
Declarative Interaction through
Interactive Planners

Conn Copas and Ernest Edmonds
Human-Systems Integration Group, Information Technology Division,

Defence Science & Technology Organisation,
P.O. Box 1500, Salisbury, SA 5108, Australia

Phone: +61-(0)-8-25-95349 - Fax: +61-(0)-8-25-95980 -
E-mail: cvc@itd.dsto.gov.au

Loughborough University of Technology, Computer Human Interaction Re-
search Centre (LUTCHI), Leics, LE11 3TU, United Kingdom

Phone: +44-(0)509-22-2691 – Fax: +44-(0)509-61-0815
E-mail: E.A.Edmonds@lut.ac.uk

Abstract
Recent progress in planning has enabled this technique to be applied to some sig-
nificant real-world problems, including the construction of intelligent user inter-
faces. Previous research in interactive planners has emphasised their dynamism and
maintenance advantages. This paper adopts a user-interaction perspective, and ex-
plores the theme that a paradigm shift in human-computer interaction is now a
prospect: away from the requirement to instruct machines towards a more declara-
tive, goal-based form of interaction. This initiative necessarily involves considera-
tion of the design of goal description languages, and some alternatives are analysed.
Some implementation issues involved with embedding planners within a user inter-
face management system are examined. The general planning strategy of construct-
ing executable models of causality within some domain is discussed in the context
of human-computer interaction specification methods. Some advantages of plan-
ners in contrast to process algebras are described, and it is also shown how Petri
nets could usefully incorporate some initiatives from planning research.

Keywords
Intelligent user interfaces, model-based systems, user interface management sys-
tems, formal specifications, executable specifications, task analysis, planning, geo-
graphic information systems, Petri nets, declarative interaction, goal description
languages.

Introduction
Planning techniques have long been considered to hold potential for injecting intel-
ligence into interactive systems. The general principle is that interactive planners
are the recipients of goals which describe some desired state(s) of a computer-
based system. These planners possess knowledge about various actions (typically
corresponding to user-level commands), including in particular the preconditions
and effects of these actions. The planning task is to search (nondeterministically)

266 Computer-Aided Design of User Interfaces

for command combinations which will achieve the goal. At that point, the planner
may either recommend a course of action to the user, or automatically execute the
script which has been generated.

Planners have historically been hampered by problems of poor expressiveness,
poor performance and, to a lesser extent, ambiguous completeness, but recent re-
search progress suggests their potential may be closer to realisation.

For example, expressiveness has improved with the advent of algorithms for ac-
commodating conditional action effects [Pednault88], disjunctive preconditions,
and quantification over dynamic object universes [Weld94]. Performance has si-
multaneously improved to the point where quasi real-time, interactive planners are
being reported in domains such as network searching within the Unix operating
system [Etzioni94a] and image processing [Chien94].

One of the aims of this paper is to report on the feasibility of employing interactive
planners within another domain: that of user interaction with a geographic information
system (GIS). These systems, along with many other so-called high-functionality sys-
tems [Fischer91] have a poor reputation for usability. As discussed in section 1,
conventional engineering solutions to this problem, such as the construction of
graphical user interfaces, suffer from inherent limitations which planners may
overcome.

More significantly, the little existing work on interactive planners has tended to
emphasise the maintenance and dynamism advantages which these possess in
comparison to systems which operate in a more procedural fashion, and has only
addressed end-user concerns indirectly. A further aim of this paper is thus to inves-
tigate in section 2 some HCI issues, with particular reference to the design of goal
description languages.

Planners have typically been built by Artificial Intelligence (AI) workers for the pur-
pose of implementing some problem-solving system. However, the underlying
knowledge representation (including operators, preconditions and effects) is itself
of HCI relevance, given the interest in appropriate specification techniques within
fields such as UIMSs, CSCW and TA.

Planners necessarily involve an executable model of causality within some domain,
which aligns them with model-based approaches to software development in gen-
eral, and which gives them a close correspondence in particular with techniques
which specify the semantics of state transitions, such as high-level Petri nets (PNs).

A subsidiary aim of this paper is to compare and contrast developments in plan-
ning with executable specification practices in HCI, in section 3. It is contended
that planning offers a number of features which could profitably be incorporated,
including a more expressive formalism in many cases, and the possibility of more
dynamic run-time control.

 Declarative Interaction through Interactive Planners 267

1 GIS User Interfaces

Consider the following simple visualisation task facing some GIS users, which will
be used for illustration throughout the remainder of this paper. The system in-
cludes a number of data themes, representing roads, elevation, population, etc, with
the display currently being blank. The users' desire could be paraphrased as fol-
lows: "I would like to see the roads map in plan view, superimposed upon a white
background, containing a legend in the bottom right corner and a scale-bar in the
top centre". The expected output of the system is depicted in figure 1.

Figure 1. the output of a GIS visualisation goal

It may be objected that this task is undemanding, as it does not involve any particu-
lar sophistication in spatial analysis on the part of the user. However, it is a good
example for precisely that reason, because even users who have a clear idea of their
goals must still translate those goals into a sequence of GIS instructions which is
both syntactically correct and semantically coherent. Employing the command-
driven interface of the public-domain GIS Grass4.1 [CERL93], seven instructions
are necessary for achieving the goal, as depicted in figure 2.

 d.mon start=x0
 d.erase color=white
 d.rast -o map=roads
 d.scale at=0,0
 d.frame frame=frame0 at=0,40,75,100
 d.erase color=black
 d.legend map=roads

Figure 2. A typical GIS command sequence, or plan

268 Computer-Aided Design of User Interfaces

As may be inferred from figure 2, GIS tend to possess a large, relatively primitive
command-set out of a concern for general-purpose capability and thus resemble
the Unix operating system, or a (spatial) statistics package. A typical response to
this usability problem is the construction of menu-driven, graphical interfaces; an
example of which is shown in figure 3.

