
Model-Driven Engineering of Multi-Target Plastic User Interfaces
Benoît Collignon1, Jean Vanderdonckt1, Gaëlle Calvary2

1Université catholique de Louvain, Louvain School of Management
Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)
2Université Joseph Fourier – Grenoble I, Laboratoire LIG

385, rue de la Bibliothèque BP 53 - F-38041 Grenoble Cedex 9 (France)
jean.vanderdonckt@uclouvain.be – gaelle.calvary@imag.fr

Abstract
A Multi-target user interface is composed of a se-

ries of interconnected variations of the same user in-
terfaces, but tailored for different targets or different
contexts of use. When access to software applications
must be guaranteed in more than one context of use, it
is necessary to adapt these user interfaces in order to
preserve their usability when the switch between con-
texts occur. For this purpose, this paper proposes a
model and a presentation technique to express and
manipulate the plasticity domain of a user interface.
The plasticity domain denotes the set of contexts of use
it is able to cover while preserving its usability. In this
paper, we focus on one aspect of the context of use: the
platform screen size. A window requires a graphical
area for its rendering and manipulation by the end-
user. The model supports the definition of this graphi-
cal area in terms of window size and window place.
The visualization technique helps in both making ob-
servable the set of presentations that fit the available
space, and perceiving which operations could help in
switching from one presentation to another one. The
first benefit is powerful for eliciting the candidate
presentations when the context of use changes. The
model has been integrated in UsiXML, a XML-
compliant user interface description language.

1. Introduction

One major issue with intelligent user interfaces is
the diversity of contexts of use in terms of user, plat-
form, and environment [9,16]. Traditional case per
case approaches are outdated because of their devel-
opment and maintenance costs. Several solutions have
been proposed to this problem, each has advantages, as
limitations. Our alternative is based on plasticity of
User Interfaces (UI) [4,17], i.e. the capacity of a UI to
withstand variations of contexts of use while preserv-
ing usability. We focus on the plasticity of Graphical
User Interfaces (GUIs) made of a unique window but
with multiple presentations. We hereby refer to multi-
presentation UI as a UI exhibiting the capability of
conveying the same information, but with different
presentations depending on the constraints imposed by
the platform. Plasticity relies on a set of pre-designed
presentations. Each individual presentation is meta-

described with its plasticity domain, i.e. the set of con-
texts of use it is able to cover while preserving its us-
ability [4]. The context of use is limited to the window
size. The first part is devoted to related work. Section 2
presents a running example for illustration of our alter-
native. Then, we motivate a visualization technique
(Section 3) and a model (Section 4) for dealing with
multiple presentations. The Section 5 is devoted to tool
support. It gives rise to a set of perspectives (Section 6)
that are summarized in the conclusion (Section 7).

2. Related Work
In general, four kinds of tools for developing con-

text-aware user interfaces can be distinguished: lan-
guage based tools, application framework, automatic
generators, and interactive tools. In the first case but
the oldest technique too, the designer specifies the user
interface in a special-purpose language. This language
can take many forms, including context-free grammars,
state-transition diagrams, declarative languages, event
languages. The language is used to specify a UI [1,2].

Application frameworks offers important parts of an
application, such as the main windows, the commands,
etc., and the programmer so specializes these classes to
provide the application-specific details, such as what is
actually drawn in the windows and which commands
are provided, like in CodeWarrior PowerPlant [11].
GADGET [5] consists of a toolkit specially de-signed
to support the exploration of optimization as an ap-
proach to interface generation. A problem with all of
the language-based tools is that the designer must spec-
ify a great deal about the placement, format, and design
of the UIs. Automatic Generation Tools help solve this
problem. Most are model-based. For instance, TERE-
SA [12] uses a task model. Others like SUPPLE [6]
use also a device and a user model. None of them pro-
vides any support for multiple presentations in a way
that the UI dynamically change when the context
changes. Those tools do however produce UIs for mul-
tiple targets, but they are not combined together.

Interface tools allow the designer to select from a
pre-defined library (toolkit) of widgets, and place them
on the screen to create dialog boxes, menus and win-
dows. Some generate a description of the interface in a
language that can be read at run-time. For example,

Fourth International Conference on Autonomic and Autonomous Systems

0-7695-3093-1/08 $25.00 © 2008 IEEE
DOI 10.1109/ICAS.2008.37

7

GrafiXML generates a UsiXML description [10].
These tools provide little guidance on creating usable
UIs, but they cannot handle widgets that change dy-
namically. E.g., if the contents of a menu or the layout
of a dialog box changes based on program state, this
must be programmed by writing code.

