
C. Baranauskas et al. (Eds.): INTERACT 2007, LNCS 4662, Part I, pp. 150–164, 2007.
© IFIP International Federation for Information Processing 2007

Multi-fidelity Prototyping of User Interfaces

Adrien Coyette, Suzanne Kieffer, and Jean Vanderdonckt

Belgian Lab. of Computer-Human Interaction (BCHI), Information Systems Unit (ISYS)
Louvain School of Management (LSM), Université catholique de Louvain (UCL),

Place des Doyens 1, B−1348 Louvain-la-Neuve (Belgium)

Abstract. Multi-fidelity prototyping combines within a single user interface
prototype several elements whose representations are reproduced with different
levels of fidelity with respect to the final user interface: no fidelity at all, low
fidelity, medium fidelity, and high fidelity. In order to effectively and effi-
ciently support multi-fidelity, an original set of techniques is defined and
discussed: multiple representation manipulation by sketching and gesture rec-
ognition, smooth transition between any representation at any time, prototype
reusability, multi-platform support, and multiple user interface prototyping fa-
cilities. The full implementation of these techniques in prototyping software
provides designers and developers with a unique environment for exploring
multiple designs with unprecedented support for quickly designing interfaces
from scratch or from previously existing design templates. An experimental
study reveals that the multiple representation manipulation together with
smooth transition represents a valuable advantage for naturally designing user
interfaces. The prototyping software supports several aspects involved in the
user interface development life cycle and is convenient for non-WIMP user
interfaces.

1 Introduction

User-Centered Design (UCD) explicitly recommends in the User Interface (UI) de-
velopment life cycle a specific stage where the UI could be prototyped based on the
input of the future system’s stakeholders: designers, developers, usability specialists,
graphic experts, and end users. When the time comes to express and gather the user
requirements, these stakeholders usually come to a design meeting with many ideas
expressed in very different ways. Some prefer to convey their ideas through drawings,
sketching, pictures, some others take screenshots of previously used interfaces to
communicate representative examples, some others come without anything else than
their past interaction experience and history, their own preferences. This therefore
means that the prototyping stage should accommodate all these input types and inte-
grate them into one single design. Since the stakeholders’ inputs do not all come in
the same format and with the same level of details, it is difficult to merge them in a
straightforward way. With paper and pencil techniques [18], it is of course possible to
manipulate all inputs on paper and to glue them so as to reach a unique UI, but its
format remains largely inconsistent and almost not reusable for further design. When
this preliminary design will be turned into more precise UI specifications, the quality

 Multi-fidelity Prototyping of User Interfaces 151

of this representation does matter. Several tools have been invented to support UI de-
sign by sketching [1-4, 6, 8, 10, 13-16] since sketching probably represents the most
natural way to convey ideas for the human being [1,2,18], but their predominant func-
tioning imposes some dedicated sketching activities that are then recognized (or not)
and give rise to a working prototype (or not). None of them truly manipulate UI de-
sign artifacts with the aforementioned levels of details with the ability to easily switch
from one representation to another.

In the remainder of this paper, Section 2 will define our understanding of the fidel-
ity and how we generalize it into the concept of multi-fidelity. It will then compare
state-of-the-art UI sketching tools against a series of seven criteria that will be further
addressed throughout the paper. Section 3 will describe a series of techniques which,
taken together, will allow our new sketching tool to satisfy the seven criteria. Section
4 will report on an experimental study where end users and UI designers evaluated the
different levels of fidelity involved in the multi-fidelity paradigm. Section 5 argues
that multi-fidelity could be equally used for other models (i.e., task, domain, abstract
user interface) for a same UI or for other families of UI, such as physical UIs.

2 Related Work

Designing the right UI the first time is very unlikely to occur. Instead, UI design is
recognized as a process that is intrinsically open (new considerations may appear at
any time), iterative (several cycles are needed to reach an acceptable result), and in-
complete (not all required considerations are available at design time) [8]. Conse-
quently, means to support early UI design has been extensively researched to identify
appropriate techniques such as paper sketching, prototypes, mock-ups, diagrams [18].

