

Reverse Engineering of
Declarative User Interfaces

Laurent Bouillon

A dissertation submitted in fulfilment of the requirements
for the degree of

Doctor of Philosophy in
Management Sciences

of the Université catholique de Louvain

Committee in charge:
Prof. Jean Vanderdonckt, Université catholique de Louvain, Advisor

Prof. Bernard Fortz, Université catholique de Louvain, Examiner
Prof. Manuel Kolp, Université catholique de Louvain, Examiner

Prof. Jean-Luc Hainaut, Faculté Universitaire Notre-Dame de la Paix, Reader
Prof. Christophe Kolski, Université de Valenciennes et du Hainaut-Cambrésis, Reader

June 2006

TABLE OF CONTENTS

Chapter 1 The need for reverse engineering.. 13
1.1 Evolution of information systems... 13
1.2 Reengineering of information systems ... 14
1.3 Importance of reengineering.. 17
1.4 New needs for reengineering ... 20
1.5 Objectives and working hypothesis... 22

1.5.1 Aims and thesis statement ... 22
1.5.2 Working hypothesis and methodological choices................................ 23
1.5.3 Reading Map.. 26

Chapter 2 A Conceptual Framework for UI Reverse Engineering 28

2.1 The Multi-context Framework... 28
2.2 Reengineering Definitions .. 31
2.3 Retargeting .. 34

2.3.1 The retargeting concept.. 34
2.3.2 Alternatives during the abstraction process .. 40

2.4 Conclusion .. 42

Chapter 3 State of the art in reverse engineering 44

3.1 Reverse engineering of legacy systems.. 45
3.1.1 Morph... 46
3.1.2 The AUIDL Environment .. 49
3.1.3 Cellest - Mathaino... 50
3.1.4 Cobol UI reengineering for Windows ... 53
3.1.5 PUC .. 54
3.1.6 Visual TAP... 55

3.2 Reverse engineering and reengineering of the Web...................................... 57
3.2.1 Digestor.. 57
3.2.2 Mobile Transparent access .. 58
3.2.3 PIMA .. 60
3.2.4 Webrevenge ... 61
3.2.5 ReWeb .. 63
3.2.6 WARE .. 64
3.2.7 TAMEX ... 66
3.2.8 XWEB .. 68
3.2.9 Adaptation of Web Pages .. 69
3.2.10 Transcoding HTML to VoiceXML.. 71
3.2.11 Reverse engineering End-User Web Applications............................... 72
3.2.12 Revangie ... 73

3.2.13 AWT2XIML.. 74
 3.3 Comparison of the approaches.. 76
3.4 Location in the Framework.. 79

Chapter 4 Notation for reverse engineering derivation rules 85
4.1 Introduction.. 86

4.1.1 Objectives and method... 86
4.1.2 Mapping and notation definition .. 87
4.1.3 Meta-model definition .. 89

4.2 Mathematical definitions... 90
4.3 Operations on trees ... 91

4.3.1 Basic operations on Tt .. 92
4.3.2 Derived operation (on TH , TW , TV and TT): ... 95
4.3.3 Remarks .. 98
4.3.4 Groups of operations.. 99

4.4 Inter-tree mappings ... 101
4.4.1 Initialization.. 102
4.4.2 Particular to node classes ... 103
4.4.3 General rule defining alignment.. 106
4.4.4 General rules applied for each node... 106

4.5 Rule implementation ... 111
4.6 Conclusion .. 112

Chapter 5 Reverse Engineering of Web Sites: Vaquita .. 115

5.1 HTML history .. 115
5.2 Working hypotheses .. 116
5.3 HTML and XIML meta-models and derivation tables 118
5.4 Tool support and example.. 122

5.4.1 Vaquita .. 122
5.4.2 Example of a complete reengineering thanks to Envir3D.................... 125

5.5 Shortcomings of Vaquita .. 129
5.6 Conclusion .. 129

Chapter 6 ReversiXML ... 125

6.1 Evaluation of Vaquita.. 125
6.2 Working hypotheses .. 126
6.3 USIXML meta-model and derivations rules .. 127
6.4 Tools support: ReversiXML... 132

6.4.1 Description of ReversiXML.. 133
6.4.2 The reverse engineering process... 136

6.4.2.a Steps ... 136

6.4.2.b Layout recovery .. 140
6.4.2.c Dialog relations... 142

6.4.3 Evolution of the architecture of the tool .. 143
6.4.4 Differences between the two tools... 150
6.4.5 Ongoing issues and future work... 151

Chapter 7 Reverse engineering of other markup-based UI..................................... 155
7.1 Reverse engineering of WML... 156

7.1.1 The WML language... 156
7.1.2 Working Hypothesis ... 158
7.1.3 Language meta-model and derivation rules... 159
7.1.4 Tool support .. 162

7.2 Reverse engineering of VoiceXML 2.0... 165
7.2.1 The VoiceXML language ... 165
7.2.2 Working Hypothesis ... 166
7.2.3 Language meta-model and derivation rules... 168
7.2.4 Example .. 173

7.3 Conclusion .. 174

Chapter 8 Reverse engineering of resource files ... 175
8.1 Windows resources files.. 175
8.2 Working hypothesis ... 179
8.3 Derivation rules and resource meta-model .. 180
8.4 Conclusion .. 185

Chapter 9 Validation.. 187
9.1 Internal validation .. 188

9.1.1 Coverage of source language ... 188
9.1.2 Coherence... 190
9.1.3 Performance... 191
9.1.4 Correction... 193
9.1.5 Conclusion for the internal validation.. 199

9.2 External Validation.. 200
9.2.1 Exploratory study of reengineering .. 201

9.2.1.a Method... 201
9.2.1.b Results .. 204
9.2.1.c Discussion ... 205

9.2.2 Case Study 1: the Sedan-Bouillon Web site... 206
9.2.2.a Introduction page... 207
9.2.2.b Index page ... 209
9.2.2.c Order Documentation... 211

9.2.2.d Complete reengineering... 215
9.2.3 Case study 2: UGC movie booking service ... 219
9.2.4 Case study 3: SNCB homepage... 223
9.2.5 Conclusion for external validation.. 228

9.3 Comparison with the state of the art .. 229
9.3.1 General comparison.. 229
9.3.2 Comparison with a transcoding approach... 231
9.3.3 Conclusion of the comparison with the state of the art 234

9.4 Conclusion .. 235

Chapter 10 Conclusion.. 237

10.1 Contribution ... 237
10.2 Discussion... 240

10.2.1 Thesis statement .. 240
10.2.2 The reverse engineering sub-problems .. 241
10.2.3 Results of reengineering ... 243
10.2.4 Limits of the approach ... 244
10.2.5 Compliance with MDA .. 245
10.2.6 Integration with other works ... 247

10.3 Perspectives .. 248

References ... 253

Appendix A... 267
Appendix B ... 272
Appendix C ... 282
Appendix D .. 314
Appendix E... 317
Appendix F ... 321
Appendix G .. 322
Appendix H... 326
Appendix I .. 344
Appendix J .. 350
Appendix K... 352
Appendix L ... 355

TABLE OF FIGURES

Figure 1-1 Triggers for evolution of information system 14

Figure 1-2 The waterfall model 15

Figure 1-3 History of langages 18

Figure 1-4 Different languages for UIs development 21

Figure 1-5 History of markup-languages 25

Figure 2-1 The Multi-Context Framework 29

Figure 2-2 Four levels of abstraction 30

Figure 2-3 Reengineering definitions in the framework 32

Figure 2-4 Different representation for a button 34

Figure 2-5 Proliferation of UI descriptions 35

Figure 2-6 Retargeting in the Cameleon Framework 36

Figure 2-7 The transformation of intra-page links into extra-page links 42

Figure 3-1 The reengineering process with Morph 47

Figure 3-2 Morph’s reengineering process 47

Figure 3-3 Morph’s categorization of concepts 49

Figure 3-4 The reengineering process with AUIDL 49

Figure 3-5 The reengineering process with Cellest 51

Figure 3-6 The architecture of Cellest 52

Figure 3-7 The reengineering with Csaba’s approach 54

Figure 3-8 Reengineering process with PUC 55

Figure 3-9 The reengineering with TAP 56

Figure 3-10 Visual TAP 57

Figure 3-11 Widgets recognition in Felsberg’s approach 58

Figure 3-12 The transcoding approach with Digestor 59

Figure 3-13 Digested Web page 59

Figure 3-14 The mobile transcoding approach 60

Figure 3-15 The mobile tranparent approach 61

Figure 3-16 Transcoded Web page 62

Figure 3-17 The reengineering process in the PIMA project 63

Figure 3-18 The complete Pima process 64

Figure 3-19 The reverse engineering process of Webrevenge 65

Figure 3-20 Reverse engineering of the task model 66

Figure 3-21 The reweb reengineering process 67

Figure 3-22 The Reweb’s Approach 67

Figure 3-23 The reverse engineering process with WARE 69

Figure 3-24 The Ware architecture 69

Figure 3-25 The reengineering process with Tamex 67

Figure 3-26 The Tamex mediation process 71

Figure 3-27 The Lopez’s adaptation-transcoding approach 73

Figure 3-28 Adaptation of Web pages 74

Figure 3-29 The voiceXML transcoding approach 75

Figure 3-30 The VoiceXML Transcoder Architecture 75

Figure 3-31 Click’s end-application reverse engineering approach 77

Figure 3-32 Revangie reverse engineering process 78

Figure 3-33 AWT2XIML reverse engineering process 79

Figure 4-1 Structure of the chapter 86

Figure 4-2 Subtree representing a graphicalTransition 99

Figure 4-3 Sequence of derivation rules 102

Figure 4-4 Hierarchy detection rules example 108

Figure 5-1 The meta-model of XIML 119

Figure 5-2 Vaquita in the cameleon reference framework 122

Figure 5-3 The complete reengineering process with Vaquita 123

Figure 5-4 Main screen of Vaquita 124

Figure 5-5 Options page of Vaquita 125

Figure 5-6 Creation of a control room with Envir3D 126

Figure 5-7 Control room generated from a XIML specification in Envir3D 126

Figure 5-9 Virtualization process 127

Figure 5-10 The reengineering of a Web Form 128

Figure 6-1 model composition in USIXML 133

Figure 6-2 Start screen of ReversiXML 139

Figure 6-3 Reverse Engineering options 140

Figure 6-4 The resulting abstract or concrete UI models 140

Figure 6-5 ReversiXML in the reference framework 141

Figure 6-6 The entire reverse engineering process 142

Figure 6-7 General layout of a Web page 146

Figure 6-8 Layout recovery 147

Figure 6-9 Example of layout recovery 148

Figure 6-10 Link table 149

Figure 6-11 Coverage and complexity trade-off 154

Figure 7-1 Mobile devices with different capabilities 157

Figure 7-2 The meta-model of WML 1.1 160

Figure 7-3 Command prompt for the WML reverse engineering tool 163

Figure 7-4 Yahoo mobile login page 163

Figure 7-5 Preview UI generated with Grafixml 165

Figure 7-6 The VoiceXML 2.0 meta-model 169

Figure 7-7 Portion of the CUI used to represent vocal UI 170

Figure 8-1 The envisionned reengineering process 176

Figure 8-2 Resource script of a dialog box 177

Figure 8-3 Menu meta-model 180

Figure 8-4 Example of a menu in a resource script 181

Figure 8-5 Find dialog box resource script 185

Figure 9-1 The three web pages of the exploratory study 202

Figure 9-2 Reengineering in the exploratory study 203

Figure 9-3 Platforms and navigators accessing the site 207

Figure 9-4 Division into boxes 207

Figure 9-5 Index page of sedan-bouillon website 210

Figure 9-6 Choose documentation 212

Figure 9-7 Order documentation form 213

Figure 9-8 Results of the forward engineering with Teresa 215

Figure 9-9 First page of case study regenerated with QtkXML 216

Figure 9-10 Second page of case study regenerated with QtkXML 216

Figure 9-11 Third page of the case study regenerated QtkXML 217

Figure 9-12 Fourth page of the case study regenerated QtkXML 218

Figure 9-13 City selection page on UGC reservation site 219

Figure 9-14 SNCB Homepage 223

Figure 9-15 AUI model of the case study in IdealXML 227

Figure 9-16 ADAPT’s navigation patterns 231

Figure 9-17 Navigation patterns on the CNN Website 232

Figure 10-1 Comparison of the reference framework and MDA 246

Figure 10-2 Integration with other researches 247

TABLES

Table 1-1 Windows PC/ Windows CE sales projection 21
Table 2-1 Comparison between reverse engineering and retargeting 39
Table 2-2 Alternatives in the transformation of images. 41
Table 2-3 Different alternatives for text links. 41
Table 3-1 Comparison of the re(verse)engineering approaches 83
Table 5-1 Derivation table for images 121
Table 5-2 Derivation table for radio buttons 121
Table 5-3 Derivation table for edit boxes 121
Table 6-1 Differences between Vaquita and ReversiXML 151
Table 7-1 Reengineering of Yahoo mobile login page 164
Table 7-2 Tags ignored during reverse engineering 168
Table 9-1 Performance analysis 192
Table 9-2 Error rates for the correction analysis. 196
Table 9-3 Limitations of ADAPT and RevesiXML 233
Table 9-4 Size reduction with ADAPT and ReversiXML 234

Table 10-1 Coverage of the reverse engineering tasks for the different source
languages

241

Table 10-2 Complete Reengineering 243

Acknowledgements

I would like to express my thanks to:

• My advisor, Professor Jean Vanderdonckt, for his constant
support and enthusiasm regarding my work.

• Professors Bernard Fortz, Jean-Luc Hainaut, Manuel Kolp and
Christophe Kolski, for accepting to participate to the jury of
this dissertation.

• My colleagues from IAG school of management at Université
catholique de Louvain.

• My family and friends.

 This dissertation was realized thanks to the support of:

- Cameleon research project (http://giove.cnuce.cnr.it/
cameleon.html) under the umbrella of the European Fifth
Framework Programme (FP5-2000-IST2).

- the SIMILAR network ofexcellence (http://www.similar.cc),
the European research task force creating human-machine
interfaces similar to human-human communication of the
European Sixth Framework Programme (FP6-2002-IST1-
507609).

Chapter 1 The need for reverse
engineering

1.1 Evolution of information systems

Information systems is “a means of recording and communicating information to
satisfy the requirements of all users, the business activities they are engaged in and
the objectives established for them”[Olle88]. Information systems should perpetually
evolve because of the evolution of three categories of parameters defining their
context of use. A context of use can be defined by the user, platform and
environment of the information system. These evolving parameters are:
- The evolution of the user means modification of parameters of the information

system to satisfy user needs. For example, when a new stereotype of users will
use the system, it has to be modified according to their level of experience.
Another example is the evolution of a system designed for a small number of
people in order to be able to manage a great number of users.

- The evolution of platforms on which these information systems run (figure 1-3
illustrates the variety of platforms and languages). Here we define a platform by
the combination of hardware and software features, thus including the language
used to develop the information system. An example is the migration of the
back-office system to an Internet version of the information system.

Chapter 1 The need for reverse engineering

14

- The evolution of the physical environment (including the socio-organizational
factors). An example of this type of evolution is the transformation of an
information system after a merging between two organizations, by changing its
features to cope with the new management procedures. Other examples are law
modification (e.g. a tax rate modification) implying an adaptation of the system to
take these evolutions into account.

These dimensions have different rates of progression over time (figure 1-1), the
change of requirements due to evolution in the environment seldom occurs.
Appearance of new platforms has the fastest pace of progression, as several new
types or variation of existing platforms appear every year. New development
languages or new versions of existing languages appear also frequently. The last
incentive for the evolution of information system, the appearance of new user needs
appear regularly, more often than evolution of environments, but less frequently than
new computing platforms.

time

Environment

User

Platform

Figure 1-1 Triggers for evolution of information system

This constant need for evolution exists since the birth of information systems, and
will ever be present, thus there will always be ‘old’ systems. To cope with this
inherent problem, reengineering can be applied to redesigning the information
system and in some cases, recovering the structure and some parts of the system that
has to be modified rather than start the implementation of a new system from
scratch, and so lower the costs and the efforts devoted to the evolution of the
information system.

1.2 Reengineering of information systems

Reengineering is a crucial problem for information systems, as estimates of the
resources devoted to maintenance in software development range from 50 to 80%
[Boeh81].

Chapter 1 The need for reverse engineering

15

Software maintenance is the modification of a software product after delivery to
correct faults, to improve performance or other attributes, or to adapt the product to
a modified environment [Sem03]. It is estimated that 40 to 60% of maintenance
effort is devoted to the understanding of the software to be modified. The
automation (or semi-automation) of the abstraction of the parts of a system could
thus save lots of resources.

A software can be divided into two parts: the functional core which contains the
various functionalities of the application and the user interface which gives access to
these functionalities, presents the results obtained with the software, etc. The user
interface (UI) code is generally extremely dependent on the platform and language on
which it has been coded, and has, most of times, to be rewritten completely when the
software needs to be transformed for another platform. Moreover, the part of the
code dedicated to the UI can reach in average 50% of the total code size of a
software [Myer92]. For a classical information system, this portion is rather
representative. For other systems, this portion can largely vary from 10% (e.g. in a
scientific calculation intensive application) to 80% (e.g. for a word processor).

Software plans and
requirements

Validation

Validation

Product design

Verification

Detailed
design

Verification

Code
Unit
test

Integration

Product
verification

Operations and
maintenance

Revalidation

Implementation

System test

System
feasibility

UI Design occupied 45% of the total
amount of time devoted to each activity
UI Design occupied 45% of the total
amount of time devoted to each activity

50%50%

37%37%

Mean = 44%Mean = 44%

Figure 1-2 The waterfall model

Chapter 1 The need for reverse engineering

16

Another study [Boeh88] demonstrated that the UI design and implementation
occupied 44 % of the total time devoted to each activity in the development cycle of
a software (figure 1-2). 45% percent of the time needed to make the preliminary
analysis (feasibility, requirements, design) was devoted to UI, 50 % of the coding
time was needed to develop the UI, and 37% of the total time for the testing and
maintenance. As the resources needed for UI development are often underestimated,
this shows the importance of the development of techniques for reengineering UI as
the conception of this part of the system consumes almost the half of the time to
develop an entire information system.

We consider that reengineering of a software (and consequently of its two parts, the
functional core and the UI) can be decomposed into two successive steps: the
reverse engineering and the forward engineering. The reverse engineering of a UI
consists in the examination of the current implementation in order to extract an
abstract representation and the forward engineering step is the generation of a new
UI based on this abstraction.

Reengineering thus involves the reverse engineering of source code, which is the
subject of this thesis. Chikofsky and Cross [Chik90] give the following definition:
“Reverse engineering is the process of analyzing a subject system to identify the
system’s components and their interrelationships and create representations of the
system in another form or at a higher level of abstraction”.

Reverse engineering can have different objectives and thus produces different
outputs. We can distinguish:

1. Reverse engineering of the domain and data. Several works have already been
conducted on this subject [Hain95, Embl98, Estie03, Cres04, Gott04,
Astr05]. The aim is to reconstruct the domain model, data structure or/and
databases used by an information system. The points of interest here is not to
reconstruct the information system as it exists, but only to keep the data,
which is the true asset of this type of system, and from this, either document
the system for future enhancements or build a new system based on the
“old” data structure.

2. Reverse engineering of the task model [Paga02]. In this case, only the
sequence of tasks is recovered. This is a reverse engineering at a very high
level of abstraction as no information about the composition of the UI or

Chapter 1 The need for reverse engineering

17

data processed in the information system/UI are recovered at this level of
abstraction.

3. Reverse engineering of the UI (see chapter 3). In this case, the presentation
(components and structure of the UI) and dialog (behaviour of the
components) are captured in a model.

The reverse engineering of the domain and the task models has been already
addressed in a significant manner: this will be one of the reasons explaining why we
will focus on reverse engineering of UIs. There are several benefits for reengineering:

• Practical benefits: Software development productivity is improved if
programs can be enhanced instead of being rebuilt. It is then possible to
modify an information system for previous stages in the development
process. Major pieces of existing systems can also be reused with reduced
efforts. It can also enable tools to debug or improve older systems and so
develop information system quality [Rug94].

• Economical benefits: Costs related to the complete reconstruction of huge

legacy systems can be unaffordable. A generalization and automation of the
process of reengineering would save lots of resources. J. Salisin showed that
the techniques of reengineering get up to 35 % of savings on the total of the
costs related to maintenance [Sali92].

• Theoretical benefits: Reengineering has often to be used with old systems

that have not been developed following a structured approach. Reengineering
helps to restructure the application, by using models and producing
documentation, and so reinstates the system in a more comprehensible,
controllable and structured implementation.

1.3 Importance of reengineering

A legacy system is an information system or application program, which continues to be
used because of the prohibitive cost of replacing or redesigning it and despite its
poor competitiveness and compatibility with modern equivalents. The implication is
that the system is large, monolithic and difficult to modify [Fold98].

The number of applications written in obsolete languages or systems is incredibly
high: it is estimated that 60% of all the code in the world is legacy code. Therefore,

Chapter 1 The need for reverse engineering

18

maintenance is the major source of revenue of development/maintenance agencies.
For example, let us consider the COBOL language. The archaism of the COBOL
language is shown on the diagram of programming languages history (figure 1-3).
Despite this fact, it is still extremely used in organizations [Kapo03]:

- 2.4 millions COBOL programmers maintain 9.3 million COBOL application.
- There are about 200 billion “active” lines of COBOL code in the world.
- The increase rate of COBOL lines is about 5 billion lines/ year.

Figure 1-3 History of langages[Pixe]

Chapter 1 The need for reverse engineering

19

Legacy systems often encapsulate implicitly years of business-process experience and
evolution. They contain vital business data and thus represent valuable assets for
organizations. Therefore, organizations usually prefer to apply “patches” to the
existing system instead of changing the system completely (4 out of 7 programmers
are engaged in maintaining existing software systems). Maintenance is often preferred
to a complete reconstruction for two reasons.

1. Firstly, the organization fears to lose value during the conversion as systems
are loaded with diverse business policies and corporate decisions [ElRa00].

2. Secondly, it is easier to take the decision to gradually spend some parts of the
Information Technology budget for the maintenance of the system rather
than to engage considerable funds for a complete reconstruction. Moreover,
it could happen that the cost related to a complete reconstruction of the
legacy system is unaffordable, or simply technically impossible.

Maintained systems have several shortcomings. Most of them are undocumented,
they use legacy languages and skills (unsatisfactory performance) and their user
interfaces are not of good quality (usability problems) or they are implemented in an
old fashion (e.g. character-based UI). When they are documented, the documentation
is limited or too partial to allow being reused. There are also indirect costs related to
those poor and archaic UIs, as new users have to be trained longer to use the legacy
system. As they do not have any formal architecture, the evolution, extension or
modification of these systems is very hard, if not impossible. Furthermore, these
kinds of applications are unable to benefit from the “Internet/Mobile technology”,
which is currently a handicap compared to modern systems, but will become a true
burden in the future. Finally, the quality of these maintained systems is being
deteriorated continually over time, and when accumulated during long periods,
requires enormous human resources [Kapo03].

All these factors stress the importance of developing methods for reengineering
legacy systems. We can distinguish two main aims for the reengineering of old
systems:

1. Modernizes a legacy application by adding features to benefit from the new
possibilities of the target system (e.g., moving the application to a newer and
faster platform, re-purposing the system, integrating the system with other
legacy system, enabling web access to the system).

2. Transform existing (modern) applications to make them available on a variety
of computing platforms.

Chapter 1 The need for reverse engineering

20

The major focus of this document is on this second aim of reengineering (i.e. to
transform an information system to another platform), but applied only to the UI
part of an information system. Due to the focus on the platform, the next section
will examine significant evolution of the platform to be considered.

1.4 New needs for reengineering

The technological push of newly marketed access devices (figure 1-4) - such as
Personal Digital Assistants (PDAs) and Wireless Access Protocol (WAP) enabled
cellular phones - has exacerbated the need to access the same web site, from different
access devices [Boui02a]. With the demand for Internet access increasing for e-mail,
electronic commerce, current events, and quick information, the need for Internet-
capable access devices has extended beyond the professional desktop to the home
office, to other rooms of the house or between office and home. Moreover, the same
need appears for other types of UIs in order to take the benefits from a mobile
access to information systems.

On this subject, some evocative figures can be quoted:
- Worldwide mobile devices growth is more than 45% between 2003 and

2004[Cana04].
- The market of the mobile devices with an Internet access was estimated at 1,77

billions US$ in 2002 and converge with fixed terminal[Etfo03].
- Microsoft « mobile and embedded » annual revenue surges 58% for 2004[Can

a04].
- Internet-Connected PDA will outnumber traditional PDAs by 2006[Cana04].
- 85% year-over-year worldwide growth for smartphones (400% for US) [Cana04].

The market for mobile platforms (e.g., PalmPilot, Pocket PC, laptop, mobile phone)
is growing twice faster than the market for traditional desktop computers [Ber98].
Microsoft’s sales projection (table 1-1) suggests that the mobile version of their
Operating System (OS) should outnumber the classical PC version in 2008 [EtFo03].

As the expansion rate of mobile platforms is becoming greater and their capabilities
have considerably improved, there is now a need to adapt the huge amount of UIs
rapidly in order to make them accessible to a variety of contexts of use (e.g., different
devices in different environments)[Boui02c].

Chapter 1 The need for reverse engineering

21

WML

Nokia Communicator

Ericsson 2000

Palm C

HTML

Microsoft WebTV

TV Set
Top Box

Palm IIIe

Alcatel WebPhone

Workstation
HTML browser

Fixed
phone

Handset

VoiceXML

C++, Java

Pocket
computers

Laptop
computers

Desktop
computers

Hewlett Packard
Jornada

Casio Cassiopea

Low resolution
Mid resolution

High resolution

Wintel machine
Macintosh

TerminalTeletype

Graphical UIsCharacter UIs

Development language

Figure 1-4 Different languages for UIs development

Sales Projections, in Millions of Units

 2002 2003 2004 2006 2008 2010

Worldwide
Windows PCs 126 135-138 145-150 170-175 190-200 215-225
Windows CE Devices 9 14-17 30-35 105-115 200-220 300-340

USA

Windows PCs 41 42-44 45-47 49-52 52-55 55-60

Windows CE Devices 3 4-5 6-8 19-22 35-40 55-60

Table 1-1 Windows PC/ Windows CE sales projection[EtFo03]

To address these demands, ad hoc development is no longer considered acceptable
in terms of the cost and time required for software engineering, development and
maintenance. There are several existing methods to ensure the cross-platform use of
a UI. Portability of a UI generally refers to the capability of a UI to be ported from
one computing platform to another with an effort that remains minimal. Galaxy
(www.ambiencia.com) enables developers to design a UI on one platform, say MS

Chapter 1 The need for reverse engineering

22

Windows, and to export it without any change to other platforms, e.g., Mac OS X
and Linux. The individual UIs then adhere to the “look and feel” that is proprietary
to these respective platforms. The advantage is consistency but the drawback is that
the UI does not take into account specific properties of each platform. In addition,
each produced UI does not take any benefit from the interaction capabilities of each
platform (or restrictions) since the UI basically remains the same. The development
of a UI does not frequently envisage the future desire for portability [Boui04].
Consequently, when the need arises to port a UI from one platform to another, it is
rather difficult to support this porting. Developers do not necessarily want to start
from scratch again to design a UI for a new platform since a UI already exists that
could be a potential source of inspiration, if not a starting point.

In this second case, transcoding tools automatically transform a UI code from the
original platform to a new UI code for the target platform. This transformation can
occur at design-time (i.e., the transformation is made only once and re-inserted in the
new platform) or at run-time (i.e., the transformation is performed on demand when
the UI is requested). Any HTML page can be transformed into a WML (Wireless
Markup Language) deck of cards on the fly when the mobile phone user accesses a
web page [Kaas00].

Portability and transcoding tools suffer from shortcomings: the former only produce
the same UI layout for all platforms while the latter only apply code to code
transformations that are peculiar to any couple (source platform, target platform).
Both remain rather inflexible (no design alternatives), uncontrolled (no human
intervention to fine tune the transformation), and very specific (hard to generalize to
other couples). They do not necessarily consider constraints imposed by the target
platform such as: operating system, programming language, screen resolution or
interaction capabilities.

1.5 Objectives and working hypotheses

1.5.1 Aims and thesis statement

The aim of this research is to apply the reverse engineering process of existing UIs
thanks to a model-based approach in a way that is as much automated as possible as
to minimize resources required for this process (time, costs, persons). As the subject
of this thesis is reverse engineering, this research is embedded in a larger process, and
the results of the abstraction obtained by this approach will be reused in a forward

Chapter 1 The need for reverse engineering

23

engineering phase to regenerate UI code, thus achieving a complete cycle of
reengineering. Forward engineering is supported in several other works [Fole91,
Luo93, Szek92, Wils93, Vand94, Vand95, Szek96, Puer96, Puer97, Olse00, Thev99,
Mori03].

The thesis statement for this dissertation is that the application of the reverse engineering at
a higher level of abstraction than the code level supports UI reengineering with flexibility while
preserving predictability, more generality and controllability in the process than with code-to-code
(transcoding) approaches or current reverse engineering approaches.

The particularity of this approach lies in its flexibility, the fact that the reverse
engineering can be adapted according to the context of use. Thanks to a flexible
approach, the process can be modified following targeted platforms while ensuring
predictable results. Therefore, a set of reverse engineering techniques and heuristics is
available and designers can control the selection of the most suitable techniques to be
applied during the reverse engineering. The flexible techniques and heuristics on
which the approach is based have been formalized and will be expanded, to enhance
generality of the approach by considering alternative design options and cover the
maximum number of transformations of the UI model.

1.5.2 Working hypothesis and methodological choices

The approach developed in this thesis is characterized by the following
methodological choices:

Model Based Approach
To overcome most shortcomings of transcoding identified in section 1.4 and to
address the needs of UI portability, we argue that a UI reverse engineering process
can be combined with UI forward engineering process to produce not only more
usable UIs in a logical way, but also to benefit from the reverse engineering to port a
UI to any other target platform. In a model based approach [Szek96, Puer96, 97], it is
possible to generate several UI for different platform (or contexts of use) thanks to a
single specification. Instead of having a UI specified in m source languages to
translate into n different target languages (m x n translation tools), the model-based
approach reduces this number to m plus n translation tools (m + n) as each of the n
languages need one translator to models, and conversely, each of the m languages
requires one translator from model to the language.

Chapter 1 The need for reverse engineering

24

Model-based approaches (MBA) can produce a user interface in a forward or reverse
engineering manner by exploiting knowledge captured in various models, such as
task [Kong99], domain [Deba95], presentation [Moor96] and dialog [Merl93] models.
However, most existing UI have been developed without any model-based
approaches. The goal of this work is to address this problem by examining how a
user interface description can be reverse engineered to migrate it to another
environment. Finally, we also want to work towards making the process compatible
with the Model-Driven Engineering (MDE) as recommended by the Object
Management Group (www.omg.com), as it represents a major trend in software
engineering.

Output language
The UsiXML (USer Interface eXtensible markup Language – http://www.usixml.
org) language [Limb04a] has been chosen to express the abstract representation of
the UI and this for three main reasons: firstly, it is able to represent most aspects of
interest of this thesis (context description, large list of interaction objects, etc…).
Secondly, it is license-free language and can thus be used without restriction, such as
extension (this is not the case with other markup languages such as UIML or XIML
[Puer01]. Thirdly, a set of tools is already available, thus allowing us to test the results
of the reverse engineering by combining them with a forward engineering tool.

Context limited to the platform
The goal of this thesis is to develop a reverse engineering process to allow “mono-
context” user interfaces to be used in different contexts of use. In the reminder of
this work, the context of use will focus on the computing platform as this parameter
has the greatest impact on UI when a change of context of use occurs. In the general
definition of a context of use [Calv03], the context of use is defined as C=(U,P,E)
where U denotes the end user, P denotes the computing platform used by the end
user, and E denotes the physical environment in which the end user in carrying out
her interactive task.

Scope
The most deeply investigated type of UI is web pages of information-centric Web
sites. The scope of this research is not only Web UI, but it focuses particularly on the
reverse engineering of standard HTML 4.0 Web pages as this is the most widespread
type of UI. The particularity of the HTML language is that it is a declarative language
(the code is composed of a set of declaration, which are interpreted) and the source

Chapter 1 The need for reverse engineering

25

code is directly accessible, without decompilation. The reverse engineering of this
type of languages is easier than imperative languages (such as C++ or Delphi) in
which the code is composed of a set of instructions and is generally compiled.

But HTML is not the only UI language that has been analysed in this research. In
chapter 7 the reverse engineering of UI expressed in another modality (VoiceXML)
is treated. The seventh chapter contains also the description of a method for the
reverse engineering of WML (mobile phones UI). The reverse engineering of
Windows UI is the subject of chapter 8. This has been done by adding new reverse
engineering rules or adapting existing techniques developed for HTML UI. Figure 1-
5 shows the history of the most widespread markup languages. The mark-up
languages analyzed in this thesis are surrounded with a dashed line.

1980 1986 1999 2000 2001 - 2004- 1993 - 1997 1998

SGML ISO
SGML

WML
1.0

HTML
4.0

WML
2.0

XML

XHTMLHTML

Voice
XML
2.0

Voice
XML

WML
1.1

Figure 1-5 History of markup-languages

This research focuses on the reverse engineering of the declarative portion of the UI
specification. This implies a limited recovery of the dialog properties of UI as an
important part of the behaviour or dynamic effects are coded thanks to scripts and
imperative languages (i.e. JavaScripts for HTML, WmlScripts for WML, EcmaScripts
for VoiceXML or an imperative language such as C++ for windows UI). However,
some dialog components can be specified declaratively and thus the dialog can be
partially recovered.

Chapter 1 The need for reverse engineering

26

Design time and run-time applicability
The approach proposed in this research is developed so that it can be used in two
different manners: either manually by a designer who can control the reverse
engineering process with some accuracy, or automatically without any human
intervention, but with some loss of precision and quality.

Multiple level of abstraction
Another goal of this research is to allow designers to reverse engineer UI at multiple
levels of abstraction on demand. Typical levels include device independence (i.e.
obtaining a UI model that is independent from any interaction device), computing
platform independence (i.e., obtaining a UI model that is independent from any
computing platform), and modality independence (the system should also produce a
UI model that remains independent of any modality of interaction). At this level,
there should be no reference to the peculiar interaction techniques and modalities
(e.g., character UI, graphical UI, vocal UI, and virtual UI) [Boui05].

Static analysis
The reverse engineering applied in this research consists in a static analysis of the
source code, i.e. the derivation rules are applied without executing the code.

Validation
Finally, the validation of the thesis can be divided into two different aspects, the
internal and the external validation. Internal validation is a theoretical analysis of the
proposed approach, achieved in this document by evaluating the correctness,
coherence, performance and coverage of the approach. The second part, the external
validation, is an evaluation of the quality of the UI reengineered thanks to this
approach. The produced models have to be regenerated to be able to evaluate the
new UI. As it would imply the combination of another tool/approach with the
current one and thus biases the result of the investigation, a qualitative analysis of the
produced model and the tool has been preferred. This was done by conducting an
exploratory study completed by case studies.

1.5.3 Reading Map

The remainder of this document is structured in ten chapters.
The next chapter is decomposed into three parts: the first is the description of the
conceptual reference framework in which this research takes places. The second part
is about the adaptation of reengineering definition to the UI domain and their

Chapter 1 The need for reverse engineering

27

location the framework. The third part of this chapter describes the retargeting
concept, one of the contributions of this thesis.

The third chapter contains the related work on reverse engineering and reengineering
of UIs. The first part of this chapter is dedicated to legacy system reverse
engineering, and the second part contains approaches for Web reverse engineering.

The fourth chapter presents another contribution of this thesis, a semi-formal
notation to express the reverse engineering rules. Firstly, a description of this
notation is given and secondly some examples of reverse engineering rules for
different languages are explained. The complete reverse engineering rules are given in
appendix C.

The fifth and sixth chapter describes two tools developed to support retargeting of
HTML Web pages. Each chapter contains a large description of the tool, an analysis
of the strength and weaknesses of the tools, an illustration of some derivation rules,
future possible enhancements and some examples of reverse engineering and
reengineering.

The seventh chapter is dedicated to the reverse engineering of two other markup
languages, WML and VoiceXML. This chapter is divided into two parts, the first
describes the Wireless Markup Language, the structure of the language, reverse
engineering methods and rules, and the presentation of a reverse engineering
prototype for the reverse engineering of WML UI. It also contains an example of a
reengineering thanks to models extracted with the tool. The second part contains
also a description of the VoiceXML language, its structure, the illustration of several
derivations rules for this language. Examples of reverse engineering can be found in
appendix H.

The eighth chapter follows the same structure as for the seventh chapter, but for
another type of UI, windows resource files. The chapter contains a description of the
language and its structure, so as methods and rules to recover an abstract model from
this language. A dialog box is also reverse engineered in appendix H to illustrate the
method developed in the chapter.

The ninth chapter contains the internal and external validation of this thesis and the
last chapter concludes this dissertation.

Chapter 2 A Conceptual
Framework for UI Reverse
Engineering

After the presentation of the reengineering problem and the incentives for reverse
engineering, this second chapter defines some terms and concepts so as a conceptual
framework used throughout this thesis. The first section presents the multi-context
framework and the position of the reverse engineering process in this framework.
The second section contains several software-reengineering terms adapted to the
reengineering of UI. The third section introduces a new concept in reverse
engineering, the retargeting of UI, and locates this process in the conceptual
framework.

2.1 The Multi-context Framework

The Cameleon multi-context reference framework [Calv01,02,03] locates UI
development steps for context-sensitive interactive applications. A context is defined
as a triple of the form C=(U, P, E) where E is an element of the environments set
considered for the interactive system, P is an element of the platforms set considered
for the interactive system and U is an element of the users set for the interactive
system. As shown on figure 2-1, the framework structures development for two
contexts of use, here for two platforms: the one on the left represents the source and
the one on the right represents the target.

Chapter 2 A Conceptual Framework for UI Reverse Engineering

29

The development process can be decomposed into four steps:
1. Task and concepts: describe the various tasks to be carried out and the domain-

oriented concepts as they are required by these tasks to be performed.
2. Abstract UI: a canonical expression of the renderings and manipulation of the

domain concepts and functions in a way that is independent of the concrete
interactors available on the targets. The elements used in the abstract UI are
abstractions of existing widgets.

3. Concrete UI: concretizes an abstract UI into Concrete Interaction Objects (CIOs)
so as to define widgets layout and interface navigation. This interface is now
composed of existing UI widgets.

4. Final UI: The UI produced at the very last step of the reification process is
supported by a multi-target development environment. It is expressed as source
code.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Source platform Target platform

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Source platform Target platform
Figure 2-1 The Multi-Context Framework

The downward arrows on figure 2-1 represent reification steps (forward engineering),
from the more abstract to the operational interface. Reification is the transformation
of a description (or of a set of descriptions) into a description (or a set of
descriptions) whose level of abstraction is lower than that of the source one(s). In the
multi-target reference framework, it is the inference process that covers the inference
process from high-level abstract descriptions to run-time code.
Upward arrows stand for abstraction steps. This process transforms a description
into a description whose semantic content and scope are richer/higher than the
content and scope of the initial description content. In the context of reverse
engineering, abstraction is the elicitation of descriptions that are more abstract than

Chapter 2 A Conceptual Framework for UI Reverse Engineering

30

the descriptions that serve as input to this process. Finally, horizontal arrows
correspond to the translation of the interface from one type of platform to another,
or more generally, from one context to another. The complete definitions of the
terms used in this framework can be found at http://giove.cnuce.cnr.it/cameleon/
glossary.html.
Not all steps should be achieved in a sequential ordering dictated by the levels.
Instead, locating what steps are performed, when, from which entry point and
toward what subsequent step is important. In figure 2-1, transcoding tools start with
a final UI for a source platform () and transforms it into another final UI for a
target platform (). Similarly, portability tools start with a concrete UI for a source
platform () and transform it into another concrete UI for a target platform (),
that in turn leads to a new final UI for that platform (). To overcome shortcomings
identified for these tools, there is a need to raise the level of abstraction by working
at the abstract level. UI Reverse Engineering abstracts any initial final UI () into
concepts and relationships denoting an abstract UI (), which can then be translated
into a new abstract UI () by taking into account constraints and opportunities for
the target platform. UI Forward Engineering then exploits this abstract UI() to
regenerate a new UI adapted to this platform, by recomposing the concrete UI()
which in turn is reified in an executable UI().

Task & co.

AUI

CUI

FUI
Figure 2-2 Four levels of abstraction

Example on figure 2-2 illustrates the four levels of abstraction of the framework on a
part of the Google UI. The final UI corresponds to the sub-part of the Google UI as
it is presented to the user. The same excerpt at the concrete UI level is represented

Chapter 2 A Conceptual Framework for UI Reverse Engineering

31

thanks to a window containing a textbox and two buttons. At the abstract UI level,
the textbox is abstracted by an inputer and the buttons as activators embedded in a
container. Finally, at the tasks and concepts level, the UI can be described by a
principal task “Search Page”, which is decomposed into three subtasks, the “enter
keyword” task followed by either the “launch search” task or “launch special search”
task.

2.2 Reengineering Definitions

In this section, some definitions of software engineering [Chik90] [Geor01] are
adapted to UI domain so that those definitions can fit into Cameleon reference
framework (figure 2-3) [Calv03].

Reengineering is the examination and the alteration of a subject system to reconstitute it
in a new form and the subsequent implementation of the new form. In the UI
domain, it consists in a transformation of the UI at a higher level than the code to
adapt it for another context of use. The reengineering of a UI thanks to a model-
based approach (MBA) – which is the method used in this document – is composed
of two phases : reverse engineering which recovers a specification at a higher
abstraction level than the code and forward engineering which produces a new UI
code (or less abstract specification) based on an abstract description of the UI. It can
be applied at any level from the reference framework.

Recoding is defined as a change to implementation characteristics such as language
translation and control-flow restructuring (source code level changes), conforming to
coding standards, improving source code readability, renaming program items, etc.

Reformatting is defined as the functionally equivalent transformation of source code
that changes only the structure to improve readability. A synonym for reformatting is
Refactoring. Refactoring is about improving the design of existing code. It is the
process of changing a software system in such a way that it does not alter the
external behaviour of the code, yet improves its internal structure. Refactoring is a
change made to the internal structure of software to make it easier to understand and
cheaper to modify without changing its observable behaviour. These three operations
(recoding, reformatting and refactoring) occur at lowest level, the final UI level.

A term often used with different meanings in the UI reengineering literature is
transcoding. In our approach, we define transcoding as the modification of the UI code

Chapter 2 A Conceptual Framework for UI Reverse Engineering

32

to adapt it for another platform. It is opposed to reengineering (reverse and forward)
as no abstraction process is used during the transcoding. A representative example of
a transcoding approach is IBM Websphere [Brit01]. Transcoding differs from
recoding because the first is only used to modify the UI while the latter modifies the
functional core of the application. As these last definitions are applied at the code
level, they are situated at the final user interface level on the framework (Final UI,
between and on figure 2-1).

Task &
Concepts

Abstract
UI

Concrete
UI

Final UI Reformating

Transcoding
Recoding

Respecification
Retasking

Restructuration

Program
understanding

Redocumentation

Reverse Engineering

Design recovery

Reengineering

Revamping

Figure 2-3 Reengineering definitions in the framework

Revamping consists in changing the UI without modifying the core application, which,
in fact, ignores the changes operated at the terminal level. Revamping makes it
possible to considerably modify the look and feel of the user interface. But not only
the UI presentation can be changed. Also the phrasing can be redefined, multimedia
features can be added, or on-line documentation can be created. Revamping is
mostly used for improving the aesthetics of an existing UI to make it more usable. It
is applied at a higher level than a transcoding approach, on UI specifications.

Re-specification is defined as a change to requirement characteristics. This type of
change can refer to a change of the form of existing requirements or to a change in
the system requirements (e.g., adding new requirements, changing or deleting existing

Chapter 2 A Conceptual Framework for UI Reverse Engineering

33

requirements). This can be applied at every stage of the development process until
the final UI.

Restructuration is the transformation from one presentation form to another at the
same level, while preserving the subject’s external behaviour (functionality and
semantics). Therefore, the task, the functions (application model) and the domain
models should remain identical, but the process can be applied on the three other
levels.

Retasking is the translation of the context-dependent task specification from one
context to another, at design time. For instance, if an application is to be used on
both a PDA and a computer, the task on the PDA will be less complicated than on
the computer (the task tree will be different). This definition applies to the most
abstract level from the reference framework.

Reverse engineering is the process of analyzing a subject system to identify the system’s
components and their interrelationships and create representations of the system in
another form or at a higher level of abstraction. It can be applied at any level to
recover a more abstract representation from the UI.

Program understanding is a related term to reverse engineering. Program understanding
always implies that understanding begins with the source code (final UI level) while
reverse engineering can start at a binary and executable form of the system or at high
level descriptions of the design.

Design recovery is a subset of reverse engineering in which domain knowledge, external
information, and deduction or fuzzy reasoning are added to the observations of the
subject system to identify meaningful higher level abstractions. As reverse
engineering, it applies to all the levels of the reference framework.

Redocumentation is a form of restructuring where the resulting semantically equivalent
representation is an alternate view intended for a human audience. As
restructuration, it applies to the three first levels of the framework.

Chapter 2 A Conceptual Framework for UI Reverse Engineering

34

2.3 Retargeting

2.3.1 The retargeting concept

In this section, a new approach is proposed to support the reengineering of UI, and
more particularly HTML pages, into other formats thanks to a model based
approach: retargeting. Retargeting [Boui2b] can be used to limit the number of
different UI models produced by traditional reverse engineering combined with a
translation, and helps the designer in selecting more appropriate models for a specific
platform or category of platforms.

Several possible models resulting from abstraction and translation. An
interface created for a particular platform can be abstracted at the concrete UI level
as a collection of interrelated widgets called concrete interaction objects. They are
said to be concrete because they are independent of the computing platform. If we
consider the relation between a concrete interaction object (CIO) -platform
independent- and an interaction object belonging to a final UI as of the type one-to-
many (see figure 2-4), a reverse engineering process will produce one concrete model.
When the need arises to translate the model to another context of use, several
possibilities exist, as a widget can be translated by every concrete interaction object
belonging to the same class of interaction object having the same behavior. For
example, a group of radio buttons can be translated by a group of checkboxes where
only one choice is possible, a drop down list box, a simple list box, a text-box, a
group of buttons or can still be represented by a group of concrete radioButtons.
Translations are thus of the type 1-m.

Final User
Interface (FUI)

ConcreteUser
Interface (CUI)

Rendering

Code

Platform-
independent
CIO

Download

<input type=submit value=“Download" name=btnG>

HTML pushbutton

Graphical2D push button

OSF/Motif
XmButton

Windows
push button

Download Down
Load

VRML97/X3D
button

Software
key

Function
key

Graphical3D push button Physicalpush button
Platform-
independent
CIO type

Final User
Interface (FUI)

ConcreteUser
Interface (CUI)

Rendering

Code

Platform-
independent
CIO

DownloadDownload

<input type=submit value=“Download" name=btnG>

HTML pushbutton

Graphical2D push button

OSF/Motif
XmButton

Windows
push button

DownloadDownload Down
Load

Down
Load

VRML97/X3D
button

Software
key

Function
key

3D push button Physicalpush button
Platform-
independent
CIO type

Figure 2-4 Different representation for a button

Two major constraints reduce this number of possible results: the domain and the
platform. The domain contains the data that has to be displayed on CIOs and
therefore it restricts the number of possibilities, by the fact that a CIO cannot
represent every type of information. The “nature of a domain object is the
determining factor in how to present and make the object available to the user”
[Puer99]. The second constraint is the platform, on which a predefined set of CIO is

Chapter 2 A Conceptual Framework for UI Reverse Engineering

35

available (e.g. there are no checkboxes or radio buttons on WML-enabled phones,
these objects have to be represented by list boxes with one or more selectable items).
Further (weaker) constraints can later be used in order to select the most appropriate
interaction object, such as the space consumption, the ease of use, the “look and
feel” of the application. In our approach, as we reverse engineer a concrete or
abstract UI specification, we do not have information about the domain model, but it
is possible to reverse engineer an interface for a pre-selected computing platform and
so limit the number of possibilities. This new type of operation, retargeting, was
introduced in the reference framework (figure 2-6).

Reengineering by composing an abstraction followed by a translation. This
classical approach consists in going up to the concrete or abstract interface point
(from level to or from to on figure 2-1), and translate it in another
abstract interface specialized for a particular platform (from to or from to
on figure 2-1). For the translation step, there are two possibilities: either the target
platform is more constraining than the source platform, and in this case the
translation will reduce the number of possibilities (e.g., the translation from a PC UI
into a mobile phone UI), or the target platform is less constraining, and the
translation will increase the number of possible UI description (e.g. the translation
from a Palm UI into a Macintosh UI).

These adapted abstract interfaces are then reified (from to or to on figure
2-1) in order to obtain UI code for another platform in the forward engineering
phase. This method may generate several concrete UI (or abstract UIs) in the
translation step, as every interaction object can be translated by a series of other
objects (figure 2-5).

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Final UI

Abstract UIAbstract UI

Final UI

Concrete UIConcrete UIConcrete UIConcrete UIConcrete UIConcrete UIConcrete UIConcrete UI

Abstract UIAbstract UIAbstract UIAbstract UIAbstract UIAbstract UI

Context A Context B

1

2

3

4

5

6

7

8

Figure 2-5 Proliferation of UI descriptions

Chapter 2 A Conceptual Framework for UI Reverse Engineering

36

The abstraction process is a relation of the type m-1, while translation is of the type
1-m, thus the combination produces a relation of the type m-m.

Reengineering by retargeting. Its rationale is that, if the target (class of)
platform(s) is known before the reverse engineering, the resulting user interface
description for the new context of use will be of better quality - in the sense that
more accurate reverse engineering rules will be applied, producing models suiting a
particular context of use - and that this process will help the designer in the
translation step by reducing the number of possible results.
The retargeting process is represented by the dotted line on figure 2-6. As shown, the
reverse engineering is directly applied for the target platform. Once an abstract or
concrete UI model has been extracted for a particular context use, it can be used in
the forward engineering phase to produce a new UI.

Task & Concepts

Abstract UI

ConcreteUI

Final UI

Task & Concepts

Abstract UI

ConcreteUI

Final UI

Source platform Target platform

Task & Concepts

Abstract UI

ConcreteUI

Final UI

Task & Concepts

Abstract UI

ConcreteUI

Final UI

Source platform Target platform
Figure 2-6 Retargeting in the Cameleon framework

Retargeting is more relevant at the CUI level, as the possible transformations are
abundant at this level. The concrete interaction objects are platform-independent
widgets, but depending on a modality. This level of abstraction gives several
possibilities during the translation of the interaction objects, as several corresponding
CIO exist for every object belonging to the UI (the CUI level is composed of 34
elements in the version 1.4.6 of UsiXML). Moreover, attributes are also numerous at
the CUI level and this fact allows also several possible transformations.
At the abstract level, elements are both amodal and platform-independent. This
property reduces dramatically the number of abstract interaction widgets (there are
only five different types – called facets - of interaction objects in the last version of
UsiXML). However, retargeting can also be applied at the AUI level, but these

Chapter 2 A Conceptual Framework for UI Reverse Engineering

37

transformations are almost constituted of transfer of elements from one container to
another. Some other possibilities exist, for example the conversion of one
component into an AUI element possessing two facets (for example the
transformation of an image-link into a navigation facet with/without an output
facet). As possibilities at this level are limited, the retargeting is only applied at the
CUI level in this document.

Comparison of both approaches. There are several advantages for retargeting:

1. First of all, this technique decreases the number of possible results, and thus the
cognitive load for the designer during the translation step. Indeed, by
removing useless elements for a particular context of use and by
transforming some of them in elements suited for a particular class of
platforms, the number of transformations and modifications to be achieved
afterwards by the designer is reduced. She has also fewer components to take
into account during the translation (if some operations are still needed) as the
model is contracted during the retargeting process.

2. Secondly, another implication of the previous advantage is that retargeting
enhances the adequacy for a particular context of use, as it reaches a better level
than traditional reverse engineering and translations, thanks to reverse
engineering rules tailored for a given context.

3. Thirdly, retargeting benefits from accessing the FUI code to refine the reverse engineering
rules, as the UsiXML language can not take into account all the information
contained in the final UI code (as it is an abstract language). Therefore, by
knowing the future context of use, it is possible to take advantage of this
information to apply more appropriate reverse engineering rules for
particular code statements. A simple example of this is the address tag in
HTML, which is rendered as a simple label in browsers. This tag is used to
describe information about the author, date etc. of the current Web page. By
applying “standard” rules, it would be reverse engineered as a textComponent
but thanks to retargeting rules, it is possible to determine that this
component can be discarded if the target context of use is for platforms with
limited display capabilities. The same objective could be achieved by using
annotations, but in this case, there should be modifications of the current
forward engineering tools to be able to process these annotations, or a new
tool should be used to complete the translation step to take into account
annotations and transform elements accordingly. Thus, by using this

Chapter 2 A Conceptual Framework for UI Reverse Engineering

38

approach, the process remains compatible with the other forward engineering
approaches currently developed at UCL.

4. Fourthly, it avoids unnecessary transformations due to the target context of
use (possible to exploit code to eliminate portions of it known as platform
specific). Some code structures are easy ways specific to the final UI code
languages, which can also be discarded if we know that the model will be
used in another context of use. An example of this is the extensive use of
table containing blank images to stabilize layout in HTML 4.0. If we consider
a full (or normal) reverse engineering, these elements have to be recovered in
the CUI or AUI model, so that the same layout can be regenerated in the
case of a looping reengineering to HTML. However, in the case of
reengineering to WML or Java, these elements can be removed from the
specification during the reverse engineering as they have no utility for these
types of UI.

5. Fifthly, retargeting allows to save resources, and thus it provides a gain in
efficiency, as the models are shortened (so as the processing time), and it should
also reduce the time required to achieve the transformation step. This efficiency
property also encourages potential automated reengineering processes, by
producing a model consuming less resources and simpler to process
afterwards than one model generated by a “standard” reverse engineering, as
retargeting combines two separate processes of traditional approaches.

But these advantages have a price, particularly a loss of generality of the model-based
approach and a loss of maintainability. It also implies that the principle of separation
of translation-abstraction and the platform-independence principle are not preserved
in the retargeting approach.

1. Loss of generality/reusability, because contrary to a classical reverse engineering
that produces a model which is the source for the generation of many UI, the
models produced by retargeting can only be used for a group of platforms
targeted by the process. The model does not contain the entirety of
information produced by traditional reverse engineering as choices are made
during the retargeting process (transformations, deletion, transfer of
elements…) and it would be necessary to perform again the reverse
engineering if another group of platforms would be targeted. However, the
possibility to achieve a reverse engineering without retargeting operations is
still possible in our approach, and it is also possible to select retargeting
operations suited for a large group of platforms (e.g. monochrome platforms,

Chapter 2 A Conceptual Framework for UI Reverse Engineering

39

small platforms, sound-disabled platforms etc.), i.e. moderate the retargeting
process and thus the loss of generality.

2. There is also a loss of maintainability, a loss linked to the loss of generality, as
the modifications of an abstract or concrete UI specification has to be
reflected on each retargeted model, which is not the case in standard reverse
engineering. In this latter case, the general model is modified, and thus
maintenance operations are kept during the translation/forward engineering
steps.

3. The separation of concerns is intrinsically preserved in traditional reverse
engineering, i.e. the separation of the processes of abstraction and translation. This
principle is lost in a retargeting process, as some parts of the translation are
performed concurrently with abstractions. Note that this does not affect the
conducting of the process itself, as the retargeting rules are focusing on one
sub-problem at a time.

4. Finally, another property of classical reverse engineering is the platform
independence of the abstracted UI model. This property is lost to some extent
(it depends on the retargeting rules that are applied) as the objective of
retargeting is to obtain a model tailored for a particular (class of) platform(s).
Therefore, this could be interpreted as a loss for the independence principle.

Table 2-1 summarizes and compares properties of both approaches.

Property

Classical reverse
engineering and

translation

Reverse
engineering by

retargeting
Possible translations High Low
Model Size High Medium
Adequacy to context Medium High
Model refinement by code None Achieved
Efficiency Medium High
Generality/reusability High Medium
Maintainability High Medium
Separation of processes Intrinsically preserved Not preserved
Independence High Low

Table 2-1 Comparison between reverse engineering and retargeting

An important property of MBA is kept in the retargeting, the reduction of the
amount of tools needed to transform a UI from one platform to another. This

Chapter 2 A Conceptual Framework for UI Reverse Engineering

40

reduction is from (m x n) to (m + n), where m is the number of source language and
n is the number of target languages. Without an abstract layer, we would have to
write m x n translators, whereas with the abstract layer, only m + n translators are
needed. This remains valid with a UI retargeted thanks to our approach.

Deciding between retargeting and classical reverse engineering depends on the
purpose of the UI reengineering: if a UI should be generated for a small group of
platforms (e.g. mobile phone and pocket pc), retargeting would be more adequate,
but if a UI should be generated for a large group of platforms with various
capabilities then classical reverse engineering would be preferred instead.
Retargeting is only applied on HTML UI in this thesis, as one of the major
motivations for HTML reengineering (see chapter 1) will be to transform these UI so
that they can be displayed on portable devices.

2.3.2 Alternatives during the abstraction process

Retargeting is achieved at the CUI level by translating the interaction objects in the
source UI into the chosen (by the user) concrete interaction object. There are four
main basic types of retargeting operations:

• Translate an interaction object of the source page into an object type specific to
the target platform. For example, it would be possible to translate an image-
map in a group of text-links or buttons when the target platform has no mouse
device.

• Modify the value of some attributes of the original interaction objects. For
example, for a monochrome platform, every colour attribute in each object has
to be modified in a black or white colour.

• Delete elements that cannot be displayed on the target computing platform. For
example, for a platform without sound capabilities, the background sounds of
an HTML page should be discarded.

• Transfer (Move) of interaction objects: platforms with smaller display
capabilities than the source imply that the layout and page composition have to
be modified. Some interaction objects can be moved from one logical window
(or abstract container used to structure the UI) to another one, or new logical
windows can be created and filled with transferred elements in order to cope
with the available screen surface.

The combination of these operations allows the designer to choose between several
alternatives during the reverse engineering process. For example, the retargeting of a

Chapter 2 A Conceptual Framework for UI Reverse Engineering

41

HTML UI to a mobile phone context offers multiple transformations that have to be
chosen by the designer. For each target context, a list of possible transformations is
available to the designer and the most probable one is already pre-selected. An
example for the translation of an image in the context of the retargeting for a mobile
phone (or any small platform) is given in table 2-2.
There are six available transformations for images for the retargeting towards mobile
phone context. The designer can choose to keep the image - in the .WBMP format -
with a direct access or not (in this latter case, the end-user will choose if it is worth
losing connection time to see the image). The designer can also put constraints on
the transformation: he can choose a threshold of size (i.e. the image would become
unclear on a small screen) or to skip small-sized images (usually, these images are
only used to have a stable layout in HTML).

Transform into a label composed of the alternative text.
Transform into a text-link that redirects to the image
transferred in another window.
Convert it to the .WBMP format.
Suppress all images.
Suppress images bigger than x pixels.

Images

Suppress images with a size lower than 50 bytes.
Table 2-2 Alternatives in the transformation of images.

Table 2-3 shows another example of transformation alternatives for text-links.

Keep only intra-site links.
Transform intra-page links into extra-page links.
Suppress download-links.
Suppress redundant links.
Suppress style attributes.

Text Links

Suppress colour attributes.
Table 2-3 Different alternatives for text links.

Text-links are divided into three categories: internal or external to the Web site,
internal or external to the page and navigation or download links.
The designer can choose to suppress links external to the Web site, in order to keep
only the really important links for the navigation of the Web site. She can also
choose to transform intra-page links into extra-page links: intra-page links are
generally used to jump to precise parts of long Web pages that are not suitable for

Chapter 2 A Conceptual Framework for UI Reverse Engineering

42

small-display platforms (huge scrolling manipulations). This problem can be reduced
by breaking the page into smaller ones, and this subdivision does not disturb the
user’s perception of the site structure. When this option is chosen, the rest of the
page is automatically transformed into a set of smaller pages (see figure 2-7).

Figure 2-7 The transformation of intra-page links into extra-page links

Since mobile phones do not have a secondary memory, download links are useless
on this platform and can be removed. Sometimes, we can find the same target for
different links on the same page. These redundant links can be automatically
removed to save screen space. And finally, the designer can choose to suppress the
colour and the style (bold, italic …) attributes for each link. These two last options
are available for each textual object (links, labels, marquees …), but can also be
selected at the model level in order to avoid repetitive manipulations. Other
examples of retargeting rules can be found in appendix G.

2.4 Conclusion

This chapter described a conceptual framework for UI reengineering and some
definitions particularized to the UI domain. This conceptual framework and its
associated definitions will be used in the next chapter to locate and characterize the
approaches of the state of the art in reverse engineering so as to position the
approach presented in this thesis.

A new approach in UI reverse engineering was also illustrated in this chapter, the
retargeting of UI, allowing extracting a UI model suited for particular context of use.
Retargeting will be applied in the analysis of HTML (chapter 5 and 6), permitting us

HTML page

Intra-page links

In one or

more

deck(s)

Extra-page links

WML

Chapter 2 A Conceptual Framework for UI Reverse Engineering

43

to achieve a flexible reverse engineering of UI. A case study using the retargeting
concept is given in the section 9.2.3, and performance and correction analysis of this
process –compared to traditional reverse engineering- can be found in section 9.1.
This new approach can be characterized by a trade-off between a loss of generality
and maintainability, compared to traditional reverse engineering in model-based
approach, and a gain in the precision and adequacy of the produced model so as
resources needed to perform the translation step. It is true on the one hand that
retargeting is no longer compliant with the independence between abstraction and
translation. On the other hand, it is likely that the designer will devote more efforts
on fine tuning the final results than for the abstraction followed by the translation.
Indeed, results of abstraction are transient and are not reused for another purpose in
this thesis.

Chapter 3 State of the art in
reverse engineering

After defining in the previous chapter some reverse engineering terms that will be
used afterwards, some related work of this field of research is now presented. This
chapter contains several approaches dedicated to the reverse engineering and
reengineering of user interfaces. Each time a related work is presented, we will only
focus on those aspects which are directly relevant to this thesis. There are two main
sections in this chapter, the first is about legacy systems user interfaces reverse
engineering and the second section contains approaches for Web sites re-(verse)
engineering (which only uses static analysis techniques). An Internet version of this
state of the art can also be found at http://www.isys.ucl.ac.be/bchi/research
/soare.htm. Its last update was 14th July 2002. This chapter presents the related work
we are aware of at the date of this manuscript.

Several techniques exist for the reverse engineering of applications, and most of the
approaches presented in this chapter use one or a combination of them:
Static analysis of Web pages examines the code of a Web page without interpreting or
executing it in order to understand aspects of the Web site [Boui02a]. Since static
analysis has been successfully used in software testing and compiler optimization, it

Chapter 3 State of the art in reverse engineering

45

has been extensively used for analyzing the HTML code of Web pages. However,
this technique leaves all non-HTML parts of the Web page untreated. Therefore
other techniques need to be investigated such as the following methods.
Slicing techniques [Gall91] examine selected, related portions (slices) of code to analyze
behavior and to recover design decisions. The code statements in a program slice are
not necessarily contiguous; this facilitates design recovery even if the code is poorly
structured. This seems promising for SVG code.
Pattern matching [Merl95b] parses the code of a UI to build a manipulable
representation of it. Then slicing techniques are used to extract interface fragments
from this representation, and a pattern matcher identifies syntactic patterns in the
fragments. Using the code fragments as a basis, details about modes of interaction
and conditions of activation are identified with control flow analysis.
Syntactic Analysis and Grouping [Vans93b] relies on a recognition algorithm that
identifies input/output statements and attempts to incorporate them into groups.
The grouping information is then used to define screens from the original user
interface. This is particularly appropriate for scripting languages.
Cliché and Plan recognition [Will90] automatically identify occurrences of clichés,
stereotyped code fragments for algorithms and data structures. The cliché
recognition system translates the original code into a plan calculus, which is then
encoded into a flow graph, producing a language-independent representation of the
interpretation's flow that neutralizes syntactic variations in the code.
Abstract interpretation [Lech96] parses the entire code to build an abstract
representation of it that can be virtually executed based on first-order predicated
expressing conditions before and after each instruction. An abstract interpretation is
an approximation of the semantics of computer programs, based on monotonic
functions over ordered sets. This technique seems particularly appropriate for
examining Java and JavaScript.
Trace analysis [Stro99] analyses user inputs and screen composition to infer an abstract
representation of the system. This analysis is followed by a clustering of the results to
merge similar UI screens and actions and avoid “doubles”. The code is not
necessarily needed for this technique.
Transcoding [Brit01] transforms the UI code for a particular platform into another
form or into another language without constructing a model of the UI. The
particularity is that there is no abstraction process in this technique and it is usually
achieved on-the-fly with rules peculiar to a couple of platforms (see section 1.4). This
technique is not a reverse engineering approach but is often applied to transform a
UI for another context of use, especially for Web sites.

Chapter 3 State of the art in reverse engineering

46

Annotation techniques [Lope01] (consisting in adding information in the original code
before the application of the transcoding rules) are also used in transcoding
approaches, allowing to enhance the quality of this dynamic process.

3.1 Reverse engineering of legacy systems

This section will report on a state of the art of selected work related to reverse
engineering of legacy systems, which will be useful for this research. Each work will
be systematically analyzed according to the following structure: a general description,
the software architecture of the system if it is relevant, the underlying principles and
the type of algorithm/rules used in the system. The level of detail of this analysis will
depend on the interest of this work for our analysis and the existing literature. A
common diagrammatic representation is given for each approach in the general
description section. The figure represents the location of the approach in the
conceptual reference framework presented in chapter 2. The name of the source
language is displayed at the final UI level on the source-context side, and the output
language (if any) on the target-context side. Some additional information is given
such as the reverse engineering technique and the abstract language used in MBAs (at
the level of abstraction reached by the approach).

3.1.1 Morph

General description
Information systems are critical to the operations of most businesses, and many of
these systems have been maintained over an extended period of time, sometimes
twenty years or more. Nowadays, many organizations are choosing to reengineer
their critical applications to better fit their needs and to take advantage of the new
technologies. MORPH [Moor93, 94, 96, 97] is a process for reengineering the user
interfaces of text-based legacy systems to graphical user interfaces (GUI), and a
toolset to support the system. MORPH identifies basic user interaction tasks and
associated attributes in legacy code. The resulting model is then used to transform
the detected abstractions in the model to a specific graphical widget toolkit.

Morph allows reengineering a UI by abstracting the legacy code to the abstract UI
level in the reference framework (see figure 3-1), as the categories of elements
recovered are very generic. This AUI model is then translated to a CUI model for
another context of use, by using a human input to control this process. Finally, a UI
is generated in Motif, Java or Windows resource files based on this CUI model.

Chapter 3 State of the art in reverse engineering

47

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

Motif, Java,
windows UI

Pattern matching,
Control and data

flow analysis

Design Critics

Abstract UI

Legacy Code

Static Analysis

Figure 3-1 The reengineering process with Morph

Principles
The reverse engineering process is composed of three steps (see figure 3-2).

Figure 3-2 Morph’s reengineering process

1. The detection which is also called program understanding. It analyzes source code to
identify UI components in the legacy system, thanks to a detection engine.
2. The representation step in order to build a model of the existing user interface as
derived from the detection step. This model is stored in the knowledge base.
3. The transformation: thanks to the transformation engine, it is possible to manipulate,
augment and restructure the resulting model to a graphical environment. The human
analyst can refine the model in the transformation stage. The transformation stage
suggests specific graphical implementations and integrates them for user interface
abstractions into the legacy code.

Chapter 3 State of the art in reverse engineering

48

The detection step identifies interaction tasks (entries of a unit of information by
the user) from code that enables the construction of an abstract model of the UI.
Four basic interaction tasks can be recognized:

1. Selection: the user makes a choice from a set or list of choices.
2. Quantification: the user enters numeric data.
3. Position: the user indicates a screen or world coordinate.
4. Text Entry: the user enters text from an input device.

The technique for determining UI component in the code consists of three steps:
- First of all, it is necessary to isolate the User Interface Subsets (UIS), which

include all routines and data structures that are affected by user I/O.
- The next step consists in identifying data structures that can be read or

displayed from the UI. These data structures can give clues about user
interface objects in the program, which will define the application interface
model for the system. These data objects will be used to communicate
between the user interface and the computational code of the application.

- The final step consists in finding the dialog control model (action, states and
transitions). A set of coding patterns is used to detect dialog elements.

Representation is done thanks to patterns. Coding patterns that describe the
implementation of each of the basic interaction tasks are used to detect these tasks in
text-based user interfaces. In a GUI, however, there are many different possibilities
for the implementation of a particular interaction task. Therefore, once the
interaction tasks are identified, attributes are collected to pinpoint the appropriate
abstract interaction objects. Morph maintains a hierarchy of concepts (see Figure 3-
3), composed of the set of Abstract Interaction Objects (AIOs) [Vand93] categorized
under the basic interaction tasks, allowing to select the appropriate objects for each
interaction tasks. These AIOs present indeed some abstraction with respect to the
physical widgets since they are oriented towards the input/output of information in a
generic way. However, these AIOs are more defined opportunistically and do not
involve any task or user aspect. The same observation holds for the context of use.

Transformation thanks to the knowledge base (built in CLASSIC) strengthens
this approach. This knowledge base can be used to aid in the detection of user
interface components from legacy code and then used to identify the appropriate
replacement interaction objects within a specific toolkit such as MS-Windows.

Chapter 3 State of the art in reverse engineering

49

Figure 3-3 Morph’s categorization of concepts

Type of algorithm and rules
The reverse engineering is achieved by applying static program analysis techniques,
including control flow analysis, data flow analysis, and pattern matching. Pattern
matching is the technique mostly used in MORPH, as it is needed to detect UI and
dialog components, technique that is supported by a knowledge base.

3.1.2 The AUIDL Environment

General description
In this approach [Merl93, 95], the UI is represented in an object oriented manner
while the interface behavior is described using Milner’s process algebra. The original
UI is first translated in AUIDL (Abstract UI Description Language) which is able to
represent UI objects in terms of both structure and behavior.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

IBM 3270

Pattern Matching,
AST, Control Flow

Analysis

Abstract UI

Cobol

AUIDLAUIDL

Static Analysis

Figure 3-4 The reengineering process with AUIDL

Chapter 3 State of the art in reverse engineering

50

The entire reengineering process is represented on figure 3-4. The source FUI is the
Cobol language, which is first abstracted at the AUI level. Based on an equivalent
AUI for another context of use, the forward engineering allows producing screens
for the IBM 3270 environment.

Principles
The approach starts with the generation of an AST by parsing the source code. A
module extracts AST UI fragments (I/O system calls or user interaction).
Components are identified and used to construct the abstract specification of the UI.
This step is semi-automated, a part of the code is parsed and automatically
abstracted, and the remaining of the sliced code is left to the programmer. For the
layout, the spatial organization of display objects is explicitly described with two
mechanisms: containment and importation (allows an object to import an attribute
from another object: for example import the x-coordinate of an object to have the
same alignment for these objects).
The Milner’s process algebra (MPA) is used to map out the behavior of the system.
In MPA, the behavior of a system is defined as either its entire communication
capabilities, or by what is observable in such a system. During the forward
engineering, when the new UI is integrated in the information system, constraints on
data and control flow graphs have to be respected at the cut points in the code to
obtain an equivalent interface. In the last step, the AUIDL specifications are
translated in the EASEL language. The EASEL language allows the automated
generation of screens for the IBM 3270 environment. Finally, the generated code is
linked with the functional core.

Type of algorithm and rules
UI composition is obtained from an abstract syntax tree (AST) and from the related
syntactic information of a particular implementation. Using Refine/Cobol and the
BMS parser, an AST is obtained from the source code of the system. To translate the
components and their behavior in AUIDL, ‘user actions’ and ‘system responses’ have
to be identified using pattern matching techniques and control flow analysis
completed by a human intervention.

3.1.3 Cellest

General description
Cellest [Stro00a, Kong99, Stro02] is the acronym for CEL Legacy Enhancement
Software Technologies. The Cellest purpose is to migrate and optimize uses of a

Chapter 3 State of the art in reverse engineering

51

legacy system on a new platform. Cellest adopts a transversal approach in order to
extract the necessary information to complete the possible tasks on the old system.
Transversal means that the task is the subject of interest and information related to
tasks are gathered even if different programs are used to achieve a particular task.

The reengineering process is depicted on figure 3-5. The reverse engineering recovers
both tasks and abstract UI models from screens coming from various legacy systems.
Then, thanks to these models, an abstract UI for another context of use is
translated/reified. The forward engineering phase allows to generated XHTML and
WML UI based on this new AUI model.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

XHTML, WML

Trace Analysis

Abstract UI

Legacy Code

Static and
Dynamic Analysis

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

XHTML, WML

Trace Analysis

Abstract UI

Legacy Code

Static and
Dynamic Analysis

Figure 3-5 The reengineering process with Cellest

Architecture
Cellest is composed of two middle-ware tools: the recorder and the pilot allowing the
capture user interaction during the use of the legacy system. Therefore, a recorder
localizes aspects of the legacy system relevant to a specific task, instead of having to
deal with the whole body of the system code.
In this approach, an interface is viewed as a collection of uniquely identifiable
screens(traces), each of which allows a set of possible actions to transition from this
screen to other screens. The screens are captured by the recorder that records each
session (visited screens, actions in order to achieve specific tasks).
The pilot translates these actions in functionally equivalent actions in a new GUI. Its
role is the same as an application model [Gurm89]: to bind the new UI with the old
legacy system.
The complete architecture of Cellest is shown on figure 3-6. Traces captured by the
recorder are used as input of Lendi to generate interface graph and also used by

Chapter 3 State of the art in reverse engineering

52

Mathaino to construct the tasks, domain and abstract UI model and generate a UI by
using these models and interface graph. QandA allows editing the produced models
while Babel is used to bind the different legacy systems involved in the reengineering.

Figure 3-6 The architecture of Cellest

Principles
A more accurate definition of each component of the Cellest toolset is given below.
A. Lendi (LEgacy Navigation Domain Identifier)
The interface mapping task is accomplished by the Lendi system. In the first step of
this process, the recorder collects the snapshots of the system screens and all the user-
system interactions. Then, the interface mapping process proceeds to recognize
identifying features in the screen snapshots of the trace, in order to cluster several
screen snapshots together as instances of a single unique system screen. The user
configures the clustering process by deciding which features to use and their relative
weights in the similarity detection function between snapshots. Finally, the user
actions that enable the transition (and their preconditions) from one screen to
another have to be identified and specified. The output of this process is the
interface graph whose nodes correspond to the individual screens of the system and
its edges correspond to the user action sequences enabling transitions from one
screen to another.

B. Mathaino
Mathaino is a system for the migration of legacy systems to multiple platforms. The
objective of Mathaino is to reverse engineer the information-exchange plan between

Chapter 3 State of the art in reverse engineering

53

the legacy system and the user and to specify an optimized abstract UI to accomplish
this task. Traces stored by the recorder are the inputs of Mathaino. The process starts
with the output field recognition. The designer has to associate each output with a
name. Then, a navigation plan is generated with variables that must appear on these
screens. The last step consists in the association of fields with domain objects to
generate a domain model. An abstract UI can finally be created for each task, either
automatically or manually. The tool can then produce a new UI based on these
abstract models thanks to two translators: a XHTML and a WML translator.

C. QandA (Questions AND Answers)
The QandA system guides a user to inspect and review the process and its products:
a user can inspect the clustering of the traces in order to discover within a cluster
some traces that may lead to a reclustering. The designer can also review the task
analysis in order to revise Lendi’s decisions regarding variable scope and to provide
meaningful names for the identified variables. The generated GUI can also be revised
by QandA, by requesting from the user only the necessary inputs and by driving the
underlying interaction with the legacy system through the pilot middleware.

D. Babel
Babel’s aim is to bind several legacy applications together. Babel is a query planning
and application monitor tool that integrates divergent processing models. Babel
provides an environment for specifying related applications in terms of the
functionalities they deliver and the data these functionalities expect as input and
produce as output. These functionalities are integrated following ‘business rules’
specifications. Based on these specifications, Babel produces a run-time mediator
that monitors the behavior of the underlying applications, evaluates the defined rules
on the global state of the integrated system, and generates triggers for new
functionalities (new tasks) to be accomplished according to these rules.

Type of algorithm and rules
The reverse engineering in Cellest is based on trace analysis to recover abstract
models. A human analyst is needed to define the clustering, and to determine
variables and domain elements required on those screens so as the transition between
them. Then the task and navigation plan can be generated automatically, and based
on the information defined previously, an abstract UI is produced.

Chapter 3 State of the art in reverse engineering

54

3.1.4 Cobol UI reengineering for Windows

General description
In this approach [Csab97], the original program is run and remote controlled through
a communication module by the new application. The new application is recompiled
for Windows with the I/O (input/output) calls replaced. The source program was
written in COBOL and was running in a mainframe environment. It had its own data
management system built in and uses the ADIS (ACCEPT/DISPLAY System) run-
time module of Micro Focus COBOL.
This process is located at the FUI level (figure 3-7). The legacy system is wrapped,
and the old UI components are replaced by a Windows UI, which communicates
with the functional core of the legacy system.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

Windows UI

Syntactic Analysis
and Grouping

Wrapping

Abstract UI

Cobol

Static Analysis

Figure 3-7 The reengineering with Csaba’s approach

Principles
The problem with old COBOL program reengineering is that it is poorly structured
(‘spaghetti code’) and has to be converted into an event oriented code. This task is
very hard, especially for huge monolithic mass of code which was developed
gradually over many years. The solution adopted in this approach is the ‘remote
controlling’. First the COBOL program had to be modified in two ways: replacing
the I/O calls by functions communicating with a shared memory area, and making it
loadable by Windows. The replacement functions copy the information into a buffer
and another program - the VUP (for Virtual User Program: program that manages
the communication to the shared memory from the GUI point of view) - reads this
information out of the buffer and use it to build its own dialog. When a Windows-
GUI is used, the VUP places the new data into the memory and pushes the virtual

Chapter 3 State of the art in reverse engineering

55

key by putting the appropriate keycode into the shared return area. The buffer is
used in order to avoid a continuous refresh of the GUI because the DOS program
redrew the screen for each keystroke. Finally, the presentation of the GUI is done
manually.

Type of algorithm and rules
As this approach is an experience report, no specific rules were designed to achieve
this reengineering.

3.1.5 PUC

General description
This approach [Nich02] introduces an intermediary graphical or speech interface on
several platforms (such as a Pocket PC or a PDA) for complex appliances (VCR,
camcorders, thermostats…).
The reengineering process is shown on figure 3-8. The abstract UI of the complex
appliance is abstracted and this model is used to generate a final UI for a Pocket PC
or a PDA.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

Pocket PC/PDA UI

Hardware
Modification

Abstract UI

Complex Appliance

Static Analysis

Figure 3-8 Reengineering process with PUC

Principles
The PUC (personal universal controller) can communicate both-ways with an
appliance thanks to modification of the hardware of this appliance. The
specifications of the appliance’s functionalities are captured in a model, which is used
by the mobile platform to construct the UI for controlling that appliance (a graphical
UI, speech or both). The specification of the functions is grouped hierarchically with
their state-dependence information in a specific XML language. The automatic

Chapter 3 State of the art in reverse engineering

56

generation of UIs comes with a “Smart Template” mechanism [Nich04]. A Smart
Template is a kind of domain specific design pattern, which defines the set of state
variables (e.g. “time”, “volume”) and functions (e.g. “play”, “record”...) typical for a
given kind of appliance. Multiple combinations of states and commands are allowed
in the template definition, which allows a single template to be applied across slightly
different appliances. At the rendering stage, the elements specified in the Smart
Template are then rendered using platform-specific controls and intelligent layout
and resizing mechanisms.

Type of algorithm and rules
The reverse engineering step of this approach is based on observation and hardware
modifications of the devices, and therefore no reverse engineering rules were
developed in PUC.

3.1.6 Visual TAP

General description
To overcome the problems and limitations of traditional screen readers, the
Archimedes project (http://archimedes.hawaii.edu/) developed VisualTAP [Scot01],
a software that recovers GUI screen information directly from the video signals and
a GUI-accessor that processes this information to separate textual and graphical
components and presents them to the user through haptic display and speech
synthesis. Figure 3-9 represents the reengineering process. No abstraction process is
done in this approach, as the video signal is directly used to generate a new UI.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

Any (visual/
braille/vocal)

Video Signal Recognition
Pattern Matching

Abstract UI

Any screen

Dynamic

Figure 3-9 The reengineering with TAP

Chapter 3 State of the art in reverse engineering

57

Architecture
The architecture of Visual TAP is illustrated on figure 3-10.

Figure 3-10 Visual TAP

We can distinguish three components [Scot01]:
• Accessor, a personalized device that provides its user with his or her

preferred interaction modalities.
• Total Access Port (TAP), a small keyboard and mouse emulator that provides

direct access to any user accessible functions on the target computer.
• Universal Protocol, a communication protocol that allows any accessor to

connect to any TAP. The connection can be wired or wireless (Infrared or
Radio).

Principles
The different steps are the following:

• Analog RGB signals for the GUI computer screen are captured and stored as
digitized data in the computer memory via the PCI bus so as to obtain a
bitmap image of the screen.

• The bitmap image is turned into a grayscale image which is passed through
an edge detector using a modified Sobel operator.

• The image is turned into a black and white image and fed into two different
processes: recovering navigational objects such as window outlines, buttons
and scrolls bars (corners and images are identified by pattern matching) and
dynamic cluster detection (to identify icons, text, and pictures).

• The GUI components are then rendered through a force feedback (haptic)
display or as three-dimensional sound and text is produced as synthesized
speech or Braille.