These have the obvious advantage of eliminating errors of command retrieval and
construction, but are not themselves beyond criticism. One feature of menus is
that, linguistically, the items are usually imperatives and, in the simplest case, corre-
spond to application commands. Thus, the influence of the command-line lingers.
A further design innovation is to supply some iconic representation of the objects
which comprise the system's universe of discourse, thus allowing users to manipu-
late these in a pseudo-direct fashion.

Within the GIS sphere, however, direct manipulation is rare; for example, only ex-
perimental systems allow one to perform map overlays by dragging icons into some
viewing area [Egenhofer93]. Part of the problem is that it is difficult to represent all
of an object's methods (particularly abstract methods) in a gestural or pictorial
fashion. More commonly, although there may be some iconic representation of ob-
jects, their methods are invoked by selection from some pop-up or pull-down
menu. It could thus be argued that the imperative languages in which most systems
are programmed eventually permeate through to the user interface, despite the best
efforts of designers to construct various facades.

Figure 3. A menu-driven, graphical GIS user interface

 Declarative Interaction through Interactive Planners 269

It is at this point that planners offer a design alternative. Interactive planners, apart
from being 'intelligent', are distinctive because the user inputs goals rather than
procedures. That is, the interaction is declarative; a feature of planning's basis in
logic and nondeterministic search.

Thus, a prospect which has been tantalising for some time is closer to realisation:
users, instead of issuing numerous instructions in order to achieve their goals, may
instead interact with machines in the converse fashion, by describing their goals
and relying on the machine to infer the necessary instructions. It is slightly ironic
that, if planning technology becomes sufficiently well-understood to be appropri-
ated by the mainstream (in the manner of the relational calculus, for example), then
these systems are less likely to be deemed intelligent and may come to be regarded
as routine constraint satisfiers!

This concept of the utility of declarative interaction rests upon the assumption that
it is easier or at least preferable for users to describe goals rather than generate sets
of instructions. It is recognised that planners could be said to foster an interaction
style of indirect manipulation, because such support systems intervene between
the user and the (representation of the) domain objects.

One may anticipate that planners may be perceived as introducing superfluous
overheads when supporting the kind of simple and self-evident tasks which cur-
rently admit well to direct manipulation or, for that matter, to imperative interac-
tion in general. More specifically, it may be hypothesised that the acceptability of
interactive planners may be expected to increase as the unit tasks in any domain in-
volve longer sequences of instructions for their completion. The most practical
scenario is one in which a variety of forms of interaction are available to the user.

2 An Interactive Planner for GIS

The work reported here employs the public-domain planner Ucpop4.0 [Weld94],
written in Common Lisp. Planners may be distinguished by various features, which
merit description at this point. The essential features of Ucpop are that it:

1. Is regressive, i.e. search proceeds by selecting operators which can achieve the
goal state, then placing the preconditions of these operators onto an agenda of
revised goals, until the current state is reached. This strategy is more focused
than progressive search methods, and thus has performance advantages in do-
mains where there are a large number of operators compared to the average
number of goals involved in any plan.

2. Builds plans from first-principles, as opposed to the strategy of composing a
larger plan from some pre-existing library of plan fragments. This latter ap-
proach effectively enables learning or experience to enhance performance, but
is often described as hierarchical or abstract planning instead. Planners which
cannot work from first principles may suffer from inflexibility due to the as-

270 Computer-Aided Design of User Interfaces

sumption that one may anticipate users' goals and store a compiled response
[Tenenberg91].

3. Is partially ordered or nonlinear, i.e. if alternate action sequences can achieve
the same goal state, then the algorithm avoids committing to any one sequence
unnecessarily, with consequent gains in performance, end-user support, and
flexibility of execution (i.e., it is possible to infer opportunities for parallel exe-
cution).

4. Is domain-independent, i.e., the various choices which arise during planning are
made without recourse to any domain-specific heuristics, such as "always draw
maps before displaying legends". The employment of this general search con-
trol strategy preserves completeness, at the cost of some performance. A pro-
grammer's interface allows the incorporation of more specific heuristics, which
effectively imparts some of the character of an expert system to the planner.

5. Assumes that the planner has access to all necessary information about the state
of the world, and that action effects are both instant and deterministic. These
restrictions may be regarded as unreasonable within certain real-world domains
(which has led to a concern for planners based upon fuzzy or modal logics), but
are more reasonable in the case of some artificial software worlds.

The visualisation goal described in Section 1 is represented using existentially-
quantified, first-order predicates and Ucpop4.0 syntax in figure 4 (universally-
quantified goals and negation are also supported).

This example was chosen partly because of the comparative length of the plan
which is required to satisfy the goal. In a previous imperative interface, this goal
was identified as a unit task requiring the most involved macro. An example of a
relatively complex operator representation is shown in figure 5.

The entities in this domain are both persistent, e.g. data files, and more ephemeral,
e.g. the contents of graphics windows. The main features of this example are, first,
conditional effects (e.g., the effects of the command are different depending
whether the window contains any frames) and, secondly, universal quantification
over a dynamic object universe (e.g., the above command has the effect of destroy-
ing all existing contents of the window, without having to nominate those contents
explicitly).

Assuming that it is desired for the planner to mediate the user-application interac-
tion in a UIMS fashion, two interfaces require attention. The first is between the
planner and the application. It is routine to transform the output of the planner
into a series of application callbacks, but deeper discussion is deferred until Section
2.1.2. The main interface concern at this point is with the user.