Since the needs of rapid UI prototyping vary depending on the project and
allocated resources, it makes sense to rely on the notion of prototype fidelity. The
prototype fidelity expresses the similarity between the final user interface (running in
a particular technological space) and the prototyped UI. The UI prototype fidelity is
said to be high if the prototype representation is the closest possible to the final UI, or
almost in the same representation type. This means that the prototype should be high-
fidelity in terms of presentation (what layout, what are the UI elements used), of
global navigation and dialog (how to navigate between information spaces), of local
navigation (how to navigate within an information space). The fidelity is said to be
low if the prototype representation only partially evokes the final UI without repre-
senting it in full details. Between high-fidelity (hi-fi) and low-fidelity (low-fi) [17] ex-
ists medium-fidelity (me-fi) [9]. We usually observe that a UI prototype only involves
one representation type, i.e. one fidelity level. But due to the variety of stakeholders’
input, several fidelities could be imagined together, thus leading to the concept of
mixed-fidelity, where several different fidelities are mixed in the same UI design [15].
As opposed to mixed-fidelity, we introduce the notion of multi-fidelity when a proto-
type may involve elements of different fidelities (like in mixed fidelity), but only one
fidelity is acted upon at a time, thus assuming that a transition is always possible for
an element from one fidelity to another for any element.

Prototyping software consequently falls into three categories depending on their fi-
delity level: high-fidelity tools support building a complete UI so that it can be

152 A. Coyette, S. Kieffer, and J. Vanderdonckt

directly executed and tested and as if the UI is a real one ; medium-fidelity tools sup-
port designing UI mock-ups giving more importance to the contents than the style
with which these contents are presented ; low-fidelity tools focus more on the UI basic
functionalities than on precise details through which these functionalities can be exe-
cuted. Typical approaches found in lo-fi prototyping tools are the “paper and pencil
technique”, the “whiteboard/blackboard and post-it approach” [19]. Such approaches
provide access to most UI elements and prevent designers from being distracted from
the primary UI design task. For instance, Berger [3] provides a predefined paper wid-
get set for drawing a Microsoft Excel form which can then be turned into a true form.

UI designers who work out conceptual ideas on paper tend to iterate more and ex-
plore the design space more broadly, whereas designers using computer-based tools
tend to take only one idea and work it out in detail [22]. The quality of the discussion
among stakeholders is considered more fruitful with a hi-fi prototype than with a lo-fi
mock up [18]. Lo-Fi prototyping, however, encourage the stakeholders to focus on the
UI interaction rather than on details irrelevant at this level which do not influence the
usability. Consequently, lo-fi prototyping offers clear advantages with respect to the
hi-fi counterpart, but suffers from a lack of assistance and a lack of transition from lo-
fi to hi-fi. On the one hand, maintaining an informal representation in lo-fi is observed
to be important [13] so that stakeholders do not believe that the UI being designed is a
final one, thus encouraging them to focus on design issues. On the other hand, once a
lo-fi is finished, it is unclear how to proceed to a high fidelity level [23]. Me-fi comes
in the game to “beautify” a lo-fi prototype without changing its functionality [9] and
represents a possible evolution towards a final UI, but this transition is never sup-
ported in any software.

A recognized virtue of UI prototyping is its ability to extract usability problems so
as to improve the UI design while prototyping [7]. The amount of usability problems
extracted in a lo-fi prototype is not inferior to the amount of usability problems for a
hi-fi prototype [22]. In addition, paper and computer media have been estimated
equally valid for testing lo-fi, me-fi, and hi-fi prototypes [23]. In particular, computer
media was considered more advantageous for automatic recording of user actions, for
its ability to distribute and document the results of the UI prototype as opposed to pa-
per [19,23]. Table 1 delivers the results of a comparative analysis where major proto-
typing tools are compared against seven criteria:

1. Amount of fidelity: most tools involve one or two fidelity levels (lo-fi and hi-fi),
only one of them does support me-fi. When lo-fi is the single fidelity supported, it
often means that this representation is converted into UI code afterwards (e.g.,
Visual Basic code for FreeForms, Java code for JavaSketchiIt, C code for Silk).

2. Fidelity transition: even less support a smooth transition between the fidelity lev-
els at design time, even if we include easy transition to code for a final UI.

3. Shape recognition: a shape recognition algorithm is implemented in most tools in
order to turn a sketched UI element into its real counterpart or to “beautify” it.

4. Gesture recognition: very few tools incorporate a gesture recognition algorithm to
convert gestures into sketching commands or UI elements.

5. Output reusability: converting the sketched UI into a file which could be reused
for the rest of the development life cycle is fundamental, but the output expres-
siveness and exploitability depend on the format (image vs. UI specifications).

 Multi-fidelity Prototyping of User Interfaces 153

6. Multi-platform support: still few tools do support UI prototyping for multiple
computing platforms ranging from a desktop to a mobile platform.

7. UI types: all tools are tied up with a specific UI type (Graphical UI) and cannot be
reused for other types of sketching activities or other UI types (e.g., non-WIMP).

