Deriving User-requirements
From Human-Computer Interfaces

Anne-France Brogneaux, Ravi Ramdoyal, Julien Vilz, Jean-Luc Hainaut

Laboratory of Database Application Engineering
University of Namur (FUNDP)
Rue Grandgagnage 21
B-5000 Namur (Belgium)
{afb,rra,jvi,jlh} @info.fundp.ac.be

ABSTRACT

In this paper we explore the possibility of designing
components of information systems by optimally
exploiting the information explicitly or implicitly in
human-computer interfaces. In this process it is assumed
that the end-user, with minimal training, is able to sketch
a prototype interface of the future application, from which
the conceptual model of the application domain can be
derived semi-automatically. In particular, the information
contents of the electronic forms can be extracted and
conceptualised through reverse engineering and
integration techniques to significantly contribute to the
conceptual schema of the future database.

KEYWORDS
Database Design, Graphical User Interfaces, Software
Requirements, End-user, CASE Tool.

1. Introduction

Using prototypes is one of the most efficient elicitation
techniques. This particular method is useful when there
are doubts about the goals of the future application, and
when user opinions are needed early in the design process
[1]. Prototype elaboration in the requirement analysis
phase is obviously expensive : it includes the development
of a limited but operational application, whose
components are usually not reusable for the
implementation of the final system.

The comprehension of user interfaces has improved in
organisations thanks to the increasing use and training
level in the field of information technologies. From this
observation, we can assume that users are now quite
familiar with GUI and that many of them should be able
to draw the prototype of the interface of the future
application. This prototype brings essential information
particularly in two domains, namely the static objects of
the application domain and the users tasks.

It is therefore possible to involve end-users more actively
in the expression of their needs by allowing them to build
the interface of the future application in terms of
command screens and information exchanges. A task and
functionality model as well as an underlying information
model can be derived from these components.

This paper mainly concentrates on the problem of
extracting static objects specification from this prototype
interface, that is, designing the conceptual schema of the
database, or at least contributing to this design through
user interface analysis. It relies on three principles that we
will consider to be hypotheses due to the limited scope of
this paper:

1. from the user perspective, forms, and more specifically
electronic forms, are more natural and intuitive than usual
conceptual formalisms as far as expressing information
requirements is concerned;

2. a form comprises data structures that can be seen as a
particular view on the conceptual schema of the database;

3. a form is a physical implementation of a part of the
conceptual schema, so that database reverse engineering
techniques can be applied to recover that part of this
schema.

The proposed approach consists in letting users draw the
interface with the application in project that most suit
their needs, then in analysing the information contents of
the resulting dialog boxes and forms in order to extract the
underlying information structures. From the latter, a
conceptual schema is progressively built and validated

Although this approach does not entirely replace more
traditional task and information analysis approaches, it
nevertheless allows to grab more efficiently and more
reliably a substantial part of the initial specifications.

The method we describe in this article addresses the
analysis and development of databases. In order to
decrease costs while increasing the quality of the
requirements analysis phase, it provides designers and end



users with tools that make conceptual schema design
easier.

Extracting and modelling the behavioural aspects of the
target application through interface analysis will not be
addressed in this paper.

The paper is organised in two main parts : the first one
describes the approach in its theoretical aspects as follows
and the second one illustrates this approach with a small
case study.

This method is being developed within the context of the
ReQuest project, whose objective is the creation of
intelligent tools for web-based application development.

2. The approach

The tasks of the approach are illustrated in Figure 1 using
the ConcurTaskTree notation [2].  Other -elicitation
techniques, such as natural language analysis and
interviews have been ignored for simplicity.

=g

Require tselicitation * Interpreted schemas integration Analysis

O

Uszerinterface drawing Conceglugtisation

- ..
)

Schemas edraction Analysis

] i ]

=@ s

Uszerinterface importation  Interpretation

Figure 1 — Conceptual Schema Extraction

The main task (Specification), whose aim is the
elaboration of the conceptual schema for the application
domain, is divided in sub-tasks. The first one is the
requirements elicitation, which includes two main steps,
namely interface drawing, by end wusers, and
conceptualisation.

