A Framework for the Automatic Generation of
Software Tutoring

Javier Contreras and Francisco Saiz

Instituto de Ingenieria del Conocimiento, Universidad Auténoma de Madrid,
Cantoblanco 28049, Madrid, Spain
Phone: +34-1-397.39.73 — Fax: +34-1-397.85.44
E-mail: {contrera, saiz}@Iola.iic.uam.es
WWW: http://lola.iic.uam.es/~contrera

Abstract

Interactive Systems present an ever increasing complexity both to their users as
well as to their designers. These systems may require a great effort to be mastered
by a new user. Therefore, some kind of tutoring for these applications must be
provided, in such a way that it does not represent duplicating the work of the de-
signer. This paper describes an approach for automatically generating a tutoring
system for the tasks defined in an application, using some particular information
on tutoring that these tasks may have. At the same time an editor of these tasks is
provided to the designer. The kind of tutoring automatically generated has a vati-
able degree of flexibility in face of user actions, according to the designer's criteria,
and it is performed using the real application, not a simulation. This means that the
final user can actually work while he is learning how to perform a task. The ideas
here presented have been implemented in two small prototypes, Teach me While I
Work (TWIW) and Task Models Editor (TME).

Keywords

Software tutoring, task models, user interface design, interactive systems specifica-
tion, programming by demonstration.

Introduction

As Interactive Systems become more and more complex, more help must be pro-
vided to the final user. Standard help systems will soon become obsolete, since
they are very rigid and static, not taking into account the dynamic aspects of the
Human-Computer Interaction, nor the context in which help is demanded by the
user. In this scenario, flexible and powerful tutoring systems seem more appropri-
ate in order to instruct a new user of an Interactive System. But achieving higher
flexibility and power for tutoring systems involves an ever higher cost. In this pa-
per we will present an approach that allows the designer of an Interactive System
to incorporate a tutoring system for his application in a very easy manner. Our ap-
proach has been tested in two prototype tools, TWIW and TME.

172 Computer-Aided Design of User Interfaces

TWIW is the tool in charge of generating the tutoring at run-time. To do so, it has
to access information that is contained in task objects. As we shall see, these are
the appropriate objects for sharing the information between an application and the
correspondent tutoring system. These objects have a much richer semantic infor-
mation than single commands can have.

Moreover, the kind of tutoring generated has great benefits for the final user, as he
will receive tutoring on the tasks that can be performed in an application at the
same time he is working and actually carrying out these same tasks. This allows him
to practice progressively those tasks he has already learned, and also to incorporate
its use into new interaction techniques he learns. This is in sharp contrast with cur-
rent tutoring techniques, as we shall see in the Related Work section.

To work, TWIW needs that the tasks of the application that are going to be tutored
have been defined. This must be done by the designer of the application. To avoid
increasing the burden of the designer, TME is provided. It is an editor of tasks that
incorporates techniques of Programming by Demonstration, that turns the edition
of the task models into a very easy commitment.

Regarding the working environment, both TWIW and TME were developed accord-
ing to the Model-Based Interface Design paradigm, using the HUMANOID tool
[Szekely92], although we needed to introduce slight changes in the original lan-
guage [Saiz95]. The model-based approach in HUMANOID leads to an interface de-
sign environment that supports design reuse, delay of design commitments and
help to understand design models; benefits not found in current interface building
tools [Luo93]

One of the main benefits for working using the Model-Based Paradigm has been
already exploited by other systems too [Luo93, Moriy6n94]: it is easy to reason
about the models. In our case, TWIW reasons about the task models, and TME cre-
ates interactively these same models. The techniques used by TME can also be
found in [Cypher93].

Although a model-based approach provides the benefits above, it does so at a cost
of additional specification effort. To avoid this, both TWIW and TME were built us-
ing the KIISS editor [Saiz96], which in turn lies on top of HUMANOID.

