
Methodology for the Development of Vocal User Interfaces
David Céspedes-Hernández1, Juan González-

Calleros1, Josefina Guerrero-García1
1Facultad de Ciencias de la Computación

Benemérita Universidad Autónoma de Puebla, Av. San
Claudio y 14 Sur, Puebla, México

Tel: +52222{229 5500}
dcespedesh@gmail.com, {juan.gonzalez,

jguerrero}@cs.buap.mx,
lilianavizz@hotmail.com

Jean Vanderdonckt2, Liliana Rodríguez-
Vizzuett1

2Louvain School of Management, Louvain
Interaction Lab, Université catholique de Louvain,
Place des Doyens 1, Louvain-la-Neuve, Belgium

jean.vanderdocnkt@uclouvain.be

ABSTRACT
Natural User Interfaces allow users to interact with systems
similarly as they interact with people. Human communications
occur, mostly, in an oral way, since personal dialogs to phone
calls and more recently in complain or information systems; the
tendency is to automate some of these activities so the user might
complete tasks in a more efficient way. The necessity for having a
methodology that supports the development of vocal interfaces is
therefore taking interest on it. The objective for this sample paper
is to establish a methodology and to describe a set of rules that
might be used for developing a software tool to generate code for
multiplatform vocal User Interfaces from models.

Categories and Subject Descriptors
H5.2 [Information interfaces and presentation]: User Interfaces
– Prototyping; user-centered design; user interface management
systems (UIMS).

General Terms
Design.

Keywords
User Interface, Vocal Interaction, Model-Based User Interface
Development, User-Centered Design.

1. INTRODUCTION
In the last few years, Natural User Interfaces (NUI) have become
interesting for the scientific community. A NUI is defined as an
interface that allows the user to interact with a system using as
interaction techniques natural mechanisms, for example, the
language used to order a pizza.

This paper is centered on the study of those NUIs that use verbal
communication as interaction technique. Dialog systems are
software designed with the ending of emulating the dialog of a
human being with another one. Nowadays, some enterprises and
institutions use this kind of system for giving information and

automatization of services like information and reservation of
airplane trips, meteorological information, food ordering and
reservation of train trips.

By the nineties, web services with human voice support appeared,
encouraging the creation of label based languages that assist the
development of software systems capable of interacting orally
with web pages.

Voice eXtensible Markup Language (VoiceXML)
(http://www.w3.org/TR/voicexml20/) is the World Wide Web
Consortium (W3C) standard format for human-computer vocal
interaction applications. Its main utilities are speech tuning and
recognition, but other features are dialog management and
auditory feedback.

Microsoft Kinect SDK (Software Development Kit)
(http://msdn.microsoft.com/en-us/library/microsoft.kinect.aspx) is
a toolkit that along with other things allows the use of a
microphone array with noise and echo cancellation, “beam
formation” for identifying the audio source and integration with
the API of Microsoft speech recognition
(http://msdn.microsoft.com/en-
us/library/system.speech.recognition). Its features enable that
when using Kinect SDK and the API of Microsoft speech
synthesizer (http://msdn.microsoft.com/en-
us/library/system.speech.synthesis.aspx) it is possible to obtain
applications that simulate vocal dialog between the user and the
system.

Profile eXtensible HyperText Markup Language + Voice
(XHTML+Voice) (http://www.w3.org/TR/xhtml1/) brings spoken
interaction to standard World Wide Web (WWW) content by
integrating a set of mature WWW technologies such as XHTML
and eXtensible Markup Language (XML) events with XML
vocabularies developed as part of the W3C Speech Interface
Framework. The profile supports voice synthesis and speech
recognition for command and control actions as for user dialog.

USer Interface eXtensible Markup Language (UsiXML)
(http://www.usixml.org/) is a XML compatible label based
language for describing User Interfaces (UIs) for multiple use
contexts, such as Graphic User Interfaces (GUI’s), Auditory User
Interfaces (AUI’s) and multimodal UIs. UsiXML is sustained by
diverse tools that allow the exchange between applications with
different interaction techniques, use modalities and computing
platforms so the design of the interfaces remains regardless of the
hardware platform.

The main purpose of this paper is to describe the design of a
concrete model, as well as the mapping of an interpreter that
allows the transformation of the code generated for VoiceXML,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.