Our solution can be situated in the Interactive Tools
category [14,15]. It helps to define plasticity domains
that are linked to specified presentations, each of them
created thanks to a predefined library. However, some
properties allow it to do more than a simple interactive
tool. First of all, the language used to generate the
multi-presentation UI, UsiXML, is model-oriented and
multi-platform. Every interpreter could render the UIs
generated using our solution. TERESA, for instance,
can generate the code of the UI in some language but it
is not universal. Finally, a lot of interesting features
that come from automatic generation tools could be
easily integrated in our tool because it is model-driven.
Another manifestation of multi-presentation UIs also
exist through adaptive layout [10], Art Resizing [5],
and multi-device presentations [13].

3. Running Example
Let us consider FlexClock [7], a multi-presentation UI
displaying the current time and date with various levels
of usability according to the screen size of the window.
Sixteen presentations have been designed (Fig. 1): one
is displayed at a time. This application is multi-
platform as it runs on top of Tcl/Tk which is available
for Windows, Linux, and Mac platforms [13]. It is
adaptive in the sense that the best presentation is se-
lected at run-time de-pending on the screen size avail-
able on the platform. Of course, if the screen size is
expanded or reduced, another presentation is selected
and displayed so as to best fit the screen real estate.

Figure 1. FlexClock - Some possible presentations.

When the user resizes the window and the window size
over-steps the plasticity domain of the current presen-
tation, then an-other presentation (the most appropriate
one) has to be selected and displayed. The model and
the visualization technique presented in this paper aim

at supporting this choice of reaction when the context
of use changes.

4. Design process
Plasticity can be modeled as a Finite State Machine

(FSM). A FSM is defined by a model of computation
consisting of a set of states, a start state, an input and
output alphabet, and a transition function that maps
input symbols and current states to a next state. Com-
putation begins in the start state with an input string. It
changes to new states depending on the transition func-
tion. There are many variants, for instance, machines
having actions (outputs) associated with transitions
(Mealy machine) or states (Moore machine), multiple
start states, more than one transition for a given symbol
and state (nondeterministic finite state machine), one
or more states designated as accepting states (recog-
nizer), etc [8]. When applied to plasticity, the corre-
sponding alphabets for FSM are, on one hand, the
events triggering the changes of the context of use (the
six window resizing operations in FlexClock - Fig. 2)
and on the other hand, the available presentations (the
sixteen windows of FlexClock (some of them being in
Fig. 1). In the two following subsections, we investi-
gate Moore Machines and Mealy Machines as visuali-
zation techniques for specifying plasticity domains and
their application to the running example.

Figure 2. Window resizing operations.

4.1 Moore Machines
Finite State Machines (FSMs) have been used for

specifying the dialog [18], the navigation of a UI. A
FSM is defined as a model of computation consisting
of a set of states, a start state, an input alphabet, and a
transition function that maps input symbols and current
states to a next state. In UI design, the Moore machine
has been used almost everywhere with its associated
shortcomings. In Moore machines, states typically rep-
resent UI parts and transitions denote navigation be-
tween these parts. In our usage, states represent one
presentation at a time and transitions depict the presen-
tation resizing operations that may trigger a change of
context of use. Fig. 3 shows how FlexClock changes
when the window is vertically shrunk. Only four states
are considered: {W2; W4; W8; W12}. The input al-
phabet is limited to the vertical shrinkage: { }. Fig. 3
shows that W12 can be shrunk into W8; W8 can be
shrunk into W4 that can give rise to W2. Fig. 4 repre-
sent all the transitions possible between all presenta-
tions: it becomes unreadable when the number of states
(only sixteen windows here) or transitions (only six
operations here) increases. As a result, another visuali-

8

zation technique has to be investigated. Next section
deals with Mealy Machines, which have never been
used for UI design before.

Figure 3. A Moore Machine-based representation illus-

trated on the vertical shrinking.