Chapter 3 State of the art in reverse engineering

58

Type of algorithm and rules
The reverse engineering is achieved by processing video signals, by applying
functions on images representing the UI.

Another similar approach is currently developed by M. Felsberg (http://www.
isy.liu.se/~mfe/) allowing retrieving components on screenshots thanks to a camera.
Rather than processing a video signal, the system captures screens and analyzes the
produced images.

Figure 3-11 Widgets recognition in Felsberg’s approach

This approach goes one step further than the visual tap approach as the analyzed
screen could even not exist anymore (e.g. by analyzing images in documentation of a
legacy system). However, this technique has been developed with another objective,
border recognition in images, but could also be used as a new UI reverse engineering
technique. An example is given on fig. 3-11 illustrating the analysis of a screenshot of
a window by the system. Dots represent the borders of the components of the UI.

3.2 Reverse engineering and reengineering of the Web

3.2.1 Digestor

General description
The main purpose of this approach [Bick97] is to address the problem of displaying
desktop computer screens on small-sized screens of portable devices. Web sites
could be accessible to any mobile device by re-authoring existing HTML pages.
The figure 3-12 represents the transcoding approach achieved by Digestor, between
two FUI expressed in HTML.

Chapter 3 State of the art in reverse engineering

59

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

HTML

Transcoding

Abstract UI

HTML

Dynamic

Figure 3-12 The transcoding approach with Digestor

Principles
There are two main categories of techniques for the re-authoring of Web pages: it
can be semantic or syntactic techniques and the re-authoring can be realized by using
transformation or elision techniques. Semantic techniques rely on some
understanding of the content of the Web page while the syntactic techniques operate
on the structure of the page. Elision is the operation of removing content and
transformation involves the modification of some aspect of the page.
The techniques belonging to both categories are ranked by priority and can be used
conditionally. The techniques are applied following a strategy optimized for a given
document/display-size pair. The strategy is realized according to a re-authoring
method which searches a document transformation space in a best-first manner.
Each state in this space represents a version of the document. At every step in the
search process the most promising state (that with the smallest display area
requirements) is selected and a transformation is applied to it. Once a sufficient
screen space has been saved, the document is returned to the client for rendering.

Figure 3-13 Digested Web Page

Chapter 3 State of the art in reverse engineering

60

An example of a page transcoded by Digestor is shown on figure 3-13. The
paragraph elision technique is illustrated on this figure.
Digestor is implemented as an HTTP proxy server. The system is implemented in
Java, and the HTTP proxy server software was based on the MBServler system. This
system can also respond to requests for certain URLs with documents generated by
the proxy itself, which is used to provide the user with form-based control over the
proxy and the re-authoring process.
The approach has been enhanced during years, and is now named “M-links”. More
information about M-links can be found in [Hilb03].

Type of algorithm and rules
Digestor uses a set of re-authoring techniques to save screen space: syntactic elision
techniques (section outlining, first sentence elision, image elision …) and syntactic
transformation techniques (image size reduction, font size reduction …) that are
applied by pattern matching.

3.2.2 Mobile Transparent access

General description
According the authors, there are two main approaches to bring the internet on
mobile phones. Web content can be adapted for different clients by specialized proxy
servers that perform different tasks of conversion, caching and content adaptation
(mobile-transparent approach). The second type, the mobile-aware approach, is to
design and implement totally new services that are specially designed for mobile
users.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

WML

Transcoding

Abstract UI

HTML

Dynamic

Figure 3-14 The mobile transcoding approach

Chapter 3 State of the art in reverse engineering

61

This study [Kaas00, 01] proposes a HTML/WML conversion proxy server through
which the users of different WAP phone can access the same Web services as they
use on their PC. This approach is located at the FUI level on the reference
framework, as the transcoding occurs at the code level between a UI specified in
HTML and a UI expressed in WML.

Architecture
The proxy server aims to format the service according to the capabilities and
preferences of the mobile client, as defined by the User Agent Profile (UAProf) of
the device. The architecture of the tool is depicted on the top part figure 3-14.
Requests coming from WML-enabled phones are forwarded from the WML proxy
server to the HTML server. Then the HTML code is transcoded on the
HTML/WML proxy. Finally, the code is sent back to the WML-enabled phone. The
ad-hoc approach is shown on the bottom part of figure 3-15, where no
transformations are applied as the WAP server gives access to Web content designed
in WML.

Figure 3-15 The mobile-transparent approach

Principles
The original HTML pages are converted dynamically in several decks (depending on
the memory limits), and their content is adapted to WML. For example, images are
presented as short text entries using either the included meta-data or the image
source file name.
This type on transcoding had globally good results – principally by preserving the
familiarity of the service -but brought some usability problems: users often felt lost if

Chapter 3 State of the art in reverse engineering

62

they proceeded too far from the top of the page. There was also a lack of navigation
aids to ease browsing. Sometimes, the proxy failed in the transcoding because of a
bad structure or syntax errors of the original code, and the page was unavailable.
This study indicates that if HTML-based Web services follow certain guidelines, they
can be converted automatically to WML and adapted to the client device. In principle
these guidelines already exist as W3C Web Content Accessibility Guidelines and
W3C Note for HTML 4.0 Guidelines for Mobile Access.

Figure 3-16 Transcoded Web page

An example of an HTML page transcoded into WML thanks to this approach is
shown on figure 3-16.

Type of algorithm and rules
This approach uses a set of 1 to 1 transcoding rules applied by pattern matching in a
static analysis. A selection of some of these rules is achieved thanks to the UA
profile, allowing adapting the transcoding to some properties of the target platform.

Chapter 3 State of the art in reverse engineering

63

3.2.3 PIMA

General description
The PIMA [Bana00, Susm01, Gaer03, Berg04] project aims at producing applications
that are device independent. Functionalities and their corresponding UIs should
adapt to the device and the physical environment, or in other words, devices should
be seen as portals and the application should adapt to the current available resources.
In this context, the authors introduce the concept of generalization. Generalization is
the process of capturing the semantic information inherent in a UI and represented
in a platform independent model (PIM), by inferring such information from a UI
designed for a particular device. This information can then be used to create UI for
other devices. The complete process envisioned by the PIMA project is positioned in
the reference framework on figure 3-17. The reverse engineering is applied up to in
platform independent representation at the CUI level, then the model is translated
for another context of use and reified to a final UI. The final UI here is represented
by “any” language, as the approach aims to cover a maximum of languages and the
scope is not well defined for the moment.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

Any

Pattern Matching

Abstract UI

Any

Static & Dynamic
Analysis

Figure 3-17 The reengineering process in the PIMA project

Architecture
The architecture of the PIMA project is shown on figure 3-18. A Platform
Independent Application can be created either by a design tool or by abstracting a
concrete UI thanks to the generalization process. A specialized engine with a device
profile then creates another application specialized for a particular device. This UI

Chapter 3 State of the art in reverse engineering

64

can be modified by hand by a dedicated tool. Finally, the specialized application can
be translated into a language compatible with the target device.

Figure 3-18 The complete Pima process

Principles
The PIM is composed of four main concepts: a set of task and the navigation among
them, a set of interaction elements, a set of event handlers (responses to user actions)
and a set of directives that are used by the specialization engine to specialize the
application properly (for example: specifications of strongly linked elements).
Generalization is done by reverse engineering the code of the UI. This process starts
with the detection of interaction elements. Secondly, the properties and semantic
information of these elements can be inferred. But the inference engine cannot
resolve every case of this part of the reverse engineering. There must be a feedback
mechanism that allows the designer to help the system to resolve ambiguity about the
information that is inferred from the concrete design. An example of these
ambiguities is the inference of the descriptive label for a textbox surrounded by three
different labels. An automatic deduction system of this kind of relations has been
implemented [Gaer03]. In this approach, all the possible semantic links between
labels and their surrounding elements are evaluated thanks to a list of heuristics. For
example, the descriptive label of a radio button is often displayed on its left-hand side
or its right-hand side. This fact gives a higher probability for the labels positioned in
this manner to be linked semantically with the radio button. Another example is the
caption of images, which is most of time displayed on the bottom of an image. The
complete page is thus first analyzed and points are given to each possible pair of
elements. Then, the highest evaluation is selected to establish relations in the model.

Chapter 3 State of the art in reverse engineering

65

Type of algorithm and rules
The generalization process is not applied directly to the UI (such as HTML) code,
but to a more orderly internal representation to standardize the input of the process.
Two kinds of rules are applied during this reverse engineering process. First, the
elements are detected by pattern matching, and secondly an evaluation thanks to
heuristics allows defining the semantic properties of elements.

3.2.4 WebRevenge

General description
In this approach [Paga02], a Web site is reverse engineered in order to reconstruct
the corresponding task model. The task model uses the ConcurTaskTrees
representation [Pate00]. The approach is represented in the reference framework on
figure 3-19, on which an HTML page is abstracted up to the task & concepts level.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI
Pattern Matching

HTML

Static
CTT

Figure 3-19 The reverse engineering process of Webrevenge

Principles
The HTML page is first syntactically validated by Tidy - a tool allowing correcting
HTML files to obtain a valid XML syntax - and the corresponding DOM structure
of the page is created. DOM stands for Document Object Model and is the
representation of an HTML document in an object oriented fashion. Then, it applies
several rules to create the task model. The output can be stored in XML or in a
format that can still be subject to modifications by using CTTE [Pate00].
The construction of the global task model for a Website is illustrated on figure 3-20:
the site is reverse engineered page by page and a task tree is built based on these sub-
trees. Additionally, it is possible to use the output of WebRevenge as input for

Chapter 3 State of the art in reverse engineering

66

WebRemUSINE [Lece98]. WebRemUSINE allows recording the interactions with a
Web site, which can then be compared to its corresponding task model to detect
usability problems.

Site

HTML
Page

Create
DOM

Apply Transformation
Rules

Task
Model

Composition
Transformation

Rules

TASK
MODEL

HTML
Page

Create
DOM

Apply Transformation
Rules

Task
Model

HTML
Page

Create
DOM

Apply Transformation
Rules

Task
Model

Figure 3-20 Reverse engineering of the task model

Type of algorithm and rules
Rules to recover the task model are applied thanks to pattern matching. Example of
rules for creating tasks are : the creation of a root task for the page, the creation of
task structure associated with a link, the creation of a new task level associated with
fieldsets or the creation of task structures associated with textareas. Once the process
of creating the task model associated with each page is completed, the overall
navigation is reverse engineered in order to bind the different task models.

3.2.5 ReWeb

General description
ReWeb [Ricc01, Ricc00] is aimed at avoiding the inevitable degradation of Web sites
by restructuring and rewriting the HTML code.
The process is represented on figure 3-21. The HTML code is reverse engineered,
and maintenance operations are applied at the concrete level. This model is then used
to generate an updated HTML UI.

Chapter 3 State of the art in reverse engineering

67

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI
Pattern Matching

HTML

Static

DMS Domain

Figure 3-21 The Reweb reengineering process

Architecture
The architecture of Reweb is decomposed into tree major components (figure 3-22).
The Web Spider downloads all pages of a target Web site starting from a given URL.
The Analyzer uses different versions of the downloaded Web site to calculate the
difference between two successive versions of the site. The Viewer provides a
graphical user interface to display the output of history analysis.

Target
WebSite

WebSpider Analyzer Viewer

WebSites versions downloaded Outputs

Figure 3-22 The Reweb’s Approach

Principles
Reweb first reconstructs an abstract representation of the structure of the Web site in
a directed graph. From this graph, information for the maintenance can be extracted
such as the shortest path or the 'strongly connected components'. Reweb also allows
monitoring the evolution of the site by periodically downloading the entire set of
pages, and by comparing file names and HTML code.
Reweb applies several transformations to the pages to achieve the maintenance
operations. There are two kinds of transformations: inter and intra pages
transformations. The first type transforms several pages and updates the abstract
representation of the structure. The latter type only modifies one page at a time.

Chapter 3 State of the art in reverse engineering

68

Reweb aims at improving maintainability (M), usability (U) and portability (P). This is
done thanks to 6 different types of operations:
1. Syntactic clean up (M): like tidy [Tidy03], corrects syntax errors in the HTML code.
2. Design restructuring (M): by automatic reorganization into frames, page

extraction/insertion.
3. Page restructuring (M): this type of operation includes adding description for non-

loaded objects, modifies absolute URLs into relative ones and adds the part
"noframes" to framed pages...

4. Style renovation and grouping (U): transforms HTML pages with presentation markups
into pages with style sheets.

5. Improving accessibility (U): provides keyboard shortcuts for important links, provides
text links for image-maps, etc...

6. Update to new standards (P): depreciated tags are eliminated and replaced.
The maintenance applied in Reweb is a semi-automatic process, as intra pages
transformations can be achieved automatically while inter pages transformations are
done manually.

Type of algorithm and rules
Reweb use the DMS Reengineering Toolkit (Design Maintenance System) to rewrite
HTML pages. DMS enables the transformation of arbitrary languages ('domains') by
accepting a domain definition for the language consisting of: domain grammar, pretty
printer rules, transformation rules (intra-domain rewrites), refinement rules (inter-
domain rewrites), procedural analyzers. There is thus a need to write a language
grammar, pretty printer and transformation rules as the two other components are
optional. The transformation rules can be conditional in DMS, and can also be
grouped in rules sets. More sophisticated control strategies can also be implemented
procedurally.

3.2.6 WARE

General description
The main purpose of Ware [Dilu01, Dilu02] (Web Application Reverse Engineering)
is to provide a support to the recovery from existing Web Applications (WA) of
UML diagrams dealing not only with static content, but also with the dynamic
content. This approach is a support tool for maintenance and site evolution. The aim
here is to produce documentation (redocumentation process).
The reverse engineering process is depicted on figure 3-23, where the final UI
specified in HTML is abstracted up to the concrete UI level.

Chapter 3 State of the art in reverse engineering

69

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI
Pattern Matching

Control Flow Analysis
HTML

Static and
Dynamic Analysis

IRF, RDB, UML diag.

Figure 3-23 The reverse engineering process with WARE

Architecture

 Figure 3-24 – The Ware architecture

The tool is composed of three components
(see figure 3-24) :
1-Interface layer: GUI or Textual UI to
visualize the results
2-Service layer: The extractor analyzes and
classifies the HTML objects and scripts and
stocks the results in IRF files (Intermediate
Representation Form which is an internal
markup language). The abstractor is composed
of a translator that translates IRF files in a
relational database (RDB), a Query Executor
that allows predefined search in the RDB and
produces information based on queries, a
UML Diagram Abstractor that produces class
diagrams and provides necessary data for the
construction of sequence and use case
diagrams (with the help of user-customizable
queries).

3-Repository: in MS-Access. Data are stored under the three formats of the service
layer (IRF, DBR, Diagrams). The taxonomy is represented by class diagrams.

Chapter 3 State of the art in reverse engineering

70

Principles
There are four main steps in the process:

1. A static analysis and class diagram recovery
2. Identification of notable sub-graphs (i.e. sets of classes) in the class diagram,

where each sub-graph (set) is responsible for a WA functionality
3. Use cases recovery by associating each set of classes to a single use case.
4. Sequence diagrams recovery, for obtaining several scenarios of using the WA,

by analyzing the dynamic interactions among the WA components.
A conceptual representation of WA components has been developed in WARE to
realize the static analysis, thanks to the definition of a classification for Web pages
and their components.
For example, links (static or dynamic) are mapped as relations. They have identified
three types of relations: relations related to the submit button (between a form and a
server); redirection relations (between a script and a page or between a link and built
page); Inclusion relations (between a client page and a client module). Interactions
between components are triggered by events deriving either from the code control
flow, or from user actions.
The reverse engineering process is automated up to the dynamic analysis (third of the
four step). At this point, the user has to create a use case scenario for each class
graph (found in the static analysis). The dynamic aspect and parameters involved are
found back by a RDB search (query). The sequence diagrams are constructed by
tracing the events in the objects of the WA.

Type of algorithm and rules
The reverse engineering - aiming at the generation of documentation - is achieved by
using pattern matching techniques to recover static aspects, and control flow analysis
combined with a human intervention to recover the dynamic aspects.

3.2.7 TAMEX

General description
The approach [Stro00b, Situ00] followed by Tamex is based on the concept of task-
specific mediation: information sources within an application domain are
encapsulated within wrapper agents interacting with an intelligent intermediary agent,
the mediator. Mediation is the integration of diverse and heterogeneous data by
abstracting away the representations differences among them, and by integrating their
individual views of the application domain into a common model.

Chapter 3 State of the art in reverse engineering

71

The reengineering process of Tamex is illustrated on figure 3-25. The reengineering
allows recovering the task and domain models (at the task and concepts level) from
one or several HTML pages, to translate to another context of use and to generate a
new user UI specified in HTML.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

HTML

Pattern Matching

Abstract UI

HTML

Dynamic Analysis

Figure 3-25 The reengineering process with Tamex

Architecture
The architecture (figure 3-26) is composed of three layers (UI left, mediator middle,
wrappers right).

Figure 3-26 The Tamex mediation process

Tamex consists of three major components:
• Wrapper agents: they drive and extract information from a set of

corresponding Web Applications (within a domain).

Chapter 3 State of the art in reverse engineering

72

• A mediator agent: whose task structure drives the interaction of the
aggregate application with the users and controls the flow of requests and
information to and from the wrappers.

• A UI representing the task and domain models generated thanks to the
two previous components.

Principles
Tamex’s approach is based on two models, the domain and task models. The domain
model consists in a hierarchy of entities. It contains three types of information:
names and attributes of the entities, their relationships and the invariants of these
entities. The task structure models the agent’s behavior. There are three types of
tasks for the mediator:

• User interaction tasks: represents the mediator’s interaction with the user (for
example: ask the user the destination of a flight).

• Information-collection tasks: the mediator identifies the application that supplies
the necessary information and sends a request to the corresponding wrapper
(for example: search in an HTML page all the flights with a specified
destination).

• Internal tasks: internal function to process information.
The high level tasks are implemented by a menu-driven interface and are activated
and decomposed by the users. The low level tasks correspond to the mediator’s
interaction with either the user or the wrappers to invoke the underlying information
sources. The task model represents the control of information exchange and the
interaction between users and applications.
The mediator provides a UI generated by applying XSLT to the domain model and
the task model. The mediator contains a JAVA servlet which connects the browser
with the wrappers and processes the collected information. There is a wrapper for
each HTML source and they map the requests in the appropriate protocol.
The wrapper construction is done in two phases, firstly the demonstration phase
during which traces of the interaction between the user’s browser and the resource
servers are recorded by proxy servers. Secondly, the learning phase during which
traces are compared against equivalent XML example request (composed according
to the domain model) to learn the application request protocol.

Type of algorithm and rules
The information extraction -to recover the domain model- is done with an XPath-
based algorithm that generates extraction rules from HTML. These extraction rules
to retrieve information on Web pages are generated by following a hierarchical

Chapter 3 State of the art in reverse engineering

73

approach based on the tree structure of HTML documents (by pattern matching).
Same concepts are often in the same sequence of HTML tags. The learner observes
the first Xpath to the contents in the HTML page and reproduces it (for example:
each cell td [i*5+3] in a table contains the price of the flight).

3.2.8 ADAPT

General description
The goal of this approach [Lope01, 04] is to adapt Web pages so that they can be
displayed on any device, especially portable devices. The authors have identified
three sources of variation in the access of Web sites: the variety of information (page
content), the variety of devices (different capabilities) and the variety of users (skills,
roles…). There are two main steps in the process of adaptation:
1. Original Web Page Classification: Classifies the different elements of the original

page, divides the page into sections, classifies nodes, etc. Classification may be
done manually or by an automatic classifier

2. Adapted Web Page Generation: Generates the Web pages adapted to the device and
user preferences, using the classification and the device and user description. The
adapted pages are generated by a set of transformations.

The transcoding process is depicted on figure 3-27, between two FUI expressed in
the HTML language.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

HTML

Transcoding

Abstract UI

HTML

Dynamic Analysis

Figure 3-27 The Lopez’s adaptation-transcoding approach

Architecture
The architecture of the tool (figure 3-28) is based on a proxy server – similarly to the
WML transcoding approach in section 3.2.2 - that forwards the requests to Web

Chapter 3 State of the art in reverse engineering

74

servers and on which the adaptation of the Web page is achieved. The modified page
is then sent back to the user.

Figure 3-28 Adaptation of Web pages

Principles
The approach is composed of two steps:
The classification. Several types of relations can be used to segment the document,
such as the spatial, structural, semantic or typographical relations. Two operations are
made during the classification: the conversion of HTML into XHTML and the
parsing and classification of the document to generate a tree representation of the
different sections of the page.
The generation. The page is generated according to the device and the user
preferences. Following these criteria, a navigation strategy (tree, summary, links …
navigation) is generated, in order to optimize how the information is transmitted and
displayed to the device-user. According to this strategy, one or several pages are
generated with their navigation elements thanks to a set of transformations.
Classification and generation are independent and cleanly separated processes. The
system can use different classifiers or generators depending on the needs.

Type of algorithm and rules
To create the new page, the system generates a set of XSLT transformations applied
to the original document (by pattern matching). These transformations include:
• HTML code adaptation to meet the device constraints.
• Layout adaptation to fit the device screen. Each section can be displayed with

different levels of details.
• Images and Multimedia adaptation: graphics are scaled, transformed in

monochrome images or replaced by their alternative text.
• Navigation mechanisms: code for navigation is added to each adapted page, or

index pages with links are generated.

Chapter 3 State of the art in reverse engineering

75

3.2.9 Transcoder HTML to VoiceXML

General description
This approach [Pere03, Shao03] is based on a taxonomy of tasks (based on
information structure) to transform Web pages in usable voice UI. This is done by
aiming at the development of voice navigation of Web spaces not as a replacement
for visual Web browsing, but to support limited directed information seeking tasks.
This approach follows two goals: to provide voice access to the existing Web pages
and to present Web information in an effective and useable voice UI. The
transcoding process is represented in the reference framework on figure 3-29,
starting from a HTML UI and translating it to a VoiceXML UI at the FUI level.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

VoiceXML

Transcoding
Annotation

Abstract UI

HTML

Dynamic Analysis

VXPL

Figure 3-29 The voiceXML transcoding approach

Architecture
The system is based on the IBM Websphere [Brit01] software (see figure 3-30).

Figure 3-30 The VoiceXML Transcoder Architecture

Chapter 3 State of the art in reverse engineering

76

First, a request is sent for an HTML file. The Web page is then downloaded on the
proxy server on which Websphere runs. This file is annoted with the VXPL language
and serves as input in the transcoding process to produce a VoiceXML file. This last
file is then sent back to the user.

Principles
As the voice interface has a serial and temporal nature, the UI should provide users
(and user level tasks:) an understanding of its structure (situate), how to navigate that
structure (navigate), how to filter information (query) and how to focus in on detailed
information (details on demand) to mimic the principles of visual design of
Schneiderman (overview, zoom & filter, details on demand). They have outlined four
information structures and linked them with these user level tasks.
1. Top-level visual regions: headers, titles, … are mapped as top-items of menus in the

vocal UI.
2. Menu/list structures: Web pages present lists of information in a (pseudo-)

hierarchical structure which is mapped as a hierarchical menu structure with top-
level visual regions (Navigate, details on demand, situate)

3. Text areas: Large parts of texts are spoken thanks to a text-to-speech synthesizer.
The UI provide the user with a speed of speech control. They also provide quick
query for links in text, a summarization command (details on demand) and data
extraction such as phone numbers, email address, … (details on demand and situate).

4. Related/Structured information: set of information fields that are repeated for
different instances of the information (database listings). On the voice UI, each
record can be read in sequential order. Navigation commands allow the user to
move quickly in the list and he can also request specific items (query, details-on-
demand) or the list can be represented as a menu.

Another novelty of this approach is the introduction of the promotion concept
which permits to put lower-level items that should appear as menu items at a higher
level (as the hierarchy of HTML tags does not always reflect the importance of the
subject).

Type of algorithm and rules
This approach uses an annotation language, VXPL, which has been developed to
support the transcoding of Web pages. This language allows adding information
about the structure of a page and how it should be translated in term of user’s tasks.
Then the transformation is applied following a pattern matching technique.

Chapter 3 State of the art in reverse engineering

77

3.2.10 Reverse engineering end-user Web applications

General description
The approach [Bhar05] mainly consists of a toolset able to generate abstract
representations from end-user developed Web applications implemented with Click
[Rode05]. The goal is to provide documentation to expert developers who would
enhance these existing Web applications.
This redocumentation process is located at two different levels of the reference
framework (figure 3-31). This process produces a documented specification of the
HTML UI at the concrete level and at the task and concepts levels.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI
Pattern Matching

Click’s HTML

Static Analysis
CTT

UIML

Figure 3-31 Click’s end-application reverse engineering approach

Principles
There are four outputs for this reverse engineering process: a sitemap, a task model,
a UIML representation and text documentation. The sitemap consists in a directed
graph representing navigation and information flows. Documentation is produced to
be used with the sitemap: for each page (node in the sitemap), some information is
given such as the type (form, contains databases or not, static information page etc.)
and purpose of the page. User’s inputs that are used throughout the site are traced
and represented in the documentation. When a page uses a database, its schema is
also shown in the documentation. The task models are expressed in CTT and are
very similar to the task models produced by WebRevenge (see section 3.2.4), but here
some dynamic aspects of the Website are also recovered. The UIML diagrams are
recovered by reverse engineering the Click internal language (enhanced HTML).
Parts of the click’s code that cannot be represented in UIML are also recovered by

Chapter 3 State of the art in reverse engineering

78

making a link in the UIML specification to an external Java module (e.g. databases
links and searches).

Type of algorithm and rules
This reverse engineering is achieved by applying pattern matching techniques. As
several dynamic behaviors, e.g. database requests, are specified in the Click’s internal
language (and thus not on the server side or in a script language), some of them can
be recovered in the UIML specification by pattern matching.

3.2.11 Revangie

General description
Revangie [Drah05] applies a reverse engineering process of dynamic form-based
Websites by simulating actions and inputs. The tool (available at
http://www.revangie .formcharts.org) can be used with two objectives: the creation
of a model of the application for the purpose of product benchmarking or re-
engineering and the creation of a model of its users for the testing application (e.g.
load testing). The approach of Revangie is depicted on figure 3-32, by applying an
abstraction from final UI specified in HTML up to the concrete UI level.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI
Trace Analysis

HTML

Dynamic Analysis

Figure 3-32 Revangie reverse engineering process

Principles
The tool can be used in various modes (i.e. manually, automatically and in a guided
mode). When used automatically, Web forms are filled with random input values and
actions (such as following link, pushing a button, etc.) are activated randomly until a
fixed threshold of actions is reached. In this way, the maximum of pages generated

Chapter 3 State of the art in reverse engineering

79

by the dynamic Website are analyzed. The tool can also be used manually, by
recording manual user inputs and actions (realistic session data). A third mode, the
guided mode, is also available: the tool only asks user inputs when the automatic
mode is insufficient (particular input fields, classification with ambiguities …).
When the traces have been collected, they can be classified and clustered in order to
generate the output model. Classification is achieved by using several similarity
measures. This is done by calculating a metric evaluating a real number called
distance (for example same titles for two pages would produce a distance of 0 for
this parameter). Statistics are also used to refine the classification: the dependence of
one parameter on another (e.g. title dependency on target) can be tested and from
this information refine the equivalence relations. The user can choose the granularity
of the produced model by modifying the number of clusters.

Type of algorithm and rules
The reverse engineering is achieved by classifying traces of the analyzed system.
Screen classification is done thanks to different parameters: textual similarity, pages
generated by the same action, targets identity (same set of signature of the server
actions targetted by a screen), identical titles or patterns (text and code), or similarity
(according to some textual or structural distance metric). Thanks to these parameters,
it is possible to detect instances of a same Web page in the collected traces.

3.2.12 AWT2XIML

General description
The tool AWT2XIML and the corresponding approach developed in [Canf04,
Canf05] allows the rendering of Java based UIs on personal wireless devices.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

Java AWT for
mobile platforms

Pattern Matching

Abstract UI

Java AWT

Static
Analysis

Library Substitution XIML XIML

Figure 3-33 AWT2XIML reverse engineering process

Chapter 3 State of the art in reverse engineering

80

This is done thanks to a semi-automatic reengineering process that transforms the
original Java UI in a Java AWT UI reformatted for a small screen. The process is
represented in the reference framework on figure 3-33. The reverse engineering is
applied on Java AWT final UI to obtain a description at the CUI level. After some
transformations, this model is then used in the forward engineering phase to produce
Java AWT adapted for mobile platforms.

Principles
In the reverse engineering phase, AWT2XIML analyses the structure of a GUI and
produces an XIML model reflecting this structure. By using a GUI editor, adapted
UIs can be created by modifying this specification: some modifications are done
automatically but a designer has to complete the transformation step.
During the forward engineering phase, files containing the transformation rules for
different platform profiles are applied to this XIML file allowing the generation of
the Java UI. The forward engineering approach (and link with the old application
logic) is based on library substitution and the half-object pattern. The half-object
pattern is based on the “classical” Java AWT design pattern and relations, but divides
it into two parts, one for the AWT server and the second for the AWT client. By
using the half-object pattern, each component object needs to be split in two objects:
one half in the application address space, the other half in the user interface address
space. The two half objects communicate using a protocol (one of the TCPTE object
communication layer).
The main benefit of this approach, compared to bridge patterns with remote peers, is
that it reduces the number of remote method invocations (i.e. a method invocation
of a container from a server (abstract) half-object is sent to the client half-object that
propagates it to its components instead of several methods between server/client for
each element of the container). Several methods of the AWT package have also been
modified in TCPTE to limit the number of remote calls (i.e. some get methods
return fixed values). Each component has a reference to one or more components
that represent the server components on the client platform. Method mapping is
handled by the client half object component that, for each method invocation, calls
one or more platform specific methods on the referenced real components. Similarly,
when an event occurs, the client listener sends the generated event to the
correspondent concrete listener on server side.

Type of algorithm and rules
Some reverse engineering steps are achieved automatically by pattern matching, but
the abstraction process has to be completed by manual modifications.

Chapter 3 State of the art in reverse engineering

81

3.3 Comparison of the approaches

This section summarizes and compares the different approaches presented in this
chapter thanks to eight parameters reflecting the scope and methods/techniques
used during the process:

- The input UI.
- The output UI (or output model in a reverse engineering process), these two

first parameters are used to measure the scope of the approach.
- the abstraction level reached to realize the reengineering/reverse engineering,

to distinguish four categories of approaches: transcoding approaches (at FUI),
up to an concrete UI description to apply a reengineering to platform similar to
the source one, up to the abstract UI level for a very important modification of
the UI such as in Morph or AUIDL and up to the task model (usually to merge
several systems or for documentation).

- The technique(s) used during the process, which is usually pattern matching or
transcoding. Other interesting techniques were also used such as trace analysis.

- The moment when the process takes place, statically (at design time) or
dynamically (at run-time), the reengineering is applied on demand.

- The name of the abstract representation language (if any), and if this language
was developed to support the reengineering process or if the approach
exploited an existing language (marked by a *).

- The fact that several applications can be reengineered (and merged) or studied
during the process (multi-application parameter). This parameter allows
redistributing the UI in a better way as more information and possibilities are
available to the tool or even to achieve retasking.

- The level of human intervention (none, low, moderate or high) in the process.
The human intervention can happen at three different moment: during the
reverse engineering (by resolving ambiguities that the tool can not resolve or by
giving input values to the system in order to achieve the process), after the
reverse engineering (by modifying/refining the results obtained by the tool in a
specific editor or by finishing the process “by hand”), or before the process (by
annotating the coding or by recording traces of execution).

Name Input Output Abstraction

level
RE Technique

Morph Legacy
systems

Motif, Java,
windows UI

AUI Pattern Matching

AUIDL Cobol IBM 3270 AUI Pattern matching,

Chapter 3 State of the art in reverse engineering

82

AST, control flow
analysis

Cellest Legacy
systems

WML,
XHTML

AUI/ T&C Trace analysis

Csaba Cobol Windows UI FUI Wrapping
PUC Complex

appliance
Pocket
PC/PDA UI

AUI Hardware
modification

Visual Tap Any Any (visual/
Braille/ vocal)

FUI Video Signal
Recognition /
Pattern Matching

Digestor HTML HTML FUI Transcoding
MTA HTML WML FUI Transcoding
PIMA Any Any CUI Pattern Matching
Webrevenge HTML Task Model T&C Pattern Matching
Reweb HTML HTML CUI Pattern Matching
Ware HTML UML diagrams CUI Pattern Matching-

Control Flow
Analysis

Tamex HTML HTML T&C Pattern Matching
ADAPT HTML HTML FUI Transcoding
VoiceXML
Transcoder

HTML VoiceXML FUI Transcoding,
Annotation

RE end-
user..

Click’s
internal
language

UIML, task
model,
documentation

CUI and
T&C

Pattern Matching

Revangie HTML Application
Model

CUI Trace Analysis

AWT2XIML Java Java for mobile
platforms

CUI Pattern
Matching/library
substitution

Name Static/

Dynamic
Language Multi-

application
Human
Intervention

Morph Static / No Low
AUIDL Static AUIDL No Moderate
Cellest Both / Yes (babel) High
Csaba Dynamic No No High

Chapter 3 State of the art in reverse engineering

83

PUC Static / No High
Visual Tap Dynamic Universal Protocol No No
Digestor Dynamic / No No
MTA Dynamic / No No
PIMA Both / No Low
Webrevenge Static CTT * No (sites) No
Reweb Static DMS Domain* No Moderate
Ware Both IRF, RDB, UML * No (sites) Moderate
Tamex Dynamic / Yes Moderate
ADAPT Dynamic No No No
VoiceXML
Transcoder

Dynamic VXPL No No

RE end-
user..

Static UIML * No(sites) Low

Revangie Dynamic / No(sites) No-High
AWT2XIML Static XIML * No High

Table 3-1 Comparison of the re(verse)engineering approaches

Only two approaches are able to merge the results of the reverse engineering into
one new application (Cellest and Tamex). Webrevenge, click’s HTML reverse
engineering, Revangie and Ware are also able to combine the results of the individual
reverse engineering of Web pages into one global output (a task model, or UML
diagram representing the entire site), but these processes do not offer a forward
engineering process to use these amalgamated results.

The approaches dedicated to the Web reverse or reengineering are often dynamic
approaches by nature, as the problem they solve is to make a requested HTML UI
accessible to another (class of) platform(s), without having to reverse the Web site
entirely. This can be understood for two reasons: first, the reengineering of HTML
UIs would require a lot of resources if every HTML page had to be processed (and
maybe not used). Moreover, the static approach can be forsaken as dynamic
reengineering approach can give results that are satisfying enough in a relatively short
period of time.

Usually, human intervention is needed in the reverse or reengineering process, as the
results of an automatic process often require human expertise to resolve ambiguities
or modify the model more logically. Indeed, the semantic structure of a UI can only
be partially recovered, and human intervention will always be needed to enhance the

Chapter 3 State of the art in reverse engineering

84

quality of the reverse engineered model. There is a particular case in the Revangie
process: the human intervention level varies between none and high as the tool can
be used in different modes. According to the authors, the mode that gives the bests
results is the mixed mode, reinforcing this idea that models generated by an
automatic reverse engineering should always be “corrected”.

Finally, there is no reverse engineering approach of Web pages up to the abstract UI
level (or an amodal representation of the UI). Most of these current approaches
dedicated to Web are transcoding approaches peculiar to a couple of source-target
platform, or tools allowing only the recovery of documentation. Web reverse
engineering and reengineering approaches have a limited scope (e.g. Tamex is only
for the couple (HTML, HTML) or AWT2XIML is for the couple (AWT,AWT-
mobile)) and are achieved thanks to rigid rules and heuristics, allowing no or few
control in the process.

3.4 Conclusion

It can be observed that a relatively important amount of reverse engineering
approaches exist, each of these aiming either a particular source language, or if
approaches have a similar source language (section 3.2), they have different
objectives. Thanks to this chapter, we conclude that the conceptual reference
framework is particularly useful to express the starting and finishing points as well as
the path of a UI reverse engineering approach. This state of the art also shows that a
wide diversity of approaches has been introduced and that the reference framework
exhibits three values [Beau00]: explanatory, comparative and exploratory. It facilitates
the understanding of their differences and similarities. This framework is also
exploratory in that it identifies undercovered techniques: for instance, none of the
above approaches really considers multiple levels of abstraction in the UI reverse
engineering process. When some level is reached, it is usually unique and for a
particular purpose only. Therefore, the reusability of the results is questionable.
Similarly, the transformations which have been applied during the process are not
always made explicit. We tried as much as possible to make them explicit in terms of
abstractions, reifications, and translations, thus ensuring a common comparison
point.
The next chapter describes the semi-formal notation elaborated to express the
reverse engineering rules starting from various languages in a common
representation. The approach presented in the chapter 5, 6, 7 and 8 has been
developed to overcome the limitations identified in this state of the art and are based
on the notation defined in chapter 4.

Chapter 4 Notation for reverse
engineering derivation rules

The state of the art which has been established in the previous chapter identified a
need for a common representation of the rules which have been used in the UI
reverse engineering process. To address this shortcoming and our requirement for
expressing our own effective design knowledge for reverse engineering, this chapter
will introduce a notation for reverse engineering rules. For this purpose, this chapter
is dedicated on model-to-model mappings, and represents a part of the conceptual
comprehension step. This step is then followed by an operationalization step to
analyze its implementation. The objective is to express reverse engineering rules in a
standardized notation so that it can be operationalized and reused for other types of
operationalizations. The chapter is decomposed into six sections. The first section
introduces the mapping problem and specifies objectives of this chapter; the second
section contains some basic mathematical definitions for graphs and trees supporting
the notation; the third part defines tree-operations used in the notation and the
fourth section provides some examples of mapping rules between two meta-models.
The fifth section provides some examples of rules implementations and finally, the
conclusion summarizes the common subproblems shared in the reverse engineering
of the different language considered in this chapter, by classifying derivation rules
according to their objective.

Chapter 4 Notation for reverse engineering derivation rules

86

4.1 Introduction

4.1.1 Objectives and method

The objectives of this chapter is to define a notation able to represent formally the
derivation rules in a standard formalism from any source language studied in this
thesis to the CUI or AUI model expressed in UsiXML 1.4.6. This notation allows to
represent mappings between two meta-models, a source meta-model (e.g. WML 1.1
language meta-model) and a target meta-model (e.g. UsiXML 1.4.6 CUI meta-
model). The only conditions are that the source language is declarative, representable
as a tree and that the control flow of the source code is straightforward. Therefore,
this notation could be reused for other types of UI not analyzed in this thesis, such
as XUL or cHTML. Using a unique formalism allows finding out similarities, and so
identifying common parts of the mappings that can be generalized by enlarging their
scope to groups of objects or across languages.

The method followed in this chapter is decomposed into four steps, which are
depicted on figure 4-1 with their corresponding sections and appendices.

Mapping Definition and properties
Meta-model syntax and semantics

4.1.2 and 4.1.3

Graph and Tree definition
4.2

Basic operations on trees and
functions

4.3

Inter model Mappings (4.4) and
categorization of mappings (4.6)

Appendices
A and B

Appendix
C

Figure 4-1 Structure of the chapter

- First, the mapping concept and the properties of mappings elaborated in this thesis
are defined, so as the meta-models syntax and semantic (see the two next sections

Chapter 4 Notation for reverse engineering derivation rules

87

4.1.2 and 4.1.3). Meta-models used in the mappings can be found in appendices A
and B. These first definitions are the basis of the proposed notation.
- Secondly, some mathematical concepts related to graph and trees are specified (4.2).
As instances (CUI or AUI models or declarative FUI) of meta-model can be
represented in a tree structure, these concepts will be used in the notation to express
the mappings between the meta-models.
- The third step consists in the definition of operations used in the notation, based
on the mathematical definitions from previous section, allowing manipulating the
trees and applying functions on nodes of the tree (section 4.3). Some of these
operations are specific to the target meta-model (sections 4.3.1 and 4.3.3) and some
of them can be applied on both (section 4.3.2).
- Finally, after the elaboration of all the material, the derivation rules are defined
(section 4.4). This section only contains some examples of inter-model mappings, the
complete list of mappings (inter and intra-model) can be found in appendix C. This
chapter is ended by the indentification of common subproblems for the reverse
engineering of the various source models/languages studied in this thesis (section
4.6).

4.1.2 Mapping and notation definition

This section defines the mapping problem for the reverse engineering of UIs, and
precises definitions as some terms are often used with different meanings in this field
of research. Model-to-model mapping is a well-known problem in literature [Lope05,
QVT03, Czar03, Capl02]. This new research field is strongly supported by the OMG
group [OMG02] which has launched several research project based on this subject.
A mapping is defined in [Lope05] as the correspondence between elements of two
metamodels, or in [QVT03] as the specification of a mechanism for transforming the
elements of a model conforming to a particular metamodel into elements of another
model that conforms to another (possibly the same) metamodel. The notation
developed in this thesis represents mappings between two models, a source model
conforming to a language meta-model (appendix B) and a target model, the UsiXML
CUI or AUI conforming to its meta-model (appendix A).
Following the QVT research group, mappings are to oppose to relations which are
multi-directional transformation specifications. Relations are not executable in the
sense that they are unable to create or alter a model: they can however check two or
more models for consistency against one another. Typically relations are used in the
specification stages of system development, or for checking the validity of a
mapping. Mappings are transformation implementations. Unlike relations, mappings

Chapter 4 Notation for reverse engineering derivation rules

88

are potentially uni-directional and can return values. Mappings can refine any number
relations, in which case the mapping must be consistent with the relations it refines.
Both, relations and mappings, are considered as transformations [QVT03].

Mappings also have several attributes. A mapping is said to be complete if it preserves
basic elements and relationships [Lope05]. It is a direct mapping if the metamodels are
expressed in the same formalism [Capl02] and indirect in the other case. Finally, a
mapping can be unidirectional (or forward mappings), if mappings can only be applied
with defined source and target or bidirectional (backward mappings) if source and target
can be swapped (by inverting the mappings) [Czar03].

The notation developed here can be considered as a direct complete and
unidirectional mapping between two meta-models:

- The mappings are direct as the source and target meta-models are both
expressed as class diagrams using the UML notation [uml]. For this purpose,
each source langage subject to reverse engineering has been abstracted in a
meta-model which can be found in appendix B.

- The mappings are unidirectional (or forward), as the inversion of the mappings
can not be used for generation.

- The mappings are complete as it keeps the elements and the relationships of
the source model (subject to transformations) unchanged.

This notation is founded on those developed in [MCB99,02] on hypergraph data
models, on graph theory [Gri94] and more particularly on trees [Ros99]. These
transformations are either applied on a same tree TT, or between two distinct trees,
TS and TT, the first representing the source tree (instance of the HTML meta-model
for example) and the second the target (instance of the UsiXML meta-model).

In this notation, a UI is described as a rooted and directed tree, where the hierarchy-
branching represents a containment relation between the parent and the child
element(s) (the parent contains the child element). Nodes of the tree represent the
different elements composing the UI. The node name represents the widget class to
which an element belongs, such as checkbox, table … Each node can possess
between 0 and n attributes (representing the attribute of the UI element such as its
color, size, etc…). Referring to elements, attributes or functions is done in the same
way as in a dotted notation, following the expression UIElement.attribute (for
example Window.backgroundColor = white for an attribute or textComponent.

Chapter 4 Notation for reverse engineering derivation rules

89

parentNode = table for a function applied to the textComponent node; functions
can also be called in the follwing manner parentNode (textComponent)).

Most of the rules are structured in the following manner:
∀ x ∈ SourceTree : x = elementA ٨ (x.attributeX != NULL ٧ x.parentNode=“elementB”) →
AddNode (id, “elementC”)
which means that for any node x belonging to a particular source tree, such that its
node class (or name) is equal to “elementA” and either its “attributeX” exists or the
parent node of the node x is equal to “elementB”, then a node “elementC” is added
in the target tree. Conditions are linked thanks to logical operators AND(٨), OR(٧)
and can be negated by the NOT (!) operator. The different operations and functions
required in this notation are defined in section 4.3.

4.1.3 Meta-model definition

Meta-models from appendix A represent the structure and composition of the
UsiXML langage at CUI and AUI levels. Similarly, the meta-models from appendix B
represent the structure and composition of the HTML 4.0, WML 1.1, VoiceXML 2.0
and Windows resource files languages. The representation of the structure here
means that every possible containments relations between elements are represented
on these UML class diagrams. The complete list of attributes for each element is also
represented on these meta-models. These diagrams include thus the same
information contained in a DTD (put aside the type of the attributes). Most of these
meta-models have been constructed thanks to the languages DTD (except for the
resource files, the meta-model have been specified thanks to documentation).

The syntax of these meta-models is the UML class diagram graphical syntax.
Elements are represented by classes, and their attributes are represented thanks to
class attributes. Only two UML relations are used in the meta-models, inheritance
relations (normal arrow) and aggregation relations (arrows ended with a rombus).
Aggregation relations are used to describe that an element may contain another type
of element, e.g. element <a> may contain an element (but not the contrary)
in HTML 4.0. Generalization relations are used to facilitate the reading of meta-
models by grouping elements with similar attributes and similar aggregation relations,
but are not existing entities from the language.

Chapter 4 Notation for reverse engineering derivation rules

90

4.2 Mathematical definitions

This section contains several mathematical definitions ([Cal77], [Gri94], [Ros99])
from the graph and tree theories used later to describe the derivation rules. As each
meta-model can be represented as a tree-strucutre, these concepts are important as
they allows us to express formally rules to define the mappings.

Graph definitions
• A simple graph G=(V,E) consists of V, a nonempty set of vertices, and E, a set

of pairs of distinct elements of V, called edges.
• A directed graph (V,E) consists of a set of vertices V and a set of edges E that are

couples of elements of V. In a directed graph, vertices are called nodes and
directed edges are called arcs.

• Two vertices u and v in directed graph G are called adjacent in G if {u,v} is an
edge of G. The vertex u is called the initial vertex of (u,v) and v is called the
terminal or end vertex of (u,v).

• A Walk/Path(µ) from x to y : Let x,y be vertices in a graph G=(V,E). An x-y walk
is a finite alterning sequence of vertices and edges from G, starting at vertex x and
ending at vertex y and involving the n edges ei={xi-1, xi} where 0<i<n+1. The
length of a walk is n, the number of edges in the walk. When the graph is simple, a
path can be denoted by its vertex sequence.

• A connected graph is a graph where there is a walk from any edge to any other
edge in the graph.

• A simple walk is a type of walk where no vertex occurs more than once.
• A circuit is a walk that begins and ends at the same vertex.

Tree definitions
• A tree is a connected undirected graph with no simple circuit, i.e. without walk

beginning and ending at the same vertex and where no vertex occurs more than
once.

• A directed tree is a directed graph (cf. supra) which would be a tree if the
directions on the edges were ignored. Some authors restrict the phrase to the case
where the edges are all directed towards a particular vertex, or all directed away
from a particular vertex.

• A root is a node vi ∈ V such that vi≤vj ∀ vj ∈ V.
• A rooted tree is a directed graph, where each arc is directed away from the root.
• The preorder t associated to G is a reflective and transitive relation V→V such

that ∀ vi, vj ∈ V : vi≤ vj iff vi=vj or ∃ µ (vi, vj).

Chapter 4 Notation for reverse engineering derivation rules

91

• A tree traversal is the process of visiting each node in a tree data structure. Tree
traversal, also called walking the tree, provides for sequential processing of each
node in what is, by nature, a non-sequential data structure. Such traversals are
classified by the order in which the nodes are visited. In our case, the traversal is
done from left to right, e.g. the first declared child of a node is analyzed before the
others (in a depth-first order). Therefore, the preorder definition can be extended :
∀ vi, vj ∈ V : vi≤ vj iff vi=vj or ∃ µ (vi, vj) or (parent(vi)=parent(vj) and vi (on the left
of) is declared before vj).
Example: <x1>
 <x2>
 <x31/>
 <x32/>
 </x2>
 </x1>
On this small tree, the preorder as defined before this definition is
x1<x2<x31=x32, i.e. the two children x31 and x32 are on the same level, there is
no preorder distinction for these two nodes. With the notion of tree traversal, the
sequence of nodes is classified in this manner: x1<x2<x31<x32. The node x31
comes before x32 as it has been declared before this second node.

• The parent of a node v is the unique node u such that there is an arc from u to v.
In this case, the node v is said to be the child of u.

• A leaf is a node vj ∈ V such that vi≥ vj ∀ vi∈ V
• The ancestors of a node other than the root are the nodes in the path from the

root to this node, excluding the node itself and including the root (an ancestor of vj
∈ V is a node vi ∈ V such that vi≤vj.)

• The descendants of a node v are those nodes that have v as an ancestor (a
descendant of vi ∈ V is each vj ∈ V such that vi≤vj).

• Each node is named, and this name represents the class of the element. Classes are
types of elements belonging to the languages meta-models.

• An attribute is piece of information related to a specific node of the tree. Each
attribute has one name and one or more associated values. Attributes names are
defined in the languages meta-models.

4.3 Operations on trees

Several trees are used in this notation: Tt stands for the target tree, representing the
concrete user interface. The notation is also valid to represent derivation rules up to
abstract user interface, but all the rules of this chapter are specified for the concrete
level. TH corresponds to tree representing the UI specified in HTML, TW for WML
and TV for voiceXML.

Chapter 4 Notation for reverse engineering derivation rules

92

4.3.1 Basic operations on Tt
Several basic operations on the target tree are defined in this section. These
operations are basic as they are needed to construct the resulting tree. There are three
types of operations (i.e., adding, removing and modifying) which are applied to the
three types of elements (node, attribute and arc) in the target tree. There is a fourth
operation –CloneNode - for the elements of type node. This operation allows
copying a node into another new node with each of its attributes.
In our notation, every arc is of the type “parent of” where the first parameter (source
node) indicates the parent node and the second the child of the source node.
Each operation receives one or several nodes in parameters, but it is thanks to the
identifier attribute of these nodes that the function is applied as the identifier is the
unique way to reference a node without ambiguities.
The operations are specified by their name, followed by several parameters. Then,
the arguments in and out are represented in natural language, so as the preconditions
of these operations.

◘ AddNode (class, id)
 Args in: class name, identifier.
 Args out: node (id) of class (class) created in the target tree.
 Pre: id is unique; class belongs to the AUI or CUI meta-model.
Allows adding a node in the target tree. The first parameter indicates the class of the
node and the second the identifier of the node.
◘ RemoveNode (id)
 Args in: identifier.
 Args out: node (id) removed from the target tree.
 Pre: identifier (id) exists in the target tree
Allows removing a node with identifier id in the target tree. This operation removes
all the attributes belonging to this node, and all the children of this node are also
removed.
◘ ModifyNode (id,newclass,newid)

Args in: identifier, new class name (newclass), new identifier (newid).
Args out: node (id) is modified into a node of class newclass, with its id
 equal to newid.

 Pre: class (newclass) belongs to the CUI or AUI models; id exists in the
 target tree ; newid is unique.

Chapter 4 Notation for reverse engineering derivation rules

93

Allows modifying a node with identifier (id) in the target tree. The first parameter
indicates the identifier of the node to modify, the second the new class of the node
and the last the new identifier of the node.
◘ CloneNode (idSource, idClone,[tree])
 Args in: identifier (idSource), new identifier (idClone), tree name (tree).

Args out: copy of a subtree starting at node (idsource) in a new node
(idClone) in the tree (tree).

 Pre: idSource exists, idClone does not exist, tree is a valid tree name.
Allows creating a node with identifier idClone which is a copy of the source node
having as identifier idSource. Every child node (and its attributes) of this source node
is also copied. Arcs starting from this node are copied too (i.e. the arcs between the
source node and its children) and thus an entire sub-tree can be reproduced thanks
to this operation. The last parameter indicates the tree in which this node is cloned.
If this parameter is not specified, the node is cloned into the same tree than the
source node. The new node (idClone) is not linked with the tree, it has to be
appended explicitly by another operation.

◘ AddAttribute(Nodeid, name, value)
 Args in: identifier (Nodeid), attribute name (name), attribute value (value).
 Args out: attribute (name) with value (value) is added to node (nodeid).

Pre: (Nodeid) identifier exists, name is a valid attribute name from the CUI
or AUI meta-model.

Allows adding an attribute to an element having as identifieir Nodeid in the target
tree. The first parameter indicates the identifier of the node to which the attributes
will be added, the second one refers to the name of the attribute and the third one to
the value of this attribute.
◘ RemoveAttribute(Nodeid, name)

Args in: identifier, attribute name.
 Args out: attribute from node (nodeid) removed.

Pre: identifier (Nodeid) exists, name is an attribute name belonging to the
attributes of node (Nodeid).

Allows removing an attribute from a specific node with identifier Nodeid in the
target tree. The first parameter indicates the identifier of the targeted node, the
second the name of the attribute to remove.
◘ ModifyAttribute(Nodeid, name, newname, newvalue)
 Args in: identifier, attribute name, new attribute name, new attribute value.

Chapter 4 Notation for reverse engineering derivation rules

94

Args out: attribute (name) modified into another attribute (newname) with a
new value.
Pre: identifier (Nodeid) exists, attributes names (name and newname) are a
valid attribute names from the CUI or AUI meta-model, name is an attribute
name belonging to the attributes of node (Nodeid).

Allows modifying an attribute in the target tree belonging to the node with identifier
Nodeid. The first parameter indicates the identifier of the node, the second the name
of the attribute, the third the new name of the attribute and the last the new value of
the attribute.

◘ AddArc (idSource,idTarget)
 Args in: source identifier (idSource), target identifier (idTarget).

Args out: arc added between source node (idSource) and target (node
idTarget).
Pre: identifiers exists and no arc exists between the two nodes (idSource,
 idTarget)

Allows adding an arc in the target tree. The first parameter represents the identifier
of the source (parent) and the second one the identifier of the target of the arc.
◘ RemoveArc (idSource, idTarget)
 Args in: source identifier (idSource), target identifier (idTarget).

Args out: arc removed between source node (idSource) and target (node
idTarget).
 Pre: identifiers exists and an arc exists between the two nodes (idSource,
 idTarget)

Allows removing an arc in the target tree. The first parameter indicates the identifier
of the source node and the second one the indentifier of the target node of the arc.
◘ ModifyArc (idSource, idTarget, newTarget)

Args in: source identifier (idSource), target identifier (idTarget), new identifier
(newTarget).
Args out: the arc between the two nodes (idSource and idTarget) is removed,
and a new arc between node (idSource) and node (newTarget).
 Pre: identifiers exists, an arc exists between the two nodes (idSource,
 idTarget) where the node (idsource) is the source of the arc and the node
idTarget) is the end of the arc; the node (newTarget) is not the target of any
other arc.

Chapter 4 Notation for reverse engineering derivation rules

95

Allows modifying an arc in the target tree. The first parameter indicates the identifier
of the source node and the second the target of the arc. The third parameter
represents the identifier of the new target of the arc.

4.3.2 Derived operation (on TH , TW , TV and TT):

This section contains common derived functions (returning a value), which are based
on the basic operations and the mathematical definitions of section 4.2. A small
description is given for each operation to explain in natural language what the
operation does. In and out arguments with their type followed by the precondition(s)
are also mentioned for each function.

ParentNode (x):

Args in:
Args out:

Pre:

Returns y which is the parent of node ‘x’ (x.id). Equivalent to
preceding (cf. defs)

node x
node y such that an arc exist between x and y where y is the source
and x the target of the arc.
x ∈ V ; x is not the root of the tree.

isLeaf (x):

Args in:

Args out:
Pre:

Returns true if node ‘x’ (x.id) is not the source of any parent arc.
Equivalent to leaf (def)

node x.
boolean, equal to false if there is an arc starting from x.
x ∈ V

Sibling (x) :

Args in:
Args out:

Pre:

Returns the set of nodes xi…xn in which every node has the same
parent node as ‘x’ (x.id), x excluded.

node x.
set of nodes having the same parent node as node x, x excluded.
x ∈V; x is not the root of the tree.

Dist (x,y) :

Args in:
Args out:

Pre:

Returns the number of nodes between two sibling nodes x (x.id)
and y (y.id), y included. For example, if x,z and y are the children of
a node w and are specified in this order, the function Dist(x,y) will
return 2.

nodes x and y.
integer representing the number of nodes between two sibling
nodes.
x,y ∈ V; x and y have the same parent node.

Chapter 4 Notation for reverse engineering derivation rules

96

isTheAbstrac-
tionOf (itao(x)):

Args in:
Args out:

Pre:

Return y (belonging to Tt) such that y is is the result of an
abstraction of x (x.id). A relation is automatically added for each
creation of nodes in the target tree that links an element from the
source tree with the node created in the target tree. The function
isTheAbstractionOf(x) returns the node – already processed-
belonging to the target tree corresponding to the node x from the
source tree

node x.
node y from the target tree which is the abstraction of node x.
x ∈ V; node x has already been processed, i.e. a relation exist
between element x and an element of the target tree.

isTheReifica-
tionOf (itro(x))

Args in:
Args out:

Pre:

Returns y (belonging to TH/V/W) such that y is is the result of a
reification of x (x.id). Itro(x) is the inverse function of itao(x).

node x.
node y from the source tree which is the the reification of node x.
x ∈ V

SiblingBefore(x)

Args in:
Args out:

Pre:

Return all the sibling nodes of node x (x.id) that are declared before
‘x’ (following the tree traversal defined in this method)

node x.
set of nodes that have the same parent node as node x and that are
declared before node x.
x ∈ V ; node x is not the root of the tree and not a leaf.

IsInPath(a,x)

Args in:
Args out:

Pre:

Returns true if the node ‘a’(a.id) is contained in a path between the
root and node x (x.id)

nodes a and x.
boolean; equal to true if node a exist in µ(root,x).
x, a ∈ V ; x is not the root of the tree.

IsInPath(a.attri-
bute=value,x)

Args in:
Args out:

Pre:

Returns true if the node ‘a’ (x.id) with one of its attributes set to a
particular value is contained in a path between the root and node x
(x.id)

nodes a (with an attribute and its value) and x.
boolean; equal to true if node a with one of its attribute set to a
specific value exist in µ(root,x).
x, a ∈ V ; the attribute of a is a valid attribute; x is not the root of

Chapter 4 Notation for reverse engineering derivation rules

97

the tree.
NearestInPath
(x,a)

Args in:
Args out:

Pre:

Returns a node of class x which is the nearest of node a (a.id) in the
path between the root and the node x; return false if node x is not
in the same path as node a (a.id).

nodes x and a.
boolean; equal to false if x does not exist in µ(root,a) or a node of
class x such this node is exists in µ(root,a) and that the number of
arcs is minimal between x and a (if other instances of x exists in the
same path).
x, a ∈ V ; a is not the root of the tree.

PathLength(x,y)

Args in:
Args out:

Pre:

Returns the number of arcs between x.id and z.id such that
z=NearestInPath(x,y). If there is no path between x and y, the
function returns infinity.

nodes x and y.
infinity if y does not exist in µ(root,x) or an integer representing the
amount of arcs between x and the node returned by
NearestInPath(x,y).
x,y ∈V; x is not the root of the tree.

IsUIElement (x)

Args in:
Args out:

Pre:

Returns true if the node x (x.id) belongs to a predefined set:
[body,table,td,tr,input,fieldset,textarea,img,area,applet,embed,
marquee,bgsound,select,option]}

node x.
Boolean, true if class x belongs to a specific set.
x ∈ V

isAudio (x)

Args in:
Args out:

Pre:

Returns true if the node x (x.id) possesses an attribute src
containing an extension of an audio file, i.e. from the set [“.wav” ,
“.mp3” , “.aif” , “.au” , “.iff” , “.mid” , “.mod” , “.x3m”, “.voc” ,
“.mpa” , “.pcm” , “. Xml” , “.mp2” , “.pcm” , “.ra” , “.rm” ,
“.rpm”]

node x.
Boolean, true if class x belongs to a specific set.
x ∈ V.

CountInPath
(x,y,z)

Args in:

Returns the numbers of nodes of class z in the path (x.id,y.id)

nodes x, y and z.

Chapter 4 Notation for reverse engineering derivation rules

98

Args out:
Pre:

integer representing the number of nodes of class z in µ(x,y).
x, y ∈ V; x is not the root of the tree

ChildNodes(x)

Args in:
Args out:

Pre:

Returns the set of nodes that have as parent node the node x (x.id)

node x.
set of nodes that are the targets of arcs starting from node x.
x ∈ V; x is not a leaf.

LeftSibling(x)

Args in:

Args out:

Pre:

Returns the nearest node of x (x.id) in the set of nodes
siblingBefore (x.id). Returns null if x has no siblings before it.

node x.
node y such that y belongs to siblingBefore(x) and dist (x,y)=1, or
null if siblingBefore is empty.
x ∈ V.

RightSibling(x)

Args in:
Args out:

Pre:

Returns the nearest node x (x.id) in the set of siblings nodes
without the set siblingBefore. Returns null if x has no siblings after
it.

node x.
node y such that y belongs to (sibling(x)-siblingBefore(x)) and dist
(x,y)=1, or ‘null’ if (sibling(x)-siblingBefore) is empty.
x ∈ V.

CountInChild
Nodes(z,x)

Args in:
Args out:

Pre:

Returns the numbers of nodes of class z that have the node x (x.id)
as same parent node

nodes z and x
integer representing the number of nodes of class z in the set
childnodes (x).
x ∈ V ; x is not a leaf node.

4.3.3 Remarks

- The id of an element is unique and is computed by counting the number of nodes
created in the target tree (Tt) before the creation of the current node. The function
NodeAmount (Tt), which is present in each derivation rule implying the creation of
nodes in the target tree, means the amount of nodes created at this point of the
process in the target tree, and thus ensures that each node has a unique identifier.
- In a function call, constant values are indicated between quotation marks and
computed values are indicated without quotation marks.

Chapter 4 Notation for reverse engineering derivation rules

99

- The rules of abstraction are gathered in function of the elements of the source
trees. The rules displayed in bold must be executed before the other rules of this
group. Rules in bold represent rules which will produce a new node in the target tree.
- When a node is created in the target tree, a relation isAbstractedInto is
automatically added between the element that triggered the creation of the new node
and this new node, allowing keeping a trace of the abstraction.
- Every element of the TH, TW and TV source trees possess potentially an attribute
x.textnode which is the text contained in the tag x (for example, for <a> link number
one , a.textnode is ‘link number one’). These attributes are not mentioned in
the meta-models from appendix B.
- General rules belonging to inter-graph transformations are applied in a depth-first
order.
- Every root element of the source file possesses an added attribute that do not
belong the CUI specification, x.filename that can be used for tree merging operations
(appendix C).
- Some tags are annotated with an ‘optional’ or a ‘skipnode’ marker, because the
conditional behaviour of a VoiceXML UI can not be represented in UsiXML. These
nodes are recorded in a comment and thus the choice is let to the designer to
keep/discard the tags.

4.3.4 Groups of operations

These groups of operations are composed of several addNode, addArc and
addAttribute operations allowing specifying components of the UsiXML language
with one function call. As these components are repetitive, these shortcuts have been
designed to clarify and decrease the size of the set of derivation rules (section 4.4 and
appendix C). These groups are mostly used to define transitions, i.e. dialog
component indicating the source and the target of a transition in the UI (between
windows, vocal forms etc…).
An example of the resulting tree generated by the first group of operations,
AddGraphTr (source, target), is given below, so as its XML representation:

graphicalTransition

Source

Target

sourceId= source

targetId= target

transitionType=open id=2

Figure 4-2 Subtree representing a graphicalTransition

Chapter 4 Notation for reverse engineering derivation rules

100

<graphicalTransition transitionType=“open” id=“2”>
 <source sourceId=source />
 <target targetId=target />
</graphicalTransition>

which represent a transition in the graphical modality at the CUI level in UsiXML
1.4.6. Parameters of the functions are source and target, represented in italic on
figure 4-2. Only these two elements vary in the declaration of a graphical transition in
UsiXML.

Group name Corresponding derivation rules
AddGraphTr
(source, target)

AddNode(“graphicalTransition”,idGrTr) where idGrTr =
NodeAmount(Tt)
AddAttribute(idGrTr, “transitionType”, “open”)
AddAttribute(idGrTr, “id”, idGrTr)
AddNode(“Source”, idSource) where idSource =∑ node ∈ Tt
AddAttribute(idSource, “sourceId”, source)
AddNode(“Target”, idTarget) where idTarget =∑ node ∈ Tt
AddAttribute(idTarget, “targetId”, target)
AddArc(0,“1”, idGrTr)
AddArc(idGrTr, idSource)
AddArc(idGrTr, idTarget)

٨

٨
٨
٨
٨
٨
٨
٨
٨

 Allows adding GraphicalTransitions in only one operation. A
GraphicalTransition is composed of a node, child of the
“CUIModel” node, and possesses two children, one
representing the source and the second representing the target
of the transition.

ConstrBox(name,
type,[idbox])

AddNode (name, idbox)[where idbox = NodeAmount(Tt)]
AddAttribute (idbox, “type”,type)
AddAttribute (idbox, “isEnabled”, “true”)
AddAttribute (idbox, “isVisible”, “true”)
AddAttribute (idbox, “name”, idbox)
Add Attribute (idbox, “id”, idbox)

٨
٨
٨
٨
٨

 Allows adding a “construction” box node with 5 attributes.
These nodes are replicates of boxes and needed in an
intermediate step during the recovery of the layout of the UI
Therefore, they are named bux, bax, or bix to record the fact
that they have already been processed and the step in which
they have been processed.

AddAudiTr
(source, target)

AddNode(“AuditoryTransition”,idGrTr) where idAuTr
=NodeAmount(Tt)
AddAttribute(idAuTr, “transitionType”, “open”)

٨

٨

Chapter 4 Notation for reverse engineering derivation rules

101

AddAttribute(idAuTr, “id”, idAuTr)
AddNode(“Source”, idSource) where idSource =∑ node ∈ Tt
AddAttribute(idSource, “source”, source)
AddNode(“Target”, idTarget) where idTarget =∑ node ∈ Tt
AddAttribute(idTarget, “target”, target)
AddArc(0,“1”, idAuTr)
AddArc(idAuTr, idSource)
AddArc(idAuTr, idTarget)

٨
٨
٨
٨
٨
٨
٨

 Allows adding an AuditoryTransitions in only one operation. An
 AuditoryTransition is similar to a graphicalTransition. It is
composed of a node, child of the “CUIModel” node, and
possesses two children, one representing the source and the
second representing the target of the transition.

AddCUIDiag-
Cont(source,
target, symbol)

AddNode(“CUIDialogControl”,idCDC) where idCDC =
NodeAmount(Tt)
AddAttribute(idCDC, “symbol”, symbol)
AddAttribute(idCDC, “id”, idCDC)
AddNode(“Source”, idSource) where idSource =∑ node ∈ Tt
AddAttribute(idSource, “source”, source)
AddNode(“Target”, idTarget) where idTarget =∑ node ∈ Tt
AddAttribute(idTarget, “target”, target)
AddArc(0,“1”, idCDC)
AddArc(idCDC, idSource)
AddArc(idCDC, idTarget)

٨

٨
٨
٨
٨
٨
٨
٨
٨

 Allows adding CUI Dialog Control relation in only one
operation. It is composed of a node, child of the “CUIModel”
node, and possesses two children, one representing the source
and the second representing the target of the relation. The
CUI Dialog Control possesses an attribute symbol that
specifies the type of control (sequential, concurrent,…
elements)

4.4 Inter-tree mappings

After the definition of the basic operations, and functions used in this notation, some
examples of mappings between two trees (or meta-models) are given in this section.
Another category of mappings exists, intra-tree mappings, which are mappings
applied on the target tree uniquely. This second category of mappings can be found
in appendix C.
The sequence in which the derivation rules are applied – and their corresponding
section in this chapter - is depicted on figure 4-3.

Chapter 4 Notation for reverse engineering derivation rules

102

Rules particular to node classes
4.4.2 – Appendix C

Initialization rules
4.4.1

General rules defining alignment
4.4.3

General rules applied for each node
4.4.4

Intra-model rules
Appendix C

Tree traversal completed

Figure 4-3 Sequence of derivation rules

The first set of rules (4.4.1) represents the initialization step. When the process of
transformation starts, these rules are executed before any other derivation rule.
Then, rules particular to node types (4.4.2) are applied. These derivation rules aims
precise node classes, and maps them to node classes from the target meta-model.
After these derivation rules, general rules are applied, which are used for the
detection of the hierarchy (4.4.3) and the alignment properties of elements (4.4.4).
General rules means that they are not specific to a particular node type.
When the tree traversal is completed, intra-model rules are applied. These rules allow
to correct the target tree, to recover the layout and to apply retargeting operations.

4.4.1 Initialization

The abstraction process starts with these 8 derivation rules. The root node in the
target tree is created thanks to this initialization step. This root node contains
information about the date of creation, the schema version of the UsiXML
specification and the URL of the UsiXML schema used to specify this UI.
AddNode(“cuiModel”, “1”) ٨
AddAttribute(“1”, “name”, “1”) ٨
AddAttribute (“1”, “id”, “1”) ٨

Chapter 4 Notation for reverse engineering derivation rules

103

AddAttribute (“schemaVersion”, “1.4.6”) ٨
AddAttribute (“creationDate”, “date”) ٨
AddAttribute (“xsi:schemaLocation”, “http://www.UsiXML.org/spec usiXML-cui.xsd”) ٨
AddAttribute (“xmlns:xsi”, “ http://www.w3.org/2001/XMLSchema-instance ”) ٨
AddAttribute (“xmlns”, “http://www.usiXML.org”)

4.4.2 Particular to node classes

This type of rules contains 46 groups of mappings. For each group, the first mapping
in bold corresponds to the detection of a node in the source tree that causes the
creation of a node in the target tree. The title of each group of rules is numbered
(G1..G46) and followed by the class name of the source element of the mapping.
The possible class names corresponding to this element in the target model is
indicated between brackets in the group title. The complete list is given in appendix
C, and this section only contains some commented group of rules. Some other
commented examples are given in chapter 6, 7 and 8.

G4 - td (box/cell)

∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border=0
 →AddNode(“box”, idbox) where idcell = NodeAmount(Tt)

∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border>0→AddNode(“cell”, idcell)
 where idcell = NodeAmount(Tt)

∀ x ∈ TW : x = td → AddNode(“cell”, idcell) where idcell = NodeAmount(Tt)
∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border=0 → AddAttribute (idcell, “type”, “horizontal”)
∀ x ∈ TH/W: x = td → AddAttribute (idcell, “isEnabled”, “true”)
∀ x ∈ TH/W : x = td → AddAttribute (idcell, “isVisible”, “true”)
∀ x ∈ TH/W : x = td → AddAttribute (idcell, “name”, idcell)
∀ x ∈ TH/W : x = td → AddAttribute (idcell, “id”, idcell)
∀ x ∈ TH/W : x = td → CheckAlignement(x,idcell)
∀ x ∈ TH : x = td ٨ x.width!=NULL → AddAttribute (idcell, “width”, x.width)

∀ x ∈ TH : x = td ٨ x.height!=NULL →AddAttribute (idcell, “height”, x.height)
∀ x ∈ TH : x = td ٨ x.bgimage=NULL →AddAttribute (idcell, “bgimage”, x.background)
∀ x ∈ TH : x = td ٨ x.bgcolor!=NULL →AddAttribute (idcell, “bgcolor”, x.bgcolor)
∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border>0 → AddAttribute (idcell, “xIndex”, b) where
 b=∑td SiblingBefore (x)
∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border>0→ AddAttribute (idcell, “yIndex”, c):
y=NearestInPath(tr,x) ٨ c=∑tr SiblingBefore (y)
∀ x ∈ TW : x = td →AddAttribute (idcell, “xIndex”, b) where b=∑td SiblingBefore (x)
∀ x ∈ TW : x = td → AddAttribute (idcell, “yIndex”, c) : y=NearestInPath(tr,x)٨
 c=∑trSiblingBefore(y)
∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border=0→AddArc(i.id, x.id) where
i=itao(NearestInPath(“tr”,x))

Chapter 4 Notation for reverse engineering derivation rules

104

∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border>0→AddArc(i.id, idbox) where i= itao
(NearestInPath(“table”, x)
∀ x ∈ TW : x = td →AddArc(i.id, idbox) where i= itao(NearestInPath(“table”, x)
This first group of rules defines the derivation rules for table cells. There are three
bold rules (i.e. creating a node in the target tree), as the cell can be

1. a part of a table without border (derived then into a box)
2. a part of a table with borders (derived in a cell)
3. a part of a WML table (also derived in a cell).

In the first of these three cases, an attribute type=horizontal is automatically added as
the content of the box will be displayed horizontally by default in HTML. The five
next attributes are common for both languages (HTML and WML) and for each of
the 3 cases: the attributes are isEnabled, isVisible, name, id and alignment attributes, as
the rule can be applied on TH/W trees and has the only condition that the node name
is td. The four following attributes are for HTML source trees only, but for both
cases (i.e. with border greater or equal to 0) and add the width, height, bgcolor and
bgImage attribute in the UsiXML specification if they are present in the source tree.
The next attribute defines the values for the xIndex and yIndex in the CUI model.
This rule is only applied if the parent table has a border greater than 0(case number
2). These two attributes are computed by counting the number of siblings td (and tr
nodes respectively) before the current node. The same occurs for the WML node,
but without the border-condition as tables are never derived into boxes in this
language.
Finally, the hierarchy is constructed (by adding an arc), either by linking the element
to the abstraction of the nearest table - for the WML language or in the case of a
parent table with border greater than 0- or to the abstraction of the nearest row (tr) in
the case of boxes.

G6 – fieldset (box)

∀ x ∈ TH/W : x = fieldset →Addnode (“box”, idbox) where idbox = NodeAmount(Tt)

 →AddAttribute (idbox, “type”, “horizontal”)
∀ x ∈ TH/W : x = fieldset→AddAttribute (idbox, “name”, idbox)
∀ x ∈ TH/W : x = fieldset →AddAttribute (idbox, “isEnabled”, “true”)
∀ x ∈ TH/W : x = fieldset →AddAttribute (idbox, “isVisible”, “true”)
∀ x ∈ TH/W : x = fieldset →Add Attribute (idbox, “id”, idbox)
∀ x ∈ TH/W : x = fieldset → CheckAlignement(x,idbox)
∀ x ∈ TH : x = legend ٨ NearestInPath(fieldset,x) ٨ x.textnode!=NULL
 →AddAttribute (i.id, “borderTitle”, x.textnode) : i=(itao(NearestInPath(fieldset,x)))
∀ x ∈ TH : x = legend ٨ NearestInPath(fieldset,x) ٨ x.textnode!=NULL ٨ x.align !=NULL
→AddAttribute (i.id, “borderTitleAlign”, x.align) : i=(itao(NearestInPath(fieldset,x)))
∀ x ∈ TW : x = fieldset ٨ x.title !=NULL →Add Attribute (idbox, “borderTitle”, x.title)

Chapter 4 Notation for reverse engineering derivation rules

105

In the next example, the rules for WML and HTML source tree are again very
similar. If a fieldset node is detected, a box is created in the UsiXML specification
with the type=horizontal attribute. As for the previous example, five attributes are
common to both languages and are automatically added.
In an HTML tree, if a legend node is present in the descendant of the fieldset node,
its textnode and align attribute are used to set the value of the borderTitle and
borderTitleAlign attributes of the box in the target tree.
For a WML tree, the borderTitle information can be found in the title attribute of the
fieldset node.

G28 – Form (vocalForm)

∀ x ∈ TV : x = form→Addnode (“vocalForm”, idform) where idform = NodeAmount(Tt)
∀ x ∈ TV : x = form ٨ x.name !=NULL → AddAttribute (idform, “id”, x.name)
∀ x ∈ TV : x = form ٨ x.name =NULL → AddAttribute (idform, “id”, idform)
∀ x ∈ TV : x = form ٨ x.name !=NULL → AddAttribute (idform, “name”, x.name)
∀ x ∈ TV : x = form ٨ x.name =NULL → AddAttribute (idform, “name”, idform)
∀ x ∈ TV : x = form ٨ x.expr != NULL → AddAttribute (idform, “currentValue”, x.expr)
∀ x,z ∈ TV : x = form ٨ z=grammar ٨ z ∈ childnodes(x) → AddAttribute (idform,
“isOrderIndependent”, “true”)
The group of rules G28 is only applicable to the VoiceXML language (TV). It derives
a form node into a vocalForm element in the CUI model. If the name attribute is
present, its value will be used to set the values of the name and id UsiXML attributes.
In the other case, the name and id attributes are computed by counting the number
of node already created in the target tree. The value of the expr attribute is copied in
the currentValue attribute in the target tree. Finally, if a grammar node exists in the
children of the form, then the attribute isOrderIndependent is set to true in the CUI
model, as a grammar defined at the level of the form will be active until the form node
is closed. The information related to the grammar are added later (in G38) to the
vocalForm.

G43 – goto (vocalNavigation)

∀ x ∈ TV : x = goto →Addnode (“vocalNavigation”, idgoto) where idgoto = NodeAmount(Tt)
∀ x ∈ TV : x = goto → AddAttribute (idgoto, “id”, idgoto)
∀ x ∈ TV : x = goto → AddAttribute (idgoto, “name”, idgoto)
∀ x ∈ TV : x = goto→ AddAttribute (idgoto, “NavigationType”, “goto”)
∀ x ∈ TV : x = goto → AddAttribute (idgoto, “isBridgeable”, “false”)
∀ x ∈ TV : x = goto ٨ x.nextitem !=NULL → AddAudiTr (idgoto , x.nextitem)
This last group of rules is specific to VoiceXML trees. It derives a goto element into a
vocalNavigation node. Name and id are automatically associated with the element, so
as the navigationType and isBridgeable attributes which are set to goto and false

Chapter 4 Notation for reverse engineering derivation rules

106

respectively. Finally, the nextItem attribute is used to add an auditoryTransition to the
CUI model (see group of functions in section 4.3.4 for AddAudiTr).

4.4.3 General rule defining alignment

This rule is represented as a function, and they can be applied for every element.
ElementId represents the current element in the target tree to which the attribute is
added.

CheckAlignment(x,elementId)
∀ x ∈ TH/W : IsInPath(center,x) → AddAttribute (elementId, “glueHorizontal, “middle”)
∀ x ∈ TH/W : IsInPath(div.align=center,x) → AddAttribute (elementId, “glueHorizontal”, “middle”)
∀ x ∈ TH/W : IsInPath(div.align=right,x) → AddAttribute (elementId, “glueHorizontal”, “right”)
∀ x ∈ TH/W : IsInPath(div.align=left,x) →AddAttribute (elementId, “glueHorizontal”, “left”)
∀ x ∈ TH/W : x.align=left→AddAttribute (elementId, “glueHorizontal”, “left”)
∀ x ∈ TH/W: x.align=right→AddAttribute (elementId, “glueHorizontal”, “right”)
∀ x ∈ TH/W: x.align=center→AddAttribute (elementId, “glueHorizontal”, “middle”)
∀ x ∈ TH/W : x.valign=bottom→AddAttribute (elementId, “glueVertical”, “bottom”)
∀ x ∈ TH/W : x.valign=top→AddAttribute (elementId, “glueVertical”, “top”)
∀ x ∈ TH/W : x.valign=middle→AddAttribute (elementId, “glueVertical”, “middle”)
∀ x ∈ TH/W : IsInPath(div.valign=middle,x)→AddAttribute (elementId, “glueHorizontal”, “middle”)
∀ x ∈ TH/W : IsInPath(div.valign=top,x)→AddAttribute (elementId, “glueHorizontal”, “top”)
∀ x ∈ TH/W: IsInPath(div.valign=bottom,x)→AddAttribute(elelmentId, “glueHorizontal”, “bottom”)
This function checks if the element x is in the same path as an alignment modifier
(div, center, align attributes), and if it is the case, an attribute is added in the UsiXML
specification to reflect the horizontal position of the element.

4.4.4 General rules applied for each node

These rules are applied once for each node creation (the AddNode operation) in the
46 first groups of rules from section 4.4.2 (and appendix C), except if an AddArc is
specified in the group of rules. In this case, the AddArc operation overrides these
general hierarchy construction rules.

The aim of these rules is to check if the current source element is embedded in a
container (table, table cell, table row or fieldset for HTML/WML and vxml, menu,
initial, form, block, subdialog for voiceXML) and reproduces the same structure, i.e.
link the element to its corresponding container, in the target tree. If this is not the
case, the new element is appendend to (defined as child of) the first vertical box after
the window node. The first set of rules can be applied if the source tree is an HTML
or WML file.

Chapter 4 Notation for reverse engineering derivation rules

107

∀ x ∈ TH/W , ∃ y,z ∈Tt : y=itao(x) ٨ IsInPath(table,x) ٨ (PathLength(table,x) < PathLength(tr,x)) ٨
(PathLength(table,x) < PathLength(fieldset,x)) ٨ (PathLength(table,x) < PathLength(td,x)) →
z=itao(NearestInPath(table,x)) ٨ AddArc(z.id, y.id)

Checks if the node x is in the same path as a table and if no tr, fieldset or td node is nearer than the
table. If the table is the nearest node, then an arc is added between the node y (abstraction of the
node x in the target tree) and the node z, (abstraction of the table in the target tree).

∀ x ∈ TH/W , ∃ y,z ∈Tt : y=itao(x) ٨ IsInPath (td,x) ٨ (PathLength(td,x) < PathLength(tr,x)) ٨
(PathLength(td,x) < PathLength(fieldset,x)) ٨ (PathLength(td,x) < PathLength(table,x)) →
z=itao(NearestInPath(td,x)) ٨ AddArc(z.id, y.id)

Checks if the node x is in the same path as a td node and if no tr, fieldset or table node is nearer than
the td node. If the td node is the nearest node, then an arc is added between the node y (abstraction
of the node x in the target tree) and the node z, (abstraction of the td in the target tree).