The last line of Table 1 shows that our sketching tool is more advanced than the
other tools with respect to all criteria, which will be demonstrated in the next section.

Table 1. Comparative analysis of prototyping tools by sketching

Amount of fidelities

Fidelity transition

Shape recognition

Gesture recognition

Output reusability

M
ulti-platform

UI types

1 (hi-fi)Berger [3] (Excel VB code) Excel form

JavaSketch- It [4] 1 (lo-fi) (Java code) GUI

Our tool
4 (no-fi, lo-fi,
me-fi, hi-fi)

 (UI specifications) Web UI, GUI, any type

Silk [10]

SketchiXML [8]

Sketch-Read [1]

1 (hi-fi)

1 (lo-fi)

1 (me-fi)

Berger [3]

Demais [2]

Denim [14]

FreeForms [16]

Ink-kit [6]

Meyer [13]

Prototyper [15]

 (UI specifications) GUI, PDA, mobile phone

 (image only) GUI

2 (lo-fi, hi-fi)

 (C++ file) GUI

 (XML file) GUI

GUI

 (image only) GUI

 (Basic code) GUI

 (image only) Web UI

 (animation) multimedia application

 (Excel VB code) Excel form

2 (lo-fi, hi-fi)

1 (lo-fi)

2 (lo-fi, hi-fi) (ASCII file)

1 (lo-fi)

1 (lo-fi)

2 (lo-fi, hi-fi)

3 Tool Support for Multi-fidelity

The first step in our sketching tool consists of specifying parameters that will drive
the prototyping process: the project name, the input device type (e.g., stylus, pen,
mouse), the computing platform for which the UI is prototyped (a predefined profile
exist for mobile phone, PDA, TabletPC, kiosk, ScreenPhone, laptop and a custom one
could added). The user then enters into a UI design mode where any shape can be
freely drawn and any text could be written. The tool is equipped with a series of fa-
cilities which taken together do support the multi-fidelity process as outlined before.

Shape recognition. A shape recognition engine is able to recognize and interpret 27
different types of widgets with the standard configuration (ranging from check boxes
and spin button to search buttons, progress bar, calendar, video input), 8 basic shapes
(i.e., triangle, rectangle, cross, line, wavy line, arrow, ellipse, and circle), and 6 basic
commands (i.e., undo, redo, copy, paste, cut, new window). Each UI element can be
sketched and be recognized or not depending on its shape and the wish for the user to
see it recognized or not. The primary mode is lo-fi so as to create a context where the
user feels free and unconstrained to draw any kind of shape, whether it can be recog-
nized or not.

154 A. Coyette, S. Kieffer, and J. Vanderdonckt

Those shapes which are not recognized are simply added and maintained through-
out the process. Fig. 2 reproduces a typical session where a wide bunch of UI
elements have been sketched in lo-fi mode. In this mode, elements which have been
correctly recognized are beautified (the drawing is improved) and the name of the UI
element has been added. Fig. 1 reproduces the lo-fi mode where the raw sketching
was performed.

 Fig. 1. No-fi mode without labels Fig. 2. Lo-fi mode for sketchingUI
 elements (with labels)

 Fig. 3. Me-fi mode without labels Fig. 4. Hi-fi mode without labels

Fig. 5. Our software toolbar with fidelity level set on lo-fi

Fidelity transition. A slider (Fig. 5) allows the user to easily switch between any fi-
delity level to another. Fig. 3 shows the representation after the user moved to me-fi, a
mode in which only a rough, yet identifiable, element representation is produced. This
representation is platform agnostic: it does not produce a representation which would
suggest that a particular window manager, toolkit or environment has been selected. If
the user really wants to obtain a hi-fi representation, then she may want to switch to
the last position of the slider, which is demonstrated in Fig. 4: hi-fi mode without the
labels indicating the elements types. In this case, the representation is made up of
genuine widgets belonging to the widget set of the currently being used platform (dif-
ferent widget sets and look&feel could be used alternatively). A toggle button “Label”
allows the user to display/undisplay the names of the recognized UI elements. If a UI
element has not been recognized, it is simply kept as it is. For instance, if a histogram
would have been sketched, it would not be altered so as to respect the naturalness of
the design process as recommended in [14,17].

 Multi-fidelity Prototyping of User Interfaces 155

Amount of fidelities. Thanks to this process, the user can input any UI element in any
fidelity level and see the result in any other level as the interpretation is immediate. In
this way, a custom element could be drawn in lo-fi and a predefined widget could be
added in me-fi or hi-fi. Therefore, four fidelity levels are supported: none (only the
drawing is displayed), lo-fi (the drawing is displayed with recognized portions), me-fi
(the drawing is beautified where portions are recognized, including for basic shapes),
and hi-fi (a genuine UI is produced with true widgets for those portions corresponding
to predefined widgets).

