contain the specification for the abstract user interface layer
(auiModel). The cuiModel tag is our tag of interest; it contains all the information
associated to the concrete level. The context tags describe the context of use

Chapter 3 SketchiXML Development

 92

associated to this user interface. The context contains all the information related
to the context associated to this user interface.

Figure 3-3 Example of UsiXML specifications

Chapter 3 SketchiXML Development

 93

b. Layout mechanism

The layout mechanism user in the CUI is similar to the layout mechanism that can
be found in other user interface description language such as UIML (User
Interface Markup Language) [Abra99], programming language such as JAVA
/Swing:

A flowbox arranges components in a left-to-right flow, much like lines of
text in a paragraph. Flow layouts are typically used to arrange buttons in a
panel. It will arrange buttons left to right until no more buttons fit on the
same line. Each line is centered. The orientation of the layout can be
defined as vertical instead of horizontal (see Figure 2-11).

Figure 3-4 Example of flowbox layout

A borderbox lays out a container, arranging and resizing its components to
fit in five regions: north, south, east, west, and center. Each region may
contain no more than one component. The components are laid out
according to their preferred sizes and the constraints of the container's
size. The NORTH and SOUTH components may be stretched
horizontally; the EAST and WEST components may be stretched
vertically; the CENTER component may stretch both horizontally and
vertically to fill any space left over (see picture 2-12).

Figure 3-5 Example of borderbox layout

The gridbox lays out components in a rectangular grid. The container is
divided into equal-sized rectangles, and one component is placed in each
rectangle.

Chapter 3 SketchiXML Development

 94

Figure 3-6 Example of gridbox layout

The GridBagBox layout aligns components vertically and horizontally,
without requiring that the components be of the same size. Each
GridBagBox object maintains a dynamic, rectangular grid of cells, with
each component occupying one or more cells, called its display area.

Each component managed by a GridBagBox is associated with a set of
constraints. The constraints object specifies where a component's display
area should be located on the grid and how the component should be
positioned within its display area (see Figure 2-14).

Figure 3-7 Example of gridbagbox layout

As it will be presented later, when generating a user interface, the layout
mechanism appears as a complex issue. On one hand the designer can choose to
specify the layout with absolute coordinates, or to use a more complex layout
mechanism that results in a more flexible result.

c. Behavior

In addition to the presentation, the CUI can specify the navigation between the
windows or even intra-window. Each of the components can be associated to one
or several behaviors. The behavior is based on a Event Condition Action (ECA).
The event part specifies the external or internal signal that triggers the invocation
of an active rule; the condition part is a condition to be tested for the execution of
the action; the action part consists of instructions that either call method, call
external programs…

Chapter 3 SketchiXML Development

 95

For instance Figure 3-8 shows a piece of specification from a calculator. The clear
button is associated with an action that should clear the display.

Figure 3-8 Example of a button calling an external method

Figure 3-9 show another example of behavior. This example is taken from a
picture viewer application. When an action is performed on the “next” button the
current windows should close and the new window should be opened.

Figure 3-9 (a) Example of a button calling a transition (b) example of transition.

Based on these specifications, a user interface can be generated in different
languages such as XTML, xul, java, tcl-Tk, flash. Figure 2-17 shows an example of
user interface rendered in Flash.

Chapter 3 SketchiXML Development

 96

Figure 3-10 Example of Flash calculator based on UsiXML specification [Vand04]

3.2 Agent and Multi-Agent Systems

This sections introduces an important concept used later in this dissertation: the
agent oriented development. The multi-agent paradigm has appeared during the
last decade as a new development paradigm. This trend found its inspiration in
the observation of social behavior of humans and insects and considers an agent
as a system entity, situated in some environment that is capable of flexible
autonomous action in order to meet its design objective [Wool96].

3.2.1 Definition

Three key concepts support the definition of an agent:

 Situatedness: an agent receives input from the environment in which it
operates and can perform actions, which change the environment in some
way;

 Autonomy: an agent is able to operate without direct, continuous supervision,

it has full control over its own actions;

 Flexibility: an agent is not only reactive but also pro-active. Reactivity means

that it has perceptions of the world inside which it is acting and reacts to
change in quasi real-time fashion. Proactiviness means that behavior is not
exclusively reactive but it is also driven by internal goals, i.e., it may take
initiative.

Chapter 3 SketchiXML Development

 97

From this, a multi-agent system can be defined as an organization composed of
autonomous and proactive agents that interact with each other to achieve
common or private goals.

MAS may be either composed if cooperative or competitive agents. In
cooperative MAS, the system has a global goal (or set of goals) and the agents that
compose the MAS cooperate, possibly by performing diverse tasks, in order to
achieve the global goal. This kind of system is typically adapted to perform
distributed problem solving. There is a unique high-level goal decomposed
recursively into parallel activities to be performed by a set of agents. A good
example of such cooperation would be the real-time strategy game Warcraft
[War3]. Real-time strategy game usually involves resource gathering, base building,
technology development and direct control over individual units. Each unit is an
individual agent pursuing one or several individual goals. All the agent are
participating to same effort with the same purpose: winning the game. Even if
each agent can act individually, they can decide to join their effort, for instance to
build a building faster.

In a competitive MAS, each of the component agents has its own set of goals that
may or may not meet those of other agents. In this case the MAS is an
architecture that allows agents to interact, each one to pursue personal goals and
defend its own interests. This kind of systems meets typically engineering
requirements of e-commerce, information retrieval applications, web services or
peer-to-peer networks. In such environments, every agent generally represents
either a client, who wants to obtain some resources or have some service
accomplished, or a provider, who wants to sell resources or services at a certain
(not necessarily financial) cost. Each agent pursues the goals of the (human or
system) actor it represents, and these goals can usually be in conflict.

In order to reason and act in an autonomous way, agents are usually built on
rationale models and reasoning strategies that have roots in various disciplines
including artificial intelligence, cognitive science, psychology or philosophy. An
exhaustive evaluation of these models would be out of the scope of this thesis.
Agent models are proliferating; some include learning capabilities, others
intelligent agendas based on statistics, others yet are based on genetic algorithms
and so on. However, a simple yet powerful and mature model coming from
cognitive science and philosophy that has received a great deal of attention,
notably in artificial intelligence, is the Belief-Desire-Intention (BDI) model
[Brat88]. This approach has been intensively used to study the design rationale of

Chapter 3 SketchiXML Development

 98

agents and is proposed as a keystone model in numerous agent-oriented
development environments such as Jack or Jade. The main concepts of the BDI
agent model are (except the notion of agent itself we have just explained):

• Beliefs that represent the informational state of a BDI agent, that is, what it
knows about itself and the world

• Desires (or goals) that are its motivational state, that is, what the agent is
trying to achieve

• Intentions that represent the deliberative state of the agent, that is, which
plans the agent has chosen for possible execution

In more detail, a BDI agent has a set of plans, which defines sequences of actions
and steps available to achieve a certain goal or react to a specific situation. The
agent reacts to events, which are generated by modifications to its beliefs,
additions of new goals, or messages arriving from the environment or from
another agent. An event may trigger one or more plans; the agent commits to
execute one of them, that is, it becomes intention.

Plans are executed one step at a time. A step can query or change the beliefs,
performs actions on the external world, and submits new goals. The operations
performed by a step may generate new events that, in turn, may start new plans. A
plan succeeds when all its steps have been completed; it fails when certain
conditions are not met.

3.2.2 Multi-agent systems design pattern

When developing a large and complex application, the reuse of design experience
and knowledge from past project is a very important technique [GHJ95, Bush96].
Indeed if a designer has proposed a successful solution for a specific problem,
instead of re-thinking the problem from scratch, it is faster to re-use the previous
solution.

Based on this observation, practitioners have started to gather design solutions,
designs patterns, for many specific issues. A design patterns is thus is a general
repeatable solution to a commonly occurring problem in software design. A
design pattern is thus not a finished design that can be transformed directly into
code. It is a description or template for how to solve a problem that can be used
in many different situations. Object-oriented design patterns typically show
relationships and interactions between classes or objects, without specifying the
final application classes or objects that are involved.

Chapter 3 SketchiXML Development

 99

Even if considerable work has been done in software engineering to define
software patterns, [GHJ95, Bush96], this work has usually focused on object-
oriented systems [Fern01], and hardly never on the multi-agent systems.
Moreover, the proposals of agent patterns [Arid98, Deug99, Hayd99] are not
aimed at the design level, but rather at the implementation of lower-level issues
like agent communication, information gathering, or connection setup. For
instance, the Foundation for Intelligent Physical Agents (FIPA) identified and
defined a set of agent interaction protocols that are restricted to communication
[Do05].

So as to cover the mismatch between the concepts used by the object-oriented
paradigm and other traditional mainstream software engineering approaches and
the agent-oriented view [Jenn01, Yu01], [Do05] presents a set high level patterns
that are specifically tailored to the development of multi-agent systems using
agent-oriented primitives.

Amongst all the patterns presented in [Do05] we only present the Virtual
mediator pattern, since this patterns is used in several occasion in this thesis. In
the Virtual Mediator pattern, a mediator agent coordinates the cooperation of
service providers to satisfy the request of a client. The term “virtual” means that
the mediator does not store the answers of the service providers (i.e. they are
deleted after the mediator answers the client).

The pattern (3-11) is structured using i* [Yu95], a graph where each node
represents an actor (or system component) and each link between two actors
indicates that one actor depends on the other for some goal to be attained. A
dependency describes an “agreement” (called dependum) between two actors: the
depender and the dependee. The depender is the depending actor, and the dependee,
the actor who is depended upon. The type of the dependency describes the nature
of the agreement. Goal dependencies represent delegation of responsibility for
fulfilling a goal; softgoal dependencies are similar to goal dependencies, but their
fulfillment cannot be defined precisely; task dependencies are used in situations
where the dependee is required.

Chapter 3 SketchiXML Development

 100

Figure 3-11 Social diagram for the Virtual Mediator pattern

In this pattern, when receiving the client request, the mediator agent is responsible
for:

• Decomposing the client request into sub-requests, and then
• Sending each of these sub-requests to the relevant Service Providers

When receiving the answer coming from each service provider, the mediator is
responsible for:

• Integrating answers from the Service Providers to formulate final result,
and then
• Sending this result back to the Client

3.3 Architectural Description

In order to optimally address the requirements elicited in chapter 2, the choice of
the SketchiXML architecture appears of crucial importance. Indeed, so as to meet
all the requirements, SketchiXML will have to carry out a large set of
interconnected and simultaneous tasks such as providing shape recognition,
spatial shape interpretation, handling several kinds of inputs, generating UsiXML
specifications, handling complex interaction with the user… Moreover,
SketchiXML is likely to be extended in order to integrate additional tools or
features, such as a usability adviser, possibly at run time.

In order to illustrate how we address these issues, this section is divided into three
subsections. The first subsection presents the general architecture of the
application and introduces the key components of the application: the shapes
recognizer and the shapes interpreter. The next two subsections present these two
components into details.

Chapter 3 SketchiXML Development

 101

3.3.1 General architecture

To address the requirements elicited in the previous chapter, we consider a BDI
(Belief-Desire-Intention) agent-oriented approach [Faul04b] to be appropriate as such
architecture allows building robust and flexible applications by distributing the
responsibilities among autonomous and cooperating agents. This kind of
approach presents the advantage of being more flexible (R6 – recognition and process
flexibility), modular and robust than traditional architecture including object-
oriented ones [Faul04b]. Each critical part of the application is handled by a set of
agents cooperating with the others in order to provide the service required
according to the designer’s requirements.

Figure 3-12 SketchiXML global architecture

The architecture of EsQUiSe [Juch04] presented in the state of the art, is based on
a similar architecture. The main differences with our approaches consist in the
role definitions of the agents. For instance, in [Juch04], the role of the agents is
mainly to collect the current drawing and to associate it to a graphic model such

View
• Renders the models
• Requests updates from

models
• Sends user gestures to

controller

Controller
• Define application behavior
• Maps user action to model

update
• Selects view to response
• One for each functionality

Recognizer

• Handles stroke to
recognize

• Integrates recognition
results

Interpreter

• Handles shape to
interpret

• Choose best
representation

Model
• Encapsulate application state
• Responds to state queries
• Exposes application

functionality
• Notifies views of changes

State change

Change Notification

State Query

User Gestures

View Selection

Call Interpreter

Call Recognizer

Update Data

Chapter 3 SketchiXML Development

 102

as: dashed line, heavy line, handwriting… while all the functionality associated to
the characterization on the sketch will be provided by a single agent in our
application.

The SketchiXML global architecture’s is based on a combination of the well
known architectural pattern in software engineering: the model-view-controller
(MVC) [Beck87], and on a set of multi-agent design patterns [Do05]. The purpose
of this model consists in splitting the application into separate layers: presentation
(UI), domain, and the data access, so changes to the UI do not impact the rest of
application and vice versa. The MVC solves this problem by decoupling the
business logic from data presentation and user interaction, by introducing an
intermediate component: a controller. Then, for a certain amount of tasks, such as
shapes recognition and shape interpretation the controller calls two external
modules based on a set of agents. The first module allows to recognize the shapes,
gesture and handwriting. The second module is in charge of the interpretation, it
takes as input the shapes recognized, widgets identified, text recognized in order
to provide other widgets. Except for the shape recognition and interpretation the
usage of the MVC architecture does not present any significant interest as it is a
well known and simple pattern for application development.

The multi-agent framework that was selected for the development is the “JADE
framework”. It is based on a middleware that facilitates the development of
distributed multi-agent applications based on a peer-to-peer communication
architecture. The Intelligence, the Initiative, the information, the resources and
the control can be fully distributed on mobile terminals as well as on hosts in the
fixed network. The environment can evolve dynamically with agents that appear
and disappear in the system according to the needs and the requirements of the
context.

JADE is fully developed In Java and is compliant with FIPA specifications
[FIPA]. As a consequence a JADE agent can interoperate with other peers not
running on the JADE run-time (provided that they comply with the same
standard).

This framework presents some clear advantages with regards to other agent
platforms as it is a mature product, well documented, totally free and can be
integrated in any java development framework. As a comparison, the Jack
Framework [Jack] is a very mature agents platform that integrates the BDI model
and an editor for the development of agent based application. However, the

Chapter 3 SketchiXML Development

 103

editor provided is less powerful than most on the standard java development
environment, thus, a lot of time is wasted due to low performances of the
application. Similarly, the Jadex [Jadex] framework permits to develop BDI agent
system but require developing the application using intermediate specification in
XML. This framework is less mature than the two previous examples and is not
appropriated for large project due to the lack of tool support and the time
required developing a small application.

The agents are taking part in the interpretation and recognition (see Figure 3-12)
processes are described through the following sub sections.

3.3.2 Shape recognition module

As introduced earlier, the SketchiXML recognition mechanism is based on a set of
collaborative agents where each agent has a specific role in the process. We have
thus developed a specific set of agents for the shape recognition process. A
minimum of four agents are participating in this process, three agents are
providing the shape recognition for the shapes primitives; handwriting and the
gestures, a fourth agent is dedicated to coordination and the integration of the
result of these three agents.

Figure 3-13 Instantiation of the virtual mediator present in Figure 3-11

In this pattern, when receiving the controller (client) request, the mediator agent is
responsible for:

Chapter 3 SketchiXML Development

 104

• Decomposing the client request into sub-requests, and then
• Sending each of these sub-requests to the relevant Service Providers

When receiving the answer coming from each service provider, the mediator is
responsible for:

• Integrating answers from the Service Providers to formulate final result,
and then
• Sending this result back to the Client

Practically, when the mediator receives a new stroke to recognize, it dispatch the
information to the different service providers which are likely to provide the
appropriate handling. To this end, each service provider has to specify what kind
of service is offered. For instance, if a designer sketch a stroke keeping the pen
button pressed (command call), the mediator will choose to send the request to
the gestures recognizer and to the shapes recognizer. Then, the mediator will
integrate the service providers’ answers, and choose the more relevant. The
mediator can decide to choose the first answer without waiting for all the answers,
according to its configuration and if the level of certainty associated with the
answer is sufficiently high. Another situation would be the handling of a stroke
without any characterization by the mediator; in this case the stroke can be
handwriting, a gesture or a shape primitive. In this specific situation, the mediator
applied an algorithm on the scribble received in order to detect if it is likely to be
handwriting. If the result of this test is positive, then only the text recognizer will
be invoked, otherwise all the agents will be asked to contribute to the recognition
of the stroke. Each agent involved in this process, the mediator included, adapt
their behavior accordingly to their beliefs and the environment.

This kind of architecture could be considered as a service oriented architecture
(SOA) for several reasons. According to the OASIS [OASIS] consortium and the
reference model they developed: “a SOA is a paradigm for organizing and
utilizing distributed capabilities that may be under the control of different
ownership domains. It provides a uniform means to offer, discover, interact with
and use capabilities to produce desired effects consistent with measurable
preconditions and expectations. The SOA-RM (Service Oriented Architecture –
Reference Model) specification bases its definition of SOA around the concept of
“needs and capabilities”, where SOA provides a mechanism for matching needs
of service consumers with capabilities provided by service providers.” Based on
this definition, the use of agent, each providing a specific service could be easily

Chapter 3 SketchiXML Development

 105

interpreted as a service. Thus, considering each agent as a service make sense, but
simultaneously the agents are more than a capability offer as they have more than
a single capability and own beliefs. In addition to the fulfillment of a specific task,
agents will adapt their behavior according to the context of use. Such observation
is particularly important for the shape interpretation mechanism explained 1.3.3.
Each agent will store a set of information for the interpretation of the new shape
to be handled by the agent. So, the architecture depicted in 3-13 can be
considered a multi-agent system, where each agent assumes the role of service
provider.

The following section introduces the three libraries or techniques used for the
shape recognition in the system. Each of these techniques is thus handled by one
particular agent.

a. Shape recognition - Cali Library

The first version of SketchiXML was based on a single recognizer: Cali. Based on
fuzzy logic; this library allows to recognize multi-stroke sketches of geometric
shapes and single-stroke gesture commands with a very high level of precision.

Figure 3-14 Multi-stroke geometric shapes (a) Mono-stroke shapes (b) recognized by Cali library

Chapter 3 SketchiXML Development

 106

The Cali library uses temporal adjacency and global geometric properties of
figures to recognize a simple vocabulary of geometric shapes drawn in different
line styles. The geometric features used (convex hull, largest-area inscribed and
smallest-area enclosing polygons, perimeter and area ratios) are invariant with
rotation and scale of figures. [Fons02].

The recognition rate obtained with the Cali library is very high: 92 % of shape
recognized correctly and 93 % shape is amongst the top three identified shapes.
This recognition rate takes into account the difference between the ellipse ands
circle and the rectangle and diamonds. This recognition rate is even higher if
rectangles and diamonds, circles and ellipses are grouped together. Unfortunately
this library does not allow to add custom representations neither to add new
shape to the grammar.

b. Gesture recognizer

In addition to the shape recognizer based on the CALI library, we have built a
new trainable recognizer to solve some of the problems of the existing
recognizer (not trainable). The main idea of the new sketch recognizer is to divide
a hand drawn input into a sequence of line segments with a particular direction
and to compare two of these sequences using the so called string edit distance. A
similar approach has been successfully suggested in biometric user authentication,
e.g. in [Schi06].

Raw Data

The drawing input from a TabletPC, i.e. the information about the pen
movement, is available as a sequence of 3-tuples (xi, yi, pi), where xi and yi are the
coordinates and pi is the binary pen pressure. In our environment, the coordinates
are available in units of screen pixels; the binary pressure is set to 1, if the pen tip
is touching the drawing surface and set to 0, if the pen is lifted. While using the
mouse instead of pen as drawing input device, the pen-down is simulated by
pressing the left button.

Feature Extraction

The features to be extracted from the raw data are based on the idea, described in
[Free74]. The drawing plane is superimposed with a grid and the freehand
drawing input is quantized with respect to the grid nodes (Figure 3-15). Each grid

Chapter 3 SketchiXML Development

 107

node has eight adjacent grid nodes and for each pair of adjacent nodes one out of
eight directions can be given. So, from the sequence of successive grid nodes, a
sequence of directions can be derived. This sequence can be coded using an
alphabet {0-7}, each value representing one direction. This approach was first
presented by Freeman in 1974 [Free74], where it was used for a compressed
storage of line drawings. We use the sequence-like representation as our basis for
sketch recognition, because it is a short description and location invariant
description of complex drawing inputs. For each raw sampling point (xi, yi)
(i∈[1,…,n] for a sequence of n raw sampling points) that closest grid node (qxi,
qyi) is selected by the following equations:

qxi = round(xi / wg) and
qyi = round(yi / wg), where wg is the grid width (Figure 1).

From the sequence of successive grid nodes (qxj, qyj) resulting from sketch input,
a string of directions (coded as words out of {0…7}*) of adjacent grid nodes is
build. If two or more successive raw sampling points are quantized as the same
grid node point, then this grid node appears only once in the sequence.
Depending on the grid width wg and on the distance of the successive raw
sampling points, it is possible for the respective grid nodes not to be direct
adjacent to each other. In this case the gap can be filled by using the line
algorithm of Bresenham [Bres65].

Figure 3-15 Square grid quantization of freehand shapes

The gap between two drawing partitions, i.e. the delay between a pen-up and the
subsequent pen-down event can be coded with respect to the relative position of
the last grid node (qxj, qyj) before the pen-up and the first grid node (qxj+1, qyj+1)
after the pen-down. Dependent of the distance and the angle between (qxj, qyj)

Chapter 3 SketchiXML Development

 108

and (qxj+1, qyj+1), a different coding can be used to indicate the kind of gap.
Using this method, it is possible to extract features from hand drawn inputs,
which are represented as strings, consisting of codes, which describe the local
direction of line segments in chronological order and the characteristic of gaps
between drawing partitions.

String Edit Distance

To compare two strings, a common technique is the so called string edit distance,
as a measure of their dissimilarity. The idea behind this distance is, to transform
one string into another string using the basic character wise operations delete,
insert and replace. The minimal number of these operations for the
transformation of one string into another one is called the edit distance or
Levenshtein distance [Leve66]. The smaller the minimal number of needed edit
operations for a transformation from string A to string B, the smaller is the
distance between these strings. Instead of only using the number of operations, in
some cases it is advantageous to use weights for the different operations. One
possibility to determine the edit distance between two strings s and t, with m and
n being the respective lengths, is to fill a matrix D of the size m+1 × n+1 as
follows [Leve66]:

D0, 0 = 0,

Di, 0 = Di-1, 0 + wD(si),

D0, j = D0, j-1 + wI(tj) and

Di, j = min {Di-1, j + wD(si), Di, j-1 + wI(tj), Di-1, j-1 + wR(si, tj) }

where si and tj are the ith and jth elements of the strings s and t. wD(si) is the
weight for removing operation of a code si, wI(tj) is the weight for inserting a
code tj and wR(si, tj) is the weight for replacing a code si by tj. If si and tj are
equal, then wR(si, tj) is zero. The value Dm, n is the weighted edit distance of the
strings s and t. For a better understanding of the procedure of this computation,
we illustrate the resulting matrix in Figure 3-16. It is obvious, that the complexity
of the straight forward computation of the edit distance is O(m⋅n). For each
matrix element Di, j, the three adjacent elements at the left side and on top
(marked in Figure 4.5 by bold border) are required. In practice it can be shown,
that the most relevant elements of the matrix D are those around the main
diagonal, so the complexity can be reduced, if the grey fields are pre-initialized
with an infinite value, so the min-clause of the calculation procedure considers

Chapter 3 SketchiXML Development

 109

stronger the more relevant elements around the main diagonal. Therefore, the
computational complexity can be reduced to O(b⋅max{m, n}), where b is a
constant factor.

Figure 3-16 Matrix D for edit distance computation

Sketch Recognition using String Edit Distance

As outlined above, the string edit distance can be utilized for the purpose of shape
recognition using direction-based feature strings, extracted from handdrawn
inputs. The idea is to have a repository, containing a set of reference shapes. For
recognition, the unknown shape is compared with all shapes in the repository, i.e.
the edit distance between the feature strings of the unknown shape and all
reference shapes are calculated. The type of that reference shape, having the
smallest edit distance to the unknown shape, is assumed to be the type of the
unknown shape. Further, to avoid erroneous recognition of unknown shapes
without a representation in the reference repository, a threshold for the maximal
allowed edit distance has to be defined.

Due to the nature of string edit distance, the distance value at an average is
dependant on the lengths of the strings s and t – the longer the strings, the higher
is the average distance value. Therefore a kind of normalization is required. The
best solution for considering the lengths m and n in the calculation of edit
distance Dm, n of two strings s and t is the following:

dist(s, t) = Dm, n / max {m, n}

Chapter 3 SketchiXML Development

 110

A second method to normalize the string length impact is to “penalize” large
differences in lengths of the two feature strings. It can be assumed, that only if a
shape S is different from another shape T, the lengths m and n of the respective
feature strings s and t are different. (The inversion is not true – equal lengths of m
and n do not imply the equality of the shape types!) By introduction of the string
length difference compensation factor the adapted distance could be calculated as
follows:

dist(s, t) = d(m, n) ⋅ Dm, n / max {m, n} with d(m, n) = max{m, n} / min{m, n}

The effect of d(m, n) is to increase the edit distance by the degree of relative
difference of string lengths. Finally, as a third improvement, it is possible to
“penalize” the operations replace, insert and delete for the gap symbol. The idea is
that normally the trained sketches in the repository have the same number of
strokes (and consequently the same number of gaps) as the actual drawn shape.
So, by using a large weight factor for these “gap operations”, an amount of
misrecognitions can be avoided.

The actual recognition of hand drawn inputs can be done by parallel using a set of
different grid widths for the quantization while features string extraction. Here,
for each single grid width setting, that shape from the reference repository is
obtained having the smallest edit distance to the features in the corresponding
grid size of the unknown input. So, for a set of different grid widths, a number of
decisions for possible types of shape references can be achieved. From this set of
decisions a degree of certainty can be derived by dividing the number of matches
for each reference type by the number of decisions at all.

c. Handwriting Recognizer

The third agent participating in the recognition process offers the handwriting
recognition. To this aim, this agent uses the functionalities found in Microsoft
Windows Tablet PC. The Handwriting recognizer pack can be installed on any
machine running Microsoft Windows XP, Microsoft Windows 2000 or Microsoft
Windows 2003. If the handwriting recognizer is not installed on the computer, the
text will be recognized as text, but the content will not be extracted.

Chapter 3 SketchiXML Development

 111

3.3.3 Shape interpretation module

Similarly to the shape recognition process, the interpretation is based on a set of
collaborative agents where each agent has a specific role in the process.
Oppositely to the shape recognition process, the number of agents involved in the
process is very high and variable. Indeed in addition to the mediator agent, that
holds the same role than the mediator for the shape recognition, we have an agent
running for each representation of the widgets representations that can be found
in an external editable grammar. The number of agent collaborating in the
interpretation process is likely to evolve at run-time. Indeed, the grammar is
edited, new agent can be build or destroyed in order to reflect the new
composition.

a. Grammar

Each widget is detailed as a precise combination of atomic components and
graphical code; graphical codes refer to juxtaposition of components, proximity
between components, sequence of components, enclosure of components… The
construction of the grammar is detailed in Chapter 4, the following section only
details how the grammar is build and used by the application.

For each widget, several representations can be defined, they are defined in an xml
grammar that specifies the kind of shapes that should be present in a particular
representation to build a given widget. In addition to this list of shapes, the
grammar specifies a list of constraints to be applied between the shapes part of
the widget. For instance, the list box can be represented with three different
representations.

The first representation (id = 0) of the ListBox presents a widget that is made of a
construct of three shapes: two triangles and a rectangle. Then based on these
three shapes we specify a short list of constraints, in this case, the two triangles
must be enclosed in the rectangle, in a particular region. Figure 3-18 gives an
illustration of the visual representations associated to each of representation
specified in the XML grammar shown in Figure 3-17.

Chapter 3 SketchiXML Development

 112

Figure 3-17 Extract of the grammar: list box description

Figure 3-18 Visual representations for the three descriptions associated to the list box in Figure 3-

17

In addition to the small set of constraints used in the example provided in Figure
4-6, other constraints also exist:

 areParallel
 cross

 isInsideInLowerRightCorner
 isInsideInTheCenter

<widget type="ListBox">
 <representation id="0">

<constraint id="0" shape1="Triangle_3" shape2="Rectangle_0"
condition="isInsideInUpperRightCorner" />

<constraint id="1" shape1="Triangle_4" shape2="Rectangle_0"
condition="isInsideInLowerRightCorner" />

<shape id="Rectangle_0" type="Rectangle" />
<shape id="Triangle_3" type="Triangle" />
<shape id="Triangle_4" type="Triangle" />

 </representation>
<representation id="1">

<constraint id="0" shape1="Triangle_0" shape2="Rectangle_2"
condition="isInsideInTop"/>

<constraint id="1" shape1="Triangle_1" shape2="Rectangle_2"
condition="isInsideInBottom" />

<constraint id="2" shape1="Rectangle_2" shape2="Rectangle_3"
condition="isInsideOnTheRight" />

<shape id="Triangle_0" type="Triangle" />
<shape id="Triangle_1" type="Triangle" />
<shape id="Rectangle_2" type="Rectangle" />
<shape id="Rectangle_3" type="Rectangle" />

 </representation>
 <representation id="2">

<constraint id="0" shape1="Line_0" shape2="ListBox_1" condition="isInside" />
<constraint id="1" shape1="Line_0" shape2="-" condition="isHorizontal" />
<shape id="Line_0" type="Line" />
<shape id="ListBox_1" type="ListBox" />

</representation>
</widget>

Chapter 3 SketchiXML Development

 113

 hasInside
 hasInsideInLowerRightCorner
 hasInsideInTheCenter
 hasInsideInTop
 hasInsideInUpperRightCorner
 hasInsideOnTheLeft
 hasInsideOnTheRight
 hasPositiveSlope
 intersect
 isCrossedBy
 isHorizontal
 isInside
 isInsideInBottom

•

 isInsideInTop
 isInsideInUpperRightCorner
 isInsideOnTheLeft
 isInsideOnTheRight
 isOnTheLeftOf
 isOnTheRightOf
 isOnUpperLeftCorner
 isSmall
 isSquare
 isThin
 isUnder
 isVertical
 …

As an example, two shapes will be parallel to each other if the slope of first one is
almost similar to the slope of the second one. The accepted margin is dependant
of the configuration of the application. When testing if a stroke is inside another,
we compute the intersection area between the first and the second, if the
proportion of the first one is higher than a specific ratio dependant of the
configuration, then the shape is considered to be inside the second. This kind of
mechanism is then applied to all the constraints.

All the constraints are hard coded in the application; however they are stored in a
java class that can be easily edited. Any changes in the class file are reflected in the
complete application. The grammar only specifies the name of the constraint to
be applied between the shape, and the access to the method is done thanks to java
reflection [Sun98]. Reflection is a feature that is only supported by Java, to my
knowledge, which enables dynamic retrieval of classes and data structures by
name. The graphical editor for the grammar, presented at the end of this chapter,
is also dynamic and adapts the constraints list to the set of constraint present in
the java class. If the grammar requires a constraint that is not present in the list of
constraints, the representation will never be satisfied.

Two types of constraint exist, the first set on constraint applied to a single shape.
The purpose of such constraint is to test a single property of the shape, for
instance, the slope of line, the size of a rectangle … The second type of constraint
is used between two shapes and test a specific spatial relation between them.

Chapter 3 SketchiXML Development

 114

The constraints can be applied indifferently between the shapes, the gestures or
even the widgets. Figure 3-17 provides a good illustration; the last representation
for the ListBox associates a horizontal line to a widget, whatever the composition
of the widget is. Indeed, the widget could be built on basis of one of the first two
representations, or based on a single gesture associated to this kind of widget.

As the designer is free to define a custom representation for all the components,
we cannot predict the geometric properties of the widget. In many situations, we
have no other choice than considering an approximation using bounding boxes
coupled with Monte Carlo simulations, but when a constraint is applied to
geometric shapes we always use the geometric feature.