∀ x ∈ TH/W , ∃ y,z ∈Tt : y=itao(x) ٨ IsInPath (fieldset,x) ٨ (PathLength(fieldset,x) < PathLength(tr,x))
٨ (PathLength(fieldset,x) < PathLength(table,x)) ٨ (PathLength(fieldset,x) < PathLength(td,x)) →
z=itao(NearestInPath(fieldset,x)) ٨ AddArc(z.id, y.id)

Checks if the node x is in the same path as a fieldset and if no tr, table or td node is nearer than the
fieldset. If the fieldset is the nearest element, then an arc is added between the node y (abstraction of
the node x in the target tree) and the node z, (abstraction of the fieldset in the target tree).

∀ x ∈ TH/W , ∃ y,z ∈Tt : y=itao(x) ٨ IsInPath(tr,x) ٨ (PathLength(tr,x) < PathLength(table,x)) ٨
(PathLength(tr,x) < PathLength(fieldset,x)) ٨ (PathLength(tr,x) < PathLength(td,x)) →
z=itao(NearestInPath(tr,x)) ٨ AddArc(z.id, y.id)

Checks if the node x is in the same path as a tr node and if no fieldset, table or td node is nearer than
the tr node. If the fieldset is the nearest element, then an arc is added between the node y (abstraction
of the node x in the target tree) and the node z, (abstraction of the tr node in the target tree).

∀ x ∈ TH/W , ∃ y,z ∈Tt : y=itao(x) ٨ IsInPath(table,x)=false ٨ IsInPath(td,x) =false ٨ IsInPath(tr,x)
=false ٨ IsInPath(fieldset,x) =false → z=NearestInPath(window,y) ٨ AddArc(itao(z).id, y.id)

Checks if the node x is not in the same path as a table,td, tr, fieldset node. If it is the case, then an arc
is added between the node y (abstraction of the node x in the target tree) and the node z, (abstraction
of the window in the target tree).

∀ x ∈ TH/W , ∃ y,z,w ∈Tt : y=itao(x) ٨ x ∈ childNodes(body) ٨ z=itao(body) ٨ w=box | w ∈
childNodes(z) ٨siblingsBefore(w)=NULL → AddArc(w.id, y.id)

Checks if the node x is not in the same path as a table,td, tr, fieldset node. If it is the case, then an arc
is added between the node y (abstraction of the node x in the target tree) and the node w, (first box in
the target tree that has no sibling before it).

∀ x ∈ TW , ∃ y,z ∈Tt : y=itao(x) ٨ x ∈ childNodes(card) → z=itao(card) ٨ AddArc(z.id, y.id)

Chapter 4 Notation for reverse engineering derivation rules

108

Checks if the node x has a card as parent node. If it is the case, then an arc is added between y
(abstraction of x) and the abstraction of the card node

An example of the application of these derivation rules is given below, in a tree
representation (figure 4-4).

Center

Td

Fieldset

Cell

Box

imageComponent

glueHorizontal=midlle

glueHorizontal=midlle

glueHorizontal=midlle

Img

Td Cell
glueHorizontal=midlle

Src=« im.jpg »
defaultContent=« im.jpg »

TH TT

Figure 4-4 Hierarchy detection rules example

The excerpt of the source tree, TH, is composed of a center, td, fieldset, img and td
nodes. Thanks to the set of rules from section 4.4.3, it can be verified that all the
elements of the source tree are in the same path as the center node. Therefore, they
all inherit from the glueHorizontal=middle attribute. The td, fieldset and img nodes are
derived in the target tree as cells, box and imagecomponent (by applying rules sets G4,
G6 and G15). Then the rule sets from section 4.4.4 are used to define the hierarchy.
The fieldset node has in its path a td node, and is thus appended to the abstraction of
this td node (i.e. the first cell in the target tree). The img node has in its path a td and
fieldset, but the path length between the img and the fieldset is shorter than the
distance between the img and the td node, and is therefore appended to the
abstraction of the fieldset (the box in the target tree). Finally, the last cell is not in the
same path as any other element of the tree (except the center node), and is therefore
put at the first level of the target tree.

The second set of rules presented in this section constructs the hierarchy for trees
containing VoiceXML 2.0 files, by applying rules similar to the HTML and WML
trees.

Chapter 4 Notation for reverse engineering derivation rules

109

∀ x ∈ TV , ∃ y,z ∈Tt : y=itao(x) ٨ x ∈ childNodes(vxml) → z=itao(vxml) ٨ AddArc(z.id, y.id)

Checks if the node x has a vxml node as parent node. If it is the case, then an arc is added between y
(abstraction of x) and the abstraction of the vxml node.

∀ x ∈ TV , ∃ y,z ∈Tt : y=itao(x) ٨ IsInPath (initial,x) ٨ (PathLength(initial,x) < PathLength(menu,x))
٨ (PathLength(initial,x) < PathLength(form,x)) ٨ (PathLength(initial,x) < PathLength(block,x)) ٨
(PathLength(initial, x) < PathLength(subdialog,x)) → z=itao(NearestInPath(initial,x)) ٨
AddArc(z.id, y.id)

Checks if the node x is in the same path as an initial node and if no menu, form, block or subdialog
node is nearer than the initial node. If the initial is the nearest node, then an arc is added between
the node y (abstraction of the node x in the target tree) and the node z, (abstraction of the initial in
the target tree).

∀ x ∈ TV , ∃ y,z ∈Tt : y=itao(x) ٨ IsInPath (menu,x) ٨ (PathLength(menu,x) < PathLength(initial,x))
٨ (PathLength(menu,x) < PathLength(form,x)) ٨ (PathLength(menu,x) < PathLength(block,x)) ٨
(PathLength(menu,x) < PathLength(subdialog,x)) → z=itao(NearestInPath(menu,x)) ٨ AddArc(z.id,
y.id)

Checks if the node x is in the same path as a menu and if no initial, form, block or subdialog node is
nearer than the menu. If the menu is the nearest node, then an arc is added between the node y
(abstraction of the node x in the target tree) and the node z, (abstraction of the menu in the target
tree).

∀ x ∈ TV,∃ y,z ∈Tt : y=itao(x) ٨ IsInPath (form,x) ٨ (PathLength(form,x) < PathLength(initial,x)) ٨
(PathLength(form,x) < PathLength(menu,x)) ٨ (PathLength(form,x) < PathLength(block,x)) ٨
(PathLength(form,x) < PathLength(subdialog,x)) → z=itao(NearestInPath(form,x)) ٨ AddArc(z.id,
y.id)

Checks if the node x is in the same path as a form and if no intial, menu, block or subdialog node is
nearer than the form. If the form is the nearest node, then an arc is added between the node y
(abstraction of the node x in the target tree) and the node z, (abstraction of the form in the target
tree).
∀ x ∈ TV , ∃ y,z ∈Tt : y=itao(x) ٨ IsInPath (block,x) ٨ (PathLength(block,x) < PathLength(initial,x))
٨ (PathLength block,x) < PathLength(form,x)) ٨ (PathLength(block,x) < PathLength(menu,x)) ٨
(PathLength(block,x) < PathLength(subdialog,x)) → z=itao(NearestInPath(block, x)) ٨
AddArc(z.id, y.id)

Checks if the node x is in the same path as a block and if no menu, form, subdialog or initial node is
nearer than the block. If the block is the nearest node, then an arc is added between the node y
(abstraction of the node x in the target tree) and the node z, (abstraction of the block in the target
tree).

∀ x ∈ TV , ∃ y,z ∈Tt : y=itao(x) ٨ IsInPath (subdialog,x) ٨ (PathLength(subdialog,x) <
PathLength(initial,x)) ٨ (PathLength(subdialog , x) < PathLength(form,x)) ٨
(PathLength(subdialog,x) < PathLength(block,x)) ٨ (PathLength(subdialog,x) <
PathLength(menu,x)) → z=itao(NearestInPath(subdialog ,x)) ٨ AddArc(z.id, y.id)

Chapter 4 Notation for reverse engineering derivation rules

110

Checks if the node x is in the same path as a subdialog and if no block, form, menu or initial node is
nearer than the subdialog. If the subdialog is the nearest node, then an arc is added between the
node y (abstraction of the node x in the target tree) and the node z, (abstraction of the subdialog in
the target tree).

∀ x ∈ TV , ∃ y,z ∈Tt : y=itao(x) ٨ IsInPath (menu,x)=false٨ IsInPath (block, x)=false ٨ IsInPath
(initial,x)=false ٨ IsInPath (form,x)=false ٨ IsInPath (subdialog,x)=false → z=itao(vxml) ٨
AddArc(z.id, y.id)

If the node x is not in the same path as a subdialog, block, form, menu or initial node, an arc is added
between the node y (abstraction of the node x in the target tree) and the abstraction of the vxml node.

The two next sets of rules are uniquely valid for VoiceXML trees. As the
modifications of control flows are not represented in the UsiXML specification,
several nodes have to be skipped during the transformation process of VoiceXML
UI (see chapter 7). The nodes contained in [If-then-else-elseif-catch-filled-disconnect-
exit-help-noinput-nomatch-throw-item-rule-tag-ruleref and one-of] are not processed and
thus not recorded in UsiXML. Therefore before the application of any set of rules
(between G22 and G46), the path of the node is checked to verify if it is not
embedded in one of the 17 precited tags. If it is the case, the node is skipped. The
same can occur with nodes possessing the cond attribute. The choice is let to the
designer to recover those tags or not (see section 7.2.3)

∀ x ∈ TV : IsInPath (if,x) ٧ IsInPath (then, x) ٧ IsInPath (else,x) ٧ IsInPath (elseif, x) ٧ IsInPath
(catch,x) ٧ isInPath(help,x) ٧ isInPath(exit,x) ٧ isInPath(disconnect,x), ٧ isInPath(noinput,x) ٧
isInPath(throw,x) ٧ isInPath(nomatch,x) ٧ isInPath(item,x) ٧ isInPath(rule,x) ٧ isInPath(tag,x) ٧
isInPath(ruleref,x) ٧ isInPath(oneof,x) → skip node (see remark) ~optional
∀ x ∈ Tv : x.cond !=NULL →skip node (see remark) ~optional

This second set of rules is particular to voiceXML trees. It creates a vocalPrompt
node in the target tree when an element possesses a textnode, and does not
correspond to a typical node used to express outputs (i.e. audio, field, initial…). In
this case, the textnode content is added in the target tree by putting it in the
defaultContent attribute of a VocalPrompt node.

∀ x ∈ TV : x.textnode !=NULL ٨ x.cond = NULL ٨ IsInPath (field,x)=false ٨ IsInPath
(prosody,x)=false ٨ IsInPath (audio,x)=false ٨ IsInPath (initial,x)=false ٨ IsInPath (filled,x)=false ٨
IsInPath (block,x)=false ٨ IsInPath (s,x)=false ٨ IsInPath (sentence,x)=false ٨ IsInPath
(emphasis,x)=false → skip node (see remark) ~optional
→ Addnode (“vocalPrompt”, idprompt) where idprompt = NodeAmount(Tt)

→ AddAttribute (idprompt, “id”, idprompt)

Chapter 4 Notation for reverse engineering derivation rules

111

→ AddAttribute (idprompt, “name”, idprompt)
→AddAttribute (idprompt, “defaultContent”, x.textnode)

4.5 Rule implementation

All the rules presented in this chapter can then be implemented, by using a DOM
structure to parse the file (libxml.dll in PHP, msxml.dll in VB, xerces in Java…).
These libraries propose several basic tree-manipulation functions, such as
createNode, createAttribute, deleteNode, etc. and thus facilitate the implementation.
Almost all the rules of section 4.4 can be implemented by using a simple condition
(if… then). An example of the implementation of the rule about images is given
below:
∀ x ∈ TS : x = img→Addnode (ImageComponent, idimage) where idimage =NodeAmount(Tt)
∀ x ∈ TS : x = img ٨ x.height !=NULL→AddAttribute (idimage, “imageHeight”, x.height)

would be implemented as

If x=img { y=createNode(“ImageComponent”)}
If x=img{
 If !(attributeList=Null) then
 foreach attribute do{
 If ((nextAttribute=“height”) && !(nextAttribute.value=NULL))
 y.addAttribute (“imageHeight”,nextAttribute.value); }

Functions defined in section 4.3.1 and 4.3.3 are either already defined in the DOM
library (such as parentNode, childNodes, etc…) or can be implemented as simple
functions. An example in pseudo-code is given here to illustrate the implementation
of the function CountInPath (x.id,y.id,z), which return the number of nodes of class
z between the two nodes having the x.id and y.id identifiers.
As we can on this example, the tree traversal is achieved by an iterative function
(here from node y towards the root).

Integer CountInPath(x.id, y.id,z){

Node par=parentNode(y.id);
Int count;
While (par!=x.id && par !=root){
 If (par==z)

 count++;
 par=ParentNode(par);
 }
If (par==root && root !=z)

 Count=0;
Return (count)
In this thesis, the derivation rules have not been implemented automatically thanks
to a rule-based system, but have been implemented systematically one by one.

Chapter 4 Notation for reverse engineering derivation rules

112

4.6 Conclusion

After writing rules sets to derive elements from HTML, WML, VoiceXML languages
(see annex C) and from Windows UI (see chapter 8) into the CUI level, it is possible
to state some general conclusions about the reverse engineering of UIs by identifying
common issues across the different languages. The reverse engineering of a
declarative UI can be characterized by the following categories of rules defining the
different sub-problems of the reverse engineering, and more particularly a reverse
engineering applied in the UsiXML language.

The firsts two reverse engineering sub-problems are the recovery of the elements
composing the UI and their attributes. This is done thanks to the rules sets from G0
to G46. These rules may be of the type 1-1 (G2 to G5, 7 to 20, 22, 23, 25, 28, 30 to
34, 36, 37, 39, 42 to 46) or 1-n (G1a, 26, 29), n-n (G1b, 24, 27, 35) and n-1 (G6, 21,
40, 41), meaning that an element of the source language may initiate the creation of 1
or n elements in the target language, or that a group of elements may be derived into
one element or another group of elements at the CUI level.

Recovery of attributes can be achieved following three manners sorted by increasing
order of complexity:

- An attribute can be created automatically in the target model, without any
counterpart from the source model (e.g. the isEnabled and isVisible attributes
which are mandatory attributes in UsiXML and are most of time added
automatically in the resulting tree).

- An attribute can be detected straightforwardly from the code, by extracting
its value, possibly apply a function on it, and copy it in the target model (e.g.
color attributes in HTML 4.0 are copied in their hexadecimal form in the
CUI model, or converted into an hexadecimal value if they are expressed in a
literal value such as “blue”).

- An attribute can be the result of a more complex function that is applied on
one or several elements from the source tree (e.g. the computation of the
horizontal and vertical dimensions of a table in HTML 4.0).

Rules detecting the attributes of elements are contained in the rules sets G1 to G46.
The third category of this analysis is the recovery of the layout of the UI for graphical
UIs (HTML and WML). This question can be subdivided into two subcategories, the
first about the division of the page into boxes and the second about the position of the
elements in those boxes. The first sub-problem is resolved by applying the rule sets
G22, G52 and G2 to G4 (the last two sets are for the case of tables without borders)

Chapter 4 Notation for reverse engineering derivation rules

113

and occurs after identifying individual elements. The position of elements can be
detected thanks to the rules set of section 4.4.3. This problem was not solved for
Windows UIs for both subcategories (see section 8.2 about working hypothesis).
The counterpart of the layout for the vocal modality is the temporal ordering of UI
components. The sequence in which elements are declared defines the ordering in
which they will be played. However, some possibilities exist to modify this
straightforward control flow. It is possible to specify conditional behavior (not
analyzed, see remark in section 4.4.4 and section 7.2), which may change this
sequential specification. It is also possible to define pauses (G42 and G54) and form-
active grammars (G23, 25, 27 to 29, 38 and 53) which also modify the control flow.

The fourth sub-problem, which can be linked with layout recovery problem, is the
specification of hierarchy for the produced model, which is done by identifying the
containement relations between elements in the source language (Section 4.4.4, G1a,
3, 4, 5 and 16).

The fifth category of rules is associated with the detection of dialog relations, i.e.
mostly navigation (as scripts for markup language and the functional core for
windows UI are ignored in this analysis and may contain complex dialog operations).
Graphical and vocal transitions are defined within the rules set G1b, 11, 15 to 17, 21,
29, 33, 37, 41 and 43.

The sixth category is multi-model transformations, across different files or UI
specifications. As presented in this chapter, these transformations are used to put
different frames or subdialogs in a unique specification (G1a, 31, 47, 48, 48b and 49)
but this kind of rules could also be reproduced to define navigation between several
windows (by removing URLs and replacing them by ids of targeted windows) and
thus linking models. This technique could also be used to merge the abstraction of
various source UIs into a unique UsiXML specification.

The last category of reverse engineering operations is not related to reverse
engineering of UIs in general, but more on the current approach. This group of
derivation rule represents retargeting operations, ranging from adding more conditions
on the derivation of one particular element to the transformation of one element in
another type (some examples are given in G51).

Chapter 4 Notation for reverse engineering derivation rules

114

The seven different sub-problems of the reverse engineering of the various languages
studied in this thesis are thus the detection of elements, attributes, layout (or
temporal ordering), hierarchy, dialog, the transformations/merging of multiple
models and the various retargeting operations.

The main advantage of this chapter consists in the definition and usage of a uniform
semi-formal notation to express UI reverse engineering rules in terms of derivation
rules. The derivation rules have been chosen because their complexity is at a low
level and fulfilled the objectives of our notation. Other alternatives were considered,
such as TXL [Malt93, Cord02] or OCL [OCL03], but these approaches were rejected
as they were too complex for our purpose, or did not meet all the requirements of
the desired notation. The benefit of this notation is that it combines ease of
management and expressiveness. In this way, it is possible to render these rules
explicit, thus making them permanent, independent of any future implementation of
them, and reusable for other classes of similar problems. Beyond this advantage, we
have been able to classify these rules, after some systematic handling through several
UI languages, into families of rules which address some sub-problem of the general
UI reverse engineering problem. In this way, we adopted an approach by reducing
the problem into sub-problems, a classic problem solving approach in computer
science. We also hope that these families could also be reused in other cases. They
are also important for future generalization since each rule could be expanded into a
larger one or into a set of rules to address a similar problem, but wider in scope.
The notation introduced in this chapter and the rules expressed according to this
notation will be used in two tools for supporting the UI reverse engineering process:
Vaquita (Chapter 5) and ReversiXML (Chapter 6).

Chapter 5 Reverse
Engineering of Web Sites:
Vaquita

After being able to define rules for UI reverse engineering and families of rules to
address one sub-problem at a time, some selected rules will be incorporated into a
first tool for UI reverse engineering. This chapter contains the description of a
method and a tool for the reverse engineering of the presentation model for
HTML Web Pages. This chapter is divided into five parts: the first section
describes the history of the analyzed language, the second is about the working
hypothesis, the third section is dedicated to the HTML and XIML meta-models
and contains some examples of derivation tables, the fourth section exemplifies
the method presented in the chapter and finally, the last section analyzes the
shortcomings of this first approach.

5.1 HTML history

The HTML language is a “descendant” of the SGML language as it has been
described thanks to this meta-language. SGML is a language allowing describing
markup language (such as XML, which is a subset of SGML) in particular those
related to the exchange of electronic documents, the management and publication
of documents. The SGML has been first defined in the late sixties at IBM
research labs, but has only become a true standard (ISO 8879:1986) in the mid-
eighties. As the SGML language is very flexible, it has almost not been modified
or enhanced. This flexibility has a price, and this price is a very high level of
complexity, which has limited and slowed down its adoption in a diversity of
environments. The aim of this language was to separate the content of a

Chapter 5 Reverse Engineering of Web Sites: Vaquita

116

document from its presentation. The final intention was to produce several
different printed versions of a document coming from only one source. [Xhtm]
The HTML language, while following the same principle, has avoided this
complexity by defining a small set of markups (tags) necessary to the production
of documents and by simplifying the structure of documents. The HTML
language is presentation-oriented, i.e. in which markups are defined to display
titles, paragraphs, hypertext links… but nothing was defined in HTML to
categorize the data contained in documents semantically. In the beginning, HTML
was designed for the exchange of scientific documents. The inventor of the
HTML, Tim Brenners-Lee, was working in the computer services of CERN when
he had the idea to make different scientific documents accessible that would be
linked together, instead of static files servers. But its simplicity, and the expansion
of the Internet, contributed to the adoption of the format, ensuring HTML a
tremendous growth. The fact that the language was based on SGML also
facilitated very much its adoption, as it was based on a reliable and well-known
language [Addi98]. The HTML only allows specifying document’s presentation
and is static in the sense that the possible interactions on a page are link-
navigation and the sending of information (forms). However, it is possible to put
dynamicity in HTML pages by including other languages such as javascripts,
VBscripts… in the HTML code.

The first version, as invented by Tim Brenners-Lee, was developed in 1989, but it
was a very first draft (he used text files with very few formatting tags). The first
version widely accepted by the Internet community was elaborated in 1993.
HTML 2.0 came in 1994, and in 1995 the third version of language was released.
In September 1995, the version 3.2 of the language became a W3C
recommendation. HTML 4.0 was launched in 1997, but became a W3C
recommendation only one year later, in 1998. This last version is the most widely
used version for the moment. The HTML was also adapted to the XML trends in
1999, by adapting the language to the XML grammar/syntax rules while keeping
the same concepts of the HTML 4.0 in the XHTML 1.0 language [Bloo].

5.2 Working hypotheses

For this first study of the HTML language, the analysis of the language is focused
on the presentation aspects, i.e. the composition of static web pages, by targeting
the reverse engineering of the presentation model. The aim here is to recover an

Chapter 5 Reverse Engineering of Web Sites: Vaquita

117

abstract specification of the different widgets composing an UI, without the
aspects relative to the dialog (navigation between pages, modification of the
appearance of the UI at run-time etc…). Another limitation of this first study is
that the layout of the UI is not recovered in the produced model. The limitation
to the presentation model has been chosen for several reasons:
- It allows us to simplify the reverse engineering problem, by analyzing one

page at a time.
- It also permits us to ignore embedded scripts (such as javascripts) that would

require the analysis of imperative languages, which is another type of reverse
engineering.

- Moreover, it is the most widespread model and the less complex to manage.
- It also constitutes the basis for other models (i.e. presentation elements use

domain elements, dialog occurs between two or more presentation elements
…) and is therefore an important model in an abstract UI specification.

An important aspect introduced in this research is the flexibility of the reverse
engineering process. The designer is able to choose the different reverse
engineering rules (rows of derivation tables) to be applied for a particular case.
Moreover, it is possible to choose, for some elements, between different
transformations (e.g. merge sequential labels, transform radio buttons in drop
down list boxes etc…). Thanks to this flexibility, it is possible to recover multiple
UI description from one HTML page, and thus retarget a UI into a presentation
model that suits a particular case: the aim of the reverse engineering could be to
reengineer the UI for a monochrome platform, or a PDA with small bandwidth.
In those cases, the designer can choose to ignore some types of elements (sounds,
images) to decrease the size of the web page, or to select particular transformation
rules to save screen space.

The reverse engineering method as applied in this chapter is thus a flexible static
analysis of HTML web pages in order to recover the presentation model. The
language that has been chosen to express this model is the XIML (see section 5.3).
The corresponding level in the Cameleon reference framework is the concrete UI
level, as the definition of elements is still dependent on the interaction modality
(the graphical modality).

Chapter 5 Reverse Engineering of Web Sites: Vaquita

118

Losses due to the reverse engineering
By limiting the analysis to the presentation model, all the interactive and dynamic
behaviours are obviously lost. At the presentation level, losses are of two types: as
stated previously, the layout is not analyzed in this first study (only the horizontal
layout is recorded for some elements) and the semantic relation (i.e. XIML
relations that show that the elements are semantically linked, such as a radio
button with its label) are not recovered either.

5.3 HTML and XIML meta-models and derivation
tables

The presentation model is written in the eXstensible user-Interface Markup
Language [Ximl, Eise00, Eise01], a language developed by Redwhale Software,
derived from XML and able to store the models developed in MIMIC [Puer96].
MIMIC is meta-language that structures and organizes interface models. It divides
the interface into model components: user-task, presentation, domain, dialog, user
and design models. The design model contains all the mappings between elements
belonging to the other models. The XIML is thus the updated XML version of
this previous language.
The XIML language is mainly composed of four types of components: models,
elements, attributes and relations between the elements.
Model: we can distinguish two types of models, the interface model and the model
components. The first is the root of any XIML document and contains the
various sub-models (model components) available in XIML. All the types of
models do not have to be present and the same type of model-component can
exist several times under the same interface model. The model components (task,
domain, user, presentation, dialogue, platform, preferences and the general model)
contain information specific to a dimension of the interface.
Element: is information describing a model-component. In the case of
presentation elements, it is a unit of information describing the visual appearance
of a user interface. Each presentation element may contain other presentation
elements (until the simple CIO, i.e. indecomposable). For example a window is a
presentation element which can contain the presentation element table which
contains itself other presentation elements, etc... A presentation element can refer
to an object external to the XIML code, for example an ActiveX control, an image
etc... In this case, the attribute location can be used in order to specify a URL
where the object could be found.

Chapter 5 Reverse Engineering of Web Sites: Vaquita

119

Figure 5-1 The meta-model of XIML

Va
lue

Al
low

ed
_C

las
se

s

Cl
as

s
re

fe
re

nc
e

slo
t

inh
er

ite
d

Ty
pe

Ca
no

nic
al_

Fo
rm

Al
low

ed
_V

alu
es

Do
cu

m
en

ta
tio

n

De
fau

lt

Ev
er

y
ele

m
en

t o
r m

od
el

ha
s

a
na

m
e

ta
g

(n
ot

sh

ow
n

he
re

 to
 c

lar
ify

 th
e

di
ag

ra
m

)

Re
lat

ion
_D

efi
nit

io
n

na
m

e

At
tri

bu
te

_D
efi

nit
ion

na
m

e

Co
nd

itio
n

co
nd

itio
n_

ty
pe

Go
al

Int
er

fac
e

De
fin

itio
ns

M
od

el_
Co

m
po

ne
nt

s

Ta
sk

_M
od

el
id hie

ra
rc

hy
Di

alo
g_

M
od

el
id hie

ra
rc

hy

Do
m

ai
n_

M
od

el
id hie

ra
rc

hy

M
od

el
id

Pr
es

en
ta

tio
n_

M
od

el
id hie

ra
rc

hy

Us
er

_M
od

el
id hie

ra
rc

hy

Pr
es

en
ta

tio
n_

El
em

en
t

id loc
at

ion

Us
er

_E
le

m
en

t
id

El
em

en
t

id
Do

m
ai

n_
El

em
en

t
id

Ta
sk

_E
lem

en
t

id ex
ec

ut
ion

_o
rd

er

Fe
at

ur
es

At
tri

bu
te

_S
ta

te
m

en
t

na
m

e
de

fin
iti

on

Int
er

ac
tio

n_
Te

ch
niq

ue
re

fe
re

nc
e

Di
alo

g_
El

em
en

t
id ex

ec
ut

ion
_o

rd
er

s
Re

lat
ion

_S
ta

te
m

en
t

na
m

e
re

fe
re

nc
e

Re
sp

on
se

re
fe

re
nc

e
re

sp
on

se
_t

yp
e

Chapter 5 Reverse Engineering of Web Sites: Vaquita

120

Attribute: represents a simple unit of declarative information in connection with
an interface model, a model-component or an element. It is always necessary to
define an attribute for then being able to declare it in a component. The
definition of the attribute is composed of the list of its allowed values, the default
value of the attribute, its canonical form, documentation (information on what it
represents) and of its type.
Relation: defines a link between the elements and/or the models. The element to
which the link refers is specified thanks to the reference attribute, containing the
identifier to which the object is referred. Any relation must be defined before its
use (similarly to attributes). This definition contains the classes allowed in the
relation.

The presentation model is composed of several embedded elements, which
correspond to the widgets of the UI, and attributes of these elements representing
their characteristics (colour, size…). The relations at the presentation level are
mainly the links between labels and the widgets that these labels describe. The
complete meta-model for the XIML language is shown on figure 5-1. Note that
such a meta-model was not provided by the XIML consortium itself. Therefore,
we recomposed it from the Document Type Definition and from the published
articles.

A meta-model for the HTML language is given in appendix B. There are five
categories of elements for the HTML meta-model: elements specific to the head
section (meta, script…), containers, (such as forms, tables…) that define hierarchy
of elements, formatting tags (such as b, i, p…), lists (dl, ul…) and atomic tags that
cannot contain other tags (img, object, button…).
Some example of derivation tables are given in the rest of this section to illustrate
how a HTML file can be reverse engineered into a XIML presentation model.
For each table, the left column represents the XIML element and attributes and
the right column the corresponding HTML tag and its attributes.

Image img
ID filename+IMG
ImageFile Src=URL
ImageHeight Height=
ImageWidth Width=
ImageType Filename’s Extension

Chapter 5 Reverse Engineering of Web Sites: Vaquita

121

ImageHorizSpace Hspace=
ImageVertSpace Vspace=
ImageAlternativeText alt=
ImageBorder Border=
ImageAlign align=
ImageLowResFile Lowsrc=URL (Netscape)

Table 5-1 Derivation table for images

This first derivation table derives an img tag into an image in the XIML
specification. Most of the attributes are copied in XIML such as they are specified
in HTML. A specific attribute, filetype, requires a small processing. It contains the
file’s extension and represents the type of the image (such as jpg or bmp),
allowing designer to filter images based on their types (in the reverse engineering
options).

radio button input type=radio
ID name=+RadioButton
RadioBtNumber Number of radio buttons

with the same name attribute
RadioBtDefaultState = checked Checked

Table 5-2 Derivation table for radio buttons

When an input node with its type attribute set to radio is detected, a radioButton is
added in the XIML specification. The value of radioBtNumber requires a small
algorithm to be applied: the entire HTML page is parsed to find out and count
other radio buttons with same name attribute. The last attribute,
radioBTDefaultState is set to “checked” only if the “checked” attribute is specified
in the HTML code.

extended edit box textarea

ID name=+EDM
EDMNumberOfLines rows=
EDMNumberOfCols cols
EDMEnabled = false disabled
EDMDefaultString textnode

Table 5-3 Derivation table for edit boxes

A textarea tag is transformed in XIML under the form of an extended edit box.
The rows and cols of the textarea determine the values of the EDMNumberOfLines
and EDMNumberOfCOls respectively. The EDMEnabled attribute is set to false only

Chapter 5 Reverse Engineering of Web Sites: Vaquita

122

if the disabled attribute is present in the HTML code. Finally, the defaultString
corresponds to the textnode of the textarea (if it exists).

5.4 Tool support and example

5.4.1 Vaquita

A first tool for the abstraction of Web Pages was developed [Boui01, Vand01,
Boui2a]. This tool, named Vaquita for ‘reVerse engineering of Applications by
Questions, Information Selection, and Transformation Alternatives’, allows a
flexible reverse engineering of web pages written in HTML. This tool is accessible
at http://www.isys.ucl.ac.be/bchi/research/vaquita.htm. The input of Vaquita is
any web page which has to be saved locally and transformed into valid XML.
Vaquita transforms this web page into a presentation model, at the concrete UI
level in the Cameleon Reference Framework as shown on the figure 5-2. This
presentation model can be transformed for another context of use, thanks to
different options and heuristics. The tool has been implemented in Visual Basic 6
and is about 10,000 lines of code long. Vaquita can only reverse engineer one page
at a time and process it locally (on the designer’s computing platform).

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

Final UI

Pattern Matching

Abstract UI

HTML 4.0

XIMLXIML

Static Analysis

Figure 5-2 Vaquita in the cameleon reference framework

The complete process in which VAQUITA takes part is represented on figure 5-
3. The Web page is first saved locally and its XML compliance is checked. If the
page does not respect the XML grammar, the HTML page is syntactically
corrected, thanks to the TidyCom library [tidy].

Chapter 5 Reverse Engineering of Web Sites: Vaquita

123

The use of this library offers several advantages: first, it makes sure we always
have the same code format; secondly it cuts useless tags off (such as empty
paragraphs: <p></p>), so that the process time of Vaquita is reduced; and finally
it transforms the HTML into the XML format, allowing us to use the msxml3
library. The corrected page is then parsed with the help of the msxml3 library
[msxml]. This library offers multiple functions for markup languages, such as tag
retrieval, creation, modification, etc. The DOM structure is then extracted and the
targeted mapping rules are applied. These rules are loaded at the beginning of the
reverse engineering process. The groups of mapping rules are stored in a
knowledge base, with one separate file for each platform. These mappings are the
more probable ones, but designers can modify them easily to customize mapping
rules for a specific Web site.

 Web page extraction

New DOM writing

Translation

Structuration

Detection

Correction and filters

User Interface Generator

VAQUITA

HTML Page TidyCom.dll

Msxml3.dll

XIML
Presentation

model

WML, VoiceXML,
HTML files

.RES Resource
File

Reverse
Engineering

Forward
Engineering

M
ig

ra
tio

n

Presentation Model Editor

Knowledge Base of
CIO-AIO Mappings

KB Editor

Figure 5-3 The complete reengineering process with Vaquita

Figure 5-4 represents the main screen of Vaquita. This tool is available into two
languages, French and English, and the user can switch the language on the
option page. The upper part of the screen contains the HTML code, the left part

Chapter 5 Reverse Engineering of Web Sites: Vaquita

124

contains the presentation model in a tree structure and the right part displays the
XIML code of an element selected in the tree. This view can be switched with a
trees-view that displays both trees, HTML and XIML trees, simultaneously on
screen to check the results differently.

Figure 5-4 Main screen of Vaquita

The figure 5-5 represents the option page of Vaquita. On this page, the designer
can choose to detect or ignore HTML elements during the reverse engineering.
This allows the designer to directly extract a presentation model suited for a
particular platform or context of use. She can for example uncheck sound widgets
because the target platform is not equipped with sufficient sound capabilities. He
can also remove colour attributes for monochrome platforms. The user can also
choose between several reverse engineering heuristics on this option page: he can
choose to remove table without borders, as this way of structuring the content is
particular to HTML. Another example is the folding option which assembles
consecutive labels into a label or splits big labels in several smaller labels. All these
options ensure a flexible reverse engineering. The designer can modify the process
in order to obtain a user interface specification directly adapted for a specific case
and save this configuration for a future usage.

Chapter 5 Reverse Engineering of Web Sites: Vaquita

125

This specification can later be used in the forward engineering phase to produce a
new UI suited for a particular type of platforms.

Figure 5-5 Options page of Vaquita

An example of an HTML page reverse engineered with Vaquita is presented in
appendix H-1.

5.4.2 Example of a complete reengineering thanks to Envir3D

Forward engineering is supported to transform the XIML specifications resulting
from the reverse engineering to a final UI [Boui04].
Thanks to Envir3D [Chow02], it is possible to produce VRML code from a
XIML presentation model. Originally, Envir3D generates three-dimensional
representations of control room. A drawing panel allows the developer to define
the layout of the control room (figure 5-6 illustrates the design of a control room),
and the corresponding XIML presentation model is generated from this graphical
representation.

Chapter 5 Reverse Engineering of Web Sites: Vaquita

126

Figure 5-6 Creation of a control room with Envir3D

Figure 5-7 Control room generated from a XIML specification in Envir3D

Chapter 5 Reverse Engineering of Web Sites: Vaquita

127

In a second phase of forward engineering, the presentation model can be used as
input to produce a VRML file. Figure 5-7 represents a VRML file representing
another control room generated with Envir3D, visualized in a web browser.

HTML Page

Vaquita: reverse engineering

XIML model

Envir3D: virtualisation of
non-virtual user interface

VRML97/X3D file

VRML97-enabled browser

HTML Page

Vaquita: reverse engineering

XIML model

Envir3D: virtualisation of
non-virtual user interface

VRML97/X3D file

VRML97-enabled browser

Figure 5- 8 Virtualization process.

Only the second functionality of
Envir3D is used in our approach, the
generation of a VRML file based on a
presentation model. The model-based
approach can be exploited to migrate
existing non-virtual UIs to the virtual
world. This process is called
virtualization, as it transforms an existing
2D UI into its 3D equivalent. This
process is depicted in Fig. 5-8. The
combination of reverse and forward
engineering thus closes the loop to
obtain reengineering, so that UIs can
be integrated in desktop virtual
environments (DVE).

The figure 5-9 represents a complete reengineering process. The part A of this
figure represents the original UI, which the CHI 2001 registration form (it
represents a typical Web registration form). The part B is the result of the reverse
engineering obtained thanks to Vaquita. The excerpt of the UI description is the
XIML specification for a label and a textbox. This specification is translated into
an adapted version for Envir3D in part C. During this translation phase, the
presentation elements are adapted to elements belonging to the widget set of
Envir3D. This operation mostly consists of the addition of absolute positions in
the three dimensions as the tool needs the position of elements to generate the
UI. A local reference (location) had to be added to each element to indicate to the
tool where he could find components. This transformed presentation model is
then used as input by Envir3D to produce a UI expressed in VRML in the part D
of figure 5-9.

Chapter 5 Reverse Engineering of Web Sites: Vaquita

128

(A)

<Presentation_element
Id="First(give_Label-8">
<Name>a Label</Name><Features>
<Attribute_Statement
Definition="LabelString">
First (given) name:</Attribute_Statement>
<Attribute_Statement
Definition="LabelSize">
7</Attribute_Statement>
<Attribute_Statement
Definition="LabelFont">
sans-serif</Attribute_Statement>
<Attribute_Statement
Definition="LabelColor">
#000000</Attribute_Statement>
<Attribute_Statement
Definition="LabelStyle">
normal</Attribute_Statement>
<Attribute_Statement
Definition="LabelJustif">
Left</Attribute_Statement>
<Attribute_Statement Definition="Margin">
0</Attribute_Statement></Features>
</Presentation_element>
<Presentation_element Id="firstnaTextBox-
10">
<Name>A textBox</Name><Features>
<Attribute_Statement Definition="Size">
25</Attribute_Statement>
<Attribute_Statement
Definition="Maxlength">

25</Attribute_Statement> … (B)

(D)

<PRESENTATION_ELEMENT ID="
First(give_Label-8" LOCATION="Text box –
Virtual.wrl">
<NAME> a label</NAME><FEATURES>
<Attribute_Statement
Definition="AT_LEFT_ABSCISSA">
<Value>206</Value></Attribute_Statement>
<Attribute_Statement
Definition="AT_LEFT_ORDINATE">
<Value>209</Value></Attribute_Statement>
<Attribute_Statement
Definition="AT_LEFT_DEPTH">
<Value>15</Value></Attribute_Statement>
<Attribute_Statement
Definition="AT_LENGTH">
<Value>138</Value></Attribute_Statement>
<Attribute_Statement
Definition="AT_HEIGHT">
<Value>12</Value></Attribute_Statement>
<Attribute_Statement
Definition="AT_DEPTH">
<Value>5</Value></Attribute_Statement>
<Attribute_Statement
Definition="AT_ORIENT">
<Value>front</Value></Attribute_Statement>

… (C)
Figure 5-9 The reengineering of a Web Form

Chapter 5 Reverse Engineering of Web Sites: Vaquita

129

5.5 Shortcomings of Vaquita

This first tool suffers from several shortcomings:
1. The output language is XIML, which is a proprietary language of Redwhale

Software, a private company. Therefore, users need to sign a licence in order
to use this language and it is not possible either to distribute software that use
this technology freely without their agreement. This licence will also reduce
the spreading of the language, and thus the utility and usage of the tool. In
addition, the meta-model of the XIML language (Figure 5-1) also
demonstrates that not all aspects related to context of use could be easily
modelled. Therefore, the language also suffers from some expressivity
shortcomings that we need to overcome.

2. The tool is only able to reverse engineer the presentation of a UI (the
composition of the UI, expressed in terms of concrete user interface objects),
not the dialog which is the second mandatory model for the regeneration of
user interfaces. In XIML, the dialog model is a separate model which is not
very precisely defined.

3. Vaquita can only reverse engineer files statically, i.e., at design time. The target
Web page has to be saved on the local machine before it is analyzed. This
process prevents any dynamic usage where a batch or an on-line system could
be used.

4. It is impossible to have a direct access to the Web by giving an URL to
reverse engineer. The tool is only able to reverse Web pages one by one which
can be a very cumbersome process for the transformation of large Web sites.

5. Finally, Vaquita is not able to recognize the different relations between the
elements of the UI description automatically (layout and dialog).

5.6 Conclusion

The subproblems, as defined in section 4.6, of the reverse engineering process
covered by this approach are the elements detection, the attributes recuperation,
the hierarchy detection task and the retargeting operations. Thus four out of
seven requirements are addressed in this first study. Although Vaquita represents
already a first significant experience in handling the problem of UI reverse
engineering, several limitations have been identified in order to leverage the
capabilities in a more sophisticated tool in the next chapter. However, the Vaquita
tool developed in this chapter also showed some promises in coupling it with a
forward engineering tool (here, a 3D generator for a virtual reality interface).

Chapter 6 ReversiXML

This chapter is the continuation of the last chapter about the reverse engineering
of HTML Web pages as it is aimed at addressing the observed limitations of the
Vaquita tool, a first attempt to solve the UI reverse engineering in a declarative
language. Therefore, it has not the same structure than chapter 5, 7 and 8 as some
parts of the problem have already been identified in the previous chapter and as
new sub-problems will be handled. This sixth chapter starts by summing up the
results of the evaluation of the first approach and tool, leading to the definition of
new requirements. The second section redefines the working hypotheses of
previous chapters. The third section contains the description of the UsiXML
language and some examples of derivations rules. The fourth section describes the
tool ReversiXML, its process and its implementation based on the
aforementioned derivation rules.

6.1 Evaluation of Vaquita

This first study gave good results, but had to be enhanced to overcome several
limitations and to adapt the tool to the needs of the industrial partners in the
Cameleon project (a research project aiming to develop context aware UIs,
http://giove.isti.cnr.it/cameleon.html). Several new requirements have been
identified, and the most relevant are listed below:
- First, the user interface description language used in Vaquita is XIML, and as
this language is the property of a private company, a new language has been
developed within the Cameleon project: UsiXML. The new tool should thus
produce UI specifications expressed in this new description language.

Chapter 6 ReversiXML

131

- Secondly, the new tool should support on-the-fly reengineering. Instead of
statically reverse engineer Web pages, the process of reengineering HTML pages
could be done dynamically at the server level. This solution implies the change of
the programming language, as Vaquita was written in Visual Basic 6. After
analysis, the best language to fit with this requirement is PHP, because:

• The language is free.
• It has numerous advantages to develop online applications connected to

databases (e.g. with mySQL).
• The fifth version of the language contains most of the functionalities

required by our tool: it is compiled by including a DOM library
(libxml2.dll) and tidy (tidy.dll) and facilitates thus the implementation by
permitting the invocation of tree-manipulation function built-in the
language.

• PHP allows to access other Web pages (to reverse engineer) very easily, as
it runs on a server

• Performances of large applications are very good (e.g. more than 20 times
faster than Vaquita, written in Visual Basic 6)

- The structure of the new tool has to be completely reviewed in order to adapt
the software to this new architecture (see the new architecture evolution in
appendix I).
- The new tool should support an automatic selection of the retargeting rules, by
recognition of the user’s platform.
- The tool should also support reverse engineering up to the abstract UI level
from the reference framework [Calv02, Calv03], thus giving the possibility to the
user to reverse engineer HTML code at two different levels.
There are more details about the weaknesses of Vaquita compared with the new
tool in section 6.4.4.

6.2 Working hypotheses

The working hypotheses have been modified compared to the ones of the
previous chapter. The aim here is to recover an abstract specification (at two
different levels of abstraction) of the different widgets composing an UI, while
taking into account some parts of the dialog (navigation between pages). The
reverse engineering of imperative languages is still not covered in this analysis, as
it would require a completely different type of reverse engineering, and therefore
only pure HTML is reverse engineered (not javascripts, applets…). In this second

Chapter 6 ReversiXML

132

research, the layout of the interaction objects will also be recovered while keeping
the flexible and retargeting features of the previous reverse engineering approach.
The output language for this second research is UsiXML. As this language is still
evolving, the version of the language which was selected for this thesis was the
version 1.4.6, which was the most up-to-date version of the language at the time
of implementation. A second reason motivating why the UsiXML language has
been chosen after XIML is that the former language is also compatible with the
reference framework introduced in chapter 2, whereas the latter is not.

Another important aspect of this approach is to allow the dynamic application of
the process, and thus if a forward dynamic approach is combined, it would allow
an on-the-fly reengineering. The reverse engineering method as applied in this
chapter is thus a flexible reverse engineering of HTML Web pages at runtime in
order to recover the concrete or abstract UI specification expressed in UsiXML.

The fact that this approach is only dedicated to HTML implies that some
interaction objects and dialog components are lost, as javascripts are ignored (they
are mostly used to apply dynamic effects on Web pages). Solutions for this
problem are proposed in the section 6.4.5. By ignoring cascading styles sheets files
(.CSS), there is also a loss of styles and presentation aspects of the original Web
pages. See the chapter 9 about validation for more details on losses of the reverse
engineering process with this approach.

6.3 UsiXML meta-model and derivations rules

6.3.1 UsiXML meta-model and definitions

The source language for this analysis has already been presented in the previous
chapter, in section 5.3. The output, the UsiXML language v1.4.6 [Limb04a,
Limb04b, Limb04, Luyt04], is an UI specification language developed at UCL.
UsiXML (USer Interface eXtensible Markup Language – http://www.usixml. org)
allows specifying eight different models (see figure 6-1) composing a ninth model
to represent the various UI aspects: a task model, a domain model, an AUI model,
a CUI model, a mapping model, a context model, a resource model and a
transformation model.

Task Model: is a model describing the interactive task as viewed by the end user
interacting with the system. A task model represents a decomposition of tasks into

Chapter 6 ReversiXML

133

sub-tasks linked with task relationships. Therefore, the decomposition
relationship is the privileged relationship to express this hierarchy, while temporal
relationships express the temporal constraints between sub-tasks of a same parent
task.
Domain Model: is a description of the classes of objects manipulated by a user
while interacting with a system. The task and domain models compose the higher
level of abstraction of the cameleon reference framework.

modelType
id : string
name : string

authorName

version
modifDate : string

comment

transformationModel domainModel taskModel auiModel cuiModel mappingModel contextModel resourceModel

uiModel
creationDate : string
schemaVersion : string

0..n 0..n0..n 0..n

0..n
1..n

0..n
1..n

0..n 10..n 1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..n

1

0..n

1

0..1

1

0..1

1

Figure 6-1 Model composition in UsiXML

Mapping Model: is a model containing a series of related mappings between
models or elements of models. A mapping model gathers a set of inter-model
relationships that are semantically related.
Context Model: is a model describing the three aspects of a context of use in
which an end user is carrying out an interactive task with a specific computing
platform in a given surrounding environment. A context model consists of a user
model, a platform model, and an environment model.
The user model is composed of several user stereotypes, described by attributes
such as the experience with the system or with the task, the motivation, etc.
The environment model describes any property of interest of the global environment
where the interaction takes place. The properties may be physical (e.g., lighting or
noise conditions) or psychological (e.g., level of stress).
The platform model captures relevant attributes related the combination of hardware
and software where the user interface is intended to be deployed.

Chapter 6 ReversiXML

134

uiModel: is the topmost superclass containing common features shared by all
component models of a UI. A uiModel may consist of a list of component models
in any order and any number, such as task model, a domain model, an abstract UI
model, a concrete UI model, mapping model and context model. A uiModel
needs not to include one of each model component. Moreover, there may be
more than one of a particular kind of model component in a uiModel.
Abstract User Interface (AUI) model is a canonical expression of the
renderings and manipulation of the domain concepts and functions in a way that
is independent of the interaction modality (e.g., graphical, vocal or tactile). The
elements used in the logical UI are abstractions of existing widgets.
Concrete User Interface (CUI) model: concretizes an AUI into Concrete
Interaction Objects so as to define widgets layout and interface navigation. This
interface is now composed of existing UI widgets, but the widgets are
independent of any particular toolkit.
Resource Model contains elements (title, tooltip, mnemonic...) specific to a given
context (for example, the user's language). Resources are linked to objects of the
CUI or AUI model.
Transformation Model permits to specify transformation rules under the form
of graph transformation rules, taking advantage of the underlying graph structure
of UsiXML. This formalism supports different types of transformations:
abstraction (e.g. recovering an AUI model starting from a CUI model), reification
(e.g. generating a CUI from a task model and a domain model) and translation
(e.g. adapting a CUI for another context of use).

Only two models are used in this chapter, the concrete UI and abstract UI
models, and their meta-models are given in appendix A. These models have the
common property that they allow specifying the composition (thanks to individual
components) and structure (thanks to containers) of a UI, and some dialog or
layout relations between elements composing the UI.
The CUI level is composed of interaction objects dependent of the modality
(graphical or vocal). Elements composing the CUI model are the representation
of the most common widgets that users can find in UIs. As this step is the nearest
to the final code, elements possess several properties defining their appearance,
size, layout etc…
The AUI level contains a description independent of the modality, the UI
description is based on classes of interaction objects (input, output, navigation,
activation, containers) with very few attributes/properties.

Chapter 6 ReversiXML

135

6.3.2 Derivation rules

Some example of derivation rules from the final UI code into abstract or concrete
UI are shown. The complete list of derivation rules for the concrete UI can be
found in appendix C. The first set contains an example of a transformation rule
for labels (into outputs), at the AUI level. The rule includes 33 textnode-
containers elements in its left parts, and transforms them into two different
nodes, an abstractIndividualComponent which is the parent of another node, the
output node, that represent the output facet of the component.

G56 – textnode containers (output facet)

∀ x ∈ TH : x = (p٧pre٧sub٧sup٧q٧blockquote٧b٧i٧strong٧em٧strike٧s٧h1٧h2٧h3٧h4٧h5
٧h6٧u٧dd٧dt٧li٧tt٧address٧u٧cite٧code٧dfn٧kbd٧samp٧var٧caption٧address) ٨
x.textnode!=NULL
→ Addnode (“abstractIndividualComponent”, idaio) where idaio= NodeAmount(Tt)
 ٨ AddAttribute (idaio, “id”, idaio)
 ٨ AddAttribute (idaio, “name”, idaio)
 ٨ Addnode (idout, “output”) where idout = NodeAmount(Tt)
 ٨ AddAttribute (idout, “outputContent”, x.textnode)
 ٨ AddAttribute (idout, “id”,idout)
 ٨ AddAttribute (idout, “name”,idout)
 ٨ AddArc(idaio,idout)

As stated before, this level is a general description of the UI without any reference
to the (graphical) modality, there are very few attributes for the elements (to
compare, textComponents at the CUI level possesses more than 10 attributes).
Only the content of the interaction objects are recorded at this level, without their
style attributes and therefore a header is recorded in the same type of element as a
list item for example.

For the CUI level, the first example of derivation rule represents the creation of a
window when a body node is detected. The name attribute of the window takes the
textnode’s value of the title node if it exists; otherwise, its value is the number of
nodes in the target tree. The isEnabled and isVisible (two mandatory attributes of
the CUI model) are automatically set to true. The rest of the attributes are
translated into their corresponding UsiXML attributes. A particular attribute -
filename- that does not belong to the CUI, is added to record the HTML filename
in the specification. It will be used later for frames composition (see set of rules G
47, 48 and 49) and removed in the cleaning of the target tree operations (set of
rules G50). After the creation of a window node in the UsiXML tree, two box

Chapter 6 ReversiXML

136

elements are added. The first box is of the type vertical as it will contain a vertical
sequence of horizontal boxes (see layout recovery section 6.4.2.b for more details)
and the second box is the type horizontal as it will contain the first “row” of
elements.

G1a – body (window)

∀ x ∈ TH : x = body →Addnode (“window”, idwin) where idwin =NodeAmount(Tt)
∀ x ∈ TH : x = body → AddAttribute (idwin, “id”, idwin)
∀ x ∈ TH : x = body ٨ title.textnode !=NULL→ AddAttribute (idwin, “name”, title.textnode)
∀ x ∈ TH : x = body ٨ title.textnode =NULL→ AddAttribute (idwin, “name”, idwin)
∀ x ∈ TH : x = body → AddAttribute (idwin, “isEnabled”, “true”)
∀ x ∈ TH : x = body → AddAttribute (idwin, “isVisible”, “true”)
∀ x ∈ TH : x = body ٨ x.bgcolor !=NULL →AddAttribute (idwin, “bgColor”, x.bgcolor)
∀ x ∈ TH : x = body ٨ x.topmargin !=NULL →AddAttribute (idwin, “windowTopMargin”,
x.topmargin)
∀ x ∈ TH : x = body ٨ x.leftmargin !=NULL →AddAttribute (idwin, “windowLeftMargin”,
x.leftmargin)
∀ x ∈ TH : x = body ٨ x.background !=NULL →AddAttribute (idwin, “bgImage”, x.background)
∀ x ∈ TH : x = body → AddAttribute (idwin, “filename”, filename)
∀ x ∈ TH : x = body → ConstrBox(“box”, “vertical”, idbox) where idbox=∑ node ∈ Tt ٨
AddArc(idwin,idbox)
∀ x ∈ TH : x = body → ConstrBox(“box”, “horizontal”, idhbox) where idhbox=NodeAmount(Tt)
٨ AddArc(idbox,idhbox)

The second example is the transformation of img nodes into imageComponents.
The URL of the source file of the image is copied in the defaultContent attribute in
the target tree. The path of the img node in the HTML tree is checked in order to
find an anchor (<a>) node. If it is the case, the image can be used as a link to
navigate through the Website, and therefore the href attribute of the <a> node is
copied in the hyperLinkTarget attribute in the UsiXML tree. Finally, the
checkAlignement function is triggered, which is a set of functions common for
almost every element of the source tree. This special set of rules (see chapter 4)
checks if an element is in the same path as an alignment modifier (div, center, align
attributes), and if it is the case, an attribute is added in the UsiXML specifications
to reflect the horizontal position of the element.

G15 – img (imageComponent)

∀ x ∈ TH x = img→Addnode(ImageComponent, idimage)where idimage=NodeAmount(Tt)
∀ x ∈ TH : x = img ٨ x.height !=NULL→AddAttribute (idimage, “imageHeight”, x.height)
∀ x ∈ TH: x = img ٨ x.width !=NULL→AddAttribute (idimage, “imageWidth”, x.width)

Chapter 6 ReversiXML

137

∀ x ∈ TH : x = img ٨ IsInPath(a) →AddAttribute (idimage, “hyperLinkTarget”, NearestInPath
(x,a).href) ٨ AddGraphTr (idimage , NearestInPath(x,a).href)
∀ x ∈ TH: x = img ٨ x.border !=NULL →AddAttribute (idimage, “borderWidth”, x.border)
∀ x ∈ TH: x = img→AddAttribute (idimage, “id”, idimage)
∀ x ∈ TH: x = img→AddAttribute (idimage, “name”, idimage)
∀ x ∈ TH: x = img→AddAttribute (idimage, “isVisible”, “true”)
∀ x ∈ TH: x = img→AddAttribute (idimage, “isEnabled”, “true”)
∀ x ∈ TH: x = img ٨ x.src !=NULL →AddAttribute (idimage, “defaultContent”, x.src)
∀ x ∈ TH: x = img ٨ x.hspace !=NULL →AddAttribute (idimage, “imageHorizSpace”, x.hspace)
∀ x ∈ TH: x = img ٨ x.vspace != NULL→AddAttribute (idimage, “imageVertSpace”, x.vspace)
∀ x ∈ TH: x = img → CheckAlignment(x,idimage)

The last example of derivation rules is about table detection. Two cases can occur,
either the table has no border attribute (or the border attribute is set to zero pixel)
and it is transformed into a vertical box, as it will contain a vertical sequence of
rows, or the border attribute is greater than zero and it is transformed into a
UsiXML table. Several common attributes can be derived for the two types of
elements. However, the table possesses three specific attributes, the border’s width,
and attributes defining the size of the table (rows and columns). These attributes
are computed: the number of rows – ySize - is computed by counting the number
of rows (tr nodes) that are “direct-child” of the table, as several tables can be
embedded. The number of columns – xSize- is computed by finding the
maximum number of td nodes that are child of a tr node which has itself the
current table as parent. A maximum value is searched because the number of
columns in a table does not have to be constant in HTML.
Finally, the alignment of the table is checked thanks to the group of functions
CheckAlignment (see previous explanations of G15).

G2 – table (table-box)

∀ x ∈ TH:x=table٨x.border>0→Addnode(“table”,idtable) where idtable= NodeAmount (Tt)

∀ x ∈ TH : x = table ٨ (x.border=0 v x.border=NULL)
 →Addnode (“box”, idtable) where idbox=NodeAmount(Tt)
 →AddAttribute (idtable, type, “vertical”)
∀ x ∈ TH : x = table→AddAttribute (idtable, “isEnabled”, “true”)
∀ x ∈ TH: x = table→AddAttribute (idtable, “isVisible”, “true”)
∀ x ∈ TH : x = table→AddAttribute (idtable, “name”, idtable)
∀ x ∈ TH: x = table→Add Attribute (idtable, “id”, idtable)
∀ x ∈ TH: x = table ٨ x.border>0→AddAttribute(idtable, “xSize”, (maxtr(∑td sibling(td) | td ∈ Ts

 ٨ NearestInPath(table,td)=x)

Chapter 6 ReversiXML

138

∀ x ∈ TH : x = table ٨ x.border>0→AddAttribute(idtable, “ySize”, (∑tr sibling(tr) | tr ∈ Ts ٨
 NearestInPath(table,tr)=x)
∀ x ∈ TH : x = table ٨ x.border>0→AddAttribute(idtable, “borderwidth”, x.border)
∀ x ∈ TH : x = table ٨ x.width!=NULL→AddAttribute (idtable, “width”, x.width)
∀ x ∈ TH : x = table ٨ x.height!=NULL →AddAttribute (idtable, “height”, x.height)
∀ x ∈ TH : x = table ٨ x.bgimage=NULL →AddAttribute (idtable, “bgimage”, x.background)
∀ x ∈ TH : x = table ٨ x.bgcolor!=NULL →AddAttribute (idtable, “bgcolor”, x.bgcolor)
∀ x ∈ TH : x = table → CheckAlignment(x,idtable)

6.4 Tool support: ReversiXML

This section describes the tool in details: the first subsection makes a general
description of the tool, the second subsection dissects the reverse engineering
process while pointing out some important steps (dialog and layout), the third
section compares the tool with Vaquita according to several parameters and the
last section describes ongoing issues and future works. The evolutionary
architecture of the tool is illustrated in appendix I, and examples of the outputs of
the tool can be found in case studies of chapter 9.

6.4.1 Description of ReversiXML

ReversiXML is the evolution of the first tool Vaquita. ReversiXML (accessible at
http://www.isys.ucl.ac.be/bchi/research/reversi/RevXMLUI.php) is the on-line
version of this first tool. It has been developed in PHP 5 and is decomposed into
a set of libraries: one for the UI of the tool, a group of libraries for the reverse
engineering engine itself and another one for the detection of connected
platforms. The new tool has been developed to be used in two different ways:
either manually by a designer or automatically by an external user. In the first case,
the designer can define the reverse engineering options and choose an output file
which will be sent back to his computer. In the second case, the user cannot
access the reverse engineering options and he can not see the results of reverse
engineering either. The results are directly sent to a forward engineering tool. This
second use of the tool is based on a knowledge base of configuration files (reverse
engineering options) for different types of platforms. After the detection of the
connected user and platform, the best configuration file is selected following these
parameters and the reverse engineering is applied according to these options. The
interest of this second use is that the tool could be exploited in an on-the-fly
reengineering, by using only ReversiXML’s engine libraries and thus the current
approach in a batch process.

Chapter 6 ReversiXML

139

The remainder of this section is devoted to an illustrated description of the
manual version. In the manual version of the tool, three files can be chosen at the
starting screen of ReversiXML (see fig. 6-2): the input file, a reverse engineering
configuration file and an output file. The input file can be a local file or an URL.
The two other types of files are not mandatory: one can apply a reverse
engineering without saving its results and a reverse engineering can be achieved
without any configuration file (in this case all the default rules are applied).

Figure 6-2 Start screen of ReversiXML

Configuration files are created on the reverse engineering options page (fig.6-3).
As in Vaquita, the user can fine tune the detection of each HTML object or
attribute. Each tabbed panel of figure 6-3 corresponds to an HTML element or
group of elements that the user can choose to skip or to record in the abstract
specification. For each element, the designer can choose to ignore its attributes by
unchecking its corresponding check box. Reverse engineering transformations can
also be chosen on this page (e.g. transform a radio button group into a drop down
list box, consider a sequence of links as a menu, etc.). It is also possible to choose
the abstraction level the user wants to reach on this page (abstract or concrete UI
specification). Finally, the user can save the file on the server for future usage.
After the reverse engineering in the manual version, the result of the reverse
engineering- a concrete or an abstract UI model- is then displayed in the browser
and saved in a file on the local server, in the UsiXML format (see figure 6-4).

Chapter 6 ReversiXML

140

Figure 6-3 Reverse Engineering options

Figure 6-4 The resulting concrete UI model

Chapter 6 ReversiXML

141

The three files defined on the previous page are still accessible on the result page,
under the form of a link. The user can save the output on his computer by right-
clicking on the output-file link. Some other information is also displayed on this
results page: some data about the connected platform (ip, operating system,
browser type and version, javascripts enabled browser, color-capable platform…),
the error buffer of tidy and the list of links of the current Web page. Several
statistics are displayed, such as the number of objects of each type, the number of
removed elements, etc…

The location of ReversiXML in the Cameleon reference framework is shown on
figure 6-5. The tool is able to recover the concrete or abstract UI model starting
from a HTML file and to perform some translation operations for another
context of use.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

Final UI

Pattern Matching

Abstract UI

HTML 4.0

USIXMLUSIXML

Static Analysis

USIXMLUSIXML

Figure 6-5 ReversiXML in the reference framework

6.4.2 The reverse engineering process

This subsection is divided into three parts: firstly, the reverse engineering is
presented in details by showing the different steps of the process. The two next
parts are dedicated to two specific steps of the first section, the layout and the
dialog recovery, in order to emphasizes these two important dimensions of the
reverse engineering.

Chapter 6 ReversiXML

142

6.4.2.a Steps

The reverse engineering process can be decomposed into 10 steps (see figure 6-6),
which are explained below. Not all steps have been completely implemented, but
the process and tool structure has been developed so as to accommodate the
addition of these modules. The input of ReversiXML is a set of URLs to reverse
engineer, called the page pool, and a configuration file.

1. Web Page Extraction
In this first step, four cases can occur: the target file is located on distant server,
the file cannot be found, the page has already been analyzed or the file is located
on the same server. In the first two cases, ReversiXML saves the Web page from
a distant server or from archives.org (a site archiving ancient Websites) on the
local server on which ReversiXML runs in order to facilitate the manipulation and
to speed up other requests for the same page.
In the last two cases, either the already processed model is sent back to the
user/forward engineering tool, or the local page is directly analyzed on the server.
The output of this step is a string containing the HTML code of the Web page.

2. Syntax Correction

1. Web Page Extraction

3.Selection of Configuration

Tidy

4. Global Scan

5. Local Scan

6. Layout Relations

7. Dialog Relations

8.Model Correction & Links

9. Context Model

10. Save Model & Page pool

Configuration
DB

UI Model
DB

WhoAmI

Context
DB

UI Model
DB

Server Temporary
Pages

Temporary
Information

Figure 6-6 The entire reverse engineering process

Chapter 6 ReversiXML

143

2. Syntax Correction
The validity of the Web page is then checked. If the Web page does not respect
the XML syntax, the HTML code is corrected by tidy [Tidy] in order to obtain a
file that can be put in a DOM structure [Dom1]. A correct XML syntax implies
that every single tag has to be closed, i.e. a
 tag has to be rewritten as a

tag, and overlapping tags, such as <a>hello <i>world</i>, have to be
written in the correct order (as in this format: <a>hello<i>world</i>).
Moreover, Tidy allows to remove empty paragraphs and rename tags with the
same meaning (<i> and <emph> for example). This allows to have the same code
format and so to speed up the process by removing useless or redundant tags.
The output of this step is a string containing the HTML code reformatted in the
XML syntax.

3. Selection of the Configuration file
The input of this step is a configuration file. If no configuration file was chosen,
the process continues on step 4. If ReversiXML is used in the automatic mode, a
file is chosen by the system. Thanks to the information from the context model
and from the WhoAmI recognition system, the best configuration file is selected
and loaded by ReversiXML. The WhoAmI recognition system is a set of PHP
scripts partially developed in collaboration with IS3 (http://www.is3.com)
allowing to identify some features of the user and platform connected to a
Website. The result of this step is the selection of a set of techniques and reverse
engineering options.

4. Global scan of code - Identification of elements
The corrected string containing the HTML file is put in a DOM structure which is
analyzed by the tool. In a first step, the code is scanned globally to detect the
elements that can be translated, following the options of the configuration file,
directly in UsiXML. This first step gives only a partial model that will be
completed in steps 4, 5 and 6. During this phase, some hidden attributes that will
be used in other steps are defined, such as the vertical and horizontal position,
sources and targets for every link on the page or meta-information that can be
used to complete the context model. The output is a partial concrete or abstract
UI model and a set of “hidden” attributes.

Chapter 6 ReversiXML

144

5. Local scan of code – Identification of special elements and attributes
To complete the UsiXML model, some small parts of the page have to be
scanned a second time with a particular aim. For example, tables at the concrete
level have the numberOfRows and numberOfCols attribute which is computed by
counting the number of rows and by finding the maximum value for the number
of cells in a same row. This value cannot be added directly in the first scan, as a
table can contain others, and it is possible to find a cell belonging to the first table
in the last line of the HTML code. There are several other cases where local scans
are needed, such as image maps, radio buttons etc… because the code relative to
these elements is scattered in the input file. The output is an abstract or concrete
UI model almost completed.

6. Specification of the UI Layout
In this step, the layout can be computed as all the different objects of the page
have been detected and abstracted. See section 6.4.2.b for more details about the
deduction of the layout. The output is a complete presentation and dialog model
(following our hypotheses) at the abstract or concrete UI level.

7. Specification of the Dialog Relations
After having completed the presentational part of the UI model, the dialog
transitions are completed by ReversiXML. Thanks to the information (the link
table – see figure 6-10) gathered during the step 4, the relations are added at the
end of the model. Only the navigational part of the dialog model is completed by
ReversiXML. The output of this step is complete (but maybe containing incorrect
results) abstract or concrete UI.

8. Model Correction and Model Links
Some corrections to the produced model are applied during step 8. For example
some attributes that do not belong to the CUI model but that were used to help
the construction of the output file have to be erased. The step 6 may generate too
many boxes as the first goal of the algorithm is to represent exhaustively the
layout thanks to boxes with the maximal accuracy. This can be corrected by
identifying useless boxes. Theses boxes correspond mainly to lines or columns of
a HTML table which do not always give useful information for the UsiXML
structure. The layout can thus be represented with fewer boxes without loss of
accuracy. Empty boxes (which correspond to empty cells) can also be removed in
the UsiXML specification. But as this method removes about 20% of the useless

Chapter 6 ReversiXML

145

boxes, it should be enhanced as the resulting models remain with several useless
boxes (see more details in appendix J). Following the configuration, some other
transformations can be applied during this step, such as for example the
transformation of a sequence of links into a menu or the division of the window
into smaller windows for platform with small display capabilities. The concrete or
abstract model is then linked with other models created with ReversiXML. The
link table (figure 6-10) is scanned to check whether a target has already been
reverse engineered. If it is the case, the name of the target of the dialog transition
is changed into the id of the target window. This step completes the generation of
a correct abstract/concrete UI model, which is now linked with the other models
generated during this session.

9. Generation of the Context Model
In this step, the information from the Web page and from the WhoAmI system is
used to specify some parts of the context model. This step has not been
completely implemented, but a method is given in appendix D to derive some
information needed for the context model. The output of this step is partial
context model, as all the needed information to complete the context model
cannot be found with the current recognition system.

10. Save Results and Check Page Pool
In this final step, the generated model is saved in the UI model knowledge base
and the page pool (list of pages to be reverse engineered) is checked to see if some
pages are still to be analyzed. If the list is not empty, the process starts again at
step 1.

These steps allow to cover the seven sub-problems of the reverse engineering
process presented in section 4.6, as the steps 4 and 5 correspond to the elements,
attributes and hierarchy recovery tasks, step 6 is related to the layout recuperation,
step 4, 7 and 10 fulfill the dialog detection task, step 8 is applied to achieve the
multiple specification transformation tasks, step 3, 4 and 5 are necessary to realize
retargeting operations.

6.4.2.b Layout recovery

The layout in UsiXML can be expressed in three ways: either by putting elements
into boxes (as in XUL or in a grid layout in Java), or by specifying a glue attribute
that defines the horizontal position of an element compared to its container, or by

Chapter 6 ReversiXML

146

defining a relation between two objects. The box-layout combined with glue
attributes have been chosen in ReversiXML to represent the layout of the
interaction objects as the automatic generation of relations could let ambiguities in
the position of elements.
The box mechanism works in this way: when a vertical box is defined, the
elements contained in the box are put below each other. Elements embedded in
horizontal boxes are put after – on the right – each other. Glue attributes are used
to define the position of an element compared to its container (centered, right-
justified etc…).

In standard HTML it is impossible to put elements on the page precisely and with
certainty without tables. Usually, elements are positioned thanks to tables, and the
layout is thus automatically recovered by applying “normal” derivation rules (G3,
G4 and G5 in appendix C). But in some cases, other types of elements are used to
structure the UI, and in this case, “artificial” boxes have to be added in order to
keep the original position of the objects.

Ve
rti

ca
l B

ox

Horizontal Box

Horizontal Box

Horizontal Box

Horizontal Box

Horizontal Box

Horizontal Box

Horizontal Box

Figure 6-7 General layout of a Web page

The general idea for the recovering of the layout is that an HTML UI is
composed of several rows (horizontal boxes) contained in a vertical box (see
figure 6-7). Therefore, a first vertical box is always created at the beginning of the
analysis, and a horizontal box which will contain the first line of elements.
Then, derivations rules are applied, but when a specific element is encountered,
(br,li,ul,dd,dl,ol,h1…h6,center,q,blockquote,pre,hr,div), a marker is specified in the
UsiXML specification. These elements imply the generation of line breaks in the

Chapter 6 ReversiXML

147

UI, and thus elements before and after the line break should be displayed on
different lines.

In a second phase after the analysis of the complete HTML file, the UsiXML
specification is scanned and for each line break marker, a new vertical box is
appended to the parent of the marker. Then, all the elements before the marker
are put in a new horizontal box and all the elements after the line break (all until
another box or line break is encountered or the parent element is closed) are also
put into another new horizontal box. In this manner it is possible to represent the
fact that the elements should be displayed on different lines. Figure 6-8 represents
the transformation of a UsiXML specification containing a line break marker.

Element 1 Element 2 Line Break Element 3

Horizontal box

Vertical Box
Horizontal box

Element 1 Element 2

Element 3

Horizontal box

Vertical Box
Horizontal box

Horizontal boxVe
rti

ca
l b

ox

Horizontal box

Figure 6-8 Layout recovery

The other manner to position elements in UsiXML is to define glueHorizontal and
glueVertical attributes. Therefore, the alignment of each element is checked and
theses attributes are added consequently. The alignment of elements is modified
when they are embedded in tags such as <div align=… valign=…>, <center> or <p
align=… valign=….> or when they possess their own align attribute in the HTML
code (such as in <table align=…>). For theses elements, a glue attribute is added in
UsiXML and it takes the value of the align (or valign) attribute.

Chapter 6 ReversiXML

148

A small example is presented of figure 6-9 which has the same structure as on
figure 6-7. The HTML code and its corresponding simplified UsiXML code are
shown below.

Figure 6-9 Example of layout recovery

 HTML code
<table>

<tr>
<td>

element1 element 2
<p align=right>element3
</td>

 </tr>
</table>

Simplified UsiXML code
<box type=”vertical”>

<box type=”horizontal”>
<box type=”horizontal”>

<box type=”vertical”>
 <box type=”horizontal”>
 <box type=”horizontal”>

<textOutput defautcontent=”element 1”>
<textOutput defautcontent=”element 2”>

 </box>
 <box type=”horizontal”>

<textOutput defautcontent=”element 3”
glueHorizontal=”right”>
</box>

</box></box></box></box>

6.4.2.c Dialog relations

The navigation between the different windows or containers is the central point
of the representation of the dialog for the HTML language.
As shown on figure 6-10, the different links contained in a UI are gathered in a
table, and are added to the model at the end of the reverse engineering process.
Before the addition to the model, each link’s target is verified, to check if it has
already been (or will be) reverse engineered during the same session. If it is the
case, the URL is removed and replaced by the id of the target window and the
former URL is put in a comment.
An example of a graphical transition (dialog relation) is shown below:
<graphicalTransition id="gt_29" transitiontype="open">
 <source sourceId="TextLink_170" />
 <target targetId="window_3" />

Chapter 6 ReversiXML

149

 <!--targetId= "http://www.isys.ucl.ac.be"-->
</graphicalTransition>

A graphical transition is characterized by three parameters: its name, source and
target. The name is composed of the two letters “gt_” and the number of the
transition. The source is the id of the interaction object which gives access to the
next window, and the target is the id of the window (or another URL) to which the
dialog transition gives access. In this example, the URL has been put in a
comment and replaced by the id of the window, as it will be reverse engineered
during the same session.

Figure 6-10 Link table

6.4.3 Differences between the two tools

Based on previous work, ReversiXML enlarges the possibilities and scope of the
research already conducted during the development of Vaquita. The objective is
to develop a flexible reverse engineering tool able to produce dynamically a UI
description suited for a particular context of use. Table 6-1 represents the major
differences between the two reverse engineering tools of Web pages. First of all,
the output language is XIML for Vaquita and UsiXML for ReversiXML. The fact
that this language has been developed within the Cameleon Project allows us to
distribute ReversiXML without license, which is not the case for Vaquita.
ReversiXML allows the reverse engineering of a UI at the concrete or abstract

Chapter 6 ReversiXML

150

level (and only at the concrete level for Vaquita). Another major difference is the
possibility to use the tool manually or automatically. The user can also choose to
let ReversiXML apply the most suited reverse engineering rules following the
connected platform (thanks to a system able to recognize the current context of
use). The use of Vaquita was at design time and entirely manual and the designer
had to choose every reverse engineering rule. ReversiXML can also be used on a
server and directly process files on the Web, while Vaquita can only reverse
engineer local files.
The programming language is completely different (VB 6 for Vaquita and PHP 5
for ReversiXML) and this implies a shorter processing time as PHP is faster than
Visual Basic (about 20 times faster in when used in the same conditions, i.e. in a
local reverse engineering process). This last parameter is very important in the
hypothesis of a dynamic reengineering: users who want to access an ordinary Web
page with their mobile platform will not have to wait too long for the regeneration
of the UI. The speed difference is mostly due to the fact that the DOM libraries
for VB6 (msxml3.dll) uses memory in a non-optimal manner, causing delay in the
process, and that the generation of the UI of Vaquita is particularly slow (drawing
of the trees).
Vaquita was only able to reverse one page at a time but ReversiXML gives the
possibility to process several pages in one request, or even an entire site. This
implies the reverse engineering of the navigation model (or dialog). Vaquita was
only able to recover the presentation model, but in ReversiXML, a part of the
dialog model is also recovered (the navigational structure of the Website).
Another important point is the interoperability with other tools. The number of
partners of the XIML consortium was promising, but only one ‘official’ tool is
under development after four years (put aside envir3D). This fact prevents us
from testing a complete reengineering process on classical 2D UIs. With UsiXML,
several tools already exist or are under development. See appendix E for more
details about other UsiXML compliant tools. The supported relations are richer in
ReversiXML than in Vaquita. Vaquita was only able to establish semantic relations
between labels and other interaction objects in an assisted way, while ReversiXML
recovers dialog and layout relations automatically.

 Vaquita ReversiXML
Abstraction Level Concrete UI Concrete and Abstract UI
Output language XIML UsiXML
Mandatory license Yes No

Chapter 6 ReversiXML

151

Selection of RE rules Manual Manual and automatic
Use Local On-line or Local
Processing Time 1 0.05 (20 times less)
Programming Language Visual Basic 6 PHP 5
Code Size About 10,000 LOC About 12,000 LOC
Site reverse engineering No Yes
Reverse engineering Static Static/ Dynamic
Models Presentation Presentation & Dialog
Application Size About 800 Kb About 600 Kb
Context awareness No Yes
Data-bases UI model UI model, context,

configurations
Interoperability with
other tools

Orca (ongoing deve-
lopment), Envir3D

TeresaXML,GrafiXML,
TransformiXML,FlashiXML...

Semantic Relations Yes No (ongoing consideration)
Layout Relations No Yes
Dialog Relations No Yes
Design time/Run time Design time Both
Interactive/Batch Interactive Both

Table 6-1 Differences between Vaquita and ReversiXML

6.4.4 Ongoing issues and future work

There are still some issues that are not solved at this point of the development:
Embedded components: an increasing number of pages contain Flash or Java
components. The reverse engineering of these components is impossible as they
use an imperative language which is compiled. The current method to solve this
problem in UsiXML is to create a finalComponent with the URL of this
component. Another method will be investigated in a near future to detect if the
component contains links: when the parser recognizes a flash component, the
page will be displayed and the designer will be asked to use the components. If the
component contains links, the redirection will be recorded by ReversiXML and
put in menu in the place of the component. Obviously, this method will only
work for the manual version or ReversiXML (at design time).

Scripts: As stated in the working hypotheses, scripts are not analyzed as their
reverse engineering method and objectives are completely different from the

Chapter 6 ReversiXML

152

reverse engineering of UIs. However, a similar solution to the embedded
components could be used, i.e. link extraction, and in a simpler way: as scripts are
not compiled, it could be possible to detect URLs and build a menu with all the
links from these scripts. In this manner, the reverse engineered model would
preserve the access to the entire navigational structure.

Semantic Relations: these relations between components to specify that they
have to be displayed together are not currently supported in the UsiXML
language. However this kind of relation is very important for the redistribution of
the UI on several windows. For the moment, the box mechanism can be used to
represent these semantic relations, but it is impossible to distinguish these boxes
from boxes used to structure the UI. This relation will probably be added in the
language as in ReversiXML. The detection of this type of relations is also a
research subject in [Gaer03] and [Xian06].

Use of statistics to refine the reverse engineering: thanks to the statistics
related to the composition of the UI, it would be possible to make a better
selection of the retargeting rules. By adding several statistics (such as the measure
of the dispersion of widgets, the number of characters, the number of different
widgets, etc…), some heuristics could be added to have a more accurate reverse
engineering. For example, it would be significant for the elision of paragraphs
technique (the first words of the paragraph are transformed into a link that gives
access to the rest of the paragraph). The technique should be applied for long
text-based pages (measured by the total number of characters), whereas this
would not be applied for pages with less text (but maybe with longer paragraphs).
Indeed, it will require less time for the user to scroll through the page in this
second case and will give more meaningful results than an individual rule like
‘transform each paragraph with more than 200 characters into a link’. By taking
into account this global information, ReversiXML could produce models of better
quality thanks to a reverse engineering based not only on the target platform/user,
but also on the composition and overall structure of the source UI (patterns).

Reduction of the amount of boxes: as the algorithm for the generation of boxes
is very exhaustive, i.e. for each HTML tag modifying the layout a box is created
without checking if it makes sense, the results should be corrected to minimize
the number of boxes. Examples or reduction rules are given in appendix J.

Chapter 6 ReversiXML

153

The fact that the source code contains too many table tags comes generally from
HTML editors such as Microsoft FrontPage or DreamWeaver. These editors
offer a WYSIWYG process to build the Web page and this technique adds several
‘layout tags’ to represent accurately the UI as drawn by the user.

Allow universal Web pages reverse engineering: All the Web pages are not
accessible by ReversiXML as the automated extraction mechanism of Web pages
via URLs currently suffers from two weaknesses: firstly, the correction and
transformation in the XML format thanks to Tidy sometimes generates imperfect
files, i.e. not valid XML files that can not be parsed by the libxml2 library. In
those cases, the reverse engineering is simply not achieved. Some correction after
the tidy-process could be added to the tool in order to avoid this problem.
Secondly, some pages are inaccessible because the Web server does not identify
ReversiXML as a normal browser. This is a Web crawler protection of Websites
to avoid unusual accesses of their content, such as from spamming tools etc… In
this case, the code is not available, and the only solution would be to emulate a
Web browser in the download module of ReversiXML.

Pursue further implementation: not all the requirements are fully addressed and
new features could be added in the implementation of the current version of
ReversiXML:

- The architecture could evolve to the version 1.2 as presented in appendix I.
- The elements to recover a partial context model could be added to the tool

(see appendix D).
- The selection mechanism of the best configuration file has been tested on a

few cases, but a complete database of configuration files should be
developed, by associating a configuration file for each existing platform.

- The reverse engineering of entire sites is not completely implemented.

6.5 Conclusion

This chapter decided to address the main shortcomings identified in Vaquita, an
early attempt for supporting the UI reverse engineering. For this purpose, new
working hypotheses have been adopted and justified that lead to the definition of
a series of progressively more complex software architectures, an enhanced
version of the UI reverse engineering process, and an implementation of a tool.

Chapter 6 ReversiXML

154

This chapter could be considered as a second attempt to address the general
requirements identified in Chapters 1 and 3 according to a depth-first approach:
while staying on the same problem, we choose to go deeper in the sophistication
of the process support, although some other extensions have been identified.
Both tools can be compared in terms of the trade-off between the levels of
complexity and coverage (figure 6-11).

Complexity

Coverage

Vaquita

ReversiXML

Figure 6-11 Coverage and complexity trade-off

Vaquita had a level of complexity lower than ReversiXML, but also less coverage
of the source UI features. With ReversiXML, we reached an optimal level in this
trade-off, as further enhancements would require lots of efforts in development
compared to few advantages in the coverage (e.g. the evolution to the architecture
1.2 of the tool would bring marginal benefits to the approach but would
necessitate important resources for the implementation; similarly, benefits of the
reverse engineering of the dialog is disproportioned compared to its “cost”, and
would also imply difficulties in the forward engineering).