MexIHC '12, October 03 - 05 2012, Mexico city, Mexico
Copyright 2012 ACM 978-1-4503-1659-0/12/10…$15.00.

35

XHTML+Voice or Microsoft Kinect with Microsoft speech
synthesizer so it might be used by UsiXML and vice versa.

2. STATE OF THE ART
The evolution of interactive systems reached a point where
today’s research is centered in the development of NUIs, this is
evident from the observation of the tools and new technologies
offered in the market. Gone are the days when the command line
was the reigning interaction style and the beginning of the end of
mouse pointer manipulated GUIs is arriving. This obeys at least
two reasons, first the technological advancement that allows
processing large amounts of data resulting on quick processing of
natural interaction data and second that, when well designed, the
nature of this techniques make the interaction easier and more
intuitive. Since the user speaks instead of writing and listens
instead of reading, the interaction appears in an easier way for
him/her.

Speech is the most commonly used communication method by the
human being, as consequence of this, voice synthesis for playing
sound and speech recognition are a couple of highly developed
knowledge areas. Taking this into account, experts in Human-
Computer Interaction (HCI) predict that vocal interaction as well
as other interaction modes within NUIs will be part of the future
of software development.

The current challenge is not only in finding a methodology that
supports vocal interfaces development but in creating
technological tools for interoperability support considering
different use contexts. It is hard to imagine a solution for vocal
interfaces that cannot be adapted to other use contexts; this is why
it has to be considered while realizing the methodology for
development that it is not an isolated entity to solve a particular
problem. Instead of this, it has to be considered a generality of
options to be solved; this is the main reason that takes to think on
a model based solution where methodological knowledge for
vocal interfaces development gets consolidated.

As part of the UsiXML project, several tools had been developed.
Those tools may be classified in its most as: editors, generators
and interpreters. Each of these tools has its particular function.

The purpose of editors is to provide an environment for multiple
platform interfaces creation, without requiring experience from
the designer, so they can be exported to other languages or saved
in UsiXML. As examples of UsiXML editors there are
GrafiXML, VisiXML, SketchiXML, IdealXML, PlastiXML and
ComposiXML.

Generators, as its name indicates, generate or produce code. This
kind of tools work along with tasks and workflow models and
take them as base for generating multiplatform UIs in an abstract
as in a concrete level. KnowiXML, IKnowYou, UsiXML for Rich
Internet Applications and UsiXML4All code generator are code
generators belong to UsiXML Project.

The function of interpreters in UsiXML is to take a UsiXML
compatible UI and render it for creating a functional interface
besides from offering the possibility of resizing and setting
constraints to adapt an interface to a determined platform
(Interface Plasticity).

There are some other tools that have as main functionality the
creation of adequate UIs from tasks, user and workflow models
[6]; creating interfaces from others by applying reverse

engineering [17] and for creating UIs with support of virtual
reality [15].

The direct antecedent to this project is described as the definition
of a code generating tool proposed in MultimodaliXML [14]
where the objective of applying a set of XSL transformations over
the specification of a concrete vocal UI model is mentioned, but it
did not reach the implementation phase.

3. METHODOLOGY
3.1 Model Driven Approach
The development of virtual environments faces growing
difficulties that had been confronted using the model based
paradigm or MDA promoted by the Object Management Group
(OMG), examples for this are [5], [12] and [3].

MDA is an OMG initiative that proposes to define a set of non-
proprietary standards that will specify interoperable technologies
with which to realize model-driven development with automated
transformations. Not all of these technologies will directly
concern the transformation involved in MDA. MDA does not
necessarily rely on the UML, but, as a specialized kind of MDD
(Model Driven Development), MDA necessarily involves the use
of model(s) in development, which entails that at least one
modeling language must be used. Any modeling language used in
MDA must be described in terms of the MOF language to enable
the metadata to be understood in a standard manner, which is a
precondition for any activity to perform automated transformation
[19].

The MDA paradigm incorporates a standard for the establishment
of the components that integrate an Interactive system
development methodology, these components are:

� Models. A set of models describe the elements that conform a
UI: task, data model, user profile, graphic presentation and
behavior. Models use UML class diagrams for capturing the
abstraction of the modeled reality.