Gesture recognition. Sketching tool users may complain that they are forced to learn
a graphical representation for every widget, shape or command. In order to support
user flexibility, each such element is encoded in a graphical grammar of objects de-
fined with logical relationships with variable degree of freedom. Fig. 5a shows how a
multi-line edit field is graphically represented by a rectangle and two horizontal lines
in it. In this way, the tool accommodates a larger variety of alternate representations
for a same element. For this purpose, we based our implementation on an experimen-
tal study which reported the three most preferred representations for such UI elements
[8]. Beyond this study, a gesture recognition system has been implemented based on
hand gesture decomposition in order to customize the representation of all widgets,
shapes, and commands according to each user’s preferences (Fig. 6b).

Fig. 6. A grammar editor for a new representation (a) and a gesture recognition system (b)
where new gestures replace UI elements (here, a gesture is drawn, added, and activated to rep-
resent a toggle button in a custom way)

156 A. Coyette, S. Kieffer, and J. Vanderdonckt

Output reusability. At any time, our tool produces UI specifications in terms of a
User Interface Description Language (UIDL). As opposed to many tools where little
or no portions of the sketch could be reused, our tool always maintains up-to-date UI
specifications, including the description of custom widgets. It is also possible to de-
fine the navigation between these elements in the same way.

Multi-platform. The tool also exports UI specifications in UIML (www.uiml.org,
which is able to automatically generate code for HTML, Java, VoiceXML, and
WML) and UsiXML (www.usixml.org) [12,20]. As opposed to some tools which are
dedicated to a particular environment (e.g., Visual Basic for FreeForms [17] or Java
for JavaSketchIt [4]), our tool is shipped with predefined profiles covering a wide
range of different computing platforms. Each profile not only expresses constraints
imposed by a particular platform (e.g., the screen resolution, a restricted widget set),
but could also have a particular gesture data base for sketching those UI elements
which are peculiar to this platform (e.g., a gesture associated to a histogram).

The above discussion shows that our tool satisfies the six first criteria highlighted
in Table 1. The next section will investigate to what extent this tool supporting multi-
fidelity is appreciated by end users and designers. Section 5 will then address the last
criteria: it will exemplify how the tool could be used for other types of UI than merely
web pages (like in DENIM [14]), GUIs (like in Prototyper [16] or in SketchiXML[8]).

4 Experimental Study on Fidelity Level

In order to evaluate how end users and UI designers appreciate the various fidelity
levels at design time, an experimental study has been set up for investigating the ef-
fects of fidelity level on a UI design activity by sketching.

4.1 Method

Participants. Twelve volunteers participated in this study. Participants ranged in age
from 23 to 39 years (M=30 years), including 6 females and 6 males to keep gender
balance. Participants were selected on the basis of general inclusion criteria including
age and profile (end user or UI designer). All participants were identified and re-
cruited regarding their job in the computer science area (e.g., regular users, computer
science researchers, developers, and UI designers from private companies). Table 2
summarizes the demographic information and the characteristics of the overall par-
ticipant sample. Age represents the average number of years for the overall sample.
Gender represents the frequency counts of males and females. General profile denotes
the frequency in categories: end users vs. UI designers. Professional computer experi-
ence represents the average number of years for the overall sample while designing
computer experience represents the average number of years for the UI designers
only. The end users versus designers assessment was made in order to obtain a com-
prehensive profile of participants.

 Multi-fidelity Prototyping of User Interfaces 157

Table 2. Summary of participants’ demographics and characteristics

Gender General profile Computer experience
N Age

Male Female
Handedness End

users
User interface

designers
Professional

exp.
Designing

exp.
12 30 6 6 Right 6 6 5.25 4

Table 3 summarizes the demographic and the characteristics of the participants
based on the grouping. Age represents the average number of years for each partici-
pant group. Gender represents the frequency counts of males (M) and females (F)
within each group. Professional computer experience represents the average number
of years for each participant group. Designing computer experience represents the av-
erage number of years for the designers only.