In the next chapter, we will adopt a breath-first approach to examine other related
declarative languages in which a UI could be implemented to identify what are the
content of this thesis which remain operational and valid to solve the problem.
However, it will not be our goal to systematically develop some software support
for each of those cases. Only some selected portions will be subject to some
implementation.

Chapter 7 Reverse
engineering of other markup-
based UI

In order to widen the scope of UI declarative languages to be used as a source for
reverse engineering, this seventh chapter is about the reverse engineering of two
selected markup-languages: the WML and the VoiceXML languages. The first
study of WML is about the recovery of UIs designed for platforms with very
limited capabilities (but with the same interaction modality: the graphical channel)
while the second, about VoiceXML, is the reverse engineering of UI designed for
another computing platform (i.e., a mobile phone or a computing platform
equipped with voice synthesis) but with another interaction modality (the vocal
channel). The study of WML is based on the bachelor thesis of Xuefeng Cui
[Cui05] who has conducted his work under our supervision during the last
academic year. Each language study, representing sections of this chapter, is
divided into four parts, firstly a brief presentation and history of the language,
secondly the scope of the analysis, thirdly the presentation of representative
derivation rules and a meta-model of the language and finally some examples of
reverse engineering. A tool has also been developed for the reverse engineering of
WML, and its results are also presented in this chapter. Finally, a third section
concludes this chapter.

Chapter 7 Reverse engineering of other markup-based UI

 156

7.1 Reverse engineering of WML

7.1.1 The WML language

The growth of internet-enabled mobile phones is much higher than the growth of
desktop PC (see chapter table 1-1 figures), and it is obvious that in a few years,
this kind of platforms will be more exploited than classical desktop platforms to
access the Internet. We are only in the beginning of this process, and therefore the
use and proportion of pages written in the WML language seems weak for the
moment but will be more important in a near future. To satisfy user needs, the
mobile platforms market provides a wide variety of devices with different
capabilities such as screen resolution, screen size, number of colours, memory…
(see figure 7-1).
The possibilities for developing “mobile” UIs can be characterized by the
following constraints (compared to the desktop computer’s UIs):

1) Small display and limited user input facilities
2) Narrowband network connection
3) Limited memory and computational resources.
4) Important abeyance time during a connection.
5) Unstable connections which can suffer of quick damages.

All these factors imply very simple/short UIs, mostly composed of text, with
minimal input of the user.

WML history is shorter than a decade. The WAP forum has been created in 1997
by the most important actors in the mobile phone market (Nokia, Motorolla,
Ericsson, Microsoft, Phone.com, etc.). The first version of WML was elaborated
in May 1998. The version 1.1 has been released in 1999, the version 1.2 in
September 1999 and version 1.3 in 2000. Currently, the version 2.0 has been
released (since end of 2001) but it has not been really adopted by the majority of
WML developers and Web services providers. This new version is based on
XHTML and can be used to deliver WML 1.x content to WAP 2 client, achieving
backward compatibility with WML 1 in a manner that is transparent to the end
user. Another language, HDML (handheld device markup language), was
developed previously, but it had too many shortcomings (especially portability
/compatibility, it could not be used on every mobile phone) and was abandoned
by most of the developers with the adoption of WML.
A competitor of the WML is cHTML (compact HTML). It was released in 1999
and is in fact only a subset of the HTML language (with some specific

Chapter 7 Reverse engineering of other markup-based UI

 157

functionalities) created for “small information devices”. It was never considered
as a standard by W3C and is actually mostly exploited in Japan (i-mode). It had
several advantages over WML (use a well-known language, website easily
adaptable to cHTML, very simple use) but the fact that W3C did not recognize it
as a standard limited its expansion.

Figure 7-1 Mobile devices with different capabilities

WML can almost be considered as a subset of HTML too, as the differences
between the two languages are very small. A few specific tags have been added,
but 70% of the language tags and attributes are the same as in the hyper text
markup language. The major difference is the introduction of the card metaphor:

Chapter 7 Reverse engineering of other markup-based UI

 158

instead of having a single window stored in a file (one file equals one window), a
WML file contains a set of cards (a deck) representing several windows. These
cards are grouped logically so that a user can quickly access different related topics
on a website by avoiding waiting for the loading of every new card (window).
There is also, as in HTML, a scripting language, allowing for applying simple
processing on variables. WMLScript is able to take into account some
characteristics of the connected platform (and adapt the deck accordingly) and to
add some dynamic behaviour to the developed decks.

Finally, the WML language can be summarized by four major functional areas
[Cui05]:

• Text presentation and layout - WML includes text and image support,
including a variety of formatting and layout commands

• Deck/card organisational metaphor - all information in WML is organised
into a collection of cards and decks

• Inter-card navigation and linking - WML includes support for explicitly
managing the navigation between cards and decks

• String parameterization and state management - all WML decks can be
parameterized, using a state model.

7.1.2 Working Hypothesis

The goal of this chapter is to apply the method developed for the HTML
language to another markup-language created for a completely different type of
platform (different in terms of capacity and interaction techniques), mobile
phones. The analysis of this language is not as deep as for the HTML language
and this for three reasons:

1. The language and the different kinds of UIs that can be produced with
WML are much less complex than for HTML (i.e. no complex layout,
fewer UI elements, no sounds, no embedded components, etc.)

2. The language is currently not so widespread than the HTML language,
and thus its importance and its use are smaller than for HTML.

3. There are fewer incentives for the reverse engineering of WML than
for the HTML language, as the reengineering of WML UIs towards
platforms with more capabilities is less likely than the contrary.

There are several versions of WML (see 7.1.1), and only the version 1.1 has been
fully analyzed in this thesis. The version 1.1 is the most popular version (the
version 2.0 has been released too recently and can not be fully exploited for the

Chapter 7 Reverse engineering of other markup-based UI

 159

moment), most WML sites are developed in this version, so as development
toolkits and simulators.
As for HTML, the reverse engineering of the dialog is limited to the navigation.
The reverse engineering applied in this chapter is a static application of derivation
rules. The target model for this study is the UsiXML v1.4.6 CUI only, but the
method could be enhanced by adding similar rules to recover the AUI level.
It can be argued that the reverse engineering of this language is not very useful,
but it has been analysed in this thesis for three main reasons: firstly, it can be used
to redesign existing pages (for example for another mobile platform with slightly
different capabilities, e.g. larger screen, some colour-capabilities, widgets
availability etc.). Secondly, the CUI model could possibly be used in a translation
process to convert it partially or in its totality in a vocal UI, thus resulting in
transformation of the former WML UI into a multi-modal UI. Thirdly, this
analysis enlarges the scope of the reverse engineered languages and thus the
proposed method, by analyzing the adequacy of the notation for this language and
how the different issues related to HTML reverse engineering apply to WML (see
chapter 4) .

Losses due to the reverse engineering process
As the layout and presentation of the UI is very simple, there are very few (if any)
losses due to the reverse engineering process at the presentation level. Most of the
information contained in a deck is kept in the concrete UI model except some
dynamic aspects. As for HTML, only the static part of the UI is represented in the
UI model. Variables and states are not recorded in the UsiXML specification, so
as WML scripts and tags using the concept of history.

7.1.3 Language meta-model and derivation rules

This section contains the meta-model [Cui05] and some specific rules to the
WML 1.1 language. The meta-model (figure 7-2) is characterized by its simplicity,
compared to other language meta-models (see appendix B). The root element of
the model is a wml element, which can contain a meta, template or card node. The
UI is contained in card elements and can be composed of navigation elements
(+navelements), timer, paragraphs (p) or fields (+fields). Fields are decomposed in
several input elements (select, input…) and flow elements (+flow) that represent
formatting tags for the text of the UI, such as b or i(for bold or italic text), tables,
links(a) and images (img). Elements starting with a plus symbol represent super

Chapter 7 Reverse engineering of other markup-based UI

 160

classes, grouping several types of elements sharing similar attributes and
aggregation relations.

Figure 7-2 The meta-model of WML 1.1

in
pu

t
na

m
e

ty
pe

va
lu

e
fo

rm
at

em
pt

y
ok

si
ze

m
ax

le
ng

th
ta

bi
nd

ex
tit

le

em

st
ro

ng
b

i

u
bi

g
sm

al
l

no
op

ac
ce

ss
do

m
ai

n
pa

th
id cl

as
s

m
et

a
ht

tp
-e

qu
iv

na
m

e
fo

ru
a

co
nt

en
t

sc
he

m
e

id cl
as

s

he
ad

id cl
as

s

pr
ev

re
fr

es
h

po
st

fie
ld

na
m

e
va

lu
e

id cl
as

s

go
hr

ef
se

nd
re

fe
re

r
m

et
ho

d
ac

ce
pt

-c
ha

rs
et

te
m

pl
at

e
id cl

as
s

on
en

te
rf

or
wa

rd
on

en
te

rb
ac

kw
ar

d

se
tv

ar
na

m
e

va
lu

e
id cl

as
s

+t
as

k
id cl

as
s

+n
on

oo
pt

as
k

an
ch

or
tit

le

im
g

al
t

sr
c

lo
ca

ls
rc

vs
pa

ce
hs

pa
ce

al
ig

n
he

ig
ht

wi
dt

h

br

a hr
ef

tit
le

ta
bl

e
tit

le
al

ig
n

co
lu

m
ns

tr
id cl

as
s

+f
lo

w

td

+e
m

ph

wm
l

xm
l:l

an
g

id cl
as

s
tim

er
na

m
e

va
lu

e
id cl

as
s

+n
av

el
m

ts
id cl

as
s

ty
pe

fie
ld

se
t

tit
le

do
la

be
l

na
m

e
op

tio
na

l
xm

l:l
an

g

p
al

ig
n

m
od

e
xm

l:l
an

g
id cl

as
s

on
ev

en
t

se
le

ct
tit

le
na

m
e

va
lu

e
in

am
e

iv
al

ue
m

ut
ip

le
ta

bi
nd

ex
op

tio
n

va
lu

e
tit

le
on

pi
ck

xm
l:l

an
g

id cl
as

s

op
tg

ro
up

tit
le

id xm
l:l

an
g

cl
as

s

ca
rd

tit
le

ne
wc

on
te

xt
or

de
re

d
xm

l:l
an

g
on

en
te

rf
or

wa
rd

on
en

te
rb

ac
kw

ar
d

on
tim

er
id cl

as
s

+f
ie

ld
s

xm
l

id cl
as

s

Chapter 7 Reverse engineering of other markup-based UI

 161

The complete set of derivation rules for WML based on this meta-model is
presented in appendix C. There are several rules similar to the derivation rules of
HTML 4.0, and therefore most of them have been combined with the HTML
rules (combined rules are characterized by a TH/W in the left part of the rule in
appendix C). In fact, two cases exists, either the rule is identical and the rules of
HTML and WML are simply merged or the WML rule contains less constraints
than for the HTML language, and the rules can also be combined if the constraint
is that an element or attribute does not exist or is equal to zero (constraint of
inexistence).

There are very few rules that are only applicable to the WML language in
appendix C. These rules are characterized by the fact that they only contain a Tw
in the left part of the rule.
Only four completely specific groups of rules for the WML exist, for elements
that do not exist in HTML. There are of course more differences between the two
languages but in most of the cases, they are mixed in a group of rules for other
languages. These four groups of rules are for the template, card (replacing
windows), select (translated here as comboBox, radioButtons or checkBoxes
following its attributes), and do/go nodes. The derivation rules for two of these
components are shown in the rest of this section.
The transformation of the select node in a comBobox (a drop down list box)
depends on three conditions: the number of different options must be greater than
6, the options depending on the select node should not posses an onpick attribute
and only one choice can be made (multiple selections are not allowed). In the other
cases, the select node is translated by a radioButton, a textComponent or a
checkbox, but this is done when an option node is detected (G9)

G8 – select (combobox)

∀ x,y ∈ TW : x = select ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨ (CountInChildNodes
(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
→ Addnode (“comboBox”, idcombo) where idcombo =NodeAmount(Tt)
∀ x,y ∈ TW : x = select ٨ (x.value!=NULL) ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
→ AddAttribute (idcombo, “varValue”, x.value)
∀ x,y ∈ TW : x = select ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
 → AddAttribute (idcombo, “isEnabled”, “true”)

Chapter 7 Reverse engineering of other markup-based UI

 162

∀ x,y ∈ TW : x = select ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
 → AddAttribute (idcombo, “id”, idcombo)
∀ x,y ∈ TW : x = select ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
→ AddAttribute (idcombo, “name”, idcombo)
∀ x,y ∈ TW : x = select ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
 → AddAttribute (idcombo, “isVisible”, “true”)
∀ x,y ∈ TW : x = select ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
→ AddAttribute (idcombo, “isEditable”, “false”)
∀ x,y ∈ TW : x = select ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
→ AddAttribute (idcombo, “isDropDown”, “true”)
∀ x,y ∈ TW : x = select ٨ x.tabindex !=NULL ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
→ AddAttribute (idcombo, “mnemonic”, x. accesskey)
∀ x,y ∈ TW : x = select ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
 → CheckAlignement(x,idcombo)

The do node is a “task” node, allowing the user to activate a task when he clicks
on word/phrase on the screen. The only task that is considered in this analysis is a
navigation task (by using the go node to specify the URL of the link) and in this
case the do/go nodes are translated by a textComponent.

G21 – do/go (textComponent)

∀ x,y ∈ TW : x = do ٨ x.type=accept ٨ y=go ٨ y ∈ childNodes(x)
→ (“TextComponent”, idtext) where idtext =NodeAmount(Tt)
∀ x,y ∈ TW : x = do ٨ x.type=accept ٨ x.label!=NULL ٨ y=go ٨ y ∈ childNodes(x) →
AddAttribute(idtext, “defaulContent”, “ x.label”) ٨ AddAttribute(idtext, “isbold”, “ true”)
∀ x,y ∈ TW : x = do ٨ x.type=accept ٨ y.href !=NULL ٨ y=go ٨ y ∈ childNodes(x) →
AddAttribute(idtext, “defaulContent”, “ x.label”) ٨ AddAttribute(idtext, “isbold”, “ true”)
AddAttribute(idtext, “hyperLinkTarget”, y.href) ٨ AddGraphTr (idtext, y.href)

7.1.4 Tool support

A tool has been developed in [Cui05] to support the reverse engineering of the
WML 1.1 language. The reverse engineering of WML could also be added easily
to the ReversiXML tool, as very few rules would be added to the current engine.

Chapter 7 Reverse engineering of other markup-based UI

 163

Implementation
The tool developed in [Cui05] is composed of a small java program launching an
XSLT transformation process. Xpath expressions are also used to compute some
attribute values that cannot be directly mapped thanks to XSLT.
The tool has to be used in a command-line style, as shown on figure 7-3, by
indicating the XSLT stylesheet to use during the reverse engineering, the source
file name and output file name.

Figure 7-3 Command prompt for the WML reverse engineering tool

Examples
Two commented examples of UsiXML CUI models obtained with the tool are
available in appendix H-2.

Complete reengineering
A complete reengineering has been realized by using both the WMLtoUsiXML
and Grafixml tools. The original WML cards are presented in figure 7-4. The
WML and UsiXML code is shown in table 7-1. The reengineered card is the
yahoo mobile login page. On this UI, the user has to give its login and password
and submit this small form. She can also ask for help by pushing on the help link
or navigate to the yahoo home page (the link is not visible on the figure).

Figure 7-4 Yahoo mobile login page

WML
<wml><head>
<meta http-equiv="Cache-Control"

UsiXML
<CuiModel xmlns="http://www.usiXML.org"
xmlns:xsi="http://www.w3.org/2001/XMLSche

Chapter 7 Reverse engineering of other markup-based UI

 164

content="max-age=0" forua="true"/>
</head>
<template><do type="prev"
label="BACK"><prev/></do></template>
<card id="c2" title="Y! Sign In">
<onevent type="onenterforward">
<refresh>
<setvar name="passwd" value="" />
<setvar name="src" value="sGHW" />
</refresh></onevent>
<onevent type="onenterbackward">
<refresh>
<setvar name="passwd" value="" />
<setvar name="src" value="sGHW" />
</refresh></onevent>((1))
<p> Yahoo! ID:
<input name="login" value=""
format="*m" />Password:
<input type="password" name="passwd"
value="" format="*m" />((2))
<anchor title="OK">Submit
<go method="post" href="/raw?">
<postfield name="dp" value="auth"/>
<postfield name="s" value="1"/>
<postfield name="src"
value="$(src)"/>
<postfield name="login"
value="$(login)"/>
<postfield name="passwd"
value="$(passwd)"/>
</go></anchor>

<a title="OK" ((3))
href="http://wap.oa.yahoo.com/raw?dp
=page&pg=help/signin">Help

((3))
<a title="YAHOO"
href="http://wap.oa.yahoo.com/raw?dp
=home">Yahoo! Home
</p>
</card>
</wml>

ma-instance">
<window id="window_1" borderTitle="Y!
Sign In" isVisible="true"
isEnabled="true" name="Y! Sign In">
<box id="box_1" isVisible="true"
isEnabled="true">
<textComponent id="textComponent_1"
glueHorizontal="left" isVisible="true"
isEnabled="true" defaultContent="Yahoo!
ID:"/>
<textComponent id="textComponent_2"
glueHorizontal="left" defaultContent=""
isEditable="true" isVisible="true"/>
<textComponent id="textComponent_3"
glueHorizontal="left" isVisible="true"
isEnabled="true"
defaultContent="Password:"/>
<textComponent id="textComponent_4"
glueHorizontal="left" isPassword="true"
defaultContent="" isEditable="true"
isVisible="true"/>((2))
<textComponent id="textComponent_5"
glueHorizontal="left" isVisible="true"
isEnabled="true"
defaultHyperLinkTarget="/raw?" name="OK"
defaultContent="Submit"/>
<textComponent id="textComponent_6" ((3))
glueHorizontal="left" isVisible="true"
isEnabled="true"
defaultHyperLinkTarget="http://wap.oa.yah
oo.com/raw?dp=page&pg=help/signin"
defaultContent="Help"/>
<textComponent id="textComponent_7" ((3))
glueHorizontal="left" isVisible="true"
isEnabled="true"
defaultHyperLinkTarget="http://wap.oa.yah
oo.com/raw?dp=home"
defaultContent="Yahoo! Home"/>
</box></window>
<graphicalTransition id="textLink_1"
type="open">
<source sourceId="textComponent_5"/>
<target targetId="/raw?"/> ((3))
</graphicalTransition>… </CuiModel>

Table 7-1 Reengineering of Yahoo mobile login page

((1))An entire part of the WML code is not used during the reverse engineering.
The template node is not reverse engineered as it contains a reference to the
history. The other nodes onevent are not analyzed too as this type of information
is not kept in the UsiXML models.
((2))This part of the UI contains two labels, “Yahoo! ID” and “Password”, and
two textboxes (<input> nodes). These elements are mapped as four
textComponents in the UsiXML specification by applying the rule sets G7 (for
inputs) and G17 (for labels). The last textComponent possess the isPassword

Chapter 7 Reverse engineering of other markup-based UI

 165

attribute as it is the translation of the password field (<input type=password …> in
WML).
((3))The two links from the WML code are transformed into textComponents in
the CUI model (G17 rule set). The corresponding graphicalTransitions are also
added at the end of the model.

The result of the forward engineering, based on the specification of table 7-1, is
shown on figure 7-5. As the Grafixml is not able to generate a final UI for the
moment, only the preview window is available.

Figure 7-5 Preview UI generated with Grafixml

7.2 Reverse engineering of VoiceXML 2.0

7.2.1 The VoiceXML language

The VoiceXML language is a very young language, created one year after the
WML language. VoiceXML [Roui04] is a markup language for representing
human-computer dialogs, allowing developing vocal application rapidly.
VoiceXML assumes a specific voice browser (such as Vocal ADK, Voxeo or
Websphere) with audio output/input capabilities.
The first research conducted on vocal UIs started in 1995 at AT&T Research
Labs. In 1999, AT&T and Lucent had developed two incompatible dialects of the
Phone Markup Language (PML), while Motorola had is own language (VoxML).
Other companies such as IBM, with the SpeechML, also started research on this
subject. They decided to organize the VoiceXML Forum, in order to standardize
these separate languages. In August of 1999, the forum produced VoiceXML 0.9,
combining the best features of the earlier languages. After the publications of the

Chapter 7 Reverse engineering of other markup-based UI

 166

VoiceXML language, the forum had a tremendous growth, and several comments
of the new participants helped to produce the VoiceXML 1.0 in March 2000. In
May 2000, the W3C accepted the language as standard as more and more
companies were using it and were involved in the development of this markup
language. In October 2001, a first version of the VoiceXML 2.0 was submitted
(aiming mostly at correcting errors of the first version), and became a W3C
candidate recommendation in January 2003 [Voic04].
The importance of the language is increasing constantly, as the number of
“potential platforms” grows accordingly. It is estimated that there are over 1.5
billion of phones in the world, which is much more than personal computers.
Moreover, the technology related to VoiceXML (such as text-to-speech systems
or vocal recognition systems) is becoming more sophisticated and this will thus
promote the use of this language.

VoiceXML is different from the two previous studied markup languages, as
several particularities were introduced and are listed below:
- VoiceXML integrates conditional tags or event catcher tags (predefined or user-
defined events). Moreover, the EcmaScript language is strongly incorporated in
the VoiceXML language and allows developers to modify control flows during the
execution of the UI without having to call a complex function.
- It also allows the use of libraries and functions (e.g. by using the subdialog tag),
promoting their use and the development of modular applications.
- The use of two interaction devices: the user can interact by using voice or the
keyboard of the telephone instead of mouse and keyboard inputs.
- The language introduced the mixed-initiative in the VoiceXML forms. When a
form is put in the mixed-initiative mode, users can fill fields of the form in any
order, and do not have to wait for a specific question to give their answer.

7.2.2 Working Hypothesis

The aim of this section is to apply the method developed for the HTML language
to another markup-language created for a different modality. The targeted output
of this study is the CUI level expressed in UsiXML v1.4.6, recovered thanks to a
static analysis of VoiceXML code. The recovery of dialog is limited to the
navigation between VoiceXML applications.
Similarly to WML, the analysis of this language is not as deep as for the HTML
language and this for several reasons:

Chapter 7 Reverse engineering of other markup-based UI

 167

1. The UsiXML language provides more support for graphical UIs than for vocal
UIs, and several aspects of vocal UIs have to be ignored during the reverse
engineering (see the section “losses due to reverse engineering”).
2. The language is not so widespread as the HTML language, and therefore there
are fewer needs for reverse engineering with this language.
3. There are also fewer incentives for the reverse engineering of VoiceXML than
for the HTML language, as the produced models can not be reused for several
targets in the forward engineering phase. This is due to the nature of vocal UIs, as
these UIs are developed to be rapid and simple (such as weather forecast,
restaurant reservation etc.).

The version that has been analyzed in this section is the second version of the
VoiceXML language. Anyway, versions are very similar (as the difference between
1.0 and 2.0 are mostly corrections and some additions to take some particularities
of platforms into account). As for the preceding analysis, the question of the
interest of the reverse engineering of the VoiceXML can be asked. Three main
points of interest can be highlighted.
− First of all, some particular specifications of vocal UI could be reused for

redesign, or for the forward engineering towards another platform with
limited capabilities. A potential target could be WML as this language is also
used to design small and simple UIs.

− Secondly, a more interesting use could be the integration of a (partial) vocal
UI into a multi-modal UI (graphical-vocal UI). This kind of UIs will probably
be more important in the future, mixing HTML’s information presentation
capabilities with some vocal commands/forms. We could imagine that some
parts of a vocal UI could be reused and integrated with the “graphical part” of
a CUI model (similarly to the VoiceXML transcoding approach in chapter 3).

− Finally, this enlarges the scope of the method proposed in this thesis, showing
how the reverse engineering process can be generalized while pointing out
some limits of the method (see next section).

Losses due to the reverse engineering process
The reverse engineering of VoiceXML in UsiXML specifications causes several
losses, especially because conditional behaviours and complex control flows can
not be represented in the output language. Therefore, a part of the structure of
the VoiceXML UI can not be recovered, such as conditions, events catching or

Chapter 7 Reverse engineering of other markup-based UI

 168

the repetition of instructions. This implies a less detailed analysis of the language
and the loss of complex dialogs.
Tags that modify the control flow or that modify values of variables (representing
usually states of the UI) will not be taken into account, as the UsiXML language
has not been designed to represent imperative languages and consequently such
structures. Two attributes also exist, cond and count, which allow applying a
condition on a specific tag. The value of cond is evaluated before the (attribute-)
owner tag is activated, and count represents the number of times the preceding
prompt has to be activated before the (attribute-) owner tag becomes active.
Again, these two common conditions are not represented in a UsiXML
specification for the moment. The VoiceXML language allows defining grammars
in a UI specification but it is also impossible to represent this information in a
UsiXML model. It is possible to record the path of an external grammar, but
there is no structure to accommodate the definition of an internal grammar in a
UsiXML specification. A solution could be to transform an internal grammar into
an external grammar by putting the content of the VoiceXML grammar in an
independent file. The complete list of tags that are ignored is given below (table 7-
2) so as the category of concept to which they belong.

Tags Category
if, then, else, elseif Conditional tags
catch, help, exit, disconnect, noinput,
nomatch, throw,

Event catcher tags

Item,rule,tag,ruleref,one-of Grammar definition tags
Count=…, cond=… Conditional attributes
Value, var State variables or user inputs

Table 7-2 Tags ignored during reverse engineering

Two solutions are possible for the elements depending on those tags: either
ignore them or keep it in the UsiXML specification, but under the form of
comments. In this latter case, the designer will be able to select the elements to be
kept in the model (even without conditions) or the one that can be discarded. He
could also put the conditions again manually after a forward engineering phase.

7.2.3 Language meta-model and derivation rules

This section contains the meta-model of the voiceXML 2.0, the portion of
interest of the CUI level in UsiXML for vocal languages and some commented
example of derivation rules from the VoiceXML to UsiXML CUI level.

Chapter 7 Reverse engineering of other markup-based UI

 169

ca
tc

h
ev

en
t :

 s
tri

n...
he

lp
no

inp
ut

no
m

at
ch

er
ro

r

ini
tia

l

fill
ed

m
od

e
: s

tri
ng

na
m

eli
st

 :
st

ri.
..blo

ck
m

en
u

id
: s

tri
ng

sc
op

e
: s

tri
ng

dt
m

f :
 s

tri
ng

ac
ce

pt
 :

st
rin

g

m
et

a
na

m
e

: s
tri

ng
co

nt
en

t :
 s

tri
ng

ht
tp

-e
qu

iv
: s

tri
ng

m
et

ad
at

a
rig

ht
s

: s
tri

ng
su

bje
ct

 :
st

ri.
..

pr
op

er
ty

na
m

e
: s

tri
...

va
lue

 :
st

rin
g

+
Ev

en
t h

an
dle

r
co

un
t :

 in
te

g..
.

co
nd

 :
st

rin
g

+
Ex

ec
ut

ab
le

co
nt

en
t

0.
.n

1

0.
.n

1

for
m

id
: s

tri
ng

sc
op

e
: s

tri
...

fie
ld

ty
pe

 :
st

rin
g

slo
t :

 s
tri

ng
m

od
al

: b
oo

le.
..

tra
ns

fer
de

st
 :

ur
i

de
st

ex
pr

 :
st

rin
g

br
idg

e
: b

oo
lea

n
co

nn
ec

tti
m

eo
ut

 :
int

e.
..

m
ax

tim
e

: i
nt

eg
er

tra
ns

fer
au

dio
 :

ur
i

aa
i :

 s
tri

ng
aa

iex
pr

 :
st

rin
g

ch
oic

e
dt

m
f

ac
ce

pt
ne

xt
 :

ur
i

ex
pr

 :
ur

i
ev

en
t :

 s
tri

ng
ev

en
te

xp
r :

 s
tri

ng
m

es
sa

ge
 :

st
rin

g
m

es
sa

ge
ex

pr
 :

st
rin

g

0.
.n

1

0.
.n

1

re
co

rd
na

m
e

: s
tri

ng
ex

pr
 :

st
rin

g
co

nd
 :

st
rin

g
m

od
al

: b
oo

lea
n

be
ep

 :
bo

ole
an

m
ax

tim
e

: i
nt

eg
er

fin
al

sil
en

ce
 :

int
eg

er
dt

m
fte

rm
 :

bo
ole

an
ty

pe
 :

st
rin

g

op
tio

n
dt

m
f :

 s
tri

ng
ac

ce
pt

 :
st

rin
g

va
lue

 :
st

rin
g

0.
.n

1
0.

.n
1

vx
m

l
ve

rsi
on

 :
str

in
g

xm
ln

am
es

pa
ce

 :
str

in
g

xm
l:b

as
e

: s
tri

ng
xm

l:l
an

g
: s

tri
ng

ap
pl

ic
at

io
n

: s
tri

ng

0.
.n

1
0.

.n
1 0.

.n

1

0.
.n

1

0.
.n

0.
.1

0.
.n

0.
.1

+
Co

nt
ain

er
na

m
e

: s
tri

ng
ex

pr
 :

st
rin

g
co

nd
 :

st
rin

g
fet

ch
au

dio
 :

st
rin

g
fet

ch
hin

t :
 s

tri
ng

fet
ch

tim
eo

ut
 :

int
eg

er
m

ax
ag

e
: i

nt
eg

er
m

ax
st

ale
 :

int
eg

er

0.
.n

1
0.

.n
1

0.
.1

0.
.n0.

.1

0.
.n0.

.n

0.
.1

0.
.n

0.
.1

0.
.n

1

0.
.n

1

0.
.n

1

0.
.n

1

gr
am

m
ar

ve
rs

ion
 :

st
rin

g
xm

l:la
ng

 :
st

rin
g

m
od

e
: s

tri
ng

ro
ot

 :
st

rin
g

ta
g-

for
m

at
 :

st
rin

g
xm

l:b
as

e
: u

ri
ex

pr
sc

op
e

xm
lns

we
igh

t
ty

pe
sr

c
sr

ce
xp

r

0.
.n

0.
.1

0.
.n

0.
.1

0.
.n0.
.1

0.
.n0.
.1

0.
.10.

.1

0.
.10.

.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1 0.

.1

0.
.1

lin
k

ne
xt

 :
ur

i
ex

pr
 :

ur
i

ev
en

t :
 s

tri
ng

ev
en

te
xp

r :
 s

tri
ng

m
es

sa
ge

 :
st

rin
g

m
es

sa
ge

ex
pr

 :
st

rin
g

dt
m

f :
 s

tri
ng

fet
ch

au
dio

 :
st

rin
g

fet
ch

hin
t :

 s
tri

ng
fet

ch
tim

eo
ut

 :
int

eg
er

m
ax

ag
e

: i
nt

eg
er

m
ax

st
ale

 :
int

eg
er

0.
.n

0.
.1

0.
.n

0.
.1

0.
.1

0.
.n

0.
.1

0.
.n

1

0.
.1

1

0.
.1

els
eif

co
nd

 :
st

rin.
..

els
e

co
nd

 :
st

rin.
..

ex
it

ex
pr

 :
st

rin
g

na
m

eli
st

 :
st

ri.
..

cle
ar

na
m

eli
st

 :
st

ri.
..

log
lab

el
: s

tri
n...

ex
pr

 :
st

rin
g

as
sig

n
ex

pr
 :

st
rin

g
na

m
e

: s
tri

n...

dis
co

nn
ec

t
sr

c
: u

ri
ch

ar
se

t :
 s

tri
ng

fet
ch

hin
t :

 s
tri

ng
fet

ch
tim

eo
ut

 :
int

eg
er

m
ax

ag
e

: i
nt

eg
er

m
ax

st
ale

 :
int

eg
er

go
to

ne
xt

 :
ur

i
ex

pr
 :

st
rin

g
ne

xt
ite

m
 :

st
rin

g
ex

pr
ite

m
 :

st
rin

g
fet

ch
au

dio
 :

st
rin

g
fet

ch
hin

t :
 s

tri
ng

fet
ch

tim
eo

ut
 :

int
eg

er
m

ax
ag

e
: i

nt
eg

er
m

ax
st

ale
 :

int
eg

er

re
tu

rn
ev

en
t :

 s
tri

ng
ev

en
te

xp
r :

 s
tri

ng
m

es
sa

ge
 :

st
rin

g
m

es
sa

ge
ex

pr
 :

st
rin

g
na

m
eli

st
 :

st
rin

g

re
pr

om
pt

sc
rip

t
sr

c
: u

ri
ch

ar
se

t :
 s

tri
ng

fet
ch

hin
t :

 s
tri

ng
fet

ch
tim

eo
ut

 :
int

eg
er

m
ax

ag
e

: i
nt

eg
er

m
ax

st
ale

 :
int

eg
er

su
bm

it
ne

xt
 :

ur
i

ex
pr

 :
st

rin
g

na
m

eli
st

 :
st

rin
g

m
et

ho
d

: s
tri

ng
en

ct
yp

e
: s

tri
ng

fet
ch

au
dio

 :
st

rin
g

fet
ch

hin
t :

 s
tri

ng
fet

ch
tim

eo
ut

 :
int

eg
er

m
ax

ag
e

: i
nt

eg
er

m
ax

st
ale

 :
int

eg
er

th
ro

w
ev

en
t :

 s
tri

ng
ev

en
te

xp
r :

 s
tri

ng
m

es
sa

ge
 :

st
rin

g
m

es
sa

ge
ex

pr
 :

st
rin

g

va
r

ex
pr

 :
st

rin
g

na
m

e
: s

tri
ng

ob
jec

t
cl

as
sid

 :
ur

i
co

de
ba

se
 :

ur
i

co
de

ty
pe

 :
st

rin
g

da
ta

 :
ur

i
ty

pe
 :

st
rin

g
ar

ch
ive

 :
st

rin
g

pa
ra

m
va

lue
 :

st
rin

g
va

lue
ty

pe
 :

st
rin

g
ty

pe
 :

st
rin

g

0.
.n

0.
.1

0.
.n

0.
.1

su
bd

ial
og

na
m

eli
st

sr
c

sr
ce

xp
r

m
et

ho
d

en
ct

yp
e

0.
.n

0.
.1

0.
.n

0.
.1

de
sc

xm
l :

 la
ng

va
lue

ex
pr

 :
st

rin.
..

en
um

er
at

e

au
dio

fet
ch

hin
t :

 s
tri

ng
fet

ch
tim

eo
ut

 :
int

eg
er

m
ax

ag
e

: i
nt

eg
er

m
ax

st
ale

 :
int

eg
er

ex
pr

 :
st

rin
g

1

0.
.n

1

0.
.n

if
co

nd
 :

st
rin.

..

0.
.n

0.
.1

0.
.n

0.
.1

0.
.n

1

0.
.n

1

0.
.n

1

0.
.n

1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.n

0.
.1

0.
.n

0.
.1

0.
.n

0.
.1

0.
.n

0.
.1

0.
.1

0.
.n

0.
.1

0.
.n

0.
.1

10.
.1

1

0.
.1

10.
.1

1

0.
.1

1

0.
.1

1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.n

0.
.1

0.
.n

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.n

0.
.1

0.
.n

0.
.1

0.
.n

0.
.1

0.
.n

se
nt

en
ce

xm
l :

 la
ng

br
ea

k
siz

e
str

en
gh

t
tim

e

p
xm

l :
 la

ng

s
xm

l :
 la

ng
su

b
al

ia
s

pr
os

od
y

co
nt

ou
r

du
ra

tio
n

pi
tc

h
ra

ng
e

ra
te

vo
lu

m
e

em
ph

as
is

le
ve

l
vo

ice
xm

l :
 la

ng
ag

e
ge

nd
er

na
m

e
va

ria
nt

sa
y-

as
in

te
rp

re
t-a

s
de

ta
il

fo
rm

at

ph
on

em
e

ph al
ph

ab
et

lex
ico

n
ur

i
ty

pe

pr
om

pt
ba

rg
ein

 :
bo

ole
an

ba
rg

ein
ty

pe
 :

st
rin

g
co

nd
 :

st
rin

g
co

un
t :

 in
te

ge
r

tim
eo

ut
 :

int
eg

er
xm

l:la
ng

 :
st

rin
g

xm
l:b

as
e

: u
ri

0.
.n0.

.1

0.
.n0.

.1

1

0.
.1

1

0.
.1

10.
.n 10.
.n

0.
.1

0.
.n

0.
.1

0.
.n

0.
.*

0.
.1

0.
.*

0.
.1

0.
.*

0.
.*

0.
.*

0.
.1

0.
.*

0.
.1

0.
.*

0.
.*

0.
.*

0.
.1 0.
.*

0.
.1

0.
.*0.

.1

0.
.*0.

.1

0.
.*

0.
.1

0.
.*

0.
.1

0.
.*

0.
.1

0.
.*

0.
.1

0.
.*

0.
.1

0.
.*

0.
.1

0.
.*

0.
.1

0.
.*

0.
.1

0.
.*

0.
.1

0.
.*

0.
.1

Figure 7-6 The
VoiceXML 2.0

meta-model

Chapter 7 Reverse engineering of other markup-based UI

 170

Contrary to WML, VoiceXML and HTML are two completely different
languages, and rules cannot be combined. 24 element-derivations rules, two
general rules and two target-tree rules are needed for the reverse engineering of
this language. A partial list is given in chapter 4 and is completed by appendix C.
The meta-model of the VoiceXML 2.0 language is shown on figure 7-6, but it is a
lightened version, as some simplifications have been made (all the possible
containment relations are not shown in this version of the model) in order to
make it readable. The complete version can be found in appendix B. The root of
this meta-model is a vxml element, which can contain meta information (meta and
metadata), link, property, events handlers (+event handler), containers and input
(+container) or executable content (+executable content). The VoiceXML UI is
embedded in a node belonging to the containers class. This superclass (preceded
by a + symbol) groups logical containers (block, initial) and form-input elements
(field, record, …) as they share common attributes and properties. The event
handler superclass contains several predefined event (help, noinput…) so as user-
defined catchers (catch). Finally, executable content is the class for the rest of UI
components. It contains tags allowing modifying control flow (if, then, else,
return…) so as output nodes (prompt, audio). Executable contents and event
handlers are characterized by the fact that these elements can not embed another
element of the same class, contrary to containers.
The portion of interest of UsiXML for the reverse engineering of vocal UIs is
shown on figure 7-7.

vocalCio
isInterruptible : boolean
isOrderIndependent : boolean

vocalRelationship

lCompo...
ring
string

ic : String
ng

n
n
olean

cuiDialogControl
symbol : string

vocalTransition
transitionType : string
transitionEffect : string

vocalAdjacency
delayTime : integer

vocalOutput
volume : integer
intonation : string
pitch : integer

vocalInput
ellapsedTime : integer
grammar : string

vocalIndividualComponent
keyboardShortcut : string

vocalContainer

0..n1 0..n10..n

0..1

0..n

0..1

finalComponent
location : uri

vocalContainment

vocalForm vocalMenu vocalConfirmation

vocalFeedback vocalPrompt vocalMenuItem

VocalGroup VocalNavigation
NavigationType : string
isBridgeable : boolean

Figure 7-7 Portion of the CUI used to represent vocal UI

Chapter 7 Reverse engineering of other markup-based UI

 171

We can consider that there are three main categories of elements: containers,
individual components and relations. Containers are subdivided into four
categories, VocalForms (contains inputs), VocalMenu (contains a series of
menuItems to be selected), VocalConfirmation (contains a confirmation task
represented by a simple input) and VocalGroup (contains elements logically
related). VocalIndividualComponents are divided into three types: inputs, outputs
(prompt for simple outputs, items when the output belongs to a menu and
feedback to represent responses of the system) and navigation. A more complex
attribute exists for this last category, the isBridgeable attribute. When set to true, it
represents that the current document remains active when the navigation is
triggered. All these elements inherit the isInterruptible and isOrderIndependent
attributes. The first means that the user is able to interrupt a process by saying a
“hotword” (defined in browser). The second represent the mixed-initiative
concept. When set to true, the input fields can be filled at any moment during the
execution of the vocal UI. It can be applied to containers or to inputs. Finally,
there are four possible relations between vocal elements: adjacency to represent a
delay between two elements, containment, transition to represent navigation and
CUIDialogControl to specify some specific control flows such as the element A has
to be played before element B etc… Only a part of the figure 7-7 is used during
the derivation from VoiceXML to UsiXML. Three relations (vocalTransition,
CUIDialogControl and vocalAdjacency) are needed during the reverse engineering,
three containers (vocalGroup, vocalForm and vocalMenu) and five individual
components: vocalPrompts, vocalMenuItems, vocalInputs, vocalNavigation and
finalComponents. Most of the elements of a VoiceXML UI can be represented by
vocalGroups, vocalPrompts and vocalInputs.
The current specification of the UsiXML language puts the grammar of
components as an attribute of vocalInputs whereas in the VoiceXML language
grammars can be defined for several categories of elements (forms, fields …).
Some losses of information are due to this fact, but it has been minimized by
making inherit form grammars (i.e. applying to a set of components) to every
element contained in the form in the UsiXML specification.
Some representative examples of derivation rules are given in the rest of this
section.

The first example is about the derivation of a field node into a vocalInput in
UsiXML. When a field node is detected, two nodes are created in the target tree.
The first node is a vocalPrompt representing the prompt element contained in the

Chapter 7 Reverse engineering of other markup-based UI

 172

field element and the second node is a vocalInput corresponding to the field. The
prompt is first processed to follow the sequence question-answer (whereas tags are
specified in the inverse order in VoiceXML). There can be three sources for the
attribute grammar in the UsiXML specification:
1. The field element possesses a type attribute, and its value is copied in the
UsiXML’s grammar attribute
2. The field is embedded in a form that possesses a form-grammar, and in this case
the isOrderIndependent attribute is set to true and the form grammar is copied into
the vocalInput’s grammar.
3. The field possesses a grammar node (this case is not processed in this rules set
but in G38).
If the field element possesses two grammars (one defined in the element and the
other in the form), the element’s grammar (last grammar reference encountered) is
recorded.

G24 – field (vocalInput)

∀ w,x ∈ TV : w= field ٨ x = prompt ٨ x ∈ childNodes(w) ٨ x.textnode !=NULL ٨ (x.count
=NULL ٧ x.count=1)
→ Addnode (“vocalPrompt”, idprompt) where idprompt =NodeAmount(Tt)
∀ w,x ∈ TV : w= field ٨ x = prompt ٨ x ∈ childNodes(w) ٨ x.textnode !=NULL ٨ (x.count
=NULL ٧ x.count=1) → AddAttribute (idprompt, “id”, idprompt)
∀ w,x ∈ TV : w= field ٨ x = prompt ٨ x ∈ childNodes(w) ٨ x.textnode !=NULL ٨ (x.count
=NULL ٧ x.count=1) → AddAttribute (idaudio, “name”, idprompt)
∀ w,x ∈ TV : w= field ٨ x = prompt ٨ x ∈ childNodes(w) ٨ x.bargein != NULL ٨ x.bargein !=
false ٨ x.textnode !=NULL ٨ (x.count =NULL ٧ x.count=1) → AddAttribute (idprompt,
“isInterruptible”, “true”)
∀ w,x ∈ TV : w= field ٨ x = prompt ٨ x ∈ childNodes(w) ٨ x.textnode !=NULL ٨ (x.count
=NULL ٧ x.count=1) → AddAttribute (idprompt, “defaultContent”, x.textnode)

∀ x ∈ TV : x = field →Addnode (“vocalInput”, idfield) where idfield = NodeAmount(Tt)
∀ x ∈ TV : x = field → AddAttribute (idfield, “id”, idfield)
∀ x ∈ TV : x = field ٨ x.name !=NULL → AddAttribute (idfield, “name”, x.name)
∀ x ∈ TV : x = field ٨ x.name =NULL → AddAttribute (idfield, “name”, idfield)
∀ x ∈ TV : x = field ٨ x.type !=NULL → AddAttribute (idfield, “grammar”, x.type)
∀ x ∈ TV : x = field ٨ x.expr !=NULL → AddAttribute (idfield, “currentValue”, x.expr)
∀ x ∈ TV : x =field ٨ x.type =NULL , ∃ y,z ∈ TV : y= NearestInPath(form,x) ٨ z=grammar ٨ z ∈
childnodes(y) ٨ z.textnode != NULL ٨ grammar ∉childnodes(x) → AddAttribute (idfield,
“grammar”, z.textnode) ٨ AddAttribute (idfield, “isOrderIndependent”, “true”)
∀ x ∈ TV : x =field ٨ x.type =NULL, ∃ y,z ∈ TV : y= NearestInPath(form,x) ٨ z=grammar ٨ z ∈
childnodes(y) ٨ z.src != NULL ٨ grammar ∉childnodes(x)→ AddAttribute (idfield, “grammar”,
x.src) ٨ AddAttribute (idfield, “isOrderIndependent”, “true”)

Chapter 7 Reverse engineering of other markup-based UI

 173

The set of rules G34 transforms an audio element into a vocalPrompt. The audio
element is used for two purposes, either play an audio file (such as .wav) or to
render the value of variable. In the first case, the src attribute is used to set the
defaultContent of the vocalPrompt, in the second case the value (a variable’s name)
of the expr attribute is used to set the defaultContent.

G34 – audio (vocalPrompt)

∀ x ∈ TV : x = audio
→Addnode (“vocalPrompt”, idaudio) where idaudio = NodeAmount(Tt)
∀ x ∈ TV : x = audio → AddAttribute (idaudio, “id”, idaudio)
∀ x ∈ TV : x = audio → AddAttribute (idaudio, “name”, idaudio)
∀ x ∈ TV : x = audio ٨ x.expr ! = NULL → AddAttribute (idaudio, “defaultContent”, x.expr)
∀ x ∈ TV : x = audio ٨ x.src ! = NULL → AddAttribute (idaudio, “defaultContent”, x.src)
∀ x,p ∈ TV : x=audio ٨ p = prompt ٨ p.bargein= false ٨ IsInPath(p,x)=true → AddAttribute
(idaudio, “isInterruptible”, “false”)

In this last set, the link element is transformed into a vocalNavigation element. The
isBridgeable attribute is set to false directly as when such type of link is triggered,
the source document becomes inactive. If a dtmf value is specified (dtmf is the
keyboard’s number of the phone that will activate this element) in the source tree,
the keyboardShortcut takes that value. Finally, if the next attribute has a value, an
auditoryTransition is added from this element to the target of the next attribute (see
chapter 4 for the definition of AddAudiTr which is a group of AddNode
operations).

G33 – link (vocalNavigation)

∀ x ∈ TV : x = link →Addnode (“vocalNavigation”, idlink) where idlink =∑ node ∈ Tt

∀ x ∈ TV : x = link → AddAttribute (idlink, “id”, idlink)
∀ x ∈ TV : x = link → AddAttribute (idlink, “name”, idlink)
∀ x ∈ TV : x = link → AddAttribute (idlink, “NavigationType”, “link”)
∀ x ∈ TV : x = link → AddAttribute (idlink, “isBridgeable”, “false”)
∀ x ∈ TV : x = link ٨ x.expr !=NULL → AddAttribute (idlink, “currentValue”, x.expr)
∀ x ∈ TV : x = link ٨ x.dtmf !=NULL → AddAttribute (idlink, “keyboardShortcut”, x.dtmf)
∀ x ∈ TV : x = link ٨ x.next !=NULL → AddAudiTr (idlink , x.next)

7.2.4 Example

Two examples of reverse engineering of VoiceXML files to UsiXML at the CUI
level are given in appendix H-3.

Chapter 7 Reverse engineering of other markup-based UI

 174

7.3 Conclusion

The analysis of the two languages addressed almost all the reverse engineering
sub-problems identified in section 4.6. Indeed, the elements, attributes, and
hierarchy detection categories are covered totally by both approaches. The layout
for WML and sequential ordering for VoiceXML are also reverse engineered
completely. Multiple tree transformations have also been developed to address the
problem of UI distributed on multiple files. The dialog detection problem is
partially achieved, as only the navigation between UI has been taken into account.
Finally the category of retargeting operations has not been covered for the two
languages.

This chapter demonstrated that it is not only feasible to address the UI reverse
engineering problem for other platforms equipped with other UI languages (we
selected two cases with different platforms and different interaction modalities),
but several fundamental aspects of previously introduced concepts remain valid
and applicable, in particular the reference framework, the notation for expressing
the derivation rules, the user interface description language (here, UsiXML), and
the process based on families of sub-problems which have been found similar to
previous ones to some extent. Identifying these stable aspects is an important
conclusion if one desires to address a particular UI reverse engineering which has
not yet been addressed before, but which could be considered as comparable in
terms of the characteristics of the source language (said to be declarative).

If a new UI declarative language emerges which could be assimilated to those
which have been considered so far, it is expected that these fundamental aspects
will remain stable over time as they will be still applicable.

Chapter 8 Reverse engineering
of resource files

This eighth chapter is on the reverse engineering of another type of declarative UI,
Windows resource files. This chapter expands the scope of the proposed method, by
adding the reverse engineering of a non-markup language. However, Windows
resource file can be considered as declarative UI specifications, but the manner to
describe UIs is quite different from markup languages style. This study is based on
the bachelor thesis of Julien Marion [Mari05] who has conducted his work under our
supervision during the academic year 2004-2005. The student followed the method
elaborated in the previous chapters in order to achieve this reverse engineering study.
As for the previous chapter, this study is decomposed into four parts: the first
section contains a brief description of the language, the second section defines the
working hypothesis, the third is a description of representative derivation rules and a
meta-model of the language and the last one concludes this chapter. An example of
reverse engineering is also available in appendixes.

8.1 Windows resources files

Resources files are additional binary data of Windows applications which can be
stored directly in an application (.exe files) or in libraries (.dll files). They contain a
wide range of elements, including elements necessary for the UI. Resources can be
easily recovered thanks to decompilation programs (such as ResourceHacker
[Resh02] or Restorator [Rest06]) in order to apply quick maintenance or minor

Chapter 8 Reverse engineering of resource files

176

changes. A Windows resource file contains several different components that are not
directly needed in the functional core of an application, such as accelerator tables,
bitmaps, cursors, menus, dialog boxes, icons, string tables and version information…
Resource files (.res) are compiled resource script files (.rc) which are a textual
specification of the resources.

Figure 8-1 The envisioned reengineering process

The envisioned reengineering process starts by extracting the resource script file
from a .dll or .exe file thanks to a decompiler (for example Restorator on figure 8-1).
Once the .rc files have been extracted and saved to a local directory, the reverse
engineering process can be launched. The process can be divided into two steps: the
scan and the process phase. In the scan phase, the relevant and available resource
scripts are detected, i.e. only resources in relation to the UI. Then the relevant .rc
files are selected to be analyzed and the reverse engineering can be launched by
applying derivation rules described in section 8.3. After the reverse engineering, the
CUI model expressed in UsiXML can be edited in GrafiXML and then used to
generate new UI code in HTML, XHTML, XUL or Java.

The portion of interest of resource scripts is reduced to dialog and menu
components, as other elements are graphical components not useful for the reverse
engineering of an abstract specification. An example of resource script is shown on
fig 8-2.

Chapter 8 Reverse engineering of resource files

177

1552 DIALOGEX 0, 0, 370, 237
STYLE DS_MODALFRAME | DS_CONTEXTHELP | WS_POPUP | WS_VISIBLE | WS_CLIPCHILDREN | WS_CAPTION | WS_SYSMENU
CAPTION "Open"
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
FONT 8, "MS Shell Dlg"
{ CONTROL "Look &in :", 1091, STATIC, SS_LEFT | SS_NOTIFY | WS_CHILD | WS_VISIBLE | WS_GROUP, 4, 7, 57, 8,
0x00001000
 CONTROL "", 1137, COMBOBOX, CBS_DROPDOWNLIST|CBS_OWNERDRAWFIXED|CBS_HASSTRINGS|WS_CHILD|
WS_VISIBLE|WS_VSCROLL |WS_TABSTOP, 66, 4, 174, 300
 CONTROL "", 1088, STATIC, SS_LEFT | WS_CHILD, 248, 4, 80, 14
* CONTROL "", 1184, "ToolbarWindow32", 0x50012B4C, 4, 22, 58, 208 , 0x00000200
 CONTROL "", 1120, LISTBOX, LBS_NOTIFY | LBS_NOINTEGRALHEIGHT | LBS_MULTICOLUMN | WS_CHILD | WS_BORDER |

WS_HSCROLL, 66, 22, 300, 156
 CONTROL "File &name :", 1090, STATIC, SS_LEFT | SS_NOTIFY | WS_CHILD | WS_VISIBLE | WS_GROUP, 67, 187, 71, 8
 CONTROL "", 1152, EDIT, ES_LEFT | ES_AUTOHSCROLL | WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP, 144,

184, 164, 12
 CONTROL "", 1148, "ComboBoxEx32", 0x50210042, 144, 184, 164, 150
 CONTROL "Files of &type :", 1089, STATIC, SS_LEFT | SS_NOTIFY | WS_CHILD | WS_VISIBLE | WS_GROUP, 67, 203, 71, 8
 CONTROL "", 1136, COMBOBOX, CBS_DROPDOWNLIST | WS_CHILD | WS_VISIBLE | WS_VSCROLL | WS_TABSTOP, 144,

201, 164, 100
 CONTROL "Open as &read-only", 1040, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 144, 217,

160, 8
 CONTROL "&Open", 1, BUTTON, BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 316, 184,

50, 14
 CONTROL "Cancel", 2, BUTTON, BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 316, 200, 50,

14 }

Figure 8-2 Resource script of a dialog box

The upper left part represents the dialog box that will be decompiled, the upper right
part represents the view of this dialog box in a decompilation tool and the bottom
part is the textual specification for this dialog box.

The reverse engineering of UI abstract specifications based on resource files can be
characterized by five major difficulties:
1. Resource script files do not always contain the entirety of the attributes of
interaction objects. Some attributes are defined at runtime and it is impossible to
recover this information in a static analysis of the resource script. Moreover, values
of some attributes are sometimes modified before the first display of a UI, and the
specified values are never used during the execution of the application. Thus the
produced model is a wrong specification of what is really displayed to the user.

Chapter 8 Reverse engineering of resource files

178

Again, it is impossible to detect those attributes, and the reverse engineering will only
be based on the known/available information.
2. Some values are also modified dynamically (e.g. change of color) in the main
program’s code, but as these are specified in the functional core, these aspects can
not be reverse engineered and are simply ignored.
3. The use of shortcut notations in the specifications, where some attributes or
objects are combination of other “basic” attributes/objects. This implies knowledge
of all the attributes or objects defined by these “super-elements” and a constitution
of a “dictionary” of shortcut notations. An example of this is DEFPUSHBUTTON"&Find

Next",1,205,5,65,14,WS_GROUP which is equivalent to CONTROL"&Find Next",1,BUTTON,

BS_DEFPUSHBUTTON|WS_CHILD|WS_VISIBLE| WS_GROUP|WS_TABSTOP,205,5,65,14. As shown, the
DEFPUSHBUTTON possesses 4 default attributes compared to the classical button

4. Resource files also allow using hexadecimal shortcut notation. A hexadecimal
number is specified to represent a unique combination of attributes. For example, on
figure 8-1 in the row of the fourth control, the number 0x50012B4C is equivalent to
the styles WS_CHILD, WS_VISIBLE, WS_TABSTOP, CCS_NORESIZE, CCS_
NOPARENTALIGN, CCS_NODIVIDER, TBSTYLE_TOOLTIPS, TBSTYLE_ WRAPABLE,
TBSTYLE_CUSTOMERASE and TBSTYLE_FLAT, and the number 200 is equivalent
to the extended style WS_EX_CLIENTEDGE. For the extended combo box (row of
8th control), the number 0x50210042 is equivalent to WS_CHILD, WS_VISIBLE,
WS_VSCROLL, WS_TABSTOP, CBS_DROPDOWN and CBS_AUTOHSCROLL.
This other type of shortcut notation implies decoding the hexadecimal number to
find out which attributes are defined thanks to this number.
5. The layout of components is described thanks to absolute positions and
dimensions. Moreover, these positions are not described thanks to pixels, but are
based on a measure proportional to characters size. They can be converted into pixel
thanks to an approximation (see section 8.3). Another difficulty of these absolute
positions is that elements are often overlapping, for example a label having a width
equal to window’s width could be specified, accompanied by an overlapping
checkbox on the same vertical position but with different horizontal position. A final
difficulty is that elements dimensions are not always displayed according to the
specified size, e.g. size of drop down list boxes is equal to the size of displayed items
when the list is “opened” during execution. All these factors imply a very complex
solution to divide a Windows UI into boxes.

These difficulties can be categorized according to the reverse engineering dimensions
presented in section 4.6. The difficulties number 1, 2, 3 and 4 are classified in the

Chapter 8 Reverse engineering of resource files

179

attribute detection problem. But difficulty n°2 and 3 can also be categorized into two
other dimensions, n°2 in the dialog recovery problem and n°3 for the element
detection issue. The fifth difficulty belongs to the layout recovery aspect, and also to
the hierarchy detection problem, as position of elements have to be analyzed to
detect if an element is embedded into another.

8.2 Working hypothesis

The abstraction level chosen for this reverse engineering is the concrete UI model
recovered thanks to a static analysis. However, the method presented here could be
easily extended to the abstract UI model. The reverse engineering is only based on
resource files, i.e. no other section of code of the application is analyzed. The scope
of the analysis is thus limited to the presentational aspects of resource files and the
dialog is thus not analyzed, as the transitions between dialog boxes and
transformations or modifications of the UI are managed in the functional core. Only
transitions starting from menus could be reverse engineered, but it has been chosen
to ignore the dialog completely.

The reverse engineering of the layout of the UI is also not recovered. Coordinates of
UI elements are given in absolute positions and its reverse engineering would require
a complex algorithm to recover the box composition of an UI. This algorithm should
compare vertical and horizontal positions, calculate the area of objects, and then
group them by using a smallest-distance criterion. However, there would be no
guarantee that these results would be correct, and a human analysis/correction would
be required after the reverse engineering process (see section 8.1 about layout
detection problems).

Losses due to the reverse engineering
In addition to the dialog and layout that are not analyzed, some other type of
information is also lost during the reverse engineering process. The entire UI is
reverse engineered without colors, as colors in Windows resource files are often
defined at the system level (i.e. the user defines the colors of fonts, backgrounds
etc…) for all the dialog boxes used in the system.
Another type of losses is that Windows UI allows to be defined very precisely, as
almost every graphical aspect can be customized, and this implies a high number of
attributes. Obviously, all these attributes are not mapped in UsiXML, and therefore
several graphical details are lost during the reverse engineering process (for example
3D style – sunk edge buttons).

Chapter 8 Reverse engineering of resource files

180

8.3 Derivation rules and resource meta-model

Following the method developed in previous chapters, a meta-model has been
defined to represent resource files structure in a UML class diagram. This meta-
model is in fact a model based on a logical representation of resource files, as names
and attributes of resource files can be relatively cryptic (e.g. WS_EX_DLGMODAL
FRAME has been replaced by dialogModalFrame in the window entity).

MENUBAR
MenuID
Language : String
Sublanguage : String

MENUITEM
ItemID
Text : String
Checked : Boolean
State : {enabled,disabled,grayed}
Posit ion : Integer

0..*

0..1

0..*

0..1

SEPARATOR
Position : Integer

POPUPMENU
Text : String
State : {enabled,disabled,grayed}
Position : Integer

0..*

1

0..*

1

0..*

0..1

0..*

0..1

0..*

1

0..*

1

0..1

0..*

0..1

0..*

Figure 8-3 Menu meta-model

Another advantage of using this intermediary step is that attributes of elements have
a significance following their position in the code, e.g. the five first integer numbers
after the name (or last numbers of the line) define the id, vertical position,
horizontal position, width and height of the object. In the logical representation,
these values are copied into named attributes, so that they can be used in the
derivations rules. It also allows converting hexadecimal numbers (see section 8.1) in
attribute names. Using this intermediate representation facilitates and clarifies the
reading of a resource file. The two meta-models [Mari05] representing menus (fig. 8-
3) and windows (appendix B) are thus based on this logical representation.

Chapter 8 Reverse engineering of resource files

181

The first model about menus contains only four types of elements: a menubar
containing the menu specification, popupmenus, menu items and separators. The
subject of the second model (appendix B) is the window/dialog box meta-model
representation. This model contains almost all the “classic” interaction that we can
find in windows application, such as button, combo boxes, check boxes, labels etc…

Derivation rules were designed to represent transformations from a tree structure to
another. Functions and basic operation are specifically expressed to accommodate
such type of structure. But, resource files code is not represented in a tree as for
markup languages and some transformation have to be made before the application
of derivation rules. Figure 8-4 represents a typical menu and its corresponding
resource script.

103 MENU
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
{
POPUP "&File" {...}
POPUP "&Edit" {...}
POPUP "&View"
{
 MENUITEM "Lar&ge Icons\tCtrl+1", 410
 MENUITEM "S&mall Icons\tCtrl+2", 411
 MENUITEM "&List\tCtrl+3", 412
 MENUITEM "&Details\tCtrl+4", 413, CHECKED
 MENUITEM SEPARATOR
 MENUITEM "Name\tCtrl+F3", 420
 MENUITEM "Type\tCtrl+F4", 421
 MENUITEM "Date\tCtrl+F5", 422
 MENUITEM "Size\tCtrl+F6", 423
 MENUITEM "Unsorted\tCtrl+F7", 424
 MENUITEM SEPARATOR
 MENUITEM "&2 Panels\tF9", 450
 POPUP "Toolbars"
 {
 MENUITEM "Archive Toolbar", 461
 MENUITEM "Standard Toolbar", 460
 MENUITEM SEPARATOR
 MENUITEM "Large Buttons", 462
 MENUITEM "Show Buttons Text", 463
 }
 MENUITEM SEPARATOR
 MENUITEM "Open Root Folder\t\\", 430
 MENUITEM "Up One Level\tBackspace", 431
 MENUITEM "Folders History...\tAlt+F12", 432
 MENUITEM SEPARATOR
 MENUITEM "&Refresh\tCtrl+R", 440
}
POPUP "F&avorites" {...}
POPUP "&Tools" {...}
POPUP "&Help" {...}
}

Figure 8-4 Example of a menu in a resource script

As one can see, a hierarchical structure can still be derived from the code. The
containment relation is represented thanks to brackets ({ }) or the “begin” and “end”
keywords instead of an opening and closing markup as for HTML, WML and
VoiceXML. The containment between two elements in a UI is not always shown in

Chapter 8 Reverse engineering of resource files

182

this manner (see section 8.1), but it can already give information about some
containment relations. Each line of code represents a node, and also an element of
the UI, that can be the subject of the derivations rules. An exception to this rule is
that entities following a menu or a dialog (such as the language on fig. 8-4) have to be
considered as attributes of the menu or dialog. Once these transformations have been
applied, the derivation rules can be used as in the previous chapters.

The entirety of the derivation rules has not been specified in this thesis, but this
section shows the feasibility of the specification of derivation rules for resource files.
The remainder of this section contains several examples of rules.

∀ x ∈ TR : x = DIALOG→Addnode (“DialogBox”, iddgbox) where iddgbox = NodeAmount(Tt)
∀ x ∈ TR : x = DIALOG →AddAttribute (iddgbox, “id”, iddgbox)
∀ x ∈ TR : x = DIALOG ٨ x.dlgId !=NULL→AddAttribute (iddgbox, “name”, x.dlgId)
∀ x ∈ TR : x = DIALOG ٨ x.dlgId =NULL →AddAttribute (iddgbox, “name”, iddgbox)
∀ x ∈ TR : x = DIALOG →AddAttribute (iddgbox, “isVisible”, “true”)
∀ x ∈ TR : x = DIALOG ٨ x.disabled !=true →AddAttribute (iddgbox, “isEnabled”, “true”)
∀ x ∈ TR : x = DIALOG ٨ x.disabled =true →AddAttribute (iddgbox, “isEnabled”, “false”)
∀ x ∈ TR : x = DIALOG ٨ x.height !=NULL ٨ x.fontSize !=NULL
→AddAttribute (iddgbox, “width”, ((x.width x 3304)/(275 x x.fontSize)) + 10))
∀ x ∈ TR : x = DIALOG ٨ x.width !=NULL ٨ x.fontSize !=NULL
→AddAttribute (iddgbox, “height”, ((x.height x 274)/(21 x x.fontSize)) +35))
∀ x ∈ TR : x = DIALOG ٨ x.caption =true →AddAttribute (iddgbox, “defaultContent”, x.caption)
∀ x ∈ TR : x = DIALOG ٨ x.topMost=true →AddAttribute (iddgbox, “isAlwaysOnTop”, x.topMost)
∀ x ∈ TR : x = DIALOG
→ ConstrBox (BoxId, “vertical”) ٨ AddArc(iddgbox, BoxId) where BoxId = NodeAmount(Tt)

This first example derives a dialog element into a dialogBox in the target tree. If the
disabled attribute is set to false, the isEnabled attribute is set to true in the target tree.
As sizes of dialog boxes in Windows is proportional to the width and height attribute
and the font size, a relatively complex operation is done to recover the size in pixels
(e.g. height is calculated by the following formula (274 x height/21 x fontsize)+35),
which is the unit used in the UsiXML model. The caption and topmost attributes
define the defaultContent and isAlwayOnTop attributes respectively in the UsiXML
tree. Finally, a vertical box is created and appended to the dialogBox node in the
target tree. This box will contain the rest of the UI (as for rule set G1 for windows in
HTML/WML).

Chapter 8 Reverse engineering of resource files

183

∀ x ∈ TR : x = COMBOBOX ٨ x.type !=“simple”
→Addnode (“ComboBox”, idcombox) where idcombox = NodeAmount(Tt)
∀ x ∈ TR : x = COMBOBOX ٨ x.type !=“simple”→AddAttribute (idcombox, “id”, idcombox)
∀ x ∈ TR : x = COMBOBOX ٨ x.CtrlId != NULL ٨ x.type !=“simple”
→ AddAttribute (idcombox, “name”, x.CtrlId)
∀ x ∈ TR : x = COMBOBOX ٨ x.CtrlId = NULL ٨ x.type !=“simple”
→ AddAttribute (idcombox, “name”, idcombox)
∀ x ∈ TR : x = COMBOBOX ٨ x.visible=true ٨ x.type !=“simple”
→ AddAttribute (idcombox, “isVisible”, “true”)
∀ x ∈ TR : x = COMBOBOX ٨ x.visible=false ٨ x.type !=“simple”
→ AddAttribute (idcombox, “isVisible”, “false”)
∀ x ∈ TR : x = COMBOBOX ٨ x.disabled !=true ٨ x.type !=“simple”
→ AddAttribute (idcombox, “isEnabled”, “true”)
∀ x ∈ TR : x = COMBOBOX ٨ x.disabled =true ٨ x.type !=“simple”
→ AddAttribute (idcombox, “isEnabled”, “false”)
∀ x ∈ TR : x =COMBOBOX ٨ parentNode(x).height != NULL ٨ parentNode(x).fontSize != NULL ٨
x.type !=“simple” → AddAttribute (idcombox,“maxLineVisible”, parentNode(x).height / ((11x
parentNode(x). Fontsize/8)-1))
∀ x ∈ TR : x = COMBOBOX ٨ x.type =“dropdown”
→ AddAttribute (idcombox, “isEditable”, “true”)
∀ x ∈ TR : x = COMBOBOX ٨ x.type=“dropDownList”
→ AddAttribute (idcombox, “isEditable”, “false”)

The second example is about the derivation of combobox into a comboBox element in
the CUI model. If the type attribute of the combobox is not simple, the derivation is
applied. Otherwise, a derivation rule of the comboBox into a listBox is processed.
Following the value of the type attribute, either the isEditable is set to true if the type
equals dropdown or set to false if it equals dropdownlist. If the disabled attribute is set
to true in the source tree, then the isEnabled attribute is set to false in the CUI model.
As for the previous example, the number of visible lines (maxLineVisible) is defined
following the fontsize and the height of the dialog containing the combobox. If the
combobox has the type attribute different from simple, then the number of visible
lines is calculated by dividing height of the dialogbox by x where x is equal to 11/8
multiplied by the fontsize (defined in the dialogbox element)and by subtracting 1 to
this result

∀ x ∈ TR : x = RADIOBUTTON ٨ x.pushLike = false ٨ x.textnode !=NULL
→ ConstrBox (BoxId, “horizontal”) where BoxId = NodeAmount(Tt)
∀ x ∈ TR : x = RADIOBUTTON ٨ x.pushLike = false
→Addnode(“radioButton”, radioid) where radioid=NodeAmount(Tt)٨AddArc(BoxId, radioid)
∀ x ∈ TR : x = RADIOBUTTON ٨ x.pushLike = false →AddAttribute (radioid, “id”, radioid)
∀ x ∈ TR : x = RADIOBUTTON ٨ x.pushLike = false ٨ x.CtrlId !=NULL
→AddAttribute (radioid, “name”, CtrlId)

Chapter 8 Reverse engineering of resource files

184

∀ x ∈ TR : x = RADIOBUTTON ٨ x.pushLike = false ٨ x.CtrlId =NULL
→AddAttribute (radioid, “name”, radioid)
∀ x ∈ TR : x = RADIOBUTTON ٨ x.pushLike = false ٨ withoutAmper(x.text)!=x.text
→AddAttribute (radioid, “defaultMnemonic”, CharAfterAmper(x.text))
∀ x ∈ TR : x = RADIOBUTTON ٨ x.pushLike = false ٨ x.Visible = true
→AddAttribute (radioid, “isVisible”, “true”)
∀ x ∈ TR : x = RADIOBUTTON ٨ x.pushLike = false ٨ x.Visible = false
→AddAttribute (radioid, “isVisible”, “false”)
∀ x ∈ TR : x = RADIOBUTTON ٨ x.pushLike = false ٨ x.disabled !=true
→AddAttribute (radioid, “isEnabled”, “true”)
∀ x ∈ TR : x = RADIOBUTTON ٨ x.pushLike = false ٨ x.disabled =true
→AddAttribute (radioid, “isEnabled”, “false”)
∀ x ∈ TR : x = RADIOBUTTON ٨ x.pushLike = false ٨ x.textnode !=NULL
→ Addnode (“textComponent”, labelid) where labelid = NodeAmount(Tt) ٨ AddAttribute
(labelid, “isEnabled”, “true”) ٨ AddAttribute (labelid, “isVisible”, “true”) ٨ AddAttribute
(labelid, “defaultContent”, withoutAmper(x.textnode)) ٨ AddArc(BoxId, labelid)

This last example shows the rules needed to derive radioButtons. If the element is a
radioButton with its pushlike attribute set to false, then a horizontal box and a
radioButton is created with their id attribute set to a computed value. The box is
created to put the radiobutton and its descriptive label together. The name attribute in
the target tree takes the value of the CtrlId from the source tree (CtrlId corresponds to
the first integer of the line).
The next rule uses a string parsing method, as CharAfterAmper() returns the
character following an ampersand symbol in a string. If the result of this function is
not null, the defaultMnemonic attribute in the CUI model takes the value of its return.
Finally, following the value of the source’s attribute disabled and visible, the values of
the isEnabled and isVisible attributes from the target tree are defined thanks the four
last rules. Input elements are often specified with a descriptive label, which is derived
into a separate textComponent. The defaultContent attribute of the textComponent is
specified by applying the withoutAmp() function to the textnode of the radioButton.
This function is a string parsing method allowing removing ampersands from a given
text. Other attributes of the textComponent are generated automatically. Finally an arc
is added between the parent horizontal box and the textComponent.

A case study for the reverse engineering of Windows resource file is given in
appendix H-4.

Chapter 8 Reverse engineering of resource files

185

8.4 Conclusion

By widening the scope of the approach to non-markup languages, this chapter
demonstrated the feasibility of the reverse engineering of Windows resource files
according to the method presented in this thesis. The notation for derivation rules is
still valid for this kind of UI language, after some light modification of the source
code in order to obtain a coherent tree structure. Other concepts such as the
reference framework and the UsiXML language also remain valid in this study.
The different subcategories of the reverse engineering problem (see section 4.6) are
identical to markup languages. However, some of them are not solved at the
moment: elements and attributes are covered in the proposed approach, but not the
hierarchy and layout detection, as the solution for these categories would require a
very complex algorithm out of scope of this research. Dialog recuperation is not
covered following the working hypotheses. The multiple trees and retargeting
operations categories have not been completed in this approach.
In conclusion, the research focused on the analysis of a new type of declarative UI
languages and proved the applicability of the approach to Windows resources scripts.
This process could also be generalized to other types of declarative UI. Similar
languages (e.g. Delphi or Visual Basic forms) could thus be analyzed according to the
current approach, as the basic concepts elaborated in this thesis would remain the
same.
The reverse engineering of Windows resources files allowed us to highlight some
limitations of a static analysis. The quality of this type of reverse engineering is
dependent on the source file: if the source file is rich in information, the resulting
model will be of a high quality, but this technique does not allow obtaining a more
expressive output than the input of the process.

Figure 8-5 Limitation of a static analysis

Chapter 8 Reverse engineering of resource files

186

As stated in section 8.1, some parts of the UI can be described in the functional core,
and thus a static analysis is not able to reach these specifications. Figure 8-5
illustrates graphically this limitation: the original UI as presented to the user is shown
on the left hand side and the UI as recovered by a resource decompilator on the right
hand side. This second UI is the input of the reverse engineering process. As one can
see, some incoherence exists with the original UI in this decompiled resource file:
elements are not present in the resource, or specified as another type, labels of
buttons are not identical, some elements are specified but are never presented to the
user etc… This shows clearly a shortcoming of this approach. This could be
overcome thanks to a dynamic analysis - such as in visual TAP (see chapter 3) which
analyzes the video signal and thus the UI as displayed to the user- that would
complete or correct the UI specification at run-time.

Chapter 9 Validation

This chapter contains the validation of the proposed approach, i.e. concepts, method
and tools. This chapter is divided into four parts, the first about the internal
validation (theoretical validation), the second for the external validation (empirical
validation) and the third dedicated to a comparison with the approaches of the state
of the art (chapter 3) and more particularly with ADAPT, a transcoding approach.
The last section concludes this chapter. The objective of this chapter is to validate
the step of conceptualization and operationalization to identify what material in the
process could be generalized [Long96].
The scope of the validation is thus the complete approach, which can be
decomposed into three subjects:

- for the conceptual point of view: the CUI and AUI models recovered. The
validation has been done for both levels, AUI and CUI, but the CUI level is
mostly analyzed and this for two reasons: first it is the most frequently used
and useful level for a reverse engineering, and secondly, due to its structure and
complexity, the CUI level is more interesting to analyze than the AUI level
which is a very coarse description of the UI.

- for the method: the combination of the flexible reverse engineering and
forward engineering to achieve a complete reengineering. This point can be
subdivided into two subjects, the flexibility of the reverse engineering, by using

Chapter 9 Validation

188

different reverse engineering configuration and the complete reengineering by
reusing models produced thanks to the approach with different forward
engineering tools.

- for the tool implementing the approach: ReversiXML and the UsiXML
language. The implementation of ReversiXML was paused on version 1.1 and
this version of the tool was based on UsiXML 1.4.6. Therefore some
differences exist with the current versions of AUI and CUI models (the most
recent published version of UsiXML is 1.6.4).

9.1 Internal validation

This section addresses the internal validation (i.e. theoretical validation of the
approach) with respect to four criteria: the coverage, coherence, correction and
performance, each criteria being respectively addressed in the next subsections.
These criteria have been chosen to evaluate the objectives of generality,
predictability, flexibility and controllability for the approach presented in this thesis
(see section 9.1.5).

9.1.1 Coverage of source language

This section analyses the coverage - of the HTML 4.0 language by the approach and
tool described in this thesis. Coverage can be divided into two subjects, the first
about the coverage of tags/elements, the second about the coverage of concepts.

Elements coverage. The language is composed of 95 different tags and most of
them are recognized and reverse engineered. But some of them are not analyzed, and
the list of uncovered tags is given below:
- Hr (displays a horizontal rule) is not recovered as there is no element in UsiXML
1.4.6 to define separators in the UI. This observation led to a modification of the
language, and separators are now part of the version 1.6.4 of UsiXML (published in
March 2006).
- Isindex (displays a textbox) is not recovered as the tag is deprecated (W3C
recommend the usage of input instead of this tag, however, it is still specified in the
HTML 4.0 DTD to insure backward compatibility).
- Col and colgroup (defines properties of columns) is not reverse engineered. They
usually contain information relative to the size of a column, the alignment of its
content, etc. They are not reverse engineered because the benefits of this would be
marginal compared to the effort to recover this information. Indeed, it would be

Chapter 9 Validation

189

required to make an abstract representation of the table to find out which cells are
targeted by these two nodes, as colspan attributes may merge several columns and
thus change the number of cells per row. Moreover, these tags are rarely used (it was
not found in the 29 pages reverse engineered in this chapter) and the information in
these nodes is not of first importance in the UI specification (i.e. it does not change
composition or behaviour of the UI).
- Script (element containing code that not belongs to the HTML language) is ignored
following the working hypothesis (see section 6.2).
- Thead, tbody and tfoot (defines part of a table) are not recovered as is it impossible
to differentiate cells in UsiXML. This observation also led to a recommendation for
the next version of the language. Moreover, there is no visual distinction in browsers
for these three tags and thus the fact to ignore these nodes does not change anything.
- Link, meta, !Doctype are not analyzed as these tags do not represent part of the UI.
Link defines the semantic relation between a document and another, such as a
copyright, glossary or chapter link, and is not recovered as this kind of semantic
information can not be recorded in UsiXML CUI or AUI models, meta contains
information about the Web page such as keyword, author etc and !doctype defines
the version of the DTD used in the current file.
- Noframes and noscripts (defines the error message to be displayed in browsers that
are not able to process frames or scripts) are not recovered, as this conditional
behaviour can not be expressed easily in UsiXML. It could be specified in UsiXML,
but conditions are extremely complex and verbose in the language, and are thus not
generated as is it would lengthen models significantly for minor benefits.

There can be three main reasons for ignoring an HTML element: either they can not
be represented in a UsiXML model (there is not correspondent category in the CUI
or AUI model) or it has been declared in the working hypothesis that this type of
element will not be analyzed in this research. Another reason is that the tag does not
represent a part of the UI. The only tags that do not belong to these categories are
the col and colgroups tags for which the cost of reverse engineering them is extremely
high compared to the benefits of the information recovered. 13 elements out of 95
are not analyzed in the approach, thus the coverage is of 86.3 % of the totality of
tags. After the subtraction the tags not representing elements of the UI from this
amount, having no corresponding representation in UsiXML CUI and AUI models,
or not modifying the UI presentation and behaviour, we fall down to 6 elements, and
thus the coverage of the language increases to 93.2% of the HTML language.
Moreover, the portion of the language effectively reverse engineered represents the

Chapter 9 Validation

190

vast majority of tags used in HTML code, as these elements are the most important,
frequent, and useful components of the language. If we remove the script element
from the list, more than 99% of the content of the HTML code analyzed in the
various investigations of this chapter is reverse engineered.

Coverage of conceptual design. Coverage of the conceptual design is about the
recovery of design options or design decisions that have been implemented in the
HTML code during the creation of the Website. The recovery of these aspects is
impossible without any human intervention, as an automated process could not
resolve ambiguities inherent to this kind of problem, and would be hard to cover in
an assisted way. Some researches tried to reverse engineer the conceptual design in
an assisted way, such as in the Pima project (see chapter 3). In this approach, layout
and heuristics are used to deduce semantic structure of UI, and it is thus possible to
recover design decision thanks to this approach. As this type of reverse engineering
is not an objective of our approach, it has not been achieved in this thesis.

9.1.2 Coherence

This section is about the coherence of the application of the rules. Coherence is
defined by a logical, orderly and consistent application of rules, i.e. that rules
produces uniform results. In the proposed approach, a rule applied for one type of
element of the source file will always produce the same output in the target model
(with a fixed set of reverse engineering options). Conversely, one element belonging
to the target model is always the results from applying one and only one derivation
rule on one precise type of element of the source file. In some cases, one element of
the UsiXML specification can be the result of several different tags (e.g. buttons are
generated in the CUI model when a button tag or when an input node with its type
attribute set to button is detected), but in this case the possible source elements
belong always to a well defined domain of derivation rules. As an example, the
application of rules for checkboxes is shown below, by applying the rule set G13:

<input type=“checkbox” name=“cb1” disabled>
is derived thanks to the derivation rules of G13
∀ x ∈ TH : x = input ٨ x.type=checkbox→Addnode (“checkbox”, idcheck) where idcheck =∑
node ∈ Tt
∀ x ∈ TH : x = input ٨ x.type=checkbox→AddAttribute (idcheck, “id”, idcheck)
∀ x ∈ TH : x = input ٨ x.type=checkbox→AddAttribute (idcheck, “name”, idcheck)
∀ x ∈ TH : x = input ٨ x.type=checkbox→AddAttribute (idcheck, “isVisible”, “true”)
∀ x ∈ TH : x = input ٨ x.type=checkbox ٨ (x.disabled=false ٧ x.disabled=NULL)

Chapter 9 Validation

191

 →AddAttribute (idcheck, “isEnabled”, “true”)
∀ x ∈ TH : x =input ٨ x.type=checkbox ٨ x.checked!=NULL→AddAttribute(idcheck, “defaultState”,

“checked”)

into
<checkbox name=“cb1” id=“cb1” isVisible=“true” isEnabled=“false”
defaultState =“unchecked”>

An input node with its type attribute set to checkbox will always produce the same
output, a checkbox element in the UsiXML specification. Moreover, the combination
of attributes will also produce the same set of attributes in the UsiXML code.
Conversely, a checkbox element belonging to the UsiXML specification produced by
ReversiXML is always the abstraction of an input node with its type attribute set to
checkbox. This reasoning could be generalized similarly by analogy to all others rules
sets implemented in ReversiXML, consequently the entire rules set could be
considered as coherent since their application is coherent.