It is thus possible to build very complex representations involving a large set of
shapes and constraints, but as it will be presented in chapter 5, the designer
should try to use the fewest shapes and constraints in a single representation. A
constraint should be added only if it solves an ambiguity between two distinct
representations (R5 - Large conceptual coverage).

b. Agents (Widget Agent)

For each representation we create a widget agent that is responsible for the
identification of this representation. To this aim, when the agent is created, it logs
to the mediator agent, and provide him the list of the shapes required to fulfill its
goal. So, when the mediator receives a new shape, it browses its beliefs and
extracts the list of all the service providers (widget agent) that can handle this kind
of shape.

The widget agents try to build their dedicated widget by testing all the possible
shapes combinations and materialize all the relevant combinations as a widget
builder. A widget builder, depicted in Figure 3-19, is a widget candidate but still
incomplete. For instance if a rectangle is drawn, the two widget agents associated
to the two first representations of the ListBox create a new widget builder
containing a single shape. Then if a second rectangle is drawn, the widget builder
associated to Representation 2 creates a new unfinished widget based on this
shape only, and creates a third representation with the first unfinished widget and
the new rectangle. Then, the widget agent evaluates if the combination of shapes
is valid.

Chapter 3 SketchiXML Development

 115

Figure 3-19 Widget Builder class description

In order to be as responsive as possible, the agents optimize their beliefs; when a
widget agent receives a new shape, it extract from its beliefs all the representations
where just one shape of this kind is missing for the completion of the
representation, and provide an answer to the mediator directly. Then, once the
agent has provided the results, it tries to combine the shape with the other widget
builder and reorganize its beliefs. To this aim, the agent evaluates all the constraint
that can be evaluated. A constraint can be evaluated if all the shapes bound to the
constraint are already present in the representation, other wise the constraint is
ignored until the missing shape is added. All the result from the constraint are
store in a table initialized with -1 value. Thus, if the result of the product of all the
value present in the constraint result table is negative, we know that some
constraint sill require to be evaluated, it the result is 0, we know that at least one
constraint does not hold, and the representation can be discarded directly.

Contrary to the architecture of the shape recognition mechanism, the number of
agent participating in the process is dynamic. To this end, each widget agent has
to subscribe to the mediator in order participate to the process. When subscribing,
the agent informs on the type of shapes that can be handled. So, in addition to its
role of mediator, the mediator agent also plays a role of yellow-page listing the
capabilities of all the agents taking part to the interpretation. Figure 3-20 shows
the architecture of the shape interpretation module. Two of the widget agent are
instantiated as an example.

Chapter 3 SketchiXML Development

 116

Figure 3-20 Shapes interpretation architecture based on the virtual mediator pattern [do95]

c. Supporting Fidelity Levels

When a widget is recognized by one of the widget agent, the result is then
transmitted to the controller that evaluate if the widget should be displayed.
Indeed, even if a widget is identified by one of the widget agent, another agent is
likely to provide another widget using some of the shape present in the first
widget. Once, the controller has decided to display a specific widget according to
the results, it creates a Widget object as depicted on Figure 3-21.

A widget contains a set of information such as its type, its size, the set of atomic
components used for its creation… Depending of the user preferences, the
representations of the view of the set of widget will differ. Indeed, according to
user preferences the level of fidelity used for the rendering will be adapted. In
order to address this issue, each widget is a subclass from the abstract class
Widget. The abstract class Widget proposes a set of method and attributes for
describing the widgets. As we can see on Figure 3-21, the class contains the
methods “drawHighFidelity” and “drawMediumFidelity” that are invoked to paint

Chapter 3 SketchiXML Development

 117

the widget for the high and medium fidelity. At the lowest level of fidelity (none-
fidelity), the rendering of the widget consists only in drawing them as they were
initially drawn. Based on the low fidelity level, the widgets recognized are drawn
with a different color than the initial sketch and replaces the recognized shape by
a smooth representation. The medium and high fidelity levels draw smoother
representation that need to be defined for each of the widget individually. That is
the reason why these two methods are present in the Widget class.

Figure 3-21 Extract of the class diagram for the different widget that are defined by default in

SketchiXML

Chapter 3 SketchiXML Development

 118

3.4 Presentation of the application

The following section present SketchiXML, the most relevant aspect of the
application are detailed in the following, while secondary aspect of the application
can be found in the Appendix F.

3.4.1 Parameterize the application

When SketchiXML starts, a dialog box is displayed asking the user to provide a set
of parameters for the application.

Figure 4-15 SketchiXML parameters dialog box

This set of parameters will drive the low-fidelity prototyping process:

• The project name: determines the name of the current project
• The user profile: each user of the system will have a different

configuration and will train the system according to his/ her preferences.
• The input type: determines what kind of input device to use. The selection

list displays all the compatible devices found on the computer
• The target platform: determines for which computing platform the UI is

prototyped (the actual version of SketchiXML only offers two choices
with personal computer and pda, but other platform can be added easily).

• The output folder: allows to choose the location to save the files.
• The rendering level: this slider let the user choose the level of rendering to

be used by the application. As it is presented later in the document, the
user can choose between four different levels of fidelity ranging from
nothing to the high level.

Chapter 3 SketchiXML Development

 119

• The usability level: this slider allows to define how SketchiXML is
supposed to interact with the Usability adviser. The usability adviser is a
third party application providing real time advice on the design process.

• The output quality: the value selected on this slider will affect the way the
sketches are interpreted. When estimating the spatial constraints between
the shapes, the result will depend of this value. A lower value increases the
speed while a higher value gives a more reliable result.

• The windows size: this two text fields let the user specify the initial size of
the windows to be created.

3.4.2 Elements of the SketchiXML Environment

The main window depicted in Figure 3-22 acts as the general manager that
initiates the View used by every graphical component. It builds all the different
areas and delegates all the graphical representation and event managing jobs to
distinct entities, each of them corresponding to a distinct area in the main
window.

Figure 3-22 SketchiXML main window

Toolbar

Widgets
Hierarchy

Drawing canvas

Chapter 3 SketchiXML Development

 120

• The drawing canvas is the key component of the application; it is the area
where the designer can sketch the user interfaces. Moreover, this surface
displays the results of the recognition and interpretation. So, this interface
handles a lot of information as input and output. For this purpose, this
component required a lot of time to develop robust display strategy. This
display strategy involves mainly an efficient repaint of the user window,
and tries to avoid disturbing the designer by updating a specific region of
the window if the designer is working on that part of the interface.

• The widgets tree on the right of the screen shows the hierarchy of all the
recognized widgets.

• The toolbar provide access to all the frequent operation such as copy,
paste, cut…

• The menu bar provide access to all the functions including the functions
present in the tool bar

3.4.3 Interacting with SketchiXML

As presented on Figure 3-23, there are different possible means of interaction
with SketchiXML, you can either use the application by using a standard mouse or
by using a pen based device. If your pen-enabled device support custom
configuration, you should use this feature and configure the pen as displayed here
under. If your pen-enabled device is configured as described bellow, you must
choose the mouse as input for SketchiXML.

Figure 3-23 functions associated to each button of the mouse or the pen

In both case, three different actions can be done

Right button

Center button

Left button

Delete

Command

Draw

Chapter 3 SketchiXML Development

 121

You can draw a new widget or part of a widget. If you are using a pen enabled
device you just have to draw on the drawing surface. If you are using a mouse you
should draw on the drawing area while keeping the right button pressed.

You can delete a widget or a part of a widget. If you are using a pen enabled
device you just need to use the eraser present on the back of the pen. If you are
using a mouse you should use the center button (most of the time the wheel).
Then, draw a stroke on the widgets / shapes you want to remove.

You can call a command using the left button on the mouse or by using the
button present of the pen if you are using a pen enabled device.

3.4.4 Building Widgets

In order to build widget, the user has to draw the widget using the drawing button
of the pen or the mouse. Each widget is made up of a construct of one to several
shapes / gestures / widgets and a set of constraints (as depicted earlier).

Figure 3-24 Shape recognition and delay between the strokes

A mutli-strokes rectangle where
each stroke is considered to be
part of the same shape (delay
smaller than 0.5 second between
strokes)

A text area based on the rectangle
where a delay of half a second
was respected between the
drawing of the rectangle and both
lines

A text area based on the rectangle
where delay of half a second was
not respected between the
drawing of the rectangle and both
lines

Chapter 3 SketchiXML Development

 122

Since the shapes can be multi-stroke, it is compulsory to observe a delay of half a
second (default value) between the strokes, otherwise the recognitions engine will
not recognize the sketch properly. This delay can be changed on the advanced
tab of the dialog box showed at the beginning of the process. Figure 3-24
illustrates this problem, the third sketch is not recognize neither as a rectangle nor
a textarea.

3.4.5 Editing functions

As it was stated in the state of the art, SketchiXML is supposed to take the best
from paper prototyping and computer assisted prototyping. So, SketchiXML
supports all the standard editing functions that can be accessed from the toolbar,
the edit menu and by using commands (R2 - Well defined editing functionalities).

Figure 3-25 SketchiXML edit tool bar

The list of edit function includes the following:

• Zoom: the designer is able to choose the zooming level by either using the

magnifier icons or the combo box.

• Undo and redo: let the designer going back to a previous stage of

development. There are no limitations on the number of action to be
stored in the undo list.

• Design memory: as this tool is supposed to support the prototyping phase,

by encouraging the designer to explore many design alternatives, it is
important to keep trace of the previous design. To this end, we propose a
complete history of all the development steps (R7 - Design history).

• Copy, paste and cut: require that a part of the UI was selected (cut and copy)

or copied (paste). In order to select a part of the user interface, the
designer has to surround the area to be selected with a dashed line (at least
5 tokens)

Chapter 3 SketchiXML Development

 123

Figure 3-26 Illustration of the design history, all operation are listed and associated with a

thumbnail

Figure 3-27 Selection mechanism is SketchiXML; surround the area to copy with a dotted line

3.4.6 Gesture training

If you do not train the system with new gesture, SketchiXML will only be able to
recognize a set of shape primitives: circle, ellipse, triangle, rectangle, line, cross…
This is sufficient to build most of the simple widget, but in case you want to build
complex widget such as a file picker, you may need some extra shapes. To this
end, SketchiXML propose a gesture training interface.

The training interface lets you define a set of new representation for shapes,
widgets and commands. You can even add new types of shapes and widgets by
clicking the add menu. The new shape you will create here will be available in the
grammar editor and can be defined as part of a widget.

Chapter 3 SketchiXML Development

 124

Figure 3-28 training the system with new gesture, that shape that was not recognized previously can
be recognized as a gesture and not a combination of shape and constraints

When using the gestures, you are not bound to the half second delay restriction
between the strokes. For instance this gesture was not recognized previously, but
once a gesture was defined for this widget, it’s recognized correctly.

Figure 3-29 gesture recognizer training window, lets the user specifying gestures for widgets, shapes

and commands

Contrary to the shape primitive recognition engine, the gesture recognizer is not
very flexible. It means that you have to redraw the gesture in a very similar
manner that you did when defining the pattern. As an example, if you draw a
horizontal line from right to left, it’s completely different from a line from left to
right. This is the reason why we use profile in SketchiXML, each user has to
define its own set of gestures.

Chapter 3 SketchiXML Development

 125

You can specify several gestures for a same widget, shape or command even if it is
not recommended. The gesture recognition process is far from being light, so a
large number of gestures may affect the performance of the application.

3.4.7 Grammar edition

As presented earlier in this chapter, the grammar is defined in an xml file. In order
to edit the grammar easily, we propose a grammar editor that allows to specify
new representation for the widgets. For each widget several representations can
be added. Each of these representations consists in a group of shapes, widgets or
gesture and a list of constraints.

Figure 3-30 Grammar visual editor, permits to edit the representation for the widgets

In order to add a new representation you have to click on the “add” button under
the representation list. Then, you need to choose the different shape to be used
in the representation. This selection can be done by clicking on the “add” button
under the shape list. A list of all the available shape is then displayed.

Figure 3-31 Add a shape to a representation

Chapter 3 SketchiXML Development

 126

We can observe that the list contains a set of shape primitives, and also all the
different types of widget and all the different types of gestures.

Each time a new shape is added to the shape list, the shape receives a unique
name. Once the list of all the shapes to be used in the representation is defined,
we can specify the list of constraints. To this aim we have to specify constraint on
each individual shape or pair or shapes. To add a constraint, click on the “add”
button located under the constraints list, a dialog box will be displayed

Figure 3-32 Define a constraint between several shapes.

To specify a constraint, select a shape in the “Object 1” list. If the constraint you
want to specify does not need a second shape you can directly specify the
constraints, otherwise you need to select a second shape in the “Object 2” list.
When the constraints is ready, click on the validate button and the constraint is
added to the list of constraint associated with this representation.

3.4.8 Level of fidelity

SketchiXML lets the designer choose the rendering level. This level can be chosen
at the beginning of the process, but can be changed at any stage of development
freely. (R6 - Recognition and process flexibility)

Figure 3-33 Level of fidelity slider, present in the tool bar, allows switching from one level of fidelity

to another

The “none” level (a) corresponds to a situation where nothing is displayed on the
screen. The designer does not get any feed back on his drawing.

The “low” level (b) corresponds to a situation all the shapes and widgets that are
recognized are displayed on the screen. A shape that is recognized is displayed in

Chapter 3 SketchiXML Development

 127

grey and replaced by its equivalent, and a widget that is recognized is displayed in
green with a label in the centre.

The “medium” level(c) corresponds to a situation where all the widget that are
recognized are replaced by a smoother informal representation of this widget. For
the recognized shapes, there are not any changes with the low level of fidelity.

The “high” level (d) corresponds to a situation where all the widgets that are
recognized are replaced by their corresponding widget in the java Swing toolkit.
Other toolkit representation could be added in the future, the reason of this
choice is only due to the fact that the tool was developed using this particular
toolkit. For the recognized shapes, there are not any changes with the low level of
fidelity.

Figure 3-34 (a, b, c, d) The four possible representations for a Text field (from none to high)

3.4.9 Navigation Editor

As stated in the state of the art, a computer assisted prototyping tool should
integrate the advantages of the both computer assisted design and paper
prototype. One of the drawbacks of the paper prototyping is the difficulty to
represent the interaction between the windows. So, we developed a navigation
editor that permits to the user to describe the navigation between the windows he
just sketched (R8 - Expressive scenario editor).

Chapter 3 SketchiXML Development

 128

Figure 3-35 SketchiXML navigation editor

The navigation editor only supports a few alternatives for the navigation. Since
the purpose of this navigator is to remains intuitive and sketch-based we do not
offer the possibility to define complex navigation schema. We mainly support the
navigation from one screen to another with several kind of behavior. In order to
represent a link from one window to another, the designer just need to draw a line
from the component that fire the action. A single component can fire a event that
can depend of a condition. In this case, a diamond is displays on the intersection
between the transitions.

3.4.10 Preview

One of the drawbacks that was identified in the paper-based prototyping was the
difficulty to switch from the design phase to a preview or a run mode. Indeed, the
standard approach requires a designer to play the computer and move the window
accordingly to the user actions. As we intend to provide a solution for the
drawbacks met in both perspectives, we reuse all the information provided in the
navigation editor in order to propose a run mode based on the sketches of the

Chapter 3 SketchiXML Development

 129

windows interpreted in a specific programming language. Such feature is very
interesting since it permit to see how the end users interact with the early
prototype. As it was presented in the navigation editor, one component may
trigger an event that executes different actions based on a condition, so when
running the prototype, the user is asked to choose the target windows in case of
multiple choices. The run-mode rendering is based on the fidelity level used for
the design; the example provided in Figure 4.30 illustrates thus the rendering at
high level of fidelity. (R10 – Preview)

Figure 3-36 Preview mode of the current SketchiXML project

3.4.11 UsiXML output

In order to meet requirements elicited in the state of the art, we needed to address
the increasing number context of use issue. So, in order to address this
requirement, SketchiXML produces an output, that is general and context
independent: UsiXML. (R3 - Language neutrality)

As it was presented in the beginning of the chapter, UsiXML contains four
abstraction layers. In this case we only produce an output for the concrete UI
layer, the corresponding final UI and more abstract specification can be obtained
with the combination of other UsiXML compliant tools. UsiXML allows to
specify the concrete individual object with a lot of details, in SketchiXML we do
not provide value for these attributes as we only generate default values for a
subset of the list of attributes

Click on the button

Specify target windows

Chapter 3 SketchiXML Development

 130

Figure 3-37 SketchiXML output, a UsiXML concrete specification
. The solution adopted for the layout follows the same trend, UsiXML offers a
complete set of layout, but we only use the Gridbag layout for convenient reason.
Indeed, when a designer or a user sketches a UI he expects to obtain a result close
to what was sketch. (Wysiwyg revisited: What you sketch is what you get) This
assumption does not hold when using other layout as the component are moved

<?xml version="1.0" encoding="UTF-8" ?>
<uiModel id="Project_Name" name="Project_Name" creationDate="2007-03-15T15:02:47.515+01:00"

schemaVersion="1.6.4" xmlns="http://www.usixml.org">
<head>
 <version modifDate="2007-03-15T15:02:47.515+01:00" />
 <authorName>Adrien</authorName>
 <comment>This file was generated with SketchiXML</comment>
 <comment>Information on this tool can be found on www.usixml.org</comment>
 </head>

<cuiModel id="Project_Name-cui" name="Project_Name-cui">
 <window id="window_0" name="window_0" isVisible="true" isEnabled="true" width="800" height="599"

isAlwaysOnTop="false" isResizable="true">
<gridBagBox id="Box_0" name="Box_0" gridHeight="29" gridWidth="40">
 <constraint gridx="2" gridy="3" gridwidth="3" gridheight="1" weightx="1.0" weighty="1.0" fill="none">
 <outputText id="Label_0" name="Label_0" isVisible="true" isEnabled="true" fgColor="#000000"

bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />

 </constraint>
 <constraint gridx="7" gridy="2" gridwidth="7" gridheight="1" weightx="1.0" weighty="1.0" fill="none">
 <inputText id="TextField_0" name="TextField_0" isVisible="true" isEnabled="true" fgColor="#000000"

bgColor="#ffffff" textColor="#000000" maxLength="100" numberOfColumns="20" numberOfLines="1"
isPassword="false" isWordWrapped="true" forceWordWrapped="true" isEditable="true" defaultFilter="" />

 </constraint>
 <constraint gridx="2" gridy="6" gridwidth="9" gridheight="1" weightx="1.0" weighty="1.0" fill="none">
 <radioButton id="RadioButton_0" name="RadioButton_0" isVisible="true" isEnabled="true" fgColor="#000000"

bgColor="#ece9d8" textColor="#000000" defaultState="false" />
 </constraint>

 <constraint gridx="1" gridy="7" gridwidth="9" gridheight="2" weightx="1.0" weighty="1.0" fill="none">
 <comboBox id="ComboBox_0" name="ComboBox_0" isVisible="true" isEnabled="true" textColor="#000000" />
 </constraint>

 <constraint gridx="2" gridy="11" gridwidth="9" gridheight="3" weightx="1.0" weighty="1.0" fill="none">
 <listBox id="ListBox_0" name="ListBox_0" isVisible="true" isEnabled="true" textColor="#000000" />
 </constraint>

 <constraint gridx="3" gridy="17" gridwidth="9" gridheight="5" weightx="1.0" weighty="1.0" fill="none">
 <inputText id="TextArea_0" name="TextArea_0" isVisible="true" isEnabled="true" fgColor="#000000"

bgColor="#ffffff" textColor="#000000" maxLength="100" numberOfColumns="20" numberOfLines="2"
isPassword="false" isWordWrapped="true" forceWordWrapped="true" isEditable="true" defaultFilter="" />

 </constraint>
 </gridBagBox>
 </window>
 </cuiModel>

 <contextModel id="Project_Name-contextModel_0" name="Project_Name-contextModel">
 <context id="Project_Name-contextModel_0" name="Project_Name-context-en_US">
 <userStereotype id="Project_Name-sten_US_9" language="en_US" stereotypeName="Project_Name-sten_US" />
 <platform id="Project_Name-platform_0" name="Project_Name-platform" />
 <environment id="Project_Name-env_0" name="Project_Name-env" />
 </context>
 </contextModel>

Chapter 3 SketchiXML Development

 131

and resized dynamically. Even if the components are also resized and moved with
the gridbag layout propose a presentation that is much closer to the sketch. As
presented in the beginning of the chapter, each component present is a gridbag is
associated to a set of constraints that define its behavior with the surface
dedicated to the display of this component. Depending of the widget, these
constraints are generated automatically.

3.5 Conclusion

Through this chapter we have introduced two important sections of this thesis.
Based on the state of the art provided in the previous chapter we have proposed
an innovative approach with SketchiXML.

On one hand, this chapter presents the structure that was adopted for the
development of the application, and illustrates how we addressed the issues
related to the shape recognition and interpretation.

We have presented the unifying reference framework for multi-target user
interfaces development. Then, based on this framework, we have introduced the
UsiXML language, a XML compliant syntax, relying on XML schemas to enable a
textual representation of any concepts used for user interface construction.

We have presented the agent paradigm and the belief desire intention behavioral
model. Additionally, we also presented some design patterns for multi-agent
application development. This approach will be used, as a main component, for
the development of the prototyping tool presented in this thesis.

On the other hand, the second subsection presents the applications itself and
illustrates how the requirements identified in the previous chapter were addressed
in a single tool.

Thus, after four years of research and development we are able to propose this
tool. The actual version of SketchiXML contains more than 50.000 lines of code
without taking into account the code that was generated automatically from XML
schema or external jars. Indeed, SketchiXML relies on set of java libraries such as
Jade, Jakarta, Apache, Castor… but also on “dll” files for handwriting recognition,
shape recognition, connection to the pen device driver…

Chapter 3 SketchiXML Development

 132

 133

Chapter 4 A support prototype
framework for development
methodologies

As stated in the introduction, numerous methodologies already exist for a wide
range of approaches. Moreover most of them are already well accepted by the
computer science community. The purpose of this chapter is thus to demonstrate
how a tool like SketchiXML can be integrated efficiently to the existing
methodologies rather than defining a new one. To this end, we start this chapter
by a presentation of the UsiXML based tools allowing conducting the prototyping
process as depicted in our prototyping reference framework presented in Chapter
2. The set of tools covers almost all the aspects required for a prototyping phase.
Based on this tools presentation we propose a general approach to integrate the
multi-fidelity levels tools a plug in for most of the classical methodologies. The
following presents a selection of methodologies and shows how the guidelines
enounced earlier can be applied to this specific methodology.

4.1 Reference framework

Through the second chapter of this thesis, we have introduced a reference
framework for the different types of prototyping techniques. The following
section presents the set of tools based on UsiXML, providing an effective support
for the prototyping phases depicted in Chapter 2.

Chapter 4 A support prototype framework for development methodologies

 134

We start with the high fidelity level since it is supposed being nearest of the
expected final interface and permits to see how the various representations of the
final interface are transformed in the lower levels of fidelity.

4.1.1 High fidelity prototyping

When a designer uses this level of fidelity, he tries to maximize the proximity
between the prototype and the interface to be produced. This means covering a
maximum of the aspects of the interface (presentation, navigations global and
local), but also the scheduling the functionalities in the time and the space.

For that, it is necessary that the prototype accepts entries from interaction device
to be supported (generally, the keyboard and the mouse) in order to treat them
and to reflect them in the test of the functionalities. Some prototypes could start
with a small data set, not necessarily connected to a data base, so as to ease the
development of the prototype.

Most of the time, the developers use the tools that are provided in the integrated
development environments, (i.e. Java net Beans). On one hand, these editors are
those which support the presentation and the navigation for the platform on
which the interactive application is developed; the final user interface can be
build by drag and dropping visual object from a palette. Such techniques permits
indeed to build user interface very efficiently under certain conditions. On the
other hand, these editors restrict the composition of the user interface to a
combination of predefined interactive component. So, adding dynamic, not native
or not standard components is not possible anymore. To reach this objective, the
designer must changer its perspective and code manually the expected
component.

Consequently, the user interface builders appear very appropriate for presentation
prototype, and particularly for the horizontal prototype while they come to be
inappropriate for navigational prototype. Indeed, as soon as the development
requires developing a behavior, the designer has to code manually, an expensive
activity that should be avoided during a prototyping phase.

Chapter 4 A support prototype framework for development methodologies

 135

Figure 4-1 GrafiXML main user interface in presentation mode

Due to these limits, some designers prefer to turn to tools not presenting the
same gaps, such as the tools known as frontage prototyping tool [Baum96, Berk00,
Snyd02]. These tools allow prototyping an interface by building it without coding,
so without necessarily having to develop the layer of abstraction and/or the
functional core. Hypermedia tools(like HyperCard), computer-assisted
presentation tools (like Microsoft PowerPoint, Aldus Persuasion), multi-media
authoring tool (as Director Macro-media) were already considered many times as
a relevant alternative. Indeed, such tools permit to produce a high level interface
with a minimum of navigation, the horizontal prototyping is better supported and
vertical or diagonal prototyping are partially supported. The presentation and
navigation prototype prototypes are also better supported in this approach.
Unfortunately, the effort of production is lost when the designer switch to the
development environment planned for the application. Even if such tools
generate code, the generated code is not recoverable for the final interface. The
developer starts again the development from beginning, with a high fidelity
interface.

To answer these challenges, GrafiXML (Figure 4-1), a high fidelity user interface
design tool based on the UsiXML language, has been developed. Like other
graphical user interface editors, GrafiXML makes possible to represent a graphic

Chapter 4 A support prototype framework for development methodologies

 136

interface by positioning the interactive objects, standard (i.e. a radio button) or
not (i.e. a calendar,). Instead of automatically or semi-automatically generating the
code of the user interface, GrafiXML automatically produces functional and
operational specifications written in UsiXML. These specifications can be
dependent or independent of a context of use. It is also possible to decline various
interfaces for several contexts of use associated with the same project. Figure 4-1
shows a capture of GrafiXML during the capture of the presentation
specifications. As this interface can be multi-platform, only a logical
representation is posted. In order to obtain a real user interface, the designer can
require a preview of the current work (the preview is only based on Java/Swing).
Thanks to export functionalities, GrafiXML can generate user interfaces code in
several target languages, such as Java, XHTML or XUL [XUL].

Figure 4-2 User interface specified in UsiXML rendered with GrafiXML

As an example, Figure 4-2 corresponds to the interface specified in Figure 4-1
generated in XHTML. A style sheet can be associated to the file outside of
GrafiXML environment. Logically, GrafiXML can cover simultaneously several
languages for the same user interface by specifying the resources which vary
according to the user (i.e., the textual resources, the images, the wordings, and the
text of contents). Another significant advantage of GrafiXML with regards to
other classical editors is its capacity to integrate plug-ins intended to cover wide
sets of functionalities. For example, a plug-in exists to transform an existing
interface into a PDA version, to evaluate the usability of the user interface, etc…

Chapter 4 A support prototype framework for development methodologies

 137

Figure 4-3 Interface GrafiXML main window in navigation edition mode

Eventually, to support navigation prototype, GrafiXML propose a navigation
edition mode (Figure 4-3). This navigation editor was presented in the previous
chapter as it was initially designed for SketchiXML. Here also, the tool generates
the specifications detailed in UsiXML V1.6.4 corresponding to the specified
behavior.

GrafiXML currently does not have the capacity to incorporate a not predefined
interactive object in UsiXML. Consequently, GrafiXML suffers from the same
gap than the standard editor described earlier. We will see however that a partial
solution with this problem was founded in prototyping on a lower level of fidelity.

4.1.2 Medium fidelity prototyping

As long as the purpose consists in representing graphically the presentation
and/or navigation in GrafiXML, the cost and the time of production seem to
remain at least equal to those incurred in a standard user interface editor, the only
clear advantage consist in an increased power of expression. This put aside, the
specifications written in UsiXML produced by this tool remain always available
and make it possible to avoid any effort loss when moving to the next step of the
development cycle.

When considering the advanced properties of the presentation or the navigation,
the designer can relies on VisiXML, a medium fidelity editor. Such approach
makes sense when the designer has a clear representation of the expected result
and wants to communicate his idea with a good looking presentation means.

Chapter 4 A support prototype framework for development methodologies

 138

Contrary to GrafiXML where only a logical representation is displayed, the
representation used with VisiXML only applies to a single context and give a
better understanding of the prototype. This is why it can prove to be judicious to
switch on a moderate fidelity level. But, if the designer does not have such a clear
overview about the result, he might regret as the time and cost dedicated become
prohibitory with regards to the return on investment.

Figure 4-4 Microsoft Visio using VisiXML plug-in

VisiXML (Figure 4-4) is a prototyping tool corresponding to these criteria as it
allows considering the visual aspects without requiring programming or additional
coding. VisiXML is a plug-in developed within the environment Microsoft Visio
Pro, it proposes a set icons of drawing for all the container and component that
can be specified in UsiXML (see left part of Figure 4-4). In VisiXML, the role of
the designer is reduced to the drawing of the desired interface by selecting the
desired containers and individual interactive objects from a list. The fundamental
difference between GrafiXML and VisiXML (moderate fidelity) lies in the fact
that the output produced is only a set of vectorial drawing that is in principle
easily modifiable but whose presentation is related to the target platform,
oppositely to GrafiXML where the edition is not related to a particular
environment.

Chapter 4 A support prototype framework for development methodologies

 139

As VisiXML is incorporated in the Microsoft Visio environment, the tool takes
advantage from all the features propose by this environment: the designer can
draw any other basic vectorial object such as decoration, text, figures, drawings.
This makes possible to specify elements of presentation which are not defined of
standard in UsiXML, but these drawings are lost in export. Once the designer
considers the design to be completed, it determines a hierarchy of the objects
present in the prototype and generates the specifications in UsiXML. When they
are other elements of drawing envisaged by Visio, but not by VisiXML, these
elements are safeguarded in the prototype of moderated fidelity, but are lost in the
generated specifications. This generates a latent inconsistency between the
external representation (the user interface drawn) and the conceptual
representation (the user interface specified in UsiXML). On the other hand, the
facility of edition is higher, and makes it possible to modify the interface being
prototyped faster with fewer details. Indeed, the prototyping is restricted to the
physical properties and for the majority of the physical properties having a visual
impact, default values are specified in order to minimize the contribution of the
originator. Nevertheless, if the designer wishes to specify some of the parameters
considered to be important for this level (i.e. font, its size, its color), the
properties sheet offers him the possibility to change any of the attributes of a
given component. These properties are retained in the generation of the
specifications in UsiXML. The major drawback of VisiXML comes when it is a
question of exploring a set of design alternative as the representation related to a
specific platform does not make it possible to make think that it is about an
interface in full evolution: its formal level [Hong01] of details give the impression
that the prototype is almost a final interface, and may prevent the end-user to
provide an effective feed-back.

So, even if VisiXML restricts the interface building process to a set of vectorial
drawings on a given platform, it supports presentation prototyping and global
navigation prototyping. Oppositely, the local navigation prototyping is not
supported at all, and, contrary to GrafiXML, it will not be upgraded so as to
support it.

4.1.3 Low fidelity prototyping

So as to avoid giving the impression of a nearly finished user interface, it is
judicious to consider the use of low level of fidelity. When the design is located at
a level of low fidelity, the representation of the interface handled by the designer
must be as natural as possible to avoid blocking the creative process of

Chapter 4 A support prototype framework for development methodologies

 140

exploratory design. The representation of the interface handled within the editor
is thus fundamental to give the impression of un-finished work to the end-user.

Amongst the different reasons, it is interesting to notice that end-users have the
same capacity to draw a user interface than a designer: as it is explained in the next
chapter, we did not detect a difference statistically significant between the end-
users and designers ability to draw a low fidelity user interface. Here is thus a
means of really including the final user in prototyping since he can produce a part
of the prototype as well.

Also, using a low level of fidelity does not imply that the capacity of the prototype
to reveal its advantages and its disadvantages decreases. Actually, it was shown
that the number of usability issues identified using a heuristic evaluation provides
the same results using a low fidelity or a high fidelity prototype.

Without going into details, the last chapters showed that in SketchiXML we
address several fundamental principles govern the prototyping at a low fidelity
level:

 Naturalness: it is necessary that the user interface being drawn is as natural
as possible on one hand. On the other end the drawing constraint must
avoid limiting the exploring capability of the user. The results of such
process may be thus not immediately similar to the final interface. With
SketchiXML the two inputs supported are the handwriting and the
sketching. These two expressions means are well known for supporting
highly creative design process [Plim04, Snyd02].