� Language. For specifying the models in some way the computer
might process a User Interface Definition Language (UIDL) is
required. That language allows designers and developers to
exchange, communicate and share fragments of the
specification so the software tools can operate on them. For this
purpose, once the abstraction and the modeling is completed,
UsiXML [13] will be used because it is supportive of the MDA.
Its selection is based on the revision of existent documents [6]
but the solution (model) is not only applicable to this language
but to any other UIDL. The revision and comparison of several
UIDLs has been realized and is accessible for its consult [7].

� Software. A methodology must be supported by software tools
and its interoperability has to be ensured at least theoretically.

� Approach. This refers to paradigm used for giving an order to
the UI development methodology steps. The process of design
begins with a tasks model developed under a gradual approach
for ending in the definition of the UI [2]. The approach is based
on the Cameleon Reference Framework [1] which consider four
development phases:

1. Tasks and concepts (T & C): describe user tasks; they are
concepts referent to data models that are required for doing
these tasks.

2. Abstract User Interface (AUI): define abstract containers and
interaction individual components. Tasks are associated to

36

containers for its execution or to individual objects for its
manipulation. An AUI is considered as an abstraction of a
Concrete UI with respect to the interaction modality. At this
level, the UI is composed mainly by the definition of the
system inputs and outputs but does not define the modality to
be used (graphical, vocal, tactile).

3. Concrete User Interface (CUI): the CUI defines an interaction
modality and is composed by elements that describe it,
Concrete Interaction Objects (CIOs) for defining the design
widgets and the navigation through the interface. The CUI is
computing platform independent and although it makes
explicit the aspect and behavior of the UI, it is still a model
only working for a particular environment. A CUI may also
be considered as a reification of an AUI in the superior level
and an abstraction of the Final UI with respect to the platform.

4. Final User Interface (FUI): corresponds to the operational
elements, this means, the run time UI over a determined
computing platform.

In order to support the modeling of the above seen levels, there
are methods and transformation rules for different use contexts.
The transformational development of the UI finds its motivations
in the concept of heterogeneity of information systems. For this
case, heterogeneity refers to the variety of use contexts for those
which the UI was designed for. This heterogeneity makes a stand
on the necessity of abstracting the pertinent details from specific
contexts. It is possible to obtain specific representations from
these abstractions. The advantage of accessing to those
representations is the ability for reasoning about a unique model
(task model) and to obtain many different UIs.
Models and transformations for models are expressed in UsiXML.
Thanks to this language it is possible to develop and spread
quickly a wide range of UIs for different computing platforms,
with different interaction modalities and for diverse use contexts.

3.2 Establishment of the Methodology
For establishing the methodology, the three tools mentioned in the
introduction are considered: VoiceXML, XHTML+Voice and
Microsoft Kinect with Microsoft speech synthesizer. The first step
consists on compare the elements that form each one of them. In
Table 1 the resumed comparison of these elements is shown.

Voice-
XML

XHTML +
Voice

Kinect with speech
synthesizer

<audio> <audio> Speak()

<prompt> <prompt> Prompt()+Speak()

<record> <record> Start()+Stop()

<field> <field> Start()+Stop()

Table 1. Summarized comparison between tools that support
vocal interaction.

The second step consists of detecting the main components and
analyzing their function, as in step 1, when a tool does not support
a function qualified as important in an explicit way, it was
necessary to join two or more methods or attributes for
performing and establishing the bases for the methodology. Table

2 shows in a summarized manner how the analysis was made and
the main functions were found. The full comparison consisted of a
list of 63elements.
Once the comparison and the analysis are made, it is possible to
propose a model that represents how vocal interaction could be
applied and how vocal UIs can be developed by having the tasks’
model. Figure 1 shows the proposed model for vocal interaction
with context awareness.
The two main components of the model are the context model and
Vocal Concrete User Interface (VocalCUI), the context model
describes the three aspects of a context of use in which an end
user is carrying out an interactive task with a specific computing
platform in a given surrounding environment: context, platform
and the user itself [20].

Voice-
XML

XHTML
+ Voice

Kinect with
speech

synthesizer
Function

<audio> <audio> Speak()

Synthesizes
Audio form a
source

<prompt> <prompt> Prompt()+Speak()

Synthesizes a
given
message

<record> <record> Start()+Stop()
Records the
audio input

<field> <field> Start()+Stop()

Waits for the
user´s audio
input

Table 2. Summarized comparison between tools that support
vocal interaction with functional analysis.