9.1.3 Performance

This section contains an analysis of the performance of the tool at the CUI level. For
this experiment, the tool has been tested on 20 different Web pages of various sizes
and contents. The selected pages are from different types, such as hotel booking
systems (lodging.com, fhr), flight arrivals schedules (Brussels airport), conference
(CHI, WCRE, LAWEB) and universities homepages (UCL, Valenciennes,…) or
information (CNN, Euronews) and newspaper Websites (le soir). This investigation
has been achieved by using the on-line version of the tool, located on the UCL Web
server. Table 9-1 summarizes the results of the performance analysis. The first
column represents the page identification and its corresponding URL can be found
in appendix F. The second column contains the data relative to the original HTML
page, and is itself decomposed into 2 columns, one for the size (in ko) of pages and
the second for the amount of nodes. The amount of HTML nodes corresponds
approximately to the number of interaction objects contained in the Web page, and
is also an indicator of the length of the analysis (as size in ko is not always the best
indicator, the page may contain several comments or scripts).
The second column UsiXML (1) contains data relative to the produced model. This
first reverse engineering has been processed without configuration file, i.e. by
capturing the maximum of information of the original HTML page. This column is
subdivided into three columns, the size (in ko) of the UsiXML CUI model, the
number of boxes used to describe the layout of the UI and the time required to

Chapter 9 Validation

192

perform this analysis (in seconds). The third column UsiXML (2) represents data
about a reverse engineering applied by using a configuration file designed for mobile
platforms (without images, sound, color and external components). This column is
divided into two other columns, the first representing the size (in ko) of the
generated model and the second containing the time needed to apply this “lightened”
reverse engineering.

Original Web Page UsiXML (1) UsiXML(2)
N° Size (ko) number

of nodes
Size
(ko)

Number
of boxes

Time
(s)

Size
(ko)

Time
(s)

1 7.83 140 25.0 131 1.86 19.7 1.65
2 3.83 71 16.1 56 2.25 12.8 1.31
3 14.3 143 27.4 81 2.21 20.8 1.96
4 30.5 292 55.1 234 7.34 45.9 6.13
5 74.3 729 145.4 776 18.32 107.92 14.30
6 13.1 187 35.8 184 4.72 24.6 3.18
7 8.22 128 25.5 78 2.18 16.9 1.29
8 4.29 89 11.5 59 1.01 8.49 0.83
9 19.7 336 53.0 307 6.23 42.1 5.58
10 79.9 898 177.1 728 22.59 119.8 18.48
11 5.29 82 19.3 61 1.48 15.1 1.45
12 44.4 540 102.9 416 16.49 81.8 15.41
13 3.81 69 7.11 39 0.95 5.4 0.82
14 25.0 165 26.2 133 3.30 12.9 1.49
15 45.3 575 76.9 183 9.72 68.8 9.52
16 33.9 449 75.3 229 9.02 50.7 7.09
17 7.48 102 17.9 85 1.81 7.2 1.14
18 10.7 138 30.0 120 5.79 24.1 3.74
19 19.4 253 48.1 154 4.69 46.1 4.22
20 67.7 516 105.7 414 11.8 75.6 9.59
Av. 25.95 295.11 54.06 223.41 6.69 40.33 5.46

Table 9-1 Performance analysis

The last row of table 9-1 contains the average values for each parameter. The average
size of reverse engineered Web pages is 25.95 ko and the average size of the CUI
models is 54.06 ko, which is about 208 % of the size of the original HTML files. The
average time to download the Web page, perform the reverse engineering, and save

Chapter 9 Validation

193

the results on the server is 6.69 seconds. This time does not exceed the system
response time recommended by cognitive psychology for complex tasks. This allows
applying the reengineering at run-time, but could not be applied in the case of a real
time reengineering. It can thus be estimated that one second is needed for 3.88 ko of
HTML code. A better measure to evaluate length of pages is the number of nodes
representing UI elements in the HTML code (average of 295.11 nodes per page), and
in this case, ReversiXML processes 44.1 nodes/second. Note that these speed
measures may be affected by several factors: time needed to generate dynamic Web
pages, the load of the server on which ReversiXML is installed, connection speed
with the target HTML file’s server … and therefore, two measurements will never
give the same results. However, variations are relatively small (about 10% of the
average time). The average number of boxes is 223.41, which is a very high number,
almost one box for an HTML node, but as stated previously in section 6.4.5,
heuristics have already been developed to decrease this number but they are not
implemented in the tool. By adding these heuristics to ReversiXML, the total
processing time would be lengthened but models size would be shortened.

For the second reverse engineering, the size and time needed to apply a lightened
reverse engineering has been measured by using a configuration file designed for
mobile platforms. The average size of CUI models for this category is 40.33 ko, thus
74.6 % of the size of the “full” CUI model. The average time required to perform
this analysis is 5.46 seconds, which is 81.6% of the time of a normal reverse
engineering. The reduction effects of these configured reverse engineering is double:
firstly, it saves processing time by skipping the reverse engineering of several
elements, but it also simplifies the box structure as, by ignoring these element, several
boxes are left empty and are thus removed during a second parsing of the produced
model, thus reducing file size.

9.1.4 Correction

Correction is the ability of the approach and tool to produce correct results
compared to the foreseen output. Errors during reverse engineering can be classified
in five categories which are similar to the dimensions of the reverse engineering sub-
problems, as defined in section 4.6 (two categories are missing, the hierarchy
detection task which has been merged in the elements and layout categories, and the
mutli-trees transformations, as none was needed in this section). This empirical study
has been conducted by reverse engineering five Web pages from section 9.1.3 by
hand, and by comparing these results with models produced by the tool. Two of

Chapter 9 Validation

194

those pages were also reverse engineered a second time by using configuration files
to check the difference in the success rates of a retargeting process compared to a
traditional reverse engineering.
Five categories of errors have been defined for this study:
• Elements: establishes the proportion of UI elements effectively recovered. This

is done “by hand”, by checking the correct derivation of each HTML element.
• Graphical Transitions: it represents the percentage of links recovered in the CUI

model. Again, for each link found in the source code, it has been checked that
it has been correctly copied in the target model, with the corresponding URL.

• Box Layout: represent the percentage of boxes correctly translated or added to
the CUI model advisedly. A percentage here is certainly not a good
measurement, as an incorrect box at the highest level of hierarchy would have
much more impact on the UI structure than a box situated almost at the leaf
level. The type and level of errors for this parameter is listed in the comments
of the analysis for each page.

• Attributes: corresponds to the proportion of attributes correctly derived. It means
that this proportion is based on the number of HTML attributes, not UsiXML
attributes as some of these attributes are directly added to the UsiXML code
without any counterpart from the HTML code (for example the two
mandatory isEnabled and isVisible attributes are automatically set to true for
each element).

• Element position (glue): it represents the proportion of correct alignment’s
elements recovered. For each glue attribute, its relevance is checked and the
number of errors is reported on the total number of glueVertical and
glueHorizontal attributes that should be specified in the model.

Isys Website
The first page analyzed is the home page of the Isys Website (http://www.isys.ucl.ac.
be). The entirety of the UI elements is recovered, so as the layout and the graphical
transitions (see table 9-2). However, there are some small errors in the style attributes
for textComponents. The Web page requires a .CSS file which is not taken into
account, and therefore some style attributes are not recovered in the models.
Moreover, the color attribute should be set to #000000 for the “bienvenue”,
“enseignement” and “recherche” textComponents (no color is specified for these
elements in the output of ReversiXML). There are also six values set to wrong
attributes: all the images (filet.gif) below the titles (bienvenue, enseignement, …)
should have the glueVertical attribute set to bottom instead of the glueHorizontal

Chapter 9 Validation

195

attribute set to bottom. The results for this first experiment are very good, as the
totality of the UI components, box composition and graphical transitions are
recovered. The number of boxes is much higher than in the manual version, but the
layout remains correct. The only errors on the page are for some color attributes or
position attributes, which are not as important as the first three categories. There are
less than 10 % of errors for these two last categories. The .CSS file contains only a
new style definition for links, and the loss is thus not very important in this case.

Google
The second page analyzed is the well-known home page of the Google search engine
(http://www.google.be). As for the previous analysis, the three most important
categories are fully recovered. However, some errors still remain in the page: the box
containing the entirety of the Google logo should possess a glueHorizontal attribute
set to middle, but it is not recorded in the CUI model (as the logo is composed of
four sub-images, four errors are reported in the table 9-2). Otherwise, all the other
glue attributes are correctly recovered. There were two types of errors at the attribute
level: the “nouveau” textComponent should possess an isSuperScript attribute set to
true, but the attribute was not recorded in the UsiXML specification. Another error
in the CUI model resides in the radiobuttons allowing selecting the scope of the
Google-search: the first one should have the defaultState attribute set to true, while
this attribute is missing in the CUI specification. Finally, the page possess a style tag
(style attributes declared with the .CSS syntax and embedded in the HTML file), and
as it is not analyzed, the information contained in this tag is not recovered in the
model. However, these style tags only define the font pick order (arial before a sans-
serif font) and are thus not very important.
The correctness of the CUI model was also verified for a reverse engineering using a
configuration file (column g2 of table 9-2). The configuration of options was the
same as in section 9.1.3 (i.e. a reverse engineering without images, color, external
components, sound and style attributes). As for the “full” reverse engineering, the
three first categories of elements were recovered entirely. Box layout was less
complex as several empty boxes were deleted (as they did not contain images) and
this operation was applied by preserving a correct structure of the entire page. The
elements positions were also recovered without error, as the element positions errors
of the full reverse engineering occurred only for images. For attributes, as style
attributes were not recorded in the produced model, the error related to the
isSuperScript attribute is not present in this simplified model. However, the

Chapter 9 Validation

196

defaultState missing attribute for radiobuttons was also not recovered in this second
process. This is the only error of this configured reverse engineering.

 Isys Google (g2) WCRE (w2) Airport Infospace
Elements 100% 100% 100% 100% 100% 100% 100%
Graphical
Transitions

100% 100% 100% 100% 100% 100% 100%

Box Layout 100% 100% 100% 100% 100% 99.75%
1/133

100%

Attributes 98.1%
3/160

97.7%
2/85

98.9%
1/85

99.0%
2/191

99.0%
2/191

100%

99.2%
3/356

Element
Positions (glue)

91.9%
6/74

95.5%
4/89

100% 100% 100% 42.8%
24/56

80%
17/85

Table 9-2 Success rates for the correction analysis.

WCRE 2006 form
The third page analyzed is this study is the contact form of the WCRE 2006
conference (http://www.rcost.unisannio.it/wcre2006/contacts/index.htm). All the
elements were recovered correctly (see table 9-2). All the graphical transitions were
recorded in the CUI model. The box layout has also been recovered without any
error, so as the elements positions. There were three errors at the attribute level: the
size (numberOfCols and numberOfRows) of the textarea (derived as a textComponent
in UsiXML) has not been recorded in the produced model, so as the border color of
the last cell. This is because the color has been described in a style tag (.CSS
expression), which is not recovered with the current version of the tool (the error
was not counted in table 9-2). Errors on the page are very minor and the recovered
model contains almost all the information from the original page.
As for the Google analysis, the WCRE Web form was reverse engineered with a
configuration file designed for mobile phones (column w2 in table 9-2). Again,
several boxes were removed but the layout remained correct after modifying the
layout. The errors are exactly similar than in the previous “full” test.

Brussels airport
The fourth study is the analysis of the Brussels airport Website
(http://www.brusselsairport.be/). The entirety of the UI widgets contained in the
original page is recovered in the UsiXML specification (see table 9-2). But this page
is a “special case” as two inline frames are used in the HTML code. The inline frames
are linked with an .ASP page which is inaccessible for robots (but these small .ASP
pages are accessible by normal browsers), and thus the code can not be downloaded.

Chapter 9 Validation

197

They contain in totality 28 UI elements which are not recovered in the CUI model,
but it is more for technical reasons than an error in the approach or in the tool
implementation.
For the box layout, one error occurred for the “hotline phone number” which is
reverse engineered under the two logos “English” and “Nederlands” instead of on
the same row. This error is relatively small as it only concerns one leaf element. A
second layout error (replicated seven times) exists for the labels underlined with an
orange line, as the line is recovered in the same horizontal box than the label in the
UsiXML specification. This error is not taken into account as these elements are
effectively specified side-by-side in the HTML code, but a style coming from an
external .CSS file redefines the layout of orange lines by putting these element 15
pixels under the “normal” row vertical position, so the line appears to be under the
label. Graphical transitions were recovered in their totality without errors.
This page had few attributes defined in the original source code, as it possess an
heavy .CSS file in which every style/color attribute is defined. Therefore, every
element in the CUI model possesses color attributes set to black (the default value if
the tool can not find any color value in the file) and no style attributes. Moreover,
alignment properties are mostly defined in the .CSS file in the present case. However,
some alignment modifiers are defined in the HTML source file. Several errors
remains for the detection of these glue attributes: in the first column on the left part
of screen, 10 interaction objects should possess the glueVertical attribute set to top
whereas nothing is specified in the UsiXML code for these elements. The same error
occurs on the right side of UI, where 22 gluevertical=top attributes are missing. It
comes from the fact that several alignment modifications are done thanks to div tags;
their complex embedding is well recovered by the tool, but alignment modification
coming from parent table or cell is lost when all the div tags are closed. This
provokes a high number of errors for this last category.

Infospace
The fifth analysis is the reverse engineering of the Infospace Website
(http://www.infospace.com/), a phone number directory page. All the interaction
objects have been recovered correctly in the UsiXML model, so as the layout and
graphical transitions.
There were some errors at the attribute level. Three textComponents were reverse
engineered with a wrong color. A second error was that the groupname attribute of
the three radio buttons was missing. Another type of error, due to style tags, was that
the background color of three cells was not recovered. Instead of using the adequate

Chapter 9 Validation

198

attribute (bgcolor) of these elements, designers used a style tag to define these
properties and this information was consequently lost. The same happened for the
table border: designers put the border attribute to 0 but defined a style tag in which
the border was defined at 1. These four last errors were not counted in table 9-2, as
all they are due to style expressions. Finally, for the element positions, several
alignment attributes were missing: six attributes valign=top were not recovered, one
attribute valign=bottom and ten valign=middle. These errors are scattered across the
page, and are again due to several overlapping alignment properties.

In conclusion for this section, the correction-analysis gave acceptable results for each
case. The most important categories are almost entirely recovered (just one error for
box layout category), but some errors remains for the detection of attributes and
alignment properties. Almost all the errors in the attributes category occurred for
style properties of textComponents. This comes from the fact that several ways exist
in HTML to specify the style of labels, and often several tags are used to define the
style parameters, by using different methods in a same HTML source file. This can
create relatively complex cases, and keeping track of all the style changes is not easily
done and causes some small errors at this level. The same phenomenon occurs with
alignment properties, as several methods exist to assign this parameter (such as the
alignment defined in the parent’s containers, div tags, alignment of elements…) and
some errors are made in the detection of the current alignment modifier.
However, these two types of errors could be corrected easily by putting more
development efforts on these two subjects. The current implementation is achieved
thanks to arrays, keeping the information of style or alignment properties. A special
function allows checking the closing of tags, and in this case, removes the current
slot and moves one slot back in the array of properties. When the style or alignment
information is needed, arrays are read and the model is written accordingly. But this
kind of solution implies inaccuracies, e.g. when several nodes are closed
simultaneously, or when special cases occurs (e.g. usually, div tags applies to all its
child nodes, except for the content of tables, and as only the alignment property is
kept in the array- not the source element- the alignment properties are written
erroneously). This array-solution was implemented to optimize the speed of the
process. A solution based on the verification of the path of each element would give
better results, but would then slower the reverse engineering process.

Chapter 9 Validation

199

9.1.5 Conclusion for the internal validation

According to the working hypothesis and the aims of this research, it can be shown
that the objectives are met after the internal validation. The tool gives satisfying
results in the performance analysis (section 9.1.3), as the processes time are already
relatively short and could be shortened by reducing the number of boxes and by
optimizing the PHP code. Moreover, the performance analysis has been realized in
the “ReversiXML-UI mode”, and results are even shorter under the form of a library
as the construction and display of the model under the form of a tree is not executed
in this second version. Thanks to the optional application of derivation rules, it is
possible to recover a CUI model targeted for a particular (set of) platform(s). This
reduces the work load of designers, as models are smaller (for the investigation in
section 9.1.3 about 25 % in average and up to 50% in some cases) than a reverse
engineering without option by removing elements not needed in the target model.
The approach also gives the possibility to the designer to apply a “classic” reverse
engineering, and let him do all the modifications herself in an edition tool or during
the forward engineering phase.
The tool generates correct results as all the UI elements, their positioning and links
with other models and elements are recovered entirely. Only one box layout recovery
error occurred in the five studies of section 9.1.4. Some small errors remain at the
attribute level, but are not “vital” in the sense that they only modify esthetical aspects
(e.g. wrong color) of UI widgets or for the alignment of elements within a container.
Important attributes such as defaultContent, height, width, location etc…are always
well recovered. The alignment errors occurred in some cases very often, but this loss
is not too important as glue attributes only help to fine tune the position of elements.
If a page is described thanks to an important quantity of containers, the major part of
the layout will be defined thanks to boxes and it will only produce small differences
in the positions of interaction objects. Rules are applied without ambiguities (see
section 9.1.2), i.e. a configuration of options – or group of derivation rules- applied
to a defined set of elements will always give the same results. The rules cover almost
the entirety of elements and concepts belonging to the HTML language (see section
9.1.1). The parts of the language that are ignored in this approach have been defined
in the working hypothesis, or are not expressible in the target language.
The objectives of flexibility and controllability are met thanks to the correction and
performance analysis, as the reverse engineering process can be parameterized to
reverse engineer only those UI elements of interest and rejecting those not
concerned, by reducing effectively and correctly the size of models. The designer can
also control the process in the reverse engineering or/and in the translation step, by

Chapter 9 Validation

200

applying some transformations of one type of interaction object into another and
thus produces a model with only interaction objects existing on the target
platform(retargeting).
Coverage combined with these two criteria allows also generality as the derivation and
translation rules are not designed to accommodate a fixed target platform, but could
be used to extract retargeted models for a large scope of platforms.
The predictability of the approach presented in this thesis is also achieved, by ensuring
that almost all the elements can be reverse engineered, that a precise set of derivation
rules generates only one possible result and also by the fact that these resulting
models are correct (at least for the most important categories).

9.2 External Validation

The external validation (i.e. empirical validation of the approach) consists in
evaluating the approach by designers and users of Web sites, i.e. by the target
audience of this research. The first should use the tool to redesign a UI for a
particular platform and the latter should use the new UI in order to evaluate the
results. The populations targeted by this approach are Web/UI designers, persons in
charge of the maintenance of Web sites and reverse engineering experts. Experts as
the reverse engineering profession does not exist but more and more organizations
specialize in the reverse engineering of information system (e.g. Fujitsu, Callatay and
Wouters, Raincode…). Actors using a reverse engineering approach can have three
different needs, i.e. recover abstract models in order to:

- Have a better understanding of the current system (e.g. for modifying or
adding components to the system) by possibly generating documentation.

- Apply the reengineering to facilitate maintenance.
- Reengineer the system for other contexts of use.

This study should be a quantitative study but there is a difficulty to conduct such a
type of validation as designers have a (high) cost and it is difficult to find a sufficient
number of them to retrieve significant results of the validation.
Another burden is that the evaluation would be biased as the results of the
reengineering would imply the use of another forward engineering tool and so this
evaluation would validate both approaches. After evaluating the needed resources,
this kind of investigation would be desirable but not practicable. Therefore, the
quantitative investigation has been replaced by two other types of experiments: firstly
a qualitative exploratory study of the reengineering of three Websites achieved by UI
course’s students and secondly by three cases study of various complexities.

Chapter 9 Validation

201

The exploratory study allows us to understand how users will use the tool, and have
an external feedback about the use, utility and performance of the tool. The case
study shows how a Web page is reverse engineered by ReversiXML at the CUI and
AUI levels, by illustrating only significant parts of the process.

9.2.1 Exploratory study of reengineering

This exploratory study consisted in reverse engineering three Web pages with
ReversiXML combined with the forward engineering towards two different
platforms, pocked pc and mobile phones, thanks to Grafixml (see appendix E on
UsiXML compliant tools).

9.2.1.a Method

Three Web pages coming from the UCL repertories were analyzed:
-http://www.ucl.ac.be/repertoi.html
-http://ultra2.sia.ucl.ac.be:8000/GIPE/SilverStream/Pages/pgRechercheCours.html
-http://ultra2.sia.ucl.ac.be:8000/GIPE/SilverStream/Pages/pgRechercheOffre.html

The first page is an index page (see figure 9-1), where the user can choose various
types of research in UCL databases. The second and third pages are two different
types of researches, one for courses and the other for study programs.

Protocol Description. This qualitative study was realized by 17 master students in
computer sciences and management sciences of the third cycle’s course LINF 2356
(interaction homme-machine, a UI course) that had little experience with UI. These
students were chosen because they have basic knowledge in the domain of
reengineering and studied on the UI subject. Management sciences students had little
or no experience with model-based approaches and had an intermediate level in
computer science in general while computer sciences students had moderate
experience in general but were experts in computer sciences. Students had to write a
report commenting the approach by expressing freely their critics (no questionnaire
was used as it was a qualitative evaluation). The 17 students were composed of 2
women and 15 men, and their age ranged between 22 and 27 years.
Population selection was biased in two manners: firstly, these students do not
represent Web designers or reverse engineering experts and secondly, all the students
of the course LINF 2356 without distinction were chosen to conduct this
investigation, there was no characterization of the population. However, as this

Chapter 9 Validation

202

investigation is an exploratory study, we hope that difficulties about the use of the
tool can be detected despite these facts.

Figure 9-1 The three Web pages of the exploratory study

The results of this investigation had to be presented under the form of a report, in
which the students had to describe the different retargeting operations used during
this reengineering process and the manual modifications they realized after the
reverse engineering (the instructions given to students can be found in appendix K).
The report had to contain the illustrated description of each step of the process, and
a conclusion containing the major positive and negative aspects of this reengineering.
The configuration files used during this process, and the resulting UI saved in

Chapter 9 Validation

203

Grafixml had to be sent with the report. A short presentation (30 minutes) was done
during a course to show the basic functionalities of the two tools.

Reengineering project description. Students had to use first ReversiXML to
obtain a model suiting the two platforms by choosing the best configuration of
reverse engineering options. The options selection can be characterized by issues on
size-reduction (for a 96x65 screen), color and interaction object availability for
mobile phones and only a size reduction problem for pocket PC (for a 240x320
screen). After the reverse engineering, students had to use Grafixml to edit the UI,
by modifying, deleting or moving elements between windows. Some manual
modifications to original components could also be made during this step. As
Grafixml was not able to produce final code at that moment (May 2005), they had to
show a preview of the final UI in the tool. Thus all the operations needed to
reengineer Web pages were achieved until the code generation. Some examples of UI
previews for this study are shown on figure 9-2.

Pocket Pc

Mobile Phone

Figure 9-2 Reengineering in the exploratory study

Chapter 9 Validation

204

9.2.1.b Results

While using ReversiXML, most students used the following built-in
transformations/options:
• Colors removed (for mobile phones).
• Style attributes for text components removed (for mobile phones).
• Remove images (for mobile phones).
• Resize image (for pocket pc).
• Merge (fold) some labels (for both platforms).
• Remove components that are not available (for mobile phones).
• Transform interaction objects into other type of interaction objects taking less

screen space (for both platforms).

Results were satisfying, really helping them to reduce the amount of work needed for
the next translation step (see critics). Only one technical error was made during the
reverse engineering that students had to correct by hand. This error was a wrong
detection of the category of element (a checkbox was reverse engineered into a
textComponent due to an implementation error).
To complete the translation, they had to modify the produced specification thanks to
the Grafixml UI editor. The most common and relevant actions are listed below by
order of importance:
• Split windows into several small windows and add corresponding navigation

components.
• Transfer of semantically linked elements to display them on a same screen.
• Reduce text size (by removing useless words or by replacing words by an

abbreviation …).
• Addition of interaction objects (e.g. add a “rechercher” button on each split

window to let users launch research whenever they want).
• Reduce images size by removing white borders and reduce number of colors

(these last transformations have been done thanks to an external drawing tool).
• Transformation of some long descriptive text components into the toolTipText

attribute of the object that these labels describe. Another way to avoid long
labels was to put “help”-links giving access to the label.

• Suppression of non-important labels, such as the update date or page author.

Some of these operations could be automated, such as window splitting, or the
reduction of the number of colors of images, but it would be impossible to
incorporate some of them into a tool (such as the label’s size reduction as it implies

Chapter 9 Validation

205

the understanding of the semantic of the sentence). Therefore, a complete
reengineering of quality (i.e. producing usable UIs) towards small platforms will
always require a human intervention in the translation process to apply some
modifications and refinements to the produced model. The topic about translation
between two contexts of use is also the subject of other researches [Flor06] and thus
only few transformations are developed in this thesis.

9.2.1.c Discussion

As a conclusion for this study, several positive and negative aspects of the tool are
pointed out by the students. The most representative aspects are summarized below:

+ Positive
− The tool allows an easier development of a user interface for different context of

use. The use of tools such as ReversiXML (and GrafiXML) reduces the amount
of work required to reengineer an HTML UI for another platform.

− The tool is easy to use, there are just some difficulties at the beginning. The
output is clearly presented and corresponds to the expected result.

− The use of configuration files allows saving time as it avoids removing elements
and attributes, adding new components and correcting the model by hand.

Comments: Positive remarks of students were very interesting, as they show that users
get the expected results (predictability of the process), and that the reverse
engineering produces correct results with different configurations (correctness
/flexibility). Moreover, the flexible process (i.e. reverse engineering configurations)
has been found very important, as it facilitate greatly the reengineering process by
cutting off useless components for a particular platform. Finally, all the students
found that they saved time and efforts by using the tool compared to a simple
generation of UI by observing the source UI.

- Negative
− The tool may generate errors during the reverse engineering, and it may be

difficult to identify these losses without a careful examination of the model.
− Even if the tool is easy to use for some, other observed that no help or no

guidelines are available and including it would make the process easier to
understand.

− It was difficult to use configuration files, even when their locations were
identified on the servers, and it appeared that the file could not be used remotely

Chapter 9 Validation

206

for security reasons: users were not able to load configuration files saved on their
own computer.

Comments: Negative aspects pointed out by students are more about technical
problems than for the reverse engineering itself. Apart from wrong reverse
engineering of an element, they do not have expressed important critics for the
reverse engineering tool.

The three next sections illustrate the reverse engineering process with ReversiXML
on various case studies. Some part of the HTML code and UsiXML is shown to
describe how the code is derived into a CUI or AUI model.

9.2.2 Case Study 1: the Sedan-Bouillon Web site

The pages for this case study come from the sedan-bouillon Website, which was
developed by IS3. This site has been chosen for three reasons:
- This tourist site is visited, by nature, by many users in different contexts of use.
- Several platforms access this Website (see figure 9-3) and therefore a reengineering
of the UI for these different platforms/ users would have a sense.
- Finally, the site has been developed by IS3, an industrial partner of the Cameleon
project, and thus illustrates how the method/tools apply to real world applications.

The case study illustrates a simple task: the user wants to order documentation, and
has therefore to fill in a form. The user has to navigate through four pages to achieve
this task (introduction page, global navigation page, page for the selection of the
documentation to order, page containing form about customer information).
The pages can be found at:
 1)http://www.sedan-bouillon.com/
 2)http://www.sedan-bouillon.com/catalogue/index.php
 3)http://www.sedan-bouillon.com/catalogue/ctg.php?c=13
 4)http://www.sedan-bouillon.com/catalogue/commande.php
For each of these pages, some parts of the UsiXML specifications are extracted to
illustrate the reverse engineering at the CUI level. To make the specification more
readable, the two mandatory attribute, isVisible and isEnabled have been removed
from the UsiXML specification, as these elements are always set to true. Another
simplification has been made, the suppression of most of the boxes to reduce the
size of code (box are only kept in the first example and are removed in the rest of the
text and, thus these excerpts does not reflect exactly the HTML code).

Chapter 9 Validation

207

Figure 9-3 Platforms and navigators accessing the site

(source: http://www.is3server.com/is3stats/is3stats.pl?config=sedan-bouillon.com&year=2004&month=year)

9.2.2.a Introduction page

The first page of the Web site is very simple as it contains only 36 CUI elements and
22 boxes. The page contains two links, one ‘mailto is3’ and the other one bringing
the user to an index page.

Figure 9-4 Division into boxes

The page is shown on figure 9-4. The division of the page into boxes based on the
table-structure of the page has been made visible to show how the page will be

Chapter 9 Validation

208

divided into boxes in UsiXML. The black lines represent the cells of the table
structuring the page in the HTML code. The beginning of the HTML code and its
corresponding UsiXML code is shown below:

HTML
<HEAD><TITLE>Tourisme en pays de Sedan et Bouillon / tourism in country of Sedan
and Bouillon</TITLE></HEAD>
<BODY vLink=#b2161d aLink=#b2161d link=#b2161d bgColor=#fbe9d0 leftMargin=0
topMargin=0>
<TABLE cellSpacing=0 cellPadding=0 width=780 align=center background="" border=0>
<TBODY> <TR> <TD colSpan=3>
<IMG height=7 src="1-Tourisme en pays de Sedan et Bouillon - tourism in country of
Sedan and Bouillon_files/hp-top.gif" width=780 border=0></TD></TR>

UsiXML
<window Name="Tourisme en pays de Sedan et Bouillon / tourism in country of Sedan
and Bouillon" id="window_1" bgColor="#fbe9d0" windowLeftMargin="0"
windowTopMargin="0">
<Box type="vertical" name="boxVer_T_1" id="boxVer_T_1">
<Box type="vertical" name="boxVer_T_2" id="boxVer_T_2" glueHorizontal="middle"
borderWidth="0">
<Box type="horizontal" name="boxHor_R_3" id="boxHor_R_3">
<Box type="horizontal" name="boxHor_D_4" id="boxHor_D_4">
<imageComponent name="Image_5" id="Image_5" ImageHeight="7" ImageWidth="780"
defaultContent="1-tourisme%20en%20pays%20de%20sedan%20et%20bouillon%20-
%20tourism%20in%20country%20of%20sedan%20and%20bouillon_files/hp-top.gif"
imageborder="0" /> </Box> </Box>

When ReversiXML detects the body tag in the HTML code, a window is created in
the CUI model. The name of this window corresponds to the content of the title tag
in the HTML code. The other attributes of the body are copied into UsiXML
attributes, and links color attribute are put in temporary variables which will be used
when a link (textComponent) is created in the UsiXML specification. Then a first
vertical box is created (“boxVer_T_1”) that will contain all the other boxes of the
page (see layout detection algorithm, chapter 6), but it is not the counterpart of an
existing object in the source file. The second vertical box (“boxVer_T_2”),
corresponds to the table in the HTML code. As the table has an attribute
align=center, an attribute glueHorizontal=middle is added in the UsiXML specification.
The glueHorizontal= middle attribute means that the element is centered compared to
its container (which is boxVer_t_1). Two other boxes are added because the tool
detected a <tr> (boxHor_R_3) and a <td> tag (boxHor_D_4).
Finally, the content of the cell is translated in the UsiXML specification as an
imageComponent. The value of the src attribute in HTML is replicated in the
defaultContent attribute. The other attributes of the image are copied in similar
attributes in the UsiXML specification.

The next portion of code represents the enter image. This is an image-link (when the
user clicks on the image, the link is triggered and the target page is loaded) which
gives access to the rest of the site.

Chapter 9 Validation

209

HTML code
<DIV align=center>

<IMG height=78 alt="Tourisme en pays de Sedan et Bouillon" src="1-Tourisme en
pays de Sedan et Bouillon - tourism in country of Sedan and Bouillon_files/hp-
entrer.gif" width=82 align=top border=0></DIV>

UsiXML code
<imageComponent glueVertical=”top” glueHorizontal="middle" name="ImageLink_26"
id="ImageLink_26" imageHeight="78" imageWidth="82" defaultContent ="1-
tourisme%20en%20pays%20de%20sedan%20et%20bouillon%20-%20tourism%20in
%20country%20of%20sedan%20and%20bouillon_files/hp-entrer.gif"imageBorder="0"
hyperLinkTarget= "http://www.sedan-bouillon.com/catalogue/index.php" />
…
<graphicalTransition id="gt_1" transitiontype="open">
<source sourceId="ImageLink_26" />
<target targetId=" http://www.sedan-bouillon.com/catalogue/index.php " />
</graphicalTransition>

The three tags (div, a, img) are mapped into one element in the UsiXML code, an
imageComponent. The source of the image is used to create the defaultContent
attribute of the imageComponent and the size attributes are copied into the
imageHeight and imageWidth attributes. As the image is embedded in a div tag, the
centered alignment is reproduced in the UsiXML specification by the
glueHorizontal=middle attribute. This image is aligned on the top of its cell, and
therefore the attribute glueVertical=top is added. As this image is an image link, a
graphical transition is created to represent the link in the UsiXML specification
(gt_1). The graphical transition has as source the id of the imageComponent
(“imageLink_26”) and as target the href attribute of the HTML code.

9.2.2.b Index page

This second page (see figure 9-5) is an index page which gives access to the rest of
the site. The particularity of this page is that it contains several flash components.
The page is composed of 234 CUI elements, and 147 from them are boxes. The page
is mostly composed of links (33) on this page and images (28).

HTML Code
<OBJECT codeBase=http://download.macromedia.com/pub/ shockwave/cabs/
flash/swflash.cab#version=5,0,0,0 height=118 width=280 classid=clsid:D27CDB6E-
AE6D-11cf-96B8-444553540000>
<PARAM NAME="movie" VALUE="images\header1.swf">
<PARAM NAME="quality" VALUE="high">
<embed src="images\header1.swf" quality=high pluginspage="http://www.
macromedia.com/shockwave/download/index.cgi?P1_Prod_Version=ShockwaveFlash"
type="application/x-shockwave-flash" width="280" height="118"></embed></OBJECT>

UsiXML code
<finalComponent width="280" height="118" type="application/x-shockwave-flash"
glueHorizontal="middle" name="finalComponent_5" id="finalComponent_5" location
="images/header1.swf" />

Chapter 9 Validation

210

This portion of code corresponds to the top of the page, where the two animated
images are displayed (with the is3 logo on the golf green).
The cell is translated into a horizontal box, and its content, a flash component is
mapped as a finalComponent. The two tags, object and embed, correspond to the
same component and are thus mapped as one finalComponent in the UI specification.
The Flash source file for the finalComponent is stored in the location attribute, and the
type of plug-in is stored in the type attribute in the UsiXML specification. There is a
second Flash component on the page, translated in the UsiXML in the same manner
as this first component. This second component contains also a link (a mailto:is3...)
which cannot be detected by ReversiXML. Therefore a dynamic solution, as
presented in section 6.4.5, could give more complete results than the current method.
Another problem with this page is the navigation bar, under these two flash
components. This navigation bar is entirely implemented with an external JavaScript,
and is not analyzed by ReversiXML. Again, section 6.4.5 provides a potential
solution for this kind of problem. In the current version, these two problems imply
the missing of 11 links on this page.

Figure 9-5 Index page of sedan-bouillon Website

Chapter 9 Validation

211

The second excerpt of this page is related to a textual link at the bottom of the page
(shown at the bottom of the following table). The link is preceded by a bullet-image,
mapped as an ImageComponent (Image_140). The link is derived in a textComponent
with additional attributes. This textComponent has four more attributes than for
normal static text: linkVisitedColor, activeLinkColor, textColor and hyperlinkTarget. The
three first values can be found in the body node, and the hyperLinkTarget attribute
corresponds to the href attribute from the HTML code.

HTML code
<IMG height=12 src="2-Sedan Bouillon Tourisme en Ardennes hotel, restaurant,
camping, gite, chateau_files/piece.gif" width=14>
<A class=nick href="http://www.sedan-bouillon.com/catalogue/ssctg.php?c=11&
s=45">TOURISME EN PAYS SEDANAIS / TOERISME IN SEDAN

UsiXML code
<imageComponent name="Image_140" id="Image_140" ImageHeight="12" ImageWidth="14"
defaultContent="2-
sedan%20bouillon%20tourisme%20en%20ardennes%20hotel,%20restaurant,%20camping,
%20gite,%20chateau_files/piece.gif" /> </Box>
<textComponent name="TextLink_142" id="TextLink_142" defaultContent="
TOURISME EN PAYS SEDANAIS / TOERISME IN SEDAN" linkVisitedColor="#660000"
activeLinkColor="#660000" textColor="#660000" hyperLinkTarget="http://www.sedan-
bouillon.com/catalogue/ssctg.php?c=11&s=45"/>
…
<graphicalTransition id="gt_29" transitiontype="open">
<source sourceId="TextLink_142" />
<target targetId="http://www.sedan-bouillon.com/catalogue/ssctg.php?c=11&s=45" />
</graphicalTransition>

9.2.2.c Order Documentation

The third page (see figure 9-6) is dedicated to the ordering of documentation. This
page gives the choice to the user between several types of documentation (over
different cities, books, etc.).
When the user chooses one of the links on the bottom of the page, he has to
complete a form, which is the fourth page of the case study (see figure 9-7). This
page is composed of 217 CUI elements, where 93 of them are boxes, 17 inputs
elements, 40 labels, 12 images and 6 links (graphical transitions).
The first portion of code represents the three radio buttons where the user can
choose his/her title (Mr, Miss, Mrs)

Chapter 9 Validation

212

Figure 9-6 Choose documentation

HTML code

<INPUT type=radio CHECKED value=Mr name=Titre> Mr
<INPUT type=radio value=Mrs name=Titre> Mme/Mrs
<INPUT type=radio value=Miss name=Titre> Melle/Miss </TD>

UsiXML code

<radioButton defaultState="true" name="radiobutton_0" groupname="Titre"
internalValue="Mr" id="radiobutton_0"/>
<textComponent defaultContent="Mr" textFont="Verdana, Arial, Helvetica, sans-
serif" textColor="#000000" " textSize="1" name="label_11" id="label_11"/>
<radioButton defaultState="false" name="radiobutton_1" id="radiobutton_1"
groupname="Titre" internalValue="Mrs"/>
<textComponent defaultContent="Mme/Mrs" textFont="Verdana, Arial, Helvetica,
sans-serif" textColor="#000000" textSize="1" name="label_12" id="label_12"/>
<radioButton defaultState="false" name="radiobutton_2" id="radiobutton_2"
groupname="Titre" internalValue="Miss"/>
<textComponent defaultContent="Melle/Miss" textFont=" Verdana, Arial, Helvetica,
sans-serif " textColor="#000000" textSize="1" name="label_13" id="label_13"/>

The font tag is not translated into an element, but its values are recorded in
temporary variables. The first radio buttons from the HTML code (input type=radio)
has an attribute CHECKED and is translated into a radioButton with its attribute
defaultState set to true. The name attribute of the HTML radio button is copied into
the groupname attribute in UsiXML, as this attribute indicates which radio button are
from the same set. The value attribute of the HTML radio button is translated in
UsiXML as its internalValue.

Chapter 9 Validation

213

The first label, “Mr”, is translated into a textComponent(label_11), with its textSize set
to 1 and its textFont attribute set to Verdana, Arial, Helvetica, sans-serif, which are
the values of the font tag. The color of the label is black (#000000), which is the
default value for labels as no indication is given in the code to change this value.
The same translation rules are applied for the two next radio buttons (radio_button_1
and radio_button_2) and the two next labels (label_12 and 13). There is only one
difference for the radio buttons: the defaultState attribute is set to false, as there is no
checked attribute for these radio buttons.

Figure 9-7 Order documentation form

The next excerpt of code represents the email and message input fields and the
“send” button (see the image in the table). The layout has been simplified to clarify
code, by removing all the tables, cells and rows from both codes excerpts.

HTML code

E-mail * :</TD>

<INPUT size=35 name=email>

Chapter 9 Validation

214

<FONT face="Verdana, Arial, Helvetica, sans-serif" color=#000000
size=1>Message :</TD>

<TEXTAREA name=message rows=3 cols=50>commande de documentations</TEXTAREA>

<DIV align=left>
<INPUT type=submit value=Send name=Submit> </DIV>

UsiXML code

<textComponent name="text_372" id="text_372" defaultContent="E-mail" textSize="1"
texfFont="verdana, arial" textStyle="bold" textColor="#000000" />
<textComponent name="text_373" id="text_373" defaultContent="*" textSize="1"
texfFont="verdana, arial" textStyle="bold" textColor="#993333" />
<textComponent name="text_374" id="text_374" defaultContent=":" textSize="1"
texfFont="verdana, arial" textStyle="bold" textColor="#000000" />
<textComponent name="textbox_376" id="textbox_376" numberOfColumns="35"/>
<textComponent glueHorizontal="middle" name="text_379" id="text_379"
defaultContent="Message :" textSize="1" texfFont="verdana, arial, helvetica,
sans-serif" textStyle="bold" textColor="#000000" /> </Box>
<textComponent name="txtArea_380" id="txtArea_380" defaultContent="commande de
documentations" numberOfRows ="3" numberOfColumns="50" />
<button name="submitBt_384" id="submitBt_384" defaultContent="send" />

Again, a font tag surrounds each textual content, and its attributes will be inherited by
every label contained in this font tag. The label “Email*:” is translated into three
different labels in the UsiXML code, as the color of the * (#993333) is different
from the two other parts of the label (“email” and “:” are displayed in black). As the
elements are also contained in a tag, the textStyle is set to bold for the three
labels.
A textbox (<input type=text> is translated in the UsiXML language as a
textComponent (here text_376). This element possesses an additional attribute:
numberOfColumns="35". It corresponds to the size of the textbox.
The next component, the label “message:” can be translated by only one
textComponent, as there is no change of color or style in this label. The next widget is
a <textarea> tag, where the user can write some additional comments to his form.
As for the textbox, the textarea is translated by a textComponent, with one more
attribute than for the textbox, numberOfRows=”3”, to represent the second
dimension. As this interaction object contains already a default text (“commande de
documentations”), this one is put in the defaultContent attribute of the element.
Finally, the send button is represented in the UsiXML code by the button element.
The value attribute in HTML represent the label of the button and is translated in
UsiXML in the defaultContent attribute. The align=left attribute has not been reverse
engineered, as this value (left) is the default value for glueHorizontal attributes. A

Chapter 9 Validation

215

graphical transition having as source this button is also added at the end of the
model, with the URL to which the form will be sent when the user clicks the submit
button.

9.2.2.d Complete reengineering

With Teresa
Teresa (see appendix E on UsiXML compliant tools) has been used in this case study
to apply a forward engineering based on the produced model. In a few words, the
Teresa tool is developed at ISTI-CNR and supports the generation of XHTML,
VoiceXML and WML starting from a task model, an abstract or concrete UI model
expressed in TeresaXML, or a concrete UI specified in UsiXML.

Figure 9-8 Results of the forward engineering with Teresa

For this reengineering, the last page of the case study (section 9.2.2.c) has been used
as input in ReversiXML. The page has been reverse engineered without
configuration file, as some transformations are performed by Teresa. The UsiXML
produced by ReversiXML is then loaded in the Teresa tool, which then applies some
modifications to produced CUI model and generates several UI specifications for
various platforms. The source Web page can be found on figure 9-7 so as the
resulting UI for Pocket PC specified in XHTML (figure 9-8). More information
about this reengineering process can be found in [Mori05].

Chapter 9 Validation

216

With QtkXML
The QtkXML tool has been developed by Vincent Denis [Vinc05] in his master
thesis in management sciences. The tool is able to produce oZ/Qtk code based on
UsiXML specifications and is available on http://www.UsiXML.org.

Figure 9-9 First page of case study regenerated with QtkXML

Figure 9-10 Second page of case study regenerated with QtkXML

Chapter 9 Validation

217

Specifications reverse engineered by ReversiXML have been used in the tool to
generate new UI code. The results of the reengineering are shown on figure 9-9, 9-
10, 9-11 and 9-12. The reengineered pages are very similar to the original ones (figure
9-4, 9-5, 9-6 and 9-7). However small differences exist, such as the absence of the
flash components (replaced by a blue line in the top of the UI, difference number 1
on fig. 9-11) as they can not be inserted in the Qtk environment as external
components.

4

5

3

1

2

Figure 9-11 Third page of the case study regenerated with QtkXML

The navigation menu just below the flash component (difference number 2 on figure
9-11) has also not been reengineered, as it was specified in javascript and thus not
recovered by ReversiXML. Another difference is that Qtk does not accept
background images (only colors) for td and lr widgets (representing boxes in Qtk) and
therefore the derivations rules related to this attribute have been deselected in the
configuration file before using ReversiXML (difference number 3 on figure 9-11).
Some special characters are displayed in the Unicode format (difference number 4 on
figure 9-11) as this character set is not supported in Qtk.

Chapter 9 Validation

218

Images can also be used in QtkXML, but only those in the .GIF and .BMP format.
JPG images have been replaced by their name during the forward engineering (see
for example the “image_71” label, difference number 5 on figure 9-11). There are
also some small visual differences due to the widget set of Qtk that one can remark
on figure 9-12, where text boxes appear in grey, and with the “type here” default
content. The dropdown list box of figure 9-7 has been replaced by a simple list box
on this last example.

Figure 9-12 Fourth page of the case study regenerated with QtkXML

Minor differences exist in the layout of the new UIs. This is more due to a lack of
expressiveness of the box mechanism in UsiXML than to the combination of the
reverse and forward engineering of ReversiXML and QtkXML. The box layout is
currently refined in the UsiXML language in order to obtain a more precise
definition of the position of element, but the new version of the language including
this enhancement is not completely finished for the moment.

Chapter 9 Validation

219

9.2.3 Case study 2: UGC movie booking service

The subject of this second analysis is the booking service of UGC cinemas (available
at http://www.ugc.be/FR/reservation/ChoixResa.jgi?RAZ_REGION=O), shown
on figure 9-13. This page has been chosen for two reasons: it illustrates the reverse
engineering of a common interaction object that had not been analyzed in previous
case study and because this page (and the entire site) would be a good candidate for a
reengineering for mobile platforms, as it is a typical service researched by mobile
phone users.

The Web page is composed of 271 CUI elements, but 150 of them are boxes and 91
images (mostly blank images to fill space in order to have a stable layout). The rest of
elements is divided into textComponents and images-links (not counted in the 91
images). The produced model is 42,4 ko long, which is about 150% of the size of the
original page (27,7 ko). This page allows the user to make a reservation by choosing a
cinema in a region of Belgium. He can access the region by clicking either on the
Belgian map, or by clicking on the links displayed over the map. The other
components composing the page are a navigation bar for UGC Website at the
bottom of the UI, and another navigation bar on top of Belgian map where the user
can choose another type of bookings (by movie and by timetable).

Figure 9-13 City selection page on UGC reservation site

Chapter 9 Validation

220

The first excerpt of code shows how a part of this latter menu is reverse engineered
(the table structure has been removed).

HTML code
<div align="right">
<img src="img/home/sceance2.gif" alt="Séance et réservation "
width="317" height="26"></div>
<a href="http://www.ugc.be/FR/cinematheque/Cinematheque.jgi?TYPE=film" onMouseOut
MM_swapImgRestore()" onMouseOver="MM_swapImage('film11','','img/home/film2-new_
over.gif',1)">
<img src="img/home/film2-new_out.gif" alt="Recherche par film" name="film11"
width="71" height="26" border="0" id="film1">

UsiXML code

<imageComponent glueHorizontal="right" name="Image_43" id="Image_43"
ImageHeight="26" ImageWidth="317" defaultContent="img/home/sceance2.gif" />
<imageComponent name="ImageLink_46" id="ImageLink_46" imageHeight="26"
imageWidth="79" defaultContent="img/home/ cinema2-new_out.gif" imageBorder="0"
hyperLinkTarget="http://www.ugc.be /FR/reservation/ChoixResa.jgi?TYPE=film" />
. . .
<graphicalTransition id="gt_3" transitiontype="open">
<source sourceId="ImageLink_46" />
<target targetId="http://www.ugc.be/FR/reservation/ChoixResa.jgi?TYPE=film" />
</graphicalTransition>

The first image (sceance2.gif) is embedded into a div tag that possesses an align=right
attribute. Therefore, this first image in UsiXML has a glueHorizontal=right attribute, as
this property is inherited by all the children of the div tag in HTML code (a
factorization that does not exist in UsiXML, and thus the glue attribute has to be
replicated for each of its children during the reverse engineering, in the present case
only once).
The next images in the HTML code are associated with a small JavaScript, allowing
the addition of a “roll-over effect”, i.e. the image changes when the user moves his
mouse over and out of the image area. As JavaScripts are not analyzed, only the first
displayed image is recorded in the UsiXML specification. All theses images are
“image-links”, i.e. a graphical transition is triggered when the user click on it. An
example of graphicalTranstion (for imageLink_46, the first “image-link”) is shown on
the bottom of the example, where the source indicates the interaction object allowing
this transition and the target contains the URL accessible thanks to the transition. In
this case, the loss due to the fact that JavaScript are not recovered is very minor (only
a visual effect).

The second excerpt of code illustrates the image-map component. An image map is
an area divided into zones equivalent to links. In this case, three zones are available,
one for Brussels, the second for Louvain-la-Neuve and third for Antwerp. The
equivalent links are also displayed in a textual form on the left of the image.
<TD>
<u>Bruxelles/Brussel</u></TD>

Chapter 9 Validation

221

<TD colspan="2" rowspan="15" valign="top">

<map name="MapRegion">
<area shape="circle" coords="68,101,10" href="/FR/reservation/
ChoixResa.jgi?REGION=1" alt="Bruxelles">
<area shape="circle" coords="78,58,10" href="/FR/reservation/
ChoixResa.jgi?REGION=2" alt="Anvers">
... </map></TD></TR>
<TR><TD colspan="3">
</TD>
<TD></TD>
<TD>
<u>Antwerpen</u></TD></TR>

<Box type="horizontal" name="boxHor_D_153" id="boxHor_D_153">
<textComponent glueHorizontal="middle" name="TextLink_154" id="TextLink_154"
defaultContent="Bruxelles/Brussel" HyperLinkTarget="/FR/reservation/
ChoixResa.jgi?REGION=1" isUnderline="true" /> </Box>
<Box type="horizontal" name="boxHor_D_155" id="boxHor_D_155">
<imageComponent glueVertical="top" name="ImgMap_156" id="ImgMap_156"
ImageHeight="300" ImageWidth="236" defaultContent="img/blank.gif" imageBorder="0">
<ImageZone Shape="circle" name="ImgZone_157" id="ImgZone_157" coordinates="68,
101,10" hyperLinkTarget="/fr/reservation/choixresa.jgi?region=1" />
<ImageZone Shape="circle" name="ImgZone_158" id="ImgZone_158"
coordinates="78,58,10" hyperLinkTarget="/fr/reservation/choixresa.jgi?region=2" />
...</imageComponent></Box></Box>
<Box type="horizontal" name="boxHor_R_161" id="boxHor_R_161">
<Box type="horizontal" name="boxHor_D_162" id="boxHor_D_162">
<imageComponent name="Image_163" id="Image_163"
defaultContent="img/reservation/blank.gif" /> </Box>
<Box type="horizontal" name="boxHor_D_164" id="boxHor_D_164">
<imageComponent name="Image_165" id="Image_165" ImageHeight="7" ImageWidth="7"
defaultContent="img/reservation/bl.gif" /> </Box>
<Box type="horizontal" name="boxHor_D_166" id="boxHor_D_166">
<textComponent glueHorizontal="middle" name="TextLink_167" id="TextLink_167"
defaultContent="Antwerpen" hyperLinkTarget="/FR/reservation/ChoixResa.jgi?REGION=2
isUnderline="true" /> </Box></Box>

This HTML code is composed of 3 table rows (tr) composed of several cells (td). The
first row contains the Brussels text link, which is placed in the <u> tag (underlines
the embedded text nodes). Therefore, the textComponent in the UsiXML
specification possesses the isUnderline="true" attribute.

Chapter 9 Validation

222

The second cell has the valign=top attribute in its specification: all its content will
have a glueVertical=top attribute (in this case only one element, the component
ImgMap_156). This cell contains an image map, which is in fact a blank image
(blank.gif). This blank image is superposed on the Belgian map image, which is the
background image of a previous cell (not present in the excerpt of code). The
usemap attributes in the HTML code defines the image map to use (in this case
MapRegion which is situated just after). In the UsiXML specification, this is
translated by an imageComponent, with four ImageZone children (only two are shown
in the excerpt of code). Every ImageZone corresponds to an area tag, representing
the image-division. The shape and coordinates UsiXML attributes are copied from
the shape and coords attribute in the HTML code.
The next row is composed of three cells. The first cell contains a blank image, the
second cell contains an image representing the bullet and the third cell contains the
link to Antwerp City. This last element is translated by a textComponent, and the
textnode “Antwerpen” is the value of the defaultContent attribute.

The same page has been reverse engineered a second time with a configuration file
designed for mobile phones. The images, style and color attributes have been
removed from the reverse engineering process. The number of elements composing
the UI is only 184 (about 100 less than in the “full” version), and the produced
model is 14,752 ko long. The difference here is very significant, as the “lightened”
model is below 35% of the size of the previous model, and would thus facilitate
greatly the reengineering process to a mobile phone. The same excerpt of code
related to the image map is shown below in its ‘mobile-version’.

UsiXML
<Box type="horizontal" name="boxHor_D_103" id="boxHor_D_103">
<textComponent glueHorizontal="middle" name="TextLink_104" id="TextLink_104"
defaultContent="Bruxelles/Brussel" hyperLinkTarget="/FR/reservation/ChoixResa.jgi
?REGION=1" /> </Box>
<Box type="horizontal" name="boxHor_R_111" id="boxHor_R_111">
<Box type="horizontal" name="boxHor_D_114" id="boxHor_D_114">
<textComponent glueHorizontal="middle" name="TextLink_115" id="TextLink_115"
defaultContent="Antwerpen" hyperLinkTarget="/FR/reservation/ChoixResa.jgi
?REGION=2"/> </Box></Box>

The size of the excerpt has been drastically reduced. Instead of 15 interaction
objects, it can now be represented thanks to five objects only. Only the two
textComponents representing the links to Brussels and Antwerp’s regions are still in
the model, and in their minimal form (as all the style attributes have been removed).
Two attributes are specified, the text of the link (defaultContent) and the targeted

Chapter 9 Validation

223

Web page (hyperLinkTarget). Another difference with the previous version is the
number of boxes. Numerous boxes have been deleted as by removing images, some
of them are left empty. These empty boxes are deleted after the parsing of the
HTML file. No special heuristic had to be used during this second reverse
engineering, as the navigation was duplicated (the image map’s links where also
displayed in their textual form). In other cases, a rule such as ‘transform image maps
into a list of links’ could have been used to keep the links in the model.

9.2.4 Case study 3: SNCB homepage

This third case study is the reverse engineering of the SNCB homepage (see figure 9-
14) available at http://www.b-rail.be/main/F/index.php. The particularity of this
case study is that the site has been reverse engineered at the two levels of abstraction,
at the CUI and AUI levels. The reverse engineering at the AUI level is not totally
finalized, and had to be completed by hand.

Figure 9-14 SNCB Homepage

At the CUI level, the UI is composed of 311 elements, mostly boxes as 126 of them
are used to describe the layout of the UI. Put aside boxes, the UI is composed of
images (47 normal images and 7 images link) and 27 textComponents. The rest of the
UI specification is composed of form elements and 17 graphicalTransitions.
The first excerpt of the UI illustrated here is the menu on top left corner of figure 9-
16, allowing the user to select another language (Dutch, German or English). The

Chapter 9 Validation

224

HTML code presented here is composed of 4 cells (td) containing one simple image
(hp_corner.gif) and three image links.

HTML code
<td><img src="../assets/images/interface/hp_corner.gif" width="21"
height="22"></td>

<img src="../assets/images/interface/bu_nl.gif" width="32" height="22"
border="0">

UsiXML CUI

<Box type="horizontal" name="boxHor_D_27" id="boxHor_D_27">
<imageComponent name="Image_28" id="Image_28" ImageHeight="22" ImageWidth="32"
defaultContent="../assets/images/interface/hp_corner.gif"/> </Box>
<imageComponent name="ImageLink_30" id="ImageLink_30" imageHeight="22"
imageWidth="32" defaultContent="../assets/images/interface/bu_nl.gif"
imageBorder="0" hyperLinkTarget="/main/N/index.php"/>
. . .
<graphicalTransition id="gt_6" transitiontype="open">
<source sourceId="ImageLink_32"/>
<target targetId="/main/D/index.php"/>
</graphicalTransition>

UsiXML AUI
<abstractContainer id="AC27" name="AC27">
<abstractIndividualComponent id="AIC28" name="AIC28">
<output id="AIC28" name="AIC28" outputContent="../assets/images/interface/
hp_corner.gif"/> </abstractIndividualComponent>
</abstractContainer>
<abstractIndividualComponent id="AIC30" name="AIC30">
<output id="AIC31" name="AIC31" outputContent="../assets/images/interface/
bu_nl.gif" />
<navigation id="AIC32" name="AIC32"/>
</abstractIndividualComponent> . . .
<auiDialogControl id="DC1" name="DC1" type="[>" >
<source id="AIC30"/>
<target id="/main/N/index.php"/>
</auiDialogControl>

The UI specification at the CUI level is composed of four horizontal boxes, derived
from the table cells. Each of these horizontal boxes contains an image. To reduce
code length, only the first cell and two first images are kept into the excerpt of
specifications. The first image does not posses a hyperLinkTarget as it is a simple
image. The three other images (only one is shown) posses this attribute and are
linked with a graphicalTransition. An example of these graphicalTransitions is shown
for ImageLink_32 with the URL to which the image give access.
The same structure of specification can be found at the AUI level, presented after
the CUI specification. Each cell is represented by an abstractContainer at this level.
Each abstractContainer is composed of an abstractIndividualComponent, which are the
abstraction of images. An abstractIndividualComponent (AIC) represents a widget of
the user interface, and has between one and four facets (input, output, navigation and
control facet). As the first image is a simple picture, only one facet is used to describe

Chapter 9 Validation

225

this component, the output facet. This output element possesses only one attribute
(put aside the id and name attributes), outputContent, which plays a similar role as the
defaultContent attribute of the CUI model. The next image is an image link, and this
is represented by the addition of a navigation facet to the AIC. This navigation is then
defined at the end of the model in the auiDialogControl element. This last element
contains three different information, the id of the source (here the navigation id from
the first image contained in a link) and the URL or name of the link’s target so as the
type of dialog control. Types of dialog controls are specified thanks to LOTOS
operators. In the present case, the specified symbol is [>, meaning that the current
specification is disabled if the transition is triggered.

The second example is a small part of the form at the bottom left part of the UI.
This excerpt is composed of a label and two drop down list boxes allowing the user
to select a time. The second part of this example contains two radio buttons,
permitting the user to define the previous time as an arrival or departure time. Table
structure and options of drop down list boxes have been removed to clarify the code.

HTML code
Heure <select class='copy' type='text' name='TravelHours'>
<option value="00" >00</option>
<option value="01" >01</option> ... </select>
<select class='copy' type='text' name='TravelMinutes'>
<option value="00" >00</option>
<option value="05" >05</option> ... </select>

UsiXML CUI

<textComponent name="text_169" id="text_169" defaultContent="Heure" />
<comboBox>
<item name="item_173" id="item_173" defaultContent="00" />
<item name="item_174" id="item_174" defaultContent="01" /> ...
</comboBox>
<comboBox>
<item name="item_197" id="item_197" defaultContent="00" />
<item name="item_198" id="item_198" defaultContent="05" /> ...
</comboBox>

UsiXML AUI
<abstractIndividualComponent id="AIC211" name="AIC211">
<output id="AIC212" name="AIC212" outputContent="Heure"/>
</abstractIndividualComponent>
<abstractIndividualComponent id="AIC214" name="AIC214">
<output id="AIC215" name="AIC215" outputContent="../assets/images/interface/
transparant.gif />
</abstractIndividualComponent>
<abstractIndividualComponent id="AIC217" name="AIC217">
<input id="AIC217" name="AIC217" actionType="SelectTravelHours" actionItem=
"attribute value" dataType="integer" inputMaxCard="1" inputMinCard="1">
<selectionValue name="00" />
<selectionValue name="01" />... </input> </abstractIndividualComponent>
<abstractIndividualComponent id="AIC218" name="AIC218">
<input id="AIC219" name="AIC219" actionType="SelectTravelMinutes" actionItem=
"attribute value" dataType="integer" inputMaxCard="1" inputMinCard="1">
<selectionValue name="00" />

Chapter 9 Validation

226

<selectionValue name="05" />... </input> </abstractIndividualComponent>
 HTML code

<input type="radio" name="DateModee" value="depart" checked>Départ
<input type="radio" name="DateModee" value="arrive" >Arrivée

UsiXML CUI

<radioButton name="radioBt_215" id="radioBt_215" groupName="DateModee"
defaultState="checked" />
<textComponent name="text_216" id="text_216" defaultContent="Départ"
textSize="8" texfFont="sans-serif" textColor="#000000" />
<radioButton name="radioBt_217" id="radioBt_217" groupName="DateModee" />
<textComponent name="text_218" id="text_218" defaultContent="Arrivée" />

UsiXML AUI
<abstractIndividualComponent id="AIC231" name="AIC231">
<input id="AIC232" name="AIC232" actionType="SelectDateModee"
actionItem="attribute value" dataType="string" inputMaxCard="0" inputMinCard="1">
<selectionValue name="Départ"/>
</input> </abstractIndividualComponent>
<abstractIndividualComponent id="AIC233" name="AIC233">
<output id="AIC234" name="AIC234" outputContent="Départ" />
</abstractIndividualComponent>
<abstractIndividualComponent id="AIC235" name="AIC235">
<output id="AIC236" name="AIC236" outputContent="Arrivée" />
</abstractIndividualComponent>
<abstractIndividualComponent id="AIC237" name="AIC237">
<input id="AIC238" name="AIC238" actionType="SelectDateModee"
actionItem="attribute value" dataType="string" inputMaxCard="0" inputMinCard="1">
<selectionValue name="Arrivée"/>
</input> </abstractIndividualComponent>

The first element is a simple text node which is derived into a textComponent. The
two drop down list boxes (two <select> tags) are abstracted into comboboxes in
UsiXML. Each choice, represented by the <option> tag in HTML, is translated by an
<item> element appended as child of the combobox in the CUI model.
The second part is composed of four components, two textComponents and two
radioButtons. The name attribute in the HTML code is translated into the groupname
attribute of radioButtons in UsiXML. As the first radio button in HTML has the
checked attribute in its attributes list, its abstract representation also possesses the
defaultState attribute set to checked.
At the AUI level, the “heure” label is derived in an AIC with an output facet. Select
nodes are reverse engineered as two AIC equipped with an input facet to represent
these two drop down list boxes. The input facets possess five specific attributes
inputMaxCard="1" inputMinCard="1" actionType="SelectTravelHours (minutes)",
actionItem="attribute value" and dataType="integer". The inputMaxCard and
inputMincard attributes define the number of items that the user can pick for this
input element. Both take the value “1” as it is derived from a select tag without the
multiple attribute. ActionType is composed of the type of input, a selection action, and
the HTML’s name of the components (TravelHours). The fourth attribute is
automatically generated, and signifies that this input will set a value to an attribute

Chapter 9 Validation

227

(which is the case for every <input> node except <input type=“button”>). The last
attribute is the type of data that this attribute will hold. The <option> elements from
the HTML source code are derived into <selectionValue> elements at the AUI level.
These elements have an attribute name that contains the text node of the HTML’s
option tag, and are appended as children of the input elements.
The radio buttons in the second row are also derived into AIC with an input facet. As
the HTML code follows a structure of the type label-radio-label-radio, the AUI
specification is composed of four AIC equipped with an output and input facet
alternatively. The two inputs have exactly the same attributes: actionItem= "attribute
value" which is automatically added, the dataType attribute is set to a “string” value as
the choices let to the user contains non-numeric values, and the actionType is set to
“selectDatemodee” which is the name of the <input> tags in the HTML code. For
these elements, minimal and maximal cardinalities are 0 and 1. Each input is the
parent of only one child selectionValue element (‘depart’ and ‘arrive’ respectively).
The AUI model of this second example has been used as input in IdealXML (see
appendix E) to illustrate by a graphical representation the output of this case study
(see figure 9-15). The figure represents the eight AIC of the previous specification
(one AIC representing a blank image –AIC214- is not shown in the code excerpts),
displayed on two different rows which are represented by abstractContainer. These
two rows are themselves embedded in another abstractContainer (containers AC210,
AC211 and AC231 have been removed in the code of the last example).

Figure 9-15 AUI model of the case study in IdealXML

Chapter 9 Validation

228

9.2.5 Conclusion for external validation

The external validation is divided into two distinct parts, an exploratory study and
the presentation of several case studies. These studies replaced an evaluation by UI
designers, as the resources required for this kind of investigation are too important
(costs, availability of designers…)
The exploratory study results can be characterized by the following properties: the
flexible reverse engineering was very helpful for students, as it saved lots of efforts
and time in the reengineering process (especially compared to the task of generating
the UI for pocket pc and mobile phones from scratch) thanks to the production of
correct and predictable results. Predictability is defined here as the possibility to
foretell the results of the application of a specific reverse engineering (i.e. with a
given configuration of derivation rules). The reverse engineering model could not be
used directly in a forward engineering tool as student had to apply some
transformations manually, but retargeting made the process easier by avoiding
deleting elements and attributes manually and by applying already some
transformations. However, several modifications requiring human analysis had to be
achieved before the forward engineering phase.
Case studies illustrated the reverse engineering of the most common elements
belonging to the HTML language thanks to the analysis of various Websites. It also
showed concretely some limits of the tool, such as the loss of a part of navigation by
ignoring JavaScripts and Flash components (shortcomings of ReversiXML are
discussed in details in section 6.4.5). The results of the first case study were also used
to apply a complete reengineering with two different tools, Teresa and QtkXML. The
results of the reengineering were acceptable as the produced UI were very similar to
the original ones. Teresa produced a UI in XHTML designed for pocket PC and
QtkXML generated several UIs in the Qtk format. Some errors/shortcomings still
remain in the produced UIs, but the losses are very minor and usual users of the
Website would recognize the original UI instantly.
The second case study emphasized the flexibility and controllability of the approach.
It was realized by illustrating and comparing the results obtained with a full reverse
engineering and a reverse engineering customized for mobile platforms. The case
study showed how the box structure, elements and attributes were simplified in the
lightened model, reducing the model size to 33% of its original size. Such a
simplification would help designers greatly by reducing the cognitive load and
amount of work needed to accomplish this step as only elements/attributes available
on the target platform are kept in the model.

Chapter 9 Validation

229

The last case study focused on the comparison of the AUI and CUI levels,
demonstrating the tool capability to recover models at different levels of abstraction
(the AUI level is not completely implemented for the moment). The case study
demonstrated the feasibility of a complete reverse engineering at this level.

9.3 Comparison with the state of the art

9.3.1 General comparison

This section compares the current approach and the state of the art of the Web
reverse engineering (section 3.2) following five properties, the abstraction level, the
output languages, the flexibility/controllability of the process, the human
intervention and the fact that the process is achieved statically or dynamically.

Abstraction level. First of all, the abstraction levels reached by our approach are the
CUI and AUI, and none of the current approaches is able to recover the AUI level.
However, WebRevenge, RE of Click’s end-user applications and Tamex are able to
reverse engineer a model at a higher level of abstraction, the task model, but in
Webrevenge and Click’s RE, it is only achieved for a redocumentation purpose or for
the evaluation of the usability of the Web site. Tamex exploits this level to merge the
information contained in several Web pages into one resulting UI. Several
approaches stay at the FUI level (Digestor, MTA, ADAPT, the transcoding approach
to VoiceXML) as these approaches translate UI code into another UI code without
any abstraction. Approaches such as AWT2XIML, Revangie, ReWeb, PIMA, WARE
and RE of Click’s end-user applications are able to recover a model at the CUI level,
which is the most common level reached by reverse engineering approaches in MBA.

Output languages. The results of our approach can be reused in a variety of other
tools (see appendix E which is not exhaustive), and more particularly with other
forward engineering tools, allowing to produce Qtk (with QtkXML) and XHTML
(with Teresa) code, and in a near future Java and XUL (the code generation in these
languages is currently implemented in Grafixml). Several approaches are
redocumentation tools, such as WARE, WebRevenge, the RE of Click’s end-user
applications or Revangie, allowing only an indirect reuse of the results. The other
approaches have a limited scope, as MTA generates WML, AWT2XIML produces
simplified AWT UI, the VoiceXML transcoder outputs VoiceXML, and ReWeb,
Digestor, Tamex and ADAPT are only able to generate HTML. PIMA is maybe out
of this remark, but this project is not advanced enough to define its scope. As stated

Chapter 9 Validation

230

in chapter 3, the reusability of the results of these tools is questionable, as these
approaches are implemented for a limited scope of input and output languages.

Flexibility and controllability. Our approach is characterized by a high level of
controllability of the reverse engineering process: each reverse engineering derivation
rule and retargeting operation can be selected by the designer. The vast majority of
reverse engineering approaches abstracts the source UI without alternatives.
However flexibility is introduced in some approaches such as MTA, ADAPT and
Digestor, but in those cases, the designer can only control few groups of rules, the
controllability of the process is not achieved to the same extent than in our approach.

Human intervention. The level of human intervention for ReversiXML can vary
between no intervention, in an automatic process with a selection of retargeting rules
based on the connected platform, and a low level, as the designer can fine tune each
reverse engineering rule before he launches the process. Moreover, as shown in
section 9.2.1, the model should be edited afterwards before the forward engineering
process in order to obtain UI of better quality, and therefore, we can consider that
the level of human intervention required by our approach ranges between none and
moderate. This property is similar to the approach developed in Revangie, in which
the level vary between no and high as the designer can let the tool automatically
produce results or follow and intervene in each step of the process. As in
ReversiXML, the quality of the results is often proportional to the level of
intervention.
For several approaches (MTA, Digestor, VoiceXML transcoder, the ADAPT and the
VoiceXML transcoder, WebRevenge), no human intervention is needed and the
results can directly be used on the target platform. In PIMA and the RE of end-user
applications, a low level is needed: PIMA requires a feedback mechanism allowing
the designer to resolve ambiguities in the inference of semantic information and the
RE of end-user applications requires some user inputs to record interaction traces.
ReWeb, WARE and Tamex need a moderate human intervention, the user has to
specify the inter-pages transformations in ReWeb, use cases have to be defined
manually in WARE and the domain extraction step has to be achieved by the
designer in Tamex. Finally, AWT2XIML needs a high level of human intervention,
as the designer has to code some parts of the target UI manually.

Static/dynamic. The approach developed in this thesis has been designed to be
used statically and dynamically, similarly to WARE and PIMA. This has been done to

Chapter 9 Validation

231

let the possibility to use the tool automatically at run-time, or manually at design-
time. The majority of the other approaches are dynamic approaches, as they apply
the reverse engineering (or reengineering/transcoding) on demand at run-time. This
is due to the fact that these approaches require none or a low level of human
intervention, that the controllability of the process is almost inexistent and that the
problem they solve is to make a requested HTML UI accessible to another (class of)
platform(s), without having to reverse the Web site entirely. Therefore, the dynamic
process is more appropriate for these approaches.
Four approaches can only be used statically (WebRevenge, ReWeb, RE of Click’s
end-user applications and AWT2XIML), as all these tools except AWT2XIML,
produce documentation and the dynamic aspect would not bring benefits to the
process. The two other redocumentation tools (Ware and Revangie) need dynamicity
as they target dynamic form-based Websites, in which user inputs modify the UI
drastically.

9.3.2 Comparison with a transcoding approach

This section compares some properties of our approach and the transcoding
approach in ADAPT (section 3.2.8). This transcoding process allows regenerating
HTML pages adapted for a PDA or a similar mobile platform. One of the strengths
of the approach is that the system allows choosing the navigation pattern for the new
system, providing thus some flexibility. Some of the navigation patterns are shown
on figure 9-16 and examples for the summary pattern (left) and tree pattern (right) on
the CNN Website are illustrated on figure 9-17.

Tree Summary Links

Figure 9-16 ADAPT’s navigation patterns

Chapter 9 Validation

232

 Figure 9-17 Navigation patterns on the CNN Website

Other transformations applied by the tool are mainly composed of text elision, image
reduction/transformation, layout modification and redistribution of the UI on
several windows according to the navigation pattern.

As the two approaches produce different results - a concrete or abstract UI for
ReversiXML and a set of HTML pages with ADAPT -, they are not directly
comparable. However, a comparison based on the shortcomings of the approaches,
on the performance and the size reduction of the original UI can be achieved.

Limitations. Table 9-3 summarizes the limitations of both approaches. Similarly to
ReversiXML, the process of adaptation can not handle scripts, cookies, complex
style sheets (whereas ReversiXML do not processes style sheets at all) and absolute
positioning. This last limitation could be included in the style sheet support
limitations, as absolute positions can only be specified in style definitions. Flash
components are simply ignored in ADAPT, but they can be recovered in
ReversiXML. ReversiXML can not reverse engineer pages with limited accessibility
(i.e. users have to connect the site with a standard browser, the server do not allow
Web crawlers/spiders to access the Web site) whereas ADAPT overcome this
limitation. Finally, ADAPT supports forms and frames partially, as the tool may
generate errors for pages containing those types of components. ReversiXML
supports these two types of elements during the reverse engineering without errors.

Chapter 9 Validation

233

ADAPT REVERSIXML
Javascripts Not supported
Required use of cookies Not supported
Flash components Supported
Complex style sheets (.CSS) Style sheets not supported
Absolute positioning Not supported
Supported Pages with restricted accessibility
Partial limitation with frames Supported
Partial limitation with forms Supported

Table 9-3 Limitations of ADAPT and RevesiXML

As one can see, the limits related to the elements/concepts not covered by the
approaches are almost similar.

Performance. The performance analysis is based

- For ADAPT: on the time required by the tool to download the code of the
Web page and to adapt this page into a Web page suited for a PDA thanks to
XSLT transformations.

- For ReversiXML: on the time needed to download the Web page, save it on
the server, load the configuration file (if any), apply the reverse engineering
accordingly, save and display the results of the reverse engineering.

The two processes are thus quite different, in the steps they follow and in the
outputs produced by the two tools. The time needed to generate the HTML code is
less than one second, but ADAPT also adapts the original images (it converts the
image to a supported format, reduce the number of colors and scales it down), and
by adding the time needed for these operations, the total time required is about 5
seconds (20 seconds if ADAPT do not use a caching mechanism). This time is
comparable to the time required by ReversiXML to generate a CUI model suited for
mobile platforms (5.46 seconds in average, in the last column of table 9.1). However,
this model still needs to be forward engineered, thus we can conclude that the time
required to reengineer the UI completely by our approach is at least two times longer
(and would be probably more than that). This is not a surprise, as transcoding
approaches are designed to support only one output language, and thus the process is
optimized for this purpose. The time required to process the original UI is also one
of the most important properties of transcoding approaches, whereas in MBA this
factor is less important (this feature could still be enhanced in ReversiXML).

Chapter 9 Validation

234

Size reduction. As we can not compare directly the size reduction realized by
ReversiXML and ADAPT, we will use the following simplification: the size reduction
with ADAPT will be measured by the difference between the adapted page and the
original page and for ReversiXML, the measure will be the difference between a
model produced without retargeting, and one with retargeting. The size reduction in
ADAPT is dependent on the type of navigation pattern chosen. Table 9-4 contains
the comparison between navigation pattern producing the minimal and maximal size
reduction, and the average size reduction with ADAPT. The last column is the size
reduction achieved by ReversiXML between the two CUI models (which has already
been measured in table 9-1).

 Min. ADAPT Max. ADAPT Average

ADAPT
Average
ReversiXML

Size reduction 35% 90% 70% 25%
Table 9-4 Size reduction with ADAPT and ReversiXML

As shown in this table, the extent of the size reduction varies greatly, as it is only
35% with the single page navigation pattern and 90% with the tree navigation
pattern. The average between the six navigation patterns is about 70 % of the original
HTML page whereas the size reduction of ReversiXML is around 25%. Thus the size
reduction achieved by ReversiXML is a bit more than 1/3 of the ADAPT reduction
process, but as stated in the performance analysis, the ADAPT transcoding is only
targeted for PDA UI, and is therefore optimized for this objective. In contrast,
ReversiXML’s flexible reverse engineering was designed to accommodate other types
of target platforms, and thus retargeting is obviously less efficient than for a
dedicated approach. Moreover, these percentages must be interpreted cautiously as
they are not based on the same outputs.

9.3.3 Conclusion of the comparison with the state of the art

This section compared the approach presented in this thesis with the approaches of
the state of the art. There are two major differences with the current approaches:
- the level of flexibility and controllability of our approach is not reached by any other
approach, even if some of them let the designer select between some alternatives in
the output of the process (e.g. the navigation patterns of ADAPT).
- The scope of our approach, combined with the various UsiXML forward engineering
tools, is more extended than the current reverse engineering/reengineering or
transcoding approaches.

Chapter 9 Validation

235

The deepened comparison of our approach with the ADAPT tool allowed us to state
two conclusions, firstly that the limitations of the two approaches are similar, as the
concepts/elements not analyzed are almost identical. No solutions were found in
ADAPT to process them too, reinforcing the idea that the trade-off between cost
and coverage of these elements is disproportionate and that these elements should be
the subject of a separate study.
Secondly, that ADAPT is more efficient than ReversiXML if we achieve a
comparison of these two approaches based on technical parameters (size reduction
and process time). This conclusion is normal as ADAPT has been designed and
optimized to transcode HTML to be rendered on PDA screen only, whereas the
flexible process of ReversiXML can be modified to target a variety of platforms.

9.4 Conclusion

This chapter validated the approach theoretically in the first section, by evaluating the
coherence, performance, correction and coverage of the reverse engineering of
HTML UI. This allowed us to show that the objective of controllability, flexibility,
generality and predictability are theoretically fulfilled by the approach.
The second section validated the approach empirically, thanks to case studies and an
exploratory study, allowing us to demonstrate various techniques of reverse
engineering applied on different web sites and that the flexible reverse engineering
was useful for the users, as it saved lots of efforts and time in the reengineering
process.
Finally, our approach was compared with similar studies/tools aiming the reverse or
reengineering of HTML pages. On this subject, it can be stated that our tool has
several advantages over other tools: the flexibility of the process is not reached by
any other approach, and the use of the retargeting concept allows combining some
advantages of MBA and transcoding. Indeed, rather than applying “context-free”
derivation rules, rules can be selected to accommodate a particular context of use and
thus benefit from a gain of precision for the produced abstract model, while
preserving an abstract layer. On the other hand, transcoding tools produce results
that can be rendered on the targeted platform without any further modification (i.e.
maximal precision in the transformation), but by the fact that no abstraction is
achieved, the results and the approach can not be reused for another purpose. As
shown in section 9.3.2, performance and efficiency is superior for these tools as these
parameters are of first importance for transcoding approaches.
The same generality limitation has been observed with MBA tools as most of these
tools have a limited scope. One or two contexts of use are targeted by these

Chapter 9 Validation

236

approaches, and the underlying abstract models/languages have been most of time
achieved for a single purpose (“private” models). For the purpose of reengineering,
our approach has thus some advantages, but approaches such as Reweb, WARE or
Click’s RE offer more possibilities for maintenance and documentation. These
approaches propose specialized features for these objectives, as they allow to
compare various versions of the Website, or to have a global overview of the website
structure (database links, navigation plan …).
A final conclusion can be made about difficulty to generalize the tool support for
reverse engineering, by observing the amount of coexistent reverse engineering tools.
Indeed, this amount demonstrate the impossibility to produce a generic reverse
engineering tool – it does not exist in the scientific or commercial domain – as the
variety of modalities, interaction techniques, platform capabilities and objectives of
the process itself imply that the reverse engineering problem is very difficult to
generalize.

Chapter 10 Conclusion

This chapter concludes this thesis, by summing up the main contributions of this
research (section 10.1), discussing its results (section 10.2) and finally by presenting
some relevant future work which could bring this problem to new frontiers of
solutions (section 10.3).

10.1 Contribution

The main contributions of this thesis can be classified into four categories defined
according to the fundamental aspects they handle [Long96]:

1. In the conceptualization:

• The development of a flexible and dynamic method thanks to a model-based
approach addressing the problem of declarative UI reverse engineering
process for the case at hand, and permitting the reuse of the produced
models for the generation of several UIs at a level of generality that is not
reached by other approaches.

• The positioning of this approach in a conceptual framework elaborated in the
Cameleon research project (section 2.1), which has been continuously be

Chapter 10 Conclusion

238

used throughout this thesis, as well as for defining concepts, notations, and
rules, but also for the state of the art.

• The adaptation of the reverse engineering definitions to the UI domain and
the positioning of these definitions in the conceptual framework (section
2.2).

• The development of the retargeting concept (section 2.3) and some
retargeting rules (appendix G), a new method for the reverse engineering of
user interfaces that uses design knowledge particular to platforms to select
the most suited reverse engineering derivation rules [Boui02b].

• The constitution of a state of the art in reverse engineering for legacy UI
(section 3.1) and for HTML files (sections 3.2), concluded by an analysis of
limitations of the current approaches by observation.

• The identification of shortcomings of the output language to represent
important information from the analyzed UIs (graphical and vocal) that led
to modifications of the UsiXML language.

• The specification of meta-models illustrating the complete structure of
XIML, HTML, WML, VoiceXML, Windows resources files in UML class
diagrams, allowing a common representation of the source and target
languages (appendix A and B). Note that most of these meta-models did not
exist before (at least, we were not aware of any such meta-models) and that
this already represents some contribution per se, independently of the UI
reverse engineering. But this step was required in order to establish semantic
correspondences between the meta-models of the source and the target
languages (e.g., HTML and XIML, HTML and UsiXML, WML and UsiXML,
VoiceXML and UsiXML).

• The development of derivation rules based on these meta-models for HTML
(section 6.3), WML (section 7.1.3), VoiceXML (section 7.2.3), Windows
resource files (8.3) completed by appendix C. Derivation tables for HTML
towards XIML presentation model where also described in section 5.3.

2. For the operationalization:

• Vaquita [Boui01, 02a, 02b, 2c, Vand01], a tool (illustrated in chapter 5)
allowing the static flexible reverse engineering of HTML files into an XIML
presentation model.