The paper is organized as follows: we first describe related work, followed by a
general overview of our system and a more detailed section on its architecture. We
then present an example, showing the kind of tutoring a user would receive while
working. Then we introduce the TME editor, with another example in which the
designer specifies tasks for his application. Finally we extract some conclusions and
point out relevant ideas for future work.

1 Related Work

We shall start by considering the development of help systems, a related field
where a lot of activity has taken place for many years both in the development of

A Framework for the Automatic Generation of Software Tutoring 173

commercial applications and in the search of new techniques that enhance the ca-
pabilities of previous systems. Help systems can be considered as the most simple
software training tools that provide the user information about how to accomplish
tasks with the software at hand.

During the last years, with the advent and wide spread of graphical user interfaces,
graphical help systems have become usual, and all the main suppliers of such appli-
cations have developed their own help systems. Apple, as a pioneer in this direc-
tion, has used Balloon Help already for a long time [Macintosh95]. Microsoft has
relied more on hypertext style, and its development environments like Visual Ba-
sic® or Visual C++€ include specific means for the construction of help for appli-
cations [Microsoft91].

More recently, Microsoft has also included the possibility to add to an application
small rectangles of explanatory text that appear when the mouse stays long enough
over a specific region of the screen, or when the user clicks on it after asking for
help. All these interactive help systems are characterized by their static nature (they
can only give help about a fixed predetermined portion of the screen), and by the
fact that the only information they can give for complex tasks is through explicit
text explanations. As an example, we consider the following help the user receives
when asking how to create a link when using the CorelDRAW® program:

To link an object from CorelDRAW:
Choose Insert Object from the File menu.

1. Select Create from File.

2. Select Link.

3. Type the name, including the path and extension, of the file you want to link. If
you don’t know the name of the file or it’s location, click the Browse button to
display the Browse dialogue box.

4. If you want the object to appear as an icon, select Display as Icon. The icon
that’s currently associated with the selected application appears. You can choose
another icon from the dialogue box displayed by clicking the Change Icon but-
ton.

5. Choose OK.

This type of recipe-help is difficult to follow by a new user.

During the last years there has been some research in the HCI community related
to the development of high level tools for the construction of help systems. They
can be seen in some sense as ancestors of the system we present in this paper, so
we shall explain briefly their more relevant aspects.

N. Sukaviriya [Sukaviriya90] has developed a system that is able to give context
sensitive help with animations about a user interface. For example, the user can ask
how to read mail in a mail tool, and the system will answer with an animation
showing how to select a message from the list using the mouse and then click on
the Read button. Sukavitiya's system is based both on a backwards chaining infer-

174 Computer-Aided Design of User Interfaces

ence engine and a facility for the animated simulation of mouse events. The back-
wards chaining engine uses pre and postconditions associated to interactive actions
to search for a chain of events that can accomplish the desired task, and then
shows it using the corresponding animations.

R. Moriyén, P. Szekely and R. Neches [Moriyén94] have developed another tool
for the generation of help systems, HHH. It produces automatically a help system
for any application built using HUMANOID, a high level tool for the development
of user interfaces from the University of Southern California. It also allows the de-
signer to change the resulting help system to adapt it better to his specific applica-
tion. HHH generates automatically help messages in hypertext form that include
references to different parts of the interface. To do so it uses a forwards chaining
inference engine. HHH messages are context sensitive, and adapt themselves dy-
namically to the state of the interface.

Finally, Pangoli and Paterné [Pangoli95] have a system that is able to generate help
about the achievement of complex tasks. This system is built on top of a tool for
the specification of user interfaces that includes the ability to define user tasks.
What their work has in common with ours is the identification of the user tasks as
being essential in giving high level help (tutoring, in our case) with important se-
mantic content.

Comparing these systems with TWIW, both Sukaviriya’s and HHH systems give a
very close to atomic interaction help, being the user the one to decide how to split
a complex task in a sequence of simpler subtasks. This is not the case with Pan-
goli’s system, that relies on user tasks hierarchies to achieve better help generation.
But in contrast, this system does not permit the user to have guided practice, with
immediate feedback, as is the case with TWIW.