A User model consists of a user stereotypes. A user stereotype is
any set of users sharing similar characteristics. Stereotypes can be
arranged in hierarchy. As so, a stereotype can be decomposed into
sub-stereotypes. For this model, a modification was made to the
user stereotype; cultural information is added as an element of the
user because it plays an important role in vocal interaction by
affecting the intonation, the language, and the grammar to be used
for speech recognizing and for speech synthesizing.

A Platform model captures relevant attributes for each couple
software-hardware platform and attached devices that may
significantly influence the context of use in which the user is
carrying the interactive task. This context model has been
developed in Experiences with Adaptive User and Learning
Models in eLearning Systems for Higher Education 3. A platform
specification can consist of a series of physical hardware devices
(hardware platform components), a series of software components
(software platform), the characteristics of the network to which
the platform is connected, the capability to support wireless
(WapCharacteristics), and the capability of browsing web pages
(BrowserUA) but for this purpose, the only elements considered
are software and hardware platform.

37

Figure 1. Vocal UI model with context awareness.

38

An Environment model describes any property of interest of the
physical environment where the user is using the UI on the
computing platform to accomplish her interactive tasks. Such
attributes may be physical (e.g., lighting conditions),
psychological (e.g., level of stress), and organizational (e.g.,
location and role definition in the organization chart). In the
model presented, the environment model is summarized in order
to present only the determinant characteristics for the type of
interaction that it tends to represent.

3.3 Elements that Conform the Vocal UI
Model
Vocal CUI is formed by Vocal Concrete Interaction Objects
(VocalCIOs), which are divided into Vocal Individual
Components and Vocal Containers.

VocalContainers represent a logical grouping of other containers
or individual components and inherit the isOrderIndependent
attribute which indicates if the inputs of the container can be filled
in any order or not:

VocalGroup: is the root element of all vocalCIOs. A VocalGroup
Acts as a basic container for all containers and components.
VocalForm: enables a dialog whose purpose is to
synthesize/collect data from the system/user.
VocalMenu: allows choosing among different items.
VocalConfirmation: requests from the user a confirmation of a
previous input. It is composed of a vocalPrompt that solicits the
confirmation followed by an input gathering the user's input. For
instance, “Do you want to delete this file? Say Yes or No”.
VocalIndividualComponents are VocalCIOs contained in a
VocalContainer. Two VocalIndividualComponents are
introduced:
Output: is an object used for presenting data to the user. The
volume attribute specifies the sound volume expressed in Db
(decibel) while the attribute isInterruptible specifies if the output
can be interrupted by a user’s utterance.
Input: is an object used to gather input from the user by speech
recognition or audio recording. The elapsedTime attribute is the
time frame expressed in seconds during which the user is allowed
to utter the input.
Those individual components use objects for synthesizing and
storing data, the Output object uses a vocalPrompt.
A vocalPrompt is an object that prepares data to be presented to
the user; this object is as well divided onto two different objects
depending on the source of the data:

� SpeechSynthesizer: is used to do a text-to-speech
transformation of the message given in the message attribute.
The emphasis attribute expresses the dominant tone according
to which the vocalOutput will be synthesized: positive,
negative, interrogative, exclamative. This object uses the object
voice for establishing other parameters in order to complete the
emission of the message. The gender attribute is used to specify
if the voice to be played corresponds to a male, female or
neutral individual. Age: is an attribute to determine the age of
the voiceFont to use (e.g. child, teen, adult, senior). CultureInfo:
First introduced in this model, this attribute represents the
language or grammar level for presenting data to the user.

� Audio: is employed to play audio prerecorded files. The
audioSource attribute specifies the URI of the audio file to be
played or the name of the reference where the recorded file is
stored.

The input individual component uses a Record object in order to
gather the information that the user provides.
A Record: is an object used to record a vocal message of the user
and when specified can be divided into a vocalVar and /or a
speech Recognizer. If the beep attribute is set to TRUE, an
acoustic beep is emitted by the system announcing the availability
of the recording. If set to false (the default value) no beep is
emitted and the user can start to record immediately after the
prompt. The silenceTime attribute is the silence time period that
determines the record to be stopped. It is expressed in
milliseconds or seconds.
vocalVar: used to declare a variable. May use functions and
conditions such as setVar, resetVar, if, elsif and else.