The user is provided with a collection of WYSIWYG
tools for interface drawing. According to the skill of the
user, several tools are available, ranging from freehand
sketching tool on a tablet PC, providing fast and easy, but
low-fidelity, results, to comprehensive interface builders,
whose result will be used almost unchanged to develop

the operational system (high-fidelity prototype). The user,
who is given a short training, is able to build the interface
(screens, dialog boxes, forms, web pages) he thinks the
most appropriate according to the application’s functions.

Two extreme scenarios are considered for this task:

e the task is performed by the user alone, provided he
masters the drawing tools and elementary rules of
interface building;

e the task is performed jointly by the user and an
experienced  designer who  translate  users
requirements into user interface.

Other intermediate patterns can be defined according to

the skill of the end users in interface building and the

availability of experienced designers.

According to the semiotic approach of user interface
design [3], a user interface is considered to be a complex
message exchange between the system and the user. In
order to identify the concepts manipulated by the future
application, we have to identify the semantic of these
messages; this is the aim of the “conceptualisation” task.
Messages are composed of signs, that, in the field of
graphical user interface, are widgets. Though some of
them are highly expressive and therefore bring much
semantics, the user will often be invited to add
interpretation annotation to allow a more complete
conceptualisation.

The concepts conveyed by screens and forms are abstract
entities that belong to the mental model of the user. These
entities are represented in a standard model [3], namely a
variant of the Entity Relationship (ERA) model. Raw
diagrams representing data structures are built through the
“user interfaces importation” sub-task. They give a neutral
representation of the underlying data structures but are
still uninterpreted so far.

The “Interpretation” sub-task allows the analyst to
determine the domain concepts from each of the raw
diagrams, to identify and solve the gaps and incoherence
among the concepts. The analyst will correct and refine
the user interfaces with the collaboration of the user. This
process is iterative by nature.

The diagrams produced by the interpretation of interfaces
are integrated to form a global schema of the application
concepts after that have been fully validated by the user
and the analyst

At this stage, the intervention of the user will often be
required in order to complete the specifications and to
clear any remaining ambiguities.



2.1. Interfaces drawing

In the proposed approach, descriptions of interfaces is a
major source of information for conceptualisation. These
descriptions are exploited in two ways. On the one hand,
they are analysed to extract a conceptual schema of a
future database, and on the other hand they are used to
generate the real application user interface according to
the target technology. The description format has to
follow a strict syntax independent of any operational user
interface manager tools. This latter property makes it
possible to use code generator for many languages and
graphical user interface libraries.

In the context of the Request project, the USIXML
language [4] meets these characteristics, while the
GrafiXML WYSIWYG tool [5] enables the drawing of
user interfaces, which are specified using this language.

The user is instructed to use simple and intuitive

coherence rules while designing the interfaces. Some

important rules suggest:

e to assign an expressive label to each control and to
place it at one from definite positions;

e to group into a common frame fields that relate to a
same concept;

e to assign the same label to all the controls referring to
the same concept (as few synonyms as possible);

e to assign different labels to controls that refer to
different concept (as few homonyms as possible);

These rules may not always be followed because of
ergonomic reasons (the user may wish not to assign an
explicit label to a control that doesn’t require one) or in
case of ambiguities (a customer and a supplier both have
an address, but these addresses do not represent the same
concept). In this case, the user can annotate the control
and assign to it an invisible label, possibly with the help
of the analyst. We therefore dissociate the visible
interface label from the invisible semantic label.

2.2. Interfaces importation

Several approaches have explored the existing link
between user interface and application domain conceptual
schema both in forward engineering [6][7][15]and in
reverse-engineering [8]. The “user interface importation”
task is one of them. It takes in consideration the graphical
user interface evolution and its ergonomics.

“It is necessary to understand the semantics of each
control in its different uses in order to be able to transform
user interfaces into a semantic data model” [7]. For this
purpose we use the ergonomic rules mentioned in [9].

Some of these rules allow to choose the right control
according to the context. As an example, an ergonomic
rule recommends to use a group box containing
checkboxes to represent a choice among four to seven
known alphanumeric values.

A set of rules determine patterns for using controls. To
each pattern derived from common ergonomic rules, we
have associated a conceptual representation. The previous
example is represented by a multivalued attribute drawing
its name from that of the group box whose value domain
is determined by the checkboxes labels. A pattern
matching mechanism using these rules automatically
transforms XML interface descriptions into ERA
uninterpreted raw diagram

Some patterns require the use of additional annotations
when the user interface structure is not sufficient for the
semantic extraction. Metaphorical display is one of these
patterns. It uses a real world representation to facilitate the
user task. Annotations are required to help the interface
importer to understand those metaphors.