Clearly, after criticising contemporary GIS user interfaces, it would be inconsistent
to claim that the predicate logic interface of figure 4 represents an advance in us-
ability! In its raw form, this interface poses a number of hurdles for casual users:

 Declarative Interaction through Interactive Planners 271

1. mastery of Lisp/Ucpop syntax;
2. mastery of the semantics of predicate calculus, including conjunction, negation,

and existential/universal quantification;
3. lack of guidance about the types of goal statements which are possible.

:goal (exists (window ?window)

(exists (frame ?frame)
(exists (scale-bar ?scale-bar)
(exists (map ?map)
(exists (legend ?legend)
(and

(background-colour window ?window white)
(displayed-in window ?window map ?map)
(kind map ?map two-d)
(refers-to map ?map data roads)
(contains window ?window frame ?frame)
(position frame ?frame "0 40 75 100")
(displayed-in frame ?frame legend ?legend)
(refers-to legend ?legend data roads)
(displayed-in window ?window scale-bar ?scale-bar)
(position scale-bar ?scale-bar "0 0")))))))

"I would like to see the roads map in plan view, superimposed upon a white
background, containing a legend in the bottom right corner and a scale-bar in
the top centre"

Figure 4: A GIS goal, expressed in terms of both first-order predicate logic and natural language
(variables are prefixed with '?')

It may be recognised that these types of problems are also familiar from the data-
base world, which has the advantage of providing conceptual leverage.

For example, it allows one to compare and contrast goal description languages (and
techniques) with more familiar database query strategies, despite the fact that plan
synthesis is not generally regarded as an information retrieval task.

The predicate logic interface of figure 4 may be seen as an analogue of SQL: de-
clarative (in comparison to its predecessors), demanding (for inexperienced users),
and also limited by its first-order formalism (i.e., it is not possible to pose a meta-
query about which predicates are available).

272 Computer-Aided Design of User Interfaces

__
(:operator d-rast
 :parameters (?container ?name ?data ?map)
 :precondition (and (selected ?container ?name) (data ?data))
 :effect (and
 (displayed-in ?container ?name map ?map)
 (kind map ?map two-d)
 (refers-to map ?map data ?data))
 (forall (?A ?B)
 (when (displayed-in ?container ?name ?A ?B)
 (not (displayed-in ?container ?name ?A ?B))))
 (forall (?frame ?id ?X ?Y)
 (when (and (contains ?container ?name ?frame ?id)
 (displayed-in ?frame ?id ?X ?Y))
 (not (displayed-in ?frame ?id ?X ?Y))))
 (forall (?colour)
 (when (background-colour ?container ?name ?colour)
 (not (background-colour ?container ?name ?colour))))
 (forall (?frame1 ?id1 ?colour1)
 (when (and (contains ?container ?name ?frame1 ?id1)
 (background-colour ?frame1 ?id1 ?colour1))
 (not (background-colour ?frame1 ?id1 ?colour1))))))

"The effect of displaying some raster data is that the currently selected window
now has that map present in it. Whenever the window already has contents, this
map overwrites both the background colour and the previous contents of the
window, including that of any frames contained within the window".

Figure 5: A planning representation of a GIS command, also expressed in terms of natural lan-
guage (variables are prefixed with '?')

On the other hand, planners and conventional databases do differ quite markedly
in that their underlying formalisms emphasise either the dynamic or structural as-
pects of some domain, respectively. As a result, whilst the behaviour (i.e., the state
transitions) of the GIS domain is explicated by the planning model, the universe of
discourse is only implicit. This may, however, be explicated using an ERA diagram,
as shown in figure 6.

One advantage of the data model of figure 6 is naturally that the ontological struc-
ture of the domain is revealed, e.g., it is apparent that some predicates function as
attributes of entities (position, background-colour) whereas others serve to relate
two entities (contains, displayed-in, refers-to).

 Declarative Interaction through Interactive Planners 273

WINDOWid

colour

DISPLAYED
 IN

DISPLAYED
 IN

SCALE
BAR

MAP

id
position

id, kind

CONTAINS FRAME DISPLAYED
 IN

LEGEND

id
position

id

background
REFERS
 TO

REFERS
 TO

DATA

id
kind

m

1
m

m

m

1m11

1

1

1

Figure 6. An entity-relationship representation of the universe of discourse underlying a GIS do-
main

It is also notable that one entity (window) is not present in the natural language
goal specification of figure 4, i.e., this entity is consequential upon the goal of dis-
playing maps. Similarly, one relation (refers-to) is effectively implicit in the natural
language specification. It would seem important to impress these distinctions upon
end-users.

As a preliminary measure, the logic-based interface may usefully be augmented
with some standard, higher-order predicates, such as 'entity', 'attribute' and 'rela-
tion' (neglecting for the moment esoteric modelling issues such as whether attrib-
utes may be considered to be a special entity). This initiative provides the basis for
a certain amount of guidance if one then postulates a meta-query facility; however,
the problems of mastery of logic remain, and a new problem of meta-query con-
struction arises. Graphical interfaces, alternatively, provide the general features of
revealing domain ontologies and reducing problems of syntax in the interaction.
An example of this approach for the GIS domain is shown in figure 7.