 Non-obtrusion: it is necessary for the system supporting the draft to be the

less obtrusive as possible so as to avoid disturbing the designer during the
prototyping phase. The low fidelity representation should not introduce
new tasks or actions that are external to the original nature of the activity
of prototyping.

 Continuity: the support system for the prototyping should support the

drawing continuously whatever the nature of the element prototyped (i.e.
an interactive object, text, drawing, multi-media contents). The user
should not have to change the mode of drawing if an element of different
nature must be represented.

Chapter 4 A support prototype framework for development methodologies

 141

 Recovery: the effort provided for the draft should be reused in the next step
of the development life cycle of the interactive application. In theory, to
minimize the costs, the effort supplied during this prototyping, whatever
the fidelity level, should be recovered as much as possible in the
continuation.

4.1.4 A prototyping framework

Through this thesis, we propose the elements to define a prototyping framework
based on the GrafiXML-VisiXML-SketchiXML trilogy. This set of tools support
the various levels of fidelity of the user interface prototyping process. Moreover
thanks to a common language, we provide support for cross levels navigation as
the prototyping trajectories depicted on Figure 4-6 are covered, in theory.
Nowadays, no other combination of tools provides such integrated solution.

Figure 4-6 prototype development paths based on UsiXML tools

By comparing the tools providing support to prototyping and the different
concepts of prototyping presented in Chapter 2, we have identified what tools are
appropriate for a horizontal, vertical, diagonal, presentational, navigational total or
local prototyping. The experience gained up to now seems to reveal that
prototyping at a low fidelity level hold a central role as the naturalness is
appreciated: the originator, the end-user itself or the two can collaborate directly
to the prototype being designed.

High fidelity
prototype : GrafiXML

Medium fidelity
prototype : VisiXML

Low fidelity
prototype: SketchiXML

Chapter 4 A support prototype framework for development methodologies

 142

4.2 Application to development methodologies

The purpose of this section is thus to evaluate how this prototyping framework
can be integrated in the existing development life cycle. According to [Kend99], a
development life cycle refers to the systematic approach analysts take to the
analysis and design of information systems. Typically, a system development life
cycle is a phased approach to analysis and design which holds that systems are
best developed through the use of a specific cycle of analyst and user activities.
Each phase is considered as part of the process and not as an individual unit.
Instead, several activities can occur simultaneously and activities may be repeated.

Some analysts argued in the past that prototyping should be considered as an
alternative to the systems development life cycle. In response to this claim, two
concerns are usually evoked. The first concern is the extended time required to
go through the development life cycle. As the investment of analyst time
increases, the cost of the delivered system rises proportionately. The second
concern about using the development life cycle is that user requirements change
over time. During the long interval between the time user requirements are
analyzed and the finished system is delivered, user requirements are evolving.
Thus, because of the extended development cycle, the resulting system may be
criticized for inadequately addressing current user information requirements.

It is apparent that the concerns are interrelated, since they both pivot on the time
required to complete the development life cycle and the problem of falling out of
touch with user requirements during subsequent development phases. If a system
is developed in isolation from users (after initial requirements analysis is
completed), it will not meet their expectations.

A corollary of the problem of keeping up with user information requirements is
the suggestion that users cannot really know what they do or do not want until
they see something tangible.

To overcome these problems, some analysts propose that prototyping be used as
an alternative to the systems development life cycle. When prototyping is used in
this way, the analyst effectively shortens the time between ascertainment of
information requirements and delivery of a workable system. Additionally, using
prototyping instead of the traditional systems development life cycle might
overcome some of the problems of accurately identifying user information

Chapter 4 A support prototype framework for development methodologies

 143

requirements. With a prototype, users can actually see what is possible and how
their requirements translate into hardware and software.

The approach advocated by [Kend9l] is to use prototyping as a part of the
traditional systems development life cycle. In this view, prototyping is considered
as an additional, specialized method for ascertaining users' information
requirements. This is totally consistent with recent methodologies such as the
spiral model that integrate the prototype as part of the process. Such assertion
confirm our position on the prototyping process and the need of well defined
prototyping tools allowing to build the multiple type of prototypes described in
the second chapter of this thesis. In addition to the use of prototype we advocate
the use of low fidelity prototyping method as it permit to involve the end user in
the conception of the prototype in addition to the evaluation of a prototype built
by the designer. Obviously the end user participation is only requested when
considering the human-computer interaction. Indeed, for many end users, there
are no distinctions between the interface and the system, as the interface is the
system. But, as it can be seen in the third section of this chapter, none of the
methodologies presented integrate the human computer interaction as part of a
general process. Indeed, such domain is often based on psychological theories on
the nature of programming and many software engineers seems still reluctant to
this kind of specific approach. With SketchiXML and the other user interface
builder based on UsiXML we intend to provide an efficient support to most of
the methodologies by allowing a strong involvement of the end-users without
technical background in computer science.

Naturally, the approach proposed cannot be applied to all the development life
cycle effectively; it is best applied to methodologies based on an iterative
development life cycle involving user feed back frequently.

Oppositely to the specification-based methodologies, where the requirements
consist in a formal and detailed description of system to be, the classical
prototype-based methodologies do not provide any detailed specification
statements. Instead, the specifications are embodied in the prototype. With our
UsiXML-based approach, a part of the information stored within in the prototype
is extracted under an xml file containing functional and operational specifications
written in UsiXML as an abstract description of the graphical layer of the
application.

Chapter 4 A support prototype framework for development methodologies

 144

Our methodology relies on a set of best practices to be applied during a
development process based on prototypes or not. These best practices define
when to use a prototype, what kind of prototype to use and what tool should be
used in order to support the prototyping.

The set of good practices is divided into two groups of recommendations. The
first set of recommendation elicits general good practices for the prototyping
process that are likely to be integrated in most of the methodologies, and
especially user centered methodologies. The following list is not exhaustive as
many best practices are already defined in most of the methodologies. For
instance, the Extreme Programming presented in the following relies exclusively
on a set of best practice. Thus, the following section mainly focuses on the
practice dedicated to the prototyping phase.

• Collect information, the information is held by various stakeholders, tries to
involve at least a representative of each user group in the prototyping
process. As [Rett94] claims, in order to conduct the design process efficiently,
you have to keep in mind you got to know end user as you are not the user!

• Develop simple prototype. Most of the time, a user interface cannot be

effectively pre-specified, prototyping is the only manner to evaluate several
design alternatives in a short delay so as to understand what the end user
had imagined. To this end, a low fidelity prototype can be the
communication medium by which requirements can be articulated. The low
fidelity prototype can be seen a common language to which the users and
developers can relate [Rudd96]. Moreover, from a designer perspective,
when building a user interface, many constraints on the layout have to be
defined. Defining the constraints based on a mental representation of the
user interface is very complicated and be eased with a small sketch of the
user interface. So, the designer should always consider the use of a low
fidelity prototype when developing a user interface. Moreover, since the
output of each type of prototype can be reused, it worth spending enough
time to build all the relevant aspects. Indeed, many designer tends to ignore
the importance of this phase an consider it as a waste of time as the effort
provided is lost

• Adapt the fidelity level. Do not hesitate to switch from a level of fidelity to

another. As presented in the second chapter of this thesis, each level of
fidelity is appropriate for specific tasks. However, do not involve the end

Chapter 4 A support prototype framework for development methodologies

 145

user in prototyping development activities that do not require his
participation. Interaction with the end user should only occur during low
fidelity prototyping construction or for the evaluation of higher fidelity
prototype.

• Discuss with the end-users. When requiring end user participation, prepare

realistic tasks and scenario in order to stimulate the end user in order to
gather as many information as possible. Ask questions to the end-users,
much information can be gathered through questioning and debriefing.
Indeed, a lot of information that cannot be highlighted on a low fidelity
prototype, such as information on non-functional requirement, could be
expressed in an indirect manner through discussion.

• Test interaction between end user and prototype. Low-Fidelity prototypes generally

require a facilitator, who knows the application thoroughly, to demonstrate
or to test the application. Interactivity by the user is somewhat restricted.
The user is dependent on the facilitator to respond to the user's commands
to turn cards or advance screens to simulate the flow of the application.
[Rudd96] Based on SketchiXML, the designer can develop the user
interfaces together with the end users, but also the global navigation with
the set of user interfaces.

• Avoid polished prototype. Making the prototype too polished may be counter-

productive. Firstly, such prototype might force users to accept it as finished.
Secondly, you are likely to hear criticisms about the colors typography or
other details. Thirdly, as a designer, if too much time is spend on a
prototype, you likely get too attached and fall in love with it.[Rett94]
Interacting on basis of a low fidelity prototype is thus more suitable and
facilitate the interaction with the end-user as he will be more likely to
provide his comments.

• Iterate. As explained in the introduction, when the prototype progresses, it

goes through several iterations. According to [Rett94], the number of
iterations of the design-prototype-test cycle improves the quality of the
resulting design. So low-fidelity prototyping is a technique that can
dramatically increase quality.

Chapter 4 A support prototype framework for development methodologies

 146

Figure 4-7 Iterations between design – usability testing – prototype is the key

In addition to the general good practices, we propose a set of good practices that
are directly linked to the application development life cycle. To this end, we
consider the development life cycle into a succession of seven distinct activities.
For each of these development steps we detail what kind of support is expected
from the UsiXML-based tools when relevant.

• Planning. During this first step, the designer establishes the plan for creating

the information system. This phase define the system to be developed and
present the project scope with a high level of abstraction. This phase should
produce the project plan, containing the tasks to be completed,

• Systems analysis, requirements definition. Refines project goals into defined

functions and operation of the intended application. Analyzes end-user
information needs. During this phase, the purpose is completely different
from the previous point. Exploratory prototype can provide an effective
support to determine user requirements. Such prototype lets the users
interacting with the prototype being developed, and permits to elicit new
requirements that may have been overlooked. Based on SketchiXML, such
prototype, that is generally considered to be a throwaway prototype, can be
reused in the later stage of development. Moreover SketchiXML propose
amongst other functionalities, to test the current design by animating the
prototype. Furthermore, SketchiXML can be adapted so as to responds to
the end user expectation, as the result can be interpreted in different means
with different types of rendering. At this level, SketchiXML fully achieved
is role of communication and interaction means between the designers and
stakeholders.

• Systems design: Describes desired features and operations in detail, including

screen layouts, business rules, process diagrams, pseudocode and other
documentation. During this phase, the prototype developed should provide

Chapter 4 A support prototype framework for development methodologies

 147

effective support to evaluate the design of the systems components such as
database, algorithm, architecture, human-computer dialogue… Obviously
most of these aspects cannot be prototyped with our prototyping
framework as these aspects are clearly out of the scope of the framework.
However, the human-computer dialog can be specified using the GrafiXML
or SketchiXML, even if the local navigation is not yet supported, GrafiXML
as a high fidelity editor will permit to define a detailed specification for the
navigation local and global. Based on this specification, GrafiXML is then
able to generate an interactive prototype, allowing previewing the design and
interacts with the system.

• Development: This last step consists in the real code of the application. Based

on the specification provided by the user or the designer through the
different steps and prototyping techniques, GrafiXML generates the
corresponding code in the desired language.

• Testing. This phase consists in testing the developed system. Test are

conducted so as to compare the effective performance with the expected
results.

• Implementation. The system is put into use. A user guide should be developed

and the end users are trained to the use of the system.

• Maintenance. This last phase consist in keeping the system up to date.

4.2.1 The waterfall model

The waterfall development model [Royc70] was created to describe the different
stages that occur in the development process. To follow the waterfall model, one
proceeds from one phase to the next in a purely sequential manner. For example,
one first completes "requirements specification" — they set in stone the
requirements of the software. When and only when the requirements are fully
completed, one proceeds to design. When and only when the design is fully
completed, an implementation of that design is made by coders… The waterfall
model is thus a top-down approach where the output of each stem serves as input
for the next step. This model relies on the controversial hypothesis that these
steps can be executed in precise order; there is no jumping back and forth or
overlap between steps.

Chapter 4 A support prototype framework for development methodologies

 148

Since this model is very simple, it can easily be used by inexperienced designers as
there are not interdependencies between the steps, and no need for a complex
coordination between the team members.

However this development cycle presents numerous serious drawbacks that
appear as strong limitations to its applicability. First of all many software projects
must be open to change due to external factors; indeed clients are notorious for
changing their stated requirements while designers are well known for
misunderstanding the client’s requirements. Whoever should be blamed, the
development life cycle must be adaptable since the hypothesis that requirements
are stated once for all is clearly utopist.

Secondly, since the people in charge of the different steps of development are
likely to differ, it is difficult to Figure out exactly what is needed in each phase of
the software process before some time is spent on the next step. Indeed, a
feedback from following phases may be helpful to complete previous phases
satisfactorily. For example, the design phase may need feedback from the
implementation phase to identify problem design areas.

Figure 4-8 Representation of the waterfall development model

This model does not incorporate any risk analysis phase, what could be useful in
order to identify potential problems areas of the software development process.
This problem is strongly linked with the fact that estimating the time and cost for

Chapter 4 A support prototype framework for development methodologies

 149

each phase of the development process without doing some test in that phase is
hard even for a experienced designer.

In response to the problems identified with the genuine waterfall model, many
modified waterfall models have been introduced. These models may address some
or all of the criticisms of the "pure" waterfall model. One of the alternative
version came from Royce himself, his final version intended improvement upon
his initial "waterfall model", illustrated that feedback could (should, and often
would) lead from code testing to and from design back to requirements
specification [Lind01].

With regards to our framework and methodological guidelines, this development
life cycle appears to be partially incompatible. Indeed, one the underlying
condition to the use of the framework, consist in mixing the activities together.
The clear distinction showed between requirements, analysis, and design phase
acts as a barrier to the integration of our methodology. As we stated earlier in this
chapter, the framework and methodological aspect can be integrated in many
existing methodologies as long as these methodologies rely on a frequent
interaction with the end users. Fortunately, most of the recent methodologies give
a central role to this aspect.

When applied to a waterfall model; the designer has the possibility to use
SketchiXML as support for user requirement gathering. In this context, the
designer defines all the scenarios from the beginning, as the next development
steps only occur once the requirements phase is considered to be competed. Such
constraints force the end users to consider all the scenarios at once. So, when this
phase is completed, the designer can move to the next step and build the final
user interface based on this prototype and build the functionalities extracted from
this previous phase. Such prototyping approaches appears thus to be close to a
horizontal prototype, even if the end users never see the real user interfaces until
the system is fully completed. Of course, such approach presents strong limitation
but, they are mainly associated to this development life cycle. By actively involving
the end users in the first development steps, we slightly reduce the gap between
the users’ perception of the systems and the systems itself.

4.2.2 Spiral model

The spiral model [Boeh88] is an iterative development methodology, the basic
idea behind this iterative enhancement is to develop a software system

Chapter 4 A support prototype framework for development methodologies

 150

incrementally, allowing the developer to take advantage of what was being learned
during the development of earlier, incremental, deliverable versions of the system.
The process starts with a simple implementation of a subset of the software
requirements and iteratively enhances the evolving sequence of versions until the
full system is implemented. During each cycle, design modifications are made and
new functional capabilities are added.

With regards to the waterfall model, the output of each phase is also the input of
the next phase, but the iterative aspect offer much more flexibility and enable
early detection of errors.

The main purpose of this development model consists thus in minimizing the risk
within the development process thanks to an early identification of the potential
problem. Moreover, this model is also suited to minimize the resource usage and
to ensure well defined quality standards.

The development process is divided into four different activities [Lind01]:

1. Identify: This activity consists in identifying the goals, constraints and
alternatives to be considered for the respective cycle. The goals define the
objectives of the cycle while the constraints specify limit and possibilities
on the manner to achieve this goal. Since several paths are likely to lead to
the same goals, these alternatives should be elicited.

2. Evaluate: based on the alternatives identified previously, the design team

evaluates the different alternatives with regards to their respective risk and
cost.

3. Develop: based on the output of the previous phase, the design team

constructs the goal product. To this aim, the alternate process model must
be evaluated so as to reflect the quality standard elicited during the first
step of the cycle.

4. Plan: During this last step of the cycle, the complete cycle is evaluated and

the weaknesses are identified. Based on this evaluation, the products and
resource for the next cycle are defined. Ideally, all the members of the
team should be involved in this phase in order to clarify uncertainties or
misunderstandings.

Chapter 4 A support prototype framework for development methodologies

 151

The key concept of the spiral model is thus its capability of early detection error,
and pruning amongst the different alternatives. As a result, the spiral model is a
very flexible process applicable for a large range of software development project.
Moreover, the incremental planning process permit to adjust project plan to
changing requirements easier than the other development process model.

The other side of the coin is the need of high management effort to conduct the
whole process correctly. Moreover this development process is strongly linked
with the Unified Process (UP), thus a commercial product mainly based on the
Unified Modeling Language (UML). It appears that this process does not offer the
possibility to provide formalization and was not significantly update since the end
of nineties.

Figure 4-9 The spiral development model [Boeh88]

When considering the spiral model, we observe that the end-users are mainly
involved in the requirements elicitation phase, but not really in the design phase;
their role in the development process is thus minor. This appears to be relevant
since most of the end-users cannot express themselves about the global

Chapter 4 A support prototype framework for development methodologies

 152

architecture. But as we stated previously, the future end-users have at least a
graphical idea of what is desired; most of the end-users can express what they
need on each user interface and what kind of data should be accessed using this
user interface.

As a matter of fact, if we build the mock-up using high fidelity editor, a lot of time
shall be wasted on unimportant details, and we will reduce drastically the number
of alternative designs explored. Moreover, given that most of the end users have
little or none experience in user interface design it is important to have a tool
supporting effectively the lack of prerequisites of the end user, and the need of
fast iteration. With regard to these requirements SketchiXML appears to provide a
valuable answer as it just require the end-user to be able to sketch the desired user
interface, without any programming concept. The purpose of the horizontal
prototyping step is thus to build together with the end user a prototype of the
user interface associated to the requirements elicited in the two other
simultaneous steps. The role of the end user is thus to participate to the process
and make sure the result match his expectations.

During the two first phases (identify and evaluate), the designer tries to identify
the constraints and alternative for the current cycle. Ideally, the designer should
choose some objective and elaborate a set of scenario to reach this objective. All
the alternatives should be elicited in order to find the most suitable choice. Based
on this set of scenario, the end user participate to the evaluation process, as the
designer tries to capture all the relevant information associated to this scenario. As
a communication means, the designer and the end user use SketchiXML as this
tool appears as the most adequate for brainstorming and communicate with the
variety of profiles that take place during the development of the application. Once
this phase is completed, the designer should have gathered a prototype describing
the set of user interfaces that should be part of the scenario, on one hand. On the
other hand, the designer should have listed a list of requirements that cannot be
expressed on the graphical representation. Based on this information, the designer
is able to develop a functional prototype by reusing the output of the previous
phases. In addition to the development of the user interface, the designer
develops the set of functionalities associated to the scenario being developed.
Such process corresponds to a diagonal prototype presented in the second
chapter, a functional prototype is being developed with an alternation between
user interface design and functionalities development.

Chapter 4 A support prototype framework for development methodologies

 153

During this last step of the cycle, the complete cycle is evaluated and the
weaknesses are identified. Based on this evaluation, the products and resource for
the next cycle are defined. Ideally, all the members of the team and end users
should be involved in this phase in order to clarify uncertainties or
misunderstandings.

4.2.3 Extreme Programming (XP)

Extreme programming [Beck04] is a software engineering methodology for the
development of software projects based on a grouping of several best practices
under a common umbrella. It prescribes a set of day-to-day practices for
developers and managers; the practices are meant to embody and encourage
particular values.

The best practices considered in XP have 12 practices, grouped into four areas,
derived from the best practices of software engineering:

 Fine scale feedback
o Pair Programming
o Planning Game
o Test Driven Development
o On-site customer

 Continuous process
o Continuous Integration
o Design Improvement
o Small Releases

 Shared understanding
o Coding Standard
o Collective Code Ownership
o Simple Design
o System Metaphor

 Programmer welfare
o Sustainable Pace

The goal is to give all developers a common view of the system which matches
the view held by the users of the system. To this end, XP favors simple designs,
common metaphors, collaboration of users and programmers, frequent verbal
communication, and feedback. The on-site customer practice hold a major role is
the development process. Oppositely to the classical approach where the software
is usually not built for the people that order it, but rather for people who have to

Chapter 4 A support prototype framework for development methodologies

 154

cope with it. Therefore XP require that at least at least one end user must be
strongly involved, and be part of the development team. This is particularly
important as XP is based on a dynamic approach towards the systems
requirements and planning of next steps. Thus the end user part of the team is
responsible to provide the required information and feedback.

The basic assumption of the XP appears to be contradictory to the traditional
approach, indeed XP assumes that the cost of changes does not raise
exponentially as time passes. Oppositely to the more conventional system
development methods is the focus on designing and coding for the needs of today
instead of those of tomorrow, next week, or next month.

XP supporters acknowledge the disadvantage that this can sometimes entail more
effort tomorrow to change the system; but they pretend this is more than
compensated for by the advantage of not investing in possible future
requirements that might change before they become relevant. Coding and
designing for uncertain future requirements implies the risk of spending resources
on something that might not be needed.

This model is based on a set of four key concepts that can be found in every
phases of the complete method [Lind01]:

• Communication. Programmers do not necessarily know anything about
the business side of the system under development. The function of
the system is determined by the business side, thus the understanding
of the required functionalities of the system lie in the communication
with the business side.
Moreover, the people within the team must communicate their
knowledge to the benefit of the entire group.

• Simplicity. XP treats every problem as if it can be solved "extremely
simply". Traditional system development methods say to plan for the
future and to code for reusability. Extreme programming rejects these
ideas.

• Feedback. Feedback is a key principle and is most useful if it is done
rapidly. The time between an action and its feedback is critical to
learning and making changes. In XP, unlike traditional system
development methods, contact with the customer occurs frequently in

Chapter 4 A support prototype framework for development methodologies

 155

small iterations. The customer must really be involved and has clear
insight into the system that is being developed. He is then able to give
feedback and steer the development as needed. So XP appears to be
based on the evolutionary prototyping model depicted before, the
starting point is always a simple solution that is then enhanced to
better ones, thanks to numerous small iteration.

• Courage. This means that all the decision are not easy to take in this
development process. Indeed, the designers may have to choose
between alternative without knowing in advance the potential
problems. Secondly, the designers must accept to throw away bad or
unnecessary portion of code.

Obviously, Extreme Programming is very controversial. When formal software
development processes require change requests to be analyzed and approved by a
change control board, in Extreme Programming, the on-site customer makes
changes informally, often by verbally informing the development team.
Proponents of Extreme Programming claim this makes the process flexible, and
saves the cost of formal overhead and critics of Extreme Programming claim this
can lead to costly rework and project scope creep.

Other controversial aspects of Extreme Programming are based of the fact that
requirements are defined incrementally, rather than trying to get them all in
advance. As a matter of fact there is not a big picture of the future system; most
of the design activity takes place on the fly from a very simple version adding
complexity only when required by failing test. According to critics this could lead
the design team to a waste of resource when redesign is needed.

But this methodology has proved in the past to be efficient, and not only for small
project. It has been claimed that XP has been used successfully on teams of over a
hundred developers. [Lind01].

Nevertheless, Extreme Programming appears to be the most prominent of several
agile [High01] software development methodologies. Agile methodologies rank
adaptability higher than predictability: the adaptability, to changing requirements,
ranks higher than the project predictability valued by more traditional
methodologies.

Given the description of the extreme programming, the methodology based on
the UsiXML tools appears straightforward. One of the key elements in the

Chapter 4 A support prototype framework for development methodologies

 156

extreme programming and other agile methodologies lies in a strong involvement
of the end users during the development. The design process is based on simple
design, test driven, small releases…, as many elements that are compatible with
the approach advocated in the previous sections of this chapter. But even if this
methodology does rely on simple method and strong interaction with the end
user, there are no means to ease this communication. Indeed, the main principle
of this methodology is to code the system directly without developing any
specification or prototype, as such steps are considered as waste of time. As the
output of the prototype process can be reused without any effort loss, we
recommend to the designers developing application with extreme programming to
use the low fidelity prototype tool with their end users. Indeed, SketchiXML
match the requirements elicited upper as it permits to involve the end users, it
relies on simple concept easy to understand and most of all facilitate the
communication between the stakeholders. Even for a skilled programmer,
building a user interface is everything but a straightforward process, and most of
them tend to sketch the user interface, so as to figure out what kind of constraints
should be applied between the components. Building a user interface based on
grid bag layout or a spring layout without a paper based support is almost
impossible. For a simple user interface with a dozen of widgets, the number of
constraints can be as high as one hundred. So, even if the approach recommended
by extreme programming consist in coding the application directly, recourse to
low fidelity prototype appears very valuable as the result is reused.

As it was the case with the spiral model, extreme programming progresses by
small steps so as to validate the development progressively. Thus, based on the
interface developed and the constraints gathered the designer develop the logical
layer behind these interfaces. This lead us to the same conclusion, we develop a
functional prototype with a diagonal approach. Such approach seems to match the
expectation of most of the actual methodologies as it cope with most of the
problems met during a development process: the mismatch between the user
expectation and the designer understanding.

4.3 Conclusion

Through this chapter we have introduced the prototyping framework based on
the UsiXML mark up language. This framework composed of three tools, permits
to develop prototype with different level of fidelities and maintain coherence
between the tools thanks to the UsiXML language.

Chapter 4 A support prototype framework for development methodologies

 157

Based on this prototyping framework, we illustrate how the current
methodologies can be improved thanks to a better use of the prototyping
techniques. A list of best practice for prototyping with the framework is
proposed, on one hand. On the other hand we illustrate how to integrate the
framework in some of the existing methodologies.

The next chapter presents three case studies addressing different contexts of use
for the framework presented in this chapter.

 158

Chapter 5 Surveys

 159

Chapter 5 Surveys

In order to build and test our application, we carried out a set of surveys at
different stages of the development. This chapter presents the four studies that
were conducted for this research:

1. The first survey details how the widgets grammar was elaborated.

2. The second survey was conducted shortly after the grammar

construction, and consist of a first evaluation of the application. Usability
and technical performances are both examined and serve as historical
benchmarks for future releases.

3. The third survey evaluates the impact of the fidelity level on the UIs

sketching, and collects user preferences.

4. The last survey is aimed at evaluating several aspects. On one hand we

captured a lot of information of the performance of the application and
simultaneously we observed the complexity associated to the widget and
the types of representations.

Following the presentations of the surveys conducted during this thesis, we
illustrate the approach developed on SketchiXML with a set of case studies.

5.1 Building a widget catalogue

Once the grammar and interpretation mechanism were completed, the next step
consisted is filling the grammar with a set of representation for each widget. For

Chapter 5 Surveys

 160

this purpose, we conducted an experimental study aimed at collecting information
on the way users would intuitively sketch the widgets (R9 - Ease of use).

5.1.1 Participants

Two groups of 30 subjects were randomly selected from a list of candidates: the
first group was composed of people with relevant experience in computer science
and interface design, while the second was composed of end users without any
specific knowledge in UI design or computer science. The second group was also
considered because SketchiXML’ s goal is to involve as much as possible the end
user in the early prototyping process in order to bridge the gap between what they
say and what the designer understands. Thus, the representations may vary
depending on designers or end users. Figure 5-1 depicts the various domains of
expertise of both groups.

Computer scientists
End-users

Telecommunication
Computer services
Academic
Bank
Governement
Entertainment
Student
Other

Figure 5-1 Distribution of the subjects according to their domain of expertise.

5.1.2 Methodology

A two phases analysis was carried out on both groups. The scope of the first part
was to determine how members of each group would intuitively and freely sketch
the widgets to be handled by SketchiXML. From a cross-platform comparison of
widgets, a widget catalogue was identified comprising the following 32 widgets:

text
text field
text area
push button
search field
login logout
reset form
validate

image
multimedia
area
layer
group box
table
separator
frame

tabbed dialog
box
menu
color picker
file picker
date picker
hour picker
toggle button

Chapter 5 Surveys

 161

radio button
check box
combo box

hyperlink
anchor
list box

slider
progress bar
spinner

Each widget was documented with its English and French name, a screen shot
and a small textual description (Table 5-1). For each widget, subjects were asked if
they had ever seen this widget before and to provide a sketching representation.

Widget Graphical presentation Textual description

Search Field

This widget is composed
of a text field and a
button. It allows the users
to submit a search.

Tabbed Dialog Box

This widget allows the
user to switch from one
pane to another thanks to
the tab.

Table 5-1 Extract of the list of widgets submitted to the participants

Then, from the widget representations provided during the first phase, we tried in
a second phase, to extract the most common representations. We grouped all
these representations in categories with strong similarities. Table 5-2 presents the
most frequent representation provided for a subset of widgets.

From that categorization, we proceeded to the evaluation of each sketch
according to a set of criteria:

- Naturalness: evaluates if the representation of the widget associated is
natural or not.

- Number of shapes: considers the number of different of different vectorial

shapes in the sketch alternative.

- Kind of shapes: evaluates the different kind of shapes involved in the
representation such as rectangle, diamond, ellipse, handwriting, gesture…

- Level of confusion: estimates if the representation is likely to be confused

with the other representations.

Chapter 5 Surveys

 162

Widget name Representations

Check Box

Combobox

Listbox

Slider

Textfield

Txtarea

Table 5-2 Extract of the most common representations provided by the participants

For instance, the first representation of the combo box presents good
characteristic as it is only made up of basic vectorial shapes and a pretty low
number of shapes. The naturalness aspect seems to be sufficient too, as many
participants drew this representation intuitively. The second and third
representations were presented less often, and required a large set of shapes and
constraints. The same analysis was then conducted for each widget, and leads us
to extract a list of representations that could easily be handled by SketchiXML.

Then, we conducted a second survey based on the results of the first one. We
built a set presentation proposals based on a combination of the representation
provided by the first phase of the survey and a number of new representations.

Chapter 5 Surveys

 163

Participants were then asked to rank the different representations according to
their representativeness and preferences as a five point Likert scale. On basis of
these results we defined all the representation to be handled by SketchiXML.

Representation
1

Representation
2

Representation
3

Representation
4

Representation
5

Table 5-3 Example of the list of representations submitted to the participants for the second part of

the survey

5.1.3 Results

Based on the result distribution shown in Figure 5-4, we established the best
representation with the following method. Firstly we assessed whether any
dependence exists between the participants. If this first step’s results established a
significant dependence, we then proceeded to the second phase and we computed
the aggregate preference of both groups and the global preference. For each
widget, the Kendall coefficient of concordance W [Sieg88] test was computed.
This coefficient expresses the degree of association among n variables, that is, the
association between n sets of rankings. The degree of agreement among the 60
people who evaluated the representations is reflected by the degree of variation
among the 6 sums of ranks.

Figure 5-4 Result frequency for each representation proposed in table 5-3

Chapter 5 Surveys

 164

12/)1(

)(

2
1

2

−

−
=
∑
=

NN

RR
W

N

i
i = 0,36238

Figure 5-5 Computation of W where k is the number of judges, N the number of objects being
ranked, RI the average of the ranks assigned to the ith object, R the average of the rank assigned
across all objects or subjects and N(N²-1)/12 represents the maximum possible sum of the squared

deviations

The comparison of the value obtained from this computation to the critical value
shows that the null hypothesis (independence between participants) has to be
rejected. We can thus proceed to the second phase of the analysis and establish a
ranking among all representations using the Borda Count method [Bord81]. The
principle of the Borda Count Method is that, each candidate gets 1 point for each
last-place vote received, 2 points for every next-to-last-place vote, etc., all the way
up to N points for each first-place vote where N is the number of candidates. On
the basis of this analysis we observed that both groups had almost the same
preferences among the representations (Figure 5-4). Most of the time, the set of
well considered representation is the same even if small changes in the sequence
occur. Out of this results set, we considered the preferred representations with
respect to their intrinsic complexity as explained earlier. For instance, list box 4
obtained a good score compared to the other representations, but its intrinsic
complexity is very high as it requires hand writing recognition, that was not
supported at the moment. List boxes 4 and 5 were thus discarded from the final
selection. Often, the set of representations selected for the list box is composed of
the three first representations depicted in the corresponding set of
representations.