For example: “business , accountancy and massive data
acquisition applications can use the filling-the-blank
metaphor” [9]. In this metaphor, the concept of label has
no meaning. The semantic for the user proceeds from the
whole sentence containing the blanks. The interfaces
importation tools require invisible label for each blank. In
the Figure 2 these labels could be “Beginning of license
validity period” and “Ending of license validity period”.

License valid from [/ / to [/ [/

Figure 2 — Filling-the-blank Metaphor Example

2.3. Interpretation

The interpretation task consists in identifying the relevant
concept of the application domain in the uninterpreted
schema.

We consider a concept to be potentially relevant if it
shows some degree of structural complexity : a concept
can for instance be represented by an entity type (deriving
from an interface screen) or a compound attribute (group
box or table). It is important to distinguish the structures
forming a local complex property of the object described
by the window from the structures referring to relevant
concepts external to this object. As in the
conceptualisation process in the reverse engineering
method described in [12], this distinction highly depends
on the semantics and on the application domain. The user
intervention is hence often necessary.



For example, a customer address and customer orders can

both be represented by multivalued compound attribute

structure. After further analysis, it may appear that,

e the address complex attribute is interpreted as a local
customer property,

e the orders complex attribute is interpreted as an
external concept that must appear in other interfaces.

The interpretation then consists in representing the
identified concepts by entity types according to the rules
established in the section 2.1. A compound attribute that
appears as a compound attribute or an entity type in
another interfaces is extracted as an autonomous entity
type according to the transformational approach [10]. The
entity types are named by their invisible label if it exists,
or by their visible label otherwise.

The gaps and incoherence of the schemas provided to the
analyst by this automatic phases are highlighted. The
analyst completes and corrects the schema by discussing
with the user in order to deal with two aspects. The first
one is the semantic of the link between the new extracted
concept and the interface from which it is derived. This
link is documented in the schema by giving a name to the
corresponding relationship type. It must be stated that the
association types characteristics are not complete at this
stage, as one of the two cardinalities is still undefined. It
will however be set during the integration phase. The
second aspect is the relative identification of the concepts
in relation to the interface (for example, can a same
product number appear several times in an order form?).

These interpreted schemas modifications are reflected in
the interfaces by addition of semantic annotations, and a
new version of the schemas is generated from these
supplemented interfaces. After several iterations of the
Requirements elicitation task (Figure 1), the annotated
interfaces constitute the complete and non ambiguous
documentation of the concepts manipulated by the future
application. A database could therefore automatically be
generated from this documentation.

24. Interpreted schemas Integration

The user-validated schemas are integrated to form a
conceptual schema representing the specification of the

requirements expressed by the user through the interfaces.
This specification should be formal, complete, minimal,
unambiguous, abstract and readable. The domain concepts
and their internal links have been univocally represented
by similarly named objects throughout the extracted and
interpreted schemas. The concepts are represented by
entity types while the links between them are represented
by relationship types. The integration of these objects can
be, to a large extent, automated given the interface-
derived partial schemas preparation.

During this phase, relationship types characteristics are
refined. For instance, let us assume that an order can be
associated with several invoices in a given interpreted
schema, and that an invoice corresponds to one and only
one order in another given interpreted schema. The two
semantically similar relationship types will be integrated
into a single relationship type whose cardinalities are
clearly defined : an order is associated with several
invoices and an invoice corresponds to one and only one
order. There is a one-to-many relationship type from order
to invoice in the integrated schema

The analyst jointly works with the user following this
automatic phase, in order to fill any remaining gaps left
undetected or unresolved by previous phases. It usually
mainly addresses absolute identifiers and cardinalities
definition issues. These modifications will also be
reflected on the interfaces thanks to annotations.

The integration rules adopted follows those which have
been proposed in the database field [13] [14]. However,
they also have to cope with incomplete specifications, so
that conflict-solving rules have been adapted.

3. Case Study

This short illustration concerns the organisation of
training courses. We will show how the first three steps of
the proposed approach apply.