• ReversiXML [Boui05], an online tool described in chapter 6, allowing the
flexible reverse engineering of HTML files into a CUI or AUI model
expressed in a second language, UsiXML. The tool is able to detect some

Chapter 10 Conclusion

239

parts of the context of use, allowing the selection of the best configuration
file based on this information.

• A prototype (implemented by a student in [Cui05] and presented in chapter
7) of reverse engineering tool able to extract a CUI model from WML files.

• A set of guidelines [Mari05] for the implementation of a plug-in incorporated
in GrafiXML to reverse engineer Windows resource files.

3. In the test phase:

• The validation of the proposed method against four criterion (coverage,
correction, coherence and performance) allowing validating theoretically the
thesis statement (section 9.1).

• An exploratory study realized by 17 students describing a qualitative
evaluation of the produced models, the tool, and the advantages of using
retargeting in a reengineering process (section 9.2.1). This investigation,
combined with case studies, completed the external validation of the thesis
statement.

• The illustration of the different reverse engineering techniques elaborated for
HTML on three case studies of various complexities (section 9.2.2) so as
example of the application of derivation rules for WML, for VoiceXML and
for Windows resources files (appendix H).

• A comparison of the approach presented in this thesis with the ADAPT
transcoding approach (section 9.3.2).

• An investigation of the full reengineering by combining the results of
ReversiXML with TeresaXML and QtkXML (section 9.2.2). Reengineering in
a virtualization process is also described in section 5.1.4. This process
produces a VRML file based on XIML specification that was recovered from
an HTML file [Boui04].

4. For the last step of generalization:

• A semi-formal notation allowing expressing reverse engineering derivation
rules (chapter 4 and appendix C) for various source UIs.

• A generalization of the reverse engineering method thanks to an analysis of
the process applied to a large scope of UI and the identification of common
sub-problems to be achieved in order to complete UI reverse engineering
(section 4.6).

Chapter 10 Conclusion

240

10.2 Discussion

10.2.1 Thesis statement

The thesis statement is re-examined and commented in this section. The thesis
statement is that “the application of the reverse engineering at a higher level of abstraction than
the code level supports UI reengineering with flexibility while preserving predictability, more
generality and controllability, in the process than with code-to-code (transcoding) approaches or
current reverse engineering approaches.”

State of the art (chapter 3) allowed us to identify shortcomings of current
approaches. The approach, the model, and the supporting tools presented in this
thesis are different from existing work in the sense that it does not consider the pair
fixed (source platform, target platform). Many models and tools exist that translate
one UI to another one or multiple UIs for fixed pairs. When there is a need to
consider multiple target computing platforms, the ad hoc approach no longer
remains a viable approach. Therefore, manipulating the UI at a higher level of
description than merely the code level is to be expected.
Moreover, platform to platform tools usually support limited conversion and
application of rules and heuristics in a very rigid way. In contrast, we presented an
approach that reverse engineers web pages (or other types of UIs) to a level where it
can be regenerated for itself or for other computing platforms.

Advantages resulting from composing UI reverse engineering, logical translation, and
forward engineering are:

• Generality: starting from a UI specification expressed in various languages, a set
of heuristics and derivation rules are selectable, allowing designers to explore
alternative design options that would be otherwise impossible or hard to cover
at the code level. Similarly, once an abstract UI is obtained, it can be submitted
to any set of transformations in the logical translation thanks to
TransformiXML (appendix E) to accommodate to the target platform. This
process is no longer specific to any source-target pair. It could be argued that
the translation achieved by TransformiXML could replace retargeting
operations, but the tool is only able to process translation based on UsiXML
specification, whereas ReversiXML can use additional information coming
from the source language (and not covered by UsiXML) to apply retargeting.

• Flexibility: the reverse engineering process can be parameterized to reverse
engineer only those UI elements of interest and rejecting those not concerned.

Chapter 10 Conclusion

241

It allows reducing the model’s size and complexity, thus facilitating the
translation process for the designer.

• Controllability: the developer can control the process both in the reverse
engineering and in the translation or during the composition of these two
processes, the retargeting. This allows to fine tune the process precisely thanks
to a transparent system, and this at every step of the reengineering, rather than
having a “black-box” reengineering in which the designer can not change
anything and obtain fixed results.

• Predictability: thanks to coherent derivation rules producing correct models, the
designer can foretell the results of the application of a specific reverse
engineering process (i.e. with a given set of derivation rules). In forward
engineering, it is possible to improve this predictability property by adding a
preview of the UI that will we generated thanks to the models. It is difficult to
realize the same with reverse engineering. An illustration of the possible design
option could be added to the current approach, but it would be intrinsically
hard to achieve a similar predictability functionality in a reverse engineering
process.

10.2.2 The reverse engineering sub-problems

Derivation rules have been grouped by objective in section 4.6 in order to identify
common reverse engineering sub-problems to be achieved to recover a complete
CUI model in UsiXML. Table 10-1 describes the scope of the reverse engineering in
terms of these sub-problems for the different source languages/tools of this
research.

 Elements Attributes Dialog Layout Hierarchy MultiTree Retargeting
Vaquita ✔ ✔ ✖ ✖ ✔ ✖ ✚

ReversiXML ✔ ✔ ✚ ✔ ✔ ✔ ✚

WML ✔ ✔ ✚ ✔ ✔ ✔ ✖

VoiceXML ✔ ✔ ✚ ✔ ✔ ✔ ✖

RC files ✔ ✔ ✖ ✖ ✖ ✖ ✖

✔= totally covered ✖=not covered ✚= partially covered
Table 10-1 Coverage of the reverse engineering sub-problems for the different source UI

These sub-problems are the detection of UI elements, the recuperation of attributes,
the recovery of the general layout or the temporal sequence of the UI, the capture of
dialog, the hierarchy identification, the binding with other models (multiple trees

Chapter 10 Conclusion

242

transformations) and retargeting operations. This last category is special in the sense
that it is not needed to recover an abstract specification from a declarative UI, but
was added as it allows to obtain an abstract model for another context of use and
several derivation rules are defined in this research to achieve this aim. Three cases
are possible for each dimension: either the dimension has been entirely covered,
partially covered or not covered at all.

The first approach, concretized by the implementation Vaquita, is a simplified
reverse engineering, as it allows a partial recovery of the presentational aspects of the
UI. Dialog, layout and multiple trees (files) sub-problems are not achieved, but some
retargeting operations are already applied in this study.
The second approach, operationalized with ReversiXML, covers all the reverse
engineering sub-problems, but two of them are incompletely covered: dialog, as
imperative languages embedded in HTML allowing to put dynamicity in Web pages
are not analyzed, and retargeting operations, as this kind of operations has been
defined for several cases but could be extended significantly.
Reverse engineering of WML and VoiceXML share similar properties. Both
approaches cover the entire reverse engineering problem, but dialog is only partially
recuperated for the same reason than for the HTML. Moreover, control flow in
VoiceXML can be modified thanks to tags defined in the language (no scripts are
needed for standard operations), and all this information can only be covered
partially in the CUI model. This is due to the fact that conditions are hard – if not
impossible- to express in UsiXML, as one of the methodological choices realized
when designing the language was to cover only declarative parts of the UI.
Retargeting issues were not covered for these two analyses.
Finally, the study of the resource script (RC) reverse engineering was, as for Vaquita,
simplified as only elements and attributes categories were treated. Dialog and
multiple trees transformations are out of scope, as they are not recoverable thanks to
a static analysis of the resources files. Layout and hierarchy detection sub-problems
need a very complex solution to be achieved, as absolute coordinates are used to
describe element positions and several burdens complicate the problem (see section
8.1). The retargeting operations were also not covered in this approach.

Thanks to this table, the various sub-problems of the reverse engineering can be
ranked following their intricacy, by analyzing the least covered subjects. The most
complex reverse engineering sub-problem is the recovery of the dialog components
of a UI specification. This is due to two difficulties: firstly dialog is often specified in

Chapter 10 Conclusion

243

another language or in the functional core of the application, thus not reachable or
not covered by the working hypothesis of this research, and secondly it is hard to
specify the behavior of UI at an abstract level. Indeed, the limit between dialog
belonging to the core of an application (i.e. implementing functionalities of the
information system) and dialog specific to the UI is difficult to define, and
abstracting UI behavior for several types of source languages is a complex task
without falling in a too descriptive specification of the dialog (i.e. reinventing a script
language).

Another reverse engineering sub-problem that was not fully achieved in most of the
approaches is the retargeting sub-problem. Some operations of this type have been
defined and implemented as a proof-of-concept, but this type of research is also
conducted in [Flor06] and could be integrated in the current approach.
Finally, the recovery of the layout and hierarchy of UI components can be
considered as relatively difficult sub-problems as it requires complex algorithm to be
achieved.

10.2.3 Results of reengineering

Several complete reengineering were applied thanks to results of the approach
designed in this thesis. Complete reengineerings are mentioned in table 10-2 which
contains the tools and the target language of these reengineerings.

Vaquita + Envir 3D VRML
ReversiXML + Teresa XHTML for Pocket PC
ReversiXML + QtkXML QTK
ReversiXML + Grafixml UI preview
WML RE + Grafixml UI preview

Table 10-2 Complete Reengineering

The first reengineering was achieved by using Envir3D to generate VRML UIs
(chapter 5). Several modifications had to be applied to the model produced by
Vaquita to accommodate the 3D in XIML, i.e. by adding 3-dimensional positions to
elements in the specification. This was done manually, but this translation step could
be easily automated. ReversiXML was used in conjunction with three other tools,
QtkXML to produce Qtk UI code, Teresa to create XHTML UI designed for mobile
platforms (chapter 9). The results produced by ReversiXML could be reused directly
in QtkXML while the results were modified in Teresa in order to redistribute widgets

Chapter 10 Conclusion

244

on several windows. ReversiXML’s output was also used with Grafixml (section 9.2),
but only to have previews of the UI corresponding to the model, as the tool is not
able to generate final UI code. The same was realized with the prototype of WML
reverse engineering tool (see section 7.4).
These five different cases allowed us to demonstrate the feasibility of a UI
reengineering based on the flexible reverse engineering presented in this dissertation.

10.2.4 Limits of the approach

The approach presented in this thesis suffers from several limitations and the most
important of them are listed here.
The retargeting concept offers some benefits already discussed in chapter 2 but
introduces also limitations at the conceptual level, i.e. a reduction of generality and
maintainability of the models produced compared to a traditional approach and
MDA. The separation of concerns, i.e. the fact that abstraction and translation are
distinct and cleanly separated processes, is also lost, so as the independence principle.
Therefore, the possible reuse of the produced models for other purposes than the
first(s) targeted UI is reduced by using this technique.
The notation is limited for declarative UI only, that can be represented in a tree
structure and using a straightforward control flow. For example, the Windows
resource files are not structured as trees, and have to be modified so that they can be
represented in such a type of structure. But other cases could exist were such
transformations are impossible, and thus the notation would not hold for those
cases.
The dialog aspects of UI are not recovered in this thesis, as stated in section 10.2.2.
This is an important limitation of the current approach, as some significant parts of
the UI are sometimes only available through a dynamic behavior of the UI.
Therefore, the proposed approach is more adequate for the reverse engineering of
static UI.
The automation of the reverse engineering process produces UI that can be used
in forward engineering to produce a new UI, but maybe not a usable UI. Therefore,
models generated by our approach should be edited afterwards to enhance the
quality of the final UI. External validation showed us that several modifications had
to be applied afterwards to obtain a UI usable on mobile phones or pocket pc. This
observation holds also for most of the approaches of the state of the art, as a large
amount of the tools require a human intervention to refine the results of the
automated process.

Chapter 10 Conclusion

245

The graphical and vocal modalities dependence of the sub-problems identified
in section 4.6, as these categories are particularly relevant for these modalities. Other
modalities, such as 3D UI or tactile UI may be decomposed into other types of sub-
problems. It does not mean that the identified categories would all be invalid, but
they would be probably augmented or modified according on the targeted type of
modality.
The static reverse engineering of UI implies a loss of information, as some part of
the model could only be recovered by a dynamic analysis. For example, the
conclusion of chapter 8 shows some limitations of static analysis. In this example,
some part of the UI are specified in the functional core (such as button’s labels,
images, …) and can not be reached by a static analysis. To overcome this limitation, a
dynamic analysis should be used, or technique similar to TAP, to recover the missing
information at run-time.

10.2.5 Compliance with MDA

MDA (model-driven architecture) is a major trend in software engineering. It
regroups several important organizations (such as SAP, Nokia, Motorola, some
universities …) and aims at the standardization of methodologies and specification
based on models. MDA supports the development of complex, large, interactive
software systems providing a standardized architecture. MDA do not focus
particularly on UI, but on all the various components of information systems.
Four principles underlie the OMG’s view of MDA [Moll04]:
1. Models are expressed in a well formed unified notation and form the cornerstone
to understanding software systems for enterprise scale information systems. The
semantics of the models are based on meta-models.
2. The building of software systems can be organized around a set of models by
applying a series of transformations between models, organized into an architectural
framework of layers and transformation.
3. A formal underpinning for describing models in a set of meta-models facilitates
meaningful integration and transformation among models, and is the basis for
automation through software.
4. Acceptance and adoption of this model-driven approach requires industry stan-
dards to provide openness to consumers, and foster competition among vendors.

Even if our approach and the reference framework does not conform exactly to the
MDA recommendations, which suggest the use of standards such as Corba or UML
to describe models, the compliance of our approach with MDA can be shown.

Chapter 10 Conclusion

246

Firstly, for the quoted principles, the compliance is achieved by the following way
[Vand05]:
1. UsiXML models are well-formed models based on XML schema. The semantics
of the models are based on meta-models expressed in terms of UML diagrams, from
which the XML schema is derived.
2. Model-to-model transformations are specified in UsiXML. Model-to-code
transformations are ensured thanks to a set of forward engineering tools (see
appendix E). Code-to-model transformations are achieved by derivation rules (see
chapter 4) that are based on the mapping between the meta-model of the source
language and the meta-model of UsiXML.
3. All transformations are explicitly defined, based on a series of predefined semantic
relationship and a set of the primitive ones (abstraction, reification and translation).
4. The last principle is on the way, as the potential wide adoption of the above
techniques will validate the principle.

Levels of abstraction of the reference framework are also compliant with the four
levels of abstraction, or development steps, in MDA (figure 10-1): Task and domain
level is similar to the computing independent model (CIM) - which is sometimes
called domain model - as they are stated independently of any implementation of any
interactive systems.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

CIM

PSM

Source Code

PIM

Final UI

Reference Framework MDA

Figure 10-1 Comparison of the reference framework and MDA

Such models could be specified for virtually any type of UI. The platform
independent model (PIM) is interpreted as the abstract UI model (AUI) in the

Chapter 10 Conclusion

247

reference framework, in the sense that it is independent of any interaction modality:
at this level, we do not know yet whether the UI will be graphical, modal, virtual or
multimodal. The platform specific model (PSM) is interpreted as the concrete UI
model, as it independent of any vocabulary of markup and programming language.
At this level, the modality has been selected, but we do not know which physical
computing platform will run the UI. This is why it should be believed that the CUI is
not platform specific. Only some aspects of the target platform are selected, the
platform being modeled itself in the platform model.
Levels of abstraction are not exactly the same in both approaches, as MDA is
intended to model any component of information systems whereas the reference
framework purpose is to model the development steps of UI. However, our
approach shares enough conceptual properties to be considered as compliant with
MDA.

10.2.6 Integration with other works

As stated in introduction, the reverse engineering process is a part of a larger process,
reengineering. Therefore, this work can be integrated with several other researches
(most of them are conducted at BCHI/UCL). Figure 10-2 illustrates the different
other studies or approaches covering the various steps of the reference framework.

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Task & Concepts

Concrete UI

Final UI

Reverse engineering
and retargeting

Graceful Degration, TransformiXML

Grafixml

TransformiXML

Abstract UI

Final UI

Figure 10-2 Integration with other researches

Chapter 10 Conclusion

248

The reverse engineering and retargeting processes as presented in this thesis
corresponds to the arrows starting from the final UI to the concrete UI and abstract
UI for the same context of use or for another context of use. Its counterpart, the
forward engineering process, is studied in the Grafixml project (see appendix E) and
is represented by the reification arrows from the abstract UI or concrete UI to the
final UI. Translations from one context to another are symbolized by horizontal
arrows. These steps are supported by two researches, TransformiXML (appendix E)
and the graceful degradation of UI, an approach developed by Murielle Florins
[Flor06]. TransformiXML is about translation and model transformations in general,
whereas the graceful degradation approach describes translation rules aiming a more
constraining context of use than the source one. TransformiXML can also be used to
cover the abstraction from an abstract UI to the tasks and concepts level, and the
inverse relation, from the tasks and concepts level to the abstract UI.
Finally, all these approaches can be linked with the research of Q.Limbourg
[Limb04c], about the multi-path development of UI, which describes a graph-
transformation approach between the different levels/models from the Cameleon
reference framework.

10.3 Perspectives

Several future works have been identified and are classified in terms of their
desirability and feasibility as short term and long term perspectives:

At short term:

• Extend the coverage of the reverse engineering sub-problems for Windows
UI, by developing a method allowing recovering the layout and hierarchy of
widgets composing the UI.

• Implement two new tools to reverse engineer VoiceXML and Windows
resources files, as all the material has been developed until the tool
implementation step for these languages.

• Expand the existing implementation of ReversiXML. The implementation of
the tool was stopped with the complete version of UsiXML 1.4.6. The tool
should be adapted to the version 1.6.4 of the language (this new version has
been released in March 2006)

• Moreover, the architecture of the tool was frozen in the version 1.1 and
could be developed until the version 1.2 (see appendix I).

• Integration of new reverse engineering techniques in the current methods, as
for example, the use of statistics about the composition of the UI to select

Chapter 10 Conclusion

249

more accurately the reverse engineering rules and the observation of typical
uses of the UI to complete some missing parts of the model (see section
6.4.5).

• Validate the tool and the approach externally thanks to a quantitative study,
by asking to designers to use the tool to reengineer web sites. This study
should also contain an evaluation of the reengineered sites by Web users. It is
fundamental to apply this validation with designers, but as stated previously,
their price is very expensive and it is difficult to find a significant number of
designers to conduct this study. Moreover, reverse engineering occurs
seldom, thus finding designers confronted with this kind of problem makes
this type of validation even harder to achieve.

At long term:

• The scope of language analyzed in this research is already acceptable, but
could be enlarged to take into account UI coming from other environments
such as Macintosh resource files, XUL, Cobol … This generalization should
happen at two levels. For other similar declarative languages (XUL, VB form,
etc.), several aspects of the current approach could be reused, as most of
changes would occur at the operationalization level. The notation and the
reverse engineering sub-problems as defined in section 4.6 should remain the
same, while the derivation rules would be adapted to these new types of UI.
For imperative languages, such as Cobol, the reverse engineering sub-
problems should remain valid, but would be augmented by new categories of
rules, such as state detection or control flow recovery. Another issue would
also be the link of UI specification with the old functional core. The basis of
the notation and derivation rules could be reused, but should also be
enhanced with new features specific to this new type of problem.

• Study of the reverse engineering of imperative languages incorporated in
markup-languages, in order to be able to complete dialog and maybe other
models of UsiXML specifications, by exploring possibilities of abstract
representation and pattern matching techniques.

• Integration of more retargeting rules. This part of this research need to be
enhanced, by analyzing potential target of forward engineering and adding
retargeting operations to facilitate reengineering towards these new
platforms. This task can be relatively long as possible targets are numerous,
and their number is constantly growing.

Chapter 10 Conclusion

250

• Complete the reverse engineering of the context model - coupled with an
enhancement of the WhoAmI module from ReversiXML- to increase the
quality of a reengineering adapting the UI to the context of use (i.e. not only
the platform, but also based on the user and environment parameters). The
current method would be enhanced by new retargeting operations to take
into consideration these new contexts of use.

• Analyze the application of the method developed in this thesis to achieve a
reverse engineering towards other approaches/abstract languages, such as
UIML. UsiXML and UIML have similar capacities of expression. Therefore,
the reverse engineering approach would not differ greatly, as the concepts
and reverse engineering sub-problems should remain valid. The notation
could also be reused in this objective.

• Explore the reverse engineering of UI at a higher level than the tasks and
concepts level defined in the reference framework, such as requirements
reverse engineering. This kind of study applied on the UI should not provide
the same quality of results than a requirement reverse engineering based on
the functional core, or documentation analysis as in [Reve00, Rays99], as the
UI source of information is less representative for the recovery of the
motivating requirements for the existing functionalities and components of
information systems. However this study could be an interesting subject of
research, possibly combined with a reverse engineering applied on other parts
of information systems (functional core, databases, documentation…).

Long term perspectives for reverse engineering are numerous as it will always be
a part of the engineering process of computer-based systems since the evolution
of the context of use, and more particularly of the platform parameter, is
intrinsically linked with information system (see chapter 1). Therefore, reverse
engineering will always be needed. Reverse engineering is thus a very important
technique as it facilitates the evolution of information systems, by avoiding
starting implementation of the new system from scratch and so reducing time,
costs and resources devoted to the implementation of new information systems.
Thanks to this process, existing UIs or parts of them can be reproduced on
information system using new technologies. But the quality of the results will
never be guaranteed totally and permanently, as reverse engineering will always
depend on the transformations of context of use since technology is evolving
constantly.

Chapter 10 Conclusion

251

Adaptation to a new technology is not the only case in which reverse engineering
can be a valuable process, as the technique can be used for maintenance and
redesign of existing UIs at a higher level than the code. It can also be achieved
for the reuse of UI as basis for creation, as some parts of specifications can be
the starting point for the design of new UI. Reverse engineering can aim at the
redocumentation of an information system poorly or not documented. Finally, a
methodological advantage is that it also allows recovering abstract specifications
from UI that were not designed according to a model-based approach to
incorporate them in the same pipe-line and so allowing the standardization of UI
specification and development process in an organization.

As we said in the introduction (Section 1.1), information systems will always
evolve and so does the reverse engineering problem: as long as new technologies
and new contexts of use will appear, there will be instantly new obsolete systems
that will be required to evolve. In this global process, the UI is here considered as
one component of the entire information system subject to evolution, but not
the only one. And as long as there will be some obsolete system, the reverse
engineering problem will remain equally to be solved. Outdated interaction
techniques have been modeled so that reengineering could occur by abstraction
and reification, but perhaps the current interaction techniques will become the
outdated interaction techniques tomorrow. The current UI will become archaic
in the future, but the upcoming interfaces will be even more complex to model,
to manage, and to reverse engineer as they will support many different
computing platforms, many different interaction techniques, etc. In this way, it is
likely that the main problem of user interface reverse engineering will not
become obsolete itself

252

References

A

[Addi98]

Addison W., History of the html language, 1998, available at http://www.w3.org/People
/Raggett/book4/ch02.html

[Astr05]
Astrova, I., Stantic, B.: An HTML-Form-Driven Approach To Reverse Engineering Of
Relational Databases To Ontologies. Proceedings of the 23rd IASTED International Multi-
Conference on Applied Informatics, Innsbruck, Austria (February 2005)

B

[Bana00]

Banavar G., Beck J., Gluzberg E., Munson J., Sussman J., Zukowki D., Challenges: An
Application Model for Pervasive Computing, In Proceedings of the Sixth Annual ACM/IEEE
International Conference on Mobile Computing and Networking (Mobicom 2000), Boston,
USA, 2000.

[Band05]
Bandelloni R., Mori G., Paternò F., Dynamic Generation of Migratory Interfaces, in proceedings of:
"Mobile HCI 2005 (MHCI05)",Salzburg, Austria., ACM Press ISBN:1-59593-089-2,pp. 83-90

[Barc00]
Barclay P.J. and Kennedy J., “Teallach’s Presentation Model”, Proceedings of the 5th ACM Int.
Working Conf. on Advanced Visual Interfaces AVI’2002 (Palermo, 23-26 May 2000), ACM
Press, New York, 2000, pp. 151-154.

[Beau00]
Beaudoin-Lafon M., “Instrumental Interaction: an Interaction for Designing Post-WIMP User
Interaces” in proceedings of ACM conference on Human aspects in computing systems, CHI
2000, 1-6 April, Amsterdam, ACM Press, New York, 2000, p446-453.

[Bick97]
Bickmore T.W. and Schilit B.N., Digestor: Device-Independent Access to the World-Wide-Web, in
Proceedings of 6th World-Wide-Web Conf. WWW’6 (Santa Clara, 7-11 April 1997), Elsevier,
Amsterdam, 1997.

[Bhar05]
Bhardwaj Y., Reverse Engineering End-User Developed Web Application into a Model-based Framework,
Master of Science Thesis, Virginia Polytechnic Institute and State University, May 2005,
p.106

[Bloo]
History of the html language, available at http://www.blooberry.com/indexdot/
history/html.htm

[Bohe81]
Boehm B.W., Software engineering economics, Prentice Hall, 1981

References

254

[Boeh88]
Boehm B.W., "A Spiral Model of Software Development and Enhancement." IEEE Communications
21, 5 (May 1988), pp61-72.

[Boui01]
Bouillon L., Rétro-ingénierie de Pages Web, Licence en sciences de gestion, Mémoire, Université
Catholique de Louvain, September 2001.

[Boui02a]
Bouillon L., Vanderdonckt J., Souchon N., Recovering Alternatives Presentation Models of a Web
Page with Vaquita, in Proceedings of 4th Int. Conf. on Computer-Aided Design of User
Interfaces CADUI’2002 (Valenciennes, 15-17 May 2002), Kluwer Academics Pub.,
Dordrecht, 2002

[Boui02b]
Bouillon L., Vanderdonckt J., Retargeting Web Pages to other Computing Platforms, Proceedings of
IEEE 9th Working Conference on Reverse Engineering WCRE'2002 (Richmond, 29
October-1 November 2002), IEEE Computer Society Press, Los Alamitos, 2002, pp. 339-
348.

[Boui02c]
Bouillon L., Vanderdonckt J., Eisenstein J., Model-Based Approaches to Reengineering Web Pages, in
Proceedings of 1st International Workshop on Task Model and Diagrams for user interface
design Tamodia'2002 , (Bucharest, 18-19 July 2002), Academy of Economic Studies of
Bucharest, Bucharest, 2002, pp. 86-95

[Boui03]
Bouillon L., Vanderdonckt J., User Interface Reverse Engineering, Proceedings of 2nd Int. Conf.
on Universal Access in Human-Computer Interaction UAHCI'2003 (Creete, 22-27 June
2003), Vol. 4, Stephanidis, C. (Eds.), Lawrence Erlbaum Associates, Mahwah, 2003, pp.
1509-1513.

[Boui04]
Bouillon L., Vanderdonckt J., Chieu Chow K., Flexible Re-engineering of Web Sites, in
proceedings of the international conference on Intelligent User Interfaces (IUI’04), (Madeira,
January 13-16 2004), ACM Press, New York, USA, 2004, pp 132-139

[Boui05]
Bouillon L., Limbourg Q., Vanderdonckt J., Michotte B., Reverse Engineering of Web Pages
based on Derivations and Transformations, in Proceedings of LAWEB 2005 (Buenos Aires,
31 Oct.-2 Nov., 2005), IEEE Computer Society Press, Los Alamitos, 2005, pp. 3-13

[Brit01]
Britton K.H., Case R., Citron A., Floyd R., Li Y., Seekamp C., Topol B., Tracey K.,
Transcodin :Extending e-business to new environments, IBM research journal N°40, 2001, pp153-179

C

[Call77]

Callier F.M., Cours de théorie des graphes, syllabus FUNDP, année 1977-1978
[Calv01]

Calvary G., Coutaz J., Thevenin D., “A Unifying Reference Framework for the Development of Plastic
UIs”, Proceedings of 8th IFIP Int. Conf. on Engineering for Human-Computer Interaction
EHCI’2001 (Toronto, 11-13 May 2001), R. Little and L. Nigay (eds.), Lecture Notes in
Comp. Science, Vol. 2254, Springer-Verlag, Berlin, 2001, pp. 173-192.

References

255

[Calv02]
Calvary G., Coutaz J., Thevenin D., Limbourg Q., Souchon N., Bouillon L., Vanderdonckt J.,
Plasticity of User Interfaces: A Revised Reference Framework, in Proceedings of 1st International
Workshop on Task Model and Diagrams for user interface design Tamodia'2002 (Bucharest,
18-19 july 2002), Academy of Economic Studies of Bucharest, Bucharest, 2002.

[Calv03]
Calvary G., Coutaz J., Thevenin D., Limbourg Q., Souchon N., Bouillon L., Vanderdonckt J.,
A Unifiying Reference Framework for multi-target user interfaces, Interacting with Computers,
Volume 15, Issue 3, Elsevier Science, June 2003, pp. 289-308

[Cana04]
“Global mobile device market shows tremendous growth”, Canalys, 4 Aug 2004, available at
http://www.windowsfordevices.com/articles/AT4335151181.html

[Canf04]
Canfora G., Di Santo G., Zimeo E., Towards Seamless Migratiojn of Java AWT-Based Applications
to Personnal Wireless Devices, in proceedings of the 11th Working Conference on Reverse
Engineering (WCRE2004), Delft (the Netherlands), November 8th-12th, IEEE Computer
Society Press, Los Alamitos, 2004

[Canf05]
Canfora G., Di Santo G., Zimeo E., "Developing Java-AWT Thin-Client Applications for limited
devices," IEEE Internet Computing, September/October 2005, Vol. 9, No. 5, pp. 55-63

[Capl02]

Caplat G, Sourrouille, J.-L., Workshop in Software Model Engineering (WISME 2002),
October 1st 2002, Dresden, Germany, 2002.

[Chik90]
Chikofsky E. J., Cross J.H., “Reverse Engineering and Design Recovery: A Taxonomy”, IEEE
software, volume 7, no.1, January 1990

[Chow02]
Chow K. C., La conception et l'évaluation d'environnements de salle de contrôle : développement d'un
générateur d'environnements de salle de contrôle, Licence en sciences de gestion, Mémoire-projet,
Université catholique de Louvain, Louvain-la-Neuve, Septembre 2002.

[Chow03]
Chow K.C., GREENHouse: Case tool for user interface construction based on graph transformations,
master of computer science thesis, University of Louvain, Louvain-la-Neuve, June 2003

[Cord02]
Cordy J.R., Dean T.R., Malton A.J., Schneider K.A., "Source Transformation in Software
Engineering using the TXL Transformation System", Special Issue on Source Code Analysis and
Manipulation, Journal of Information and Software Technology 44,13 (October 2002), pp.
827-837.

[Cres04]
Crescenzi V., Mecca G., Merialdo P., and Missier P., “An Automatic Data Grabber for Large
Web Sites”, Proceedings of the 30th Int. Conf. on Very Large Data Bases VLDB’2004
(Toronto, August 31-September 3, 2004), Morgan Kaufmann, 2004, pp. 1321-1324.

[Csab97]
Csaba L., Experience with User Interface Reengineering – Transferring DOS panels to Windows, 1st
Euromicro Working Conference on Software Maintenance and Reengineering CSMR 97,
(Berlin, 17-19 March), IEEE Computer Society Press, Los Alamitos, 1997

[Ctt99]
ConcurTaskTree home page, available at http://giove.cnuce.cnr.it/concurtasktrees.html,
1999.

References

256

[Cui05]
Cui X., Transforming Phone-based Interface for Web Access: from WML to Usixml, master thesis in
business administration, Université catholique de Louvain, 2005, 143 p.

[Czar03]
Czarnecki K., Helsen S., Classification of model transformation approaches, Workshop on Generative
Techniques in the Context of Model-Driven Architecture, OOPSLA 2003 Conference, (Anaheim,
USA, October 26-30 2003), 2003

D

[Deba95]

De Baud J.-M and Rugaber S., A Software Re-engineering Method Using Domain Models,
Proceedings of Int. Conf. on Software Maintenance (October 1995), pp. 204-213

 [Dilu01]
Di Lucca G.A., Di Penta M., Antoniol G., Casazza G., An approach for Reverse Engineering of
Web-Based Applications, 8th Working Conference on Reverse Engineering WCRE2001,
(Stuttgart, 5-7 October 2001), IEEE Press, Los Alamitos, 2001

[Dilu02]
Di Lucca G.A., Fasolino A.R., Pace F., Tramontana P., De Carlini U., WARE: a tool for the
Reverse Engineering of Web Applications, in proceedings of European Conference on Software
Maintenance and Reengineering CSMR2002, (Budapest, 11-13 March 2002), 2002

[Dom98]
Document Object Model (DOM) Level 1 Specification (W3C Recommendation), W3C, 1st October
1998, available at http://www.w3.org/TR/REC-DOM-Level-1/

[Drah05]
Draheim D., Lutteroth C., Weber G., A Source Code Independent Reverse Engineering Tool for
Dynamic Web Sites, in proceedings of the Ninth European Conference on Software
Maintenance and Reengineering (CSMR05), 21-23 March 2005, Manchester, IEEE computer
society press, Los Alamitos, 2005 (available at http://www.revangie.formcharts.org)

E

[Eise00]

Eisenstein J., Vanderdonckt J., Puerta A., Adapting to Mobile Contexts with User-Interface
Modeling, Proceedings of 3rd IEEE Workshop on Mobile Computing Systems and
Applications WMCSA’2000 (Monterey, 7-8 December 2000), IEEE Press, Los Alamitos,
2000, pp. 83-92.

[Eise01]
Eisenstein J., Vanderdonckt J., Puerta A., Model-Based User-Interface Development Techniques for
Mobile Computing, Proceedings of 5th ACM Int. Conf. on Intelligent User Interfaces IUI’2001
(Santa Fe, 14-17 January 2001), Lester, J. (Ed.), ACM Press, New York, 2001, pp. 69-76

[Embl98]
Embley D.W., Campbell D.M., Jiang Y.S., Ng, R.D Y.-K.. Smith, Liddle S.W., and Quass
D.W., “A conceptual-modeling approach to extracting data from the web”, Proceedings of the 17th Int.
Conf. on Conceptual Model-ing ER’98 (Singapore, November 16-19, 1998), Lecture Notes
in Computer Science, Vol. 1507, Springer-Verlag, Berlin, 1998, pp. 78-91.

References

257

[Esti03]
Estiévenar F., François A., Henrard J., Hainaut J.L., A tool-supported method to extract data and
schema from web site, Proccedings of the fifth IEEE International Workshop on Web Site
Evolution (WSE’03), Amsterdam, 22-23 September, Los Alamitos, 2003

[EtFo03]
“Windows gadgets to outsell Windows-PCs in 5 years”, Etf Forecast, April 2003,
http://www.windowsfordevices.com/news/NS5482336283.html

F

[Flor06]
 Florins M., “Graceful degradation of UI”, Ph.D. Thesis, IAG, UCL, 2006, to appear
[Fold98]

Free on-line dictionary of computing definition, 9 sep 1998, available at
http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?query=legacy+system

[Fole91]
Foley J.D., Kim W.C., Kovacevic S., Murray K : UIDE – An intelligent User Interface Design
Environment. In Sullivan J.W., Tyler S.W.(eds.): Intelligent User Interfaces. New York, ACM
Press 1991, pp. 339-384

G

[Gall91]

Gallagher K.B., Lyle J.R., Using Program Slicing in Software Maintenance, IEEE Transactions on
Software Engineering, August 1991 (Vol. 17, No. 8), Los Alamitos, 1991, pp. 751-761.

[Gaer03]
Gaeremynck Y., Bergman L. D., Lau T., “MORE for less: model recovery from visual interfaces for
multi-device application design”, Proceedings of the international conference on Intelligent user
interfaces (Miami, January 2003), ACM Press, New York, USA, 2003, pp 69-76

[Geor01]
Georgia Tech’s reverse engineering group, Georgia tech, 30 april 2001, available at
http://www.cc.gatech.edu/reverse/

[Gott04]
Gottlob G., Koch Ch., Baumgartner R., Herzog M., and Flesca S., “The Lixto Data Extraction
Project - Back and Forth between Theory and Practice”, Proceedings of the 23rd ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems PODS’2004 (Paris, June
14-16, 2004), ACM Press, New York, 2004, pp. 1-12

[Grim94]
Grimaldi R.P., Discrete and combinatorial mathematics – An applied introduction, 3rd edition, Addison-
Wesley publishing company, ISBN 0-201-54983-2, USA, 1994

[Gurm89]
Gurminder S., Green M., A High-Level User Interface Management System User Interface Management
Systems, Proceedings of ACM CHI'89 Conference on Human Factors in Computing Systems,
1989, p.133-138.

References

258

H

[Hain95]

Hainaut J.-L., Englebert V., Henrard J., Hick J-M., Roland D., DB-MAIN : a Database Reverse
Engineering CASE tool, in Proceedings of the 6th Workshop on Next Generation CASE tools,
Jyvdskyld, Finland, July 1995, G. Grosz (Ed.), 1995

[Hilb03]
Hilbert D., Trevor J. and Schilit B., Supporting ubiquitous information on very small devices is harder
than you think, in proceedings of HCI International 2003, June 22, Lawrence Erlbaum
Associates 2003

K

[Kaas01]

Kaasinen E., Kolari J., Laakko T., “Mobile-Transparent Access to Web Services”, Proceedings of
8th IFIP TC.13 Conf. on Human-Computer Interaction Interact’2001 (Tokyo, 9-13 July
2001), Elsevier Science Pub., Amsterdam, 2001.

[Kaas00]

Kaasinen E., Aaltonen M., Kolari J., Melakoski S., Laakko T., Two Approaches to Bringing
Internet Services to WAP Devices, in proceedings of WWW9, Amsterdam, The Netherlands,
North-Holland Publishing Co., 2000, pp. 231-246.

[Kong99]
Kong L., Stroulia E., Matichuk B., Legacy Interface Migration: A Task-Centered Approach, in H.-J.
Bullinger and J. Ziegler (eds.), Proceedings of 8th Int. Conf. on Human-Computer
Interaction HCI Interna-tional’99 (Munich, 22-27 August 1999), Lawrence Erlbaum
Associates, Mahwah/London, 1999, pp. 1167-1171, accessible at http://www.
cs.ualberta.ca/~stroulia/Papers/hci99.ps

L

[Limb04a]

Limbourg Q., Vanderdonckt J., Michotte B., Bouillon L., Lopez-Jaquero V., UsiXML: a
Language Supporting Multi-Path Development of User Interfaces, Proceedings of 9th IFIP Working
Conference on Engineering for Human-Computer Interaction jointly with 11th Int.
Workshop on Design, Specification, and Verification of Interactive Systems EHCI-
DSVIS'2004 (Hamburg, July 11-13), 2004.

[Limb04b]
Limbourg Q., Vanderdonckt J., Michotte B., Bouillon L., Florins M., Trevisan D., UsiXML:
A User Interface Description Language for Context-Sensitive User Interfaces, in Proceedings of the
ACM AVI'2004 Workshop "Developing User Interfaces with XML: Advances on User
Interface Description Languages" (Gallipoli, May 25, 2004), K. Luyten, M. Abrams, Q.
Limbourg, J. Vanderdonckt (Eds.), 2004, pp. 55-62.

[Limb04c]
Limbourg Q., Multi-Path Development of User Interfaces, Ph.D. Thesis, Université catholique de
Louvain, Institut d’Administration et de Gestion, Louvain-la-Neuve, Belgium, 2004.

References

259

[Lech96]
Lecharlier B., Abstract Interpretation and Application to Interactive System Verification, Proceedings
of 3rd Int. Workshop on Design, Specification, and Verification of Interactive Systems DSV-
IS96 (Namur, 5-7 June 1996), F. Bodart & J. Vanderdonckt (Eds.), Springer-Verlag, Vienna,
1996, pp. 46-72.

[Lece98]
Lecerof A., Paterno F., Automatic Support for Usability Evaluation, in IEEE Transactions on
Software Engineering, October 1998 Vol.24, No.10, Piscataway, NJ, USA, 1998, pp.863-888.

[Limb04]
Limbourg Q., Montero F., Vanderdonckt J., Lopez V., Addressing the Mapping Problem in User
Interface Design, Proceedings of 3rd International Workshop on TAsk MOdels and DIAgrams
for user interface design, (Prague, November 15-16), 2004.

[Long96]
 Long J., Specifying relations between research and the design of human-computer interaction, International
 Journal of Computer Studies, Vol. 44, 1996, pp. 875-920.
[Lope01]

Lopez J. F. and Szekely P. , Web page adaptation for universal access. In: C. Stephanidis (ed.)
Universal Access in HCI: Towards and Information Society for All.(Proceedings of 1st
International Conference on Universal Access in Human-Computer Interaction, New
Orleans, August 8-10) Mahwah, NJ: Lawrence Erlbaum Associates, 2001 pp. 690-694.

[Lope04]
Lopez J., “Presentation adaptation by implicit model extraction, automatic web page adaptation”, Phd.
Thesis, University of southern California, 195 pages, May 2004.

[Lope05]
Lopes D., Hammoudi S., Bézivin J., Jouault F., Generating Transformation Definition from Mapping
Specification : Application to Web Services Platform, in proceedings of CAISE05, (Porto, 13-17
june), 2005.

[Luyt04]
Luyten K., Abrams M., Limbourg Q., Vanderdonckt J., Proceedings of the ACM AVI'2004
Workshop "Developing User Interfaces with XML: Advances on User Interface Description
Languages" UIXML'04 (Gallipoli, 25 May 2004), 2004.

[Luo93]
Luo P., Szekely P., Neches R., Management of interface desing in HUMANOID, in Proceedings of
InterCHI93, ACM Press, New York, April 93, pp 107-114.

M

[Malt93]

Malton A. J., "The Denotational Semantics of a Functional Tree-Manipulation Language", Computer
Languages 19,3 (July 1993), pp. 157-168.

[Mari05]
J. Marion (LINF2), Reverse engineering of Graphical User Interfaces based on Resource Files, bachelor
thesis in computer sciences, INGI, UCL, 2005.

[Mcbr99]
McBrien P.J. and Poulovassilis A., A Uniform Approach to Inter-Model Transformations, In
Advanced Information Systems Engineering, 11th International Conference CAiSE'99,
Springer Verlag LNCS 1626, pp. 333-348.

References

260

[Mcbr02]
McBrien P.J. and Poulovassilis A., Schema Evolution in Heterogeneous Database Architectures, A
Schema Transformation Approach, In Proceedings of CAiSE02, Springer Verlag LNCS, Volume
2348, pp. 484-499, 2002, ISSN: 0302-9743, ISBN 3-540-43738-X.

[Merl95]
Merlo E., Elwahidi A., Generating user interfaces from specifications produced by a Reverse Engineering
process,Proceedings of the International Workshop on Computer-Aided Software Engineering
CASE-95,(Toronto, July), 1995.

[Mell04]
 Mellor S.J., Scott K., Uhl A., Weise D., MDA Distilled : Principles of Model-Driven Architecture.
 Addison Wesley, New York, 2004
[Merl95b]

Merlo E., Gagne P.-Y., Girard J.-F., Kontogiannis K., Hendren L., Panangaden P., DeMori
R., Reengineering User Interfaces, IEEE Software, Vol. 12 No. 1, 1995, pp. 64 – 73.

[Merl93]
Merlo E., Girard J.F., Kontogiannis K., Panangaden P., De Mori R., Reverse Engineering of User
Interfaces, in R.C. Waters, E.J. Chikofsky (eds.), Proceedings of 1st Working Conference on
Reverse Engineer-ing WCRE’93 (Baltimore, 21-23 May 1993), IEEE Computer Society
Press, Los Alamitos, 1993, pp. 171-179.

[Mont04]
Montero F., Víctor López Jaquero V., Vanderdonckt, J., Gonzalez P., Lozano M.D.,
Limbourg Q., Solving the Mapping Problem in User Interface Design by Seamless Integration in
IdealXML, Proceedings of 12th Int. Workshop on Design, Specification, and Verification of
Interactive Systems DSV-IS’2005 (July 13–15, 2005, Newcastle upon Tyne), M. Harrison
(ed.), Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2005

[Moor97]
Moore M.M., Rugaber S., Using Knowledge Representation to Understand Interactive Systems,
Proceedings of the Fifth International Workshop on Program Comprehension IWPC'97
(Dearborn, 28-30 May 1997), IEEE Computer Society Press, Los Alamitos, 1997.

[Moor93]
Moore M.M., Rugaber S., Issues in User Interface Migration, in Proceedings of the Third
Software Engineering Research Forum, Orlando, 10 novembre 1993.

[Moor94]
Moore M.M., Rugaber S., Seaver P., Knowledge Based User Interface Migration, in Proceedings of
the 1994 International Conference on Software Maintenance (Victoria, British Columbia,
September 1994).

[Moor96a]
Moore M.M., Representation Issues for Reengineering Interactive Systems, ACM Computing Surveys,
Vol. 28, No. 4, article # 199, December 1996, accessible at http://www.acm.org/pubs/
articles /journals/surveys/1996-28-4es/ a199-moore/a199-moore.html

[Moor96b]
Moore M.M., Rule-Based Detection for Reverse Engineering User Interfaces, in Proceedings of 3rd
Working Conference on Reverse Engineering (Monterey, 8-10 November 1996), L. Wills, I.
Baxter, E. Chikofsky (eds.), IEEE Computer Society Press, Los Alamitos, 1996, pp. 42-48.

[Mori03]
Mori G., Paternò F., Santoro C., Tool support for designing nomadic applications, Proceedings of the
2003 international conference on Intelligent user interfaces, (Miami, January 2003), ACM
Press, New York, USA, 2003, pp. 141-148.

References

261

[Mori05]
G.Mori, F.Paternò, Automatic semantic platform-dependent redesign, Proceedings Smart Objects
and Ambient Intelligence 2005, Grenoble, October 2005, pp.177-182

[Msxml]
Microsoft Download Center, Microsoft, Available at http://www.microsoft.com/
downloads/results.aspx?productID=&freetext=msxml&DisplayLang=en

[Myer92]
Myer B.A., Rosson M.B., Survey on User Interface Programming Tools and Techniques, Proceedings
of ACM CHI 92 Conference on Human Factors in Computing Systems, 1992, pp 195-202

N

[Nich02]

Nichols J., Myers B.A., Higgins M., Hughes J., Harris T.K., Rosenfeld R., Pignol M.,
“Generating Remote Control Interfaces for Complex Appliances”, Proceedings of the 15th annual
ACM symposium on User interface software and technology, (Paris, 27-30 October 2002),
ACM press, New York, USA, 2002

[Nich04]

Nichols, J., Myers, B. A., & Litwack, K. (2004). Improving Automatic Interface Generation
with Smart Templates. Proceedings of the 8th International Conference on Intelligent User
Interfaces IUI’2004 (13-16 January, Funchal, Portugal).

O

[OCL03]

UML 2.0 OCL specification, available at http://www.omg.org/docs/ptc/03-10-14.pdf,
2003.

[Olle88]
Olle T.W., Hagelstein K., Macdonald I.G., Rolland C., Sol H.G., Van Assche F., Verjin-
Stuart A., Information Systems Methodologies, Addisson-Wesley, 1988.

[Olse00]
Olsen D.R., Jefferies S., Nielsen T., Moyes W., Fredrickson P., Cross Modal Interaction using
XWEB, Proceedings of the 13th annual ACM symposium on User interface software and
technology UIST 2000 (San Diego, USA, 2000), ACM Press, New York, USA, 2000, pp 191-
200

[OMG02]
Object Management Group. Request for Proposal: MOF 2.0 Query / Views / Transformations RFP,
2002.

P

[Paga02]

Paganelli L., Paterno F., Automatic Reconstruction of the Underlying Interaction Design of Web
Applications, In Proceedings of the 14th International Conference on Software Engineering
and Knowledge Engineering (SEKE02), (Ishia, Italy, July 15-19), 2002.

[Pate00]
Paterno F., Model-Based Degin and Evaluation of Interactive Applications, Springer Verlag, London,
2000.

References

262

[Pate02]
Paterno F.and Santoro C., One Model, Many Interfaces, in Proceedings of CADUI 2002, the 4th
International Conference on Computer-Aided Design of User Interfaces (Valenciennes,
France, May 2002), Kluwer Academics Pub., Dordrecht, 2002, pp 143-154

[Pere03]
Pérez-Quiñones M.A., Capra R.G., Shao Z., « The Ears have it: A Task by Information Structure
Taxonomy for Voice Access to Web Pages » in Proceedings of Interact 2003, (Zürich, September
2003), 2003.

[Pixe]
diagram & history of programming languages, available at http://merd.sourceforge.net
/pixel/language-study/diagram.html

[Puer96]
Puerta A.R., “The Mecano Project: Comprehensive and Integrated Support for Model-Based Interface
Development”, Proceedings of 2nd Int. Workshop on Computer-Aided Design of User
Interfaces CADUI’96 (Namur, 5-7 June 1996), Presses Universitaires de Namur, 1996, pp.
19-35.

[Puer97]
Puerta A.R., Maulsby D., MOBI-D: A Model-Based Development Environment for User Centered
Design, in proceedings of CHI’97, ACM Press, Atlanta, March 1997, pp4-5.

[Puer99]
Puerta A.R. and Eisenstein J., “Towards a General Compu-tational Framework for Model-Based
Interface Develop-ment Systems”, Proceedings of ACM Conference on Intelligent User Interfaces
IUI’99, ACM Press, New York, 1999, pp. 171-178

Q

[Qvt03]

QVT Partners revised submission to QVT, 18/8/2003, QVT, accessible at
http://qvtp.org/downloads/

R

[Rays99]

Rayson P., Garside R., Sawyer P. (1999). Recovering Legacy Requirements. In Proceedings of
REFSQ'99. Fifth International Workshop on Requirements Engineering: Foundations of
Software Quality, June 14-15 1999, Heidelberg, Germany. Published by University of Namur,
pp. 49-54.

[Resh02]
 Resource Hacker 2002, available at http://www.angusj.com/resourcehacker/
[Rest06]
 Restorator resource editor 2006, available at http://www.bome.com/Restorator/
[Reve00]

REVERE project, information available at http://www.comp.lancs.ac.uk/computing/
research/cseg/projects/revere/, 2000.

[Ricc01]
Ricca F., Tonella P., Baxter I.D., “Restructuring Web applications via Transformation Rules”,
Proceedingsof IEEE Workshop on Source Code Analysis and Manipulation SCAM’2001

References

263

(Florence, 5-9 November 2001), IEEE Computer Soc. Press, Los Alamitos, 2001, pp. 150-
160.

[Ricc00]
Ricca F., Tonella P., Web site analysis: Structure and evolution. In Proceedings of the International
Conference on Software Maintenance, (San Jose, USA, 2000) , 2000, pp. 76-86

[Rode05]
Rode J., Bhardwaj Y., Pérez-Quiñones M.A., Rosson M.BHowartg., J., As Easy as “Click”:
End-User Web Engineering. International Conference on Web Engineering 2005. Sydney,
Australia, July 27-29

[Rose99]
Rosen K.H., Discrete mathematics and its applications, 4th edition, McGraw-Hill International
Editions, Mathematics and statistics series, ISBN 0-07-289905-0, Singapore, 1999

[Roui04]
 Rouillard J., VoiceXML, le langage d’accès à Internet par telephone. Vuibert, Paris, 2004

S

[Sali92]

Salisin J., The Design Record: Keystone of Software engineering, Keynote Speech of the 3rd Reverse
Engineering forum, 1992

[Scot01]
Scott N.G., Gingras I., The Total Access System, In Proceedings of ACM Conference on
Human Aspects in Computing Systems CHI’2001 (Seattle, 31 March-5 April 2001),
Extended Abstracts, ACM Press, New York, 2001, pp. 13-14

[Shao03]
Shao Z., Caprra R.G., Pérez-Quiñones M.A., "Transcoding HTML to VoiceXML Using
Annotations", Proceedings of ICTAI 2003, 2003.

[Sem03]
Software Engineering Management, Anthony Aaby, 6/11/2003, available at
http://cs.wwc.edu/~aabyan/435/Maintenance.html

[Situ00]
Situ Q. and Stroulia E., Task-structure Based Mediation: The Travel-Planning Assistant Example. In
Proceedings of the Thirteenth Canadian Conference on Artificial Intelligence (AI'2000).
(Montreal 14-17 May 2000), 2000.

[Stro00a]
Stroulia E., El-Ramly M., Sorenson P., Penner R., Legacy Systems Migration in CelLEST. Short
Research demonstration, In the Proceedings of the 22nd International Conference on
Software Engineering, (Limerick, Ireland, 4-11 June 2000), 2000; Accessible at
http://www.cs.ualberta.ca/~stroulia/Papers/rd-final.pdf

[Stro00b]
Stroulia E., Thomson J., Situ Q., Constructing XML-speaking wrappers for WEB Applications:
Towards an Interoperating WEB, In the Proceedings of the 7th Working Conference on Reverse
Engineering (WCRE'2000). (23-25 Brisbane, November, 2000), IEEE Computer Society,
Los Alamitos, 2000.

 [Stro02]
Stroulia E., Kapoor R.V., Reverse engineering interaction plans for legacy interface migration, Chapter
26, Proceedings of 4th Int. Conf. on Computer-Aided Design of User Interfaces
CADUI’2002 (Valenciennes, 15-17 May 2002), Kluwer Academics Pub., Dordrecht, 2002,
pp. 295-310.

References

264

 [Suss01]
Sussman J., Banavar G., Bergman L., Generalization: A Key Concept in the Creation of Platform
Independent User Interfaces. In UbiTools 2001, Workshop on Application Models and
Programming Tools for Ubiquitous Computing, Atlanta, September 2001, 2001.

[Szek92]
Szekely P., Luo P., Neches R., Facilitating the Exploration of Interface Design Alternatives: The
Humanoid Model of Inteface Design, in Bauersfeld P., Bennet K., Lynch G.(eds.): Proceedings of
CHI 92. New York, ACM Press, 1992, pp. 507-514.

[Szek96]
Szekely P., Sukaviriya P., Castells P., Muthukumarasamy J., Salcher E., Declarative Interface
Models for User Interface Construction Tools: the MASTERMIND Approach, in Engineering for
Human Computer Interaction, Chapman & Hall, London, UK, 1996, pp.120-150.

T

[Thev01]

Thevenin, D.: Adaptation en Interaction Homme-Machine : le cas de la Plasticité. PhD thesis,
Grenoble, 2001, 234 pages. Accessible at http://iihm.imag.fr/publs/2001/

[Tidy03]
Clean Up your Web Pages With HTML Tidy, D. Ragett, Accessible at
http://www.w3.org/People/Raggett/tidy

U

[Uiml04]

UIML website, available at http://www.uiml.org/index.php, 2004.

V

 [Vand93]

Vanderdonckt J., Bodart F., “Encapsulating Knowledge for Intelligent Interaction Objects Selection”,
Proceedings of ACM Conf. on Human Aspects in Computing Systems In-terCHI’93
(Amsterdam, 24-29 April 1993), ACM Press, New York, 1993, pp. 424-429.

[Vand94]
Vanderdonckt J., Automatic Generation of a User Interface for Highly Interactive Business-Oriented
Applications, in Plaisant C.(ed.): Companion Proceedings of CHI’94, New York, ACM Press,
1994, pp. 41 & 123-124.

[Vand95]
Vanderdonckt J., Knowledge-Based Systems for Automated User Interface Generation: The Trident
Experience, Technical report RP-95-010. FUNDP, Institut d’informatique, 1995. Available at
http://www. Info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-95-010

[Vand05]
Vanderdonckt J., A MDA-Compliant Environment for Developing User Interfaces of Information
Systems, in Proceedings of Caise 05 (Conference on Advanced Information System
Engineering), 13-17 June, Porto, Portugal, Springer Verlag,2005, pp 16-31.

References

265

[Vans93b]

Van Sickle L., Liu Z.Y., Ballantyne M., Recovering User Interface Specifications for Porting
Transaction Processing Applications, EDS Research, Austin Laboratory, 1601 Rio Grande, Suite
500, Austin TX 78701, 1993.

[Vand01]
Vanderdonckt J., Bouillon L., Souchon N., Flexible Reverse Engineering of Web Pages With
Vaquista, in Proceedings of the 8th Working Conference on Reverse Engineering, (Stuttgart,
September 2001), IEEE Computer Society, Los Alamitos, 2001.

[Vinc05]
Vincent D., Un pas vers le poste de travail unique : QTKiXML, un interpréteur d’interface utilisateur à
partir de sa description, Master thesis, IAG, UCL, 2005.

[Voic01]
http://studio.tellme.com/vxml2/ref/elements/

[Voic02]
http://docs.voxeo.com/voicexml/2.0/

[Voic03]
 http://www.yoyodesign.org/doc/w3c/voicexml20/
[Voic04]
 http://www.voicexml.org/tutorials/intro4.html
[Voic05]

http://www.wirelessdevnet.com/channels/voice/training/voicexmloverview.html

W

[Will90]

Wills L. M., Automated Program Recognition: A Feasibility Demonstration, Artificial Intelligence,
Volume 45 , Issue 1-2 (September 1990), Elsevier Science Publishers Ltd. Essex, UK,
1990, pp.113-171.

[Wils93]
Wilson S., Johnson P., Kelly C., Cunningham J., Markopoulos P, Beyond Hacking : A model-
Based Approach to User Interface Design. Proceedings of HCI 93, Cambrigde University Press,
1993, pp. 40-48.

X

[Xhtm]

Xhtml page from w3c, W3C HTML working group, available at http://www.w3.org/
TR/xhtml1/

[Xian06]
Xiang P., Shi Y., Recovering Semantic Relations from Web Pages Based on Visual Clues, in
proceedings of the international conference on Intelligent User Interfaces (IUI’06), (Sydney,
29 January-1st February), ACM Press, New York, USA, 2006, pp. 342-344.

[Ximl02]
The XIML Consortium, Redwhale, 2002, http://www.ximl.org

[Xslt99]
 XSLT W3C recommendations, available at http://www.w3.org/TR/xslt, 1999.

266

Appendix A

267

Appendix A
UsiXML 1.4.6 Class Diagram

This first appendix contains the meta-model for the UsiXML 1.4.6 concrete UI
model and abstract UI model. The CUI meta-model is divided into 3 parts. The
first part contains graph transformations and components for the specification of
vocal UI. The second part is dedicated to graphical UI components. The last part
contains elements used to describe relations in the model.
Meta-models from appendix A and B are described thanks to inheritance relations
(normal arrow) and aggregation relations (arrows ended with a rombus).
Aggregation relations are used to describe that an element may contain another
type of element, e.g. element <a> may contain an element (but not the
contrary) in HTML 4.0. Generalization relations are used to facilitate the reading
of meta-models by grouping elements with similar attributes and similar
aggregation relations. Elements starting with a plus symbol represent these
generalizations (in appendix B). None of the classes of these class diagrams
possesses methods, as the elements composing these langagues are static
declarative components of the UI that do not allow the invocation of methods.

graphicalRe lat io nship

graphicalAlignment
isVerti cal : boolean
isHorizontal : boolean
isRightCentralLeft : string
isUpDown : string

videoComponent
alternateImage : uri
autoplay : boolean
isLoop : integer
bui ltInControl : boolean
subti tle : boolean
subti tleContent : uri

drawingCanvas

window
windowLeftMargin : integer
windowTopMargin : integer
isResizable : boolean

dialogBox

auditoryCio

audi toryRelationship

uiModel
creationDate : string
schemaVersion : string

graphicalEmphasis

graphicalIndividualComponent
glueVertical : string
glueHorizontal : string
defaul tMnemonic : String
mnemonic : String

graphicalContainer
wid th : integer
he igth : in tege r
bg Image : u ri
isAlwaysOnTop : boo lean
repetition : integer

0.. n
1

0..n
1

0..n

0..1

0..n

0..1

menu
popUpMenu : boolean
toolBarMenu : boolean

menuItem
type : stri ng
keyboardShortcu t : st ring
de faul tKeyboard Shortcut : stri ng

1..n

1

1..n

1

1

1

1

1

tabbedItem
index : in teger

tabbedDialogBox

1..n1 1..n1

textComponent
textFont : string
isBold : boolean
isItali c : boolean
isUnderline : boolean
isStri keThrough : boolean
isSubScript : boolean
isSuperScript : boolean
isPreformatted : boolean
textSize : integer
defaultHyperLinkTarget : uri
hyperLinkTarget : uri
linkVisitedColor : string
activelinkColor : string
textMargin : integer
textColor : String
isEdi table : boolean
wordWrapped : boolean
forceWordWrapped : boolean
maxLength : integer
numberOfColumns : integer
numberOfLines : integer
scrollstyle : string
scrollDi rection : string
scrollWidth : integer
scrollHeigth : integer
scrollHorizSpace : integer
scrollVertSpace : integer
scrollDelay : integer
scrollAmount : integer
textVerti calAlign : String
textHorizontalAl ign : String
fil ter : String

imageZone
hyperLinkTarget : u ri
defaultHyperLi nkTarg et : uri
shape : string
coord inates : coo rd

imageComponent
imageHeight : integer
imageWidth : integer
imageHorizSpace : integer
imageBorder : integer
hyperLinkTarget : uri
defaultHyperLinkTarget : uri

0. .n0. .n

toggleButton
defaultState : boolean

checkBox
defaultState : boolean
groupName : string

button

radioButton
defaul tState : boolean
groupName : string

box
type : string
relati veWidth : integer
relati veHeight : integer
isSpli table : boolean
isDetachable : boolean
isBalanced : booolean
isResizableHorizontal : boolean
isResizableVertical : boolean
relati veMinWidth : integer
relati veMinHeight : integer
isFlow : boolean
isScrol lable : boolean
gridWidth : string
gridHeight : string

table
xSize : integer
ySize : integer
zSize : integer

cel l
xIndex : integer
yIndex : integer
zIndex : integer0..n

1

0..n

1
0..1

1

0..1

1

cursor
defaultPosition : integer

sl ider
minValue : integer
maxValue : integer
step : integer
orientation : string

1..2

1

1..2

1
datePicker hourPicker

colorPicke r

fi lePicker

progressio
nBar

appl icationOrder

temporalOperator
value : {>>,| ||, | = |,(n)}

graphicalCio
isVisible : boolean
isEnabled : boolean
fgColor : string
bgColor : string
toolTipDefaultContent : string
toolTipContent : uri
transparencyRate : integer
borderWidth : integer
borderT ype : integer
defaultBorderTi tle : String
borderT itll e : String
borderT itleAl ign : String
borderColor : String

graphicalAdjacency

comb oBox
i sDro pDown : boolean
i sE di table : bool ean

spin
orientation : string

Item 1..n

1

1..n

1

1..n

1

1..n

1

0..n
0..1

0..n
0..1

Tree

0..n

0..1

0..n

0..1

ruleTerm

logicalOperator
value : {AND, OR, XOR, IMPLIES}

cuiDialogControl
symbol : string

graphicalT ransi tion
transitionType : string
transitionEffect : string

audi toryTransition
transitionType : string
transitionEffect : string

audi toryAdjacency
delayT ime : integer

audi toryOutput
tone : string
isLooped : integer
volume : integer
isMuted : boolean
isVoice : boolean
pitch : string
prosody : string

auditoryInput
ellapsedTime : integer

auditoryIndividualComponent
auditorylContainer
name

0..n1 0..n1

0..n

0..1

0..n

0..1

finalComponent
location : uri

grahicalCointainmentaudi toryContai nment

source
sourceId : string

target
targetId : string

cuiRelationship
id : st ring
name : string

1..n1 1..n1

1..n

1

1..n

1

cuiModel

0..n

1

0..n

1

initiation

terminati on

methodCallParam
componentIdRef : string
componentProperty : string
returnValue : string

cio
id : string
name : string
icon : uri
content : uri
defaul tContent : string or uri
defaul tIcon : uri
defaul tHelp : uri
help : string
currentValue : string

1..n

1

1..n

1

condi tion
isPositi ve : boolean
isNegative : boolean
condi tionType : {pre,post}

event
id : string
eventType : string
eventContext : string
device : string

0..n1 0..n1

transition
transitionIdRef : string

MethodCal l
methodName : String

behavior
id : string

1

0..n

1

0..n

0..1

1

0..1

1
action

id : string
name : string
description : string

0..n

1..n

0..n

1..n

11 11

rhs

attributeCondi tion
expression : string

lhs

nac

transformationSystem
id : string
name : string
description : string

1..n

0..n

1..n

0..n

transformationRule
id : string
name : string
description : string

1 11 11

1

1

1

1

0..n

1

0..n

1 11 110..1 10..1

0..n

1

0..n

1
1

0..n

1

0..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

ruleMapping
sourceId : string
targetId : string

1

0..n

1

0..n

MenuBarMenuPopUp

Part 1/3 Part 3/3

Part 2/3

Appendix A

268

spatioTemporal
dimension1 : integer
dimension2 : integer

source
sourceId : string

target
targetId : string

aio
id : string
name : string

auiRelationship
id : string
name : string

1..n
1

1..n
1

1..n
1

1..n
1

auiModel

1..n
1

1..n
1 0..n

1
0..n

1

control
event : string
action : string
controlPriority : integer
initiative : {system, user}
terminationValue : stringoutput

outputContent : uri

navigation

facet
id : string
name : string
actionType : string
actionItem : string

abstractIndividualC
omponent

0..n

1

0..n

1

abstractContainer
orderType : string
splittability : boolean

1..n1 1..n1

0..n0..1 0..n0..1

mutualEmphasis

uiModel
creationDate : string
schemaVersion : string

auiDialogControl
symbol : string

abstractContainment

abstractAdjacency

selectionValue
name : string

input
inputDataType : string
inputCardMin : string
inputCardMax : string
inputCharacterization : string

0..n

1

0..n

1

UsiXML 1.4.6 AUI

Appendix A

269

au
di

to
ry

C
io

gr
ap

hi
ca

lIn
di

vi
du

al
Co

m
po

ne
nt

gl
ue

Ve
rti

ca
l :

 st
rin

g
gl

ue
Ho

riz
on

ta
l :

 st
rin

g
de

fa
ul

tM
ne

m
on

ic
 :

S
tri

ng
m

ne
m

on
ic

 :
S

tri
ng

gr
ap

hi
ca

lC
on

ta
in

er
wi

dt
h

: i
nt

eg
er

he
ig

th
 :

in
te

ge
r

bg
Im

ag
e

: u
ri

isA
lw

ay
sO

nT
op

 :
bo

ol
ea

n
re

pe
tit

io
n

: i
nt

eg
er

0.
.n

1

0.
.n

1

0.
.n

0.
.1 0.

.n

0.
.1

ap
pl

ic
at

io
nO

rd
er

te
m

po
ra

lO
pe

ra
to

r
va

lu
e

: {
>>

,||
|,

| =
 |,

(n
)}

gr
ap

hi
ca

lC
io

is
V

isi
bl

e
: b

oo
le

an
is

E
na

bl
ed

 :
bo

ol
ea

n
fg

C
ol

or
 :

str
in

g
bg

C
ol

or
 :

str
in

g
to

ol
T

ip
De

fa
ul

tC
on

te
nt

 :
st

rin
g

to
ol

T
ip

Co
nt

en
t :

 u
ri

tra
ns

pa
re

nc
yR

at
e

: i
nt

eg
er

bo
rd

er
W

id
th

 :
in

te
ge

r
bo

rd
er

T
yp

e
: i

nt
eg

er
de

fa
ul

tB
or

de
rT

itl
e

: S
tri

ng
bo

rd
er

T
itl

le
 :

S
tri

ng
bo

rd
er

T
itl

eA
lig

n
: S

tri
ng

bo
rd

er
C

ol
or

 :
S

tri
ng

ru
le

T
er

m

lo
gi

ca
lO

pe
ra

to
r

va
lu

e
: {

A
ND

, O
R

, X
O

R,
 IM

P
LI

ES
}

au
di

to
ry

O
ut

pu
t

to
ne

 :
st

rin
g

isL
oo

pe
d

: i
nt

eg
er

vo
lu

m
e

: i
nt

eg
er

isM
ut

ed
 :

bo
ol

ea
n

isV
oi

ce
 :

bo
ol

ea
n

pi
tc

h
: s

tri
ng

pr
os

od
y

: s
tri

ng

au
di

to
ry

In
pu

t
el

la
ps

ed
T

im
e

: i
nt

eg
er

au
di

to
ry

In
di

vi
du

al
Co

m
po

ne
nt

au
di

to
ry

lC
on

ta
in

er
na

m
e

0.
.n

1
0.

.n
1

0.
.n

0.
.1

0.
.n

0.
.1

fin
al

Co
m

po
ne

nt
lo

ca
tio

n
: u

ri

cu
iM

od

in
iti

at
io

n

te
rm

in
at

io
n

m
et

ho
dC

al
lP

ar
am

co
m

po
ne

nt
Id

R
ef

 :
str

in
g

co
m

po
ne

nt
Pr

op
er

ty
 :

st
rin

g
re

tu
rn

V
al

ue
 :

st
rin

g

ci
o

id
 :

st
rin

g
na

m
e

: s
tri

ng
ic

on
 :

ur
i

co
nt

en
t :

 u
ri

de
fa

ul
tC

on
te

nt
 :

str
in

g
or

 u
ri

de
fa

ul
tIc

on
 :

ur
i

de
fa

ul
tH

el
p

: u
ri

he
lp

 :
st

rin
g

cu
rre

nt
Va

lu
e

: s
tri

ng

1.
.n

1

1.
.n

1

co
nd

iti
on

isP
os

iti
ve

 :
bo

ol
ea

n
isN

eg
at

iv
e

: b
oo

le
an

co
nd

iti
on

Ty
pe

 :
{p

re
,p

os
t}

ev
en

t
id

 :
st

rin
g

ev
en

tT
yp

e
: s

tri
ng

ev
en

tC
on

te
xt

 :
st

rin
g

de
vi

ce
 :

st
rin

g

0.
.n

1
0.

.n
1

tra
ns

iti
on

tra
ns

iti
on

Id
Re

f :
 st

rin
g

M
et

ho
dC

al
l

m
et

ho
dN

am
e

: S
tri

ng

be
ha

vi
or

id
 :

st
rin

g

1

0.
.n

1

0.
.n

0.
.1 10.
.1 1

ac
tio

n
id

 :
st

rin
g

na
m

e
: s

tri
ng

de
sc

rip
tio

n
: s

tri
ng

0.
.n

1.
.n

0.
.n

1.
.n

1
1

1
1

rh
s

at
tri

bu
te

C
on

di
tio

n
ex

pr
es

si
on

 :
str

in
g

lh
s

na
c

tra
ns

fo
rm

at
io

nS
ys

te
m

id
 :

st
rin

g
na

m
e

: s
tri

ng
de

sc
rip

tio
n

: s
tri

ng

1.
.n

0.
.n

1.
.n

0.
.n

tra
ns

fo
rm

at
io

nR
ul

e
id

 :
st

rin
g

na
m

e
: s

tri
ng

de
sc

rip
tio

n
: s

tri
ng

1
1

1
1 1

1

1

1

1 0.
.n

1 0.
.n

1
1

1
1

1
0.

.1
1

0.
.1

0.
.n

1

0.
.n

11

0.
.n

1

0.
.n

1.
.n

1.
.n

1.
.n

1.
.n

1.
.n

1.
.n

1.
.n

1.
.n

ru
le

M
ap

pi
ng

so
ur

ce
Id

 :
str

in
g

ta
rg

et
Id

 :
str

in
g

1

0.
.n

1

0.
.n

UsiXML CUI 1.4.6
part 1/3

Appendix A

270

UsiXML CUI 1.4.6 part 2/3

vid
eo

Co
mp

on
en

t
alt

ern
ate

Im
ag

e :
 ur

i
au

top
lay

 : b
oo

lea
n

isL
oo

p :
 in

teg
er

bu
iltI

nC
on

tro
l :

bo
ole

an
su

bti
tle

 : b
oo

lea
n

su
bti

tle
Co

nte
nt

: u
ri

dra
wi

ng
Ca

nv
as

wi
nd

ow
wi

nd
ow

Le
ftM

arg
in

: in
teg

er
wi

nd
ow

To
pM

arg
in

: in
teg

er
isR

es
iza

ble
 : b

oo
lea

n

dia
log

Bo
x

gra
ph

ica
lIn

div
idu

alC
om

po
ne

nt
glu

eV
ert

ica
l :

stri
ng

glu
eH

ori
zo

nta
l :

str
ing

de
fau

ltM
ne

mo
nic

 : S
trin

g
mn

em
on

ic
: S

trin
g

gra
ph

ica
lC

on
tai

ne
r

wid
th

: in
teg

er
he

igt
h :

 in
teg

er
bg

Im
ag

e :
 ur

i
isA

lw
ay

sO
nT

op
 : b

oo
lea

n
rep

eti
tio

n :
 in

teg
er

0..
n

1

0..
n

1

0..
n

0..
1 0..

n

0..
1

me
nu

po
pU

pM
en

u :
 bo

ole
an

too
lB

arM
en

u :
 bo

ole
an

me
nu

Ite
m

typ
e :

 st
rin

g
ke

yb
oa

rdS
ho

rtc
ut

: s
trin

g
de

fau
ltK

ey
bo

ard
Sh

ort
cu

t :
stri

ng

1..
n1 1..
n1

1 11 1

tab
be

dIt
em

ind
ex

 : i
nte

ge
r

tab
be

dD
ial

og
Bo

x

1..
n

1
1..

n
1

tex
tC

om
po

ne
nt

tex
tFo

nt
: s

trin
g

isB
old

 : b
oo

lea
n

isI
tal

ic
: b

oo
lea

n
isU

nd
erl

ine
 : b

oo
lea

n
isS

trik
eT

hro
ug

h :
 bo

ole
an

isS
ub

Sc
rip

t :
bo

ole
an

isS
up

erS
cri

pt
: b

oo
lea

n
isP

ref
orm

att
ed

 : b
oo

lea
n

tex
tSi

ze
 : i

nte
ge

r
de

fau
ltH

yp
erL

ink
Ta

rge
t :

uri
hy

pe
rLi

nk
Ta

rge
t :

uri
lin

kV
isi

ted
Co

lor
 : s

trin
g

ac
tiv

eli
nk

Co
lor

 : s
trin

g
tex

tM
arg

in
: in

teg
er

tex
tCo

lor
 : S

trin
g

isE
dit

ab
le

: b
oo

lea
n

wo
rdW

rap
pe

d :
 bo

ole
an

for
ce

Wo
rdW

rap
pe

d :
 bo

ole
an

ma
xL

en
gth

 : i
nte

ge
r

nu
mb

erO
fC

olu
mn

s :
 in

teg
er

nu
mb

erO
fLi

ne
s :

int
eg

er
scr

oll
sty

le
: s

trin
g

scr
oll

Di
rec

tio
n :

 st
rin

g
scr

oll
Wi

dth
 : i

nte
ge

r
scr

oll
He

igt
h :

 in
teg

er
scr

oll
Ho

riz
Sp

ac
e :

 in
teg

er
scr

oll
Ve

rtS
pa

ce
 : i

nte
ge

r
scr

oll
De

lay
 : i

nte
ge

r
scr

oll
Am

ou
nt

: in
teg

er
tex

tVe
rtic

alA
lig

n :
 S

trin
g

tex
tHo

riz
on

tal
Al

ign
 : S

trin
g

filt
er

: S
trin

g

im
ag

eZ
on

e
hy

pe
rLi

nk
Ta

rge
t :

uri
de

fau
ltH

yp
erL

ink
Ta

rge
t :

uri
sh

ap
e :

 st
rin

g
co

ord
ina

tes
 : c

oo
rd

im
ag

eC
om

po
ne

nt
im

ag
eH

eig
ht

: in
teg

er
im

ag
eW

idt
h :

 in
teg

er
im

ag
eH

ori
zS

pa
ce

 : i
nte

ge
r

im
ag

eB
ord

er
: in

teg
er

hy
pe

rLi
nk

Ta
rge

t :
uri

de
fau

ltH
yp

erL
ink

Ta
rge

t :
uri

0..
n

0..
n

tog
gle

Bu
tto

n
de

fau
ltS

tat
e :

 bo
ole

an

ch
ec

kB
ox

de
fau

ltS
tat

e :
 bo

ole
an

gro
up

Na
me

 : s
trin

g

bu
tto

n

rad
ioB

utt
on

de
fau

ltS
tat

e :
 bo

ole
an

gro
up

Na
me

 : s
trin

g

bo
x

typ
e :

 st
rin

g
rel

ati
ve

Wi
dth

 : i
nte

ge
r

rel
ati

ve
He

igh
t :

int
eg

er
isS

pli
tab

le
: b

oo
lea

n
isD

eta
ch

ab
le

: b
oo

lea
n

isB
ala

nc
ed

 : b
oo

ole
an

isR
es

iza
ble

Ho
riz

on
tal

 : b
oo

lea
n

isR
es

iza
ble

Ve
rtic

al
: b

oo
lea

n
rel

ati
ve

Mi
nW

idt
h :

 in
teg

er
rel

ati
ve

Mi
nH

eig
ht

: in
teg

er
isF

low
 : b

oo
lea

n
isS

cro
lla

ble
 : b

oo
lea

n
gri

dW
idt

h :
 st

rin
g

gri
dH

eig
ht

: s
trin

g

tab
le

xS
ize

 : i
nte

ge
r

yS
ize

 : i
nte

ge
r

zS
ize

 : i
nte

ge
r

ce
ll

xIn
de

x :
 in

teg
er

yIn
de

x :
 in

teg
er

zIn
de

x :
 in

teg
er

0..
n

1

0..
n

1
0..

1

1

0..
1

1

cu
rso

r
de

fau
ltP

os
itio

n :
 in

teg
er

sli
de

r
mi

nV
alu

e :
 in

teg
er

ma
xV

alu
e :

 in
teg

er
ste

p :
 in

teg
er

ori
en

tat
ion

 : s
trin

g

1..
2

1

1..
2

1
da

teP
ick

er
ho

urP
ick

er

co
lor

Pi
cke

r

file
Pi

cke
r

pro
gre

ssi
o

nB
ar

co
mb

oB
ox

isD
rop

Do
wn

 : b
oo

lea
n

isE
dit

ab
le

: b
oo

lea
n

sp
in

ori
en

tat
ion

 : s
trin

g

Ite
m

1..
n

1

1..
n

1

1..
n

1

1..
n

1

0..
n0..

1
0..

n0..
1

Tr
ee

0..
n

0..
1

0..
n

0..
1

isV
oic

e :
 bo

ole
an

pit
ch

 : s
trin

g
pro

so
dy

 : s
trin

g

Me
nu

Ba
r

Me
nu

Po
pU

p

Appendix A

271

graphicalRelationship

graphicalAlignment
isVertical : boolean
isHorizontal : boolean
isRightCentralLeft : string
isUpDown : string

auditoryRelationship

graphicalEmphasis

graphicalAdjacency

cuiDialogControl
symbol : string

graphicalTransition
transitionType : string
transitionEffect : string

auditoryTransition
transitionType : string
transitionEffect : string

auditoryAdjacency
delayTime : integer

grahicalCointainmentauditoryContainment

source
sourceId : string

target
targetId : string

cuiRelationship
id : string
name : string

1..n1 1..n1

1..n

1

1..n

1
0..n

1

0..n

cuiModel

uiModel
creationDate : string
schemaVersion : string

UsiXML CUI 1.4.6 part 3/3

Appendix B

272

Appendix B
UML diagrams of languages

This appendix contains all the UML diagrams of the source languages. These
diagrams have been constructed thanks to languages DTD for HTML,
VoiceXML and WML and thanks to documentation for Windows resource files.
Some comments for each of these diagrams are given below.

XIML: The XIML language is mainly composed of four types of components:
models, elements, attributes and relations between the elements. We can
distinguish two types of models, the interface model and the model components.
The first is the root of any XIML document and contains the various sub-models
(model components) available in XIML. The model components (task, domain,
user, presentation, dialogue, platform, preferences and the general model) contain
information specific to a dimension of the interface. Each model is composed of
elements. Each model or element can possess features (composed of attributes or
relations) or definitions (attribute or relation definitions).

HTML: There are five categories of elements for the HTML meta-model:
elements specific to the head section (meta, script…), containers, (such as forms,
tables…) that define hierarchy of elements, formatting tags (such as b, i, p…), lists
(dl, ul…) and atomic tags that cannot contain other tags (img, object, button…).

WML: The root element of the model is a wml element, which can contain a
meta, template or card node. The UI is contained in card elements and can be
composed of navigation elements (+navelements), timer, paragraphs (p) or fields
(+fields). Fields are decomposed in several input elements (select, input…) and
flow elements (+flow) that represent formatting tags for the text of the UI, such as
b or i(for bold or italic text), tables, links(a) and images (img).

Appendix B

273

VoiceXML: The meta-model of the VoiceXML 2.0 language is given twice in this
section, one in a lightened version, as some simplifications have been made and all
the possible containment relations are not shown in this version of the model in
order to make it readable, and another representing the full version. The root of
this meta-model is a vxml element, which can contain meta information (meta and
metadata), link, property, events handlers (+event handler), containers and input
(+container) or executable content (+executable content). The VoiceXML UI is
embedded in node belonging to the containers class. This superclass (preceded by
a + symbol) groups logical containers (block, initial) and form-input elements (field,
record, …) as they share common attributes and properties. The event handler
superclass contains several predefined event (help, noinput…) so as user-defined
catchers (catch). Finally, executable content is the class for the rest of UI
components. It contains tags allowing modifying control flow (if, then, else,
return…) so as output nodes (prompt, audio). Executable contents and event
handlers are characterized by the fact that these elements can not embed another
element of the same class, contrary to containers.