Table 3. Summary of group profiles

Group N Age Gender Professional exp/ Designing exp.
Designer 6 31 M=4, F=2 6.8 4

User 6 29 M=2, F=4 3.7 N/A

Apparatus and experimental task environment. The computer system used in this
study was a PC Dell Latitude D820 equipped with an Intel Core 2 Duo T7200 (2.0
GHz, 4 Mo cache level 2 memory) processor and 2 Gb of RAM memory. Participants
were seated approximately 30 cm from a 21-inch Wacom Cintiq 21UX touch screen
flat panel connected to this computer. Screen resolution was set to 1,600 x 1,200 pix-
els, with a 32-bit color palette. The keyboard was not required to complete the task
since the participants were supposed to use a stylus. The sketching tool used in this
experiment is the one whose implementation has been described in Section 3. The ex-
perimental task to be carried out by participants consists of designing two UIs (com-
bined in a pair) in each of the following fidelity levels: Lo-Fi, Me-Fi, Hi-Fi, or No-Fi.
Each UI contains eight widgets amongst the following alternatives: push button,
check box, combo box, list box, progression bar, radio button, spinner, text area, and
text field. A UI pair is considered to be complete once the eight widgets of both UIs
have been entirely designed with the imposed fidelity level.

4.2 Protocol

Prior to experiment, participants were given an explanation of the research study
and their role in the study. Following completion of the demographic question-
naire, the participants were briefed on how to use the setup and how to carry out
the task. A short training period has been allocated for each participant to sketch a
given UI pair until they feel confident in using the setup. They were also allowed
switching between the four fidelity levels. The main part of the experiment con-
sisted of designing four pairs of windows by sketching them in a pre-assigned fi-
delity level. The order of the four pairs of windows was randomly assigned. After
these sketching tasks, participants were asked to complete a Computer System

158 A. Coyette, S. Kieffer, and J. Vanderdonckt

Usability Questionnaire (CSUQ) [11] and were interviewed according to a semi-
structured scheme. The interview focused on their subjective satisfaction and per-
ception about the study, the system and their preferences in term of fidelity level.
The dependent variable used to assess participant task performance was Window
Development Time (WDT), which represents the task duration (in seconds) re-
quired by a participant to design a window.

4.3 Results

Statistical analysis. One participant has not followed the instruction related to the or-
der of the conditions. Consequently, the sample includes only 88 entries instead of 96.
Due to the sample size, an analysis of variance (ANOVA) was used to examine the
presence of significant differences in task performance, as measured by WDT. Table
3 reproduces the results of two analyses: influence of the fidelity level and influence
of the user profile. The statistical significance is underlined.

Table 4. Tests for significant differences in performance

ANOVA Tests of Sig. Diff. Between groups
1) Fidelity (No/Lo/Me/Hi-Fi)- F=1.8888; p=0.1377
2) User profile (User/Designer) F=7.2719; p=0.0084

Fig. 7. Mean WDT (seconds) for each fidelity condition, Mean WDT (seconds) for each par-
ticipant group

Although results from Table 4 show that the fidelity level had no influence on
WDT, Hi-Fi demonstrated the fastest WDT (M= 261 seconds), respectively followed
by No-Fi (M= 297 seconds), Me-Fi (M= 359 seconds) and Lo-Fi (M= 376 seconds)
(Figure 6). In addition, the results from Table 3 show that user profile had a signifi-
cant influence on WDT (F=7.2719; p=0.0084). Surprisingly, participants from the end
users group demonstrated the fastest WDT compared to those from the designers
group (respectively, M=267 seconds versus M=369 seconds – Fig. 7).

 Multi-fidelity Prototyping of User Interfaces 159

Table 5. Summary of overall sample CSUQ. Statistical indices are mean, median and standard
deviation.

Statistical Indices
Subscale

Mean Median Std deviation
SYSUSE 4.04 4 1.52

INTERQUAL 5.39 6 1.14
OVERALL 4.83 5 1.17
INFOQUAL 4.45 4.5 1.37

Computer System Usability Questionnaire. The IBM CSUQ [11] is a public do-
main instrument to measure user satisfaction with computer system usability in the
context of scenario based usability studies. The CSUQ is made up of four parts, each
consisting of items ranked on a 7-point Likert scale: the overall satisfaction score
(OVERALL: all 18 Items), the system usefulness score (SYSUSE: Items 1-8), the in-
formation quality score (INFOQUAL: Items 9-15), and the interface quality score
(INTERQUAL: Items 16-18). This questionnaire has been chosen because of its ac-
ceptable reliability: a coefficient alpha exceeding .89 for all parts has been proved.
Seven-point rating scales (1=totally disagree, 7=totally agree) were used because they
allow three levels of either positive or negative ratings. Table 5 suggests that the sys-
tem usefulness is moderately appreciated as well as the information quality (reasona-
bly good mean, but large deviation). However, the interface quality and the overall
user satisfaction are both assessed positively.