Figure 7. A form-filling interface for specifying goals to an interactive planner

274 Computer-Aided Design of User Interfaces

Not unexpectedly, this style of interface resembles a form-filling interface to a rela-
tional database. In the spirit of deductive databases, details of whether the plan is
being 'retrieved' or 'derived' are suppressed. One design issue which is not immedi-
ately apparent from such a static example is that of dialogue control; for example, it
is ambiguous whether the dialogue is driven by selection of relations or by selection
of entities. A relation-driven dialogue requires that the user selects one or more re-
lations of interest, in order that further entity/attribute fields are subsequently pre-
sented for selection or input. Insofar as relations may be interpreted as functions or
procedures, this approach violates somewhat the ideals of declarative interaction
(see [Etzioni94a] for an example). An entity-driven dialogue possesses the virtue of
presenting a more object-oriented view to the user. Currently, both approaches are
accommodated.

The user interface is context-sensitive, in more than one respect. First, the data
model specifies certain constraints, e.g., that maps but not data can be displayed.
This knowledge is used to cause appropriate forms to be displayed, based upon
prior selections. Secondly, it is occasionally desirable to impose an order of field
filling upon the user, which is achieved using field disabling techniques. For exam-
ple, it is deemed inappropriate at the interaction point in figure 7 for the user to
nominate a map identifier. These dynamics have at present been achieved simply
by writing procedural graphics code, without any prior specification. It is recog-
nised that standard UIMS practice is to construct an executable specification of in-
teraction-object behaviour, and it is intended to investigate planning formalisms for
this purpose.

Somewhat curiously, one other example of a form-filling interface to a planner [Et-
zioni94a] appears to be based upon neither an explicit data model nor typed predi-
cates. It is claimed that the form-filling approach overcomes users' discomfort with
logic. More precisely, such an approach may be expected to reduce problems of
syntax, but the ability of graphics to facilitate a grasp of the semantics of logic is
considered in this paper to remain an empirical question. One potentially trouble-
some feature, and one which distinguishes the above interface from that for a rela-
tional database, is the requirement for the user specifically to employ quantified
identifiers.

The form-filling interface may be criticised for its linguistic nature, which contrasts
with the graphical nature of the ERA diagram on which it is based. One progres-
sion is to propose that entities in the goal have an iconic representation. For exam-
ple, if the user wishes to delete data file "F" or close window "W", then conven-
tional graphical interface techniques allow one to establish a relationship between
icons and their referents. The planning situation, however, is complicated by the
requirement to accommodate quantifiers (e.g., "I would like to see a map of
some/every data file"). This requires some graphical representation of both
anonymous entities and sets; an example of the latter being the palettes employed
within interactive drawing packages. A further design issue is the graphical specifi-
cation of relations and attributes. Conveniently, some of the predicates in the ex-

 Declarative Interaction through Interactive Planners 275

ample GIS domain (position, contains, displayed-in), by virtue of their spatial con-
notations, may be readily defined by drawing. For example, a map icon may be
dragged inside a window icon in order to convey that the former is 'displayed-in'
the latter. Negated predicates, alternatively, are challenging to represent graphically.

It is ironic that, if this notion of graphical goal specification could be carried to its
extreme, then the user interface would resemble an advanced direct manipulation
interface to a GIS, albeit augmented with quantifiers and negation. Such an inter-
face must depart further from conventional direct manipulation, however, by being
insensitive to the sequence of operations. For example, it must be legitimate to
drag a scale-bar followed by a map into some viewing area representation (in order
that the planner can infer how to display both these entities), whereas in the actual
application the scale-bar would become occluded by this sequence. Iconic planner
interfaces therefore may gain some design inspiration from direct manipulation,
but also must support a form of visual, automatic programming.

2.1 Implementation issues

The work reported in section 2 was intended to demonstrate two concepts:

1. That contemporary planners possess sufficient expressiveness to support sig-
nificant tasks within a GIS domain;

2. That enhancements may be made to the programmer's interface such that at
least satisfactory user interaction becomes feasible.

In itself, this demonstration distinguishes this work from most previous reports of
interactive planners, such as [Senay89]. However, a variety of further practical con-
siderations must be addressed before contemplating putting this system into pro-
duction. Performance is one major concern; the less the system responds in real
time, the less its suitability as a UIMS component, and the more its potential status
becomes relegated to that of on-line help. Other considerations include the feasibil-
ity of interfacing the planner to an application, and the software development ef-
fort required.

2.1.1 Performance

The work reported in this paper employs a restricted, although intentionally chal-
lenging, sub-set of GIS operators. A complete GIS might involve 300 operators,
and so scalability is obviously an issue. Regressive planners scale-up well provided
that the application commands tend to have unique effects, suggesting that per-
formance degradation may be as much a function of the compiler as it is of the
planning algorithm.

Theoretically, a major influence on planner performance is the average branching
factor in a domain [Weld94], which broadly corresponds to the number of alterna-
tive actions which must be considered at any choice point. Less formally, an 'ideal'
domain is one in which all actions have unique effects, and no action negates any

276 Computer-Aided Design of User Interfaces

of the preconditions of other actions. One distinctive feature of this GIS domain
appears to be operator complexity, with a rule-of-thumb being that increases in the
average number of effects per operator increase the probability of operator inter-
dependencies. Apart from the domain itself, a second influence on performance is
the type of queries which are posed of that domain.

For example, quantifiers in the goal statement tend to increase solution times. As a
crude generalisation, our experience is that plans of three steps are synthesised in
subjective real time on a Unix workstation. The seven step plan of figure 2 is re-
turned in 2-3 s, as something of an extreme example (although some planning fail-
ures may take as long to report). In an image processing domain, it has been indi-
cated that plan lengths of 10 steps may be typical, and that reliance on both do-
main-dependent search heuristics and pre-existing plan libraries is required [Chien-
94].