0

50

100

150

200

Lisbox 3 Lisbox 1 Lisbox 2 Lisbox 4 Lisbox 5
0

50

100

150

200

Lisbox 1 Lisbox 3 Lisbox 2 Lisbox 4 Lisbox 5
100

150

200

250

300

Lisbox 3 Lisbox 1 Lisbox 2 Lisbox 4 Lisbox 5
Figure 5-6 Borda Count results for end users, computer scientists and both categories aggregated

Thus, the representations to be considered for the list box are three first
representations proposed on Table 5-3. The method was then extended to all the
widgets in order to build a catalogue of widgets’ representation. The current
widget catalogue proposes sketching alternatives for all the graphical components

Chapter 5 Surveys

 165

that can be found in UsiXML. All the representations can be found in Appendix
C.

5.2 Testing the application

According to the ISO-9241 norm (www.usability.net), the usability defines the
effectiveness, the efficiency and the satisfaction with which users achieve a
specific goal in a particular environment. The usability test refers thus to a process
that employs representative participants of a target population to evaluate to what
degree a product meet specific usability criteria.

So, in order to evaluate the usability of the application, we conducted a large-scale
survey on 40 participants. The objective of this test is thus to validate that the
usability objective, such as the speed, accuracy, ease of use, naturalness, defined in
(R9 – Ease of Use) are met. A secondary objective of this test was the creation of a
historical record of usability and performances benchmarks for future releases.

5.2.1 Participants

Two groups of 20 subjects were selected in a list of candidates: the first group was
composed of people with relevant experience in computer science and interface
design, while the second was composed of end users without any specific
knowledge in UI design or computer science. As it was the case with the first
survey, we also considered a group of end-user since SketchiXML’ s goal is to
involve as much as possible the end user in the early prototyping process. Figure
5-7 depicts the domains of expertise of both groups.

academic
student
tourism
bank
IT

Figure 5-7 Distribution of the subjects according to their domain of expertise

5.2.2 Methodology

Each participant was asked to draw three forms after a five minutes training with
the tool. The first and third forms were similar as they were used to evaluate if the

Chapter 5 Surveys

 166

time needed to draw a given form decreased as the participants use the
application. While participants were sketching the user interfaces (forms), the test
supervisor collected all the information related to the performances such as the
number of shapes recognized correctly, the number of unrecognized strokes.

Figure 5-8 First form submitted to the participants of the survey

The analysis is divided in two sections. The first section considers the behavior in
terms of performance while the second section focuses on the usability aspects.

a. Performance

As stated in the state of the art, an informal design tool supporting sketch
recognition must support it almost perfectly (R4 – Robust Recognition). Indeed, if
the designer has to redraw a shape several times before the tool finally recognizes
it, then the advantages of such tools might become doubtful.

For each widget drawn we collected all the information associated to the
performance:

- Number of widgets correctly recognized: evaluates the number of widget for
which all the shapes part of the representation were correctly recognized.

Chapter 5 Surveys

 167

- Number of shape correctly recognized: evaluates the number of shape correctly

recognized (even if the widget was not recognized)

- Number of non-recognized shape: consider the number of shapes that were not
recognized at all.

0
20
40
60
80

100

Button Rectangle1 Rectangle2

Elem ents

su
cc

es
sf

ul

re
co

gn
iti

on
 ra

te

0
20
40
60
80

100

Check box Square Line

Elem ents

su
cc

es
sf

ul

re
co

gn
iti

on
 ra

te

0
20
40
60
80

100

Radio button Circle Line

Elem ents

su
cc

es
sf

ul

re
co

gn
iti

on
 ra

te

0
20
40
60
80

100

Combo box Rectangle Triangle

Elem ents

su
cc

es
sf

ul

re
co

gn
iti

on
 ra

te

Figure 5-9 Recognition rate for the button, check box, radio button and combo box widget, with the

recognition rate of each vectorial shapes part of the widget

Figure 5-9 illustrates the successful recognition frequency for the check boxes,
radio buttons, buttons and combo boxes.

Shape General rate
circle 92,85%
triangle 89,99%
text 93%
square 93,4%
rectangle 94,14%

 Table 5-3 Distribution of the subjects according to their domain of expertise with a weighted
average of 93,01%

Table 5-3 gives a summary of the average correct recognition rate for each kind of
vectorial shapes present in both forms. As it appears clearly on the chart, some of
the vectorial shapes show an average recognition rate. Indeed, as it was stated in
the requirement, such application should support recognition perfectly, however
we are far below the 95 % expected. For instance the average recognition rate for
the triangle is close to 90%. But, if we only consider the recognition rate for the

Chapter 5 Surveys

 168

triangle of the combo box, then it falls to 80 %. On the other hand, the successful
recognition rate for the triangle of an image component is close to 100%. The
weighted average recognition rate for the shapes is 93.01 %.

Table 5-4 shows the recognition rate for each widget present in both forms. As
the recognition rate of the vectorial shape was quite low, the recognition rate for
the widget is thus very low too. If we consider the weighted average of the
recognition rate for the widgets, then it falls far below 90% with 86.88 %. It
comes out that the tool should be drastically improved as requirement (R4 –
Robust Recognition) is not met.

Widget General Rate
Text Field 84,67%
Button 95%
Radio button 83,10%
Check box 90,2%
Image 93%
Combo box 78%
Text 94,12%

Table 5-4 Distribution of the subjects according to their domain of expertise with a weighted
average of 86,88%

Nevertheless, some interesting observation emerged from these tests. It seems
that the recognition rate would be correlated with the size of the shape drawn.
Indeed, this would make sense as noises can represent a huge proportion of the
dots set when the stroke is small. In order to test this assumption we conducted a
two-sample test for binomial proportions between the triangle drawn for the
combo box (small sketch) and the image component (large sketch). The test
compares p1, the proportion triangle recognized for the image with p2, the
proportion of triangle recognized for the combo box. Then the target parameter
about which we will test a hypothesis is (p1 - p2) > 0. In this case, the p value
computed is 3.06 and falls outside of the acceptance and leads us to conclude that
the proportion of small triangles recognized correctly is smaller than for the large
triangles.

So as to solve this problem, we have introduced a zooming function to the
application. Indeed, at the time we conducted the survey, some of the
functionalities presented in Chapter 3 were not integrated in the application.

Chapter 5 Surveys

 169

The type of input device is also likely to explain the misrecognition as participants
were asked to draw the user interface on a graphic tablet “Wacom Intuos²”
(Figure 5-10). Unfortunately, the drawing area of such tablet does not contain any
reference marks such as a grid. It is thus very difficult to draw on the tablet
without looking at the screen and vice-versa. Many participants pointed this
problem as the major drawback of the application.

In order to verify this assumption, the application should be tested on different
types of device in order to evaluate the impact of the device used.

Figure 5-10 The graphic tablet Wacom Intuos²

We also tested if the recognition rate was better as participant got more used to
the application. To this end, we computed the Cramer's V [Sieg88], a statistical
measuring the strength of association or dependency between two (nominal)
categorical variables in a contingency table.

We also tried to see if the successful recognition rate was function of the
background of the participants in terms of prototyping experience. But, here again
we did not find any relevant difference.

As a conclusion for this section, it appears that the backgrounds of the
participants do not influence the recognition rate of the application, but the
performances do not really meet the expectations desired. Indeed the average
recognition rate is lower than 90%, and is thus far too low. Further development
of the application should then focus on that matter.

Several solution paths should be considered:

- It appears the size of the drawing area might have a positive effect. Thus,
a new set of tests should be conducted for the next versions so as to
evaluate the impact of that factor.

Chapter 5 Surveys

 170

- The use of the zoom should also be tested. Indeed, several people tried
the new version with the zoom feature and reported that it was easier to
sketch small shapes than with the previous one, unfortunately we cannot
conclude anything.

- A last path to consider, closely related to the first one, is the impact of the

input device used. Indeed, many participants reported in the usability
questionnaire, problems to draw on the graphic tablet while watching the
screen and the lack of visual reference marks on the graphic tablet.

b. Usability

Through this section we evaluate how people interacted with the application. Did
they like the application? Was it easy to use? Did it meet their expectations?... are
all questions that will be addressed in this section.

The first part of this section aims at evaluating the learning effect and the
importance the participants’ background when using the SketchiXML. To this end
we analyzed the time needed to draw the different forms with regards to their
background as a designer and the previous experience with the application.

Figure 5-11 shows the time distribution to draw the first form. It is distributed on
an interval ranging from 100 seconds to 385 with a standard deviation of 73
seconds and an average of 187 seconds.

2020N =

TYPE

computer scientistsend user

N
um

be
r o

f s
ec

on
ds

 n
ee

de
d

to
 d

ra
w

 fo
rm

 1

400

300

200

100

0

24

2020N =

TYPE

computer scientistsend user

N
um

be
r o

f s
ec

on
ds

 n
ee

de
d

to
 d

ra
w

 fo
rm

 3

400

300

200

100

0

24

Figure 5-11 Time needed to complete the test for both group of participants

Chapter 5 Surveys

 171

In order to test if the time needed to draw the first form decrease as designer uses
the application we conducted an ANOVA test on the average time needed to
draw the form. Thus, the first step consisted in testing the homogeneity of
variances of the samples. Indeed, the analysis of variance assumes that variances
are equal across groups or samples. To this end, we computed the Levene test
[Sieg88]. As the homoscedasticity assumption is met, the results of the analysis of
variance test is valid.

The outcome of the test showed that the time needed to draw the third interface
is significantly lower than the time needed to draw the first one for both groups.
As explained in the previous section, the error rate was the same between the first
and the third forms, we can thus conclude that a learning effect exists as the
participants need less time for the same result after only a minimal training of the
application. (R10 – Ease of Use)

We conducted the same test to see the relationship between the time needed and
the type of the participant. The results are very surprising; indeed, the time needed
to draw the first form for the computer scientist is significantly different than the
time needed for the end-users. End-users showed better performance than the
computer scientists.

The next step was conducted in order to identify a possible link between the age
of the participants and the time needed to draw the form. To this aim, we
computed the Pearson correlation coefficient [Sieg88]. The result showed that
there is no correlation the time needed to draw the first form and the age of the
respondents.

The last part of this section present some interesting results among all the
questions asked to the participants at the end of the experiment. Trough these
results, it appears that most of the participants enjoyed the use of the application.
Indeed, even if it does not appears on the charts presented hereunder, most of the
participants expressed very positive impression on their experience with tool. It
was the first experience with a graphic tablet for most of them, and they really
seemed to like the concept. Moreover, they found that the application was easy to
use and were quite satisfied with the performances.

Chapter 5 Surveys

 172

0

5

10

15

20

25

very
complicated

conform to
w aitings

Very simple

computer scientists

end users

Figure 5-12 Question: How would you categorize the tool’s usage?

0

5

10

15

20

25

30

A lot pretty much I don't
know

few none

computer scientists

end users

Figure 5-13 Question: Have you faced many problems when using the tool?

0

2

4

6

8

10

12

14

16

Very slow slow conform to
w aitings

fast very fast

computer scientists

end users

Figure 5-14 Question: what do you think of the speed of the application?

0

5

10

15

20

25

very
complicated

conform to
w aitings

Very simple

computer scientists

end users

Figure 5-15 Question: How would you consider apprenticeship to the application?

As a conclusion, it’s clear that the requirements in terms of performances were
not met. But on the other hand, most of the participants were really satisfied with
the performance provided by the tool. Indeed, in addition to the multiple choice

Chapter 5 Surveys

 173

questionnaire submitted at the end of the test, participants had the opportunity to
write comments on the application. Most of these comments were positive and
just a minority of the participants evoked the poor recognition rate as a problem.
Moreover, the fact that the time needed to draw the first and the third form is
different is also encouraging as it means that learning effect is pretty strong.

Thanks to this survey, we have proceeded to the creation of a historical record of
usability benchmarks for future releases. It emerges thus that future development
of the application should focus on the performance improvement and on the
impact of the input device used with the application.

5.3 Experimental Study on Fidelity Levels

In order to evaluate how end users and UI designers appreciate the various fidelity
levels at design time, an experimental study has been set up for investigating the
effects of fidelity level on a UI design activity by sketching.

5.3.1 Participants

Twelve volunteers participated in this study. Participants ranged in age from 23 to
39 years (M=30 years), including 6 females and 6 males to keep gender balance.
Participants were selected on the basis of general inclusion criteria including age
and profile (end user or UI designer). All participants were identified and recruited
regarding their job in the computer science area (e.g., regular users, computer
science researchers, developers, and UI designers from private companies). Table
5-5 summarizes the demographic information and the characteristics of the
overall participant sample. Age represents the average number of years for the
overall sample. Gender represents the frequency counts of males and females.
General profile denotes the frequency in categories: end users vs. UI designers.
Professional computer experience represents the average number of years for the
overall sample in designing computer experience represents the average number
of years for the UI designers only. The end users versus designers assessment was
made in order to obtain a comprehensive profile of participants.

Gender General profile Computer experience
N Age Male Female Handedness End

users
User interface
designers

Professional
exp.

Designing
exp.

12 30 6 6 Right 6 6 5.25 4

Table 5-5 Summary of participants’ demographics and characteristics

Table 5-5 summarizes the demographic and the characteristics of the participants
based on the grouping. Age represents the average number of years for each

Chapter 5 Surveys

 174

participant group. Gender represents the frequency counts of males (M) and
females (F) within each group. Professional computer experience represents the
average number of years for each participant group. Designing computer
experience represents the average number of years for the designers only.

Group N Age Gender Professional exp/ Designing exp.
Designer 6 31 M=4, F=2 6.8 4
User 6 29 M=2, F=4 3.7 N/A

Table 5-6 Summary of group profiles

5.3.2 Apparatus and experimental task environment

The computer system used in this study was a PC Dell Latitude D820 equipped
with an Intel Core 2 Duo T7200 (2.0 GHz, 4 Mo cache level 2 memory) processor
and 2 Gb of RAM memory. Participants were seated approximately 30 cm from a
21-inch Wacom Cintiq 21UX touch screen flat panel connected to this computer.
Screen resolution was set to 1,600 x 1,200 pixels, with a 32-bit color palette. The
keyboard was not required to complete the task since the participants were
supposed to use a stylus. The sketching tool used in this experiment is the one
whose implementation has been described in next subsection. The experimental
task to be carried out by participants consists of designing two UIs (combined in a
pair) in each of the following fidelity levels: Lo-Fi, Me-Fi, Hi-Fi, or No-Fi. Each
UI contains eight widgets amongst the following alternatives: push button, check
box, combo box, list box, progression bar, radio button, spinner, text area, and
text field. A UI pair is considered to be complete once the eight widgets of both
UIs have been entirely designed with the imposed fidelity level.

Figure 5-15 A participant sketching on the Wacom Cintiq

Chapter 5 Surveys

 175

5.3.3 Methodology

Prior to experiment, participants were given an explanation of the research study
and their role in the study. Following completion of the demographic
questionnaire, the participants were briefed on how to use the setup and how to
carry out the task. A short training period has been allocated for each participant
to sketch a given UI until they feel confident in using the setup. They were also
allowed switching between the four fidelity levels. The main part of the
experiment consisted in designing four pairs of windows in a pre-assigned fidelity
level. The order of the four pairs of windows was randomly assigned. After the
sketching tasks, participants were asked to complete a Computer System Usability
Questionnaire (CSUQ, see Appenix E) [Lewi95] and were interviewed according
to a semi-structured scheme. The interview focused on their subjective
satisfaction and perception about the study, the system and their preferences in
term of fidelity level. The dependent variable used to assess participant task
performance was Window Development Time (WDT), which represents the task
duration (in seconds) required by a participant to design a window.

5.3.4 Results

The following section is divided into 3 parts: the first subsection explains the
statistical outcome of the analysis, while section 2 and 3 present the qualitative
result of the survey.

a. Statistical analysis

One participant has not followed the instruction related to the order of the
conditions. Consequently, the sample includes only 88 entries instead of 96. Due
to the sample size, an analysis of variance (ANOVA) was used to examine the
presence of significant differences in task performance, as measured by WDT.
Table 3 reproduces the results of two analyses: influence of the fidelity level and
influence of the user profile. The statistical significance is underlined.

ANOVA Tests of Sig. Diff. Between groups
1) Fidelity (No/Lo/Me/Hi-Fi)- F=1.8888; p=0.1377
2) User profile (User/Designer) F=7.2719; p=0.0084

Table 5-7 Tests for significant differences in performance

Although results from Table 5-7 show that the fidelity level had no influence on
WDT, Hi-Fi demonstrated the fastest WDT (M= 261 seconds), respectively
followed by No-Fi (M= 297 seconds), Me-Fi (M= 359 seconds) and Lo-Fi (M=
376 seconds) (Figure 5-16 a). In addition, the results from Table 5-7 show that

Chapter 5 Surveys

 176

user profile had a significant influence on WDT (F=7.2719; p=0.0084).
Unsurprisingly, participants from the end users group demonstrated the fastest
WDT compared to those from the designers group (respectively, M=267 seconds
versus M=369 seconds - Figure 5-16 b). Indeed, this observation had already be
done in previous surveys.

Figure 5-16 (a & b) Mean WDT (seconds) for each fidelity condition, Mean WDT (seconds) for each

participant group

b. Computer System Usability Questionnaire.

The IBM CSUQ [Lewi95] is a public domain instrument to measure user
satisfaction with computer system usability in the context of scenario based
usability studies. The CSUQ is made up of four parts, each consisting of items
ranked on a 7-point Likert scale: the overall satisfaction score (OVERALL: all 18
Items), the system usefulness score (SYSUSE: Items 1-8), the information quality
score (INFOQUAL: Items 9-15), and the interface quality score (INTERQUAL:
Items 16-18). This questionnaire has been chosen because of its acceptable
reliability: a coefficient alpha exceeding .89 for all parts has been proved. Seven-
point rating scales (1=totally disagree, 7=totally agree) were used because they
allow three levels of either positive or negative ratings.

Statistical Indices Subscale Mean Median Std deviation
SYSUSE 4.04 4 1.52

INTERQUAL 5.39 6 1.14
OVERALL 4.83 5 1.17

INFOQUAL 4.45 4.5 1.37

Table 5-8 Summary of overall sample CSUQ. Statistical indices are mean, median and standard

deviation.

Chapter 5 Surveys

 177

Table 5-8 suggests that the system usefulness is moderately appreciated as well as
the information quality (reasonably good mean, but large deviation). However, the
interface quality and the overall user satisfaction are both assessed positively.

c. Subjective general comments and users preferences.

One third of the participants judged the stylus uncomfortable because of a
physical button located too close to their index finger. One third of the
participants reported that some system functionalities were not usable: the copy-
paste was estimated too slow and required too many pointing gestures; the lack of
drag-and-drop of sketched items was regretted since it is at the present time
replaced by the cut-paste functionality. One third of the participants considered
that the speed of the recognition should be improved in the next version of the
tool. In return, three quarters of the participants judged the tool as user-friendly
and intuitive. This result is consistent with the INTERQUAL result reported
above (Table 5-8). Moreover, eight on 12 participants considered the tool as fast
and accurate in term of drawings/sketchings recognition. Finally, most of the
participants reported a pronounced preference for Hi-Fi (5 participants on 12,
including 2 designers and 3 users) and Me-Fi (5 participants on 12, including 3
designers and 2 users). They argued they felt “more comfortable” in those two
levels because of the real-time interpretation of their drawings and the resulting
UI aesthetics. Furthermore, 75% of the participants dislike the No-Fi (9
participants on 12, including 4 designers and 5 users). They claimed that this level
“looks like a draft”, which is consistent with [Meye05].

5.3.5 Interpretation and discussion

The experimental task used in this study was a simplified version of a UI
development life cycle. Time required by participants to develop UIs (WDTs) was
used as an indicator on the usability of the fidelity levels. This metric revealed its
shortcoming: WDT is not exact enough to be considered as representative of
participant performance. Further usability studies need to include other metrics
like the number of recognized/unrecognized shapes/texts/gestures, as well as the
number of effective “widgets” that are added to the interface.

The statistical analysis revealed no significant impact of the “fidelity level”
parameter on the user performances (speed). This result may be due to the fact
that the level of fidelity has no influence on the sketching strategies adopted by
the users, that is to say they perform the tasks in the same way, no matter what

Chapter 5 Surveys

 178

the level of fidelity is. In addition, the statistical analysis revealed a significant
impact of the user profile (end user vs. designer) on the performances.
Surprisingly, end users –with no experiment in interface design– are faster in
performing sketching tasks than designers. This result may be due to the fact that
designers do care a lot about the quality and aesthetics of the resulting interfaces
(e.g., they systematically preserved alignment, symmetry, and semantic grouping of
UI elements) compared to end users. Consequently, more time is required for
designers to sketch valuable interfaces, regarding their own personal criteria.
These results are consistent with some earlier findings [Coye05].

Finally, the qualitative analysis revealed a pronounced user preference for both
Hi-Fi and Me-Fi. This result suggests that participants, including both end users
and designers, may prefer in terms of visual comfort, visual feedback, and widget
recognition the fidelity levels that show a resemblance to the final UI. Differences
observed between end users and designers are consistent with some other findings
[Bail03 ,Coye05, Virz96, Walk02].

5.4 Evaluating the representations

The first versions of SketchiXML were only supporting one level of fidelity and
were using a set of representations defined according to an experimental study.
Even if we were convinced that the number of stroke or the type of constraint
held a central role, we never addressed this aspect rigorously. Analogously, we
have always considered that the level of fidelity of the interpretation should be
minimal. Thought the next section we propose an experimental study aimed at
evaluating the complexity associated to the widget supported by SketchiXML and
the impact of the fidelity level. This process is divided in a series of steps. First,
we detail the widgets that are taken into account for the test with a visual
representation and a set of information related to the relation to be checked
amongst their atomic components. Second, based on the set of widgets presented
in the first sub-section, we present into detail the purpose of the evaluation study.
Third, the methodology to be used in the experimental is described. Fourth, the
result obtained are presented and commented into details.

5.4.1 Widgets Taxonomy: an a priori classification

The sketching activity in SketchiXML is considered as sketching combinations of
shapes and constraints. Indeed, as shown in Table 5-9, each widget is detailed as a
precise combination of atomic components. Based on this set of components, a

Chapter 5 Surveys

 179

graphical code is defined as a set of constraints that must be satisfied. Table 5-9
provides an illustration of the graphical code associated to each widget.

Graphical code

Widget
Gesture

representation

Atomic
components

Sp
ec

ifi
c

or
ie

nt
at

io
n

Si
m

pl
e

in
cl

us
io

n

Co
m

pl
ex

in

clu
sio

n

Ju
xt

ap
os

iti
on

In
te

rs
ec

tio
n

Se
qu

en
ce

 o
f

co
m

po
ne

nt
s

Si
ze

Button 2 Rectangle (2) X

Checkbox 2 Rectangle + Line X X X

Combobox 2 Rectangle +
Line/Triangle X X

Label 1 Line X

List box

5 Rectangle + Triangle
(2) + Line (2) X X X X

Picture

2 Circle + Triangle X

Progress bar 3 Rectangle X X X X

Radio button 2 Circle + Line X X X

Slider 2 Line + Triangle X X X

Text area 3 Rectangle + Line (2) X X X

Text field 2 Rectangle + Line X X

Toggle button 3 Rectangle (2) + Line X X

Table 5-9 Widgets Taxonomy

As we observe on table 1, the visual code refers to a visual “semantic” that is
based on 7 criteria:

 Specific orientation is a unary constraint that evaluate if the atomic
component has a precise orientation. Refer to the check box, the label, or
the progress bar to illustrate the horizontal orientation code; refer the
toggle button to illustrate the vertical orientation code.

 Simple inclusion is binary constraint applied between two components that
evaluate whether an atomic component is inside another or not. (See text
field and the text area)

Chapter 5 Surveys

 180

 Complex inclusion is similar to the simple inclusion with the exception that
additional constraints are specified. This constraint is considered as more
complex as it may require an atomic component to be enclosed in a
particular region of another component. As a consequence, the atomic
component to be enclosed is likely to be very small, and thus increase the
difficulty. (see the button, the combo-box, the list box, the progress bar
and the toogle button.

 Juxtaposition is a binary constraint that requires two atomic components to
be in juxtaposition. (see the radio button and the checkbox)

 Intersection is a binary constraint that requires two atomic components to
intersect. (see picture and slider)

 Sequence is a constraint that implies a repetition of a same atomic
component. (see list box, progress bar and text area)

 Size is a constraint that implies a specific size for an atomic component
(small, large…)

The visual semantic of the widgets’ representation was built upon the visual
grammar of diagram elements (node-link diagrams) in [Ware,2004].

From this observation, it appears natural to consider that the complexity
associated to each widget will not only be dependent on the number of its atomic
components, but also dependent of its visual code. For instance, sketching a
progress bar may be more difficult than sketching a text area in spite of a same
number of atomic components (both the progress bar and the text area count
three atomic components). Similarly, sketching a list box or a toggle button is
likely more difficult than sketching a label.

The presentation of the widgets in Table 5-9 was build with respect to the
widgets’ name (alphabetic order). No a priori assumption about the eventual
difference between widgets’ complexity was formulated at this stage. The potential
influence of widgets’ representation is studied in the experimental usability study
presented in the following.

5.4.2 Current study objectives

As stated previously, the purpose of the experimental study presented here
consists in addressing one of the major issues related to user interfaces
prototyping, the potential influence of widgets’representations in a low fidelity
prototyping tool. To achieve this goal we asked a group of users to sketch a set of
common widgets, such as labels, combo-boxes, sliders, progress bars, etc. Table 5-

Chapter 5 Surveys

 181

9 presents the components used in the test and their respective visual semantic.
The main purpose of this experimental study is thus to evaluate the impact of the
representation associated to each widget, but also to evaluate the impact of the
fidelity level on the sketching process.

5.4.3 Methodology

This section is divided into three subsections, first we proceed to a description of
the test procedure, then the participants profile are detailed and we conclude with
the presentation of the experimental design. The hardware setup to be used in this
experiment is exactly the same than the previous survey (7.3).

a. Procedure

Each participant received a detailed explanation of the research study. Following
the short introduction to the test procedure and test purpose, all participants
performed some training with the tool. Following the training session, participants
performed the series of widget sketches with a constant randomization of both
the widget to be sketched and the fidelity level to be used. Simultaneously, all the
relevant data were stored in a log file to be used for statistical analysis.

b. Profile

Eleven volunteers participated to this experimental study, five females and six
males. This group of participants was composed of experienced computer users,
aged between 22 to 28 years. Moreover, all the participants were considered as
expert pen users, as they had significant past experiments with on pen-based
interaction.

c. Experimental design

The survey was based on a 4x12x2 factorial design; 4 fidelity levels were evaluated
(none, low, medium and high), 12 widgets (see Table 1) and each widget was
repeated twice for each fidelity level. So, all participants received exactly the same
96 triplets (fidelity, widget, repetition) to sketch. However, the presentation
sequence of these 96 triplets was randomized so as to neutralize a potential task
learning effects. The dependent variables used to assess the participant task
performances were the widget sketching time ST (from the first stroke to

Chapter 5 Surveys

 182

recognize to the effective recognition of the widget), and the accuracy (i.e.,
number of delete operations DEL and number of superfluous stroke operations
SST to sketch a given widget).

The main directive for the participants was to sketch the component chosen by
the application, as fast as they could. Participants were asked by the system to
sketch a given widget at a time. A dialog box was asking them to sketch a specific
widget in a specific fidelity level. In particular, neither the fidelity level nor the
widget could be changed by the user. Once the user considered the widget to be
finished he had to click on one of the lateral button of the screen to move to the
next component. If the widget to draw was present on the drawing surface, the
surface was cleared and a new widget was proposed to the participant, else the
participant was asked to finish the current component.

5.4.4 Results

In order to identify the potential impact of the different element introduced in the
previ-ous section, analyses of variance (ANOVA) were conducted. Thanks to
these analyses, we have examined the presence of significant differences in task
performance as meas-ured by widget sketching times (ST), the number of delete
operations (DEL) and the number of superfluous stroke operations (SST). These
tests were carried out with regards to:

 the fidelity level
 the subject ID
 the widget type.

If significant differences were revealed by the ANOVA procedure,
complementary analyses, including mean comparisons, classifications and
partitionning, were also performed to highlight differences. These quantitative
results are presented in the following.

a. ANOVA procedure

The results of the ANOVA procedure are presented in Table 5-10. Factors are
fidelity level, widget type and subject ID. Variables are widget sketching times
(ST) in milliseconds, number of delete operations (DEL) and number of
superfluous stroke operations (SST). Highly significant influences are underlined.

Chapter 5 Surveys

 183

Subject ID DF ST (ms) DEL SST
Fidelity level 3 F=2.1039

p=0.0981
F=2.5627
p=0.0535

F=1.9866
p=0.1143

Subject 10 F=6.1802
p<0.0001

F=5.5658
p<0.0001

F=2.6989
p=0.0029

Widget type 11 F=11.5065
p<0.0001

F=2.7674
p=0.0022

F=7.3756
p<0.0001

Table 5-10 ANOVA Procedure

The results from Table 5-10 show that contrary to what was expected, fidelity
level is not a significant factor: it has influence neither on widget sketching times
nor on the number of superfluous stroke operations; however, we observes a
tendency for the number of delete operations (F=2.5627, p=0.0535). This result is
in accordance with earlier findings [Coye07] and suggests that fidelity level is
transparent for single widget sketching tasks. In addition, the results from Table
5-10 suggest that both widget type and subject ID are significant factors. Indeed,
the type of widget and the time needed for its construction are clearly linked. We
also observe that some widgets are likely to involve a higher error rate as the
number of superfluous strokes and delete operations are dependant of the widget
type. We can observe the same trends for the subjects. Consequently, the
complementary analysis, performed in order to elicit the specific influence of
widget complexity on subjects’ performances, needs to take into account not only
the widget type variable, but also the subject id variable. To achieve this goal, a
hierarchical classification of the subjects was carried out beforehand the specific
analysis of the widget complexity per group of subjects. Results are presented in
the following.

b. Subject classification

We estimated that the method of Student’s t-test was not relevant enough for
performing the complementary analyses, because, mainly, of the illegibility of the
results. Thus, in-stead of t-tests, we used graphical representation of the subjects’
performances such as a plot diagram of sketching time according to mean and
median and the recursive partitioning technique. Recursive partitioning (RP) was
applied to the dataset in order to elucidate statistically significant sub-groupings
within the data by relating subjects’ performances (ST) to the subject id factor.
The resulting graph and decision tree are presented respectively in Figures 5-17
and 5-18.

Chapter 5 Surveys

 184

Figure 5-17 Subjects’ performances (ST) per mean and median

The results from Figures5-17 and 5-18 show that there are three different groups
of participants:

 G1: participants # 3, 5, 6, 11 (M=2092 ms, Std Dev=2920);
 G2: participants # 1, 7, 9, 10 (M=4995 ms, Std Dev=9868);
 G3: participants # 2, 4, 8 (M=10347 ms, Std Dev=24802).

According to both the average sketching time (M) and its associated standard
deviation (Std Dev), G3’s performances have been removed from the data set.
Indeed, the slow sketching time (M=10347 ms) associated to a very high standard
deviation (Std Dev=24802) justifies this choice, especially by considering these
bad performances in comparison with those observed for G1 and G2. The
average sketching time observed for G3 is five times the one observed for G1 and
twice the one observed for G2.

Based on this finding we have had a closer look to the log file generated by the
application; we observed that for two of the three participants present in the
group G3, SketchiXML had bugged. Even if we are not certain that the
application misbehave for the third participant, they can be considered as outliers
and removed of the data set for the remaining of the analysis. Thus, the following
of the analysis focus only on the two selected groups (G1 and G2).

Chapter 5 Surveys

 185

Figure 5-18 Participants classification

c. Widget classification

The results per widget presented in table 5-11 are related to G1 and G2 groups
and include:

 recognition rate in percent,
 sketching times in milliseconds (ST), number of superfluous strokes (SST)

and delete operations (DEL) considering both mean (in ms) and standard
deviation.

Widgets are sorted by increasing average sketching times (ST). To elicit
differences between groups of widgets, a complementary Student’s t-test was
performed on data and it has highlight some differences between three groups of
widgets:

1. tooglebutton, listbox and progressbar,
2. button, textarea, combobox, slider, picture, radiobutton,

checktbox, textfield,
3. slider, picture, radiobutton, checktbox, textfield, label.