Subjective general comments and users preferences. Four of 12 participants judged
the stylus uncomfortable because of a physical button located too close to their index
finger. Four of 12 participants reported that some system functionality was not usable:
the copy-paste was estimated too slow and required too many pointing gestures; the
lack of drag-and-drop of sketched items was regretted since it is at the present time
replaced by the cut-paste functionality. Four on 12 participants considered that the
speed of the recognition should be improved in the next version of the tool. In return,
nine on 12 participants judged the tool as user-friendly and intuitive. This result is
consistent with the INTERQUAL result reported above (Table 4). Moreover, eight on
12 participants considered the tool as fast and accurate in term of drawings/sketchings
recognition. Finally, most of the participants reported a pronounced preference for Hi-
Fi (5 participants on 12, including 2 designers and 3 users) and Me-Fi (5 participants
on 12, including 3 designers and 2 users). They argued they felt “more comfortable”
in those two levels because of the real-time interpretation of their drawings and the
resulting UI aesthetics. Furthermore, 75% of the participants dislike the No-Fi (9 par-
ticipants on 12, including 4 designers and 5 users). They claimed that this level “looks
like a draft”, which is consistent with [13].

Interpretation and discussion. The experimental task used in this study was a sim-
plified version of a UI development life cycle. Time required by participants to de-
velop UIs (WDTs) was used as an indicator on the usability of the fidelity levels. This
metric revealed its shortcoming: WDT is not exact enough to be considered as repre-
sentative of participant performance. Further usability studies need to include other

160 A. Coyette, S. Kieffer, and J. Vanderdonckt

metrics like the number of recognized/unrecognized shapes/texts/gestures, as well as
the number of effective “widgets” that are added to the interface.

The statistical analysis revealed no significant impact of the “fidelity level” pa-
rameter on the user performances (speed). This result may be due to the fact that the
level of fidelity has no influence on the sketching strategies adopted by the users, that
is to say they perform the tasks in the same way, no matter what the level of fidelity
is. In addition, the statistical analysis revealed a significant impact of the user profile
(end user vs. designer) on the performances. Surprisingly, end users –with no experi-
ment in interface design– are faster in performing the sketching tasks than the design-
ers. This result may be due to the fact that designers do care a lot about the quality
and aesthetics of the resulting interfaces (e.g., they systematically preserved align-
ment, symmetry, and semantic grouping of UI elements) compared to end users. Con-
sequently, more time is required for designers to sketch valuable interfaces, regarding
their own personal criteria. These results are consistent with some earlier findings [8].

Finally, the qualitative analysis revealed a pronounced user preference for both Hi-
Fi and Me-Fi. This result suggests that participants, including both end users and
designers, may prefer in terms of visual comfort, visual feedback, and widget recogni-
tion the fidelity levels that show a resemblance to the final UI. Differences observed
between end users and designers are consistent with some other findings [2,8,22].

5 Multi-fidelity for Other User Interface Artifacts

In the previous experiment, multi-fidelity has been applied to the Concrete User Inter-
face (CUI) level as defined in the Cameleon framework for a UI [5]. We show that
our sketching tool can accommodate any UI type for any platform by choosing the
right profile containing the constraints imposed by a particular platform. This profile
influences the sketch recognition process as well as the trainable gesture recognition
system. In this section, we show that the paradigm of multi-fidelity could be equally
used for other models involved in the UI development life cycle [3]: the task model
[15], the domain model [6], and the abstract UI [20]. Each model consists of basic
graphical elements which could be encoded in additional elements both in the graphi-
cal grammar and in the gesture recognition system.

For instance, natural development of systems is fostered if a task model is drawn,
e.g., on a drawing surface [15]. In our tool, a lo-fi approach could be adopted to
sketch such a task model (Fig. 8) which could be straightforwardly recognized, inter-
preted and converted into a true task model (Fig. 8). In this way, it is possible to
sketch all models involved in a particular UI development life cycle and link them to-
gether, which supports the principle of “sketching it all together”. As long as a sketch
could be decomposed into basic shapes such as rectangles, text (there is a ink-based
recognition system for this purpose), lines, compound shapes, it is possible to sketch
the representation in lo-fi and associate it to a beautification and a complete represen-
tation in hi-fi.