Without resorting to these measures, other options are available for improving per-
formance:

1. The employment of search heuristics which supplement those of Ucpop, but
yet which need not be considered domain-specific, e.g., work on the hardest/
easiest goals first, avoid considering action sequences which 'undo' each other,
use fewest operators, distinguish between 'primary' and 'incidental' effects.
These may be regarded as metaplanning heuristics. Provided they weight
choices rather than prohibit avenues of search, completeness is retained.

2. It should also be noted that latitude exists for improved planning algorithms; in
particular, the possibility of extending the least commitment approach to incor-
porate typed operators. By reasoning with classes rather than instances of op-
erators, a planner ought to be able to gain performance in the same way that
Ucpop does by reasoning with classes rather than instances of the arguments of
those operators. Existing work into typed operators has not had direct per-
formance concerns [Anderson88, Kramer94]. It may be shown that typed op-
erators depend upon an object taxonomy [Tenenberg91], also a research fron-
tier for planners, which incidentally reinforces the comments about the desir-
ability of data models which were made in the context of user interface con-
struction.

The usual assumption made in planning is that the shortest plan (found by breadth
or best first search) is of most interest. However, if one postulates that the user
may wish to inspect a range of alternative plans, possibly with some associated ex-
planation, then both performance and completeness considerations become even
more crucial. Considerations of interactivity result in the further design stimulus
that there could be advantages in analysing the goal before it is submitted to the
planner; in particular, with a view towards estimating solution time. This requires
that some comparatively naive heuristics are employed; otherwise, the actual plan-
ning process provides the definitive estimate! For example, an analyser may readily
ascertain how many different actions will be required for plan solution, and may

 Declarative Interaction through Interactive Planners 277

then investigate in a preliminary fashion the degree of independence of those ac-
tions. It is also possible to envisage a dialogue in which an interactive user is in-
vited to assent to modification of the goal statement, e.g., by the binding of exis-
tential quantifiers, or by the deletion of certain predicates.

2.1.2 Application Interface

One standard assumption of many research planners is that exogenous events do
not cause the state of the environment to change, i.e. the world is assumed to be
closed. In the case of a single-user application, it is also reasonable to assume that
the operating system prevents exogenous users from changing the state of the file
system, the graphics display, etc. On the other hand, the execution of any plan
needs to be followed by a process in which the planner updates its notion of the
current application state, as it is unsafe simply to rely on inference for this informa-
tion.

Therefore, the application must provide commands which return state information,
in addition to commands which effect state changes. The planner may then reason
about how it can obtain state information, alongside reasoning about how it can
achieve target goal states. This requires that planning and execution are interleaved.

In the GIS domain, the implementation of these principles has proved to be prob-
lematic, as the application supplies more facilities for altering its state than it sup-
plies for verifying its state. Regarding the planner as a software robot, it could be
said that any artificial entity which interacts with the application is hampered by an
imbalance between effectors and sensors, reflecting once again a legacy of impera-
tive applications. One solution is to supplement the application with more state-
interrogation routines, but at the cost of some extensive low-level programming. It
would be ideal if the application could be reprogrammed to signal the planning sys-
tem after every state change, and this strategy has in fact been adopted for a Unix
domain [Etzioni94b].

Without indulging in such modifications, one less than satisfactory approach is to
restrict user goals to those which may subsequently be verified by the planner. The
discussion so far has assumed that the planner constitutes an intelligent front-end
to an imperative application, and thus the perennial UIMS issue arises of how
aware the application should be of its user interface. Alternatively, if developing an
object-oriented application, then the planner might function as an executable
schema.

A further refinement is to address the problems which may occur if the application
changes state between the time of planning and the time of execution. In that case,
error recovery and replanning are required, generating advanced robotics issues
such as how the planning system might become aware of execution errors, and
whether it should replan partially or totally.

278 Computer-Aided Design of User Interfaces

2.1.3 Software Development Effort

Planners are knowledge-based systems, and so knowledge acquisition is a practical
issue which should not be neglected. In contrast to rule-based expert systems con-
struction, however, there are a number of advantages. The latter generally require
the encoding of personal experience, which is elusive almost by definition, whereas
planners involve the more rationalist enterprise of constructing accurate models of
the 'physics' of some domain. The level of abstraction of those models is driven by
an analysis of prospective goals. Some application knowledge may be expected to
be found in user manuals and documentation, and thus planner development may
involve explicating the implicit.

Specialised planner development environments are rare. In the case of Ucpop,
code may be written using a Lisp-aware text editor and checked for syntactic and
basic semantic conformity. A graphical debugger allows the developer to trace rea-
sons for anomalous or failed plans at run-time. Greater scope certainly exists in the
area of static analysis of the knowledge-base, for example, by inferring action cate-
gories [Anderson88], or by depicting networks of action dependencies [Murata91].

3 Planning and HCI specification

Planning essentially requires that a knowledge-base containing descriptions of op-
erator (or action) semantics is wedded to a search engine in order to produce prob-
lem-solving behaviour. In HCI, action descriptions or representations are also of
interest, given the general concern with specifying the dynamics within domains
such as UIMS, CSCW and TA. Discussions of HCI specification are typically not
wide-ranging, and it is occasionally possible to detect the slightly myopic view that
each of these domains has unique representation problems, and thus requires a
unique formalism. This is not to deny that research has discovered some useful,
specific abstractions (one example being the notion of roles within CSCW), but
that the differences between these fields may not be as deep as is sometimes im-
plied.

A second observation which needs to be made at this point is that there is not un-
qualified enthusiasm for dynamics specification. One long-standing controversy
within the UIMS field has been whether the employment of explicit dialogue con-
trol models leads to a rigid form of interaction, e.g., [Took90]. Frustration about
the lack of user acceptance for systems based upon group work-flow models has
existed within the CSCW field almost from its inception, e.g., [Fitzpatrick94]. TA
has been suggested to be something of a HCI panacea but, more recently, reserva-
tions have arisen about the sophistication of systems derived from temporally-
ordered task networks, e.g., [Copas94]. Whilst these problems have their individual
features, a common theme also emerges: that specification tends to lead to inflexi-
ble systems.