4.2 Mealy Machines
In Mealy Machines, states are resizing operations

and transitions are composed of a GUI source and des-
tination (denoted source/destination in Fig. 5). In Fig.
5, the states are the vertical shrinking , plus the start
state . The input and output alphabets are made of
the four considered presentations: {W2; W4; W8;
W12}. At launch, W2 is the current presentation. It can
be shrink into itself (W2 / W2). W8 can be shrink into
W2 (W2; W8 / W2) or W4 (W8 / W2; W4). W12 can
be shrink into W8, W4 and W2 (W12 / W8; W4; W2).
Fig. 6 shows the complete Mealy machine of Flex-
Clock. The transition conditions are mentioned on the
arrow in case of simple expressions (Ws/Wd). Other-
wise (complex or multiple expressions), the arrows are
decorated by two numbers: the number of transition
conditions and a reference to Fig. 7. For instance, there
are eleven possible transitions between the vertical and
horizontal shrinkages. They are elicited in the sixth
area of Fig. 7. Compared to the Moore machine repre-
sentation, one major advantage of Mealy machines is
the factorization that may decrease the number of tran-
sitions between states. But there are two drawbacks:
first, the representation isn’t natural for a human being;
secondly, it is not self-contained (Fig. 7 is necessary
for describing the transition). We can see here that the
Mealy machine corresponding to the same dialog is
more compact than the Moore machine, but requires
some ability to switch from one usual representation to
another one that is less usual. We address this problem
by introducing a new visualization technique.

Figure 4. A Mealy Machine-based representation illus-

trated on the vertical shrinking.
4.3 Towards a new visualization technique

We propose a 2D representation for the plasticity
domain of a GUI. Each window is positioned at the
origin and its plasticity domain is represented as a col-
ored area. In Fig. 8, FlexClock can be resized from
(100, 50) to (250,150). In general, the plasticity domain
of a window is a quarter of plan but it could be defined
as any shape. In Fig. 8, it is a rectangle: the window
size can not exceed (250,150). Fig. 9 represents the
plasticity domains of {W2; W4; W8; W12}.

Figure 5. A 2D representation illustrated on one window.

Figure 6. The visualization technique on FlexClock.

9

Figure 6. The Mealy machine representation in a text.

Thanks this presentation, starting with W12, a
switch to W8, then W4, then W2 is required when ver-
tically shrinking the window. It is also obvious that a
2D-enlarging is necessary to achieve W8 starting with
W2. Fig. 10 illustrates the full running example: the
sixteen plasticity domains are represented, each region
being attached to a given UI. The figure remains more
readable. The technique can be tuned to take into ac-
count other properties or attributes.

For instance, Fig. 11 focuses on the user task ex-
perience. It shows that the light grey window is appro-
priate for an experience ranging from two to four. In
practice, the presentations can be combined to express
the relevant dimensions of the context of use. An atten-
tion must be paid in order to preserve a 2D-
representation. The next section presents the underly-
ing model.

Figure 8. The proposed visualization technique illus-

trated on the full example of FlexClock.

Figure 9. A 1D-representation for the task user experi-

ence.
5. The Model

This section is two-fold: in a first part, it proposes a
model of the plasticity domain; in a second one, it
deals with the switch between presentations. Both of
them extend UsiXML [19], an XML language based on
the Cameleon Reference Framework [3]. In UsiXML,
the final user interface (FUI) refers to the actual UI,
which is rendered on a given computing platform either
by interpretation (e.g., HTML) or by code compilation
(e.g., Java). The concrete user interface (CUI) abstracts
the FUI into a definition that is independent of any pro-
gramming or markup language of any computing plat-
form: it contains a detailed UI description in terms of
widgets (concrete interaction objects in UsiXML), lay-
out, navigation and behavior. Concrete interaction ob-
jects (e.g., list box, check box, drawing canvas, radio
button) are defined with abstract properties and could
be arranged to produce a UI. The GrafiXML editor has
been developed for this purpose and could be freely
downloaded from www.usixml.org, as well as the se-
mantics and the syntax of this language.
5.1 Plasticity Domain

Since right now UsiXML does not support specify-
ing multi-presentation UIs or UI with adaptivity, there
is a need to expand this specification language with
appropriate concepts. The plasticity domain of an in-
teractive system (PlasticityDomainSet) is defined as
the union of the plasticity domains (PlasticityDomain)
of its presentations. A PlasticityDomain is related to a
range of contexts of use, e.g. PDA as defined in