3.1. Interfaces drawing



Date: ,7
Beqin: ’7
2

Teacher

=

Add I Remove

=1al=|

Sessian

Murnber ¢

Course
Language:
Date:

Mame:

—ioix
Humber: I
Date:
Status [ Rate | Add
Mumber of days: | —I
Remove

 Modulz

Date | Begin [ End |

Add Remove

Interface drawing

~ Course

Name: [

Langusge: [

Date: ] >

MODULE MODULE
Date Date
Begin gﬁﬁm
End Teacher[0-N]
Teacher[0-N] i
Session 1-1
Number ]
e T
Name 2
Language 0-N COURSE
Date SESSION 1-1 ? |Name
Number 0-N | Language
Date
SESSION
SESSION Number
Number Date
Date Number of days
Number of days Fare[0-N]
Course Status
Name Rate
Language —1» 1_{ (;—N
Date
Status composition
Rate ? 2
Module[0-N] 0-N 0-N
Date COURSE MODULE
Begin Name Date
End Language Begin
Date End
Importation Interpretation and

Figure 3 — Case Study

The user draws the prototype of two windows that are
considered necessary and sufficient to deal with the part
of the future system that records and manage the courses.
The “Session” window gathers information on a particular
course session, knowing that each course can be given
several times. A session is split into modules which each
has its own window. Each “Module” window allows the
user to collect precise information on these modules, such
as the teacher names.

3.2. Interfaces importation

The information contents of each window is abstracted
according to the ERA model by applying pattern matching
rules. Technically, the windows drawn by the user in the
GrafiXML tool are exported in a USIXML document.
This document is then imported and interpreted by the
DB-MAIN CASE tool[11] to produce an ERA schema.
The “Session” window is represented by an entity type
with the name “Session”. The group boxes (‘“Fare”,
“Course”, “Module”) are represented by compound
attributes. A group box comprising several fields is
translated as a single-valued attribute, while a group box
containing one and only one table translates into a
multivalued attribute, whose sub-attributes are given by
the table columns. The edit boxes (“Number”, “Date”,
“Number of days”, “Name”, “Language”, “Date”) are

represented by atomic single-valued attributes named by

analysis

the corresponding identifying label.

3.3.

Interpretation

The relevant concepts (as defined in section 2.3) are then
transformed into entity types. This transformation is
automatic as the documentation obtained during the
Interfaces importation task is complete and non
ambiguous. In this case the relevant concepts are the
compound attributes “Module” in the “Session” entity
type, “Course” in the “Session” and “Module” entity
types, and “Session” in the “Module” entity type. They
are thus transformed into entity types using DB-MAIN.

After this transformation, the analyst has to detect missing
information such as the new relationship types semantics
and the cardinalities of the new roles of entity types. For
instance, the relationship type between entity types
“Session” and ‘“Module” and the cardinality of the
“Module” role must be defined. Following a discussion
with the end user, the interface is enriched with
annotations that add the acquired information, and the
sub-schemas are finally validated. In particular, the
relationship type between “Session” and “Module” is
named “composition”. The unknown cardinalities, shown
in bold in Figure 3, stay unchanged because some of them



SESSION

Number
Date
Number of days
Fare[0-N]

Status

Rate

I

0-N 1-1

Ceomoston o>

?
ll—l O-N

MODULE COURSE
Date Name
Begin Language
End Date
Teacher[0-N]

Figure 4 - Integrated Conceptual Schema before
analysis

will automatically be resolved during the integration
phase.

3.4. Interpreted schemas Integration

The integration process follows the pre-integration
approach, according to which a pre-integration step
resolves all the conflicts that may arise during final
schema merging.

Since the sub-schemas have been prepared in order to
univocally name (no homonymy, no synonymy) and each
concept has been semantically validated, the final phase is
thus automatic. We hence obtain a tentative conceptual
schema of the application domain. The missing
information that has not been resolved during the previous
tasks is shown in bold in the results of the integration step
(Figure 4). In this case, the analyst validates the
proposed cardinality O-N representing the number of
sessions for a course by asking the user. The figure 4
shows the final conceptual schema.

4. Method extension

We can achieve two more tasks from the complete screen
specification and the final conceptual schema, namely the
design of the database and some procedural components
of the future application.

4.1. Database Design

The database is designed from the conceptual schema
using the traditional approach based on transformational
techniques. The traceability is ensured through the
transformation history that is recorded and maintained
during the whole process, in order to allow instant
association between interface components and database
objects. This history allows an automatic SQL queries
generation to fill the user interfaces with existing data.