 Declarative Interaction through Interactive Planners 279

Responses to this problem range from the irrational (that specification should be
abandoned in the hope that the implementors of the system will make satisfactory
design decisions), to the naive (that problems of inflexibility will be solved by more
rigorous analysis), to capitulation (that systems should simply possess modeless dy-
namics, even if analysis does suggest dependencies between actions). A more satis-
factory response is that specifications should express constraints rather than hard-
coded action sequences, although it could not be said that there is general apprecia-
tion of the implications of this view within the HCI field.

One implication is that specifications are required to be more declarative, i.e. these
should state relations which must be preserved.

A second implication is that some constraint solver should be available for generat-
ing the dynamics at run-time, as opposed to the strategy of enumerating most of
the dynamics at compile-time. The representation employed is obviously a large
factor in the success of any constraint solver, and so it is preferable not to consider
specification in isolation.

In the UIMS dialogue modelling field, it is commonly accepted that event models
are more powerful than context-free grammars and state transition networks
[Green86], and this is reflected in the widespread adoption of specifications based
upon process algebras. These support run-time constraint satisfaction in the mini-
mal sense that, if one or more actions are specified as alternatives within some se-
quence, then any dialogue generator would be required to make a choice on some
basis.

More sophisticated reasoning, however, would seem to require domain axioms re-
ferring to system state. Intuitively, the concept of constraint satisfaction may be
seen to be related to the concept of context-sensitive dialogues, a feature poten-
tially supported by rule-based models. It has been shown that a simple rule-based
formalism employing propositions (rather than predicates) subsumes the expres-
siveness of event models [Olsen90]. Rule-based systems, however, have been criti-
cised within AI for various reasons, including their lack of structure, and also be-
cause they encourage the encoding of a comparatively shallow association between
situations and conclusions. Model-based reasoning is seen as a progression, in
which deeper, physical knowledge is employed.

Planners epitomise the model-based reasoning approach because of the causal rela-
tionship which is captured between preconditions and effects. This paper also
demonstrates that planners epitomise the constraint satisfaction approach to gener-
ating system dynamics, as plans are constructed at run-time as a result of symbolic
problem-solving. The distinction between planners and some forms of rule-based
systems, however, is not as clear as these observations might imply. The operator
descriptions contained within planner knowledge bases may be reinterpreted as
rules of the general form "if preconditions and action is chosen, then effects".
Model-based knowledge may therefore be regarded as a representation discipline
which is imposed upon the rule-based tradition. Similarly, model-based reasoning

280 Computer-Aided Design of User Interfaces

may be regarded as a development of the reasoning supplied by production system
interpreters. In other words, planners may be regarded as specialised inference en-
gines, which accounts for the occasional attribution that regressive planners, for
example, employ backward chaining.

Causal action knowledge is also a feature of one influential UIMS, namely UIDE
[Sukaviriya93]; however, this employs a different form of inferencing than plan-
ners. Such model-based UIMS reason in a projective fashion, i.e. given a sequence
of one or more actions, the system computes the next state of the application (in
contrast to planners, which find partially-ordered paths between states). Projection
algorithms are computationally unremarkable in comparison to planning, as these
appear to be deterministic and do not involve backtracking. (It is unclear whether
parallel actions are supported, which potentially might require the system to resolve
conflicts).

UIDE has been promoted as an automatic dialogue generator, but also subscribes
broadly to constraint satisfaction principles; one qualification being that the simula-
tion performed by the constraint solver is probably too routine to be deemed intel-
ligent. Projection does have the advantage of supporting the provision of advice
about the consequences of executing nominated command sequences, and it may
be anticipated that projection and planning tend to be reciprocal cognitive activities
of the user (as illustrated respectively by two prototypical questions: "what if... ?"
and "how can I... ?"). Thus, an ideal UIMS would accommodate both forms of rea-
soning.

Contemporary planners may be further distinguished from UIMS by their expres-
siveness, with the incorporation of negation, existential and universal quantifica-
tion, and conditional effects frequently being considered necessary for modelling
anything other than toy domains. As indicated previously, one major deficiency of
planners is their general disregard of data models, although this paper demonstrates
that a hybrid technique is straightforward. Contemporary UIMS take the additional
step of employing object-oriented data models, with inheritance naturally increas-
ing the expressiveness of structural aspects of the domain.

Causal knowledge is also an implicit feature of some formalisms which claim no di-
rect heritage in knowledge-based systems. In general, techniques which model the
semantics of state transitions, such as high-level PNs, fit into this category. An
early comparative review of UIMS formalisms which includes PNs is provided by
[Cockton87]. Discussion about PNs is complicated by the facts that, firstly, the
technique is highly fluid and thus provides great opportunity for individualistic ex-
tensions and, secondly, extant applications of PNs within HCI have tended not to
exploit their full power. Because of PN diversity, it may not be particularly mean-
ingful to regard these as a formalism in their own right, but instead as a transition
network which is augmented with both input and output information for each
transition. (An example of a particular form of PN is shown in figure 8, with more
discussion to follow shortly). Some HCI examples of PNs employ deterministic
nets (i.e., nets containing no choice points), in which case the expressiveness de-

 Declarative Interaction through Interactive Planners 281

generates to something approaching a finite state machine. It is also customary for
authors to emphasise that PNs explicate parallelism, which provokes the issue of
whether the nets are intended to represent transition possibilities or, instead, ac-
tual sequences of transitions. In the latter case, the net effectively degenerates to a
graphical process description, although examples of nets containing explicit paral-
lelism directives are in fact quite rare.