With respect to software tutoring systems, the state of the art is still far from a
situation like the one we have just described for help systems. There are no specific
tools that simplify the development of courses on the use of software. Some excep-
tions are a few projects that are under way for the development of documentation
for applications (ARPA is financing such a project at ISI/USC), and general
frameworks for course development. All of them ignore completely the specific
characteristics and possibilities derived from the fact that the subject of the course
is itself a computer program.

Most of the software tutoring systems that exist nowadays include just some kind
of "movie" that shows how the system accomplishes determined tasks, including
an animated view of the movements of the mouse, etc. The most advanced soft-
ware tutoring systems allow the student to practice using an emulation of the real
software being tutored. But building this emulator is a costly process, that is more
costly as more complex the emulator ought to be, and usually the student has the
feeling that he is dealing with a canned version of the application. In particular, he
can never save the result of his work, and starting a tutoring session is something
clearly differentiated and isolated from working with the application. Complex ac-

A Framework for the Automatic Generation of Software Tutoring 175

tivities like the ones arising in engineering processes (design, emulation, etc.) can be
learned better in a more flexible tutoring environment like the one we describe in
this paper.

2 Twiw: Teach me While | Work

TWIW is able to do tutoring on applications that incorporate a model of the tasks
that can be accomplished with them. The tasks that are part of an application con-
stitute a hierarchy, where complex roof tasks are decomposed into simpler ones, and
so on until afomic tasks are reached.

Each task incorporates information about how it will be tutored. TWIW constructs
automatically a default tutoring system for each application by adding to it standard
information about its tutoring method. The designer of the application can modify
and refine the tutoring system automatically generated by modifying the tutoring
information corresponding to its tasks.

A special task provided by TWIW, the Tutoring-Task, takes care of the generic as-
pects related to tutoring. TWIW also incorporates a Task Manager that is responsible
for the execution of the appropriate actions when the user interacts with the appli-
cation.

The overall structure of the tasks model of an application can be highly complex.
For example, several tasks can be accomplished in parallel. Hence, a tutoring sys-
tem must include a module that allows the user to learn about this complexity by
showing him the different tasks he can perform at a given moment and their rela-
tionship. TWIW incorporates several standard windows that show the user different
views of the task system and its current state.

Figure 1 is just one of these windows, the one that shows a list of all the root tasks
defined in a Mailtool application. This is the first window shown when a user ex-
presses his intention to learn about tasks by hitting the appropriate key. By using
the menu-bar the user can change this visualization, to obtain only the list of cur-
rently active tasks. By selecting individual tasks on any of these windows, suitable tu-
toring actions can be performed on them.

On the other hand, individual root tasks can also show arbitrary big complexity by
the nesting and branching of their associated tree. TWIW can help the user to un-
derstand these aspects by showing him individual information about specific tasks.
The actual information TWIW is able to give right now in this respect is very similar
to the one included in [Pangoli95], which in turn is closely related to the informa-
tion given by Sukaviriya’s Help System [Sukaviriya90].

176 Computer-Aided Design of User Interfaces

T TWIW on MailTool

All-Tasks Execute

APPLIGATION-NAME [Mail Tooll

|

ComposeMessage
EditMessage
LoadMailbox
MoveMessageToFile
ReplyMessage
Viewlessage

ey |

I~ J~

it I Expla:i.nl I‘l.lturi.ngl

Figure 1. Main window of the TWIW system

It consists of a tree shown in a dedicated window, from which the user can ask for
a textual description of individual subtasks, as well as to flash the parts of the
screen related to each step of the task under consideration. This kind of help has
proven to be much more effective than the static help we can find in many applica-
tions, describing all the commands available, but without direct reference to where
we can invoke them, and how we can assemble them to perform a complex task.