Chapter 5 Surveys

 186

Sketching Time Superfluous stroke Delete operations

G
ro

up

Widget Recogn.
rate (%) M (ms) Std Dev M (ms) Std Dev M (ms) Std Dev

1 textfield 0.98 1688 4528 0,047 0,375 0,031 0,250
1 label 0.97 734 4973 0,078 0,513 0,047 0,278
1 picture 0.97 1913 2254 0,095 0,560 0,079 0,451
2 button 0.95 3322 6595 0,156 0,71- 0,078 0,370
1 checkbox 0.95 1694 1643 0,172 0,579 0,078 0,410
1 radiobutton 0.94 1764 2719 0,187 0,639 0,109 0,441
2 textarea 0.94 3259 3574 0,250 0,992 0,094 0,387
2 slider 0.92 2607 3841 0,266 0,980 0,156 0,597
3 listbox 0.91 7241 11271 0,937 2,525 0,437 1,446
2 combobox 0.86 3246 4663 0,406 0,955 0,297 0,885
3 progressbar 0.84 6448 8452 0,672 1,584 0,328 0,944
4 togglebutton 0.80 8603 15729 1,031 2,462 0,562 1,542

Table 5-11 Results per widget (ST, SST, DEL)

Due to the lack of accuracy of this result, i.e., in order to get more accurate
differences between groups of widgets, we applied a recursive partitioning (RP) to
the dataset. The principle of RP is to elucidate statistically significant sub-
groupings within the data by relating subjects’ performances (ST) to the widget
type factor. The result of such process gives the decision tree presented Figure 5-
19. It shows that there are four different groups of widgets:

W1: Label, textfield, checkbox, radio button, picture;
W2: Slider, combo box, textarea, button;
W3: Progressbar, listbox;
W4: Togglebutton.

Figure 5-19 Widgets classification

This finding is consistent with what was expected: according to widget sketching
time, the complexity of a widget (expressed for instance in terms of specific

Chapter 5 Surveys

 187

orientation, inclusion, or size) has a significant impact on user performances, such
as speed (ST), as well as accuracy (SST, DEL and recognition rate). According to
the RP decision tree (see Figure 5-19), sketching a toggle button or a list box is
likely to be more difficult than sketching a label. Furthermore, we observe that
representation including a larger number of constraints (specific orientation only
for the label in comparison with specific orientation + complex inclusion +
sequence of components + size for the list box) tends to be associated to a
highest error rate. In the following section, we present the detailed analysis of the
influence of factors such as specific orientation, complex inclusion, sequence of
components, or size of components on user performances.

These results partially validate our taxonomy of widget’s representation and
complexity (see table 5-12). First, they suggest that both the criterion of complex
inclusion (F=15.0896, p=0.0001) and the concept of specific orientation
(F=13.2787, p=0.0003) do have a significant impact on user performances while
widget sketching speed. Secondly, one observes a tendency according to which
the criterion of juxtaposition would have an influence on this same performance.

Factor DF F Ratio Prob>F
Specific orientation 1 F=13.2787 p=0.0003
Simple inclusion 1 F=0.3673 p=0.5446
Complex inclusion 1 F=15.0896 p=0.0001
Juxtaposition 1 F=2.2567 p=0.1333
Intersection 1 F=1.1249 p=0.2891
Sequence of
components

1 F=1.6698 p=0.1966

Size 1 F=0.8742 p=0.3500

Table 5-12 Anova Procedure with ST(ms) as variable

d. Learning effects

An analysis of variance (ANOVA) was computed to compare users performances
by quartile; the analysis shown that the quartile is a significant factor considering
the sketching times (F=2.7795, p=0.0402). In addition, quartile is a significant
factor neither for the superfluous stroke operation (p>0.05), nor for the delete
operations (p>0.05).

Consequently, a complementary analysis was performed on user performances par
widget and per quartile. The results are presented in Table 5-13 according to both
the recognition rate and the sketching time per quartile (columns Q1, Q2, Q3 and
Q4) and for the overall session (columns “total”).

Chapter 5 Surveys

 188

Recognition rate Sketching Time

Widget Q1 Q2 Q3 Q4 total Q1 Q2 Q3 Q4 total
button 0.88 0.94 1.00 1.00 0.95 6654 2646 1952 2036 3322
checkbox 1.00 0.94 0.88 1.00 0.95 1221 2040 2030 1486 1694
combox 0.75 0.88 0.94 0.88 0.86 4501 2445 2859 3178 3246
label 0.94 0.94 1.00 1.00 0.97 2513 353 35 37 734
listbox 0.88 0.94 0.88 0.94 0.91 7325 7250 8535 5852 7241
picture 1.00 1.00 1.00 0.87 0.97 1858 1541 1378 2836 1903
progress 0.69 0.81 0.94 0.94 0.84 11429 5697 4118 4547 6448
radio 1.00 0.94 0.88 0.94 0.94 1085 2030 1913 2029 1764
slider 0.94 0.88 0.94 0.94 0.92 3313 2789 2474 1851 2607
textarea 0.94 1.00 0.81 1.00 0.94 3545 2342 4838 2312 3259
textfield 0.94 1.00 1.00 1.00 0.98 3379 1080 1089 1204 1688
toggle 0.69 0.69 0.88 0.94 0.80 16041 6641 7445 4283 8603

total 0.89 0.91 0.93 0.95 0.92 5238,62 3071,19 3222,15 2637,61 3542,39

Table 5-13 Statistics per widget

First and foremost, results per quartile suggest that there is a task learning effect:
on the one hand, the global recognition rate increases between the first quartile
(0.89%) and the last one (0.95%); on the other hand, the average sketching time
decreases between the first quartile (M=5239 ms) and the last quartile (M=2638
ms). According to these observations, we can conclude that there is a learning
effect of the task.

e. Conclusion

With regards to statistical analyses we have observed some significant results.
Firstly we have observed that the level of fidelity did not have any impact on the
sketching of an individual widget. Naturally, such observation does not imply that
a prototyping tool can choose to use indifferently a level of fidelity of another.
Indeed, the fidelity is likely to influence the creation of the complete user
interface, as some representation may give an impression of almost finished
results, as an example. Here, we only demonstrate that the time needed to build a
given widget, is not dependant of the fidelity level to be used.

Oppositely and unsurprisingly, we have also demonstrated that the quality of the
recognition was significantly dependant of the type of widget and of the users.
Through this section, we can observe that participant can be grouped into three
different subgroups according to their respective performances. Even if few
information can be extracted from such finding, it was necessary to take this
aspect into account for the interpretation of the dataset. The observations made
on the widget representation are richer as they provide valuable information for

Chapter 5 Surveys

 189

the development of a new grammar, and for the improvement of some part of the
application. We observed strong differences between the widget representations.
Based on a recursive partitioning approach we defined a set of group a similar
widget based on the time needed for their construction. We have grouped then
this information with the average recognition rate associated to the widget in
order to refine the grouping.

Group Widget
Gesture

representation
Recognition

rate

Sp
ec

ifi
c

or
ie

nt
at

io
n

Si
m

pl
e

in
cl

us
io

n

Co
m

pl
ex

in

cl
us

io
n

Ju
xt

ap
os

iti
on

In
te

rs
ec

tio
n

se
qu

en
ce

 o
f

co
m

po
ne

nt
s

Si
ze

1
 Text field 0,98 X X

1 Label 0,97 X

1 Picture

0,97 X

2 Button 0,95 X

2 Checkbox 0,95 X X X

2 Radio button 0,94 X X X

2 Text area 0,94 X X X

2 Slider 0,92 X X X

3 List box 0,91 X X X X

3 Combobox 0,86 X X

3 Progress bar 0,84 X X X X

3 Toggle button 0,80 X X

Table 5-13 Widget representation ranked by recognition rate

Table 5-13 illustrates these observations, the last four elements, are the widget
that required the more time with the highest error rate. We can observe that all of
the four widgets are built using complex inclusion in addition to more simple
graphical codes. Moreover, the ranking of the widget illustrates that a larger set of
constraints tend to increase the recognition rate and the time required. This lead
to us to the following conclusion, when defining representation for widgets a
minimal number of constraint should be used, especially when ambiguities
between the representations are unlikely. For instance, the text field

Chapter 5 Surveys

 190

representation requires the enclosed line to be horizontal, but the line could be
drawn with many other orientations for the same results as there are not any other
representation composed of a single rectangle and line. Also, the fact that the
recognition rate for the toggle button is very low can probably be explained with
other reason than the intrinsic complexity of the widget. Indeed, this widget
seemed very easy and we expected a recognition rate almost similar to the button.
This low recognition rate may result from a constraint that would not be well
defined.

The last significant observation made during this survey is related to the learning
effect; we observed for all the participants that their overall performances were
significantly higher at the end of the survey. They drew the widget more precisely,
as the recognition rate is higher, in less time. Obviously, these two observations
are linked; the lower time at the beginning of the test can be partially attributed to
the numerous delete operations.

5.5 Case studies

In order to validate the use of SketchiXML and its integration with the other
UsiXML tools, this chapter presents three case studies. These case studies were
selected such as to illustrate different contexts of use with several targets
platforms and languages. Indeed, depending of the target user interfaces
SketchiXML will be adapted. Thus such variations of contexts permit to illustrate
the different mode and development path present in SketchiXML. The first case
study is similar to the case study that was used for the state of the art; it consists
thus in designing a web site selling several types of media. The second prototype
is a movie finder website for pocket pc; this simple web site for pocket pc allows
the users to search for a movie with a limited set of criteria. The third case study
consists in a java wizard for GrafiXML configuration.

5.5.1 E-media

The E-Media Shop [Faul04a, Coye03] is a store selling and shipping different
kinds of media items such as books, audio CDs, videotapes, software and the like.
E-Media Shop customers (on site or remote) can use a periodically updated
catalogue describing available media items to specify their order. As most of the
competitors present on the market, the shop proposes to the client to proceed to
a wide set of operation. First of all, the client can browse the catalogue and obtain
information about all the products present in the database. Naturally, the client
has the possibility to buy the items by adding the desired items to his virtual

Chapter 5 Surveys

 191

shopping cart. Once the customer has finished browsing the catalogue he can
proceed to the payment of the items present in the shopping cart. In order to
accomplish that, the client must be registered on the website. If this condition is
respected, the customer proceeds directly to the payment; otherwise the system
required the user to register first. If the user is already a customer, he just needs to
fill in login and password, if it is his first purchase on the website, he is asked to
fill a form with a set of general information about him.

Figure 5-20 SketchiXML main interface, building the e-media home page

Figure 5-20 illustrates the main interface of the web site. This interface contains
three main parts, the navigation area on the top of the UI that is a set of hyperlink
allowing to navigate between the different sections of the web site. On the left of
the web page, we have two main parts. One hand we have a set of component for
the login process. As we can find on any web site requesting user identification,
we ask for a user name and a password. Below these fields, the user can either
click on the button to proceed to login, and if he has not created an account yet,
then the “new user” hyperlink permits him to create an account on the web site.
On the other hand, we have the shopping cart that is displayed. The shopping cart
is made up of a list of all the items that were selected, and a button allowing to see

Chapter 5 Surveys

 192

the content into details. The central part of the web page contains all the
information specific to this specific page while the two previous set of
components are presents on each page of the web site.

Based on this general layout, we proceed next to the description of the other web
pages. Figures 5-21 (a) and 5-21 (b) illustrate such process. We copy all the
common part of the main interface and past it on a new window. Then we can
proceed to the enriching of the template with the specific information associated
to the target page. Figure 5-21 (b) corresponds to the form allowing to the end
user to create a new profile on the web site. To this aim he is asked to provide a
set of general information about him.

The process is similar for the remaining of the web site, the user copy-pastes the
parts of the interface that are constant on each page, and sketches the
components that are specific to the new user interface.

Figure 5-21 (a & b) replicating the common part of the web page thanks to SketchiXML edit

functionalities

At any moment, the user has the possibility to switch from the design perspective
to the scenario edition perspective. In the example provided in Figure 5-22, we
define the global navigation in a first time. On this example, we have designed the
main interface and a couple of transition between the main components of the
web site. Amongst all the components present in the web site, we only cover a
small sub set as the process is repeated for each part of the web site. The example
presented in this case study covers the “create account” function, search for an
item, display shopping cart, and proceed to payment of the shopping cart.

Chapter 5 Surveys

 193

Fi
gu

re
 5

-2
2

Sp
ec

ify
in

g
th

e
ge

ne
ra

l s
tr

uc
tu

re
 o

f t
he

 w
eb

 si
te

 w
ith

 th
e

na
vi

ga
tio

n
ed

ito
r

Chapter 5 Surveys

 194

Obviously, when we will switch to a higher fidelity editor, the common part of the
user interface will be refined once, and propagated to all the windows. To this aim
there is no need to specify that the target of each link present in the navigation bar
for each window. Defining it once is sufficient and permits to have a lighter result;
otherwise the screen would be overloaded.

Figure 5-23 (a & b) Based on the general description of the web site, we continue to specify the

global navigation of the web site

As we are developing a web site, most of the transitions between the windows are
“open-close” transitions, as the navigation on a website is usually moving from
one page to another, this seems to be consistent.

Chapter 5 Surveys

 195

Following this short description of the navigation, we keep on refining the project
and detail the other interface into details, and we specify the navigational aspect of
the application deeper into details.

Figure 5-23 displays a set of UIs completed on basis of the template elaborated in
a first time. Based on this set of UIs, we switched to the medium fidelity
representation and we specified other relationships between the user interfaces.
For instance, when the user click on the validate button associated to the
shopping cart, a dialog box is displayed, and ask to the user to fill provide
financial data for the transaction. Following the results of this test, a web page is
displayed, and informs the customer about the status of the transaction by either
displaying an error message or thanking the customer for his purchase. This
example is far from being exhaustive; indeed, we could also specify what happen
when the client clicks on a item after a query, or the fact that a client has to be
logged before proceeding to the purchase of the items in the shopping cart… and
many other improvement. As, the design of other components and relations is not
different from the example described in Figure 5-23, it would redundant to
specify the remaining of the case.

Figure 5-24 SketchiXML run-mode permits to visualize the prototype in action

Chapter 5 Surveys

 196

Based on this sketching phase, we are now able to evaluate the navigation of our
prototype. To this aim, we use the overview mode present in SketchiXML, and
we keep a low level of fidelity. Indeed, as it was presented in chapter 3,
SketchiXML also permits to pre-visualize the system by generating the
corresponding UIs in Java. However, the user is free to choose the level of fidelity
sketch for the rendering, but also for the navigation editor and the run mode. In
this context, visualizing the set of web page using a high fidelity representation
based on java toolkit is not very judicious; indeed the look and feel of a web page
is completely different than a windows application. For this reason we prefer to
stay at a low level of fidelity so as to avoid confusion between the environments.

Figure 5-25 UsiXML specification produced by SketchiXML

 <?xml version="1.0" encoding="UTF-8" ?>
- <uiModel id="EMedia" name="EMedia" creationDate="2007-03-29T17:25:09.468+02:00"

schemaVersion="1.8" xmlns="http://www.usixml.org">
- <head>
 <version modifDate="2007-03-29T17:25:09.468+02:00" />
 <authorName>Adrian</authorName>
 <comment>This file was generated with SketchiXML</comment>
 <comment>Information on this tool can be found on www.usixml.org</comment>
 </head>
- <cuiModel id="EMedia-cui" name="EMedia-cui">
- <window id="window_0" name="window_0" isVisible="true" isEnabled="true" width="800"

height="599" isAlwaysOnTop="false" isResizable="true">
- <gridBagBox id="Box_0" name="Box_0" gridHeight="29" gridWidth="40">
- <constraint gridx="11" gridy="0" gridwidth="8" gridheight="2" weightx="1.0" weighty="1.0"

fill="none">
 <outputText id="Label_0" name="Label_0" isVisible="true" isEnabled="true"

fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false"
isStrikethrough="false" isSubscript="false" isSuperscript="false" isPreformatted="false"
textColor="#000000" textFont="Dialog" isItalic="false" visitedLinkColor="#000000"
textMargin="0" numberOfColumns="15" numberOfLines="1" />

 </constraint>
+ <constraint gridx="8" gridy="3" gridwidth="3" gridheight="2" weightx="1.0" weighty="1.0"

fill="none">
…
+ <constraint gridx="10" gridy="20" gridwidth="7" gridheight="9" weightx="1.0" weighty="1.0"

fill="none">
- <constraint gridx="19" gridy="20" gridwidth="13" gridheight="2" weightx="1.0" weighty="1.0"

fill="none">
 <outputText id="Label_9" name="Label_9" isVisible="true" isEnabled="true"

fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false"
isStrikethrough="false" isSubscript="false" isSuperscript="false" isPreformatted="false"
textColor="#000000" textFont="Dialog" isItalic="false" visitedLinkColor="#000000"
textMargin="0" numberOfColumns="15" numberOfLines="1" />

</constraint>
-<constraint gridx="8" gridy="3" gridwidth="3" gridheight="2" weightx="1.0" weighty="1.0"

fill="none">
 <outputText id="Hyperlink_0" name="Hyperlink_0" isVisible="true" isEnabled="true"

fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false"

Chapter 5 Surveys

 197

Once the prototype phase is considered to be finished, the designer continues the
development himself without the assistance of any external participants. Indeed,
based on the UsiXML specification generated as output of the low fidelity
prototyping phase, he continues the design process in GrafiXML. As we can see
on Figure 5-26 the UI loaded in GrafiXML is enhanced: the widgets are aligned;
the attributes for each component can be defined thanks to the properties sheet
on the left of the design area… Through this step, we specify thus all the aspect
of the UI that cannot be defined during the first phase. In addition to the
description of the attributes the widgets, we also specify the languages to be
supported. For each component, GrafiXML permits to specify several languages.

Figure 5-26 Import of SketchiXML output in GrafiXML

Chapter 5 Surveys

 198

Figure 5-27 Extract of the UsiXML specifications modified with GrafiXML

<?xml version="1.0" encoding="UTF-8" ?>
- <uiModel id="Project_Name" name="Project_Name" creationDate="2007-03-

29T17:25:09.468+02:00" schemaVersion="1.8"
xmlns="http://www.usixml.org">

+ <head>
- <cuiModel id="Project_Name-cui" name="Project_Name-cui">
- <window id="window_0" name="window_0" isVisible="true" isEnabled="true"

bgColor="#ece9d8" width="921" height="709" isAlwaysOnTop="false"
isResizable="true">

- <gridBagBox id="Box_0" name="Box_0" gridHeight="35" gridWidth="46">
+ <constraint gridx="7" gridy="3" gridwidth="5" gridheight="2" weightx="1.0"

weighty="1.0" fill="none">
+ <constraint gridx="13" gridy="3" gridwidth="5" gridheight="2" weightx="1.0"

weighty="1.0" fill="none">
+ <constraint gridx="19" gridy="3" gridwidth="5" gridheight="2" weightx="1.0"

weighty="1.0" fill="none">
- <constraint gridx="25" gridy="3" gridwidth="5" gridheight="2" weightx="1.0"

weighty="1.0" fill="none">
 <outputText id="Hyperlink_3" name="Hyperlink_3"

content="/uiModel/resourceModel/cioRef[@cioId='Hyperlink_3']/resource/@
content" defaultContent="Music" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false"
isStrikethrough="false" isSubscript="false" isSuperscript="false"
isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
defaultHyperLinkTarget="http://www.usixml.org" visitedLinkColor="#000000"
textMargin="0" numberOfColumns="15" numberOfLines="1" />

 </constraint>
+ <constraint gridx="31" gridy="3" gridwidth="5" gridheight="2" weightx="1.0"

weighty="1.0" fill="none">
+ <constraint gridx="32" gridy="5" gridwidth="9" gridheight="1" weightx="1.0"

weighty="1.0" fill="none">
- <constraint gridx="1" gridy="8" gridwidth="6" gridheight="1" weightx="1.0"

weighty="1.0" fill="none">
 <inputText id="TextField_0" name="TextField_0" isVisible="true" isEnabled="true"

fgColor="#000000" bgColor="#ffffff" textColor="#000000" maxLength="100"
numberOfColumns="20" numberOfLines="1" isPassword="false"
isWordWrapped="true" forceWordWrapped="true" isEditable="true" defaultFilter=""
/>

 </constraint>
- <constraint gridx="1" gridy="10" gridwidth="5" gridheight="1" weightx="1.0"

weighty="1.0" fill="none">
 <outputText id="Label_3" name="Label_3"

content="/uiModel/resourceModel/cioRef[@cioId='Label_3']/resource/@cont
ent" defaultContent="Password" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false"
isStrikethrough="false" isSubscript="false" isSuperscript="false"
isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15"
numberOfLines="1" />

 </constraint>
……
 <outputText id="Label_4" name="Label_4"

content="/uiModel/resourceModel/cioRef[@cioId='Label_4']/resource/@cont

Chapter 5 Surveys

 199

Figure 5-27 proposes an extract of the UsiXML specifications generated by
SketchiXML (Figure 5-25) refined in GrafiXML. We observe that all the attributes
have now user defined values.

Once, the set of UIs is completed, the designer can generate the corresponding
code in a particular language. As this project consists in building a web site, we ask
to GrafiXML for XHTML code generation. This functionality is not fully
automatic due to the layout that can be based on several layout mechanism
strategies; even if some of the layout strategies can easily be transposed to
XHTML, others such as the GridBag layout, cannot be transposed efficiently.
Given this constraint, the designer has to provide some additional information on
the layout mechanism to be used in the XHTML output. For each of the
container based using an unsupported layout mechanism, the user divide the
component into a set of slices based on a supported layout. For each of these new
slices, the designer can specify an id. Such feature proves to be very useful in the
later stage of the development. Indeed, as it can be seen on Figure 5-28, a set of
style elements are defined. This set of style can be extended thanks a cascading
style sheet in order to meet web designer best practices (see Figure 5-29).

Figure 5-28 XHTML code generated with GrafiXML

<body id="window_0">
<div id="topb">
<div style="text-align:center"><img
id="image_component_0"src="../resources/00/emediatitle.gif" /></div>
<div style="text-align:center;">Home<span
class="Hyperlink">MovieBook<span
class="Hyperlink">MusicMy E-Media</div>
<div class="right">anonymous</div>
</div>
<div id="leftb">
Username

<input type="text" id="TextField_0" value="" />

Password

<input type="text" id="TextField_1" value="" />

<input type="button" value="Log in" id="button_component_1" /><span
id="Label_5">(new user)

Shopping cart

<select name="select" size="7" multiple>
 <option selected="selected">Lord of the rings </option>
 <option>Matrix 1</option>
 <option>Matrix 2</option>
 <option>Matrix 3</option>
</select>
</div>
...
 <td width="238" rowspan="5"><img id="Picture_1"src="../resources/00/51jMI-
4PQFL._AA240_.jpg" /></td>
 <td width="42"> </td>

<td idth "441">& b </td>

Chapter 5 Surveys

 200

Figure 5-29 Extract of the cascading style sheet applied to the XHTML export

As a result of the process initiated from a low fidelity prototype perspective, we
can obtain the set of web pages depicted on Figure 6-11.

<style>
<!--
body{ background-color:#ffffff}
.left{ text-align: left;display: block;}
.middle{ text-align: center;display: block;margin-left: auto;margin-right: auto}
*{ margin: 0;padding: 0;}
.right{ text-align: right;display: block;margin-left: auto;}
#centerb{ margin: auto 15% auto 15%;border-left: 1px solid grey}
#Label_9{ font-weight:bolder;}
#Label_7{ font-weight:bolder;}
#Label_6{ font-weight:bolder;}
#Label_5{ font-weight:bolder;}
#Label_4{ font-weight:bolder;}
#leftb{ position: absolute;top: 97px;left: -6px;width: 15%;}
#Label_3{ font-weight:bolder;}
#Label_2{ font-weight:bolder;}
#Label_1{ font-weight:bolder;}
#topb{ border-bottom: 1px solid grey }
.gridl{ display: inline-table;}
#rightb{ position: absolute;top: auto;right: 0px;width: 15%;}
.gridb{ display:table;}
...
-->
</style>

Chapter 5 Surveys

 201

Figure 5-30 E-Media prototype rendered in XHTML with cascading style sheet

5.5.2 Find a movie

This case study proposes the development of movies finder service available for
pocket pc users. This service permits to a user to search a movie using an internet
connection on his pocket pc. The research can be based on a set of criteria about
the type of movie, some keywords and information on the target region.
Additionally, a user must have the possibility to store its preferences on the web
site. Thus, the web site must integrate a web page for the account creation. As, the
interaction means is not very convenient, only major information should be
provided for the creation of a profile. In addition to the research feature, the user
can visualize the list of the recent movies and the ranking of the best entries.
Obviously, for each movie the user can visualize the information associated, and
visualize the picture of the movie.

When starting the design of this PDA-based website, we define a new
configuration for SketchiXML (see Figure 5-31). The first case study was using a
default configuration for UI design. Here, we specify the target platform as a
pocket pc, this means that the interaction surface with the application will be
adapted so as to reflect the constraints associated with this platform.

Chapter 5 Surveys

 202

Figure 5-31 SketchiXML configured for pocket pc UIs design

Figure 5-32 illustrates the design phase for this kind of configuration. Even if the
main principle remains constant with the previous example, the drawing surface is
reduced to the size of a standard pocket pc screen. Accordingly, the set of
constraints to be applied when testing a relation between the shapes is adapted to
the current configuration. As, the size of the drawing surface is drastically
reduced, the proximity between the shapes is much smaller than in a standard user
interface. In order to avoid detecting wrong combination, the results of the test
need to be adapted consequently.

Figure 5-32 Prototyping the web site with SketchiXML configured for pocket pc design

Chapter 5 Surveys

 203

As it can be seen on Figure 6-13 the main difficulties with such a development, is
to adapt the content of the UI to the size of the window. So, contrary the
previous case study where we started with a description of the navigation, we
build all the web pages in a first time. Similarly to the e-media case study, it is still
possible to proceed to copy paste of the common part of the web pages.

Once the content of the pages is defined, we proceed to the next step of the
development by specifying the navigation between the windows. Figure 5-33 (a)
illustrates the set of UI sketched in the navigation editor without any relations.
Figure 5-33(b) illustrates a large part of the navigational aspect. As we can see, a
same component can originate a transition to a set of UI based on a condition.
Such a condition cannot be expressed in the current version of UsiXML and
cannot be expressed visually on the navigation editor.

Figure 6-14 (a & b) SketchiXML navigation editor applied to the movie finder web site

Based on the two previous stages, we can now proceed to the validation of the
web site thanks to the run mode. Unfortunately we do not permit to test the web
site on a pocket pc, even if such an improvement could be imagined in the later
version of the application. Thus, the current version of SketchiXML only
proposes to the user to visualize the future web site as a sequence of frame
associated to each web page.

Chapter 5 Surveys

 204

Figure 5-34 UIs generated for the preview mode

As we explained in the previous case study, using a high level of fidelity would be
confusing for a web page; this is why we prefer to uses the low fidelity level.
Using this perspective, the user can interact directly with the systems, and evaluate
the navigation of the web site. Each time a transition involving several windows is
invoked, the user has to manually specify the target windows (window 4 in Figure
5-34). Even if such manipulation does not appear very convenient, no prototyping
tool offers a suitable alternative for such an issue without requiring manual
coding.

Chapter 5 Surveys

 205

 Figure 5-35 UsiXML specifications generated by SketchiXML

Once the web site is validated, the designer can generate the corresponding
specification in UsiXML (Figure 5-35). Naturally, the structure of the file
generated is very similar to the previous case study. All the components are
specified with default value and based on a grid bag layout. The main difference
lies in the size of the window and to the fact that a context is associated to the
UsiXML file. This context (surrounded by a rectangle on Figure 5-35) specifies
that the file was originally developed for a pocket pc with a screen resolution of
240 * 320 pixels. The context can store a lot more information than this small
subset of attributes, but as it is already the case for the widgets; SketchiXML only
generates default value for some key attributes. The complete list of attributes that
can be present in a context model can be found in Appendix A. Then, based on
this information, other UsiXML-based tools can adapt this set of UI for other
context.

 <?xml version="1.0" encoding="UTF-8" ?>
- <uiModel id="Case_study_2" name="Case_study_2" creationDate="2007-04-03T16:16:58.109+02:00" schemaVersion="1.8"

xmlns="http://www.usixml.org">
- <head>
 <version modifDate="2007-04-03T16:16:58.109+02:00" />
 <authorName>Adrian</authorName>
 <comment>This file was generated with SketchiXML</comment>
 <comment>Information on this tool can be found on www.usixml.org</comment>
 </head>
- <cuiModel id="Case_study_2-cui" name="Case_study_2-cui">
- <window id="window_0" name="window_0" isVisible="true" isEnabled="true" width="240" height="320" isAlwaysOnTop="false"

isResizable="true">
- <gridBagBox id="Box_0" name="Box_0" gridHeight="16" gridWidth="12">
- <constraint gridx="2" gridy="0" gridwidth="5" gridheight="2" weightx="1.0" weighty="1.0" fill="none">
 <outputText id="Label_0" name="Label_0" isVisible="true" isEnabled="true" fgColor="#000000" bgColor="#ece9d8" isBold="true"

isUnderline="false" isStrikethrough="false" isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />

 </constraint>
- <constraint gridx="7" gridy="1" gridwidth="2" gridheight="2" weightx="1.0" weighty="1.0" fill="none">
 <imageComponent id="Picture_0" name="Picture_0" isVisible="true" isEnabled="true" fgColor="#000000" bgColor="#ece9d8"

textColor="#000000" />
 </constraint>
- <constraint gridx="0" gridy="3" gridwidth="8" gridheight="2" weightx="1.0" weighty="1.0" fill="none">
 <outputText id="Label_1" name="Label_1" isVisible="true" isEnabled="true" fgColor="#000000" bgColor="#ece9d8" isBold="true"

isUnderline="false" isStrikethrough="false" isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />

 </constraint>
+ <window id="window_1" name="window_1" isVisible="true" isEnabled="true" width="240" height="320" isAlwaysOnTop="false"

isResizable="true">
+ </cuiModel>
- <contextModel id="Case_study_2-contextModel_0" name="Case_study_2-contextModel">
- <context id="Case_study_2-contextModel_0" name="Case_study_2-context-en_US">
 <userStereotype id="Case_study_2-sten_US_9" language="en_US" stereotypeName="Case_study_2-sten_US" />
 <platform id="Case_study_2-platform_0" name="Case_study_2-platform" >

<hardwarePlatform category="pocket pc" keyboard="virtual" pointingDevice="Stylus" screenWidth="240" screenHeight="320"
hasTouchScreen="true" />

 </ platform >
 <environment id="Case_study_2-env_0" name="Case_study_2-env" />
 </context>
 </contextModel>
+ <resourceModel>
 </uiModel>

Chapter 5 Surveys

 206

Figure 5-36 Specifications generated by SketchiXML imported in GrafiXML

The UsiXML is then imported in GrafiXML for enhancements. All the details
that cannot be and must not be specified in the first stage of the prototyping
process are now developed. Using GrafiXML the designer has no visual
information on the target platform such as proposed in SketchiXML, but on the
other hand, the designer does not necessary need this kind of information as he is
supposed to be used to UI design. Figure 5-36 shows the specification produced
by SketchiXML imported in GrafiXML.

The output produced by GrafiXML consists in a new UsiXML file where all the
values that were initially by default are filled according to the designer preferences.
Such file is very similar to the output presented for the previous case study; there
is thus no interest in showing the result. Figure 5-37 provides an example of the
XHTML code generated by GrafiXML. Similarly to the previous example, all the
components’ attributes are specified in a cascading style sheet.

Chapter 5 Surveys

 207

Figure 5-37 XHTML generated with GrafiXML

Figure 5-38 present the web page obtained from the early prototype presented in
Figure 5-32. Based on the specifications generated as output by SketchiXML and
GrafiXML, other UsiXML tools permit to transform the set of web page for
other computing platform. The complete list of tool can be found in Appendix B.