In order to position PNs within the context of this paper, it may be observed that
most HCI examples to date, e.g., [Palanque95], employ a form in which actions are
effectively associated with both preconditions and effects, expressed as single
states. If these states are subjected to a finer grain of analysis and represented as a
conjunction of predicates, then a predicate/transition net is obtained, as depicted
schematically in figure 8.

T1

T2

T3

P1

P2

P3

P0

T4

 KEY

 predicate action

 conjunctive
 precondition

 disjunctive
 precondition

 conjunctive
 effect

Figure 8. Schematic diagram of a predicate/transition net

The representation of figure 8 is akin to that employed by either planners or exist-
ing model-based UIMS, with the main difference being that the unit of representa-
tion is not the individual action but instead a network of actions related by their in-
ter-dependencies. PNs may thus be regarded as the visible output of a dependency
analysis of some action knowledge-base. This observation provokes the issue of
why modellers should be burdened with performing the analysis manually, as is
current practice.

Regressive planners, for example, continually search for actions whose effects will
satisfy the preconditions of other actions. [Murata91] presents an algorithm for a
basic form of PN generation, which effectively involves joining the 'nets' represent-
ing individual actions on the basis of common places.

It may be speculated that an ideal system would provide the modeller with graphi-
cal editing facilities for the knowledge-base, suggesting that PNs could also mediate
user input. Figure 9 summarises this discussion regarding the inter-relationship be-
tween existing model-based UIMS, planners, and PNs.

In order to illustrate the commonalities between planners and PNs, it was originally
intended to represent the GIS domain of this paper in PN form. However, expres-

282 Computer-Aided Design of User Interfaces

siveness problems instantly arose when attempting to represent the semantics of
the commands of figure 2.

Knowledge base
Operators
 .preconditions
 .effects

Model-based
 UIMS

Planner
 .regressive
 .progressive

Predicate/
transition
 net

+ path-finding algorithm

+ projection algorithm

+ dependency analysis

Figure 9. The inter-relationship between existing model-based UIMS,

planners, and Petri nets

First, there is the problem of conditional effects (for example, the effects of the
'd.rast' command of figure 5 are different depending upon whether any other maps
are already on display). One way of proceeding is to model each condition as a pre-
condition of a set of related commands. The Ucpop planning algorithm effectively
performs such a command cloning, but that is no justification for engaging in such
inelegance at the representation level. In addition, there are problems of both nega-
tion and universal quantifiers (for example, one of the effects of the 'd.rast' com-
mand of figure 5 is that all previous contents of the window are now not dis-
played). It has been proposed that negation might be accommodated within PNs
by the use of so-called inhibitor arcs [Anglano94], but we are unaware of tech-
niques for representing universal quantification.

These expressiveness problems may readily be solved by a small number of nota-
tional extensions. It would be preferable if these extensions could be introduced in
an ontologically unambiguous fashion, which is arguably not currently the case
with the language of 'places', 'tokens', etc.. It may also be preferable if any exten-
sions that were introduced were tempered by considerations of executability, as is
customary with planning. The commonly-held advantages of specifying independ-
ently of implementation are recognised; however, a more integrated approach can
have the advantage of providing guidance for a specification process which is un-
der refinement.

For example, PN modellers are at liberty to graft procedural programming con-
structs and other extra-logical features onto their nets. These extensions increase
the versatility of the technique, but potentially at a cost of reduced conceptual co-
herence; an issue which has received no attention in the HCI literature to date. As a
second example, PNs theoretically permit disjunctive (i.e., nondeterministic) ef-
fects; a controversial issue within planning. There is general consensus that real-
world planners ought to be able to function with incomplete information about the
environment; however, there is less consensus about the utility of functioning with
an incomplete model of one's capabilities.

 Declarative Interaction through Interactive Planners 283

Regarding the executability of PNs, 'reachability analysis' is recognised as impor-
tant, and broadly corresponds to the planning task of finding a sequence of opera-
tors which will transform the current state to some target state. At its most simplis-
tic, reachability involves using existing planning techniques, e.g., [Zhang90]. Pro-
gressive planning has typically been employed and, as indicated previously, this ap-
proach is generally not considered to scale-up well. Isolated instances of regressive
planning (known as 'backward reachability' in PN parlance) have been reported
[Murata91, Anglano94]. One unique contribution of PN research is the use of ma-
trix equations to generate reachability solutions; a potentially exciting feature given
the performance problems which plague heuristic search. Unfortunately, the for-
mer technique has a narrow range of application [Murata89], apparently being re-
stricted to deterministic nets.

The discussion so far has had a UIMS dialogue flavour although, as indicated pre-
viously, principles of dynamics modelling are of more general relevance. The TA
field exhibits less formal diversity, partly because of an entrenched view that TA
should involve task decomposition and sequence description, e.g., [Hartson90].
This approach has the unfortunate effect of resulting in a comparatively static task
network, which has implications for the sophistication of any user-computer dia-
logues, advice-giving systems, etc., which might be derived from that network.

This restricted view of what constitutes 'task analysis' also tends to neglect that,
firstly, TA could involve knowledge acquisition and, secondly, that high-level cog-
nitive simulations (i.e., those unconcerned with the micro-architecture of cogni-
tion) typically involve some task representation which is necessarily executable. If a
broader focus is adopted, then many expert systems may also justifiably be re-
garded as executable TA, typically employing a rule-based model.