10

USiXML. The PlasticityDomain sets some attributes
(aspects) of the platform, user and/or environment
(e.g., the screen size). Fig. 12 depicts how USiXML
(the bright classes on the left side) has been extended
to take into account the plasticity domains. In this fig-
ure, the reference to the range of contexts of use is
done threw the contexId attribute in the PlasticityDo-
main class; the cardinality x makes reference to the
number of aspects that can be set. Fig. 12 focus on the
screen size aspects:
• The allowedOperations mention the resizing opera-

tions that are allowed on the plasticity domain. The
available values are: vertical, horizontal, 2-D
shrinkage and vertical, horizontal, 2-D enlargement.
For instance, {vertical shrinkage; horizontal shrink-
age; 2-D enlargement}.

• The corners are the set of points in pixels that de-
fine the boundary of the plasticity domain. For in-
stance, {(100,200); (150,200); (150,550);
(100,550)} for a rectangle. A disc is defined as the
pair {(centerX,centerY); radius}. An ellipse is de-
fined by a quadruplet {large axes (coord.); short
axes (coord.)}. The keywords ScreenSizeXLimit and
ScreenSizeYLimit can be used for non-limited
shapes.

• The shape is the geometrical shape of the plasticity
domain. In practice, the allowed values are: {(right-
angled) triangle, (convex/concave) quadrilateral,
rectangle, disc, ellipse, (convex/concave) polygon}.

PlasticityDomainSets are not mandatory (it’s still pos-
sible to build non plastic UIs). For instance, the resolu-
tion change has an effect on presentation but the user’s
task experience is not modified.
5.2 Mapping between plasticity domains and

presentations
In order to associate a plasticity domain to a presen-

tation, we define a new kind of USiXML inter-model
relationship: isShapedFor (Fig. 13). isShapedFor is de-
fined by a source (a GUI) and a destination (a plasticity
domain). It is essential to clearly make the distinction
between the relationships isAdaptedInto and isShaped-
For. Hence, isAdaptedInto enables to provide a trace of
the adaptation of one component in another. So, IsA-
daptedInto expresses the switch between presentations
while isShapedFor only associates a plasticity domain
to a presentation. Thanks to the transformation mecha-
nism that is part of GrafiXML environment, it is possi-
ble to save the various adaptations applied to a starting
UI and to specify all adaptations in a declarative way
instead of developing them all by hand. In this way, the
adaptiviy mechanism is specified in the UI that could
render an appropriate presentation depending on the
constraints imposed by the screen of the computing
platform. Next section presents our tool.

6. Scenario
In this section, we detail how to use PlastiXML, a Java
editor for multi-presentation user interfaces that gener-
ates UsiXML specifications corresponding to multiple
contexts of use, more particularly multiple domains of
plasticity. The aim of the PlastiXML plug-in is to ren-
der in the USIXML formal language the different tran-
sitions issued by window resizing operations that can
exist between the different possible window presenta-
tions of a graceful degradation application. First, we
start by creating a new project thanks to the GrafiXML
wizard. So, we select ‘PlastiXML project’ and we
come to this window:

Now, we’ll define a new presentation for our Plastic
GUI. We can see the only icon we can interact on is

. The function hidden behind it consists to help de-
fine a new presentation window for our plastic GUI. In
fact, by defining a new presentation, we create a new
flexibility point. We click on this icon and a new win-
dow appears:

We select the PocketPC Platform with the 320x240
screen resolution and press the button OK. Then, we
have to specify the presentation properties (the colour
chosen for the surface representing the places where
this presentation will be visible and the user interface
definition (previously created in GrafiXML). These
tasks can be performed inside this window:

11

After we selected the colour and the UsiXML file rep-
resenting our window presentation (examples are show
at the end of this document), some results appear on
the core window:

On the current selected window presentation (the se-
lected tab is ‘Window 2’), we can now remove this
presentation , specify new coordinates for its flexi-
bility point , change the colour of the area repre-
senting the part of the screen where this presentation
will be visible , change its graphical presentation by
specifying another USiXML Model . But if we se-
lect the tab ‘All Windows’, then we have the following
options: add a flexibility point , generate the
USiXML code (e.g. the transitions between presenta-
tion units) .