Taken by itself, the functionality described so far of TWIW does not deserve the
name of tutoring functionality. It would be best described as advanced help func-
tionality. It is the features explained in the next paragraph that makes TWIW a pow-
erful tool for the automatic construction of tutoring systems.

The fundamental aspect of TWIW, that allows real tutoring of interactive applica-
tions, takes place when the user asks for training on a specific task. The user will
then receive complete information about the selected task and how to perform it.

After that, while the user tries to perform the task interacting with the original ap-
plication, TWIW will watch if the correct steps of the selected task are being taken,
and in the right order. According to the tutoring-information associated to this par-
ticular task, TWIW will do the following:

e if the action is correct, it will execute it, look for the next step on the task model
and perform a preliminary tutoring action associated with it, typically showing
an explanation about what should be done next;

e if the action does not correspond to what is expected, two things can happen: if
the Tutoring-Task is in s#ict mode (which is the default tutoring behaviour) an
error message will pop up in a window, explaining what the user was supposed

A Framework for the Automatic Generation of Software Tutoring 177

to do, and the action will not be executed. On the contrary, if the Tutoring-
Task is in free mode, a warning message will be displayed, but the action will be
executed. Intermediate modes are also available, leaving to the designer the de-
cision about where, how, and when a user can act while learning a certain task.

Of course we can abandon tutoring at any moment, or simply reach the end of the
task. This simple tutoring style is complemented by some variations of it where, for
example, the system teaches a whole course about the application or it makes the
user train randomly different tasks. In this case, it can follow the uset’s accom-
plishments and take this into account in the successive training proposals it makes.

3 Architecture

The ideas here presented can be implemented in any environment that supports
object-oriented programming and allows the specification of the interactive behav-
ior of graphical objects, encapsulating the low-level events produced by the user ac-
tivity.

We have chosen HUMANOID [Szekely92] to implement both TWIW and TME. HU-
MANOID is a model-based interface design and construction tool where interfaces
are specified by a declarative description (model) of their presentation and behav-
iot.

The main components of the TWIW tool, necessary to implement the approach de-
scribed above are:

3.1 Task Models

Our prototype includes a simple task model that has allowed us to concentrate on
how to perform tutoring on tasks, and at the same time control the user activity.
There are two basic types of tasks: atomic tasks and composite ones. Both are KR
objects, the language used to define objects in HUMANOID.

With them the designer builds the task hierarchy of the application, the atomic
tasks being the leaves of the tree. These atomic tasks are directly related to atomic
interactions coming from the user, via the HUMANOID bebaviors.

The task objects also have tutoring information. This information can be specified
by the designer, or he may choose to use the default behavior. The knowledge con-
tained here is used by the Tutoring-Task, and basically determines:

1. where the user can interact with the application while doing tutoring on some
task;

2. pre and post-actions for each node of the tree, used normally to guide him
through the task and provide feedback;

3. how the system should behave if the user action was not expected.

178 Computer-Aided Design of User Interfaces

3.2 Task Manager

This component incorporates an interpreter of the user’s actions with respect to
the tasks defined. This is a delicate point due to the asynchronous character of the
user’s activity.

Although the Task Manager is an essential part of TWIW, it is sufficiently general as
to be incorporated in other systems that modify the behavior of applications. As an
example of such a modification, one could build a system that helps in the debug-
ging of an application, just by providing a task object specialized on that, or in
other words, substituting the Tutoring-Task by a Debugging-Task. The rest of the
components of TWIW would work exactly the same with this new tool.

3.3 Tutoring Task

This is an atomic task provided by TWIW. All the behavior described above, that
takes place when the user is in tutoring mode, is encapsulated within this atomic
task. Besides that, this atomic task is similar to the others, and it is treated in ex-
actly the same way by the Task Manager.

When the user enters tutoring mode, the Tutoring-Task is activated, while all the
other application tasks are deactivated. In this way, while in tutoring mode, this
task is emulating the others according to the user activity and the states of the
other tasks. In figure 2 we can see how these components are assembled in TWIW.