Isolated examples of more constraint-oriented approaches to TA exist. One of the
original examples of a cognitive simulator, GPS [Newell72], also happens to be one
of the original examples of a planner, with a more contemporary incarnation in
[Blandford93]. ETKS [Borkoles92] employs a formalism based upon actions, pre-
conditions and effects, but neglects task-plan generation in favour of compile-time
specification. [Palanque95] employs what is effectively a predicate/transition net
towards TA (although it is unclear whether tasks or devices are actually being mod-
elled). In the last two examples, an object-oriented data model is also employed in
order to represent structural aspects of the user's conceptual world.

One research issue associated with using formalisms based upon action semantics
within TA is the readiness with which higher-level, conceptual actions may be iden-
tified. As possible evidence of difficulty, some models which are said to derive
from either a cognitive simulation or task analytic perspective in practice are barely
distinguishable from lower-level application models, e.g., [Blandford93, Palanque-
95]. On the occasions when this anomaly is acknowledged, the usual justification is
that experienced users are expected to possess faithful mental models of cause-
and-effect within the application or device with which they are interacting. This
lack of discrimination between user and application models is undesirable in those

284 Computer-Aided Design of User Interfaces

cases where TA is being used to enhance some application. Referring back to the
example goal which has been used throughout this paper, GIS users typically do
not wish to display maps, etc., for idle reasons. Instead, they may have higher-level
goals, such as planning routes, or deciding upon regional zoning policies. The exist-
ing planner cannot support those goals directly because the 'awareness' of the ap-
plication is limited to files, maps, legends, etc. If it is wished to provide support for
higher-level goals like route planning, then the application needs to be augmented
so that it, firstly, contains higher-level data types such as routes and, secondly, pro-
vides higher-level commands (or methods, in an object-oriented application) such
as 'compare routes' which operate on those data types. This approach requires that
the user's conceptual world may be modelled independently of the application's
world.

Conclusion

This paper has demonstrated that contemporary planners are sufficiently expressive
that it is feasible to build intelligent interfaces which support some significant user
tasks within a GIS domain. A broad view of these developments suggests that
more is involved than just the provision of intelligence: paradigms of user interac-
tion may be enabled to evolve from an imperative towards a more declarative style.

The advent of interactive planners raises design issues of goal description tech-
niques, and some alternatives have been analysed. It was shown that the user inter-
face to planners cannot be constructed in a methodical fashion without access to
an explicit data model of the domain; something lacking in existing planners. The
performance of contemporary planners has been found to be encouraging for these
to mediate the user-application interaction in a UIMS fashion, although further re-
search is required into both performance enhancement and interactive facilities.

The advent of interactive planners raises concerns about an imbalance in conven-
tional application command sets; between commands for effecting state changes,
and those for verifying current state. Constraint satisfaction techniques have been
proposed as a general approach for solving the problem of inflexible system dy-
namics, and planners have been shown to support that approach. Planning repre-
sentations have been analysed in relation to HCI specification practices, with the
conclusion that many model-based formalisms could usefully exploit either the ex-
pressiveness of planners, or the dynamic run-time control which planning algo-
rithms provide.

Acknowledgements

The authors wish to thank the anonymous reviewers of this paper for their con-
structive comments.

 Declarative Interaction through Interactive Planners 285

References

[CERL93] CERL Grass 4.1, Reference Manual, US Army Construction Engineer-
ing Research Laboratory, 1993.

[Chien94] Chien, S., Using AI Planning Techniques to Automatically Generate Image Proc-
essing Procedures, in Proceedings of Second International Conference on Artificial In-
telligence Planning Systems (Chicago, June 1994), K. Hammond (Ed.), AAAI
Press, Menlo Park, 1994, pp. 219-224.

[Egenhofer93] Egenhofer, M.J., Richards, J.R., Exploratory Access to Geographic Data
Based on the Map-Overlay Metaphor, Journal of Visual Languages and Computing, Vol.
4, 1993, pp. 105-125.

[Etzioni94a] Etzioni, O., Weld, D., A Softbot-Based Interface to the Internet, Communi-
cations of the ACM, Vol. 37, No. 7, July 1994, pp. 72-76.

[Fischer91] Fischer, G., The Importance of Models in Making Complex Systems Comprehen-
sible, in « Mental Models and Human-Computer Interaction 2 », M.J. Tauber, D.
Ackermann (Ed.), North-Holland, Oxford, 1991.

[Pednault88] Pednault, E., Synthesizing Plans that Contain Actions with Context-
Dependent Effects, Computational Intelligence, Vol. 4, No. 4, 1988, pp. 356-372.

[Senay89] Senay, H. et al., Planning for Automatic Help Generation, in Proceedings of
the 1st IFIP TC 2/WG 2.7 Working Conference on Engineering for Human-
Computer Interaction EHCI’89 (Napa Valley, 21-25 August 1989), G. Cockton
(Ed.), North-Holland, Amsterdam, 1990, pp. 293-311.

[Tenenberg91] Tenenberg, J.D., Abstraction in Planning, in « Reasoning About
Plans », J.F. Allen, Kautz, H.A., Pelavin, R.N., Tenenberg, J.D. (Eds.), Morgan
Kaufmann, San Mateo, 1991, pp. 213-283.

[Weld94] Weld, D.S., An Introduction to Least Commitment Planning, AI Magazine, Vol.
15, No. 4, 1994, pp. 27-61.

	Abstract
	Keywords
	Introduction
	1 GIS User Interfaces
	2 An Interactive Planner for GIS
	2.1 Implementation issues
	2.1.1 Performance
	2.1.2 Application Interface
	2.1.3 Software Development Effort

	3 Planning and HCI specification
	Conclusion
	Acknowledgements
	References