The Speech Recognizer is software that as its name says, realizes
speech recognition, the speech Recognizer uses grammar(s) as
well as parts and items.

Grammar is a structured and compacted enumeration of a set of
utterances (i.e., words and phrases) that constitute the acceptable
user input for a given input. The grammar can be internal (i.e., it
is specified within the document) or external (i.e., it is specified in
an external file). The version attribute indicates which version of
the grammar specification is being used. The language attribute
indicates according to which language the utterance has to be
pronounced in order to be recognized by the system. The
specification of the language takes the form of the couple: the
name of the language followed by the country in which it is used
(e.g.: English-UK). The mainPart attribute is the first part of the
grammar that will be treated by the system. The mode attribute
specifies the available interaction type. The default type is voice
for voice-based interaction, whereas for phone-based interaction
the value is dtmf. The visibility attribute specifies the visibility of
the grammar. If set to document the grammar is active throughout
the current document. If set to form (the default value) the
grammar is active throughout the current vocalForm.
Part: contains other part elements or available input items. The
structure attribute specifies how the user’s inputs should be
uttered in order to be recognized by the system. There are three
possible values: choice (i.e., the grammar items are alternative
inputs), sequential (i.e., sequence of grammar items that have to
be uttered one after another in the order of their appearance) or
asynchronous (i.e., sequence of grammar items in which the items
do not have any particular order of utterance). The visibility
attribute specifies the visibility of the part component. If set to
private (the default value) the part component can be used only by
the containing grammar. If set to public the part component can
be referenced by other grammars. The multiplicity attribute
indicates how many times the enclosed items may be repeated.
The default value is 1.
The multiplicity is defined as follows:

� X (where X>0): the items are repeated exactly X times.

� X-Y (where 0≤X<Y): the items are repeated between X and Y
times (inclusive).

� X- (where X≥0): the items are repeated X or more times.

39

The language attribute indicates in which language the items have
to be pronounced in order to be recognized by the system. The
specification of the language takes the form of the couple: the
name of the language followed by the country in which it is used
(e.g., French-CA). If it is not specified, it inherits the value from
the language attribute of the embedding grammar element.
Item: enables to specify a grammar input or to reference another
part element. The language attribute indicates in which language
the item has to be pronounced in order to be recognized by the
system. The specification of the language takes the form of the
couple: the name of the language followed by the country in
which it is used (e.g.: French-CA). This attribute allows mixing
multiple languages in the same grammar. If it is not specified, it
inherits the value from the language attribute of the embedding
part element.

4. CASE STUDIES
As a test for the proposed model and for a better understanding of
it, graphical examples representing dialogs between the system
(S) and the user (U) are shown:
The dialog in Figure 2, describes the fulfillment of the Provide
age task by an end-user. A vocalPrompt is necessary for
containing the other objects that are used in the interaction (input,
output, vocalConfirmation). Considering the direction of the
dialog from left to right, the first output is used to welcome the
user and invites to input the age.
Then, an input object is necessary for gathering the information
the user provides, in this case the age. This information may be
saved into a vocalVar or recorded to a file so the system can
access to it and by applying speech recognition (with the speech
recognizer) make a supposition on what the user said. Later, the
system provides a confirmation to the user by emitting an output
conformed by the phrase “Your answer was” plus the synthesis of
the word that it recognized. And finally as part of this
confirmation the system uses an input so the user can confirm or
deny.

Figure 2. VocalCIOs involved in the fulfillment of provide age
task.

In Figure 3, the dialog describes a vocal interaction application of
a phone company where users can select among different options.
There are two tasks involved, for the first one the user provides
the name to the system and for the second one, s/he selects among
three proposed options. As in the first example VocalCIOs are
contained by a vocal Form. Considering the direction of the

dialog from left to right, the first object presented is an output,
where the system introduces and invites the user to say the name.
After this is done, the system receives the input from the user and
uses a vocalMenu container in order to present to the user the
available options.
For this proposal, the system produces an output for each item or
option and after presenting them, expects for the user to choose
one of them. The user selects an option and realizes the input to
the system; the system, as in the previous dialog recognize the
selection, provides a confirmation and in this case, proceeds to a
determined part of the software program that might be another
vocal Form or other vocal container.
This examples, made evident the necessity of a set of rules or
equivalences that determine how to generate code from the tasks
or interaction models for any of the above mentioned languages.
In A Methodology for Developing Multimodal User Interfaces of
Information Systems [14], a similar analysis is done but for the
multimodal domain and in a higher abstraction level. Taking the
principles explained there and adding the concepts seen in the
proposed model, the following rules and equivalences are
identified:

� Output: <prompt> or <audio> for VoiceXML and
XHTML+Voice and prompt() and/or speak() for Microsoft
speech synthesizer.