So, we decide to add a new flexibility point. But we’d
like to choose a specific platform which isn’t yet in the
preset platform list. So, we select the custom tab and
we fill the form. After that, we can add the specified
platform to the preset list or choose it directly. As we
know we’ll often use this platform, we prefer add it to
the list.

Of course, after specifying the platform, we have to
choose the colour and the USiXML definition that will
be used for our new window presentation (it can be
done by choosing a window among those we have de-
signed in the Window Designer Tab or by specifying a
USiXML Description filename that already exists (cf.
Figure 5)). Here, we’ll follow the first option by select-
ing windows we previously designed in the Window
Designer Tab (cf. infra). The introduction of a new
flexibility point produces changes in the original plan:

Then, we remember that the GUI defined for the Win-
dow/Platform numbered one is graphically smaller

12

than what the device will provide. So, we modify the
properties of this presentation: we select the ‘Window
1’ tab, we also modify the colour which is not visually
pleasant (we’d like to print and show this plan when
finished), we change the position of the flexibility
point (in fact, the screen space taken by the presenta-
tion).

The Flexibility point can be moved from its original
position but we mustn’t forget the graphical presenta-
tion is still the same. So, a new dialog box is opened:

Upgrading it means we’ll apply some rules that will
modify the original presentation (widget substitution,
image replacement/enlargement, etc…) in order to fit
with the new screen resolution. But it’s not what we

want to do in this specific case. The next figure repre-
sents a simple Geographical Information System (GIS)
that has been specified using this method.

7. Conclusion
This paper deals with plasticity of User Interfaces. It
proposes a model and a visualization technique for
managing plasticity domains. Both of them have been
implemented in the PlastiXML tool. It helps in defin-
ing the plasticity domains of presentation and appreci-
ating the appropriateness of transitions when the con-
text of use changes. Therefore, the following advan-
tages of our approach are not provided by any other
tool or method so far: (i) it supports designing multi-
presentation UIs by specifying the different presenta-
tions and a mechanism for switching from one presen-
tation to another depending on the screen size in a logi-
cal way instead of programming everything by hand;
(ii) the tool automatically generate (X)HTML or Java
(Swing) code corresponding to these UsiXML specifi-
cations, which could be reused in other tools of the
UsiXML suite; (iii) the code generated intrinsically
supports the adaptivity property; (iv) instead of design-
ing all presentations in isolation, it is possible to “copy/
paste” a presentation for one resolution to get a starting
point for another resolution, thus encouraging reusabil-
ity; (v) the tool provides the designer with a graphical
mechanism to design what kind of presentation is
adapted to what kind of resolution. PlastiXML is a

13

plug-in developed for this purpose in the GrafiXML
environment and has been used to develop a multi-
presentation on-line course for teaching medical repre-
sentatives who are using very different platforms.
Shortcomings identified so far are: one presentation is
viewed at a time thus preventing the designer to easily
compare two or more presentations; Mealy machines
have been proved more compact to use for specifying
all transitions between the presentations, but still re-
main abstract to be usable in a graphical editor; if a
new presentation is defined, PlastiXML does not auto-
matically produce a starting point from a previously
existing presentation that could be adapted. Instead, it
merely reuses what has been designed so far. The work
can be extended in many ways: first of all by applying
the model at various granularities from the window to
the widget level (this could be powerful for reasoning
about detachable user interfaces); secondly, by consid-
ering other aspects of the context of use. Today, it is
limited only to the platform screen size.

8. References
[1] Abrams, M., Phanouriou, C., Alan, L., Batongbacal, C.,

Williams, S.M., and Shuster, J.E., “UIML: An Appli-
ance-Independent XML User Interface Language”,
Proc. of WWW8.

[2] Ali M.F., Pérez-Quiñones M.A., and Abrams M.,
“Building Multi-Platform User Interfaces With UIML”,
Seffah, A. and Javahery, H. (eds.), Multiple User Inter-
faces: Cross-Platform Applications and Context-Aware
Interfaces, John Wiley & Sons, 2003, pp. 95–118.

[3] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., and Vanderdonckt, J., “A Unifying Refer-
ence Framework for Multi-Target User Interfaces, In-
teracting with Computers, 15(3), 2003, pp. 289–308.

[4] Calvary, G., Coutaz, J., and Thevenin, D., “Supporting
Context Changes for Plastic User Interfaces: a Process
and a Mechanism”, Proc. of IHM-HCI’01 (Lille, Sept.
2001), Springer, Berlin, 2001, pp. 349–363.