Event

Task
Manager

-4
-
=

Wait for Next Event -

Figure 2. Architecture of TWIW

When the user tries to interact with the application, an event arrives to the system.
TwIw will first try to match this event with all the atomic tasks that can be acti-
vated. If the matcher can actually associate the input event with an atomic task, in-
dicated in the figure by number 1, this information will be passed to the Task Man-
ager, that will execute the action specified by the atomic task.

If we are in tutoring mode, the single atomic task that can be activated is the Tutor-
ing Task, TT in the figure. This is the situation labeled by number 2. The Tutoring-
Task will watch for the state of the task being tutored, and decide if it is an appro-

A Framework for the Automatic Generation of Software Tutoring 179

priate action from the user. If this is so, it will emulate the atomic task concerned,
in this case TA2, and perform some actions to guide the user with the tutoring in-
formation contained in TA2.

What we want to stress here is that the tutoring behavior is contained in the Tutor-
ing-Task. The Task Manager and the matcher are absolutely independent of this.
The information is distributed in such a way that we could easily modify the behav-
ior of an application putting some knowledge related with our goals in the task ob-
jects and creating a new task that knows how to deal with this knowledge. The rest
would work exactly in the same way.

4 An Example

In figure 3 we can see two task objects defined for a CAD application. If the user
decides to receive tutoring on the “Give Shadow to a 3D Object” task, TWIW will
display a window with the message:

“This task permits you to give shadow to a 3D object selected in the design area”

and an OK button to continue. This information is contained in the root task.
Then it will display another window with the message:

“First you have to select the object you want to shadow, that must be a 3D object.
This can be done by selecting the Pointer in the ToolBar and then marking a zone
that completely contains the object desired”

|Crire Shadow o a 3D Ob;ec[l Change Point of Light TA!L: Selact Pointer from ToolBar

Salact 30 Oy | I Shadow It I Select Light Spot I Change It A5 t Position from the Options

m MenuBar
TAf: Type in Coordinates in Dialog Box
TAT: Press O Button

Figure 3. Two tasks defined in a CAD application

This second window has two buttons: The OK button and the Flash button, who
will highlight the widgets referred to in the explanation, if the user desires. This in-
formation is contained in the first subtask. Then it is the moment for the user to
act.

If he tries to do a different thing from what he was told, and the system is in strict
mode, his action will not be executed and he will receive an error message explain-
ing the situation and the same explanation as before about what he is supposed to
do. This is usually the case if it is the first time the user tries to accomplish this
task, even if there are related tasks as the one we show in the second tree of figure

3.

Later, if the user has already mastered the first task, or meets any other critetia
specified by the designer, the user could be allowed to change position of light as

180 Computer-Aided Design of User Interfaces

he receives tutoring on the first task. In this case, the system would be in an inter-
mediate mode between free and strict. If the user begins executing the actions
specified in the second task, he would receive a warning message, informing him
that his action is not directly related to the tutored task, but this action would be
performed.

In this case he would be able to change the point of light in the graphics applica-
tion and then continue with the tutoring of the tutored task, about giving shadows
to 3D objects.

5 Tme: Task Models Editor

Once the designer has finished to create his application, he must define the tasks
that are available to the user and that will be used by TWIW to generate tutoring.
The designer can specify the task models using an editor and the HUMANOID lan-
guage, exactly as he has done previously to define the application.

Proceeding this way there is an easy part, namely the one related to slots which
content is textual (e.g., name, description, etc.).

The difficult part arises when the designer is defining the atomic tasks and has to
specify what interaction from the user is associated with this task. To do so, the de-
signer would have to know the name of a big number of HUMANOID behaviors
used in is application. TME was created to overcome this requirement. It provides
the designer of the application with:

e a graphical way to define the tasks’ hierarchy, by means of a tree of nodes la-
beled with the name of the tasks he defines;

e a convenient way to bind user actions with atomic tasks, by means of pro-
gramming by demonstration techniques. When the designer needs to make such
an association, s/he expresses so to TME. Then he can directly interact with the
interface of his application (that is present all the time) and do what the final
user is supposed to do. TME will capture this event, do the corresponding trans-
lation to obtain the appropriate behavior and will introduce it in the atomic task
that is being defined.