Then, we show that we could even sketch other families of UI provided we could
imagine different representations belonging to different levels of fidelity. To go

 Multi-fidelity Prototyping of User Interfaces 161

Fig. 8. A task model sketched in lo-fi mode

Fig. 9. A simple task model recognized in hi-fi mode from its sketch in lo-fi mode

beyond the traditional paradigm of Graphical UIs, an example of a physical UI con-
sisting of analogic and digital elements could be sketched similarly with the three fi-
delity levels. The output in this case consists of a description of a physical interface to
be imported in the Pin&Play toolkit [21]. This toolkit allows developing physical in-
terfaces by integrating software widgets and physical devices such as slider, toggle
button, and potentiometer. Since the toggle button is not a standard element, is has

162 A. Coyette, S. Kieffer, and J. Vanderdonckt

been defined through a new custom gesture (Fig. 6), which could then be associated
with the description of the genuine physical toggle button (such as a switch). Fig. 9
respectively reproduces such a physical UI in lo-fi, me-fi, and hi-fi with smooth tran-
sition between these modes.

6 Conclusion

As indicated in Table 1, our tool is superior to state-of-the-art prototyping tools by
sketching in that it combines multi-fidelity with all criteria addressed simultaneously.
The conducted experimental study revealed to what extent end users and designers do
appreciate the freedom of design and the ability to smoothly progress from a UI de-
sign with moderate level of details (e.g., no-fi and lo-fi) to a more advanced level of
details (e.g., me-fi and hi-fi). It is worth to note that the sketching facilities are equally
appreciated by both end users (who are not necessarily designers) and professional UI
designers. It is also particularly appreciated that, depending of the project evolution,
any fidelity level could be switched to another one: not only for supporting the back
and forth development life cycle, but also to incorporate UI elements which are ex-
pressed with different fidelity levels as they are provided by the stakeholders involved
in the development team.

The combination of a shape recognition engine for predefined UI elements and a
trainable gesture recognition engine allows the tool to be appreciated in many circum-
stances. The entire sketching tool described in this paper, along with its shape and
gesture recognition systems for supporting multi-fidelity has been implemented in
Java 1.5 and today consists of 45.000 lines of code. Our sketching tool can be freely
downloaded from http://www.usixml.org/index.php?view=page&idpage=29 and its
corresponding open source project.

The next development steps will consist in the development of an improved text
detection algorithm. Indeed, we always try to proceed to a post treatment before try-
ing to recognize a stroke. Detecting the text is far from being trivial and should be
improved. We also plan to enhance overall performance of the application by optimiz-
ing some of the key algorithms.

And, finally, we will investigate to what extent the various modules of the software
could accommodate other UI families, perhaps with other notations.

Acknowledgements

We gratefully acknowledge the support of the Request research project under the
umbrella of the WIST (Wallonie Information Société Technologies) program under
convention n°031/5592 RW REQUEST). We warmly thank J.A. Jorge, F.M.G.
Pereira and A. Caetano for allowing us to use JavaSketchIt and the CALI library in
our research. We gratefully acknowledge the support of the SIMILAR network of
excellence (http://www. similar.cc), the European research task force creating human-
machine interfaces similar to human-human communication of the European Sixth
Framework Programme (FP6-2002-IST1-507609).

 Multi-fidelity Prototyping of User Interfaces 163

References

1. Alvarado, Ch., Randall, D.: SketchREAD: A Multi-domain Sketch Recognition Engine.
In: UIST’2004. Proc. of 17th Annual ACM Symposium on User Interface Software and
Technology, Santa Fe, October 24-27, 2004, pp. 23–32. ACM Press, New York (2004)

2. Bailey, B.P., Konstan, J.A.: Are Informal Tools Better? Comparing DEMAIS, Pencil and
Paper, and Authorware for Early Multimedia Design. In: CHI’2003. Proc. of the ACM
Conf. on Human Factors in Computing Systems, Ft. Lauderdale, April 5-10, 2003, pp.
313–320. ACM Press, New York (2003)

3. Berger, N.: The Excel Story. Interactions 13(1), 14–17 (2006)
4. Caetano, A., Goulart, N., Fonseca, M., Jorge, J.: JavaSketchIt: Issues in Sketching the

Look of User Interfaces. In: Proc. of the 2002 AAAI Spring Symposium - Sketch Under-
standing, Palo Alto, March 2002, pp. 9–14. AAAI Press, Menlo Park (2002)

5. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with Com-
puters 15(3), 289–308 (2003)

6. Chung, R., Mirica, P., Plimmer, B.: InkKit: A Generic Design Tool for the Tablet PC. In:
CHINZ’2005. Proc. of 6th ACM SIGCHI New Zealand chapter’s International Conference
on Computer-Human Interaction. ACM International Conference Proceeding Series,
vol. 94, pp. 29–30. ACM Press, New York (2005)