[5] Dragicevic, P., Chatty, S., Thevenin, D., and Vinot, J.-
L., “Artistic resizing: a technique for rich scale-
sensitive vector graphics”, Proc. of 18th ACM Symp.
on User interface software and technology UIST’2006,
ACM Press, New York, 2006, pp. 201–210.

[6] Fogarty, J. and Hudson, S.E., “GADGET: A toolkit for
optimization-based approaches to interface and display
generation”, Proc. of UIST’03, pp. 125–134.

[7] Gajos, K. and Weld, D.S., “SUPPLE: Automatically
Generating User Interfaces”, Proc. of IUI'04 (Funchal,
January 13-16, 2004), ACM Press, 2004, pp. 93–100.

[8] Grolaux D., Van Roy P., and Vanderdonckt J., “Flex-
Clock: A Plastic Clock Written in Oz with the QTk
Toolkit”, Proc. of TAMODIA’2002 (Bucharest, July
18-19, 2002), Bucharest, 2002, pp. 135–142.

[9] Hopcroft, J.E. and Ullman, J.D., Introduction to auto-
mata theory, languages, and computation, Addison-
Wesley, Reading, 1979.

[10] Keränen, H., Plomp, J., “Adaptive runtime layout of
hierarchical UI components”, Proc. of the 2nd Nordic

conference on Human-computer interaction Nordi-
CHI’2002, ACM Press, New York, 2002, pp. 251-254.

[11] Kray, C., Wasinger, R., and Kortuem, G., “Concepts
and issues in interfaces for multiple users and multiple
devices”, Proc. of Workshop on Multi-User and Ubiq-
uitous User Interfaces M3UI'04, 2004.

[12] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouil-
lon, L., and Lopez, V., “UsiXML: a Language Support-
ing Multi-Path Development of User Interfaces”, Proc.
of EHCI-DSV¬IS’2004 (Hamburg, July 11-13, 2004),
Springer, Berlin, 2005, pp. 200–220.

[13] Luyten, K., Thys, K., Vermeulen, J., and Coninx, K.,
“A Generic Approach for Multi-device User Interface
Rendering with UIML”, Proceedings of the Sixth In-
ternational Conference on Computer-Aided Design of
User Interfaces CADUI’2006 (Bucharest, 6-8 June
2006), Springer, Berlin, 2007, pp. 175-182.

[14] Metrowerks, Inc., PowerPlant for CodeWarrior, Austin,
1996, accessible at http://www.metrowerks.com/

[15] Mori, G., Paternò, F., and Santoro, C., “Design and
Development of Multidevice User Interfaces through
Multiple Logical Descriptions”, IEEE Trans. on Soft-
ware Engineering 30,8 (August 2004), pp. 507–520.

[16] Mozart Consortium, The Mozart Programming System
(Oz 3), accessible at http://www.mozart-oz.org/docu-
mentation.

[17] Puerta, A.R., “A Model-Based Interface Development
Environment”, IEEE Software 14,4 (July/August
1997), pp. 41–47.

[18] Puerta, A.R. and Eisenstein, J., “XIML: a common rep-
resen-tation for interaction data”, Proc. of IUI’2002,
ACM Press, New York, 2002, pp. 214–215.

[19] Seffah, A. and Javahery, H. (eds.), Multiple User Inter-
faces: Cross-Platform Applications and Context-Aware
Interfaces, John Wiley & Sons, Chichester, 2003.

[20] Thevenin, D. and Coutaz, J., “Plasticity of User Inter-
faces: A Framework and Research Agenda”, Proc. of
INTERACT’99, IOS Press, Amsterdam, pp. 110–117.

[21] Sottet, J.S., Model-Driven Engineering of Plastic ser
Interfaces, Proc. of Interact’2007, Springer, 2007.

[22] Vanderdonckt J., Limbourg Q., and Florins, M., “De-
riving the Navigational Structure of a User Interface”,
Proc. of INTERACT’2003, 2003, pp. 455–462.

[23] Vanderdonckt, J., “A MDA-Compliant Environment
for Developing User Interfaces of Information Sys-
tems”, Proc. of CAiSE'05 (Porto, June 13-17, 2005),
Springer, Berlin, 2005, pp. 16–31.

14