Figure 5-38 Visual representation of XHTML Mobile Profile files generated by GrafiXML

<body>
<div id="topb">
<div style="text-align:center">Cinebel
</div>
<div style="text-align:center">Welcome Mr Coyette</div>
</div>
<div id="left">
<table >
 <tr>
 <td width="79" rowspan="6"><img id="Picture_1"src="../resources/00/pub.jpg"
/></td>
 <td width="2"> </td>
 <td width="142"> </td>
 </tr>
 <tr>
 <td> </td>
 <td>Search a movie</td>

</tr>
….

Chapter 5 Surveys

 208

5.5.3 Designing a wizard

This small case study propose another context for the development of the
prototype: we develop a wizard in Java. The wizard is composed of a sequence of
6 screens aiming at capturing the information to be used by the application.

The first screen only provides some information on the wizard and the way
parameters can be changed afterwards. The second screen capture information on
the designer and the project. The third frame captures information on the plug-ins
to be integrated to the current project. Fourth, we ask the designer to choose a set
of languages to be supported by the UIs to be designed. Fifth, the wizard ask the
designer to choose a template amongst a lit of predefined templates. Eventually,
the last UI confirm that the project is ready to be designed.

Figure 5-39 Sketching the wizard with SketchiXML

Oppositely to the previous examples, the output to be produced is not a web
page; we can thus consider using high fidelity representation of the prototype
without perturbing the end user with a representation that looks final but far from
the expected result. As we can observe on Figure 5-39, we specify the global

Chapter 5 Surveys

 209

navigation based on the prototype with a high level of fidelity. Obviously, the
global navigation appears very simplistic, as the only navigational aspects that can
be represented in this case study, consist in “next” and “previous” transition
between the dialog boxes part of the wizard.

Figure 5-40 Specifying the navigation with SketchiXML

Based on the navigation definition, the designer has the opportunity to evaluate
the prototype thanks to the run mode. Oppositely to the previous case studies, we
use the high fidelity representation for the run mode; we obtain thus a set of UI
based on the look and feel installed on the machine. Obviously, the designer is
always free to use one of the other fidelity level according to its needs or
preferences.

Chapter 5 Surveys

 210

Figure 5-41 Testing the prototype thanks to the run mode

As a result of the prototyping phase, UsiXML specifications are generated (Figure
5-41). As we observed in the two previous example, the sketch only capture the
core properties of the UIs. All the components are specified with default values
for their attributes.

Figure 5-42 Sketching the wizard with GrafiXML

<?xml version="1.0" encoding="UTF-8" ?>
- <uiModel xmlns="http://www.usixml.org" id="Wizard" name="Wizard"

creationDate="2007-05-14T11:06:57.187+02:00" schemaVersion="1.6.4">
+ <head>
- <cuiModel id="Wizard-cui" name="Wizard-cui">
- <window id="window_0" name="window_0" isVisible="true" isEnabled="true"

width="500" height="299" isAlwaysOnTop="false" isResizable="true">
- <gridBagBox id="Box_0" name="Box_0" gridHeight="0" gridWidth="0">
- <constraint gridx="1" gridy="0" gridwidth="5" gridheight="2" weightx="1.0"

weighty="1.0" fill="none">
 <imageComponent id="Picture_0" name="Picture_0" isVisible="true"

isEnabled="true" fgColor="#000000" bgColor="#ece9d8" textColor="#000000"
/>

 </constraint>
- <constraint gridx="5" gridy="2" gridwidth="20" gridheight="10" weightx="1.0"

weighty="1.0" fill="none">
- <groupBox id="GroupBox_0" name="GroupBox_0" isVisible="true" isEnabled="true"

fgColor="#000000" bgColor="#ece9d8">
- <gridBagBox id="GroupBox_0_Box" name="GroupBox_0_Box" gridHeight="10"

gridWidth="19">
- <constraint gridx="0" gridy="1" gridwidth="18" gridheight="3" weightx="1.0"

weighty="1.0" fill="none">
 <outputText id="Label_7" name="Label_7" isVisible="true" isEnabled="true"

fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false"
isStrikethrough="false" isSubscript="false" isSuperscript="false"
isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15"
numberOfLines="1" />

 </constraint>
- <constraint gridx="0" gridy="3" gridwidth="18" gridheight="4" weightx="1.0"

weighty="1.0" fill="none">
 <outputText id="Label_8" name="Label_8" isVisible="true" isEnabled="true"

fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false"
isStrikethrough="false" isSubscript="false" isSuperscript="false"
isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15"
numberOfLines="1" />

 </constraint>
 </gridBagBox>

Chapter 5 Surveys

 211

Figure 5-43 illustrate the importation of the SketchiXML output in GrafiXML.
The specifications obtained from the low fidelity prototyping phase can then be
exploited in GrafiXML. We can refine those specifications in order to obtain very
precise descriptions of the UIs. All the components attributes are defined and the
UsiXML specifications are updated accordingly.

Based on these specifications, we can generate the corresponding code in Java.
Contrary to the two previous examples where the code generation required a
manual intervention for the layout conversion, the interpretation in java is
straightforward. Indeed, as it was presented earlier in this thesis, the layout
mechanisms used in UsiXML are almost similar to the layout in Java.

Figure 5-43 Wizard imported in GrafiXML and the “General Information” frame rendered in java

Figure 5-44 provides a short extract of the java code generated as a result of the
prototyping process. We can observe that the layout that was adopted by
SketchiXML is clearly similar to the layout of the java class. Indeed, all the
components present on the java file generated are positioned on a grid bag layout.
As a consequence, the extract proposed in 5-44 is almost unreadable. Even if such
layout permits to build very complex UI, the corresponding code is often very
long as many constraints need to be specified.

Chapter 5 Surveys

 212

Figure 5-44 Extract of the java code generated as output

public class Wizard {
 static class Window_0 extends JFrame {
 public Window_0() {
 super(getText("window_0", CONTENT));
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 GridBagLayout grid = new GridBagLayout();
 GridBagConstraints c = new GridBagConstraints();
 getContentPane().setLayout(grid);
 c.fill = 0;
 c.gridheight = 2;
 c.gridwidth = 5;
 c.gridx = 1;
 c.gridy = 0;
 Picture_0 = new JLabel(getText("Picture_0", CONTENT));
 Picture_0.setToolTipText(getText("Picture_0", TOOLTIP));
 getContentPane().add(Picture_0);
 grid.setConstraints(Picture_0, c);
 Picture_0.setForeground(new Color(Integer.parseInt("000000",
16)));Picture_0.setBackground(new Color(Integer.parseInt("ffffff", 16)));
 c.fill = 0;
 c.gridheight = 10;
 c.gridwidth = 20;
 c.gridx = 5;
 c.gridy = 2;
 grid.setConstraints(Picture_0, c);
 c.fill = 0;
 c.gridheight = 1;
 c.gridwidth = 5;
 c.gridx = 0;
 c.gridy = 3;
 Label_1 = new JLabel(getText("Label_1", CONTENT));
 Label_1.setToolTipText(getText("Label_1", TOOLTIP));
 grid.setConstraints(Label_1, c);
 getContentPane().add(Label_1);
 if (! getText("Label_1", ICON).equals(""))
Label_1.setIcon(new ImageIcon(this.getClass().getResource(getText("Label_1", ICON))));
 Label_1.setFont(new Font("Dialog", 1, 12));Label_1.setForeground(new
Color(Integer.parseInt("000000", 16)));Label_1.setBackground(new Color(Integer.parseInt("ffffff", 16)));
 c.fill = 0;
 c.gridheight = 1;
 c.gridwidth = 5;
 c.gridx = 0;
 c.gridy = 4;
 Label_2 = new JLabel(getText("Label_2", CONTENT));
 Label_2.setToolTipText(getText("Label_2", TOOLTIP));
 grid.setConstraints(Label_2, c);
 getContentPane().add(Label_2);
 if (! getText("Label_2", ICON).equals(""))
Label_2.setIcon(new ImageIcon(this.getClass().getResource(getText("Label_2", ICON))));
 Label_2.setFont(new Font("Dialog", 1, 12));Label_2.setForeground(new
Color(Integer.parseInt("000000", 16)));Label_2.setBackground(new Color(Integer.parseInt("ffffff", 16)));
 c.fill = 0;
 c.gridheight = 1;
 c.gridwidth = 5;
 c.gridx = 0;
 c.gridy = 5;
 Label_3 = new JLabel(getText("Label_3", CONTENT));

Label 3.setToolTipText(getText("Label 3", TOOLTIP));

Chapter 5 Surveys

 213

5.6 User Testing Limitations

Through the several case studies, we have demonstrated the purpose of
SketchiXML and its integration with other UsiXML tools. But these case studies
may appear too simple and too small to validate the approach. Indeed, a large
scale application would be more appropriated. Ideally, two case studies should be
developed simultaneously, one with the standard tools and approaches while the
second would be based on the framework depicted in this thesis.

Unfortunately, such validation is impossible in the current context. First of all, I
doubt any industrial would be ready to consider this approach seriously, time is
money and a several employees spending time for an experiment (without
financial return) is likely to discourage any employer. Secondly, SketchiXML and
the other tools of the framework contain a series of small bugs. Indeed, as most
of the tools developed in the scientific community, the tool is closer to a good
prototype than an industrial version. Consequently, the major comments that
would be collected from such an experiment would be related to the unfinished
aspect of the applications rather than their qualities.

This problem could hardly be solved in the current context; to address this issue
years of development would be required before SketchiXML and others tools can
pretend to be ready for industrial testing. Unfortunately we do not have the
human and financial resources to conduct such a development.

However, we can image the test procedure that could be conducted if such
resources were made available. On one hand, we could evaluate each individual
tool part of the framework and asses their respective performances. As we have
presented earlier in this chapter with the surveys for SketchiXML, such evaluation
can be done by comparing the performances with the expectations, and by
collecting user feedbacks on the applications.

The evaluation of the complete methodology is more complicated as the
framework is a complement to methodologies and not a methodology itself.
Obviously, if a comparison need to be done between the approach that integrate
the framework, the comparison should only focused on the factors specific to the
framework and not the methodology used. The following list, give an overview of
criteria to be considered grouped in two categories inspired from [Arth86]:

Chapter 5 Surveys

 214

 Objectives:
 Early error detection
 Traceability
 Readability
 Ease of change

 Reduced complexity
 Speed
 Enhanced cohesion
 Well-defined interfaces

Attributes:

 Adaptability
 Portability
 Reliability
 Testability

 Reusability
 Correctness
 Maintability

Based on the observations made for each of these criteria, we would have all the
relevant information needed for a complete comparison of both approaches.

5.7 Conclusion

Through this chapter we have presented four studies that were conducted during
the last years. As presented in the first section, some results were very concluding
from the very beginning while other needed to be improved. Indeed, the first
survey showed good usability results while the performances of the application
were far below the expectations.

With the next surveys that were conducted two years later, we observed that the
performances of the application were considerably closer of the expectations,
even if the results need to be interpreted with care. Contrary to the first survey,
the examiner was not is the same room than the participant, also the purpose of
the experiments was different and many error can be attributed to the test
configuration. Even if we do not have any statistics to illustrate this problem, we
observed that many participants did not read carefully the instructions and
sketched the wrong widget. Based on this observation we cannot compare
precisely the value provided by both surveys as the test condition were not the
same. However, despite the different test conditions, we observe that the
recognition rate obtained during the last survey is far better than the result
obtained previously. This point is very positive as we consider that the second
survey was more complicated than first set of test.

This chapter has also presented the construction of the grammar to be used by
the application. The purpose of the experiment was to define a grammar that

Chapter 5 Surveys

 215

would be really intuitive for the designers. The version of SketchiXML used at
that time did not permit to define custom representations for the widgets, it was
thus very important that the predefined representation were well defined. The
next survey addressing the representation issues occurred in a different context,
SketchiXML had another interpretation mechanism based on an xml grammar.
Not only the grammar was easily editable, but many representations for a single
widget could be added with a lot of flexibility. Also, SketchiXML had a new
feature allowing to switch from a fidelity level to another. The purpose of the
second survey was thus to evaluate the quality of the recognition with the new
interpretation mechanism, the impact of the fidelity level, and the impact of the
use constraint in widget representation.

We observed that the fidelity level had no impact on the construction of
individual widget. This observation must be used carefully as it does not mean
that the fidelity level has no impact on the design of complete UI. The third
survey was aimed at evaluating this aspect, but participant did not follow the
procedure correctly. Indeed, participants were asked to sketch UI in a particular
level of fidelity, but most of them did not respect it. The results were thus useless,
but, based on this issue we developed the following surveys in so as to avoid this
kind of problems.

The survey on the widget representations revealed some interesting points; we
have observed that the number of constraints in a representation significantly
increase the widget complexity. Unsurprisingly, some constraint have appeared to
be more complex than other, but some constraint that were considered to be very
soft appeared very difficult (see toggle button). This reason is likely to found in en
error in the java code than the intrinsic complexity associated to the constraint.

Through this chapter we have provided three case studies using SketchiXML and
others tools of the UsiXML suite.

With the first case study, we have illustrated the design of an e-commerce web
site. Though this example, we have illustrated the complete process starting from
a low fidelity prototype to a high fidelity prototype. To this end, illustration of the
UsiXML specifications refinement from a low fidelity description to a high fidelity
description was provided. Based on this rich UI description, we generated the
corresponding UIs in XHTML.

Chapter 5 Surveys

 216

The second example was more concise as it focused on the design of UIs for a
pocket pc. To this end, the case study illustrated how the tools can be adapted so
as to illustrate the new constraint associated to this kind of development. Based
on the UsiXML specification generated as output, we produced a set of web pages
to be displayed on such device.

The third example provided presented the development of an application for a
third context of use. Through this example we developed a java wizard based on
UsiXML specifications. As the previous case studies, we started from a low
fidelity mock up of the expected result and we refined it with GrafiXML in order
to obtain complete UIs.

 217

Chapter 6 Conclusion

This chapter concludes the work of this thesis by reminding its context (Section
1), summarizing the original contribution of this thesis (Section 2), and by
outlining how this work has been validated (Section 3). A list of individual
contributions of this thesis is first provided (Section 4) and major expected
avenues for future work are suggested (Section 5).

6.1 Context of This Work

Given the importance of user interface design during the application development
life cycle, it has been realized that much effort remains to be done on the
development of a new technique to reduce the design time needed to obtain the
right user interface.

For this purpose, many UI interface builders came on the forefront for most of
the existing programming and markup languages, allowing building a final UI
faster. Unfortunately, even if these tools turned out to be very efficient for
building a final UI, designers were still looking for a precise methodology to
proceed to the construction of the future UIs that is explicitly supported by a
prototyping tool exhibiting several expanded capabilities such as ease of use, fast
turn-around, designer control, prototyping captures.

As a response to the failure to rationalize the user interface process, initiatives
aimed to introduce new development methods and/or tools to effectively and
efficiently support UI design, and particularly early design which was largely
underexplored. Paper and pencil appeared as one of the very first and most

Chapter 6 Conclusion

 218

effective ways to represent the first drafts of a future UI. Indeed, this kind of
familiar and unconstrained approach benefits from many advantages since
sketches can be drawn during any design stage, it is fast to learn and quick to
produce, it lets the sketcher focus on basic structural issues instead of
unimportant details, it is very appropriate to convey ongoing, unfinished designs,
and it encourages creativity. Last but not least, sketches can be performed
collaboratively between designers and end-users, or even other stakeholders if
needed. The idea of developing a computer-based tool for sketching UIs
naturally emerged from these observations trying to combie, the best of both the
hand sketching process and a computer assisted interface design. Since it was
observed that the full potential of such techniques was not yet reached in existing
tools, a new sketching tool, named SketchiXML, has been developed with the
purpose to solve the shortcomings identified in those existing software.

This sketching tool has extended a set of UsiXML-compliant tools providing
designers and developers with more support to the prototyping framework.
Indeed, prior to this activity, no set of tools offered such a similar flexibility for
the design process: many independent tools exist, but each of them addresses only
a specific issue of the prototyping process and they cannot necessarily be
combined in a genuine interoperability

Based on this framework, this thesis illustrates how combining some existing
development methodologies with the set of tools part of the framework presented
may provide a more extensive support to UI early design. Indeed, rapid
prototyping is recognized for its valuable contribution in software development,
but is not always used as such for many reasons (e.g., it is a waste of time since its
output cannot be reused for another project). To this aim, this thesis progressively
addressed a series of open questions for which some answers have been given.
The outline of these contents is summarized in the next section.

6.2 Content of This Dissertation

Through the state of the art of Chapter 3 revealed a series of shortcomings in
existing approaches for achieving computer assisted UI design. These
shortcomings delineated our problem space and lead us to conclude that a future
sketching tool could be improved along several dimensions. Fifteen various
development methodologies were surveyed and compared with respect to their
conceptual coverage along with their respective design process.

Chapter 6 Conclusion

 219

Chapter 3 presented the SketchiXML agent oriented architecture developed to
support the series of aforementioned requirements: the strategy used for the
shape recognition and its interpretation mechanism, a grammar mechanism for UI
widgets and their representations based on experimental results, its working
principle and the functionalities of the sketching tool.

Through Chapter 4, a prototyping framework has been examined based on a
series of interoperable software based on a common User Interface Description
Language: UsiXML. Then, a selected set of existing methodologies has been
explored and exemplified on how they could be augmented with prototyping
capabilities provided by a sketching tool.

Chapter 5 demonstrated how human aspects related to sketching activities as
supported by SketchiXML have been considered. Various surveys have been
carried out for exploratory and evaluation purposes. The first phase of surveys
evaluated the performance of the application and collected user feeling about their
experience with the tool. The second phase consisted of evaluating the
performance with respect to the previous tests, but also of evaluating the potential
impact of the fidelity level used for the sketching phase. Two aspects were taken
into account for this experiment: the construction of an individual widget and the
construction of a complete UI. A CSUQ test concluded the usability study of the
sketching tool. We alsoillustrated with concrete case studies how SketchiXML
could be effectively used to develop a XHTML web application and a Java stand-
alone interactive application.

6.3 Validation

6.3.1 External Validation

The external validation was realized through the series of user tests of
SketchiXML conducted on a reasonably large sampling of participants. The main
goals of these tests were to evaluate the feasibility of the approach; firstly, by
evaluating the technical feasibility of this sketching tool, and above all by
evaluating its capability to involve people with various background in the design
process. To this end, it was judged of crucial importance that participants had a
good feeling of the application and were able to produce significant results within
a short amount of time.

Chapter 6 Conclusion

 220

Chapter 5 demonstrated the feasibility of involving participants with various
backgrounds in a single setup: all types of group showed good ability with the
application. Moreover, the participants without any past experiment in UI design
surprisingly showed better result than the group of computer scientist. This
unexpected difference was the proof that the tool was suitable for different kinds
of user.

The second positive effect was the learning curve. Indeed, two tests measuring the
learning effect of the participants were conducted, both leading to the same
observation. The first of the two tests consisted of designing three windows, while
the first and the third were similar. As presented in Chapter 5, the results of the
survey were very positive; even if the recognition rate was the same for each of
the UIs sketched, the time needed to draw the first and the third one were
significantly different, the time required for the third one being smaller. The
second test aimed at testing this aspect was done with “12x4x2” test. In this test
we also observed that the performance of the participant are significantly better
and the end of the test. So, after a ten minutes period, the performance of the
participant were already clearly higher. So, we consider that if a designer can learn
how to use the application in very short delay, then the application would gain
credibility in its purpose to combine the advantage of paper prototype and
computer assisted design.

Additionally to an easy learning, it was important that participants had a positive
feeling vis-à-vis of the application. To this aim, a part of the surveys were
dedicated to this purpose as we collected information about their experience. On
one hand we asked to the participants to fill a short questionnaire about the
application and we proceeded to an interview. Even if most of the participant
were really pleased and enjoyed the use the application, we captured many issues
that could be enhanced in the next release of the tool. The overall feeling of the
participant was quite positive as many enjoyed the test; most of them were ready
to re-use SketchiXML in the future.

6.3.2 Internal Validation

The internal validation of a methodology consists in assessing its characteristics
against a set of selected criteria. The relevant criteria, called requirements, for our
methodology have been elicited and motivated after the state of the art of Chapter

Chapter 6 Conclusion

 221

3. This section revisits the list of these requirements in the light of the work
conducted in this thesis:

R 1. Avoidance of Effort loss. Some sketching tools only support the
sketching activities without producing any re-usable output. So, once
the designer and the end user agreed upon a sketch, a contract can be
signed between them and the development phase can proceed from
the early design phase to the next phases. When the sketch is not
transformed, the effort building it is lost. A better alternative would
be to consider a mean to re-use the output in an efficient manner and
avoid any effort or time loss.

Discussion: As presented through Chapters 3,4,5, the SketchiXML
output can be reused in most of the UsiXML based tools. As shown
in Chapter 7, the work that was done in the early prototyping phase
with SketchiXML can be re-imported in a high-fidelity editor such as
GrafiXML so as to define all the aspects that remain to be specified
after early design.

R 2. Well defined editing functionalities. The purpose of our tool is to combine

the advantages of the paper prototyping and the computer assisted
design. As the main advantage of computer assisted design seems to
be the possibility to easily move, copy, paste, zoom, undo… these
functionalities should be present in such a tool in a well defined way.
Such assertion seems very natural, but all the tools do not always
propose such functionalities, or just a small subset. Since a design
project is likely to involve more than one single UI at a time, it is also
necessary for a tool to support multi-windowing design. Other
significant and obvious functionalities are the import and export
functions. It is very important to have the opportunity to save the
current work and reopen it later, even on a different computer

Discussion: As stated in many occasions throughout this document, we
aim at truly combining the advantages of both, the computer assisted
design and the paper based approach. As a consequence, effort was
done in order to propose support for general edit functions. Chapter 4
provided a description of the functionalities that are supported by the
tools. All the functions that were elicited in the Requirement 2 are

Chapter 6 Conclusion

 222

met. Not only SketchiXML supports copy, paste, cut, undo, delete,
redo and zoom, but it also permits to save the current work or to
export it to a binary file or to a UsiXML file.

R 3. Language neutrality. Most of the times, when a sketching tool support
code generation, it is bound to a particular programming language, a
particular UI type, a particular computing platform or operating
system. So, once an output is produced, it is usually bound to one
particular environment, therefore preventing developers to reuse
sketches from one case to another, such as for various platforms. As
the number context of use is increasing extremely fast, being bound
to a specific platform is a clear handicap these days. So, in order to
meet the designer’s need, the prototyping tool should provide an
output, that is general and context independent. For this purpose we
recommend the use of a specification language for UI description.
Several of them were developed these last years addressing this
challenging issue.

Discussion: As response to this requirement, we have decided to
consider the exportation of the work to an abstract description
language for user interface. So, SketchiXML does not generate user
interface in a specific programming language but in UsiXML
specification instead. The output generated is thus independent from
any programming language and computing platforms. However, the
specifications generated by the tool are associated to a specific context
of use that will be used by the other UsiXML based tool for
adaptation for other contexts of use.

R 4. Robust recognition. If a tool supports shape or text recognition, the

recognition quality and rate should to very high so as to prevent the
designer to waste time with misrecognition, thus leading to
discouragement and disappointment. If a designer should rewrite the
text several times before it is recognized, this feature should be either
disabled or improved. Another consideration for text recognition
would be to hide the result from the designer during the process, so
even if it was not recognized properly, the designer is not tempted to
delete and rewrite it.

Chapter 6 Conclusion

 223

Discussion: Thanks to the use of the combination of Cali library
SketchiXML was able to recognize strokes of different sizes, rotated at
arbitrary angles, drawn with dashed, continuous strokes or overlapping
lines with a high recognition rate. But the results of the first study
showed an average recognition rate smaller than 90 percent. The next
survey used a new version based on combination of the Cali library
and the gesture recognizer described in section 4. In addition, the test
was conducted with an improved UI and a large pen-enabled device.
Such configuration boosted the performance in term of recognition as
we reached 92.5%. Even if such recognition rate could still be
improved, we consider it a satisfactory with regards to the test
conditions that were not optimal for testing such aspect.

R 5. Large conceptual coverage. When considering denim or other similar tools,

the conceptual coverage is not a problem since there are not any
kinds of constraint on the drawing. For the other kind of tool the
situation is different, each tool must specify a set of representations
for each widget. These representations can be based on a shapes
combination, a single gesture or a mix. Most of the sketching tools
providing shape recognition only support a small set of widgets,
preventing to build any complex user interfaces. Moreover, adding
new representation is very difficult since most of the tools do not
provide any functionality to enrich the grammar. Also, if the designer
has the opportunity to add a representation, i.e., a new gesture
associated to a widget, adding a new widget is always impossible.

Discussion: SketchiXML is able to recognize a very large set of widgets.
Thanks to its easily editable grammar, the designer has the possibility
to add new widgets or to specify new representations for the existing
widgets. To this aim a set of constraint is defined by default in the
tool, but can be edited easily even if manual coding is required.
Moreover, UsiXML permit to save custom widgets as generic widgets.
Such characteristic is very interesting as the designer is free to add new
widget to maintain a mapping between the user interface sketched and
its corresponding view in UsiXML.

Chapter 6 Conclusion

 224

R 6. Recognition and process flexibility. Most of the sketching tools providing
shape recognition try to recognize every stroke drawn (either in batch
or real time mode). This prevents the user to represent complex
illustration on the future interfaces, such as diagrams, that cannot be
represented as widget. Moreover, this constraint also exists for the
high-fidelity design tools. For instance, Figure 8-1 illustrates a UI that
could not be represented with existing low- and high-fidelity design
tools providing shape recognition.

Figure 6-1 An example of user interface that cannot be designed with a standard UI builder

(Source: [Szek96])

In addition to a flexible recognition, the interpretation process should
also hold a major role. UI Sketching tools do not allow a lot of
flexibility in the sketch process: the user cannot choose when
recognition will occur, degrading openness [Sumn97] and when this
occurs; it is difficult to return to a previous state. Moreover,
depending of the tool, each time a component is recognized, it is
sometimes replaced by a stroke of a different color, left as it was
drawn, replaced with a smooth representation of the component…
According to the authors of these tools, their representation is the
most relevant, even if no research tried to confirm such assertions.
For our point of view, we should leave this decision to designer and
his preferences.

Discussion: SketchiXML addresses this requirement with a series of
dispositions. The fact that the designer could decide to keep a part of

Chapter 6 Conclusion

 225

the sketch a sketch that should not be recognized is supported by the
system. Indeed, the designer has the possibility to switch to a free
drawing mode, where sketches will be stored as pictures. Regarding
the way the sketch is interpreted, we offer a very innovative solution
as we permit to the designer to choose the rendering to be applied. As
presented in chapter 4, the designer can choose to keep the drawing as
it was sketched (none fidelity) or to display the widget recognized in
one of the three fidelities supported (low, medium, high).

R 7. Design history. As it can be seen in some professional tools, the use of

the design history can be very useful. When prototyping, a designer
will tries to explore many design alternatives in a short time, so the
designs will evolve very fast. Looking back to the previous steps can
be very useful, but such functionalities is rarely supported by the
existing tool fir rapid prototyping of user interface. In addition to the
set of editing functionalities such function would be very useful in
this kind of tool.

Discussion: Through Chapter 4 we presented the design memory
feature present in SketchiXML. This feature permits the designer to
store all the changes that were done on the user interface. So, the
designer can visualize the window at the different stages of
development and restore the current drawing to a previous state.

R 8. Expressive scenario editor. As stated in the introduction, one of the major

drawbacks of the paper prototyping is the difficulty to represent the
interaction between the windows. So, we consider that a good
prototyping tool should support this feature, since this kind of
information can easily be provided by the end user and is important
for a global comprehension of the user needs. But all the sketching
tools supporting code generation lack of a robust scenario editor.

Discussion: as presented in Chapter 4, SketchiXML contains a
navigation editor. This editor allows representing the navigation
between UIs contained in the project. Unfortunately, the navigational
aspects are not sufficiently developed in the current version of
UsiXML, a later version should address this issue in a better way.
Even if the specification cannot be stored in the UsiXML export, this

Chapter 6 Conclusion

 226

feature is still very useful as it is used for the run mode of the
application for simulation purposes

R 9. Preview (Run-mode). One of the drawbacks of the paper-based

prototyping is the difficulty to switch from the design phase to a
preview or a run mode. The standard approach requires a designer to
play the computer and move the window accordingly to the user
actions. So, if the tool is equipped with a navigation editor, we can
use all the information provided by the end user and build a run
mode based on the sketches or the windows interpreted in a specific
programming language. Such feature is very interesting since it permit
to see how the end users interact with the early prototype.

Discussion: SketchiXML offers a run-mode to the designer. This
perspective permits to the designer to evaluate the navigation that was
specified in the navigation editor. The run-mode works with several
level of fidelity. Indeed the high-fidelity level consists in rendering the
current sketches as java user interfaces. As the designer is free to
develop user interface for other platform such as website, he also has
the possibility to execute the run mode with a lower level of fidelity in
order to avoid confusion.

R 10. Ease of use (naturalness). The key argument for the development of such

tool is the ease of use. Everybody agree on the fact that paper
prototype is fast, easy and do not require an extensive background in
computer science. To this end, if a tool is supposed to capture the
advantage of both computer assisted design and paper prototyping,
the main advantage of paper prototype must have a central role in the
development of the application. So, the tool must be easy to use, use
only natural notation, do not impose any constraints on the
sketching… Otherwise a learning curve may prevent the end users
from learning how to use the tool and efficiently using it.

Discussion: The main objective of the application was to be user
friendly in order to involve the end-users in the development process.
To this end we tried to reduce the number of priority constraints, and
to define the most natural representations for each of the widget. With
regards to the results of the surveys, it seems that the objectives are

Chapter 6 Conclusion

 227

met. Indeed, almost all the participant found the application easy to
use, easy to learn and enjoyed the experiment.

6.4 Contributions

With SketchiXML we have introduced a new and innovative tool. Firstly,
SketchiXML is the first informal design tool that generates a user, platform, and
environment independent output and thus provides a solution to the language
neutrality weakness of existing approaches. Secondly, amongst all the tools
supporting shapes recognition and interpretation, it is probably on the most
flexible to our knowledge. Not only, SketchiXML enables designers to edit the
grammar of the supported widget (this editing of this graphical grammar is totally
separate and independent of the recognition engine), but it also allows adding any
custom widget and keep the mapping with the output produced. In addition to
this shape interpretation mechanism, SketchiXML integrates a mix of library and
algorithm for shape recognition. Such an approach extracts the best of the
different techniques. In order to define how the application components should
be coordinated, an architecture based on a standard pattern with the model-view-
controller was developed. Then, a set of agents dedicated to the shapes
recognition and interpretation have been developed. The approach provided in
this document permit to conduct a large set of simultaneous tasks while keeping a
quick response time.

We have shown that SketchiXML meets requirements most of the requirements
that were identified as important shortcomings of existing tools.

Through chapter 2, we have presenting the prototyping techniques and proposed
a prototyping framework for application and user interface development. Based
on this reference framework, the showed how SketchiXML extended a set of
tools based on UsiXML, allowing to initiate the prototyping process from the
early design phase to the final concrete user interface, with tools support for every
stages. Thus supporting the approach proposed in the prototyping reference
framework presented in chapter 2.

Using this prototyping framework based on the UsiXML tools, we have proposed
a series of recommendations to integrate this framework into the existing
methodologies. Together with GrafiXML and VisiXML, SketchiXML complete a
prototyping framework based on UsiXML initiating the prototyping process from

Chapter 6 Conclusion

 228

different perspectives. Based on this prototyping framework, chapter 6 illustrates
how to integrate it to the existing software development methodologies. To this
end, we proceeded to a description of general good practice for systems
prototyping and we showed how to apply it to some existing methodologies for
software development. The prototyping framework was thus proposed as a add-in
for most of the existing methodologies, as it effectively supports many of the
issues associated with prototyping techniques.

Through this thesis numerous empirical surveys were conducted. The first one
was conducted on sample of 60 participants coming from different activity sectors
with different backgrounds. They were solicited for the construction of the
grammar. In order to identify natural representation for each of the widget, we
asked these people to provide intuitive representation for the widgets to be
handled by SketchiXML. As it was presented in chapter 4, this set of
representation is not hard coded and can be reconfigured by the user through an
external xml-based grammar. Thus, any other representation can be added easily
using the grammar edition module present in SketchiXML, or by editing the
grammar file directly.