Windows resource files: This meta-model is in fact a model based on a logical
representation of resource files, as names and attributes of resource files can be
relatively cryptic (e.g. WS_EX_DLGMODAL FRAME has been replaced by
dialogModalFrame in the window entity). The first model about menus contains
only four types of elements: a menubar containing the menu specification,
popupmenus, menu items and separators. This small meta model can be found in
chapter 8. The subject of the second model is the window/dialog box meta-model
representation. This model contains almost all the “classic” interaction that we
can find in windows application, such as button, combo boxes, check boxes etc…

Appendix B

274

Va
lu

e

Al
lo

we
d_

Cl
as

se
s

Cl
as

s
re

fe
re

nc
e

sl
ot

in
he

rit
ed

Ty
pe

Ca
no

ni
ca

l_
Fo

rm
Al

lo
we

d_
Va

lu
es

Do
cu

m
en

ta
tio

n

De
fa

ul
t

Ev
er

y
el

em
en

t o
r m

od
el

 h
as

 a
 n

am
e

ta
g

(n
ot

sh

ow
n

he
re

 to
 c

la
rif

y
th

e
di

ag
ra

m
)

Re
la

tio
n_

De
fin

iti
on

na
m

e

At
tri

bu
te

_D
ef

in
iti

on
na

m
e

Co
nd

iti
on

co
nd

iti
on

_t
yp

e
G

oa
l

In
te

rfa
ce

De
fin

iti
on

s

M
od

el
_C

om
po

ne
nt

s

Ta
sk

_M
od

el
id hi

er
ar

ch
y

Di
al

og
_M

od
el

id hi
er

ar
ch

y

Do
m

ai
n_

M
od

el
id hi

er
ar

ch
y

M
od

el
id

Pr
es

en
ta

tio
n_

M
od

el
id hi

er
ar

ch
y

Us
er

_M
od

el
id hi

er
ar

ch
y

Pr
es

en
ta

tio
n_

El
em

en
t

id lo
ca

tio
n

Us
er

_E
le

m
en

t
id

El
em

en
t

id
Do

m
ai

n_
E

le
m

en
t

id
Ta

sk
_E

le
m

en
t

id ex
ec

ut
io

n_
or

de
r

Fe
at

ur
es

At
tri

bu
te

_S
ta

te
m

en
t

na
m

e
de

fin
iti

on

In
te

ra
ct

io
n_

Te
ch

ni
qu

e
re

fe
re

nc
e

Di
al

og
_E

le
m

en
t

id ex
ec

ut
io

n_
or

de
r

s
Re

la
tio

n_
St

at
em

en
t

na
m

e
re

fe
re

nc
e

Re
sp

on
se

re
fe

re
nc

e
re

sp
on

se
_t

yp
e

XIML

Appendix B

275

HTML 4.0 part 1/2

div
align

center

link
charset
href
hreflang
type
rel
rev
media
target

meta
http-equiv
name
content
scheme

style
type
media

base
href
targettitle

col
span
width
valign
char
charoff
al ign

caption
align

colgroup
span
width
align
valign
char
charoff

tfoot
char
al ign
valign
charoff

thead
char
charoff
align
valign

table
summary
width
border
frame
rules
cellspacing
cellpadding
align
bgcolor

tbody
align
valign
char
charoff

input
type
name
value
checked
disabled
readonly
size
maxlength
src
alt
accept
align

textarea
name
rows
cols
disabled
readonly

form
action
method
enctype
accept
accept-charset
target
name

optgroup
disabled
label

option
selected
disabled
label
value

select
name
size
multiple
disabled

legend
align

fieldset

head
prof...

html
xmlns

noscript
script

charset
type
src
defer
language

tr
char
charoff
bgcolor
al ign
valign

Body
background
bgcolor
alink
vlink
l ink
text

td
abbr
axis
headers
scope
rowspan
colspan
nowrap
valign
align
bgcolor
char
charoff
height
width

+Containers

th
abbr
axis
headers
scope
rowspan
colspan
align
valign
bgcolor
char
charoff
height
width
nowrap

Appendix B

276

HTML 4.0 part 2/2

blockquote
cite q

cite

abbr

acronym
address

b

bdo
dir

big

cite

code

del
cite
datetime

dfn

em

i

ins
cite
datetime

kbd

label
for

p
align

pre
width

samp

small

span

strong

sub sup

ttvar

h1
align

h2
align

h3
align

h4
align

h5
align

h6
align

These elements are represented by the format
element. They all have mutual aggregation
relations between them

These elements are represented by the noAggr element. There is NO
aggregation between these elements.

applet
height
width
align
alt
archive
code
codebase
hspace
name
object
title
vspace

basefont
color
face
size

font
size
face
color

iframe
name
src
width
scrolling
marginwidth
marginheight
longdesc
height
align
frameborder

hr
noshade
width
size
align

button
name
value
type
disabled

br

s

strike

col
span
width
valign
char
charoff
al ign

caption
align

colgroup
span
width
align
valign
char
charoff

thead
char
charoff
align
valign

table
summary
width
border
frame
rules
cellspacing
cellpadding
align
bgcolor

body
ign

align
har
haroff

dd dt

dl
menu

compact
dir

compact

ol
start
compact
type

li
type
value

ul
compact
type

img
src
alt
longdesc
height
width
usemap
ismap
vspace
hspace
align
border

a
charset
type
name
href
hreflang
rel
rev
accesskey
shape
coords
tabindex
targetparam

name
id
value
valuetype
type

object
declare
classid
codeba...
data
type
codetype
archive
standby
height
width
border
name
align
usemap
vspace
hspace

frame
scrolling
name
noresize
src
marginwidth
marginheight
longdesc
frameborder

noframe

area
shape
coords
href
nohref
alt
target

html
xmlns

ript

frameset
cols
rows

map
id
name

+Format

Body
background
bgcolor
alink
vlink
l ink
text

+lists

+NoAggr

Appendix B

277

in
pu

t
na

m
e

ty
pe

va
lu

e
fo

rm
at

em
pt

y
ok

si
ze

m
ax

le
ng

th
ta

bi
nd

ex
tit

le

em

st
ro

ng
b

i

u
bi

g
sm

al
l

no
op

ac
ce

ss
do

m
ai

n
pa

th
id cl

as
s

m
et

a
ht

tp
-e

qu
iv

na
m

e
fo

ru
a

co
nt

en
t

sc
he

m
e

id cl
as

s

he
ad

id cl
as

s

pr
ev

re
fr

es
h

po
st

fie
ld

na
m

e
va

lu
e

id cl
as

s

go
hr

ef
se

nd
re

fe
re

r
m

et
ho

d
ac

ce
pt

-c
ha

rs
et

te
m

pl
at

e
id cl

as
s

on
en

te
rf

or
wa

rd
on

en
te

rb
ac

kw
ar

d

se
tv

ar
na

m
e

va
lu

e
id cl

as
s

+t
as

k
id cl

as
s

+n
on

oo
pt

as
k

an
ch

or
tit

le

im
g

al
t

sr
c

lo
ca

ls
rc

vs
pa

ce
hs

pa
ce

al
ig

n
he

ig
ht

wi
dt

h

br

a hr
ef

tit
le

ta
bl

e
tit

le
al

ig
n

co
lu

m
ns

tr
id cl

as
s

+f
lo

w

td

+e
m

ph

wm
l

xm
l:l

an
g

id cl
as

s
tim

er
na

m
e

va
lu

e
id cl

as
s

+n
av

el
m

ts
id cl

as
s

ty
pe

fie
ld

se
t

tit
le

do
la

be
l

na
m

e
op

tio
na

l
xm

l:l
an

g

p
al

ig
n

m
od

e
xm

l:l
an

g
id cl

as
s

on
ev

en
t

se
le

ct
tit

le
na

m
e

va
lu

e
in

am
e

iv
al

ue
m

ut
ip

le
ta

bi
nd

ex
op

tio
n

va
lu

e
tit

le
on

pi
ck

xm
l:l

an
g

id cl
as

s

op
tg

ro
up

tit
le

id xm
l:l

an
g

cl
as

s

ca
rd

tit
le

ne
wc

on
te

xt
or

de
re

d
xm

l:l
an

g
on

en
te

rf
or

wa
rd

on
en

te
rb

ac
kw

ar
d

on
tim

er
id cl

as
s

+f
ie

ld
s

xm
l

id cl
as

s

WML 1.1

Appendix B

278

ca
tch

ev
en

t :
str

in..
.

he
lp

no
inp

ut
no

ma
tch

err
or

ini
tia

l

fille
d

mo
de

 :
str

ing
na

me
lis

t :
 st

ri..
.blo

ck
me

nu
id

: s
trin

g
sc

op
e :

 st
rin

g
dtm

f :
str

ing
ac

ce
pt

: s
trin

g

me
ta

na
me

 : s
trin

g
co

nte
nt

: s
trin

g
htt

p-e
qu

iv :
 st

rin
g

me
tad

ata
rig

hts
 :

str
ing

su
bje

ct
: s

tri.
..

pro
pe

rty
na

me
 : s

tri.
..

val
ue

 :
str

ing

+ E
ve

nt
ha

nd
ler

co
un

t :
 in

teg
...

co
nd

 :
str

ing

+
Ex

ec
uta

ble
 co

nte
nt

0..
n

1

0..
n

1

for
m

id
: s

trin
g

sc
op

e :
 st

rin..
.

fie
ld

typ
e :

 st
rin

g
slo

t :
 st

rin
g

mo
da

l :
bo

ole
...

tra
ns

fer
de

st
: u

ri
de

ste
xp

r :
str

ing
bri

dg
e :

 bo
ole

an
co

nn
ec

ttim
eo

ut
: in

te.
..

ma
xti

me
 :

int
eg

er
tra

ns
fer

au
dio

 : u
ri

aa
i :

str
ing

aa
iex

pr
: s

trin
g

ch
oic

e
dtm

f
ac

ce
pt

ne
xt

: u
ri

ex
pr

: u
ri

eve
nt

: s
trin

g
eve

nte
xp

r :
str

ing
me

ss
ag

e :
 st

rin
g

me
ss

ag
ee

xp
r :

 st
rin

g

0..
n

1

0..
n

1

rec
ord

na
me

 : s
trin

g
ex

pr
: s

trin
g

co
nd

 : s
trin

g
mo

da
l :

bo
ole

an
be

ep
 : b

oo
lea

n
ma

xti
me

 : i
nte

ge
r

fin
als

ile
nc

e :
 in

teg
er

dtm
fte

rm
 :

bo
ole

an
typ

e :
 st

rin
g

op
tio

n
dtm

f :
str

ing
ac

ce
pt

: s
trin

g
va

lue
 : s

trin
g

0..
n

1
0..

n
1

vxm
l

ve
rsi

on
 : s

trin
g

xm
lna

me
sp

ac
e :

 st
rin

g
xm

l:b
as

e :
 st

rin
g

xm
l:la

ng
 : s

trin
g

ap
pl

ica
tio

n :
 st

rin
g

0..
n

1
0..

n
1 0..

n

1

0..
n

1

0..
n

0..
1

0..
n

0..
1

+ C
on

tai
ne

r
na

me
 : s

trin
g

ex
pr

: s
trin

g
co

nd
 : s

trin
g

fet
ch

au
dio

 : s
trin

g
fet

ch
hin

t :
str

ing
fet

ch
tim

eo
ut

: in
teg

er
ma

xa
ge

 :
int

eg
er

ma
xs

tal
e :

 in
teg

er

0..
n

1
0..

n
1

0..
1

0..
n0..

1

0..
n0..

n

0..
1

0..
n

0..
1

0..
n

1

0..
n

1

0..
n

1

0..
n

1

gra
mm

ar
ver

sio
n :

 st
rin

g
xm

l:la
ng

 :
str

ing
mo

de
 :

str
ing

roo
t :

 st
rin

g
tag

-fo
rm

at
: s

trin
g

xm
l:b

as
e :

 ur
i

ex
pr

sc
op

e
xm

lns
we

igh
t

typ
e

src src
ex

pr

0..
n

0..
1

0..
n

0..
1

0..
n0.
.1

0..
n0.
.1

0..
10..

1

0..
10..

1

0..
1

0..
1

0..
1

0..
1

0..
1

0..
1

0..
1

0..
1

0..
1

0..
1 0..

1

0..
1

lin
k

ne
xt

: u
ri

ex
pr

: u
ri

eve
nt

: s
trin

g
eve

nte
xp

r :
str

ing
me

ss
ag

e :
 st

rin
g

me
ss

ag
ee

xp
r :

 st
rin

g
dtm

f :
str

ing
fet

ch
au

dio
 :

str
ing

fet
ch

hin
t :

str
ing

fet
ch

tim
eo

ut
: in

teg
er

ma
xa

ge
 :

int
eg

er
ma

xs
tal

e :
 in

teg
er

0..
n

0..
1

0..
n

0..
1

0..
1

0..
n

0..
1

0..
n

1

0..
1

1

0..
1

els
eif

co
nd

 :
str

in..
.

els
e

co
nd

 : s
trin

...

ex
it

ex
pr

: s
trin

g
na

me
lis

t :
str

i...
cle

ar
na

me
lis

t :
 st

ri..
.

log
lab

el
: s

trin.
..

ex
pr

: s
trin

g

as
sig

n
ex

pr
: s

trin
g

na
me

 :
str

i...

dis
co

nn
ec

t
src

 :
uri

ch
ars

et
: s

trin
g

fet
ch

hin
t :

str
ing

fet
ch

tim
eo

ut
: in

teg
er

ma
xa

ge
 :

int
eg

er
ma

xs
tal

e :
 in

teg
er

go
to

ne
xt

: u
ri

ex
pr

: s
trin

g
ne

xti
tem

 :
str

ing
ex

pri
tem

 :
str

ing
fet

ch
au

dio
 :

str
ing

fet
ch

hin
t :

str
ing

fet
ch

tim
eo

ut
: in

teg
er

ma
xa

ge
 :

int
eg

er
ma

xs
tal

e :
 in

teg
er

ret
urn

ev
en

t :
str

ing
ev

en
tex

pr
: s

trin
g

me
ss

ag
e :

 st
rin

g
me

ss
ag

ee
xp

r :
str

ing
na

me
lis

t :
str

ing

rep
rom

pt

sc
rip

t
src

 :
uri

ch
ars

et
: s

trin
g

fet
ch

hin
t :

str
ing

fet
ch

tim
eo

ut
: in

teg
er

ma
xa

ge
 :

int
eg

er
ma

xs
tal

e :
 in

teg
er

su
bm

it
ne

xt
: u

ri
ex

pr
: s

trin
g

na
me

lis
t :

 st
rin

g
me

tho
d :

 st
rin

g
en

cty
pe

 : s
trin

g
fet

ch
au

dio
 :

str
ing

fet
ch

hin
t :

 st
rin

g
fet

ch
tim

eo
ut

: in
teg

er
ma

xa
ge

 : i
nte

ge
r

ma
xs

tal
e :

 in
teg

er

thr
ow

ev
en

t :
str

ing
ev

en
tex

pr
: s

trin
g

me
ss

ag
e :

 st
rin

g
me

ss
ag

ee
xp

r :
str

ing

va
r

ex
pr

: s
trin

g
na

me
 :

str
ing

ob
jec

t
cla

ss
id

: u
ri

co
de

ba
se

 :
uri

co
de

typ
e :

 st
rin

g
da

ta
: u

ri
typ

e :
 st

rin
g

arc
hiv

e :
 st

rin
g

pa
ram

va
lue

 :
str

ing
va

lue
typ

e :
 st

rin
g

typ
e :

 st
rin

g

0..
n

0..
1

0..
n

0..
1

su
bd

ial
og

na
me

lis
t

src src
ex

pr
me

tho
d

en
cty

pe

0..
n

0..
1

0..
n

0..
1

de
sc

xm
l :

lan
g

val
ue

ex
pr

: s
trin

...

en
um

era
te

au
dio

fet
ch

hin
t :

str
ing

fet
ch

tim
eo

ut
: in

teg
er

ma
xa

ge
 :

int
eg

er
ma

xs
tal

e :
 in

teg
er

ex
pr

: s
trin

g
1

0..
n

1

0..
n

if
co

nd
 :

str
in..

.

0..
n 0..

1

0..
n 0..

1

0..
n

1

0..
n

1

0..
n

1

0..
n

1

0..
1

0..
1

0..
1

0..
1

0..
n

0..
1

0..
n

0..
1

0..
n

0..
1

0..
n

0..
1

0.
.1

0..
n

0.
.1

0..
n

0.
.1

10.
.1

1

0..
1

10..
1

1

0..
1

1

0..
1

1

0.
.1

0..
1

0.
.1

0..
1

0..
1

0..
1

0..
1

0..
1

0..
1

0..
n

0..
1

0..
n

0..
1

0..
1

0..
1

0..
1

0.
.1

0..
1

0.
.1

0..
1

0..
1

0..
n

0..
1

0..
n

0..
1

0..
n

0..
1

0..
n

se
nte

nc
e

xm
l :

lan
g

bre
ak

siz
e

str
en

gh
t

tim
e

p
xm

l :
lan

g

s
xm

l :
lan

g
su

b
ali

as

pro
so

dy
co

nto
ur

du
rat

ion
pit

ch
ran

ge
rat

e
vo

lum
e

em
ph

as
is

lev
el

voi
ce

xm
l :

lan
g

ag
e

ge
nd

er
na

me
va

ria
nt

sa
y-a

s
int

erp
re

t-a
s

de
tai

l
for

ma
t

ph
on

em
e

ph alp
ha

be
t

lex
ico

n
uri typ

e

pro
mp

t
ba

rge
in

: b
oo

lea
n

ba
rge

int
yp

e :
 st

rin
g

co
nd

 : s
trin

g
co

un
t :

int
eg

er
tim

eo
ut

: in
teg

er
xm

l:la
ng

 :
str

ing
xm

l:b
as

e :
 ur

i

0..
n0..

1

0..
n0..

1

1

0..
1

1

0..
1

10..
n 10..
n

0..
1

0..
n

0..
1

0..
n

0..
*

0..
1 0..

*

0..
1

0..
*

0..
*

0..
*

0..
1

0..
*

0..
1

0..
*

0..
*

0..
*

0..
1 0..
*

0..
1

0..
*0..

1

0..
*0..

1

0..
*

0..
1

0..
*

0..
1

0..
*

0..
1

0..
*

0..
1

0..
*

0..
1

0..
*

0..
1

0..
*

0..
1

0..
*

0..
1

0..
*

0..
1

0..
*

0..
1

VoiceXML 2.0
 simplified

Appendix B

279

s
c

ri
p

t
s

rc
 :

u
ri

c
h

a
rs

e
t :

 s
tr

in
g

fe
tc

h
h

in
t :

 s
tr

in
g

fe
tc

h
tim

e
o

u
t :

 in
te

g
e

r
m

a
x

a
g

e
 :

in
te

g
e

r
m

a
x

s
ta

le
 :

in
te

g
e

r

h
e

lp
n

o
m

a
tc

h

e
x

it
e

x
p

r
: s

tr
in

g
n

a
m

e
lis

t :
 s

tr
in

g

a
s

s
ig

n
e

x
p

r
: s

tr
in

g
n

a
m

e
 :

s
tr

in
...

d
is

c
o

n
n

e
c

t
s

rc
 :

u
ri

c
h

a
rs

e
t :

 s
tr

in
g

fe
tc

h
h

in
t :

 s
tr

in
g

fe
tc

h
tim

e
o

u
t :

 in
te

g
e

r
m

a
x

a
g

e
 :

in
te

g
e

r
m

a
x

s
ta

le
 :

in
te

g
e

r

g
o

to
n

e
x

t :
 u

ri
e

x
p

r
: s

tr
in

g
n

e
x

tit
e

m
 :

s
tr

in
g

e
x

p
ri

te
m

 :
s

tr
in

g
fe

tc
h

a
u

d
io

 :
s

tr
in

g
fe

tc
h

h
in

t :
 s

tr
in

g
fe

tc
h

tim
e

o
u

t :
 in

te
g

e
r

m
a

x
a

g
e

 :
in

te
g

e
r

m
a

x
s

ta
le

 :
in

te
g

e
r

re
tu

rn
e

v
e

n
t :

 s
tr

in
g

e
v

e
n

te
x

p
r

: s
tr

in
g

m
e

s
s

a
g

e
 :

s
tr

in
g

m
e

s
s

a
g

e
e

x
p

r
: s

tr
in.

..
n

a
m

e
lis

t :
 s

tr
in

g

c
le

a
r

n
a

m
e

lis
t :

 s
tr

in
...

in
iti

a
l

n
o

in
p

u
t

v
o

ic
e

xm
l :

 la
ng

ag
e

ge
nd

er
na

m
e

va
ria

nt

s
a

y
-a

s
in

te
rp

re
t-a

s
de

ta
il

fo
rm

at

lo
g

la
b

e
l :

 s
tr

in
...

e
x

p
r

: s
tr

in
...

d
e

s
c

xm
l :

 la
ng

o
p

tio
n

d
tm

f :
 s

tr
in

g
a

c
c

e
p

t :
 s

tr
in

g
v

a
lu

e
 :

s
tr

in
g

c
h

o
ic

e
d

tm
f

a
c

c
e

p
t

n
e

x
t :

 u
ri

e
x

p
r

: u
ri

e
v

e
n

t :
 s

tr
in

g
e

v
e

n
te

x
p

r
: s

tr
in

g
m

e
s

s
a

g
e

 :
s

tr
in

g
m

e
s

s
a

g
e

e
x

p
r

: s
tr

in.
..

e
m

p
h

a
s

is
le

ve
l

p
-p

a
ra

g
ra

p
h

xm
l :

 la
ng

p
h

o
n

e
m

e
ph al

ph
ab

et

a
u

d
io

fe
tc

h
h

in
t :

 s
tr

in
g

fe
tc

h
tim

e
o

u
t :

 in
te

g
e

r
m

a
x

a
g

e
 :

in
te

g
e

r
m

a
x

s
ta

le
 :

in
te

g
e

r
e

x
p

r
: s

tr
in

g

1

0.
.n

1

0.
.n

p
ro

s
o

d
y

co
nt

ou
r

du
ra

tio
n

pi
tc

h
ra

ng
e

ra
te

vo
lu

m
e

e
n

u
m

e
ra

te

s
-s

e
n

te
n

c
e

xm
l :

 la
ng

p
a

ra
m

v
a

lu
e

 :
s

tr
in

g
v

a
lu

e
ty

p
e

 :
s

tr
in

g
ty

p
e

 :
s

tr
in

g

fie
ld

ty
p

e
 :

s
tr

in
g

s
lo

t :
 s

tr
in

g
m

o
d

a
l :

 b
o

o
le

a
n

0.
.n

1

0.
.n

1

g
ra

m
m

a
r

v
e

rs
io

n
 :

s
tr

in
g

x
m

l:l
a

n
g

 :
s

tr
in

g
m

o
d

e
 :

s
tr

in
g

ro
o

t :
 s

tr
in

g
ta

g
-f

o
rm

a
t :

 s
tr

in
g

x
m

l:b
a

s
e

 :
u

ri
e

x
p

r
s

c
o

p
e

x
m

ln
s

w
e

ig
h

t
ty

p
e

s
rc

s
rc

e
x

p
r

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.n

0.
.1

0.
.n

0.
.1

s
u

b
al

ia
s

le
x

ic
o

n
ur

i
ty

pe

v
o

c
a

lS
ty

le

o
b

je
c

t
c

la
s

s
id

 :
u

ri
c

o
d

e
b

a
s

e
 :

u
ri

c
o

d
e

ty
p

e
 :

s
tr

in
g

d
a

ta
 :

u
ri

ty
p

e
 :

s
tr

in
g

a
rc

h
iv

e
 :

s
tr

in
g

0.
.n

0.
.1

0.
.n

0.
.1

re
c

o
rd

n
a

m
e

 :
s

tr
in

g
e

x
p

r
: s

tr
in

g
c

o
n

d
 :

s
tr

in
g

m
o

d
a

l :
 b

o
o

le
a

n
b

e
e

p
 :

b
o

o
le

a
n

m
a

x
tim

e
 :

in
te

g
e

r
fin

a
ls

ile
n

c
e

 :
in

te
g

e.
..

d
tm

fte
rm

 :
b

o
o

le
a

n
ty

p
e

 :
s

tr
in

g

s
u

b
d

ia
lo

g
n

a
m

e
lis

t
s

rc
s

rc
e

x
p

r
m

e
th

o
d

e
n

c
ty

p
e

m
a

x
s

ta
le

 :
in

te
g

e
r

m
a

x
a

g
e

 :
in

te
g

e
r

fe
tc

h
tim

e
o

u
t :

 in
te

g
e

r
fe

tc
h

h
in

t :
 s

tr
in

g
fe

tc
h

a
u

d
io

 :
s

tr
in

g

0.
.n

0.
.1

0.
.n

0.
.1

p
ro

m
p

t
b

a
rg

e
in

 :
b

o
o

le
a

n
b

a
rg

e
in

ty
p

e
 :

s
tr

in
...

c
o

n
d

 :
s

tr
in

g
c

o
u

n
t :

 in
te

g
e

r
tim

e
o

u
t :

 in
te

g
e

r
x

m
l:l

a
n

g
 :

s
tr

in
g

x
m

l:b
a

s
e

 :
u

ri

0.
.*

0.
.1

0.
.*

0.
.1

0.
.*

0.
.1

0.
.*

0.
.1

tr
a

n
s

fe
r

d
e

s
t :

 u
ri

d
e

s
te

x
p

r
: s

tr
in

g
b

ri
d

g
e

 :
b

o
o

le
a

n
c

o
n

n
e

c
tti

m
e

o
u

t :
 in

te
g

e
r

m
a

x
tim

e
 :

in
te

g
e

r
tr

a
n

s
fe

ra
u

d
io

 :
u

ri
a

a
i :

 s
tr

in
g

a
a

ie
x

p
r

: s
tr

in
g

0.
.1

0.
.1

0.
.1

0.
.1

m
e

ta
n

a
m

e
 :

s
tr

in
g

c
o

n
te

n
t :

 s
tr

in
g

h
ttp

-e
q

u
iv

 :
s

tr
in

g

m
e

ta
d

a
ta

ri
g

h
ts

 :
s

tr
in

g
s

u
b

je
c

t :
 s

tr
in

g

lin
k

n
e

x
t :

 u
ri

e
x

p
r

: u
ri

e
v

e
n

t :
 s

tr
in

g
e

v
e

n
te

x
p

r
: s

tr
in

g
m

e
s

s
a

g
e

 :
s

tr
in

g
m

e
s

s
a

g
e

e
x

p
r

: s
tr

in
...

d
tm

f :
 s

tr
in

g
fe

tc
h

a
u

d
io

 :
s

tr
in

g
fe

tc
h

h
in

t :
 s

tr
in

g
fe

tc
h

tim
e

o
u

t :
 in

te
g

e
r

m
a

x
a

g
e

 :
in

te
g

e
r

m
a

x
s

ta
le

 :
in

te
g

e
r

1

0.
.1

1

0.
.1

p
ro

p
e

rt
y

n
a

m
e

 :
s

tr
in

...
v

a
lu

e
 :

s
tr

in
...

+
 E

v
e

n
t h

a
n

d
le

r
c

o
u

n
t :

 in
te

g
e..

.
c

o
n

d
 :

s
tr

in
g

v
a

r
e

x
p

r
: s

tr
in

g
n

a
m

e
 :

s
tr

in
g

m
e

n
u

id
 :

s
tr

in
g

s
c

o
p

e
 :

s
tr

in
g

d
tm

f :
 s

tr
in

g
a

c
c

e
p

t :
 s

tr
in

g

0.
.n

1

0.
.n

1

v
x

m
l

ve
rs

io
n

: s
tri

ng
xm

ln
am

es
pa

ce
 :

st
rin

g
xm

l:b
as

e
: s

tri
ng

xm
l:l

an
g

: s
tri

ng
ap

pl
ic

at
io

n
: s

tri
ng

0.
.n

1
0.

.n
1

0.
.n

1
0.

.n
1

0.
.n

0.
.1

0.
.n

0.
.1

0.
.n

0.
.1

0.
.n

0.
.1

+
 F

o
rm

E
le

m
e

n
t

n
a

m
e

 :
s

tr
in

g
e

x
p

r
: s

tr
in

g
c

o
n

d
 :

s
tr

in
g

0.
.n

0.
.1

0.
.n

0.
.1

0.
.n

1

0.
.n

1

0.
.n

1

0.
.n

1

v
a

lu
e

e
x

p
r

: s
tr

in
...

0.
.n

0.
.1

0.
.n

0.
.1

b
re

a
k

si
ze

st
re

ng
ht

tim
e

fo
re

a
c

h
ar

ra
y

: s
tri

ng
ite

m
 :

st
rin

g

m
a

rk
na

m
e

: s
tri

ng

e
ls

e
c

o
n

d
 :

s
tr

in.
..

e
ls

e
if

c
o

n
d

 :
s

tr
in
...

s
u

b
m

it
n

e
x

t :
 u

ri
e

x
p

r
: s

tr
in

g
n

a
m

e
lis

t :
 s

tr
in

g
m

e
th

o
d

 :
s

tr
in

g
e

n
c

ty
p

e
 :

s
tr

in
g

fe
tc

h
a

u
d

io
 :

s
tr

in
g

fe
tc

h
h

in
t :

 s
tr

in
g

fe
tc

h
tim

e
o

u
t :

 in
te

g
e

r
m

a
x

a
g

e
 :

in
te

g
e

r
m

a
x

s
ta

le
 :

in
te

g
e

r
fo

rm
id

 :
s

tr
in

g
s

c
o

p
e

 :
s

tr
in

g

+
 E

x
e

c
u

ta
b

le
 c

o
n

te
n

t

0.
.n

1

0.
.n

1

re
p

ro
m

p
t

c
a

tc
h

e
v

e
n

t :
 s

tr
in

g

e
rr

o
r

fil
le

d
m

o
d

e
 :

s
tr

in
g

n
a

m
e

lis
t :

 s
tr

in
...

if
c

o
n

d
 :

s
tr

in.
..

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

0.
.1

th
ro

w
e

v
e

n
t :

 s
tr

in
g

e
v

e
n

te
x

p
r

: s
tr

in
g

m
e

s
s

a
g

e
 :

s
tr

in
g

m
e

s
s

a
g

e
e

x
p

r
: s

tr
in.

..

b
lo

c
k

VoiceXML 2.0 Full

Appendix B

280

R
AD

IO
BU

TT
O

N
Au

to
 :

Bo
ol

ea
n

R
ig

ht
Bu

tto
n

: B
oo

le
an

Pu
sh

Li
ke

 :
Bo

ol
ea

n

PU
SH

BU
TT

O
N

D
ef

au
lt

: B
oo

le
an

C
on

te
nt

 :
{te

xt,
bi

tm
ap

,ic
on

}

C
H

EC
KB

O
X

Au
to

 :
Bo

ol
ea

n
3s

ta
te

 :
Bo

ol
ea

n
R

ig
ht

Bu
tto

n
: B

oo
le

an
Pu

sh
Li

ke
 :

Bo
ol

ea
n C

U
ST

O
M

BU
TT

O
N

ST
AT

IC
Ty

pe
 :

{te
xt,

fra
m

e,
im

ag
e,

en
he

nc
ed

M
et

af
ile

,o
wn

er
dr

aw
}

Su
nk

en
 :

Bo
ol

ea
n

N
ot

ify
 :

Bo
ol

ea
n

Te
xtS

tyl
e

: {
le

ft,
rig

ht
,c

en
te

r,s
im

pl
e,

le
ftN

oW
or

dW
ra

p,
un

de
fin

ed
}

N
oP

re
fix

 :
Bo

ol
ea

n
En

dE
lli

ps
is

 :
Bo

ol
ea

n
Pa

th
El

lip
si

s
: B

oo
le

an
W

or
dE

lli
ps

is
 :

Bo
ol

ea
n

Fr
am

e
: {

bl
ac

k,g
ra

y,w
hi

te
,u

nd
ef

in
ed

}
R

ec
ta

ng
le

 :
{b

la
ck

,g
ra

y,w
hi

te
,u

nd
ef

in
ed

}
Et

ch
ed

 :
{fr

am
e,

ho
riz

on
ta

l,v
er

tic
al

,u
nd

ef
in

ed
}

Ic
on

 :
Bo

ol
ea

n
Bi

tm
ap

 :
Bo

ol
ea

n
C

en
te

rIm
ag

e
: B

oo
le

an
R

ea
lS

iz
eI

m
ag

e
: B

oo
le

an
R

ig
ht

Ad
ju

st
 :

Bo
ol

ea
n

C
O

M
BO

BO
X

Ty
pe

 :
{s

im
pl

e,
dr

op
D

ow
n,

dr
op

D
ow

nL
is

t}
C

as
eS

en
si

tiv
e

: B
oo

le
an

N
oE

di
tIm

ag
e

: B
oo

le
an

N
oS

iz
eL

im
it

: B
oo

le
an

Pa
th

wo
rd

Br
ea

kP
ro

c
: B

oo
le

an

SC
R

O
LL

BA
R

Ty
pe

 :
{h

or
iz

on
ta

l,v
er

tic
al

,s
iz

eB
ox

,s
iz

eG
rip

}
Al

ig
nm

en
t :

 {l
ef

t,r
ig

ht
,to

p,
bo

tto
m

,b
ot

to
m

R
ig

ht
,to

pL
ef

,n
on

e}

ED
IT

Al
ig

nm
en

t :
 {l

ef
t,r

ig
ht

,c
en

te
r}

M
ul

til
in

e
: B

oo
le

an
Au

to
H

or
iz

on
ta

lS
cr

ol
l :

 B
oo

le
an

Au
to

Ve
rti

ca
lS

cr
ol

l :
 B

oo
le

an
Pa

ss
wo

rd
Fi

el
d

: B
oo

le
an

Lo
we

rC
as

e
: B

oo
le

an
U

pp
er

C
as

e
: B

oo
le

an
N

oH
id

eS
el

ec
tio

n
: B

oo
le

an
R

ea
dO

nl
y :

 B
oo

le
an

N
um

be
r :

 B
oo

le
an

W
an

tR
et

ur
n

: B
oo

le
an

O
EM

C
on

ve
rt

: B
oo

le
an

PU
SH

BO
X

W
IN

D
O

W
Te

xt
: S

tri
ng

G
en

er
al

St
yle

 :
{p

op
up

, o
ve

rla
pp

ed
, c

hi
ld

}
Bo

rd
er

 :
Bo

ol
ea

n
C

ap
tio

n
: B

oo
le

an
C

lip
C

hi
ld

re
n

: B
oo

le
an

C
lip

Si
m

bl
in

gs
 :

Bo
ol

ea
n

D
is

ab
le

d
: B

oo
le

an
D

ia
lo

gF
ra

m
e

: B
oo

le
an

G
ro

up
 :

Bo
ol

ea
n

Ta
bS

to
p

: B
oo

le
an

H
or

iz
on

ta
lS

cr
ol

lB
ar

 :
Bo

ol
ea

n
M

ax
im

iz
eB

ox
 :

Bo
ol

ea
n

M
ax

im
iz

ed
 :

Bo
ol

ea
n

M
in

im
iz

eB
ox

 :
Bo

ol
ea

n
M

in
im

iz
ed

 :
Bo

ol
ea

n
Sy

st
em

M
en

u
: B

oo
le

an
Th

ic
kF

ra
m

e
: B

oo
le

an
Ve

rti
ca

lS
cr

ol
lB

ar
 :

Bo
ol

ea
n

Vi
si

bl
e

: B
oo

le
an

C
lie

nt
Ed

ge
 :

Bo
ol

ea
n

D
ia

lo
gM

od
al

Fr
am

e
: B

oo
le

an
St

at
ic

Ed
ge

 :
Bo

ol
ea

n
W

in
do

wE
dg

e
: B

oo
le

an
Ac

ce
pt

Fi
le

s
: B

oo
le

an
Ap

pW
in

do
w

: B
oo

le
an

C
on

tro
lP

ar
en

t :
 B

oo
le

an
Ex

C
on

te
xtH

el
p

: B
oo

le
an

La
ye

re
d

: B
oo

le
an

La
yo

ut
R

TL
 :

Bo
ol

ea
n

Le
ft

: B
oo

le
an

Le
ftS

cr
ol

lB
ar

 :
Bo

ol
ea

n
LT

R
R

ea
di

ng
 :

Bo
ol

ea
n

M
D

IC
hi

ld
 :

Bo
ol

ea
n

N
oA

ct
ive

 :
Bo

ol
ea

n
N

oI
nh

er
itL

ay
ou

t :
 B

oo
le

an
N

oP
ar

en
tN

ot
ify

 :
Bo

ol
ea

n
R

ig
ht

 :
Bo

ol
ea

n
R

ig
ht

Sc
ro

llB
ar

 :
Bo

ol
ea

n
R

TL
R

ea
di

ng
 :

Bo
ol

ea
n

To
ol

W
in

do
w

: B
oo

le
an

To
pM

os
t :

 B
oo

le
an

Tr
an

sp
ar

en
t :

 B
oo

le
an

R
IC

H
ED

IT
D

is
ab

le
N

oS
cr

ol
l :

 B
oo

le
an

N
oC

al
lO

le
In

iti
al

iz
e

: B
oo

le
an

N
oI

M
E

: B
oo

le
an

Se
lfI

M
E

: B
oo

le
an

Su
nk

en
 :

Bo
ol

ea
n

Ve
rti

ca
l :

 B
oo

le
an

TR
AC

KB
AR

Au
to

Ti
ck

s
: B

oo
le

an
D

ow
Is

Le
ft

: B
oo

le
an

En
ab

le
Se

le
ct

io
nR

an
ge

 :
Bo

ol
ea

n
Fi

xe
dL

en
gh

t :
 B

oo
le

an
N

oT
hu

m
b

: B
oo

le
an

N
oT

ic
ks

 :
Bo

ol
ea

n
O

rie
nt

at
io

n
: {

ho
riz

on
ta

l,v
er

tic
al

}
R

ev
er

se
d

: B
oo

le
an

Ti
ck

M
ar

ks
 :

{b
ot

to
m

,to
p,

le
ft,

rig
ht

,b
ot

h}
To

ol
Ti

ps
 :

Bo
ol

ea
n

PR
O

G
R

ES
SB

AR
Ty

pe
 :

{n
or

m
al

,m
ar

qu
ee

,s
m

oo
th

}
Ve

rti
ca

l :
 B

oo
le

an

Bu D Fi Fl F u H H
o

H
o

LI
ST

BO
X

So
rte

d
: B

oo
le

an
M

ul
tip

le
Se

le
ct

io
n

: B
oo

le
an

D
is

ab
le

N
oS

cr
ol

l :
 B

oo
le

an
Ex

te
nd

ed
Se

le
ct

io
n

: B
oo

le
an

M
ul

tic
ol

um
n

: B
oo

le
an

N
oS

el
ec

tio
n

: B
oo

le
an

N
ot

ify
 :

Bo
ol

ea
n

O
wn

er
D

ra
wF

ixe
d

: B
oo

le
an

O
wn

er
D

ra
wV

ar
ia

bl
e

: B
oo

le
an

H
as

St
rin

gs
 :

Bo
ol

ea
n

N
oI

nt
eg

ra
lH

ei
gh

t :
 B

oo
le

an
U

se
Ta

bs
to

ps
 :

Bo
ol

ea
n

W
an

tK
ey

Bo
ar

dI
np

ut
 :

Bo
ol

ea
n

N
oD

at
a

: B
oo

le
an

N
oR

ed
ra

w
: B

oo
le

an

BU
TT

O
N

Ve
rti

ca
lA

lig
nm

en
t :

 {t
op

,c
en

te
r,b

ot
to

m
}

H
or

iz
on

ta
lA

lig
nm

en
t :

 {l
ef

t,c
en

te
r,r

ig
ht

}
Fl

at
 :

Bo
ol

ea
n

M
ul

til
in

e
: B

oo
le

an
N

ot
ify

 :
Bo

ol
ea

n

G
R

O
U

PB
O

X

U
PD

O
Al

ig
nm

en
t :

 {l
ef

Ar
ro

wK
ey

s
: B

o
Au

to
Bu

dd
y :

 B
o

H
or

iz
on

ta
l :

 B
o

H
ot

Tr
ac

k :
 B

oo
N

oT
ho

us
an

ds

Se
tB

ud
dy

In
t :

 B
W

ra
p

: B
oo

le
an

C
O

N
TR

O
L

C
trl

ID
 :

In
te

ge
r

X
: I

nt
eg

er
Y

: I
nt

eg
er

W
id

th
 :

In
te

ge
r

H
ig

ht
 :

In
te

ge
r

H
el

pI
D

 :
In

te
ge

r
Po

si
tio

n
: I

nt
eg

er
0.

.*

0.
.1

0.
.*

0.
.1

R
eg

...

+i
s

th
e

bu
dd

y w
in

do
w

of

G
lu

e
To

D
IA

LO
G

D
lg

ID
Ex

te
nd

ed
 :

Bo
ol

ea
n

X
: I

nt
eg

er
Y

: I
nt

eg
er

W
id

th
 :

In
te

ge
r

H
ig

ht
 :

In
te

ge
r

H
el

pI
D

 :
In

te
ge

r
3D

Lo
ok

 :
Bo

ol
ea

n
Ab

so
lu

te
Al

ig
nm

en
t :

 B
oo

le
an

C
en

te
r :

 B
oo

le
an

C
en

te
rM

ou
se

 :
Bo

ol
ea

n
C

on
te

xtH
el

p
: B

oo
le

an
D

ia
lo

gI
sC

on
tro

l :
 B

oo
le

an
Fi

xe
dS

ys
 :

Bo
ol

ea
n

Lo
ca

lE
di

t :
 B

oo
le

an
M

od
al

Fr
am

e
: B

oo
le

an
N

oF
ai

lC
re

at
e

: B
oo

le
an

N
oI

dl
eM

es
sa

ge
 :

Bo
ol

ea
n

Se
tF

or
eG

ro
un

d
: B

oo
le

an
La

ng
ua

ge
 :

St
rin

g
Su

bL
an

gu
ag

e
: S

tri
ng

Se
tF

on
t :

 B
oo

le
an

Fo
nt

N
am

e
: S

tri
ng

Fo
nt

Si
ze

 :
In

te
ge

r
Ita

lic
 :

Bo
ol

ea
n

W
ei

gh
t :

 In
te

ge
r

Sh
el

lF
on

t :
 B

oo
le

an

0.
.*

1

0.
.*

1

Resource

files part 1/2

Appendix B

281

Resource files part 2/2

er
dr

aw
}

W
ra

p,
un

de
fin

ed
}

C
U

ST
O

M
C

O
N

TR
O

L
C

la
ss

N
am

e
: S

tri
ng

.

TR
EE

VI
EW

C
he

ck
Bo

xe
s

: B
oo

le
an

D
is

ab
le

D
ra

gD
ro

p
: B

oo
le

an
Ed

itL
ab

el
s

: B
oo

le
an

Fu
llR

ow
Se

le
ct

 :
Bo

ol
ea

n
H

as
Bu

tto
ns

 :
Bo

ol
ea

n
H

as
Li

ne
s

: B
oo

le
an

In
fo

Ty
pe

 :
Bo

ol
ea

n
Li

ne
sA

tR
oo

t :
 B

oo
le

an
N

oH
or

iz
on

ta
lS

cr
ol

l :
 B

oo
le

an
N

on
ev

en
H

ei
gh

t :
 B

oo
le

an
N

oS
cr

ol
l :

 B
oo

le
an

N
oT

oo
lT

ip
s

: B
oo

le
an

R
ig

ht
To

Le
ftR

ea
di

ng
 :

Bo
ol

ea
n

Sh
ow

Se
le

ct
io

nA
lw

ay
s

: B
oo

le
an

Si
ng

le
Ex

pa
nd

 :
Bo

ol
ea

n
Tr

ac
kS

el
ec

t :
 B

oo
le

an

M
O

N
TH

C
AL

EN
D

AR
D

ay
St

at
e

: B
oo

le
an

M
ul

tis
el

ec
tio

n
: B

oo
le

an
N

oT
od

ay
 :

Bo
ol

ea
n

N
oT

od
ay

C
irc

le
 :

Bo
ol

ea
n

W
ee

kN
um

be
rs

 :
Bo

ol
ea

n

ST
AT

U
TB

AR
Si

ze
G

rip
 :

Bo
ol

ea
n

To
ol

Ti
ps

 :
Bo

ol
ea

n
To

p
: B

oo
le

an

LI
ST

VI
EW

Vi
ew

 :
{ic

on
,s

m
al

lIc
on

,li
st

,re
po

rt}
Al

ig
nm

en
t :

 {l
ef

t,t
op

}
Ed

itL
ab

el
s

: B
oo

le
an

O
wn

er
D

at
a

: B
oo

le
an

Sh
ar

eI
m

ag
eL

is
ts

 :
Bo

ol
ea

n
Sh

ow
Se

le
ct

io
nA

lw
ay

s
: B

oo
le

an
Si

ng
le

Se
le

ct
 :

Bo
ol

ea
n

So
rtA

sc
en

di
ng

 :
Bo

ol
ea

n
So

rtD
es

ce
nd

in
g

: B
oo

le
an

C
he

ck
Bo

xe
s

: B
oo

le
an

O
ne

C
lic

kA
ct

iva
te

 :
Bo

ol
ea

n
Tr

ac
kS

el
ec

t :
 B

oo
le

an
Tw

oC
lic

kA
ct

iva
te

 :
Bo

ol
ea

n
Au

to
Ar

ra
ng

e
: B

oo
le

an
N

oL
ab

el
W

ra
p

: B
oo

le
an

N
oS

cr
ol

l :
 B

oo
le

an
N

oC
ol

um
nH

ea
de

r :
 B

oo
le

an
N

oS
or

tH
ea

de
r :

 B
oo

le
an

O
wn

er
D

ra
wF

ixe
d

: B
oo

le
an

Fu
llR

ow
Se

le
ct

 :
 B

oo
le

an
G

rid
Li

ne
s

: B
oo

le
an

H
ea

de
rD

ra
gD

ro
p

 :
Bo

ol
ea

n
Su

bI
te

m
Im

ag
es

 :
Bo

ol
ea

n

AN
IM

AT
IO

N
Au

to
Pl

ay
 :

Bo
ol

ea
n

C
en

te
r :

 B
oo

le
an

Tr
an

sp
ar

en
t :

 B
oo

le
an

D
AT

ET
IM

EP
IC

KE
R

Ap
pC

an
Pa

rs
e

: B
oo

le
an

Fo
rm

at
 :

{lo
ng

D
at

e,
sh

or
tD

at
e,

sh
or

tD
at

eC
en

tu
ry

,ti
m

e}
R

ig
ht

Al
ig

n
: B

oo
le

an
Sh

ow
N

on
e

: B
oo

le
an

U
pD

ow
n

: B
oo

le
an

TA
B

Ty
pe

 :
{ta

bs
,b

ut
to

ns
}

Bo
tto

m
 :

Bo
ol

ea
n

Fi
xe

dW
id

th
 :

Bo
ol

ea
n

Fl
at

Bu
tto

ns
 :

Bo
ol

ea
n

Fo
cu

sN
ev

er
 :

Bo
ol

ea
n

Fo
cu

sO
nB

ut
to

nD
ow

n
: B

oo
le

an
Fo

rc
eL

ef
t :

 {n
on

e,
ic

on
,la

be
l}

H
ot

Tr
ac

k :
 B

oo
le

an
M

ul
til

in
e

: B
oo

le
an

M
ul

tis
el

ec
tio

n
: B

oo
le

an
O

wn
er

D
ra

wF
ixe

d
: B

oo
le

an
R

ag
ge

dR
ig

ht
 :

Bo
ol

ea
n

R
ig

ht
 :

Bo
ol

ea
n

R
ig

ht
Ju

st
ify

 :
Bo

ol
ea

n
Sc

ro
llO

pp
os

ite
 :

Bo
ol

ea
n

To
ol

Ti
ps

 :
Bo

ol
ea

n
Ve

rti
ca

l :
 B

oo
le

an

H
EA

D
ER

Bu
tto

ns
 :

Bo
ol

ea
n

D
ra

gD
ro

p
: B

oo
le

an
Fi

lte
rB

ar
 :

Bo
ol

ea
n

Fl
at

 :
Bo

ol
ea

n
Fu

llD
ra

g
: B

oo
le

an
H

id
de

n
: B

oo
le

an
H

or
iz

on
ta

l :
 B

oo
le

an
H

ot
Tr

ac
k :

 B
oo

le
an

TO
O

LB
AR

AL
TD

ra
g

: B
oo

le
an

C
us

to
m

Er
as

e
: B

oo
le

an
Fl

at
 :

Bo
ol

ea
n

Tr
an

sp
ar

en
t :

 B
oo

le
an

Li
st

 :
Bo

ol
ea

n
R

eg
is

te
rD

ro
p

: B
oo

le
an

To
ol

Ti
ps

 :
Bo

ol
ea

n
W

ra
pA

bl
e

: B
oo

le
an

N
oR

es
iz

e
: B

oo
le

an
N

oP
ar

en
tA

lig
n

: B
oo

le
an

Bo
tto

m
 :

Bo
ol

ea
n

N
oD

ivi
de

r
: B

oo
le

an
Ad

ju
st

ab
le

 :
Bo

ol
ea

n

R
EB

AR
Au

to
Si

ze
 :

Bo
ol

ea
n

Ba
nd

Bo
rd

er
s

: B
oo

le
an

D
ou

bl
eC

lic
kT

og
gl

e
: B

oo
le

an
Fi

xe
dO

rd
er

 :
Bo

ol
ea

n
N

oD
ivi

de
r :

 B
oo

le
an

R
eg

is
te

rD
ro

p
: B

oo
le

an
Va

rH
ei

gh
t :

 B
oo

le
an

Ve
rti

ca
lG

rip
pe

r :
 B

oo
le

an
Ve

rti
ca

l :
 B

oo
le

an

PA
G

ER
Au

to
Sc

ro
ll

: B
oo

le
an

D
ra

gA
nd

D
ro

p
: B

oo
le

an
D

ire
ct

io
n

: {
ho

riz
on

ta
l,v

er
tic

al
}

U
PD

O
W

N
Al

ig
nm

en
t :

 {l
ef

t,r
ig

ht
,n

on
e}

Ar
ro

wK
ey

s
: B

oo
le

an
Au

to
Bu

dd
y :

 B
oo

le
an

H
or

iz
on

ta
l :

 B
oo

le
an

H
ot

Tr
ac

k :
 B

oo
le

an
N

oT
ho

us
an

ds
 :

Bo
ol

ea
n

Se
tB

ud
dy

In
t :

 B
oo

le
an

W
ra

p
: B

oo
le

an

G
lu

e
To

Appendix C

282

Appendix C

Reverse engineering derivation
rules

This appendix is organized into three parts: the first contains inter-tree derivation
rules, the second represents multi-tree rules and the third is for intra-tree rules.
Some of the mappings are comented after the group of rules, and the reader can
also find explanation about some selected derivation rules in chapter 6, 7 or 8.

Inter-Tree derivation rules

This part contains 48 groups of rules. For each group, the first mapping in bold
corresponds to the detection of a node in the source tree that causes the creation
of a node in the target tree.

G1 – body (window)

∀ x ∈ TH : x = body →Addnode (“window”, idwin) where idwin =NodeAmount(Tt)
∀ x ∈ TH : x = body → AddAttribute (idwin, “id”, idwin)
∀ x ∈ TH : x = body ٨ title.textnode !=NULL→ AddAttribute (idwin, “name”, title.textnode)
∀ x ∈ TH : x = body ٨ title.textnode =NULL→ AddAttribute (idwin, “name”, idwin)
∀ x ∈ TH : x = body → AddAttribute (idwin, “isEnabled”, “true”)
∀ x ∈ TH : x = body → AddAttribute (idwin, “isVisible”, “true”)
∀ x ∈ TH : x = body ٨ x.bgcolor !=NULL →AddAttribute (idwin, “bgColor”, x.bgcolor)
∀ x ∈ TH : x = body ٨ x.topmargin !=NULL
 →AddAttribute (idwin, “windowTopMargin”, x.topmargin)
∀ x ∈ TH : x = body ٨ x.leftmargin !=NULL
 →AddAttribute (idwin, “windowLeftMargin”, x.leftmargin)
∀ x ∈ TH : x = body ٨ x.background !=NULL →AddAttribute (idwin, “bgImage”, x.background)
∀ x ∈ TH : x = body →AddAttribute (idwin, “filename”, filename)
∀ x ∈ TH : x = body

Appendix C

283

 →ConstrBox(“box”, “vertical”, idbox) where idbox=∑ node ∈ Tt ٨AddArc(idwin,idbox)
∀ x ∈ TH : x = body
 →ConstrBox(“box”, “horizontal”, idhbox) where idhbox=∑ node ∈ Tt ٨AddArc(idbox,idhbox)

G2 – w - card (window)

► ∀ x ∈ TW : x = card ٨ x.id=NULL→Addnode(“window”, idwin) where idwin
=NodeAmount(Tt)

► ∀ x,y ∈ TW : x = card ٨ y≠template ٨ (x.ordered=true ٧ x.ordered=null) ٨
LeftSibling(x)=“card” → Addnode (“TextComponent”, idtext,LeftSibling(x))
٨AddAttribute(idtext, “defaulContent”, “ Next”)٨AddAttribute (idtext, “isbold”, “ true”) ٨
AddAttribute (idtext, “hyperLinkTarget, idwin) ٨ AddArc(itao(LeftSibling(x)).id, idtext) ٨
AddGraphTr (idtext, idwin) where idtext =NodeAmount(Tt)
Inserts a textComponent (a link that targets this card) to the previous card
► ∀ x,y ∈ TW : x = card ٨ y≠template ٨ (x.ordered=true ٧ x.ordered=null) ٨
LeftSibling(x)=“card” → Addnode (“TextComponent”, idtext) ٨ AddAttribute(idtext,
“defaulContent”, “ Back”) ٨ AddAttribute(idtext, “isbold”, “ true”) ٨ AddAttribute(idtext,
“hyperLinkTarget”, itao(LeftSibling(x)).id) ٨ AddArc(idwin, idtext) ٨ AddGraphTr
(idtext, itao(LeftSibling(x)).id) where idtext =NodeAmount(Tt)
Inserts a textComponent (a link that targets the previous card) to this card
► ∀ x, w, y,z ∈ TW : x=card ٨ z=template ٨ w ∈ childNodes(z) ٨ w = do ٨ w.type=accept ٨
y=go ٨ y ∈ childNodes(w) ٨ y.href!=NULL ٨ w.label!=NULL ٨ !(∃ v=card : v.id=y.href) →
AddNode(“TextComponent”, idtext) ٨ AddAttribute(idtext, “defaulContent”, “ x.label”) ٨
AddAttribute(idtext, “isbold”, “ true”) ٨ AddAttribute(idtext, “hyperLinkTarget”, y.href)
٨ AddGraphTr (idtext, y.href) where idtext =NodeAmount(Tt)

► ∀ x, w, y,z ∈ TW : x=card ٨ z=template ٨ w ∈ childNodes(z) ٨ w = do ٨ w.type=accept
٨ y=go ٨ y ∈ childNodes(w) ٨ y.href!=NULL ٨ w.label !=NULL ٨ (∃ v=card : v.id=y.href)
→ AddNode(“TextComponent”, idtext) ٨ AddAttribute(idtext, “defaulContent”, “
x.label”) ٨ AddAttribute(idtext, “isbold”, “ true”) ٨ AddAttribute(idtext,
“hyperLinkTarget”, v.id) ٨ AddGraphTr (idtext, v.id) where idtext =NodeAmount(Tt)
∀ x ∈ TW : x = card ٨ x.id !=NULL → AddAttribute (idwin, “id”, x.id)
∀ x ∈ TW : x = card ٨ x.title!=NULL → AddAttribute (idwin, “name”, x.title)
 → AddAttribute (idwin, “borderTitle”, x.title)
∀ x ∈ TW : x = card → AddAttribute (idwin, “isEnabled”, “true”)

∀ x ∈ TW : x = card → AddAttribute (idwin, “isVisible”, “true”)
∀ x ∈ TW : x = card → ConstrBox(“box”, “vertical”, idbox) where idbox=∑ node ∈ Tt
The card element is translated by a window in the target tree. Another difference
with the body tag in HTML is that links are implicitly put on every window to
access the next or previous card of the deck. Therefore, a textComponent is also
added in the UsiXML output for each window.
A template can also be applied to every card of a deck. In our case, only a template
that redefines these automatic links (textComponents) is taken into account,
because other cases are beyond the expressiveness of the UsiXML language
(related to the history of visited cards for example). In summary, when a card is
detected, a window and two textComponents (depending on the template) are

Appendix C

284

added in the target tree. One of the textComponent is added to the previous card
(to link it with the current card) and another to the current card, to link it with the
previous card.

G3 – table (table-box)

∀ x ∈ TH : x = table ٨ x.border>0→Addnode (“table”, idtable) where idtable
=NodeAmount(Tt)

∀ x ∈ TH : x = table ٨ (x.border=0 ٧ x.border=NULL)
 →Addnode (“box”, idtable) where idbox =NodeAmount(Tt)

 →AddAttribute (idtable, type, “vertical”)
∀ x ∈ TW : x = table →Addnode (“table”, idtable) where idtable =NodeAmount(Tt)

∀ x ∈ TH/W: x = table→AddAttribute (idtable, “isEnabled”, “true”)
∀ x ∈ TH/W : x = table→AddAttribute (idtable, “isVisible”, “true”)
∀ x ∈ TH : x = table→AddAttribute (idtable, “name”, idtable)
∀ x ∈ TW : x = table ٨ x.title !=NULL →AddAttribute (idtable, “name”, x.title)
∀ x ∈ TW : x = table ٨ x.title =NULL →AddAttribute (idtable, “name”, idtable)
∀ x ∈ TH/W: x = table→Add Attribute (idtable, “id”, idtable)
∀ x ∈ TH/W : x = table ٨ x.border>0
 → AddAttribute(idtable, “xSize”, (maxtr(∑td sibling(td) | td ∈ TH/W ٨ NearestInPath(table,td)=x
∀ x ∈ TH : x = table ٨ x.border > 0
 → AddAttribute(idtable, “ySize”, (∑tr sibling(tr) | tr ∈ TH/W ٨ NearestInPath(table,tr)=x)
∀ x ∈ TW : x = table ٨ x.columns !=NULL →AddAttribute (“ySize”, idtable)
∀ x ∈ TH : x = table ٨ x.border > 0→AddAttribute(idtable, “borderwidth”, x.border)
∀ x ∈ TH : x = table ٨ x.width !=NULL→ AddAttribute (idtable, “width”, x.width)
∀ x ∈ TH : x = table ٨ x.height !=NULL →AddAttribute (idtable, “height”, x.height)
∀ x ∈ TH : x = table ٨ x.bgimage =NULL →AddAttribute (idtable, “bgimage”, x.background)
∀ x ∈ TH : x = table ٨ x.bgcolor !=NULL →AddAttribute (idtable, “bgcolor”, x.bgcolor)
∀ x ∈ TH/W : x = table → CheckAlignement(x,idtable)

G4 – tr (box)

∀ x ∈ TH : x = tr ٨ NearestInPath(table,x).border=0→AddNode (“box”, idbox) where idbox
=NodeAmount(Tt)

∀ x ∈ TH : x = tr ٨ NearestInPath(table,x).border=0→AddAttribute (idbox, “type”, “horizontal”)
∀ x ∈ TH : x = tr ٨ NearestInPath(table,x).border=0→AddAttribute (idbox, “isEnabled”, “true”)
∀ x ∈ TH : x = tr ٨ NearestInPath(table,x).border=0→AddAttribute (idbox, “isVisible”, “true”)
∀ x ∈ TH : x = tr ٨ NearestInPath(table,x).border=0→AddAttribute (idbox, “name”, idbox)
∀ x ∈ TH : x = tr ٨ NearestInPath(table,x).border=0→Add Attribute (idbox, “id”, idbox)
∀ x ∈ TH : x = tr ٨ NearestInPath(table,x).border=0 ٨ x.width!=NULL
 →AddAttribute (idbox, “width”, x.width)
∀ x ∈ TH : x = tr ٨ NearestInPath(table,x).border=0 ٨ x.height!=NULL
 →AddAttribute (idbox, “height”, x.height)
∀ x ∈ TH : x = tr ٨ NearestInPath(table,x).border=0 ٨ x.bgimage=NULL
 →AddAttribute (idbox, “bgimage”, x.background)
∀ x ∈ TH : x = tr ٨ NearestInPath(table,x).border=0 ٨ x.bgcolor!=NULL
 →AddAttribute (idbox, “bgcolor”, x.bgcolor)
∀ x ∈ TH : x = tr ٨ NearestInPath(table,x).border=0

Appendix C

285

 →AddArc(i.id, idbox) where i= itao(NearestInPath(“table”, x))
∀ x ∈ TH : x = tr → CheckAlignement(x,idbox)

G5 - td (box/cell)

∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border=0
 →AddNode(“box”, idbox) where idbox =NodeAmount(Tt)

∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border>0→AddNode(“cell”, idcell)
 where idcell =NodeAmount(Tt)
∀ x ∈ TW:x= td→AddNode(“cell”, idcell) where idcell=NodeAmount(Tt) =NodeAmount(Tt)
∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border=0→AddAttribute (idcell, “type”, “horizontal”)
∀ x ∈ TH/W: x = td →AddAttribute (idcell, “isEnabled”, “true”)
∀ x ∈ TH/W : x = td →AddAttribute (idcell, “isVisible”, “true”)
∀ x ∈ TH/W : x = td →AddAttribute (idcell, “name”, idcell)
∀ x ∈ TH/W : x = td →AddAttribute (idcell, “id”, idcell)
∀ x ∈ TH/W : x = td → CheckAlignement(x,idcell)
∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border=0 ٨ x.width!=NULL
 →AddAttribute (idcell, “width”, x.width)

∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border=0 ٨ x.height!=NULL
 →AddAttribute (idcell, “height”, x.height)
∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border=0 ٨ x.bgimage=NULL
 →AddAttribute (idcell, “bgimage”, x.background)
∀ x ∈ TH : x = td ٨ x.bgcolor!=NULL →AddAttribute (idcell, “bgcolor”, x.bgcolor)
∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border=0
 →AddArc(i.idbox, x.idcell) where i=itao(NearestInPath(“tr”,x))
∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border > 0
 →AddAttribute (idcell, “xIndex”, b) where b=∑td SiblingBefore (x)
∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border > 0
 →AddAttribute (idcell, “yIndex”, c): y=NearestInPath(tr,x) ٨ c=∑tr SiblingBefore (y)
∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border>0 ٨ x.width!=NULL
 →AddAttribute (idcell, “width”, x.width)
∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border>0 ٨ x.height!=NULL
 →AddAttribute (idcell, “height”, x.height)
∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border>0 ٨ x.bgimage=NULL
 →AddAttribute (idcell, “bgimage”, x.background)
∀ x ∈ TH : x = td ٨ NearestInPath(table,x).border>0→AddArc(i.id, idbox) where
 i= itao(NearestInPath(“table”, x)
∀ x ∈ TW : x = td →AddAttribute (idcell, “xIndex”, b) where b=∑td SiblingBefore (x)
∀ x ∈ TW : x = td
 → AddAttribute (idcell, “yIndex”, c) : y=NearestInPath(tr,x) ٨ c=∑trSiblingBefore(y)
∀ x ∈ TW : x = td →AddArc(i.id, idbox) where i= itao(NearestInPath(“table”, x)
This group of rules defines the derivation rules for table cells. There are three
bold rules (i.e. creating a node in the target tree), as the cell can be a part of a table
without border (derived then into a box), a part of a table with borders (derived in
a cell) or part of a WML table (also derived in a cell). In the first of these three
cases, an attribute type=horizontal is automatically added as the content of the box

Appendix C

286

will be displayed horizontally by default in HTML. The five next attributes are
common for both languages and each of the 3 cases, isEnabled, isVisible, name, id
and alignment attributes, as the rule can be applied on TH/W trees and has the only
condition that the node name is td. The four following attributes are for HTML
source trees only, but for both cases (i.e. with border greater or equal to 0) and
add the width, height, bgcolor and bgImage attribute in the UsiXML specification if
they are present in the source tree. The next attribute defines the values for the
xIndex and yIndex in the CUI model. This rule is only applied if the parent table
has a border greater than 0. These two attributes are computed by counting the
number of siblings td (and tr nodes respectively) before the current node. The
same occurs for the WML node, but without border-condition as tables are never
derived into boxes in this language.
Finally, the hierarchy is constructed (by adding an arc), either by linking the
element to the abstraction of the nearest table - for the WML language or in the
case of a parent table with border greater than 0- or to the abstraction of the
nearest row (tr) in the case of boxes.

G6 – fieldset (box)

∀ x ∈ TH/W : x = fieldset →Addnode (“box”, idbox) where idbox =NodeAmount(Tt)

 →AddAttribute (idbox, “type”, “horizontal”)
∀ x ∈ TH : x = legend ٨ NearestInPath(fieldset,x) ٨ x.textnode!=NULL
 →AddAttribute (i.id, “borderTitle”, x.textnode) : i=(itao(NearestInPath(fieldset,x)))
∀ x ∈ TH : x = legend ٨ NearestInPath(fieldset,x) ٨ x.textnode!=NULL ٨ x.align !=NULL
 →AddAttribute (i.id, “borderTitleAlign”, x.align) : i=(itao(NearestInPath(fieldset,x)))
∀ x ∈ TH : x = fieldset→AddAttribute (idbox, “name”, idbox)
∀ x ∈ TH/W : x = fieldset →AddAttribute (idbox, “isEnabled”, “true”)
∀ x ∈ TH/W : x = fieldset →AddAttribute (idbox, “isVisible”, “true”)
∀ x ∈ TH/W : x = fieldset →Add Attribute (idbox, “id”, idbox)
∀ x ∈ TH/W : x = fieldset → CheckAlignement(x,idbox)
∀ x ∈ TW : x = fieldset ٨ x.title !=NULL →AddAttribute (idbox, “name”, x.title)
∀ x ∈ TW : x = fieldset →Add Attribute (idbox, “id”, idbox)
∀ x ∈ TW : x = fieldset ٨ x.title !=NULL →Add Attribute (idbox, “borderTitle”, x.title)
In this group, rules for WML and HTML source tree are very similar. If a fieldset
node is detected, a box is created in the UsiXML specification with the
type=horizontal attribute. As for the previous example, five attributes are common
to both languages and are automatically added.
In an HTML tree, if a legend node is present in the descendant of the fieldset
node, its textnode and align attribute are used to set the value of the borderTitle
and borderTitleAlign attributes of the box in the target tree.
For a WML tree, the borderTitle information can be found in the title attribute of
the fieldset node.

Appendix C

287

G7 – textbox (textComponent)

∀ x ∈ TH/W : x = input ٨ (x.type=“text” ٧ x.type=“password” ٧ x.type=NULL)
 →Addnode (“textComponent”, idtext) where idtext=NodeAmount(Tt)
∀ x ∈ TH/W : x = input ٨ (x.type=“text” ٧ x.type=“password” ٧ x.type=NULL)
 →AddAttribute (idtext, “id”, idtext) ٨ AddAttribute (idtext, “name”, idtext)
 ٨AddAttribute (idtext, “isVisible”, “true”)
∀ x ∈ TH/W : x = input ٨ x.type=“password” →AddAttribute (idtext, “isPassword”, “true”)
∀ x ∈ TH/W : x = input ٨ (x.type=“text” ٧ x.type=“password” ٧ x.type=NULL) ٨ x.size !=NULL
 →AddAttribute (idtext, “size”, x.size)
∀ x ∈ TH/W : x = input ٨ (x.type=“text” ٧ x.type=“password” ٧ x.type=NULL) ٨ x.maxlength !=
 NULL → AddAttribute (idtext, “maxLength”, x.maxlength)
∀ x ∈ TH/W : x = input ٨ (x.type=“text” ٧ x.type=“password” ٧ x.type=NULL) ٨ x.value !=
 NULL →AddAttribute (idtext, “defaultContent”, x.value)
∀ x ∈ TH/W : x = input ٨ (x.type=“text” ٧ x.type=“password” ٧ x.type=NULL) ٨ x.name !=
 NULL →AddAttribute (idtext, “varName”, x.name)
∀ x ∈ TH : x = input ٨ (x.type=“text” ٧ x.type=“password” ٧ x.type=NULL) ٨ x.disabled !=
 NULL →AddAttribute (idtext, “isEnabled”, “false”)
∀ x ∈ TH : x = input ٨ (x.type=“text” ٧ x.type=“password” ٧ x.type=NULL) ٨ x.disabled =
 NULL →AddAttribute (idtext, “isEnabled”, “true”)
∀ x ∈ TW : x = input ٨ (x.type=“text” ٧ x.type=“password” ٧ x.type=NULL)
 → AddAttribute (idtext, “isEnabled”, “true”)

∀ x ∈ TH : x = input ٨ (x.type=“text” ٧ x.type=“password” ٧ x.type=NULL) ٨ x.accesskey !=
 NULL →AddAttribute (idtext, “mnemonic”, x. accesskey)
∀ x ∈ TW : x = input ٨ (x.type=“text” ٧ x.type=“password” ٧ x.type=NULL) ٨ x.tabindex !=
 NULL →AddAttribute (idtext, “mnemonic”, “tab”+ x. tabindex)
∀ x ∈ TH/W : x = input ٨ (x.type=“text” ٧ x.type=“password” ٧ x.type=NULL)
 → CheckAlignement(x,idtext)

G8 – select (combobox)

∀ x ∈ TH : x = select →Addnode (“comboBox”, idcombo) where idcombo =∑ node ∈ Tt

∀ x,y ∈ TW : x = select ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨ (CountInChildNodes
(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
 → Addnode (“comboBox”, idcombo) where idcombo =NodeAmount(Tt)
∀ x ∈ TH : x = select ٨ x.name !=NULL →AddAttribute (idcombo, “varName”, x.name)
∀ x ∈ TH : x = select ٨ x.disabled !=NULL →AddAttribute (idcombo, “isEnabled”, “false”)

∀ x ∈ TH : x = select ٨ x.disabled =NULL →AddAttribute (idcombo, “isEnabled”, “true”)

∀ x ∈ TH : x = select → AddAttribute (idcombo, “id”, idcombo)
∀ x ∈ TH : x = select → AddAttribute (idcombo, “name”, idcombo)
∀ x ∈ TH : x = select → AddAttribute (idcombo, “isVisible”, “true”)

∀ x ∈ TH : x = select → AddAttribute (idcombo, “isEditable”, “false”)
∀ x ∈ TH : x = select ٨(x.size=1 ٧ x.size=NULL)
 →AddAttribute (idcombo, “isDropDown”, “false”)
∀ x ∈ TH : x = select ٨ x.size>1 →AddAttribute (idcombo, “isDropDown”, “true”)
∀ x ∈ TH : x = select ٨ x.accesskey !=NULL
 →AddAttribute (idcombo, “mnemonic”, x. accesskey)
∀ x ∈ TH : x = select → CheckAlignement(x,idcombo)

Appendix C

288

∀ x,y ∈ TW : x = select ٨ (x.name!=NULL) ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
 →AddAttribute (idcombo, “varName”, x.name)
∀ x,y ∈ TW : x = select ٨ (x.iname !=NULL ٨ x.name=NULL) ٨ (x.multiple=“false” ٧
x.multiple=NULL) ٨ (CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨
 y.onpick=NULL → AddAttribute (idcombo, “varName”, x.iname)
∀ x,y ∈ TW : x = select ٨ (x.value!=NULL) ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
 → AddAttribute (idcombo, “varValue”, x.value)
∀ x,y ∈ TW : x = select ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
 → AddAttribute (idcombo, “isEnabled”, “true”)

∀ x,y ∈ TW : x = select ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
 → AddAttribute (idcombo, “id”, idcombo)
∀ x,y ∈ TW : x = select ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
 → AddAttribute (idcombo, “name”, idcombo)
∀ x,y ∈ TW : x = select ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
 → AddAttribute (idcombo, “isVisible”, “true”)
∀ x,y ∈ TW : x = select ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
 → AddAttribute (idcombo, “isEditable”, “false”)
∀ x,y ∈ TW : x = select ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
 → AddAttribute (idcombo, “isDropDown”, “true”)
∀ x,y ∈ TW : x = select ٨ x.tabindex !=NULL ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
 → AddAttribute (idcombo, “mnemonic”, x. accesskey)
∀ x,y ∈ TW : x = select ٨ (x.multiple=“false” ٧ x.multiple=NULL) ٨
(CountInChildNodes(x,option)>6) ٨ y=option ٨ isInPath(y,x)=true ٨ y.onpick=NULL
 → CheckAlignement(x,idcombo)

G9 – option (item)

∀ x ∈ TH : x = option →Addnode (“item”, iditem) where iditem =NodeAmount(Tt) ٨
AddArc(getId(y), iditem): y=itao(nearestInPath(“select”))

∀ x,y,z ∈ TW : x = option ٨ z=NearestInPath(x,“select”) : (z.multiple=“false” ٧
z.multiple=NULL) ٨ (CountInChildNodes(z,option)>6) ٨ (y∈ sibling(x) : y=option ٨
isInPath(y,z)=true ٨ y.onpick=NULL) →Addnode (“item”, iditem) where iditem =
=NodeAmount(Tt) ٨ AddArc(getId(y), iditem) : y=itao(nearestInPath(“select”))

∀ x,y,z ∈ TW : x = option ٨ z=NearestInPath(x,“select”): (z.multiple=“false” ٧
z.multiple=NULL) ٨(CountInChildNodes(z,option)<=6) ٨ (y∈ sibling(x) : y=option ٨
isInPath(y,z)=true ٨ y.onpick=NULL) →Addnode(“radioButton”, iditem) where iditem

Appendix C

289

=NodeAmount(Tt) ٨ Addnode(“textComponent”, idtext) where idtext =NodeAmount(Tt) ٨
AddAttribute (idtext, “id”, idtext) ٨AddAttribute (idtext, “name”, idtext) ٨ AddAttribute
(idtext, “isVisible”, “true”) ٨ AddAttribute (idtext, “isEnabled”, “true”) ٨ AddAttribute
(idtext, “defaultContent”, x.textnode)

∀ x,y,z ∈ TW : x=option٨ z=NearestInPath(x,“select”) : z.multiple=“true” ٨ (y∈ sibling(x) :
y=option ٨ isInPath(y,z)=true ٨ y.onpick=NULL) →Addnode(“checkBox”, iditem) where
iditem =NodeAmount(Tt) ٨ Addnode(“textComponent”, idtext) where idtext
=NodeAmount(Tt) ٨ AddAttribute (idtext, “id”, idtext) ٨AddAttribute (idtext, “name”,
idtext) ٨ AddAttribute (idtext, “isVisible”, “true”) ٨ AddAttribute (idtext, “isEnabled”,
“true”) ٨ AddAttribute (idtext, “defaultContent”, x.textnode)

∀ x,y,z ∈ TW : x = option ٨ z=NearestInPath(x,“select) ٨ ((y∈ sibling(x) : y=option ٨
isInPath(y,z)=true ٨ y.onpick !=NULL) ٧ x.onpick !=NULL)
 →Addnode(“textComponent”, idtext) where idtext =NodeAmount(Tt)
∀ x ∈ TH : x = option ٨ x.disabled !=NULL →AddAttribute (iditem, “isEnabled”, “false”)

∀ x ∈ TH : x = option ٨ x.disabled =NULL →AddAttribute (iditem, “isEnabled”, “true”)

∀ x ∈ TH/W : x = option → AddAttribute (iditem, “id”, iditem)
∀ x ∈ TH/W : x = option → AddAttribute (iditem, “name”, iditem)
∀ x ∈ TH/W : x = option → AddAttribute (iditem, “isVisible”, “true”)
∀ x ∈ TH/W : x = option ٨ x.value!=NULL → AddAttribute (iditem, “varValue”, x.value)
∀ x ∈ TH/W : x = option ٨ x.textnode!=NULL
 → AddAttribute (iditem, “defaultContent”, x.textnode)
∀ x ∈ TH : x = option ٨ x.accesskey !=NULL
 →AddAttribute (iditem, “mnemonic”, x. accesskey)
∀ x ∈ TW : x = option → AddAttribute (iditem, “isEnabled”, “true”)

G9b - option (radio)

∀ x,y,z ∈ TW : x = option ٨ x.onpick=NULL ٨ x.title !=NULL ٨ y=NearestInPath(x,“select”):
(y.multiple=“false” ٧ y.multiple=NULL) ٨ (CountInChildNodes(y,option)<=6) ٨ (z ∈ sibling(x)
: y=option ٨ isInPath(y,z)=true ٨ z.onpick=NULL)
 → AddAttribute (iditem, “groupName”, x.title)
∀ x,y ∈ TW : x = option ٨ x.onpick=NULL ٨ x.value!=NULL ٨ y=NearestInPath(x,“select”):
(y.multiple=“false” ٧ y.multiple=NULL) ٨ (CountInChildNodes(y,option)<=6) ٨
(y.ivalue=x.value) ٨ (z ∈ sibling(x) : y=option ٨ isInPath(y,z)=true ٨ z.onpick=NULL)
 →AddAttribute (iditem, “DefaultState”, “checked”)
∀ x,y ∈ TW : x = option ٨ y=NearestInPath(x,“select”): (y.multiple=“false” ٧ y.multiple=NULL)
٨ (CountInChildNodes(y,option)<=6) ٨ (z ∈ sibling(x) : y=option ٨ isInPath(y,z)=true ٨
z.onpick=NULL) → checkAlignement(x,iditem)

G9c - option (checkbox)

∀ x,y,z ∈ TW : x = option٨ x.onpick=NULL ٨ x.title !=NULL ٨ y=NearestInPath(x,“select”):
y.multiple=“true” ٨ (z ∈ sibling(x) : y=option ٨ isInPath(y,z)=true ٨ z.onpick=NULL)
 → AddAttribute (iditem, “groupName”, x.title)
∀ x,y,z ∈ TW : x = option ٨ x.onpick=NULL ٨ value!=NULL ٨ y=NearestInPath(x,“select”):
y.multiple=“true” ٨ (y.ivalue=x.value) ٨ (z ∈ sibling(x) : y=option ٨ isInPath(y,z)=true ٨
z.onpick=NULL) → AddAttribute (iditem, “DefaultState”, “checked”)

Appendix C

290

∀ x,y,z ∈ TW : x =option ٨ x.onpick=NULL ٨ y=NearestInPath(x,“select”): y.multiple=“true” ٨
(z ∈ sibling(x) : y=option ٨ isInPath(y,z)=true ٨ z.onpick=NULL) →checkAlignement(x,iditem)

G9d - option (textComponents)

∀ x,y,z ∈ TW : x = option ٨ z=NearestInPath(x,“select) ٨ ((y∈ sibling(x) : y=option ٨
isInPath(y,z)=true ٨ y.onpick !=NULL) ٧ x.onpick !=NULL)→ AddAttribute (iditem,
“hyperLinkTarget”, x.onpick)
∀ x,y,z ∈ TW : x = option ٨ z=NearestInPath(x,“select) ٨ ((y∈ sibling(x) : y=option ٨
isInPath(y,z)=true ٨ y.onpick !=NULL) ٧ x.onpick !=NULL)→ checkAlignement(x,iditem)
∀ x,y,z ∈ TW : x = option ٨ z=NearestInPath(x,“select) ٨ ((y∈ sibling(x) : y=option ٨
isInPath(y,z)=true ٨ y.onpick !=NULL) ٧ x.onpick !=NULL)→AddGrTr(x, x.onpick)

G10 – textareas

∀ x ∈ TH : x=textarea → Addnode (“textComponent”, idtext) where idtext
=NodeAmount(Tt)
∀ x ∈ TH : x=textarea ٨ x.cols !=NULL→AddAttribute (idtext, “NumberOfColumns”, x.cols)
∀ x ∈ TH : x=textarea ٨ x.rows !=NULL→AddAttribute (idtext, “NumberOfColumns”, x.rows)
∀ x ∈ TH : x=textarea ٨ x.name !=NULL →AddAttribute (idtext, “varName”, x.name)
∀ x ∈ TH : x=textarea ٨ x.accesskey !=NULL →AddAttribute (idtext, “mnemonic”, x.accesskey)
∀ x ∈ TH : x=textarea ٨ x.textnode !=NULL
 →AddAttribute (idtext, “defaultContent”, x.accesskey)
∀ x ∈ TH : x=textarea → CheckAlignement(x,idtext)

G11 – input type=button (button)

∀ x ∈ TH : x = input ٨ (x.type=“button” ٧ x.type=“submit” ٧ x.type=“image” ٧
x.type=“reset”) →Addnode (“button”, idbutton) where idbutton =NodeAmount(Tt) ٨
AddAttribute (idbutton, “id”, idbutton) ٨ AddAttribute (idbutton, “name”, idbutton) ٨
AddAttribute (idbutton, “isVisible”, “true”)
∀ x ∈ TH : x = input ٨ (x.type=“button” ٧ x.type=“submit” ٧ x.type=“image” ٧ x.type=“reset”)
٨ x.disabled !=NULL →AddAttribute (idbutton, “isEnabled”, “false”)

∀ x ∈ TH : x = input ٨ (x.type=“button” ٧ x.type=“submit” ٧ x.type=“image” ٧ x.type=“reset”)
٨ x.disabled =NULL →AddAttribute (idbutton, “isEnabled”, “true”)
∀ x ∈ TH : x = input ٨ (x.type=“button” ٧ x.type=“submit” ٧ x.type=“image” ٧ x.type=“reset”) ٨
x.value!=NULL → AddAttribute (idbutton, “defaultContent”, x.value)
∀ x ∈ TH : x = input ٨ x.type=“submit” ٨ x.value=NULL
 → AddAttribute (idbutton, “defaultContent”, “submit”)
∀ x ∈ TH : x = input ٨ x.type=“image” ٨ x.height !=NULL
→ AddAttribute (idbutton, “height”, x.height)
∀ x ∈ TH : x = input ٨ x.type=“image” ٨ x.width!=NULL
 → AddAttribute (idbutton,“width”, x.width)
∀ x ∈ TH : x = input ٨ x.type=“image” ٨ x.src !=NULL
 → AddAttribute (idbutton, “defaultContent”, x.src)
∀ x ∈ TH : x = input ٨ x.type=“reset” ٨ x.value=NULL
 → AddAttribute (idbutton, “defaultContent”, “reset”)