7. Cockton, G., Lavery, D.: A Framework for Usability Problem Extraction. In: INTER-
ACT’99. Proc. of 7th IFIP TC 13 Int. Conf. on Human-Computer Interaction INTER-
ACT’99, Edinburgh, August 30-September 3, 1999, pp. 347–355. IOS Press, Amsterdam
(1999)

8. Coyette, A., Vanderdonckt, J.: A Sketching Tool for Designing Anyuser, Anyplatform,
Anywhere User Interfaces. In: Costabile, M.F., Paternó, F. (eds.) INTERACT 2005.
LNCS, vol. 3585, pp. 550–564. Springer, Heidelberg (2005)

9. Engelberg, D., Seffah, A.: A Framework for Rapid Mid-Fidelity Prototyping of Web Sites.
In: Proc. of the IFIP 17th World Computer Congress - TC13 Stream on Usability: Gaining
a Competitive Edge WC’2002, Montreal, August 25-29, 2002, pp. 203–215. Kluwer Aca-
demic Press, Dordrecht (2002)

10. Landay, J., Myers, B.A.: Sketching Interfaces: Toward More Human Interface Design.
IEEE Computer 34(3), 56–64 (2001)

11. Lewis, J.R.: IBM Computer Usability Satisfaction Questionnaires: Psychometric Evalution
and Instructions for use. Int. Journal of Human-Computer Interaction 7(1), 57–78 (1995)

12. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez, V.: UsiXML: a Lan-
guage Supporting Multi-Path Development of User Interfaces. In: Bastide, R., Palanque,
P., Roth, J. (eds.) Engineering Human Computer Interaction and Interactive Systems.
LNCS, vol. 3425, pp. 200–220. Springer, Heidelberg (2005)

13. Meyer, J.: Creating Informal Looking Interfaces (2005), accessible at http://www.cyber
grain.com/tech/pubs/lines_technote.html

14. Newman, M.W., Lin, J., Hong, J.I., Landay, J.A.: Denim: An Informal Web Site Design
Tool Inspired by Observations of Practice. Human-Comp. Interaction 18, 259–324 (2003)

15. Paternò, F., Volpe, N.: Natural Modelling of Interactive Applications. In: Gilroy, S.W.,
Harrison, M.D. (eds.) Interactive Systems. LNCS, vol. 3941, pp. 66–77. Springer, Heidel-
berg (2006)

16. Petrie, J.N., Schneider, K.A.: Mixed-Fidelity Prototyping of User Interfaces. In: Doherty,
G., Blandford, A. (eds.) DSVIS 2006. LNCS, vol. 4323, pp. 26–28. Springer, Heidelberg
(2007)

164 A. Coyette, S. Kieffer, and J. Vanderdonckt

17. Plimmer, B.E., Apperley, M.: Interacting with Sketched Interface Designs: An Evaluation
Study. In: CHI’04. Proc. of ACM Conf. on Human Aspects in Computing Systems, Vi-
enna, April 24-29, 2004, pp. 1337–1340. ACM Press, New York (2004)

18. Rudd, J., Stern, K., Isensee, S.: Low vs. high-fidelity prototyping debate. Interactions 3(1),
76–85 (1996)

19. Snyder, C.: Paper Prototyping: The Fast and Easy Way to Design and Refine User Inter-
faces. Series in Interactive Technologies. Morgan Kaufmann, San Francisco (2002)

20. Vanderdonckt, J.: A MDA-Compliant Environment for Developing User Interfaces of In-
formation Systems. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, pp. 16–31. Springer, Heidelberg (2005)

21. Van Laerhoven, K., Schmidt, A., Gellersen, H.-W.: Pin&Play: Networking Objects
through Pins. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498,
pp. 219–228. Springer, Heidelberg (2002)

22. Virzi, R.A., Sokolov, J.L., Karis, D.: Usability problem identification using both Low- and
High-Fidelity Prototypes. In: CHI’96. Proc. of ACM Conf. on Human Aspects in Comput-
ing Systems, Vancouver, pp. 236–243. ACM Press, New York (1996)

23. Walker, M., Takayama, L., Landay, J.: High-fidelity or low-fidelity, paper or computer
medium? In: HFES’2002. Proceedings of the 46th Annual Meeting of the Human Factors
and Ergonomics Society, Baltimore, September 30-October 4, 2002, pp. 661–665. Human
Factors and Ergonomics Society, Santa Monica (2002)

	Multi-fidelity Prototyping of User Interfaces
	Introduction
	Related Work
	Tool Support for Multi-fidelity
	Experimental Study on Fidelity Level
	Method
	Protocol
	Results

	Multi-fidelity for Other User Interface Artifacts
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