The second survey aimed at evaluating the application in term of performances
and usability. We conducted a survey on 40 people with different background in
order to test these parameters. From these result we have identified a set of issues
that should be addressed in the next releases, and we created an historical record
of usability benchmarks for future releases.

The last survey that was conducted aimed at evaluating the performance of the
application, its usability and the impact of the fidelity level. This last survey was
conducted a couple of years after the previous survey, thus with an improved
version of the application.

6.5 Future work

Although SketchiXML already provides a wide set of features, several evolutions
could be done on the tool itself, new domains of human activity could integrate
the technology developed around SketchiXML with some adaptation.

Chapter 6 Conclusion

 229

6.5.1 Extending the coverage of sketching artifacts

SketchiXML is supposed to support sketching activities for UIs of information
systems involved in multiple contexts of use, the context being understood here
as a combination of user, platform, and environment [Calv03]. UI variations have
been investigated with respect to user parameters and platform parameters, but
not for environmental considerations. Therefore, this last dimension should not
be left out.

As such, SketchiXML is focusing GUIs in the development life cycle for multiple
contexts. But nothing prevents this tool to sketch

• GUIs for other types of application than information systems:
provided that the sketched artifacts of a new domain of human activity are
captured and expressed either through the grammar or through the
gesture recognizer, they could be addressed in principle.

• Other UI types: provided that the abstractions required for sketching the
artifacts of another UI type (e.g., vocal, tactile, multimodal, virtual reality)
are known and represented through the various levels of fidelity, new UI
types could be equally sketched.

• Other UI genres: the UI type of interest here is mainly a software UI.
Physical UIs, or UI mixing different realities, such as mixed reality UIs,
tangible UIs, UIs for ambient intelligence, could also be covered in
principle.

• Other models involved in HCI: although SketchiXML addresses very
much the Concrete User Interface (CUI) level by exporting UI
specifications at this level in UsiXML terms, it could be imagined that
other UsiXML-compliant model (e.g., abstract UI, task, domain, context)
could be sketched as well. It would be very nice to benefit from a single
design environment where several models involved in the development
life cycle could be sketched together, thus leading to the idea of
“Sketching it all together”. The models, their internal relationships, and
the inter-model relationships.

• Other model involved outside HCI: similarly to the observation of
extending a sketching tool to encompass a domain model, other non-HCI
based models could be subject to sketching activities in the same way. For
instance, models involved in UML and RUP are excellent candidates for
such an integration. We want for proof that some of these models have
already been considered for a sketching tools, but mainly the UML class
diagram and the activity diagram. In principle, nothing prevents the
sketching tool to consider other types of models, even outside HCI.

Chapter 6 Conclusion

 230

6.5.2 Improving the Text Divider

One of the issues that could be better addressed in the future is the text
recognition. Indeed, when a designer sketches a future UI, shapes and texts
continuously alternate [Hong01]. Thus, the shape recognizer needs to identify
whether the stroke received is likely to be a sequence of characters or not. The
current approach is quite simple as it merely relies on the number of oscillations
with respect to its length and height. We then determine if the stroke was drawn
from left to right. Although such an approach provides acceptable results, it has a
strong limitation when sketching very short sequence of characters or special
characters such as “€” symbol. In order to address this issue correctly, the
identification of the text should be contextualized. Other text recognition
algorithms should be considered and, perhaps, developed in this context.

6.5.3 Tuning the Recognition Engine more extensively

This thesis presented a new algorithm for multi-stroke gesture recognition based
on Levensthein distance. Several improvements could still be carried out on this
algorithm in order to improve the performance and more capabilities, such as, but
not limited to: bidirectional sketching, sketching with dominant vs. non-dominant
hand, multi-hand sketching for a single user or multiple users (e.g., in a group
setup). A comparative analysis between the other algorithms for shapes
recognition is also worth to conduct, in particular with respect to widely known
algorithms such as Rubine [RUBI91]. Recent discussions with experts in that
domain lead us to conclude that other algorithms such as Rubine could be tuned
effectively so as to cover multi-stroke gestures in the same way our algorithm
does. Out of this analysis, a new algorithm could integrate the advantages of the
current approaches in a single solution.

6.5.4 Support for Multi-windowing Design

From the case studies involving a web site, many parts of a web page or many
fragments of any other UI are likely to come back in other portions of the global
UI. The current approach requires the designer to copy and paste all the
components that are present on each UI. In order to solve this problem, an easy,
simple and usable solution would consist in allowing to the designer to specify if
the current sketch must be applied to all UIs (e.g., for multiple platforms or
multiple contexts of use) of the project or just to a single one. Thus, changes on
the master UI would be reflected on the entire set of UIs. By relying on a

Chapter 6 Conclusion

 231

propagation scheme separating what should be shared in common for all contexts
of use and what should remain specific to a particular context. This would
support the idea of a genuine “Sketching paradigm for multiple contexts of use”.
For this purpose, precise UI transformations should be defined across the
contexts of use.

6.5.5 Augmenting the Support for Design Memory

One of the main purposes of SketchiXML consists in easing the communication
between the end users and designers. But SketchiXML could be also very useful
for conducting collaborative development with a large set of stakeholders. To this
end, the tool should be able to keep a trace of all the changes that were made to
the project. An interesting improvement would consist in developing a multi-user
design memory storing all the information associated to each contributor of the
projects over time In particular; it would be very useful to incorporate some
support for design rationale. By attaching a given sketch to comments, it could be
possible to record the reasons why such a sketch has been designed and chosen.
Multiple benefits could be expected: UI consistency across projects, improved
reusability, explicit extension guide, reviewing facilities for any stakeholder,
management of design options.

6.5.6 Extending to other domains than Computer Science

As long as sketches are involved in a particular human activity, it could be
expected that some support could be provided for this sketching activity, whether
this activity is in HCI, in SE, in Computer Science in general or another domain.

To support this statement, the SketchiXML environment has been used in a
totally different domain: annotation of mammograms (in the context of the
DIAMANT project). Based on the recognition engine and the grammar mechanism
developed for our tool, we are currently developing a tool for the annotation of
diagnostic images and biomedical signals. These are some domains where sketch-
based input would be very useful. This interaction technique enables clinicians to
describe their clinical judgment (e.g., anomalies, evaluation, notes) in a very
intuitive and effective way. For example in breast cancer screening, the
radiologists must carefully report the appearance and oncology classification of
the any suspicious lesions. They usually employ a number of descriptors capturing
information about the lesion size, its morphology (or clinical type), etc. These
descriptors are specific to the type of lesion (Figure 8-2)

Chapter 6 Conclusion

 232

Descriptor

Hidden Spiculated

Mass characterisation

Margin

Values

Shape

Circumscribed Microlobulated Indistinct

Round Oval Lobular Irregular

Figure 6-2 Example of features identifying a mass on mammograms

Similarly to the sketching of UIs for rapid-prototyping, the main features of breast
cancer lesions can be mapped to a set of graphic symbols defined with the help of
users, perhaps with different levels of fidelity. The integration of sketch
recognition capabilities into a clinical image annotation system can then provide
simple means for reporting and data entry.

Figure 6-3 Mock-up of sketch based breast cancer annotations

From the user point of view, sketch-based input presents important advantages
over a traditional WIMP visualization and annotation tool:

• The annotations can be made directly on the image workspace allowing
the radiologist’s attention to be focused on the region of interest around
the lesion;

• The user can define the set of sketches and symbols according to his

personal preferences and does not need to remember complex
configurations of the GUIs (menus, control keys, types of functionalities);

Mass

Chapter 6 Conclusion

 233

• The interaction paradigm is closer to the manipulation of paper forms
currently employed by clinicians and this could be beneficial for users with
low skills in computer-based medicine.

Results from an informal user testing have shown pen-based input to be very
promising to improve the support of clinical image annotations.

Many other domains could be considered, as long as the objects to be categorized
with the application fulfill a specific requirement. Indeed, the world that needs to
be modeled using this approach will be defined as a set of interrelated objects. For
each kind of object a gesture representation will be associated and relation
between these objects will be drawn. Thus, in order to extend the application to
other domain, the new domain has to dividable into objects and relations. For
instance, all the examples provided in the first subsection of the future work
satisfy this condition.

6.5.7 Extension of UCWorkBench [Ucwo]: a requirements engineering
tool

As we presented through the introduction of this thesis, many software engineers
tend to consider HCI activities as a part of the application that does not require
any specific attention. However, many researches were conducted in order to
highlight the importance of such piece of application. Not only because this part
of the application was demonstrated as a key component of an application but
also because the development of such interface may provide valuable information
for the development of the application. Through this thesis we have thus
illustrated how to integrate the prototyping framework into the existing
methodologies. However, this document has focused on the methodologies as a
whole, and never focused on a specific domain of the software engineering: the
requirement engineering (RE). This section illustrates how SketchiXML could
prove to be a valuable tool for requirements engineering. For this purpose we
provide a short description of the requirements engineering and the objectives
pursued with such process. The requirements engineering process is typically
characterized as an analysis process, where user needs and constraints must be
elicited and analyzed. RE is the systematic process of developing requirements
through an iterative cooperative process of analyzing a problem, documenting the
resulting observations in a variety of representation formats, and checking the
accuracy of the understanding gained. The essential tasks of RE during software

Chapter 6 Conclusion

 234

engineering (SE) are the elicitation and negotiation of requirements, their
specification and validation as well as their management over time [Paec03].

Figure 6-4 Mock-up of sketch based breast cancer annotations

We consider that human interaction should hold an integrated role if software
engineering, requirements engineering included. However, human interaction
tends to be ignored in RE as many software engineers consider that HCI-
considerations can be brought in after the requirements are elicited and that
requirements can be elicited without the consideration of the user interface.
[Paec03] claims that a fundamental prerequisite for bridging the gap between SE
and HCI is that RE is understood as a design activity that includes the design of
the user interface. During RE the support for the user through the software
system is designed. There are many design decisions to be made such as the to-be-
activities of the user tasks supported by the software, the system functions which
perform parts of these activities, or the interaction between system and user when
the system functions are executed. So the first major observation is that the
decision about the tasks is an indispensable prerequisite for starting the RE
process. As for example advocated in [Cock01], RE approaches often start with
goals. However, there is little guidance on how to identify these goals. Task
support is the most important goal, since a system will only be accepted by the
users, if their tasks are adequately supported. RE can learn a lot from HCI for the
identification of tasks.

Chapter 6 Conclusion

 235

As we stated in this document, SketchiXML should not only be considered as a
low fidelity editor, but as a communication mean between designers and end-
users. The purpose of the designer in this context consists in sketching the user
interface associated to the stories told by the end users. For now, the most
common approach for translating such stories into requirements consists in
translating them into use cases. Based on the complementarities of use cases and
user interface mock up, [Nawr05] developed a new approach to use case
engineering. Their approach is based on a combination of a use case editor, a
mockup generator and an effort calculator.

The editor uses Formal USE cases (FUSE) language, a simple language
formalizing structure of use-cases description. Thus, the use cases definition do
not present any particularities itself. The major innovation of the tool consists in
linking those uses case with a graphical representation. Based on the definition of
the uses cases and the associated collection of user interfaces UCWorkBench
generate of mockup of the system.
The mockup generated by the tool consists in a web page displaying all the use
cases identified on one side and on the other side their associated representation.
Then, the designers and the end-users can validate the use case thanks to an easy
navigation.

Considering this approach, we clearly identify an opportunity to develop a new
tool based on the advantages of both SketchiXML and UCWorkBench. Indeed,
using SketchiXML much more information can be obtained, not the
corresponding specifications, but all the information associated to the navigation
and the fact that the prototype is really interactive. Moreover, a part of the use
cases can be semi-automatically identified based on the specification of the
navigation.

6.5.8 General Improvement of sketching facilities

In addition to the set of aforementioned extensions, a lot of work could be
devoted to sketching software itself. Indeed, this tool must be considered as an
advanced prototype rather than commercially available softwares. Many aspects of
the tool could be improved in order to increase its usability and performance.
Naturally, the purpose of this thesis was not to develop a commercial product, but
to demonstrate the feasibility of such a tool and evaluate its interest in realistic
setups. General improvements could consider: implementation optimization for
better performance, fine-grained gesture recognition based on fine-tuned
parameters, enhanced support for versioning and advanced support for group

Chapter 6 Conclusion

 236

activities. An entirely new series of experiments could be conducted to assess the
general usability of a sketching tool like SketchiXML in various industrial setups
involving different configurations: a single design, a design with a end user, a end
user solely, a team of software designers and developers working together either
simultaneously or asynchronously, in a single place or in multiple (remote) places.
This represents a new endeavor in the area of group support in development life-
cycle.

 237

Appendix A - UsiXML 1.8 Class
Diagrams

This first appendix contains the meta-model for the UsiXML 1.8 concrete UI model and
abstract UI model. Due to the large size of the schema, the CUI meta-model is divided
into 4 parts:

1 2 3 4

Appendix A – UsiXML 1.8 Class Diagram

 238

Appendix A – UsiXML 1.8 Class Diagram

 239

 240

 241

 242

Appendix B - UsiXML compliant
tools

As Many tools based on UsiXML exist, the following section present a selection of tools
for each category. Firstly we present the some editor based on UsiXML, then couples of
interpreters and eventually other interesting tools.

Editors

Grafixml (http://www.UsiXML.org/index.php?page=grafixml. xml), is currently
developed at University of Louvain. With this tool, the designer can draw in direct
manipulation any graphical UI by directly placing CIOs and editing their properties in a
property sheet.

This tool allows users to draw a concrete user interface and then automatically generate
UsiXML code from the graphical representation (figure E-2) or to produce an user
interface in XHTML, XUL or Java from a UsiXML specification.

Appendix B – UsiXML compliant tools

 243

Fig. E-2 GrafiXML

VisiXML (http://www.usixml.org/index.php?view=page&idpage=11) is a graphical
editor for designing Graphical User Interfaces on top of the Microsoft Visio
environment. In this drawing environment, the user drags icons of the language from a
palette and drop it onto a working surface area to depict UsiXML elements. VisiXML is
intended to support non-developers for mid-fidelity prototyping and specification of
Graphical User Interfaces. Therefore, only basic properties of UsiXML elements can be
captured to avoid distracting or disturbing the user. Once the design is finsihed, the tools
automatically generates the Abstract User Interface level (AUI) and the Concrete User
Interface level (CUI) on demand in UsiXML.

Appendix B – UsiXML compliant tools

 244

IdealXML (Interface Development Environment for AppLications specified in
usiXML) is a pattern-oriented tool
(http://www.usixml.org/index.php?view=page&idpage=34). Using this environment
you can edit, manipulate, view and learn about patterns. It is based on Pattern Language
Markup Language (PLML), but additional elements were provided. You can create a new
repository, and then distribute your repository to other peoples, this is essential. You can
edit textual features associated with a pattern, such as: name, alias, problem, context,
solution, synopsis, rationale, etc. And you can edit diagrams using meaningful notations
(class diagrams and CTT) from software engineering and human-computer interaction.
So, ergonomic criteria, forces, diagrams, examples and author´s information are
associated with a pattern too. Diagrams are associated using UsiXML and patterns are
stored using PLML.

Appendix B – UsiXML compliant tools

 245

Teresa is developed at ISTI-CNR and supports the generation of XHTML, VoiceXML
and WML starting from a task model, an abstract or concrete UI model expressed in
TeresaXML or a concrete UI specified in UsiXML.

Interpreters

FlashiXML (http://www.usixml.org/index.php?view=page&idpage=15) is a rendering
engine of UsiXML-compliant UIs in a vectorial mode that is SVG-compatible. Any
UsiXML-compliant UI can be opened and rendered in this interpreter so as to create the
truly working UIs with presentation and dialog. In this environment, the UI can be
resized at any time to address some constraints imposed by the computing platforms and
to support some properties of Graceful Degradation of UIs, a sub-property of the
Plasticity property. In this way, any UsiXML-compliant UI can be rendered on any
computing platform equipped with a SVG or Flash plug-in.

Appendix B – UsiXML compliant tools

 246

Fig E-3 FlashiXML

InterpiXML (http://www.usixml.org/index.php?view=page&idpage=41) is a runtime
interpreter for UsiXML files. In GrafiXML, you are able to automatically generate a Java
description of a user interface, but in this project, it is expected that the end user will
receive a series of UsiXML files containing interfaces for different tasks, so as to make
her/his "To do" list. In this way, the end user can "open" one or several interfaces and
execute them instantly to mimic the principle of the unique workstation. This project is
currently under initial development. Another facility provided by InterpiXML is its
capability to change the native language of the user and re-launch the user interface
and/or to change the presentation look& feel dynamically.

Other tools

TransformiXML, applies graph transformations contained in graph grammars to
perform transformations of UsiXML-compliant UIs to produce a new UI specification.
Such transformation can occur between any level (task and domain, abstract user
interface, concrete user interface) to support forward engineering, reverse engineering,
middle-out approach, adaptation, and the wide spreading approach. The tool allows
managing a development library (a library containing a catalog of transformation rules)

Appendix B – UsiXML compliant tools

 247

ReversiXML is a tool that reverse engineers any HTML page of a Web site into
UsiXML, both at Abstract User Interface (AUI) and the Concrete User Interface (CUI)
levels so as to retarget an existing web site to another computing platform. ReversiXML
is the online version of Vaquita which is a set of techniques established to reverse
engineer UIs that were not designed according to a model-based approach. In this
manner, these UIs can be incorporated in the same pipe-line and this allow migration of
UIs from one computing platform to another. The current goal of ReversiXML is to
reverse engineer a web site onto a concrete or abstract UI model according to flexible
heuristics. The flexibility of this process is of high importance considering the many
design options that may have been decided at design time.

Appendix B – UsiXML compliant tools

 248

MigriXML is a virtual reality system representing the user’s real environment, based on
UsiXML models: the platforms found in that environment, the UI of interactive graphics
applications that are executed on these platforms, and the user. Within that virtual
environment, the user interacts with the platforms and the running applications as if they
were their real counterparts.

The main characteristic of MigriXML is that it supports the run-time user interface
migration between computing platforms. The user can select any application, and make
the related UI emigrate from the source platform and immigrate in a target platform. To
do so, the user presses the button (M) –which stands for ‘migrate’- that can be found in
the button bar of the application window. As a result, the user ‘grabs’ the window, and
from that very moment the window will follow the user's cursor within the screen of the
source platform and any other platform, being rendered according to the resolution and
definition of the pointed screen.

UsabilityAdviser is a tool intended to improve usability and accessibility of user
interfaces designed with an usixml editor. It interacts with the usixml editor to find
violated usability and accessibility rules during the design of an user interface.

Appendix B – UsiXML compliant tools

 249

UsabilityAdviser is based on separating the ergonomic knowledge from the evaluation
engine. Indeed, the knowledge base of usability rules is a simple text file which contains
the description of rules in a formal language. This formal language is very similar to the
natural language. This separation provide a dynamic and flexible structuring of this
knowledge according to the rapid evolution technologies and scientific findings in the
fields of ergonomics and human factors.

For the moment, UsabilityAdviser is only compatible with SketchiXml and GrafiXml.
But it can easily be adapted to other tools thanks to the standard of communication
which was developed.

Appendix B – UsiXML compliant tools

 250

 251

Appendix C – Widgets catalogue

The first table of this chapter contains all the representations that were submitted to the
end users and designers during the survey for the widgets catalogue construction.

Text

Textfiel
d

Text
Area

Button

Search
Field

Login

Login

Logout

Reset

Radio
Button

Appendix C – Building a Widget Catalogue

 252

Check
Box

Validate

Combob
ox

Image

Multime
dia area

Group
Box

Table

Hyperli
nk

Listbox

Appendix C – Building a Widget Catalogue

 253

Toggle
Button

File
Picker

Slider

Progress
Bar

Spinner

The following table shows all the widgets to be handled by SketchiXML. This list is far
from being exhaustive as the grammar can be enriched easily.

Widget Type Graphical
Representation Sketching propositions

Text This is text

TextField

TextArea

Button Button

Search Field

Appendix C – Building a Widget Catalogue

 254

Login

Log out

Reset Form

Validate

RadioButton Radio Button

CheckBox Check Box

Combobox

Image

Multi Media
Area

Layer

Group Box

Table

Hyperlink Hyperlink

Appendix C – Building a Widget Catalogue

 255

Anchor

ListBox

Hour Picker

Toggle Button

Slider

Progress Bar

TabDialogBox

Menu

Title1

Title1

Appendix C – Building a Widget Catalogue

 256

 257

Appendix D – UsiXML
specification

This section contains the complete specification gener ated by SketchiXML for the
second case study.

 <?xml version="1.0" encoding="UTF-8" ?>
- <uiModel id="Case_study_2" name="Case_study_2" creationDate="2007-04-
03T16:16:58.109+02:00" schemaVersion="1.6.4" xmlns="http://www.usixml.org">
- <head>
 <version modifDate="2007-04-03T16:16:58.109+02:00" />
 <authorName>Adrian</authorName>
 <comment>This file was generated with SketchiXML</comment>
 <comment>Information on this tool can be found on www.usixml.org</comment>
 </head>
- <cuiModel id="Case_study_2-cui" name="Case_study_2-cui">
- <window id="window_0" name="window_0" isVisible="true" isEnabled="true" width="240"
height="320" isAlwaysOnTop="false" isResizable="true">
- <gridBagBox id="Box_0" name="Box_0" gridHeight="16" gridWidth="12">
- <constraint gridx="2" gridy="0" gridwidth="5" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_0" name="Label_0" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="7" gridy="1" gridwidth="2" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <imageComponent id="Picture_0" name="Picture_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>
- <constraint gridx="0" gridy="3" gridwidth="8" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_1" name="Label_1" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="0" gridy="6" gridwidth="3" gridheight="9" weightx="1.0" weighty="1.0"
fill="none">
 <imageComponent id="Picture_1" name="Picture_1" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>

Appendix D – Case Study (UsiXML Specification)

 258

- <constraint gridx="4" gridy="7" gridwidth="6" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Hyperlink_1" name="Hyperlink_1" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false"
isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" defaultHyperLinkTarget="http://www.usixml.org"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="4" gridy="9" gridwidth="8" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Hyperlink_2" name="Hyperlink_2" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false"
isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" defaultHyperLinkTarget="http://www.usixml.org"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="4" gridy="11" gridwidth="6" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Hyperlink_0" name="Hyperlink_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false"
isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" defaultHyperLinkTarget="http://www.usixml.org"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="6" gridy="14" gridwidth="6" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Hyperlink_3" name="Hyperlink_3" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false"
isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" defaultHyperLinkTarget="http://www.usixml.org"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
 </gridBagBox>
 </window>
- <window id="window_1" name="window_1" isVisible="true" isEnabled="true" width="240"
height="320" isAlwaysOnTop="false" isResizable="true">
- <gridBagBox id="Box_0" name="Box_0" gridHeight="16" gridWidth="12">
- <constraint gridx="2" gridy="0" gridwidth="5" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_0" name="Label_0" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="1" gridy="3" gridwidth="8" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_1" name="Label_1" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="8" gridy="1" gridwidth="2" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">

Appendix D – Case Study (UsiXML Specification)

 259

 <imageComponent id="Picture_0" name="Picture_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>
- <constraint gridx="0" gridy="5" gridwidth="3" gridheight="9" weightx="1.0" weighty="1.0"
fill="none">
 <imageComponent id="Picture_1" name="Picture_1" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>
- <constraint gridx="5" gridy="5" gridwidth="4" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_2" name="Label_2" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="4" gridy="7" gridwidth="1" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_3" name="Label_3" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="6" gridy="7" gridwidth="4" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <comboBox id="ComboBox_0" name="ComboBox_0" isVisible="true" isEnabled="true"
textColor="#000000" />
 </constraint>
- <constraint gridx="4" gridy="9" gridwidth="2" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_4" name="Label_4" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="6" gridy="9" gridwidth="4" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <inputText id="TextField_0" name="TextField_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ffffff" textColor="#000000" maxLength="100"
numberOfColumns="20" numberOfLines="1" isPassword="false" isWordWrapped="true"
forceWordWrapped="true" isEditable="true" defaultFilter="" />
 </constraint>
- <constraint gridx="4" gridy="11" gridwidth="2" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_5" name="Label_5" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="6" gridy="11" gridwidth="4" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <comboBox id="ComboBox_1" name="ComboBox_1" isVisible="true" isEnabled="true"
textColor="#000000" />
 </constraint>

Appendix D – Case Study (UsiXML Specification)

 260

- <constraint gridx="6" gridy="14" gridwidth="5" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Hyperlink_0" name="Hyperlink_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false"
isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" defaultHyperLinkTarget="http://www.usixml.org"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
 </gridBagBox>
 </window>
- <window id="window_2" name="window_2" isVisible="true" isEnabled="true" width="240"
height="320" isAlwaysOnTop="false" isResizable="true">
- <gridBagBox id="Box_0" name="Box_0" gridHeight="16" gridWidth="12">
- <constraint gridx="2" gridy="0" gridwidth="5" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_0" name="Label_0" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="1" gridy="3" gridwidth="8" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_1" name="Label_1" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="8" gridy="1" gridwidth="2" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <imageComponent id="Picture_0" name="Picture_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>
- <constraint gridx="0" gridy="6" gridwidth="3" gridheight="9" weightx="1.0" weighty="1.0"
fill="none">
 <imageComponent id="Picture_1" name="Picture_1" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>
- <constraint gridx="4" gridy="7" gridwidth="7" gridheight="4" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_2" name="Label_2" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="4" gridy="11" gridwidth="5" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Hyperlink_0" name="Hyperlink_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false"
isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" defaultHyperLinkTarget="http://www.usixml.org"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="6" gridy="14" gridwidth="5" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">

Appendix D – Case Study (UsiXML Specification)

 261

 <outputText id="Hyperlink_1" name="Hyperlink_1" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false"
isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" defaultHyperLinkTarget="http://www.usixml.org"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
 </gridBagBox>
 </window>
- <window id="window_3" name="window_3" isVisible="true" isEnabled="true" width="240"
height="320" isAlwaysOnTop="false" isResizable="true">
- <gridBagBox id="Box_0" name="Box_0" gridHeight="16" gridWidth="12">
- <constraint gridx="2" gridy="0" gridwidth="5" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_0" name="Label_0" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="1" gridy="2" gridwidth="8" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_1" name="Label_1" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="8" gridy="0" gridwidth="2" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <imageComponent id="Picture_0" name="Picture_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>
- <constraint gridx="0" gridy="5" gridwidth="3" gridheight="9" weightx="1.0" weighty="1.0"
fill="none">
 <imageComponent id="Picture_1" name="Picture_1" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>
- <constraint gridx="4" gridy="5" gridwidth="3" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_2" name="Label_2" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="4" gridy="7" gridwidth="8" gridheight="7" weightx="1.0" weighty="1.0"
fill="none">
 <listBox id="ListBox_0" name="ListBox_0" isVisible="true" isEnabled="true"
textColor="#000000" />
 </constraint>
- <constraint gridx="7" gridy="15" gridwidth="5" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Hyperlink_0" name="Hyperlink_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false"
isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" defaultHyperLinkTarget="http://www.usixml.org"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />

Appendix D – Case Study (UsiXML Specification)

 262

 </constraint>
 </gridBagBox>
 </window>
- <window id="window_4" name="window_4" isVisible="true" isEnabled="true" width="240"
height="320" isAlwaysOnTop="false" isResizable="true">
- <gridBagBox id="Box_0" name="Box_0" gridHeight="16" gridWidth="12">
- <constraint gridx="2" gridy="0" gridwidth="5" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_0" name="Label_0" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="8" gridy="1" gridwidth="2" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <imageComponent id="Picture_0" name="Picture_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>
- <constraint gridx="0" gridy="5" gridwidth="3" gridheight="9" weightx="1.0" weighty="1.0"
fill="none">
 <imageComponent id="Picture_1" name="Picture_1" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>
- <constraint gridx="0" gridy="3" gridwidth="3" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_1" name="Label_1" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="4" gridy="3" gridwidth="2" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Hyperlink_0" name="Hyperlink_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false"
isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" defaultHyperLinkTarget="http://www.usixml.org"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="6" gridy="14" gridwidth="4" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Hyperlink_1" name="Hyperlink_1" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false"
isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" defaultHyperLinkTarget="http://www.usixml.org"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="4" gridy="5" gridwidth="2" gridheight="4" weightx="1.0" weighty="1.0"
fill="none">
 <imageComponent id="Picture_2" name="Picture_2" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>
- <constraint gridx="7" gridy="4" gridwidth="3" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">

Appendix D – Case Study (UsiXML Specification)

 263

 <outputText id="Label_2" name="Label_2" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="7" gridy="6" gridwidth="3" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_3" name="Label_3" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="4" gridy="10" gridwidth="6" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_4" name="Label_4" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="4" gridy="12" gridwidth="6" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_5" name="Label_5" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="4" gridy="13" gridwidth="6" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_6" name="Label_6" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="4" gridy="14" gridwidth="2" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Hyperlink_2" name="Hyperlink_2" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false"
isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" defaultHyperLinkTarget="http://www.usixml.org"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
 </gridBagBox>
 </window>
- <window id="window_5" name="window_5" isVisible="true" isEnabled="true" width="240"
height="320" isAlwaysOnTop="false" isResizable="true">
- <gridBagBox id="Box_0" name="Box_0" gridHeight="16" gridWidth="12">
- <constraint gridx="2" gridy="0" gridwidth="5" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_0" name="Label_0" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>

Appendix D – Case Study (UsiXML Specification)

 264

- <constraint gridx="1" gridy="3" gridwidth="3" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_1" name="Label_1" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="8" gridy="1" gridwidth="2" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <imageComponent id="Picture_0" name="Picture_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>
- <constraint gridx="4" gridy="3" gridwidth="2" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Hyperlink_0" name="Hyperlink_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false"
isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" defaultHyperLinkTarget="http://www.usixml.org"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="0" gridy="5" gridwidth="2" gridheight="8" weightx="1.0" weighty="1.0"
fill="none">
 <imageComponent id="Picture_1" name="Picture_1" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>
- <constraint gridx="4" gridy="4" gridwidth="6" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_2" name="Label_2" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="4" gridy="6" gridwidth="2" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_3" name="Label_3" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="3" gridy="7" gridwidth="4" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_4" name="Label_4" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="3" gridy="8" gridwidth="2" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_5" name="Label_5" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>

Appendix D – Case Study (UsiXML Specification)

 265

- <constraint gridx="3" gridy="9" gridwidth="3" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_6" name="Label_6" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="3" gridy="11" gridwidth="3" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_7" name="Label_7" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="7" gridy="6" gridwidth="4" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <inputText id="TextField_0" name="TextField_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ffffff" textColor="#000000" maxLength="100"
numberOfColumns="20" numberOfLines="1" isPassword="false" isWordWrapped="true"
forceWordWrapped="true" isEditable="true" defaultFilter="" />
 </constraint>
- <constraint gridx="7" gridy="7" gridwidth="3" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <inputText id="TextField_1" name="TextField_1" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ffffff" textColor="#000000" maxLength="100"
numberOfColumns="20" numberOfLines="1" isPassword="false" isWordWrapped="true"
forceWordWrapped="true" isEditable="true" defaultFilter="" />
 </constraint>
- <constraint gridx="7" gridy="8" gridwidth="4" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <inputText id="TextField_2" name="TextField_2" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ffffff" textColor="#000000" maxLength="100"
numberOfColumns="20" numberOfLines="1" isPassword="false" isWordWrapped="true"
forceWordWrapped="true" isEditable="true" defaultFilter="" />
 </constraint>
- <constraint gridx="7" gridy="9" gridwidth="4" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <inputText id="TextField_3" name="TextField_3" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ffffff" textColor="#000000" maxLength="100"
numberOfColumns="20" numberOfLines="1" isPassword="false" isWordWrapped="true"
forceWordWrapped="true" isEditable="true" defaultFilter="" />
 </constraint>
- <constraint gridx="7" gridy="11" gridwidth="4" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <inputText id="TextField_4" name="TextField_4" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ffffff" textColor="#000000" maxLength="100"
numberOfColumns="20" numberOfLines="1" isPassword="false" isWordWrapped="true"
forceWordWrapped="true" isEditable="true" defaultFilter="" />
 </constraint>
 </gridBagBox>
 </window>
- <window id="window_6" name="window_6" isVisible="true" isEnabled="true" width="240"
height="319" isAlwaysOnTop="false" isResizable="true">
- <gridBagBox id="Box_0" name="Box_0" gridHeight="0" gridWidth="0">