When the designer has finished editing the task models he can ask TME to generate
the corresponding HUMANOID code, homogeneous with the test of the applica-
tion.

6 Another Example

In this example we can see a small CAD application created using the KIISS editor
on top of HUMANOID. The designer is specifying the task models of his applica-
tion, using TME. In figure 4 we see both interfaces. The upper part of TME con-
tains the hierarchy or tree of the root task that is being edited.

A Framework for the Automatic Generation of Software Tutoring 181

B TME on HCAD

lj =] HCAD File Task Edit

Root Task: Give Shadow to a 3D Object

File Edit View Options Tools Help

= [—_—

~

Selected Task Data

NAME TA3

DESCRIPTION 'Press Shadow Button from Button Pannel®
IS-A #k<ATOMIC-TASK:

TUTORING-INFO #k<ER-DEEUG: | tutoring-info-14209] >
INTERACTION NIL

~

[= fuit I Capture]Znteract:i.tml

| uit | 20,'3D| Shad.wl Botatel Generate Model | Edit Tutoring Info |
[}]

Figure 4. Defining tasks in an application nsing TME

Using the Edit menu, the designer can cut and paste tasks previously defined and
introduce them in the current one. When he selects a node from the tree, a list of
slot-value pairs corresponding to the selected task appear on the bottom part of the
editor. The slots that contain textual information, e.g., name, description, etc. can
be edited in this part of the window.

When the task that is being edited is an Atomic Task the Capture Interaction but-
ton is activable, otherwise it is dummy, since Composite Tasks do not have the in-
teraction slot. In the figure, the designer is defining the Atomic Task TA3 and is
going to set the interaction slot of this task pressing directly the button in the
HCAD application he wants to refer to. TME will capture this behavior and intro-
duce the correct value for this slot.

Conclusion

We have seen an approach to the automatic generation of software tutoring sys-
tems starting from a description of tasks. This relieves the designer from the bur-
den of the infinitude of small details that these systems must take into account and
allows him to concentrate on the most conceptual aspects of the tutoring by speci-
fying the tasks. To avoid programming at this level, a tool called TME is provided.

On the other side, the kind of tutoring provided is essentially of a new type, as
learning how to use an application and really working on it can be done at the same
time. This represents a great saving in time with respect to those systems that need

182 Computer-Aided Design of User Interfaces

a previous and separated training phase, without loosing safety, since in our system,
in tutoring mode the user’s activity is supervised. In current systems the user must
receive tutoring with pre-prepared examples, not necessarily related with his own
work, and after that he must try to apply what he has learned.

As possible extensions to our system, we consider:

e cxtending the task models, including a more sophisticated behavior and se-
quencing. In this work we have concentrated on the tutoring information the
tasks of an application must have to be used by a tool similar to TWIW. Real
applications have a more complex decomposition of tasks than the one we have
used. This includes the possibility of defining alternative tasks to achieve the
same goal, specifying tasks that can be accomplished in parallel, etc.

e adapting the tutoring not only to the tasks, as it is the case now, but also to the
user. The tutoring could be more guided if our system had a model of the stu-
dent. This would be possible if we incorporate the work done in [Kobsa90].

e an improvement in the TME usability would consist in the possibility of specify-
ing all the interactions sequentially instead of how it is done now, where the de-
signer must select each time from the tree (the upper part of TME) which task
he is editing.

Acknowledgements

We gratefully acknowledge the key role Roberto Moriyén has played in helping us
develop these ideas, as well as Ricardo Orosco who helped us with the images of
this paper. Finally, we would like to thank the anonymous reviewers who contrib-
uted in a great deal in the quality of this presentation.