4.2. Procedural Components Conception

The natural business objects can also be derived by
analysing similarities between interface interpreted sub-
schemas. We then obtain object schemas from which we
can automatically generate object classes code, including
constructors, accessor and modifier methods, as well as
ready-to-implement processing methods frameworks. In
order to implement the latter, business rules must be taken
in account (this part of the project still is unexplored.).
The connection between interface components and
database objects will be ensured by the obtained business
objects.

5. Conclusion

The results of our approach allowed defining and
extracting the necessary information contained in user
defined interfaces in order to create the application
domain conceptual schema as well as important software
components. The application domain model is not
sufficient however to elaborate a complete information
system. Other aspects must be taken in account as in
standard analysis approaches.

From a practical point of view, some tools have been
developed in DB-MAIN to evaluate our approach : an
interface importation tool, a schema interpreter, a schema
integrator and a queries generator.

The extension of our method consists in analysing the
information included in human-computer interfaces and
useful for designing enterprises organisation models, data
models, functional and non-functional models. The
method available backtracking enables to highlight
existing links between the models, and for instance to
generate database queries based on the functional and the
data models.

References
[1] B. Nuseibeh & S. Easterbrook, Requirements

Engineering: A Roadmap, in The future of sofiware
engineering, ACM Press, New York, 2000, 37-46.



[2] G. Mori, F. Paternd & C. Santoro., CTTE: Support for
Developing and Analyzing Task Models for
Interactive System Design, in /[EEE Transactions on
Software Engineering, August 2002, 797-813.

[3]1J.C. Leite, A semiotic-based framework to user
interface design, in Proc. of the second Nordic
conference on Human-computer interaction, 2002,
263-265.

[4] Q. Limbourg,, J. Vanderdonckt, B. Michotte, L.
Bouillon, M. Florins, & D. Trevisan, USIXML: A
User Interface Description Language for Context-
Sensitive User Interfaces, in Developing User
Interfaces with XML: Advances on User Interface
Description Languages, Workshop at AVI04, May
2004.

[5] The GrafiXML interface drawing tool website:
http://www.usixml.org/index.php?page=grafixml.xml

[6]J. Choobineh, M.V. Mannino & V.P. Tseng, 4 Form-
Based Approach for Database Analysis and Design,
In Communications of the ACM, vol. 35, n°2,
February 1992, 108-120.

[7]1S.R. Rollinson & S.A. Roberts., Formalizing the
Informational Content of Database User Interfaces, In
Conceptual Modeling - ER'98, In Proceedings of the
17th  International Conference on Conceptual
Modelling, Springer-Verlag, 1998, 65-77.

[8] L. Heeseok & Y. Cheonsoo., A form driven object-
oriented reverse engineering methodology, in
Information Systems, vol. 25, n°3, 2000, 235-269.

[91J. Vanderdonckt, Guide ergonomique des interfaces
homme-machine, Presses Universitaires de Namur,
1994.

[10]J.-L. Hainaut, Entity-generating Schema Transforma-
tions for Entity-Relationship Models, in Proc. of the
10th Entity-Relationship Approach, San Mateo (CA),
North-Holland, 1991, 643-670.

[11]V. Englebert, J. Henrard, J.-M. Hick, D. Roland, J.-L.
Hainaut, DB-MAIN : un atelier d'ingénierie de bases
de données, Ingénierie des Systémes d'Information,
Vol. 4, No. 1, Hermes - AFCET, 1996.

[12]].-L. Hainaut, C. Tonneau, M. Joris, M. Chandelon,
Schema Transformation Techniques for Database
Reverse Engineering, in Proc. 12th Int. Conf. on
Entity-Relationship Approach, Arlington-Dallas, E/R
Institute Publish., 1993.

[13]S. Spaccapietra, C. Parent, Y. Dupont, Model
Independent  Assertions  for  Integration  of
Heterogeneous Schemas, in VLD Journal, 1, 1992,
81-126.

[14]C. Batini, S. Ceri, S. Navathe, Conceptual Database
Design  — An Entity Relationship  Approach
(Benjamin-Cummings 1992)

[15]K-D Schewe, B. Schewe, Integrated database and
dialogue design, in Knowledge and Information
Systems 2, 1, 2000, 1-32