Appendix D – Case Study (UsiXML Specification)

 266

- <constraint gridx="2" gridy="0" gridwidth="5" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_0" name="Label_0" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="8" gridy="0" gridwidth="2" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <imageComponent id="Picture_0" name="Picture_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>
- <constraint gridx="0" gridy="5" gridwidth="3" gridheight="9" weightx="1.0" weighty="1.0"
fill="none">
 <imageComponent id="Picture_1" name="Picture_1" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>
- <constraint gridx="3" gridy="6" gridwidth="8" gridheight="7" weightx="1.0" weighty="1.0"
fill="none">
 <listBox id="ListBox_0" name="ListBox_0" isVisible="true" isEnabled="true"
textColor="#000000" />
 </constraint>
- <constraint gridx="7" gridy="14" gridwidth="4" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Hyperlink_0" name="Hyperlink_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false"
isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" defaultHyperLinkTarget="http://www.usixml.org"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="0" gridy="2" gridwidth="3" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_1" name="Label_1" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="4" gridy="2" gridwidth="3" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Hyperlink_1" name="Hyperlink_1" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false"
isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" defaultHyperLinkTarget="http://www.usixml.org"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="4" gridy="5" gridwidth="6" gridheight="1" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_2" name="Label_2" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
 </gridBagBox>
 </window>

Appendix D – Case Study (UsiXML Specification)

 267

- <window id="window_7" name="window_7" isVisible="true" isEnabled="true" width="240"
height="319" isAlwaysOnTop="false" isResizable="true">
- <gridBagBox id="Box_0" name="Box_0" gridHeight="0" gridWidth="0">
- <constraint gridx="2" gridy="0" gridwidth="5" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_0" name="Label_0" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="0" gridy="2" gridwidth="3" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_2" name="Label_2" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="7" gridy="0" gridwidth="2" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <imageComponent id="Picture_0" name="Picture_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>
- <constraint gridx="0" gridy="5" gridwidth="3" gridheight="9" weightx="1.0" weighty="1.0"
fill="none">
 <imageComponent id="Picture_1" name="Picture_1" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" textColor="#000000" />
 </constraint>
- <constraint gridx="3" gridy="7" gridwidth="8" gridheight="7" weightx="1.0" weighty="1.0"
fill="none">
 <listBox id="ListBox_0" name="ListBox_0" isVisible="true" isEnabled="true"
textColor="#000000" />
 </constraint>
- <constraint gridx="7" gridy="14" gridwidth="4" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Hyperlink_0" name="Hyperlink_0" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false"
isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" defaultHyperLinkTarget="http://www.usixml.org"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="4" gridy="3" gridwidth="3" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Hyperlink_1" name="Hyperlink_1" isVisible="true" isEnabled="true"
fgColor="#000000" bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false"
isSubscript="false" isSuperscript="false" isPreformatted="false" textColor="#000000"
textFont="Dialog" isItalic="false" defaultHyperLinkTarget="http://www.usixml.org"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />
 </constraint>
- <constraint gridx="4" gridy="4" gridwidth="5" gridheight="2" weightx="1.0" weighty="1.0"
fill="none">
 <outputText id="Label_1" name="Label_1" isVisible="true" isEnabled="true" fgColor="#000000"
bgColor="#ece9d8" isBold="true" isUnderline="false" isStrikethrough="false" isSubscript="false"
isSuperscript="false" isPreformatted="false" textColor="#000000" textFont="Dialog" isItalic="false"
visitedLinkColor="#000000" textMargin="0" numberOfColumns="15" numberOfLines="1" />

Appendix D – Case Study (UsiXML Specification)

 268

 </constraint>
 </gridBagBox>
 </window>
 </cuiModel>
- <contextModel id="Case_study_2-contextModel_0" name="Case_study_2-contextModel">
- <context id="Case_study_2-contextModel_0" name="Case_study_2-context-en_US">
 <userStereotype id="Case_study_2-sten_US_9" language="en_US"
stereotypeName="Case_study_2-sten_US" />
 <platform id="Case_study_2-platform_0" name="Case_study_2-platform" />
 <environment id="Case_study_2-env_0" name="Case_study_2-env" />
 </context>
 </contextModel>
- <resourceModel>
- <cioRef cioId="Label_0">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_1">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Hyperlink_1">
 <resource content="Hyperlink" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Hyperlink_2">
 <resource content="Hyperlink" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Hyperlink_0">
 <resource content="Hyperlink" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Hyperlink_3">
 <resource content="Hyperlink" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_0">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_1">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_2">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_3">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_4">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_5">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Hyperlink_0">
 <resource content="Hyperlink" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Button_0">
 <resource content="Button" contextId="Case_study_2-contextModel_0" />

Appendix D – Case Study (UsiXML Specification)

 269

 </cioRef>
- <cioRef cioId="Label_0">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_1">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_2">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Hyperlink_0">
 <resource content="Hyperlink" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Hyperlink_1">
 <resource content="Hyperlink" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_0">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_1">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_2">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Button_0">
 <resource content="Button" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Hyperlink_0">
 <resource content="Hyperlink" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_0">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_1">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Hyperlink_0">
 <resource content="Hyperlink" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Hyperlink_1">
 <resource content="Hyperlink" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_2">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_3">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_4">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_5">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />

Appendix D – Case Study (UsiXML Specification)

 270

 </cioRef>
- <cioRef cioId="Label_6">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Hyperlink_2">
 <resource content="Hyperlink" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_0">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_1">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Hyperlink_0">
 <resource content="Hyperlink" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_2">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_3">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_4">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_5">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_6">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_7">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Button_0">
 <resource content="Button" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_0">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Hyperlink_0">
 <resource content="Hyperlink" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_1">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Hyperlink_1">
 <resource content="Hyperlink" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_2">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_0">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />

Appendix D – Case Study (UsiXML Specification)

 271

 </cioRef>
- <cioRef cioId="Label_2">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Hyperlink_0">
 <resource content="Hyperlink" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Hyperlink_1">
 <resource content="Hyperlink" contextId="Case_study_2-contextModel_0" />
 </cioRef>
- <cioRef cioId="Label_1">
 <resource content="Label" contextId="Case_study_2-contextModel_0" />
 </cioRef>
 </resourceModel>
 </uiModel>

Appendix D – Case Study (UsiXML Specification)

 272

 273

Appendix E – SketchiXML User
Guide

Appendix E SketchiXML User Guide

 274

Appendix E SketchiXML User Guide

 275

Appendix E SketchiXML User Guide

 276

Appendix E SketchiXML User Guide

 277

Appendix E SketchiXML User Guide

 278

Appendix E SketchiXML User Guide

 279

Appendix E SketchiXML User Guide

 280

Appendix E SketchiXML User Guide

 281

Appendix E SketchiXML User Guide

 282

Appendix E SketchiXML User Guide

 283

Appendix E SketchiXML User Guide

 284

Appendix E SketchiXML User Guide

 285

Appendix E SketchiXML User Guide

 286

Appendix E SketchiXML User Guide

 287

Appendix E SketchiXML User Guide

 288

Appendix E SketchiXML User Guide

 289

Appendix E SketchiXML User Guide

 290

 291

References

A

[Abra99]

Abrams M, Phanouriou C., Batongbacal A. L. , Williams S., Shuster J., UIML: An Appliance-
Independent XML User Interface Language, in Computer Networks: The International Journal
of Computer and Telecommunications Networking, v.31 n.11-16, p.1695-1708, May 17, 1999.

 [Alva04a]
Alvarado C. and Davis R., SketchREAD: A Multi-domain Sketch Recognition Engine, in
Proceedings of User Interface Software and Technology UIST’04, pp. 23-32, Santa Fe, USA
2004.

[Alva04b]
Alvarado C., Sketch Recognition User Interfaces: Guidelines for Design and Development,
AAAI Fall Symposium on Intelligent Pen-based Interfaces, 2004.

[Arid98]
Aridor Y. and Lange D. B., Agent Design Patterns: Elements of Agent Application Design, in
Proceedings of the 2nd Int. Conf. on Autonomous Agents Agents’98, pp. 108-115
Minneapolis, USA, 1998.

[Arth86]
Arthur J. D., Nance R. E., and Henry S. M., A Procedural Approach to Evaluating Software
Development Methodologies: the Foundation, Technical Report. UMI Order Number: TR-86-
24., Virginia Polytechnic Institute & State University, 1986.

[Axur]
Axure RP: http://www.axure.com/products.aspx

B

 [Bail03]

Bailey B.P. and Konstan J.A., Are Informal Tools Better? Comparing DEMAIS, Pencil and
Paper, and Authorware for Early Multimedia Design, in Proceedings of the ACM Conference
on Human Factors in Computing Systems CHI’03, pp. 313-320, Fort Lauderdale, USA, April
2003.

References

 292

[Baum96]
Baümer D., Bischofberger W.R., Lichter H., and Züllighoven H., User Interface Prototyping -
Concepts, Tools, and Experience, in Proceeding of 18th International Conference on Software
Engineering ICSE’96, pp. 532-541, Berlin, Germany, 1996.

[Beck87]
Beck K., and Cunningham W., Using Pattern Languages for Object-Oriented Programs, in
Workshop on the Specification and Design for Object-Oriented Programming OOPSLA’87,
1987.

 [Brat88]
M. Bratman, Intentions, Plans and Practical Reasoning, Harvard Univ. Press, 1987.

 [Bede94]
Bederson B.B. and Hollan J.D., Pad++: A Zooming Graphical Interface for Exploring
Alternative Inteface Physics, in Proceedings of the ACM Symposium on User Interface
Software and Technology UIST '94, pp. 17-26, Marina del Rey, USA, 1994.

[Berk00]
Berkun, S. The Art of User Interface Prototyping, November 2000, accessible at
http://www.scottber kun.com/essays/essay12.htm

 [Blan04]
Blankenhorn K., Jeckle M., A UML Profile for GUI Layout, in Proceeding of
Net.ObjectDays’04, pp. 110-121, Erfurt, Germany, 2004.

[Bush96]
 Buschmann F., Meunier R., Rohnert H., Sommerlad P. and Stal M., Pattern-Oriented
Software Architecture - A System of Patterns, John Wiley & Sons, Inc., New York, USA,
1996.

[Boar84]
Boar, B.H., Application prototyping: a requirements definition strategy for the 80s, John
Wiley & Sons, Inc., New York, USA, 1984.

[Bodk91]
Bodker S. and Gronbaek K., Cooperative prototyping: users and designers in mutual activity,
in Computer-Supported Cooperative Work and Groupware, pp. 331-358, S. Greenberg, Ed.
Academic Press Computers And People Series, Academic Press Ltd., London, UK, 1991.

 [Boeh88]
Boehm W., A Spiral Model of Software Development and Enhancement, Computer, IEEE
communication 21 n.5, pp.61-72, 1988.

[Bord81]
Borda J. C., Memoire sur les elections au scrutiny, Histoire de l'Academie Royale des
Sciences, 1781.

[Bres65]

Bresenham, J.E., Algorithm for Computer Control of a Digital Plotter, IBM Systems Journal,
Vol. 4, No. 1, pp. 25-30, 1965.

References

 293

 [Brow97]
Brown J., Exploring Human-Computer Interaction and Software Engineering. Methodologies
for the Creation of Interactive Software, in SIGCHI Bulletin 29(1), pp. 32–35, 1997.

C

[Caet02]

Caetano A., Goulart N., Fonseca M. and Jorge J., JavaSketchIt: Issues in Sketching the Look
of User Interfaces, in Proceedings of the 2002 AAAI Spring Symposium - Sketch
Understanding, pp. 9-14, Palo Alto, USA, 2002.

[Car]

GUI Design Studio: http://www.carettasoftware.com/gds/index.html

[Calv97]
Calvary G., Coutaz J., Nigay L., From single-user architectural design to PAC*: a generic
software architecture model for CSCW, in Proceedings of the SIGCHI conference on Human
factors in computing systems, p.242-249, Atlanta, USA, 1997.

[Chat99]
Chatty S. and Dewan P. (Eds), Engineering for Human Computer Interaction, Kluwer
Academics, 1999.

[Chat03]
Chatty S., Sire S. and Lemort A., Vers des outils pour les équipes de conception d'interfaces
post-WIMP, In Proceedings of the 16th Conference on Association Francophone D'interaction
Homme-Machine (Namur, Belgium, August 30 - September 03, 2004). IHM 2004. ACM
Press, New York, NY, 45-52.

[Clem99]
Clements P. C., Constructing Superior Software, Sams, 1999.

[Cock01]
Cockburn, A., Writing Effective Use Cases, Addison-Wesley, 2001.

 [Cons99]

Contantine L. and Lockwood L., Software for Use: A Practical Guide to the Models and
Methods of Usage-Centered Design, Addison-Wesley Professional, 1999.

[Cout87]
Coutaz J., PAC, an Object Oriented Model for Dialog Design, in Human-Computer
Interaction H.-J. Bullinger and B. Shackel (Eds.) Elsevier Science Publishers B.V., pages 431
- 436, 1987.

[Coye03]
Coyette A., The SkwyRL-Agent Architectural Framework : Developing An E-Business
Application, M.Sc. thesis, UCL, Louvain-la-Neuve, 2003.

[Coye05]
Coyette, A., Vanderdonckt, J.: A Sketching Tool for Designing Anyuser, Anyplatform,
Anywhere User Interfaces. In: Proc. of 10th IFIP TC 13 Int. Conf. on Human-Computer
Interaction INTERACT’2005 (Rome, September 12-16, 2005). Lecture Notes in Computer
Science, Vol. 3585. Springer-Verlag, Berlin (2005) 550–564.

References

 294

[Coye07]
Coyette, A., Kieffer, S. Vanderdonckt, J., Multi-fidelity Prototyping of User Interfaces, in
Proc. of 11th IFIP TC 13 Int. Conf. on Human-Computer Interaction INTERACT’2007 (Rio
de Janeiro, September 10-14, 2007), Lecture Notes in Computer Science, Springer-Verlag,
2007, to appear.

D

[Dear03]

Dearden A, Siddiqi J. & Naghsh A., Using Cognitive Dimensions to Compare Prototyping
Techniques, In Proceedings of the 15th Annual Workshop of the Psychology of Programming
Interest Group. 8th - 10th April, 2003.

[Deug99]
Deugo D., Oppacher F., Kuester J. and Otte I. V., Patterns as a Means for Intelligent
Software Engineering, In Proceedings of the International Conference on Artificial
Intelligence ICAI'99, pp. 605-611, Las Vegas, USA, 1999.

 [Dsou99]
D'Souza, D.F., and Wills, A.C., Objects, Components and Frameworks with UML: The
Catalysis Approach, Addison-Wesley, Reading, 1999.

[Do05]
Do T.T., A Social Patterns Framework for Designing Multiagent Architectures, Ph.D. thesis,
Université catholique de Louvain, IAG, Louvain-la-Neuve, June 2005.

E

[Easy]

EasyPrototype: http://www.extremeplanner.com/easyprototype/

F

[Faul04a]
Faulkner S., Kolp M., Coyette A. and Do T. T., Agent-Oriented Design of E-Commerce Style
Architectures, In Proceedings of the 6th International Conference on Enterprise Information
Systems (ICEIS 2004), Porto, Portugal, pp 372-379, April 2004.

[Faul04b]
Faulkner S., An Architectural Framework for Describing BDI Multi-Agent Information
Systems, Ph.D. Thesis, Université Catholique de Louvain, Institut d’Administration et de
Gestion (IAG), Louvain-la-Neuve, Belgium, May 2004.

[Fern01]
Fernandez E. B. and Pan R., A Pattern Language for Security Models, In Proceedings of PLoP,
Monticello , USA, 2001.

[Fipa]
Foundation for Intelligent Physical Agents - http://www.fipa.org/

[Fons02]
Fonseca M.J., Pimentel C. and Jorge J.A., CALI: An Online Scribble Recognizer for
Calligraphic Interfaces, in Proceedings of the 2002 AAAI Spring Symposium - Sketch
Understanding, pp. 51-58, Palo Alto, USA, 2002,

References

 295

[Free74]

Freeman, H., Computer Processing of Line-Drawing Images, ACM Computing Surveys, Vol.
6, No. 1, pp. 57-97, 1974.

G

[GHJ95]

Gamma E., Helm R., Johnson R. and Vlissides J., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1995.

 [Gros96]
Gross M. D. and Do E., Ambiguous Intentions: A Paperlike Interface for Creative Design, in
Proceedings of ACM Symposium on User Interface Software and Technology, UIST '96, pp.
183-192, Seattle, USA, 1996.

H

[Hayd99]

Hayden S., Carrick C. and Yang Q., Architectural Design Patterns for Multiagent
Coordination, In Proceedings of the 3rd International Conference on Agent Systems
Agents’99, Seattle, USA, 1999.

[High01]
Highsmith J., Cockburn A., Agile Software Development: The Business of Innovation,
Computer, v.34 n.9, p.120-122, September 2001

 [Hint62]
Hintikka J., Knowledge and belief, Cornell University Press, 1962.

 [Hong01]
Hong J.I., Li F.C., Lin J., and Landay J.A., End-User Perceptions of Formal and Informal
Representations of Web Sites, in Extended Abstracts of Proceedings of ACM Conference on
Human Factors in Computing Systems CHI 2001, Seattle, USA, 2001.

J
[Jack]

JACK Intelligent Agents. http://www.agent-software.com/.

[Jadex]
Jadex BDI Agent Systems http://vsis-www.informatik.uni-hamburg.de/projects/jadex/.

[Jenn01]

Jennings N. R. and Wooldridge M., Agent-Oriented Software Engineering, In Handbook of
Agent Technology AAAI/ MIT Press, 2001.

 [Juch04]
Juchmes R. and Leclercq P., A Multi-Agent System for Architectural Sketches Interpretation,
Eurographics Workshop on Sketch-Based Interfaces, Grenoble, France, 2004

K

[Kend99]

References

 296

Kendall K.E. & Kendall J., System Analysis and Design, 3rd edition, Prentice Hall, 1999.

[Kolp01]
Kolp M., Giorgini P. and Mylopoulos J., A Goal-Based Organizational Perspective on Multi-
agent Architectures, Revised Papers from the 8th International Workshop on Intelligent
Agents VIII, pp.128-140, August 01-03, 2001.

[Kono82]
Konolige K., A first order formalization of knowledge and action for multi-agent planning
system, in Machine Intelligence, 10, pp. 41-72, 1982.

L

 [Land95]

Landay J.A., Myers B. A., Interactive Sketching for the Early Stages of User Interface Design,
In Proceedings of CHI '95: Human Factors in Computing Systems, pp. 43-50, Denver, USA,
May 1995.

[Land96]
Landay J.A., Interactive Sketching for the Early Stages of User Interface Design,. Ph.D. thesis,
report #CMU-CS-96-201, Computer Science Department, Carnegie Mellon University,
Pittsburgh, 1996.

 [Land01]
Landay J., Myers B.A., Sketching Interfaces: Toward More Human Interface Design, IEEE
Computer 34, vol. 3, pp. 56–64, 2001.

[Leve66]
Levenshtein V.I., Binary codes capable of correcting deletions, insertions, and reversals,
Doklady Akademii Nauk SSSR, Vol. 163, No. 4, 1965, pp. 845-848 [in Russian]. English
translation in Soviet Physics Doklady, Vol. 10, No. 8, pp. 707-710, 1966.

[Lewi95]

Lewis J.R., Computer Usability Satisfaction Questionnaires: Psychometric Evalution and
Instructions for use, in International Journal of Human-Computer Interaction 7(1), pp. 57–78,
1995.

[Lim06]
Lim Y., Pangam A., Periyasami S., and Aneja S., Comparative analysis of high- and low-
fidelity prototypes for more valid usability evaluations of mobile devices, In Proceedings of the
4th Nordic Conference on Human-Computer interaction: Changing Roles (Oslo, Norway,
October 14 - 18, 2006). A. Mørch, K. Morgan, T. Bratteteig, G. Ghosh, and D. Svanaes, Eds.
NordiCHI '06, vol. 189. ACM Press, New York, NY, 291-300.

[Lin2000]
Lin J., Newman M. W., Hong J.I., and Landay J.A., DENIM: Finding a tighter fit between
tools and practice for web site design, in Proceedings of the SIGCHI conference on Human
factors in computing systems CHI '00, pp. 510-517, The Hague, The Netherlands.

 [Limb04a]
Limbourg Q. and Vanderdonckt J., Transformational Development of User Interfaces with
Graph Transformations, in Proceedings of 5th International Conference on Computer-Aided
Design of User Interfaces CADUI’2004, pp. 105-118, Madeira, Portugal, 2004.

References

 297

 [Limb04b]
Limbourg Q., Vanderdonckt J., Michotte B., Bouillon L., Florins M., and Trevisan D.,
USIXML: A User Interface Description Language for Context-Sensitive User Interfaces, In
Proceedings of the first international Workshop on Developing User Interfaces with XML:
Advances on User Interface Description Languages, Gallipoli, Italy, 2004.

[Limb04c]
Limbourg Q., Vanderdonckt J., Michotte B., Bouillon L., and Lopez-Jaquero V., USIXML: a
Language Supporting Multi-Path Development of User Interfaces, In Proceedings of 9th IFIP
Working Conference on Engineering for Human-Computer Interaction EHCI-DSVIS'04,
Hamburg, 2004.

[Limb05]
Limbourg Q., Multi-Path Development of User Interfaces, Ph.D. thesis, Université Catholique
de Louvain, Louvai-la-Neuve, Belgium, 2005.

 [Luo95]

Luo P., A Human-Computer Collaboration Paradigm for Bridging Design Conceptualization
and Implementation, in Proceedings of the First International Eurographics Workshop, pp.
129–147, Bocca di Magra, Italy, 1994.

M

[Mccu06]

McCurdy M., Connors C., Pyrzak G., Kanefsky B., and Vera A., Breaking the fidelity barrier:
an examination of our current characterization of prototypes and an example of a mixed-
fidelity success, In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Montréal, Québec, Canada, April 22 - 27, 2006). R. Grinter, T. Rodden, P. Aoki, E.
Cutrell, R. Jeffries, and G. Olson, Eds. CHI '06. ACM Press, New York, NY, 1233-1242.

 [Meye96]
Meyer J., EtchaPad – Disposable Sketch Based Interfaces, in Proceedings of Human Factors
in Computing Systems (Conference Companion), ACM CHI '96, pp. 195-198, Vancouver,
Canada, 1996.

[Meye05]
Meyer J.: Creating Informal Looking Interfaces, 2005, accessible at http://www.cyber
grain.com/tech/pubs/lines_technote.html.

[Micr07]
Microsoft Visio: http://office.microsoft.com/en-us/visio/HA101656401033.aspx

[Mock]
MockUpScreens: http://www.mockupscreens.com/

[Mora06]
Mora R., Juchmes R., Rivard H. & Leclercq P., 2006, From an architectural sketch to feasible
structural systems, Second International Conference on Design Computing & Cognition, TU/e
Eindhoven, Pays-Bas.

[Myer00]
Myers B., Hudson S. , and Pausch R., Past, present, future of user interface tools, ACM
Transactions on Computer-Human Interaction (TOCHI), 7(1), pp. 3-28, 2000.

N

References

 298

[Nana95]

Nanard J. and Nanard M., Hypertext design environments and the hypertext design process,
Communications of the ACM, v.38 n.8, p.49-56, Aug. 1995.

[Nawr05]
Nawrocki J.R., Olek Ł., UC Workbench: A Tool for Writing Use-Cases, 6th International
Conference on Extreme Programming and Agile Processes in Software Engineering, XP 2005,
Sheffield, UK, June 18-23, 2005, Lecture Notes in Computer Science 3556, Springer, pp 230-
234.

 [Newm03]
Newman M. N., Lin J., Hong J. I., and Landay J. A., DENIM: An Informal Web Site Design
Tool Inspired by Observations of Practice, in Human-Computer Interaction, 18(3), pp. 259-
324, 2003.

O

[OASIS]

Organization for the Advancement of Structured Information Standards (http://www.oasis-
open.org/)

P

[Pala97]

Palanque P. and Paterno F., Formal Methods in Human-Computer Interaction, Springer-
Verlag New York, Inc., Secaucus, NJ, 1997

 [Pate00]
Paternò, F., Model-Based Design and Evaluation of Interactive Applications, Springer-Verlag,
Berlin, 2000.

[Paec03]
Paech B., Kohler K., Usability Engineering Integrated with Requirements Engineering, in
Proceedings of ICSE’03 (International Conference for Software Engineering), pp 36-40,
Portland, USA, 2003.

[Plim02]
Plimmer B.E., Apperley M., Computer-aided sketching to capture preliminary design, In
Proceedings of the Third Australasian conference on User interfaces - Volume 7, Australian
Computer Society, Inc., pp. 9-12, Melbourne Australia, 2002.

 [Plim03]
Plimmer B.E., Apperley M., Software for Students to Sketch Interface Designs, In Proceedings
of IFIP Conference on Human-Computer Interaction Interact’03, pp. 73–80, Zurich,
Switzerland, 2003.

[Plim04]
Plimmer B., and Apperley M., Interacting with Sketched Interface Designs: An Evaluation
Study, in Proceedings of ACM Conference on Human Factors in Computing Systems CHI'04,
pp. 1337-1340, Vienna, April Austria 2004.

[Plim07]

InkKit : http://www.cs.auckland.ac.nz/~beryl/inkkit.html

[Puer97]

References

 299

Puerta A.R., A Model-Based Interface Development Environment, in IEEE Software 14(4),
pp. 41-47, 1997.

 [Puer99]
Puerta, A. and Eisenstein, J., Towards a General Computational Framework for Model-Based
Interface Development Systems Model-Based Interfaces, in Proceedings of 3rd International
ACM Conference on Intelligent User Interfaces IUI’99 Redondo Beach, USA, pp. 171–178,
1999.

[Puer05]
Puerta A.R., Micheletti M, Mak A., The UI pilot: a model-based tool to guide early interface
design, in Proceedings of the 2005 International Conference on Intelligent User Interfaces IUI
2005, San Diego, USA, pp. 215-222, 2005.

R

[Red]

RedWhale: http://www.redwhale.com

 [Rett94]
Rettig M., Prototyping for tiny fingers, Communications of the ACM, April, Vol.37, No.4
(1994).

[Rudd96]
Rudd, J., Stern, K. and Isensee, S. (1996) Low vs. high fidelity prototyping debate.
Interactions , V.3 n1, p76-85, ACM Press.

S

 [Shaw96]

Shaw M. and Garlan D., Software Architecture: Perspectives on an Emerging Discipline,
Prentice Hall, 1996.

[Schi06]
Schimke S., Vielhauer C. and Dittmann J., Using Adapted Levenshtein Distance for On-Line
Signature Authentication, in Proceedings of 17th International Conference on the Pattern
Recognition(ICPR'04), pp. 931-934, 2004.

[Sinh03]
Sinha, A. K. and Landay, J. A. 2003. Capturing user tests in a multimodal, multidevice
informal prototyping tool. In Proceedings of the 5th international Conference on Multimodal
interfaces (Vancouver, British Columbia, Canada, November 05 - 07, 2003). ICMI '03. ACM
Press, New York, NY, 117-124.

[Sieg88]
Siegel S. and Castellan Jr. N. J., Nonparametric Statistics for The Behavioral Sciences,
McGraw-Hill, Inc., second edition, 1988.

 [Snyd02]
Snyder, C., Paper Prototyping: The Fast and Easy Way to Design and Refine User Interfaces.
Morgan Kaufmann, April, 2002.

 [Sumn97]
Sumner T., Bonnardel N. and Harstad Kallak B., The Cognitive Ergonomics of Knowledge-
Based Design Support Systems, in Proceedings of ACM Conference on Human Aspects in
Computing Systems CHI’97, pp. 83–90, Atlanta, USA, 1997.

References

 300

[Sun98]

http://java.sun.com/developer/technicalArticles/ALT/Reflection/

[StpBA]
stpBA Storyboarding : http://www.stpsoft.co.uk/story/index.html

[Szek96a]
Szekely P., Sukaviriya P., Castells J., Muthukumarasamy J., and Salcher E., Declarative
interface models for user interface construction tools: The MASTERMIND approach, in
Engineering for Human-Computer Interaction, Chapman & Hall, pp. 120-150, London, 1996.

T

[Tohi06]

Tohidi M., Buxton W. Baecker, R. and Sellen, A., User sketches: a quick, inexpensive, and
effective way to elicit more reflective user feedback, In Proceedings of the 4th Nordic
Conference on Human-Computer interaction: Changing Roles (Oslo, Norway, October 14 - 18,
2006). A. Mørch, K. Morgan, T. Bratteteig, G. Ghosh, and D. Svanaes, Eds. NordiCHI '06, vol.
189. ACM Press, New York, NY, 105-114.

U

[Ucwo]

http://www.ucworkbench.org/

[Unge96]
Unger C. and Bass L., Engineering for HCI, Kluwer Academics Publishers, 1996.

V

[Vand97]

Vanderdonckt J., Conception Assistée de la Présentation D'une Interface Homme-Machine
Ergonomique Pour Une Application de Gestion Hautement Interactive. PhD thesis, Facultés
Universitaires Notre-Dame de la Paix, Institut d'Informatique, Namur, 1997.

 [Vand02]
van Duyne D.K., Landay J.A. and Hong J.I., The Design of Sites: Patterns, Principles, and
Processes for Crafting a Customer-Centered Web Experience, Addison-Wesley 2002.

[Vand04]
Vanden Berghe Y., Etude et implémentation d'un générateur d'interfaces vectorielles à partir
d'un langage de description d'interfaces utilisateur, M.Sc. thesis, Université catholique de
Louvain, Louvain-la-Neuve, Belgium, 2004.

[Vand06]
Vanderdonckt J., Coyette A., Vers un prototypage des interfaces graphiques incluant vraiment
l'utilisateur final, in Proceedings of 10ième Colloque Internatioanl sur l'Ergonomie et
l'Informatique Avancée ERGO-IA'2006 (Biarritz, 11-13 October 2006), E. Brangier, Ch.
Kolski, J.-R. Ruault (eds.), Ecole Supérieure des Technologies Industrielles Avancées
(ESTIA/ILS), Bidart, pp. 31-42, 2006.

References

 301

[Vand06b]
Vanden Bossche P., Développement d'un outil de critique d'interface intelligent:
UsabilityAdviser, M.Sc. thesis, UCL, Louvain-la-Neuve, 2006.

[Virz96]
Virzi R.A., Sokolov, J.L., Karis, D.: Usability problem identification using both Low- and
High-Fidelity Prototypes. In: Proceedings of ACM Conference on Human Aspects in
Computing Systems CHI’96, Vancouver, Canada, pp. 236-243, 1996.

W

[War3]

Warcraft 3: http://www.blizzard.com/war3/
[Walk02]

Miriam Walker, Leila Takayama, James A. Landay, “High-fidelity or low-fidelity, paper or
computer medium?” In the Proceedings of the Human Factors and Ergonomics Society 46th
Annual Meeting, Baltimore, pp. 661-665, October 2002.

 [Wegn97]
Wegner P., Why Interaction is more Powerful than Algorithms, in Communications of the
ACM, 40(5), pp. 80-91, 1997.

 [Wool96]
Wooldridge M. and Jennings N.R., Special Issue on Intelligent Agents and Multi-Agent
Systems, in Applied Artificial Intelligence Journal, 9(4), pp.74–86, 1996.

X

 [Xiao02]

Xiaogang X., Liu W., Xiangyu J. and Zhengxing S., Sketch-based User Interface for Creative
Tasks, in Proceedings of 5th Asia Pacific Conference on Computer Human
Interaction(APCHI2002) , pp. 560-570, Beijing, China, 2002.

[XUL]
http:// www.mozilla.org/projects/xul/

Y

[Yu95]

Yu E., Modeling Strategic Relationships for Process Reengineering, Ph.D. thesis, Department
of Computer Science, University of Toronto, Toronto, 1995.

[Yu01]

Yu E., Agent-Oriented Modelling: Software Versus the World, In Proceedings of the 2nd
International Workshop on Agent-Oriented Software Engineering, Lecture Notes in Computer
Science 2222, pp 206-225, Springer Verlag, 2001

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