This work was partially supported by the Plan Nacional de Investigacién, Spain,
Project Number TIC93-0268.

References

[Cypher93] Cypher, A. (Ed.), Watch What 1 Do: Programming by Demonstration, The
MIT Press, Cambridge, 1993.

[Kobsa90] Kobsa, A., Modeling the User’s Conceptual Knowledge in BGP-M.S, a User Mod-
eling Shell System, Computational Intelligence, Vol. 6, 1990.

[Luo93] Luo, P., Szekely, P., Neches, R., Management of Interface Design in HUMA-
NOID, in Proceedings of the Conference on Human Factors in Computing Systems
INTERCHI'93 « Bridges Between Worlds » (Amsterdam, 24-29 April 1993), S.
Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T. White (Eds.), ACM Press,
New York, 1993, pp. 107-114. http:/ /www.isi.edu/isd/CHI93-manager.ps

[Macintosh95] Macintosh System 7, Apple Computer. 20525 Mariani Ave. Cupertino,
CA 95014, 1995.

A Framework for the Automatic Generation of Software Tutoring 183

[Microsoft91] Microsoft Visual C++, Microsoft Corporation, One Microsoft Way,
Redmond, WA 98052, 1991.

[Moriy6n94] Moriyon, R., Szekely, P., Neches, R., Automatic Generation of Help from
Interface Design Models, in Companion of the Conference on Human Factors in
Computing Systems CHI’94 « Celebrating Interdependence » (Boston, 24-28 April
1994), C. Plaisant (Ed), ACM Press, New York, 1994, pp. 225-231.
http://www.isi.edu/isd/CHI94-Help.ps

[Pangoli95] Pangoli, S., Paternd, F., Automatic Generation of Task-oriented Help, in
Proceedings of the 8" Annual Symposium on User Interface Software and Tech-
nology UIST’95 (Pittsburgh, November 1995), G.C. van der Veer, S. Bagnara and
G.AM. Kempen (Eds.), ACM Press, New York, 1995, pp. 181-187.

[Saiz95] Saiz, F., Contreras, ., Moriyon, R., Virtnal Slots: Increasing Power and reusabil-
1ty for User Interface Development Langnages, in Proceedings of the Conference on Hu-
man Factors in Computing Systems CHI’95 « Mosaic of Creativity » (Denver, 7-11
May 1995), LR. Katz, R. Mack, L. Marks, M.B. Rosson, J. Nielen (Eds.), ACM
Press, New York, 1995, pp. 236-237.

[Saiz96] Saiz, F., Contreras, J., Moriyon, R., KIISS: a system for interactive modification of
model-based interfaces, 11C Research Report 06-96, 1996.

[Sukaviriya90| Sukaviriya, P., Foley, |.D., Coupling a Ul Framework with Automatic
Generation of Context-Sensitive Animated Help, in Proceedings of the 3+ Annual Sym-
posium on User Interface Software and Technology UIST’90 (Snowbird, 3-5 Oc-
tober 1990), ACM Press, New York, 1990, pp. 152-166.

[Szekely92] Szekely, P., Luo, P., Neches, R, Facilitating the Exploration of Interface De-
sign Alternatives: The HUMANOID Model of Interface Design, in Proceedings of the Con-
ference on Human Factors in Computing Systems CHI'92 « Striking a balance »
(Monterey, 3-7 May 1992), P. Bauersfeld, J. Bennett, G. Lynch (Eds.), ACM Press,
New York, 1992, pp. 507-514. http:/ /www.isi.edu/isd/CHI92.ps

	Abstract
	Keywords
	Introduction
	1 Related Work
	2 Twiw: Teach me While I Work
	3 Architecture
	3.1 Task Models
	3.2 Task Manager
	3.3 Tutoring Task

	4 An Example
	5 Tme: Task Models Editor
	6 Another Example
	Conclusion
	Acknowledgements
	References