� Input: <field> or <record> for VoiceXML and XHTML+Voice
and prompt() and start()-stop() for Microsoft Kinect. For
recognizing the input, it is necessary to use a grammar with
items on it. For VoiceXML and HTML+Voice this is
implemented using the <grammar> and <item> fields, while in
Microsoft Kinect this is done by the Microsoft speech
recognizer and may also be configured.

� vocalMenu: a vocal menu can be divided into two different
parts, one to present the set of options for the user: <prompt> or
<audio> for VoiceXML and XHTML+Voice and prompt()
and/or speak() for Microsoft speech synthesizer and the other
one to gather the selection from the user: <field> or <record>
for VoiceXML and XHTML+Voice and prompt() and start()-
stop() for Microsoft Kinect. Functions and conditions (e.g. if,
else, elsif, oneof, foreach) as well as variables may be used to
organize, evaluate and execute user’s choices.

� vocalConfirmation: a vocal confirmation is necessary when a
selection is made by the user; to implement this an output and
an input is necessary

Other structures and objects like combo boxes, radio buttons,
check boxes and list boxes can be implemented following this set
of 4 rules or equivalences.

5. CONCLUSION
In this paper, the establishment of the methodology for
development of vocal UI settled the bases for a software tool so it
might be possible for designers and non expert developers in the
vocal UI area to design and create this kind of interfaces by only
abstracting the components needed for it. Along with the
transformation rules, the developer can do migration of already
existing projects from one of the analyzed languages to one
another or apply reverse engineering for this purpose.

Another important point that was mentioned is the aggregation of
the context model to the vocal UI model, because in this particular
case (vocal interaction), aspects like culture, the used platform

40

Figure 3. VocalCIOs involved in the Phone line company example.

and the environment itself represent an important factor in the
success or not of the system performed.

In the near future, the objective is to implement the software tool
that supports the model and transformation rules as well as apply
a reverse engineering process to existing applications and recreate
them for a multiplatform context.

6. ACKNOWLEDGMENTS
We gratefully acknowledge the support of the ITEA2 Call 3
UsiXML project under reference 20080026, the Mexican
PROMEP/103.5/12/4367 project, and the Computer Sciences
Faculty of the University of Puebla.

7. REFERENCES
[1] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,

Bouillon, L., Vanderdonckt, J.: A Unifying Reference
Framework for Multi-Target User Interfaces. Interacting
with Computers, Vol. 15, No. 3, June 2003 289–308.

[2] Cuppens, E., Raymaekers, Ch., Coninx, K, A Model-Based
Design Process for Interactive Virtual Environments, Proc.
of Int. Workshop on Design, Specification, and Verification
of Interactive Systems DSV-IS'2005 (Newcastle upon Tyne,
13-15 July 2005), Lecture Notes in Computer Science, Vol.
3941, Springer, Berlin, 2005, pp. 225-236.

[3] De Boeck, J., Raymaekers, C., Coninx, K. A Tool
Supporting Model Based User Interface Design in 3D
Virtual Enviroments.GRAPP 2008: 367-375

[4] Flor, T.: ”Experiences with Adaptive User and Learning
Models in eLearning Systems for Higher Education” In:
Journal of Universal Computer Science, volume 10 (2004)

[5] González-Calleros J., Vanderdonckt J., Muñoz Arteaga J., A
Method For Developing 3D User Interfaces Of Information
Systems. CADUI 2006: 85-100

[6] Guerrero, J., Vanderdonckt, J., Gonzalez Calleros, J.M.,
FlowiXML: a Step towards Designing Workflow
Management Systems, Journal of Web Engineering, Vol. 4,
No. 2, 2008, pp. 163-182.

[7] Guerrero-García, J., González-Calleros, J.M.,
Vanderdonckt, J., Muñoz-Arteaga, J. A Theoretical Survey
of User Interface Description Languages: Preliminary
Results. In Proc. of LA-Web/¬CLIHC'2009 (Merida,
November 9-11, 2009), IEEE Computer Society Press, Los
Alamitos, 2009, pp. 36-43.

[8] Laurent Bouillon, Reverse Engineering of Declarative User
Interfaces, Ph.D. thesis, Université catholique de Louvain,
Louvain-la-Neuve, Belgium, 21 June 2006.

[9] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L.,
Lopez, V.: UsiXML: a Language Supporting Multi-Path
Development of User Interfaces. In: Proc. of 9th IFIP
Working Conference on Engineering for Human-Computer
Interaction jointly with 11th Int. Workshop on Design,
Specification, and Verification of Interactive Systems
EHCIDSVIS’2004 (Hamburg, July 11-13, 2004). Springer-
Verlag, Berlin (2005).

[10] Medina, J-L., Chessa, S., Front, A., A Survey of Model
Driven Engineering Tools for User Interface Design
Proceedings of 6th International Workshop on Task Models
and Diagrams TAMODIA’2007 (November 7-9, 2007),
Springer, Berlin.

[11] Molina, J.P., Vanderdonckt, J., González, P., Fernández-
Caballero, A., Lozano, M.D., Rapid Prototying of
Distributed User Interfaces, Proc. of 6th Int. Conf. on
Computer-Aided Design of User
Interfaces CADUI'2006 (Bucharest, 6-8 June 2006),
Chapter 12, Springer-Verlag, Berlin, 2006, pp. 151-166.

[12] Pellens, B., Bille, W., De Troyer, O., Kleinermann, F.: "VR-
WISE: A Conceptual Modelling Approach For Virtual
Environments", CD-ROM Proceedings of the Methods and
Tools for Virtual Reality (MeTo-VR 2005) workshop, Gent,
Belgium (2005)

[13] Schaefer, R., Steffen, B., Wolfgang, M., Task Models and
Diagrams for User Interface Design, Proceedings of 5th
International Workshop, TAMODIA'2006 (Hasselt,
Belgium, October 2006), Lecture Notes in Computer
Science, Vol. 4385, Springer Verlag Berlin, 2006.

41

[14] Stanciulescu, A., A Methodology for Developing
Multimodal User Interfaces of Information Systems, Ph.D.
thesis, Université catholique de Louvain, Louvain,
Belgique, 2008.

[15] Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., Michotte,
B., Montero, F., A Transformational Approach for
Developing Multimodal Web User Interfaces based on
UsiXML, Working Paper IAG n°06/02, Université
catholique de Louvain, Louvain School of Management,
Louvain-la-Neuve, 2006.

[16] Stanciulescu, A., Vanderdonckt, J., Macq, B., Automatic
Usability Assessment of Multimodal User Interfaces Based
on Ergonomic Rules, Proc. of E-Mode Joint Workshop on
Multimodal Interfaces 2007 (Paris, 27-28 September 2007),
S. Praud (ed.).

[17] Thevenin, D., Adaptation en Interaction Homme-Machine:
le cas de la Plasticité, Ph.D. thesis, Université Joseph
Fourrier, Grenoble, France, 2001. Available online:
http://iihm.imag.fr/publs/2001.

[18] Vanderdonckt, J., Model-Driven Engineering of User
Interfaces: Promises, Successes, Failures, and Challenges. .
In S. Buraga and I. Juvina, editors, Proc. of 5th Annual
Romanian Conf. on Human-Computer Interaction
ROCHI'2008, (Iasi, 18--19 September 2008), pages 1--10.
Matrix ROM, Bucarest, 2008.

[19] Vanderdonckt, J., A MDA-Compliant Environment for
Developing User Interfaces of Information Systems, Proc.
of 17th Conf. on Advanced Information Systems
Engineering CAiSE'05 (Porto, 13-17 June 2005), O. Pastor
& J. Falcão e Cunha (eds.), Lecture Notes in Computer
Science, Vol. 3520, Springer-Verlag, Berlin, 2005, pp. 16-
31.

[20] Vanderdonckt,J., Calvary, G., Coutaz, J., Stanciulescu, A.,
Multimodality for Plastic User Interfaces: Models, Methods,
and Principles, in “Multimodal user interfaces: from signals
to interaction”, D. Tzovaras (ed.), Chap. 3, Lecture Notes in
Electrical Engineering, Springer-Verlag, Berlin, 2007, pp.
79-105..

42