Appendix C

291

∀ x ∈ TH : x = input ٨ (x.type=“button” ٧ x.type=“submit” ٧ x.type=“image” ٧ x.type=“reset”) ٨
x.accesskey !=NULL →AddAttribute (idbutton, “mnemonic”, x. accesskey)
∀ x ∈ TH : x = input ٨ x.type=“submit” ٨ NearestInPath(x,form).action !=NULL
 → AddGraphTr (idbutton , NearestInPath(x,form).action)
∀ x ∈ TH : x = input ٨ (x.type=“button” ٧ x.type=“submit” ٧ x.type=“image” ٧ x.type=“reset”)
 → CheckAlignement(x,idbutton)

G12 – button (button)

∀ x ∈ TH : x = button →Addnode (“button”, idbutton) where idbutton =NodeAmount(Tt)
∀ x ∈ TH : x = button → AddAttribute (idbutton, “id”, idbutton)
∀ x ∈ TH : x = button → AddAttribute (idbutton, “name”, idbutton)
∀ x ∈ TH : x = button → AddAttribute (idbutton, “isVisible”, “true”)
∀ x ∈ TH : x = button ٨ x.disabled !=NULL →AddAttribute (idbutton, “isEnabled”, “false”)

∀ x ∈ TH : x = button ٨ x.disabled =NULL →AddAttribute (idbutton, “isEnabled”, “true”)
∀ x ∈ TH : x = button ٨ x.type=“reset” ٨ x.textnode=NULL
 → AddAttribute (idbutton, “defaultContent”, “reset”)
∀ x ∈ TH : x = button ٨ x.accesskey !=NULL
 →AddAttribute (idbutton, “mnemonic”, x. accesskey)

∀ x ∈ TH : x = button ٨ x.type=“submit” ٨ x.textnode=NULL
 → AddAttribute (idbutton, “defaultContent”, “submit”)
∀ x ∈ TH : x = button ٨ x.textnode !=NULL
 → AddAttribute (idbutton, “defaultContent”, x.textnode)
∀ x ∈ TH : x = button ٨ x.value !=NULL →AddAttribute (idbutton, “varValue”, x.value)
∀ x ∈ TH : x = button→ CheckAlignement(x,idbutton)

G13 – checkbox (checkbox)

∀ x ∈ TH : x = input ٨ x.type=checkbox→Addnode (“checkbox”, idcheck) where idcheck
=NodeAmount(Tt)
∀ x ∈ TH : x = input ٨ x.type=checkbox ٨ x.checked=true
 →AddAttribute(idcheck, “defaultState”, “checked”)
∀ x ∈ TH : x = input ٨ x.type=checkbox ٨ x.checked=NULL
 →AddAttribute(idcheck, “defaultState”, “unchecked”)
∀ x ∈ TH : x = input ٨ x.type=checkbox ٨ x.name!= NULL
 →AddAttribute (idcheck, “varName”, x.name)
∀ x ∈ TH : x = input ٨ x.type=checkbox→AddAttribute (idcheck, “id”, idcheck)
∀ x ∈ TH : x = input ٨ x.type=checkbox→AddAttribute (idcheck, “name”, idcheck)
∀ x ∈ TH : x = input ٨ x.type=checkbox→AddAttribute (idcheck, “isVisible”, “true”)
∀ x ∈ TH : x = input ٨ x.type=checkbox ٨ (x.disabled=false ٧ x.disabled=NULL)
 →AddAttribute (idcheck, “isEnabled”, “true”)
∀ x ∈ TH : x = input ٨ x.type=checkbox ٨ (x.disabled=true ٧ x.disabled!=NULL)
 →AddAttribute (idcheck, “isEnabled”, “false”)
∀ x ∈ TH : x = input ٨ x.type=checkbox → CheckAlignement(x,idcheck)

Appendix C

292

G14 - radio (radio)

∀ x ∈ TH : x=input ٨x.type=radio→Addnode(“radioButton”, idrad) where idrad
=NodeAmount(Tt)
∀ x ∈ TH : x = input ٨ x.type= radio ٨ x.checked=true
 → AddAttribute(idrad, “defaultState”, “true”)
∀ x ∈ TH : x = input ٨ x.type=radio ٨ x.name!= NULL
 →AddAttribute (idrad, “groupName”, x.name)
∀ x ∈ TH : x = input ٨ x.type=radio→AddAttribute (idrad, “id”, idrad)
∀ x ∈ TH : x = input ٨ x.type=radio→AddAttribute (idrad, “name”, idrad)
∀ x ∈ TH : x = input ٨ x.type=radio→AddAttribute (idrad, “isVisible”, “true”)
∀ x ∈ TH : x = input ٨ x.type=radio ٨ (x.disabled=false ٧ x.disabled=NULL)
 →AddAttribute (idrad, “isEnabled”, “true”)
∀ x ∈ TH : x = input ٨ x.type=radio ٨ (x.disabled=true ٧ x.disabled!=NULL)
 →AddAttribute (idrad, “isEnabled”, “false”)
∀ x ∈ TH : x = input ٨ x.type=radio ٨ x.accesskey !=NULL →AddAttribute (idrad, “mnemonic”,
x. accesskey)
∀ x ∈ TH : x = input ٨ x.type=radio → CheckAlignement(x,idrad)

G15 – img (imageComponent)

∀ x ∈ TH/W: x = img→Addnode (ImageComponent, idimage) where idimage
=NodeAmount(Tt)
∀ x ∈ TH/W : x = img ٨ x.height !=NULL→AddAttribute (idimage, “imageHeight”, x.height)
∀ x ∈ TH/W : x = img ٨ x.width !=NULL→AddAttribute (idimage, “imageWidth”, x.width)
∀ x ∈ TH : x = img ٨ IsInPath(a) →AddAttribute (idimage, “hyperLinkTarget”,
NearestInPath(x,a).href) ٨ AddGraphTr (idimage , NearestInPath(x,a).href)
∀ x ∈ TH : x = img ٨ x.border !=NULL →AddAttribute (idimage, “borderWidth”, x.border)
∀ x ∈ TH/W : x = img→AddAttribute (idimage, “id”, idimage)
∀ x ∈ TH/W : x = img→AddAttribute (idimage, “name”, idimage)
∀ x ∈ TH/W : x = img→AddAttribute (idimage, “isVisible”, “true”)
∀ x ∈ TH/W: x = img→AddAttribute (idimage, “isEnabled”, “true”)
∀ x ∈ TH/W: x = img ٨ x.src !=NULL ٨ x.localsrc=NULL
 →AddAttribute (idimage, “defaultContent”, x.src)
∀ x ∈ TW : x = img ٨ x.localsrc !=NULL →AddAttribute (idimage, “defaultContent”, x.localsrc)
∀ x ∈ TH/W : x = img ٨ x.hspace !=NULL
 →AddAttribute (idimage, “imageHorizSpace”, x.hspace)
∀ x ∈ TH/W : x = img ٨ x.vspace != NULL
 →AddAttribute (idimage, “imageVertSpace”, x.vspace)
∀ x ∈ TH/W : x = img → CheckAlignement(x,idimage)

G16 – area (imagezone)

∀ x ∈ TH : x = area →AddNode (“imageZone”, idzone) where idzone =NodeAmount(Tt)
٨ AddArc(i.id, idzone) where i=itao(img) : i.usemap=x.parentNode.name
٨ AddGraphTr (idzone,x.ParentNode.href)
∀ x ∈ TH : x = area ٨ x.shape != NULL→AddAttribute (idzone, “shape”, x.shape)
∀ x ∈ TH : x = area ٨ x.coords !=NULL→AddAttribute (idzone, “coordinates”, x.coords)

Appendix C

293

∀ x ∈ TH : x = area ٨ x.href !=NULL →AddAttribute (idzone, “hyperLinkTarget”, x.href)

G17 – label (textComponent)

∀ x ∈ TH/W : x.textnode!=NULL ٨ IsInPath(“select”,x) =false ٨ IsInPath
(“textarea”,x)=false →Addnode (“textComponent”, idtext) where idtext =NodeAmount(Tt)
∀ x ∈ TH/W : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false
 →AddAttribute(idtext, “defaulContent”, x.textnode)
∀ x ∈ TH/W : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false
 →AddAttribute (idtext, “id”, idtext)
∀ x ∈ TH/W : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false
 →AddAttribute (idtext, “name”, idtext)
∀ x ∈ TH/W : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false
 →AddAttribute (idtext, “isVisible”, “true”)
∀ x ∈ TH/W : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false
 →AddAttribute (idtext, “isEnabled”, “true”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
((a=CountInPath(x,(q ٧ blockquote) , (q blockquote))>0)→AddAttribute (idtext, “textMargin”, a)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
 (IsInPath(“b”,x)=true ٧ IsInPath(“strong”,x)=true) →AddAttribute (idtext, “isBold”, “true”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
 (IsInPath(“th”,x)=true→AddAttribute (idtext, “isBold”, “true”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
 (IsInPath(“i”,x)=true ٧ IsInPath(“emphasis”,x)=true ٧ IsInPath(“cite”,x)=true ٧
IsInPath(“dfn”,x)=true ٧IsInPath(“samp”,x)=true) →AddAttribute (idtext, “isItalic”, “true”)
∀ x ∈ TH/W : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“u”,x)=true →AddAttribute (idtext, “isUnderlined”, “true”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“s”,x)=true →AddAttribute (idtext, “isStriketrough”, “true”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“strike”,x)=true →AddAttribute (idtext, “isStriketrough”, “true”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“sub”,x)=true →AddAttribute (idtext, “isSubScript”, “true”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“sup”,x)=true →AddAttribute (idtext, “isSupScript”, “true”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
(IsInPath(“pre”,x)=true٧IsInPath(“xmp”,x)=true)
 →AddAttribute (idtext, “isPreformatted”, “true”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“code”,x)=true →AddAttribute (idtext, “textFont”, “monospace”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
(IsInPath(“kbd”,x)=true ٧ IsInPath(“samp”,x)=true ٧ IsInPath(“tt”,x)=true)
 →AddAttribute (idtext, “textFont”, “monospace”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“h1”,x)=true →AddAttribute (idtext, “textSize”, “header1”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“h2”,x)=true →AddAttribute (idtext, “textSize”, “header2”)

Appendix C

294

∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“h3”,x)=true →AddAttribute (idtext, “textSize”, “header3”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“h4”,x)=true →AddAttribute (idtext, “textSize”, “header4”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“h5”,x)=true →AddAttribute (idtext, “textSize”, “header5”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“h6”,x)=true →AddAttribute (idtext, “textSize”, “header6”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
NearestInPath(“font”,x).face!=NULL
 →AddAttribute (idtext, “textFont”, NearestInPath(“font”,x).face)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
NearestInPath(“font”,x).size!=NULL
 →AddAttribute(idtext,“textSize”, NearestInPath(“font”,x).size)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath (“a”,x)=false ٨ body.text!=NULL
 →AddAttribute (idtext, “textColor”, NearestInPath(“font”,x).color)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“font)=false ٨ IsInPath(“basefont”,x)=false ٨ IsInPath (“a”,x)=false
 →AddAttribute (idtext, “textColor”, body.text)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
NearestInPath(“basefont”,x).face!=NULL
 →AddAttribute (idtext, “textFont”, NearestInPath(“basefont”,x).face)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
NearestInPath(“basefont”,x).size!=NULL →AddAttribute (idtext, “textSize”,
NearestInPath(“basefont”,x).size)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“a”,x)=false ٨ IsInPath
(“textarea”,x)=false ٨ NearestInPath(“basefont”,x).color!=NULL
 →AddAttribute (idtext, “textColor”, NearestInPath(“basefont”,x).color)
∀ x ∈ TH/W: x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false
 → CheckAlignement(x,idtext)

∀ x ∈ TW : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ NearestInPath(“a”,x).href!=NULL
٨ !∃ v=card such that v.id= NearestInPath(“a”,x).href →AddAttribute (idtext,
“hyperLinkTarget”, NearestInPath(“a”,x).href) ٨ AddGraphTr (idtext,NearestInPath(x,“a”).href)
∀ x ∈ TW : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ NearestInPath(“a”,x).href!=NULL
٨ ∃ v=card such that v.id= NearestInPath(“a”,x).href
 →AddAttribute (idtext, “hyperLinkTarget”, v.id) ٨ AddGraphTr (idtext,v.id)
∀ x,y ∈ TW : x=anchor ٨ x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath(“a”,x)=false
٨ (y=go ٨ y ∈ Childnodes(x)) ٨ (!∃ v=card such that v.id=y.href)
 →AddAttribute (idtext, “hyperLinkTarget”, y.href) ٨ AddGraphTr (idtext,y.href)
∀ x,y ∈ TW : x=anchor ٨ x.textnode !=NULL ٨ IsInPath(“select”,x)=false ٨
IsInPath(“a”,x)=false ٨ (y=go ٨ y ∈ Childnodes(x)) ٨ (∃ v=card such that v.id=y.href)
 →AddAttribute (idtext, “hyperLinkTarget”, v.id) ٨ AddGraphTr (idtext,v.id)
∀ x ∈ TW : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ (IsInPath(“b”,x)=true ٧
IsInPath(“strong”,x)=true) →AddAttribute (idtext, “isBold”, “true”)
∀ x ∈ TW : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ ((IsInPath(“i”,x)=true ٧
IsInPath(“em”,x)=) →AddAttribute (idtext, “isItalic”, “true”)

Appendix C

295

∀ x ∈ TW : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath(“big”,x)=true
 →AddAttribute (idtext, “textSize”, “12”)
∀ x ∈ TW : x.textnode!=NULL ٨ (x.mode=“wrap” ٧ IsInPath(p.wrap=true,x)=true)
 →AddAttribute (idtext, “wordWrapped”, “true”)
∀ x ∈ TW : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath(“small”,x)=true
 →AddAttribute (idtext, “textSize”, “8”)

G17b - marquee (textcomponent)

∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
NearestInPath(“marquee”,x) .behavior!=NULL
 →AddAttribute (idtext, “scrollStyle”, NearestInPath (“marquee”,x).behavior)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
NearestInPath(“marquee”,x).direction!= NULL
 →AddAttribute (idtext, “scrollDirection”, NearestInPath(“marquee”,x).direction)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
NearestInPath(“marquee”,x)=true ٨ NearestInPath(“marquee”,x).direction=NULL
 →AddAttribute (idtext, “scrollDirection”, “left”)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
NearestInPath(“marquee”,x).height !=NULL
 →AddAttribute (idtext, “scrollHeight”, NearestInPath(“marquee”,x).height)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
NearestInPath(“marquee”,x).width !=NULL
 →AddAttribute (idtext, “scrollWidth”, NearestInPath(“marquee”,x).width)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
NearestInPath(“marquee”,x).scrolldelay !=NULL
 →AddAttribute (idtext, “scrollDelay”, NearestInPath(“marquee”,x).scrolldelay)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
NearestInPath(“marquee”,x). scrollamount !=NULL
 →AddAttribute (idtext, “scrollAmount”, NearestInPath(“marquee”,x).scrollamount)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
NearestInPath(“marquee”,x). hspace!=NULL
 →AddAttribute (idtext, “scrollHorizSpace”, NearestInPath(“marquee”,x).hspace)

∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
NearestInPath(“marquee”,x). vspace!=NULL
 →AddAttribute (idtext, “scrollVertSpace”, NearestInPath(“marquee”,x).vspace)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
NearestInPath(“marquee”,x). bgcolor!=NULL
 →AddAttribute (idtext, “bgColor”, NearestInPath(“marquee”,x).bgcolor)

G17c – Links (textComponent)

∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
NearestInPath(“a”,x).href!=NULL →AddAttribute (idtext, “hyperLinkTarget”,
NearestInPath(“a”,x).href) ٨ AddGraphTr (idtext,NearestInPath(x,“a”).href)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“a”,x)=true ٨ NearestInPath(“a”,x).href!=NULL ٨ body.vlink!=NULL

Appendix C

296

 →AddAttribute (idtext, “linkVisitedColor”, body.vlink)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“a”,x)=true ٨ NearestInPath(“a”,x).href!=NULL ٨ body.alink!=NULL
 →AddAttribute (idtext, “activeLinkColor”, body.alink)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“a”,x)=true ٨ NearestInPath(“a”,x).href!=NULL ٨ body.link!=NULL
 →AddAttribute (idtext, “textColor”, body.link)
∀ x ∈ TH : x.textnode!=NULL ٨ IsInPath(“select”,x)=false ٨ IsInPath (“textarea”,x)=false ٨
IsInPath(“a”,x)=true ٨ NearestInPath(“a”,x).href!=NULL ٨ x.accesskey !=NULL
 →AddAttribute (idtext, “mnemonic”, x. accesskey)

G18 – applets /flash (finalComponent)

∀ x ∈ TH : x = (applet ٧ embed ٨ isAudio(x)=false) →Addnode (“finalComponent”, idfc)
where idfc =NodeAmount(Tt)
∀ x ∈ TH : x = (applet ٧ (embed ٨ isAudio(x)=false)) →AddAttribute (idfc, “id”, idfc)
∀ x ∈ TH : x = (applet ٧ (embed ٨ isAudio(x)=false)) AddAttribute (idfc, “name”, idfc)
∀ x ∈ TH : x = (applet ٧ (embed ٨ isAudio(x)=false)) →AddAttribute (idfc, “isVisible”, “true”)
∀ x ∈ TH : x = (applet ٧ (embed ٨ isAudio(x)=false)) →AddAttribute (idfc, “isEnabled”, “true”)
∀ x ∈ TH : x = (applet ٧ (embed ٨ isAudio(x)=false)) ٨ x.src !=NULL
 →AddAttribute (idfc, “location”, x.src)
∀ x ∈ TH : x = (applet ٧ (embed ٨ isAudio(x)=false)) → CheckAlignement(x,idfc)

G19 – bgsound (auditoryoutput)

∀ x ∈ TH : x = bgsound
 →Addnode(“auditoryOutput”, idaudio)where idaudio =NodeAmount(Tt)
∀ x ∈ TH : x = bgsound → AddAttribute (idaudio, “id”, idaudio)
∀ x ∈ TH : x = bgsound → AddAttribute (idaudio, “name”, idaudio)
∀ x ∈ TH : x = bgsound → AddAttribute (idaudio, “isEnabled”, “true”)
∀ x ∈ TH : x = bgsound → AddAttribute (idaudio, “isVisible”, “true”)
∀ x ∈ TH : x = bgsound ٨ x.loop !=NULL → AddAttribute (idaudio, “isLooped”, x.loop)
∀ x ∈ TH : x = bgsound ٨ x.src !=NULL → AddAttribute (idaudio, “tone”, x.src)
∀ x ∈ TH : x = bgsound → CheckAlignement(x,idaudio)

G20 – embed (auditoryoutput)

∀ x ∈ TH : x = embed ٨ IsAudio(x)=true
 → Addnode (“auditoryOutput”, idaudio) where idaudio =NodeAmount(Tt)
∀ x ∈ TH : x = embed ٨ IsAudio(x)=true → AddAttribute (idaudio, “id”, idaudio)
∀ x ∈ TH : x = embed ٨ IsAudio(x)=true → AddAttribute (idaudio, “name”, idaudio)
∀ x ∈ TH : x = embed ٨ IsAudio(x)=true → AddAttribute (idaudio, “isEnabled”, “true”)
∀ x ∈ TH : x = embed ٨ IsAudio(x)=true ٨ x.hidden=NULL
 → AddAttribute (idaudio, “isVisible”, “false”)
∀ x ∈ TH : x = embed ٨ IsAudio(x)=true ٨ x.hidden!=NULL
 → AddAttribute (idaudio, “isVisible”, “true”)
∀ x ∈ TH : x = embed ٨ IsAudio(x)=true ٨ x.loop !=NULL

Appendix C

297

 → AddAttribute (idbutton, “isLooped”, x.loop)
∀ x ∈ TH : x = embed ٨ IsAudio(x)=true ٨ x.src !=NULL
 → AddAttribute (idbutton, “tone”, x.src)
∀ x ∈ TH : x = embed ٨ IsAudio(x)=true → CheckAlignement(x,idaudio)

G21 – do/go (textComponent)

∀ x,y ∈ TW : x = do ٨ x.type=accept ٨ y=go ٨ y ∈ childNodes(x) → AddNode
(“TextComponent”, idtext) where idtext=NodeAmount(Tt)
∀ x,y ∈ TW : x = do ٨ x.type=accept ٨ x.label!=NULL ٨ y=go ٨ y ∈ childNodes(x) →
AddAttribute(idtext, “defaulContent”, “ x.label”) ٨ AddAttribute(idtext, “isbold”, “ true”)
∀ x,y ∈ TW : x = do ٨ x.type=accept ٨ y.href !=NULL ٨ y=go ٨ y ∈ childNodes(x) →
AddAttribute(idtext, “defaulContent”, “ x.label”) ٨ AddAttribute(idtext, “isbold”, “ true”)
AddAttribute(idtext, “hyperLinkTarget”, y.href) ٨ AddGraphTr (idtext, y.href)

G22 – br

∀ x ∈ TH : x = br →Addnode (“br”, idbr) where idbr =NodeAmount(Tt)

G23 –vxml (vocalGroup)

∀ x ∈ TV : x = vxml →Addnode (“vocalGroup”, idvxml) where idvxml=NodeAmount(Tt)
∀ x ∈ TV : x = vxml → AddAttribute (idvxml, “id”, idvxml)
∀ x ∈ TV : x = vxml → AddAttribute (idvxml, “name”, idvxml)
∀ x ∈ TV : x = vxml → AddAttribute (idvxml, “filename”, x.filename)

G24 – field (vocalInput)

∀ w,x ∈ TV : w= field ٨ x = prompt ٨ x ∈ childNodes(w) ٨ x.textnode !=NULL ٨ (x.count
=NULL ٧ x.count=1)
 → Addnode(“vocalPrompt”, idprompt)where idprompt =NodeAmount(Tt)
∀ w,x ∈ TV : w= field ٨ x = prompt ٨ x ∈ childNodes(w) ٨ x.textnode !=NULL ٨ (x.count
=NULL ٧ x.count=1) → AddAttribute (idprompt, “id”, idprompt)
∀ w,x ∈ TV : w= field ٨ x = prompt ٨ x ∈ childNodes(w) ٨ x.textnode !=NULL ٨ (x.count
=NULL ٧ x.count=1) → AddAttribute (idaudio, “name”, idprompt)
∀ w,x ∈ TV : w= field ٨ x = prompt ٨ x ∈ childNodes(w) ٨ x.bargein = false ٨ x.textnode
!=NULL ٨ (x.count =NULL ٧ x.count=1) → AddAttribute (idprompt, “isInterruptible”, “false”)
∀ w,x ∈ TV : w= field ٨ x = prompt ٨ x ∈ childNodes(w) ٨ x.textnode !=NULL ٨ (x.count
=NULL ٧ x.count=1) → AddAttribute (idprompt, “defaultContent”, x.textnode)

∀ x ∈ TV : x = field →Addnode (“vocalInput”, idfield) where idfield =NodeAmount(Tt)

∀ x ∈ TV : x = field → AddAttribute (idfield, “id”, idfield)
∀ x ∈ TV : x = field ٨ x.name !=NULL → AddAttribute (idfield, “name”, x.name)
∀ x ∈ TV : x = field ٨ x.name =NULL → AddAttribute (idfield, “name”, idfield)
∀ x ∈ TV : x = field ٨ x.type !=NULL → AddAttribute (idfield, “grammar”, x.type)
∀ x ∈ TV : x = field ٨ x.expr !=NULL → AddAttribute (idfield, “currentValue”, x.expr)

Appendix C

298

∀ x ∈ TV : x =field ٨ x.type =NULL , ∃ y,z ∈ TV : y= NearestInPath(form,x) ٨ z=grammar ٨ z ∈
childnodes(y) ٨ z.textnode != NULL ٨ grammar ∉childnodes(x) → AddAttribute (idfield,
“grammar”, z.textnode) ٨ AddAttribute (idfield, “isOrderIndependent”, “true”)
∀ x ∈ TV : x =field ٨ x.type =NULL, ∃ y,z ∈ TV : y= NearestInPath(form,x) ٨ z=grammar ٨ z ∈
childnodes(y) ٨ z.src != NULL ٨ grammar ∉childnodes(x)→ AddAttribute (idfield, “grammar”,
x.src) ٨ AddAttribute (idfield, “isOrderIndependent”, “true”)

G25 – menu (vocalMenu)

∀ x ∈ TV : x = menu → Addnode (“vocalMenu”, idmenu) where idmenu =NodeAmount(Tt)
∀ x ∈ TV : x = menu ٨ x.name = NULL → AddAttribute (idmenu, “id”, idmenu)
∀ x ∈ TV : x = menu ٨ x.name != NULL → AddAttribute (idmenu, “name”, x.name)
∀ x ∈ TV : x = menu ٨ x.name != NULL → AddAttribute (idmenu, “id”, x.name)
∀ x ∈ TV : x = menu ٨ x.name = NULL → AddAttribute (idmenu, “name”, idmenu)
∀ x ∈ TV : x = menu ٨ x.dtmf != NULL → AddAttribute (idmenu, “keyboardShortcut”, x.dtmf)
∀ x ∈ TV : x = menu ٨ x.expr != NULL → AddAttribute (idmenu, “currentValue”, x.expr)
∀ x ∈ TV : x = menu ٨ x.scope = “document”
 → AddAttribute (idmenu, “isOrderIdependent”, “true”)

G26 – block (vocalGroup)

∀ x ∈ TV : x = block → Addnode (“vocalGroup”, idblock) where idblock =NodeAmount(Tt)
∀ x ∈ TV : x = block ٨ x.name =NULL → AddAttribute (idblock, “id”, idblock)
∀ x ∈ TV : x = block ٨ x.name !=NULL → AddAttribute (idblock, “name”, x.name)
∀ x ∈ TV : x = block ٨ x.name !=NULL → AddAttribute (idblock, “id”, x.name)
∀ x ∈ TV : x = block ٨ x.name =NULL → AddAttribute (idblock, “name”, idblock)
∀ x ∈ TV : x = block ٨ x.textnode !=NULL
 → Addnode (“vocalPrompt”, idprompt) where idprompt =NodeAmount(Tt)
∀ x ∈ TV : x = block ٨ x.textnode !=NULL → AddAttribute (idprompt, “id”, idprompt)
∀ x ∈ TV : x = block ٨ x.textnode !=NULL → AddAttribute (idprompt, “name”, idprompt)
∀ x ∈ TV : x = block ٨ x.textnode !=NULL
 → AddAttribute (idprompt, “defaultContent”, x.textnode)

The next set of rules derives the initial node into a vocalGroup and a vocalInput.
This container indicates that its elements have to be processed before the rest of
the form and it is usually specified for mixed-initiave forms. When a grammar is
specified at the form level, the initial element prompts the user for form-wide
information.
Therefore, when this element is derived, the vocalInput’s attribute
isOrderIndependent is set to true as it allows filling the fields of the form in any
order. The vocalGroup created thus contains a vocalInput but also a vocalPrompt
before this vocalInput. The children of the initial element are checked to find a
prompt element, and a vocalPrompt is generated before the creation of the
vocalInput to represent the elements in a logical order (the rule set G35 for

Appendix C

299

prompts checks if the prompt element is not embedded in an initial or field element
to avoid a double-processing of the node).
The attribute expr of the initial node must be NULL (or undefined in VoiceXML)
to activate the node in a vocal browser, therefore the value of this attribute is
checked in every rule of G27. If it is not the case, the element is not derived as the
run-time modification of its value to undefined (and thus the activation of the
initial element) can not be recorded in UsiXML.
Finally, the initial element is not directly translated in a vocalGroup but in a
vocalGroupInit because this special name is used to mark the element for a future
transformation (the rest of the form will be put in another vocalGroup see set of
rules G53).

G27 – initial (vocalGroup-VocalInput)

∀ x ∈ TV : x = initial ٨ x.expr=NULL
 →Addnode (“vocalGroupInit”, idinitial) where idinitial =NodeAmount(Tt)
∀ x ∈ TV : x = initial ٨ x.name =NULL ٨ expr=NULL → AddAttribute (idinitial, “id”, idinitial)
∀ x ∈ TV : x = initial ٨ x.name =NULL ٨ expr=NULL
 → AddAttribute (idinitial, “name”, idinitial)
∀ w,x ∈ TV : w= initial ٨ x = prompt ٨ x ∈ childNodes(w) ٨ x.textnode !=NULL ٨ (x.count
=NULL ٧ x.count=1) ٨ IsInPath(field,x)=false → Addnode (“vocalPrompt”, idprompt) ٨
AddArc(idinitial,idprompt) where idprompt =NodeAmount(Tt)

∀ w,x ∈ TV : w= initial ٨ w.expr=NULL ٨ x = prompt ٨ x ∈ childNodes(w) ٨ x.textnode
!=NULL ٨ (x.count =NULL ٧ x.count=1) → AddAttribute (idprompt, “id”, idprompt)
∀ w,x ∈ TV : w= field ٨ w.expr=NULL ٨ x = prompt ٨ x ∈ childNodes(w) ٨ x.textnode
!=NULL ٨ (x.count =NULL ٧ x.count=1) → AddAttribute (idaudio, “name”, idprompt)
∀ w,x ∈ TV : w= initial ٨ w.expr=NULL ٨ x = prompt ٨ x ∈ childNodes(w) ٨ x.bargein = false
٨ x.textnode !=NULL ٨ (x.count =NULL ٧ x.count=1) ٨ IsInPath(field,x)=false
 → AddAttribute (idprompt, “isInterruptible”, “false”)
∀ w,x ∈ TV : w= initial ٨ w.expr=NULL ٨ x = prompt ٨ x ∈ childNodes(w) ٨ x.textnode
!=NULL ٨ (x.count =NULL ٧ x.count=1) ٨ IsInPath(field,x)=false
 → AddAttribute (idprompt, “defaultContent”, x.textnode)
∀ x ∈ TV : x = initial ٨ x.expr=NULL →Addnode (“vocalInput”, idvii) ٨
AddArc(idinitial,idvii) where idvii =NodeAmount(Tt)

∀ x ∈ TV : x = initial ٨ x.expr=NULL ٨ x.name !=NULL
 → AddAttribute (idvii, “name”, x.name)
∀ x ∈ TV : x = initial ٨ x.expr=NULL ٨ x.name !=NULL
 → AddAttribute (idvii, “name”, x.name)
∀ x ∈ TV : x = initial ٨ x.expr=NULL ٨ x.name =NULL → AddAttribute (idvii, “name”, idvii)
∀ x ∈ TV : x = initial ٨ x.expr=NULL ٨ x.name =NULL → AddAttribute (idvii, “id”, idvii)
∀ x ∈ TV : x = initial ٨ x.expr=NULL, ∃ y,z ∈ TV : y= NearestInPath(form,x) ٨ (z=grammar ٨
z ∈ childnodes(y) ٨ z.textnode != NULL) ٨ grammar ∉childnodes(x) → AddAttribute (idvii,
“grammar”, z.textnode) ٨ AddAttribute (idvii, “isOrderIndependent”, “true”)
∀ x ∈ TV : x =initial ٨ x.expr=NULL, ∃ y,z ∈ TV : y= NearestInPath(form,x) ٨ (z=grammar ٨
z ∈ childnodes(y) ٨ z.src != NULL) ٨ grammar ∉childnodes(x)
→ AddAttribute (idvii, “grammar”, x.src) ٨ AddAttribute (idvii, “isOrderIndependent”, “true”)

Appendix C

300

G28 – Form (vocalForm)

∀ x ∈ TV : x = form→Addnode (“vocalForm”, idform) where idform =NodeAmount(Tt)
∀ x ∈ TV : x = form ٨ x.name !=NULL → AddAttribute (idform, “id”, x.name)
∀ x ∈ TV : x = form ٨ x.name =NULL → AddAttribute (idform, “id”, idform)
∀ x ∈ TV : x = form ٨ x.name !=NULL → AddAttribute (idform, “name”, x.name)
∀ x ∈ TV : x = form ٨ x.name =NULL → AddAttribute (idform, “name”, idform)
∀ x ∈ TV : x = form ٨ x.expr != NULL → AddAttribute (idform, “currentValue”, x.expr)
∀ x,y ∈ TV : x = form ٨ x.scope = “document”
 → AddAttribute (idform, “isOrderIdependent”, “true”)
∀ x,z ∈ TV : x = form ٨ z=grammar ٨ z ∈ childnodes(x)
 → AddAttribute (idform, “isOrderIdependent”, “true”)
The group of rules G28 is only applicable to the voiceXML language (TV). It
derives a form node into a vocalForm element in the CUI model. If the name
attribute is present, its value will be used to set the values of the name and id
UsiXML attributes. In the other case, the name and id attributes are computed by
counting the number of node already created in the target tree. The value of the
expr attribute is copied in the currentValue attribute in the target tree. Finally, if a
grammar node exists in the children of the form, then the attribute
isOrderIndependent is set to true in the CUI model, as a grammar defined at the
level of the form will be active until the form node is closed. The information
related to the grammar are added later (in G38) to the vocalForm.

G29 – transfer (vocalNavigation)

∀ x ∈ TV : x=transfer
 →Addnode (“vocalNavigation”, idtransfer) where idtransfer =NodeAmount(Tt)
∀ x ∈ TV : x = transfer → AddAttribute (idtransfer, “navigationType”, “transfer”)
∀ x ∈ TV : x = transfer ٨ x.name !=NULL → AddAttribute (idtransfer, “id”, x.name)
∀ x ∈ TV : x = transfer ٨ x.name =NULL → AddAttribute (idtransfer, “id”, idtransfer)
∀ x ∈ TV : x = transfer ٨ x.name !=NULL → AddAttribute (idtransfer, “name”, x.name)
∀ x ∈ TV : x = transfer ٨ x.name =NULL → AddAttribute (idtransfer, “name”, idtransfer)
∀ x ∈ TV : x = transfer ٨ x.expr != NULL → AddAttribute (idtransfer, “currentValue”, x.expr)
∀ x ∈ TV : x = transfer ٨ x.bridge = “true” → AddAttribute (idtransfer, “isBridgeable”, “true”)
∀ x ∈ TV : x = transfer ٨ x.dest != NULL → AddAudiTr (idtransfer, x.dest)
∀ x ∈ TV : x = transfer ٨ x.transferaudio !=NULL
→Addnode (“vocalPrompt”, idprompt) where idprompt =NodeAmount(Tt) ~ optional
∀ x ∈ TV : x = transfer ٨ x.transferaudio !=NULL →Addattribute (idprompt, “id”, idprompt)
∀ x ∈ TV : x = transfer ٨ x.transferaudio !=NULL →Addattribute (idprompt, “name”, idprompt)
∀ x ∈ TV : x = transfer ٨ x.transferaudio !=NULL
 →AddCUIDiagCont (idtransfer, idprompt, “|||”)

G30 – filled (vocalPrompt)

∀ x ∈ TV : x = filled ٨ x.textnode !=NULL

Appendix C

301

 → Addnode (“vocalPrompt”, idfilled) where idprompt =NodeAmount(Tt)

∀ x ∈ TV : x = filled ٨ x.textnode !=NULL → AddAttribute (id filled, “id”, idfilled)
∀ x ∈ TV : x = filled ٨ x.textnode !=NULL → AddAttribute (idaudio, “name”, id filled)
∀ x ∈ TV : x = filled ٨ x.textnode !=NULL
 → AddAttribute (idprompt, “defaultContent”, x.textnode)

G31 – subdialog (vocalGroup)

∀ x ∈ TV : x=subdialog→Addnode(“vocalGroup”, idsub)where idsub =NodeAmount(Tt)
∀ x ∈ TV : x = subdialog ٨ x.name =NULL → AddAttribute (idsub, “id”, idsub)
∀ x ∈ TV : x = subdialog ٨ x.name !=NULL → AddAttribute (idsub, “name”, x.name)
∀ x ∈ TV : x = subdialog ٨ x.name !=NULL → AddAttribute (idsub, “id”, x.name)
∀ x ∈ TV : x = subdialog ٨ x.name =NULL → AddAttribute (idsub, “name”, idsub)
∀ x ∈ TV : x = subdialog ٨ x.src !=NULL → AddAttribute(idsub, “insertfile”, x.src)

G32 – object (finalComponent)

∀ x ∈ TV : x = object
 →Addnode(“finalComponent”, idobject) where idobject =NodeAmount(Tt)
∀ x ∈ TV : x = object ٨ x.name =NULL → AddAttribute (idobject, “id”, idobject)
∀ x ∈ TV : x = object ٨ x.name !=NULL → AddAttribute (idobject, “id”, x.name)
∀ x ∈ TV : x = object ٨ x.name !=NULL → AddAttribute (idobject, “name”, x.name)
∀ x ∈ TV : x = object ٨ x.name =NULL → AddAttribute (idobject, “name”, idobject)
∀ x ∈ TV : x = object ٨ x.expr !=NULL → AddAttribute (idobject, “currentValue”, x.expr)
∀ x ∈ TV : x = object ٨ x.classid !=NULL ٨ x.codebase=NULL
 → AddAttribute (idobject, “defaultContent”, x.codeid)
∀ x ∈ TV : x = object ٨ x.classid !=NULL ٨ x.codebase=!NULL
 → AddAttribute (idobject, “defaultContent”, x.codebase+x.classid)

G33 – link (vocalNavigation)

∀ x ∈ TV : x = link →Addnode (“vocalNavigation”, idlink) where idlink =NodeAmount(Tt)
∀ x ∈ TV : x = link → AddAttribute (idlink, “id”, idlink)
∀ x ∈ TV : x = link → AddAttribute (idlink, “name”, idlink)
∀ x ∈ TV : x = link → AddAttribute (idlink, “NavigationType”, “link”)
∀ x ∈ TV : x = link → AddAttribute (idlink, “isBridgeable”, “false”)
∀ x ∈ TV : x = link ٨ x.expr !=NULL → AddAttribute (idlink, “currentValue”, x.expr)
∀ x ∈ TV : x = link ٨ x.dtmf !=NULL → AddAttribute (idlink, “keyboardShortcut”, x.dtmf)
∀ x ∈ TV : x = link ٨ x.next !=NULL → AddAudiTr (idlink , x.next)

G34 – audio (vocalPrompt)

∀ x ∈ TV : x = audio
 →Addnode (“vocalPrompt”, idaudio) where idaudio =NodeAmount(Tt)
∀ x ∈ TV : x = audio → AddAttribute (idaudio, “id”, idaudio)
∀ x ∈ TV : x = audio → AddAttribute (idaudio, “name”, idaudio)

Appendix C

302

∀ x ∈ TV : x = audio ٨ x.expr ! = NULL → AddAttribute (idaudio, “defaultContent”, x.expr)
∀ x ∈ TV : x = audio ٨ x.src ! = NULL → AddAttribute (idaudio, “defaultContent”, x.src)
∀ x,p ∈ TV : x=audio ٨ p = prompt ٨ p.bargein= false ٨ IsInPath(p,x)=true
 → AddAttribute (idaudio, “isInterruptible”, “false”)

G35 – prompt (vocalPrompt)

∀ x ∈ TV : x = prompt ٨ x.textnode !=NULL ٨ (x.count =NULL ٧ x.count=1) ٨
IsInPath(field,x)=false ٨ IsInPath(initial,x)=false
 → Addnode (“vocalPrompt”, idprompt) where idprompt =NodeAmount(Tt)
∀ x ∈ TV : x = prompt ٨ x.textnode !=NULL ٨ (x.count =NULL ٧ x.count=1) ٨
IsInPath(field,x)=false ٨ IsInPath(initial,x)=false → AddAttribute (idprompt, “id”, idprompt)
∀ x ∈ TV : x = prompt ٨ x.textnode !=NULL ٨ (x.count =NULL ٧ x.count=1) ٨
IsInPath(field,x)=false ٨ IsInPath(initial,x)=false → AddAttribute (idaudio, “name”, idprompt)
∀ x ∈ TV : x = prompt ٨ x.bargein= false ٨ x.textnode !=NULL ٨ (x.count =NULL ٧ x.count=1)
٨ IsInPath(field,x)=false ٨ IsInPath(initial,x)=false
 → AddAttribute (idprompt, “isInterruptible”, “false”)
∀ x ∈ TV : x = prompt ٨ x.textnode !=NULL ٨ (x.count =NULL ٧ x.count=1) ٨
IsInPath(field,x)=false ٨ IsInPath(initial,x)=false
 → AddAttribute (idprompt, “defaultContent”, x.textnode)
∀ x,y ∈ TV : y = prompt ٨ y.textnode !=NULL ٨ (y.count =NULL ٧ y.count=1) ٨ x= record
٨ parentNode(y)=x
 →Addnode (“vocalInput”, idrecord) where idrecord =NodeAmount(Tt)
∀ x,y ∈ TV : y = prompt ٨ y.textnode !=NULL ٨ (y.count =NULL ٧ y.count=1) ٨ x= record ٨
parentNode(y)=x ٨ x.name =NULL → AddAttribute (idrecord, “id”, idrecord)
∀ x,y ∈ TV : y = prompt ٨ y.textnode !=NULL ٨ (y.count =NULL ٧ y.count=1) ٨ x= record ٨
parentNode(y)=x ٨ x.name !=NULL → AddAttribute (idrecord, “id”, x.name)
∀ x,y ∈ TV : y = prompt ٨ y.textnode !=NULL ٨ (y.count =NULL ٧ y.count=1) ٨ x= record ٨
parentNode(y)=x ٨ x.name !=NULL → AddAttribute (idrecord, “name”, x.name)
∀ x,y ∈ TV : y = prompt ٨ y.textnode !=NULL ٨ (y.count =NULL ٧ y.count=1) ٨ x= record ٨
parentNode(y)=x ٨ x.name =NULL → AddAttribute (idrecord, “name”, idrecord)
∀ x,y ∈ TV : y = prompt ٨ y.textnode !=NULL ٨ (y.count =NULL ٧ y.count=1) ٨ x= record ٨
parentNode(y)=x ٨ x.expr !=NULL → AddAttribute (idrecord, “currentValue”, x.expr)
∀ x,y ∈ TV : y = prompt ٨ y.textnode !=NULL ٨ (y.count =NULL ٧ y.count=1) ٨ x= record ٨
parentNode(y)=x ٨ x.maxtime !=NULL → AddAttribute (idrecord, “elapsedTime”, x.maxtime)
∀ x,y ∈ TV : y = prompt ٨ y.textnode !=NULL ٨ (y.count =NULL ٧ y.count=1) ٨ x= record ٨
parentNode(y)=x ٨ x.dtmfterm !=NULL
 → AddAttribute (idrecord, “keyboardShortcut”, x.dtmfterm)
∀ x,y ∈ TV : y = prompt ٨ y.textnode !=NULL ٨ (y.count =NULL ٧ y.count=1) ٨ x= record ٨
parentNode(y)=x , ∃ w,z ∈ TV : w= NearestInPath(form,x) ٨ z=grammar ٨ z ∈ childnodes(w) ٨
z.textnode != NULL → AddAttribute (idrecord, “grammar”, z.textnode)
∀ x,y ∈ TV : y = prompt ٨ y.textnode !=NULL ٨ (y.count =NULL ٧ y.count=1) ٨ x= record ٨
parentNode(y)=x , ∃ w,z ∈ TV : w= NearestInPath(form,x) ٨ z=grammar ٨ z ∈ childnodes(w) ٨
z.src != NULL → Addattribute (idrecord, “grammar”, z.src)

Appendix C

303

The next set is an optional set of rules; it means that the designer can choose to
apply it to recover the element but without the conditional structure. In this case,
the reprompt element is transformed into a vocalPrompt element. The effect of the
reprompt tag in a VoiceXML specification is the repetition of the last played
prompt. The rule G36 searches the nearest prompt in the VoiceXML code, and if
this nearest prompt should be played without condition (count=NULL or
count=1), then the reprompt element is mapped as a vocalPrompt containing the
same textnode as the nearest prompt.

G36 – Reprompt (vocalPrompt) ~ optional

∀ y ∈ TV : y = reprompt , ∃ x ∈ TV : x=prompt ٨ isInPath(x,y) ٨ x.textnode !=NULL ٨
(x.count =NULL ٧ x.count=1)
 → Addnode (“vocalPrompt”, idprompt) where idprompt =NodeAmount(Tt)
∀ y ∈ TV : y = reprompt, ∃ x ∈ TV : x=prompt ٨ isInPath(x,y) ٨ x.textnode !=NULL ٨ (x.count
=NULL ٧ x.count=1) → AddAttribute (idprompt, “id”, idprompt)
∀ y ∈ TV : y = reprompt, ∃ x ∈ TV : x=prompt ٨ isInPath(x,y) ٨ x.textnode !=NULL ٨ (x.count
=NULL ٧ x.count=1) → AddAttribute (idaudio, “name”, idprompt)
∀ y ∈ TV : y = reprompt , ∃ x ∈ TV : x=prompt ٨ isInPath(x,y) ٨ x.bargein = false ٨ x.textnode
!=NULL ٨ (x.count =NULL ٧ x.count=1) → AddAttribute (idprompt, “isInterruptible”, “false”)
∀ y ∈ TV : y = reprompt , ∃ x ∈ TV : x=prompt ٨ isInPath(x,y) ٨ x.textnode !=NULL ٨ (x.count
=NULL ٧ x.count=1) → AddAttribute (idprompt, “defaultContent”, x.textnode)

G37 – submit (vocalNavigation)

∀ x ∈ TV : x = submit →Addnode (“vocalNavigation”, idsubmit)
 where idsubmit =NodeAmount(Tt)
∀ x ∈ TV : x = submit → AddAttribute (idsubmit, “id”, idsubmit)
∀ x ∈ TV : x = submit → AddAttribute (idsubmit, “name”, idsubmit)
∀ x ∈ TV : x = submit→ AddAttribute (idsubmit, “NavigationType”, “submit”)
∀ x ∈ TV : x = submit → AddAttribute (idsubmit, “isBridgeable”, “false”)
∀ x ∈ TV : x = submit ٨ x.next !=NULL → AddAudiTr (idsubmit , x.next)

G38 – grammar ()

∀ x,z ∈ TV : x = grammar ٨ z =parentNode(x) ٨ z =form ٨ x.scope=document, ∃ y ∈ Tt : y=
itao((z)) → Addattribute (y.id, “isOrderIndependent”, “true”)
∀ x ∈ TV : x = grammar, ∃ y ∈ Tt : y= itao(parentNode(x)) ٨ y=VocalForm
 → Addattribute (y.id, “isOrderIndependent”, “true”)
∀ x ∈ TV : x = grammar, ∃ y ∈ Tt : y= itao(parentNode(x)) ٨ x.textnode !=NULL ٨
(parentNode(x)=field ٧ parentNode(x)=record ٧ parentNode(x)=initial)
 → Addattribute (y.id, “grammar”, x.textnode)
∀ x ∈ TV : x = grammar, ∃ y ∈ Tt : y= itao(parentNode(x)) ٨ x.src!=NULL ٨
(parentNode(x)=field ٧ parentNode(x)=record ٧ parentNode(x)=initial)

Appendix C

304

 → Addattribute (y.id, “grammar”, x.src)

G39 – enumerate(vocalPrompt)

∀ x,y ∈ TV : x = enumerate, y=value ٨ x.textnode !=NULL ٨ y ∉ childnodes(x)
 → Addnode (“vocalPrompt”, idenum) where idenum =NodeAmount(Tt)

∀ x,y ∈ TV : x = enumerate, y=value ٨ x.textnode !=NULL ٨ y ∉ childnodes(x)
 → AddAttribute (idenum, “id”, idenum)
∀ x,y ∈ TV : x = enumerate, y=value ٨ x.textnode !=NULL ٨ y ∉ childnodes(x)
 → AddAttribute (idenum, “name”, idenum)
∀ x,y ∈ TV : x = enumerate, y=value ٨ x.textnode !=NULL ٨ y ∉ childnodes(x)
 → AddAttribute (idenum, “defaultContent”, x.textnode)

G40 – enumerate + options(vocalPrompt)

∀ x,y ∈ TV : x = enumerate ٨ y=option ٨ y ∈ sibling(parentNode(x))
 → Addnode (“vocalPrompt”, idenum) where idenum =NodeAmount(Tt)
∀ x,y ∈ TV : x = enumerate ٨ y=option ٨ y ∈ sibling(parentNode(x))
 → AddAttribute (idenum, “id”, idenum)
∀ x,y ∈ TV : x = enumerate ٨ y=option ٨ y ∈ sibling(parentNode(x))
 → AddAttribute (idenum, “name”, idenum)
∀ x,y ∈ TV : x = enumerate ٨ y=option ٨ y ∈ sibling(parentNode(x)) ٨ y.dtmf !=NULL
 → AddAttribute (idenum, “keyboardShortcut”, x.dtmf)
∀ x,y ∈ TV : x = enumerate ٨ y=option ٨ y ∈ sibling(parentNode(x)) ٨ y.textnode !=NULL ٨
y.dtmf !=NULL → AddAttribute (idenum, “defaultContent”, x.dtmf + x.textnode)
∀ x,y ∈ TV : x = enumerate ٨ y=option ٨ y ∈ sibling(parentNode(x)) ٨ y.textnode !=NULL ٨
y.dtmf =NULL → AddAttribute (idenum, “defaultContent”, Dist(y,w) + x.textnode)

G41 – enumerate + choices(vocalPrompt)

∀ x,y ∈ TV : x = enumerate ٨ z=NearestInPath(x,“menu”) ٨ y=choice ٨ isInPath(z,y)))
 → Addnode (“vocalMenuItem”, idenum) where idenum =NodeAmount(Tt)
∀ x,y ∈ TV : x = enumerate ٨ z=NearestInPath(x,“menu”) ٨ y=choice ٨ isInPath(z,y)
 → AddAttribute (idenum, “id”, idenum)
∀ x,y ∈ TV : x = enumerate ٨ z=NearestInPath(x,“menu”) ٨ y=choice ٨ isInPath(z,y)
 → AddAttribute (idenum, “name”, idenum)
∀ x,y ∈ TV : x = enumerate ٨ z=NearestInPath(x,“menu”) ٨ y=choice ٨ isInPath(z,y) ٨ y.dtmf
!=NULL → AddAttribute (idenum, “keyboardShortcut”, y.dtmf)
∀ x,y ∈ TV : x = enumerate ٨ z=NearestInPath(x,“menu”) ٨ y=choice ٨ isInPath(z,y) ٨ y.next
!=NULL → AddAudiTr(y, y.next)
∀ x,y ∈ TV : x = enumerate ٨ z=NearestInPath(x,“menu”) ٨ y=choice ٨ isInPath(z,y) ٨ y.expr
!=NULL → AddAttribute(idenum, “currentValue”, y.expr)
∀ x,y ∈ TV : x = enumerate ٨ z=NearestInPath(x,“menu”) ٨ y=choice ٨ isInPath(z,y) ٨
y.textnode !=NULL ٨ y.dtmf !=NULL → AddAttribute (idenum, “defaultContent”, y.dtmf +
y.textnode)

Appendix C

305

∀ x,y ∈ TV : x = enumerate ٨ z=NearestInPath(x,“menu”) ٨ y=choice ٨ isInPath(z,y) ٨
y.textnode !=NULL ٨ y.dtmf=NULL → ∃ w = choice : (w ∈ siblingsBefore(y) ٧ w=y) ٨
leftsibling(w)=NULL, AddAttribute (idenum, “defaultContent”, Dist(y,w) + y.textnode)

G42 – break(vocalPrompt)

∀ x,y ∈ TV : x = break ٨ parentNode(x)=prompt → Addnode (“Pause”, idpause) where
idpause =NodeAmount(Tt)

∀ x,y ∈ TV : x = break ٨ parentNode(x)=prompt ٨ x.size!=NULL
 → AddAttribute (idpause, “size”, x.size)
∀ x,y ∈ TV : x = break ٨ parentNode(x)=prompt ٨ x.strength!=NULL
 → AddAttribute (idpause, “strength”, x.strength)
∀ x,y ∈ TV : x = break ٨ parentNode(x)=prompt ٨ x.time!=NULL
 → AddAttribute (idpause, “time”, x.time)

G43 – goto (vocalNavigation)

∀ x ∈ TV : x = goto →Addnode (“vocalNavigation”, idgoto) where idgoto =NodeAmount(Tt)
∀ x ∈ TV : x = goto → AddAttribute (idgoto, “id”, idgoto)
∀ x ∈ TV : x = goto → AddAttribute (idgoto, “name”, idgoto)
∀ x ∈ TV : x = goto→ AddAttribute (idgoto, “NavigationType”, “goto”)
∀ x ∈ TV : x = goto → AddAttribute (idgoto, “isBridgeable”, “false”)
∀ x ∈ TV : x = goto ٨ x.nextitem !=NULL → AddAudiTr (idgoto , x.nextitem)
This group of rules is specific to VoiceXML trees. It derives a goto element into a
vocalNavigation node. Name and id are automatically associated with the element,
so as the navigationType and isBridgeable attributes which are set to goto and false
respectively. Finally, the nextItem attribute is used to add an auditoryTransition to
the CUI model.

G44– prosody (vocalPrompt)

∀ x ∈ TV : x = prosody ٨ x.textnode !=NULL ٨ (NearestInPath(prompt,x).count =NULL ٧
NearestInPath(prompt,x).count=1)
 → Addnode (“vocalPrompt”, idprosody) where idprosody =NodeAmount(Tt)

∀ x ∈ TV : x = prosody ٨ x.textnode !=NULL ٨ (NearestInPath(prompt,x).count =NULL ٧
NearestInPath(prompt,x).count=1) → AddAttribute (idprosody, “id”, idprosody)
∀ x ∈ TV : x = prosody ٨ x.textnode !=NULL ٨ (NearestInPath(prompt,x).count =NULL ٧
NearestInPath(prompt,x).count=1) → AddAttribute (idprosody, “name”, idprosody)
∀ x ∈ TV : x = prosody ٨ NearestInPath(prompt,x).bargein= false ٨ x.textnode !=NULL ٨
(NearestInPath(prompt,x).count =NULL ٧ NearestInPath(prompt,x).count=1)
 → AddAttribute (idprosody, “isInterruptible”, “false”)
∀ x ∈ TV : x = prosody ٨ x.textnode !=NULL ٨ (NearestInPath(prompt,x).count =NULL ٧
NearestInPath(prompt,x).count=1) → AddAttribute (idprosody, “defaultContent”, x.textnode)
∀ x ∈ TV : x = prosody ٨ x.textnode !=NULL ٨ (NearestInPath(prompt,x).count =NULL ٧
NearestInPath(prompt,x).count=1) ٨ x.contour !=NULL

Appendix C

306

 → AddAttribute (idprosody, “pitch”, x.contour)
∀ x ∈ TV : x = prosody ٨ x.textnode !=NULL ٨ (NearestInPath(prompt,x).count =NULL ٧
NearestInPath(prompt,x).count=1) ٨ x.range !=NULL
 → AddAttribute (idprosody, “pitch”, x.range)
∀ x ∈ TV : x = prosody ٨ x.textnode !=NULL ٨ (NearestInPath(prompt,x).count =NULL ٧
NearestInPath(prompt,x).count=1) ٨ x.pitch!=NULL
 → AddAttribute (idprosody, “pitch”, x.pitch)
∀ x ∈ TV : x = prosody ٨ x.textnode !=NULL ٨ (NearestInPath(prompt,x).count =NULL ٧
NearestInPath(prompt,x).count=1) ٨ x.volume !=NULL
 → AddAttribute (idprosody, “volume”, x.volume)

G45 – sentence, s, p (vocalPrompt)

∀ x ∈ TV : (x = sentence ٧ x = p ٧ x = s) ٨ x.textnode !=NULL ٨
(NearestInPath(prompt,x).count =NULL ٧ NearestInPath(prompt,x).count=1)
 → Addnode (“vocalPrompt”, idprompt) where idprompt =NodeAmount(Tt)
∀ x ∈ TV : (x = s ٧ x=p ٧ x = sentence) ٨ x.textnode !=NULL ٨ (NearestInPath(prompt,x).count
=NULL ٧ NearestInPath(prompt,x).count=1) → AddAttribute (idprompt, “id”, idprompt)
∀ x ∈ TV : (x = s ٧ x=p ٧ x = sentence) ٨ x.textnode !=NULL ٨ (NearestInPath(prompt,x).count
=NULL ٧ NearestInPath(prompt,x).count=1) → AddAttribute (idaudio, “name”, idprompt)
∀ x ∈ TV : (x = s ٧ x=p ٧ x = sentence) ٨ NearestInPath(prompt,x).bargein = false ٨ x.textnode
!=NULL ٨ (NearestInPath(prompt,x).count =NULL ٧ NearestInPath(prompt,x).count=1)
 → AddAttribute (idprompt, “isInterruptible”, “false”)
∀ x ∈ TV (x = s ٧ x=p ٧ x = sentence) ٨ x.textnode !=NULL ٨ (NearestInPath(prompt,x).count
=NULL ٧ NearestInPath(prompt,x).count=1)
 → AddAttribute (idprompt, “defaultContent”, x.textnode)

G46 – emphasis (vocalPrompt)

∀ x ∈ TV : x = emphasis ٨ x.textnode !=NULL ٨ (NearestInPath(prompt,x).count =NULL ٧
NearestInPath(prompt,x).count=1)
 → Addnode (“vocalPrompt”, idemph) where idemph =NodeAmount(Tt)
∀ x ∈ TV : x = emphasis ٨ x.textnode !=NULL ٨ (NearestInPath(prompt,x).count =NULL ٧
NearestInPath(prompt,x).count=1) → AddAttribute (idemph, “id”, idemph)
∀ x ∈ TV : x = emphasis ٨ x.textnode !=NULL ٨ (NearestInPath(prompt,x).count =NULL ٧
NearestInPath(prompt,x).count=1) → AddAttribute (idemph, “name”, idemph)
∀ x ∈ TV : x = emphasis ٨ NearestInPath(prompt,x).bargein = false ٨ x.textnode !=NULL ٨
(NearestInPath(prompt,x).count =NULL ٧ NearestInPath(prompt,x).count=1)
 → AddAttribute (idemph, “isInterruptible”, “false”)
∀ x ∈ TV : x= emphasis ٨ x.textnode !=NULL ٨ (NearestInPath(prompt,x).count =NULL ٧
NearestInPath(prompt,x).count=1) → AddAttribute (idemph, “defaultContent”, x.textnode)
∀ x ∈ TV : x= emphasis ٨ x.textnode !=NULL ٨ (NearestInPath(prompt,x).count =NULL ٧
NearestInPath(prompt,x).count=1) ٨ x.level→ AddAttribute (idemph, “intonation”, x.level)

Appendix C

307

Multiple-trees rules

These transformations use different trees (i.e. html, wml or vxml files) as input to
be processed. These mutliple-trees transformation occur when a frameset, iframe
or subdialog node is detected. For the transformation of (i)frames, the tree
containing the frameset (or iframe) node is named TH

0 and the other trees (content
of the frames or iframe) are named TH

i. In parallel, a tree containing only a set of
boxes (corresponding to the layout of the frames) is created in TT

0 and the targeted
frames are recorded in several other trees (TT

i).
For the transformation of subdialogs the file containing the subdialog is named
TT

0 while the targeted files are put in other trees (TT
i).The derivation process is

applied normally, but when the different files to be displayed in frames (or the
targeted subdialog/iframe) are processed, a tree merging operation occurs (all the
trees are merged into one tree, and thus one specification).The frameset node
implies the creation of a window, wich is subdivised into several boxes (G47). A
special attribute –targetFile- is added to these boxes and is compared to the
filename attribute of windows in the target tree (G48). If the two names are
identical, the window is appended to the box. The same occurs with iframes, with
the difference that the “framed” tree is appended to a window instead of box.

G47 – Frameset (window)

∀ x ∈ TH
0
 : x = frameset →Addnode (“window”, idwin) to Tt

0 where idwin
=NodeAmount(Tt

0)
∀ x ∈ TH

0 : x = frameset → AddAttribute (idwin, “id”, idwin)
∀ x ∈ TH

0 : x = frameset → AddAttribute (idwin, “name”, idwin)
∀ x ∈ TH

0: x = frameset → AddAttribute (idwin, “isEnabled”, “true”)
∀ x ∈ TH

0 : x = frameset → AddAttribute (idwin, “isVisible”, “true”)

G48 – Frame(box)

∀ x ∈ TH
0
 : x = frame ٨ y= NearestInPath(x, frameset) ٨ y.cols !=NULL →ConstrBox

(“box”, “horizontal”, idbox) to Tt
0 where idbox =NodeAmount(Tt

0)

∀ x ∈ TH
0
 : x = frame ٨ y= NearestInPath(x, frameset) ٨ y.rows !=NULL →ConstrBox

(“box”, “vertical”, idbox) to Tt
0 where idbox=NodeAmount(Tt

0)

∀ x ∈ TH
0 : x = frame ٨ x.src !=NULL →AddAttribute (idwin, “targetfile”, x.src)

∀ x ∈ TH
0: x = frame ٨ x.scrolling !=NULL ٨ x.scrolling !=“no”

 →AddAttribute (idwin, “isScrollable”, “true”)
∀ x ∈ TH

0 : x = frame ٨ x.scrolling !=NULL ٨ x.scrolling =“no”
 →AddAttribute (idwin, “isScrollable”, “false”)
∀ x ∈ TH

0 : x = frame ٨ x.frameborder !=NULL ٨ x.frameborder !=0
 →AddAttribute (idwin, “borderWidth”, x.frameborder)

Appendix C

308

G48b – iFrame(window)

∀ x ∈ TH
0
 : x = iframe →AddNode(“window”, idwin) where idwin =NodeAmount(Tt)

∀ x ∈ TH
0
 : x = iframe ٨ x.name !=NULL

 →AddAttribute (“name”, x.name, idwin) ٨ AddAttribute (“id”, x.name, idwin)
∀ x ∈ TH

0
 : x = iframe ٨ x.name !=NULL

 →AddAttribute (“name”, idwin, idwin) ٨ AddAttribute (“id”, idwin, idwin)
∀ x ∈ TH

0 : x = iframe ٨ x.src !=NULL →AddAttribute (idwin, “targetfile”, x.src)
∀ x ∈ TH

0 : x = iframe ٨ x.width !=NULL →AddAttribute (idwin, “targetfile”, x.width)
∀ x ∈ TH

0 : x = iframe ٨ x.height !=NULL →AddAttribute (idwin, “targetfile”, x.height)
∀ x ∈ TH

0 : x = iframe ٨ x.marginwidth !=NULL
 →AddAttribute (idwin, “windowTopMargin”, x.marginwidth)
∀ x ∈ TH

0 : x = iframe ٨ x.marginheight !=NULL
 →AddAttribute (idwin, “windowLeftMargin”, x.marginheight)
∀ x ∈ TH

0: x = iframe ٨ x.scrolling !=NULL ٨ x.scrolling !=“no”
 →AddAttribute (idwin, “isScrollable”, “true”)
∀ x ∈ TH

0 : x = iframe ٨ x.scrolling !=NULL ٨ x.scrolling =“no”
 →AddAttribute (idwin, “isScrollable”, “false”)
∀ x ∈ TH

0 : x = iframe ٨ x.frameborder !=NULL ٨ x.frameborder !=0
 →AddAttribute (idwin, “borderWidth”, x.frameborder)

G49 - Tree merging

∀ x ∈ to Tt
i
 ,y ∈ Tt

0: x = window ٨ (y=box ٧ y=window) ٨x.filename =y.targetfile
 → CloneNode(x.id, idnew, Tt

0) where idnew =NodeAmount(Tt
0)٨

 RemoveNode(x, x.id) ٨ RemoveArc(ParentNode(x).id, x.id) ٨ z=root(Tt
i) ٨

 Remove Node(z,z.id) ٨ AddArc(y.id, idnew)

∀ x ∈ to Tt

i
 ,y ∈ Tt

0: x = vocalGroup ٨ y=VocalGroup ٨x.filename =y.insertFile
 → CloneNode(x.id, idnew, Tt

0) where idnew =NodeAmount(Tt
0)٨

 RemoveNode(x, x.id) ٨ RemoveArc(ParentNode(x).id, x.id) ٨
 z=root(Tt

i) ٨ Remove Node(z,z.id) ٨
 AddArc(y.id, idnew)

This last operation (upper part) copies the different windows (corresponding to
different HTML files) into the tree Tt

0, and empties the trees Tt
i. The output of

this last step is one tree containing several windows and a set of empty trees. For
VoiceXML, this tree merging operation copies an entire tree (TT

i) into the tree
possessing the insertFile attribute (TT

0). The subdialog node has a simpler
processing: when it has been detected, it is transformed into a vocalGroup (see
group rules G31) and the target file is appended to this vocalGroup.

Appendix C

309

Intra-tree rules

These mappings occur after all the inter-graph and multiple-trees operation. These
rules represent the correction of the produced tree (model), transformation of
some elements (e.g. the change of imageComponents into textComponents, or the
transformation of set of radioButtons in a ComboBox, …) or the recovery of the
orignal layout of the UI by reorganizing the boxes.

G50-Cleaning of the target tree

∀ x ∈ Tt : x = Box ٨ x.isLeaf→RemoveNode (“box”, x.id) ٨ RemoveArc (parentNode(x), x)
∀ x ∈ Tt : x = window ٧ x=vocalGroup →RemoveAttribute (x.id,“filename”)
∀ x ∈ Tt : x.path !=NULL →RemoveAttribute (x.id,“path”)
∀ x ∈ Tt : x = box ٨ x.targetfile !=NULL →RemoveAttribute (x.id,“targetfile”)
∀ x ∈ Tt : x = vocalGroup ٨ x.insertfile !=NULL →RemoveAttribute(x.id, “insertFile”)
∀ x ∈ Tt : x = vocalGroup ٨ x.isLeaf
 →RemoveNode (“vocalGroup”, x.id) ٨ RemoveArc (parentNode(x), x)

G51-Reverse Engineering options

Following the options selected by the user/tool, several transformations are
applied after the construction of the target tree. Some examples are given here to
illustrate these transformations.

►Transform images into text
∀ x ∈ TT: x=“ImageComponent” → ModifyNode (x,“textComponent”, x.id, x.id)
∀ x ∈ TT: x=“ImageComponent” ٨ y=itro (x) ٨ y.alt !=NULL
 → ModifyAttribute (x.id, “defaultContent”, “defaultContent”, y.alt)
Faire un fo attribut nettoyé ensuite
∀ x ∈ TT: x=“ImageComponent” ٨ y=itro (x) ٨ y.alt =NULL
 → ModifyAttribute (x.id, “defaultContent”, “defaultContent”, “Image”)
∀ x ∈ TT : x = img ٨ x.imageHeight !=NULL→ RemoveAttribute (x.id, “imageHeight”,)
∀ x ∈ TT : x = img ٨ x.imageWidth !=NULL → RemoveAttribute (x.id, “imageWidth”)
∀ x ∈ TT : x = img ٨ x.borderWidth !=NULL → RemoveAttribute (x.id, “borderWidth”)
∀ x ∈ TT : x = img ٨ x.imageHorizSpace !=NULL
 → RemoveAttribute (x.id, “imageHorizSpace”)
∀ x ∈ TT : x = img ٨ x.imageVertSpace != NULL → RemoveAttribute (x.id, “imageVertSpace”)

►Folding of consecutive labels (textcomponents)
∀ x ∈ Tt: x=“textComponent”, y=rigthSibling(x) ٨ y= “textComponent” ٨
x.defaultContent!=NULL ٨ y.defaultContent!=NULL ٨ x.hyperLinkTarget =NULL ٨
y.hyperLinkTarget =NULL → ModifyAttribute (x.id, “defaultContent”, “defaultContent”,

Appendix C

310

x.defaultContent + y.defaultContent) ٨ RemoveNode (“textComponent”, y.id) ٨ RemoveArc
(parentNode(y),y.id)

►Transform Radio Buttons into a drop down listbox
∀ x0...xn ∈ Tt: x0 … xn=“radio” ٨ x0.groupName=…= xn.groupname
→AddNode(“comboBox”,comboid) where comboid =NodeAmount(Tt)
٨ ModifyArc(ParentNode(x0), x0, comboid)
٨ AddAttribute (comboid, “id”, comboid)
٨ AddAttribute (comboid, “name”, comboid)
٨ AddAttribute (comboid, “isEnabled”, “true”)
٨ AddAttribute (comboid, “isEditable”, “false”)
٨ AddAttribute (comboid, “isVisible”, “true”)
٨ AddAttribute (comboid, “isDropDown”, “true”)
٨ z0=CloneNode(x0.id, idnew)… zn=CloneNode(xn.id, idnew+n) where idnew=NodeAmount(Tt

0)
٨ RemoveNode(“radio”, x0.id) … RemoveNode(“radio”, xn.id)
٨ RemoveArc (parentNode(x0).id, x0.id) ٨ RemoveArc (parentNode(xn).id, xn.id)
٨ ModifyNode(“radio”, “item”, z0.id, z0.id)… ModifyNode(“radio”, “item”, zn.id, zn.id)
٨ RemoveAttribute(z0, “groupName”)… RemoveAttribute(zn, “groupName”)
٨ RemoveAttribute(z0, “defaultState”)… RemoveAttribute(zn, “defaultState”)
٨ AddArc (comboid,z0.id) … AddArc (comboid,zn.id)

►Remove Images with a surface bigger than 800 pixels
∀ y ∈ Tt: y=“ImageComponent” ٨ ((y.imageHeight) x (y.ImageWidth) >800)→ RemoveNode
(y, y.id) ٨ RemoveArc (parentNode(y),y).

G52- Layout recovery

The layout recovery rules are applied in sequence. The process is divided into five
steps and advances one step further when the rule(s) of one step cannot be
applied (anymore) to the target tree. This process uses the br tags - recorded
during the inter-tree transformations - to divide the user interface into boxes. The
principle of the algorithm is to add a vertical box containing several horizontal
boxes when a br tag is found in the target tree. Adding these nested boxes allows
representing the different lines of the UI. A br node in HTML adds a blank line in
the UI and therefore, elements before and after the br are put on different lines,
which is represented in UsiXML by putting them into two different horizontal
boxes, horizontal boxes that are put themselves into a vertical box.

Example: <vertical box>

 <text/>
 <horizontal box><text/></hb>

 <input/><text/>
 IS DERIVED AS <horizontal box><input/><text/></hb>

 <input/><image/> <horizontal box><input/><image/></hb>

 </vb>

Appendix C

311

STEP 1
In this step, every br node that has siblings on its right (i.e. after the the br node) is
renammed into a bix node and the other br nodes (without right siblings) are
removed from the tree.
∀ x,y ∈ Tt: y=br ٨ x=parentNode(y) ٨ rigthSibling(y)!=NULL → RemoveNode (y, y.id) ٨ z=
ConstrBox (“bix”; “horizontal”, idbix) where idbix =∑ node ∈ Tt ٨ ModifyArc (x.id, y.id, idbix)
∀ x,y ∈ Tt: y=br ٨ x=parentNode(y) ٨ rigthSibling(y)=NULL → RemoveNode (y, y.id) ٨
RemoveArc (x,y).

STEP 2
In this step, every sibling on the right of a bix node is appended as child of the bix
(except for table, cell, box or another bix).
∀ x ∈ Tt: x=bix ٨ ((rigthSibling(x)!=table ٧ rigthSibling(x)!=bix ٧ rigthSibling(x)!=cell ٧
rigthSibling(x)!=box) ٨ rigthSibling(x)!=NULL) →CloneNode (rightSibling(x).id, idnew) ٨
RemoveNode (rightSibling(x), rightSibling(x).id) ٨ RemoveArc (ParentNode(rightSibling(x)),
rightSibling(x)) ٨ AddArc(x.id, idnew) where idnew =∑ node ∈ Tt

STEP 3
A vertical box is created as a first child for each parent node of bix nodes. All the
children of this node (parent of the bix) are moved as children of the new vertical
box. This vertical box (renamed bux to differentiate it from a “normal” box) will
contain every siblings of the bix node including the bix node.
∀ x ∈ Tt: x=bix ٨ parentNode(x) != “bux” → ConstrBox (“bux”, “ vertical”, idbox) where idbox
= ∑ node ∈ Tt ٨ (∀ zi ∈ childNodes(parentNode(x)), CloneNode (zi.id, idnew) ٨ RemoveNode
(zi, zi.id) ٨ RemoveArc (ParentNode(x).id, zi.id) ٨ AddArc(idbox, idnew) where idnew=∑ node
∈ Tt)

STEP 4
The vertical boxes created in the last step are divided into horizontal boxes to
represent the different lines composing the UI. The children of buxes are scanned
and for this step, 3 cases can occur:
1. This is the first child and it is not a bix. An horizontal box is created and this

(first) element and is appended as its child.
2. This is a bix element. Nothing happens as the elements following the bix are

already put on a lower level of hierarchy.
3. This node is not in the 2 first categories, and the element is appended to the

previous horizontal box (the previous arc is removed and replace by a new arc
representing this change in the hierarchy).

Appendix C

312

∀ x ∈ Tt: parentNode(x)= “bux” ٨ (leftSibling(x)=NULL) ٨ x!=bax ٨ x!=bix
→ ConstrBox(“bax”, “horizontal”, idbox) ٨ CloneNode (x.id, idnew) ٨ RemoveNode (x,x.id) ٨
RemoveArc (ParentNode(x).id, x.id) ٨ AddArc(parentNode(x), idbox) ٨ AddArc(idbox, idnew)
where idbox,idnew =∑ node ∈ Tt

∀ x ∈ Tt: parentNode(x)= “bux” ٨ (leftSibling(x) !=NULL٨ leftSibling(x) !=“bix”) ٨ x!=bax ٨
x!=bix → y=leftSibling(x), RemoveArc(parentNode(x).id,x.id) ٨ AddArc(y.id,x.id)

STEP 5
Cleaning of the target tree. The buxes (vertical boxes), baxes and bixes(horizontal
boxes) are renamed into boxes.
∀ x ∈ Tt: x=“bix” → ModifyNode(x,x.id, “box”, x.id)
∀ x ∈ Tt: x=“bax” → ModifyNode(x,x.id, “box”, x.id)
∀ x ∈ Tt: x=“bux” → ModifyNode(x,x.id, “box”, x.id)
∀ x ∈ Tt : x = box ٨ x.isLeaf→RemoveNode (“box”, idbox) ٨ RemoveArc (parentNode(x), x)

 G53- Mixed Initiative

This set of rules transforms a vocalGroupInit element belonging to the target tree
into a “normal” vocalGroup, and puts the rest of the form into another vocalGroup.
VocalGroupInit elements represent initial elements belonging to mixed-initiative
forms from the voiceXML file. These initial elements are processed first, before
the rest of the form. The “-init” is added to the element’s name to be processed a
second time (in G53) after the entire tree has been parsed. Step 1 creates a new
vocalGroup and put all the right-siblings of the vocalGroupInit in this new
vocalGroup, and step 2 modifies the vocalGroupInit name into vocalGroup.

STEP 1
∀ x,y ∈ Tt: x=vocalGroupInit ٨ y=rightSibling(x) ٨ y !=NULL → Addnode
(“vocalGroup”, idvgroup) where idvgroup =NodeAmount(Tt

0)

 → AddAttribute (idvgroup, “id”, idvgroup)
 → AddAttribute (idvgroup, “name”, idvgroup)
 → ModifyArc (ParentNode(y).id, y.id, idvgroup)
 → AddArc (idvgroup,y.id)
∀ x,y ∈ Tt: x=vocalGroupInit ٨ y=rightSibling(x) ٨ y !=NULL ٨ y.id !=idvgroup
 → RemoveArc (ParentNode(y).id, y.id) ٨ AddArc (idvgroup,y.id)

STEP 2
∀ x,y ∈ Tt: x=vocalGroupInit ٨ y=rightSibling(x) ٨ y=vocalGroup ٨ rightSibling(y)=NULL
→ Modifynode (x.id, “vocalGroupInit”, “vocalGroup”, idvgroup)
where idvgroup =NodeAmount(Tt

0)

Appendix C

313

G54 – Pause Transformation

This set of rules transforms a pause element into an AudioAdjacency relation
between the two elements surrounding the pause. After the transformation has
been processed, the pause element is removed from the target tree (step 2).

STEP 1
∀ x,y,z ∈ TV : x = pause , y=leftSibling(x), z=rightSibling(x) → Addnode
(“AudioAdjacency”, idaudadj) where idaudadj =NodeAmount(Tt

0)

∀ x,y,z ∈ TV : x = pause , y=leftSibling(x), z=rightSibling(x) → AddAttribute(idaudadj, “id”,
idaudadj)
 →AddNode(“Source”, idSource) where idSource =NodeAmount(Tt)
 →AddAttribute(idSource, “source”, y.id)
 →AddNode(“Target”, idTarget) where idTarget =NodeAmount(Tt)
 →AddAttribute(idTarget, “target”, z.id)
 →AddArc(0,“1”,idaudadj)
 →AddArc(idaudadj, idSource)
 →AddArc(idaudadj, idTarget)
 →RemoveArc(parentNode(x).id, x.id)
∀ x ∈ TV : x = pause ٨ x.size = “small” → AddAttribute (idaudadj, “delayTime”, “2000”)
∀ x ∈ TV : x = pause ٨ x.size = “medium”→ AddAttribute (idaudadj, “delayTime”, “5000”)
∀ x ∈ TV : x = pause ٨ x.size = “large”→ AddAttribute (idaudadj, “delayTime”, “10000”)
∀ x ∈ TV : x = pause ٨ (x.strength=“x-weak” ٧ x.strength=“weak”)
 → AddAttribute (idaudadj, “delayTime”, “350”)
∀ x ∈ TV : x = pause ٨ x.strength=”medium” → AddAttribute (idaudadj, “delayTime”, “700”)
∀ x ∈ TV : x = pause ٨ (x.strength=”strong” ٧ x.strength=“x-strong”)
 →AddAttribute (idaudadj, “delayTime”, “1000”)
∀ x ∈ TV : x = pause ٨ x.time !=NULL → AddAttribute (idaudadj, “delayTime”, x.time/1000)

STEP2
∀ x ∈ TV : x = pause ٨ parentNode(x)=NULL → RemoveNode(x, x.id)

Appendix D

314

Appendix D
The context model

The WhoAmI (WAI) context recognition system can be exploited to generate
some parts of the context model (see figure D-1). This is completed by the use of
Javascripts, which send back some information about the connected platform,
such as the number of colours or the screensize.
The attributes of the context model expressed in UsiXML and their recognition
method are shown in the following tables. The different attributes of the context
model are displayed in the left part of the table and their corresponding source of
information in the right part.

Remarks:
The environment element can not be detected by WAI, JS nor html code.
The only attribute of the UserStereotype that can be written is the id (=the IP of
the user)
All the elements and attributes from the following tables belong to the Platform
element
JS means information found thanks to a javascript, WAI means information
found thanks to the WhoAmI system

Appendix D

315

SoftwarePlatform
audioInputEncoder : Literal (bag)
CcppAccept : Literal (bag)
CcppAccept-Charset : Literal(bag)
handwritingRecognitionSoftware : Literal (bag)
isJavaEnabled : Boolean
JavaPlatform : Literal (bag)
JVMVersion : Literal (bag)
OSName : Literal
OSVendor : Literal
OSVersion : Literal
speechRecognitionSoftware : Literal (bag)
videoInputEncoder : Literal (bag)

NetworkCharacteristics
capacity : Number
costPerVolume : Literal
costPerTime : Literal

WapCharacteristics
supportedPictogramSet : Literal (bag)
WapDeviceClass : Literal
WmlDeckSize : Number
WmlScriptLibraries : Literal (bag)
WmlScriptVersion : Literal (bag)
WmlVersion : Literal (bag)

BrowserUA
browserName : Literal
browserVersion : Literal
isFramesCapable : Boolean
HtmlVersion : Literal
isJavaAppletEnabled : Boolean
isJavaScriptEnabled : Boolean
JavaScriptVersion : Literal
isTablesCapable : Boolean
XhtmlVersion : Literal
XhtmlModules : Literal

HardwarePlatform
category : Literal
isColorCapable : Boolean
CPU : Literal
isImageCapable : Boolean
inputCharSet : Literal (bag)
keyboard : Literal
model : Literal
numberOfColours : Number
numberOfGrayScale : Number
numberOfSoftKeys : Number
outputCharSet : Literal (bag)
pointingDevice : Literal
pointingResolution : Literal
screenSize : Dimension
screenSizeChar : Dimension
isSoundOutputCapable : Boolean
storageCapacity : Literal
isTextInputCapable : Boolean
is touchScreen : Boolean
vendor : Literal
isVoiceInputCapable : Boolean
platformID : string
platformName : string

contextModel

Environment
type : string
id : string
name : string
isNoisy : boolean
lightingLevel : string
isStressing : boolean

userStereotype
id : string
stereotypeName : string
taskExperience : string
systemExperience : string
deviceExperience : string
taskMotivation : string

0..n

0..1

0..n

0..1
Platform

id : string
name : string 0..n

0..1

0..n

0..1

0..n

1..n

0..n

1..n

0..n

1..n

0..n

1..n

0..n

1..n

0..n

1..n

0..n

1..n

0..n

1..n

0..n

1..n

0..n

1..n

context
id : string
name : string

1..n
1..n
1..n
1..n

0..1

1..n

0..1

1..n

0..1

1..n

0..1

1..n

0..1

1..n

0..1

1..n

Fig. D-1 The context model

Hardware Platform
Category Is deduced from the JS and WAI information
IsColorCapable True if NumberOfColours>2
NumberOfColours JS-Math.pow (2,document.form.colordepth.value)
ScreenSize JS- screen.height x screen.width
PlatformID JS - document.form.platform.value
PlatformName JS - document.form.platform.value

Software Platform
isJavaEnabled JS - navigator.javaEnabled()
OSName JS- navigator.appVersion.indexOf / WAI
OSVersion JS – parse navigator.appVersion / WAI

Appendix D

316

Platform
Id WAI-useradress+userip
Name WAI-useradress+userip

BrowserUA
BrowserName JS-navigator.userAgent.indexof /WAI
BrowserVersion JS-substr(navigator.userAgent.indexof,8) / WAI
JavascriptVersion JS-complex script/WAI
isJavascriptCapable JS-complex script/WAI
isFrameCapable JS-complex script/WAI
isJavaAppletEnabled JS - navigator.javaEnabled()/WAI

Appendix E

317

Appendix E
UsiXML compliant tools

Different tools exist for the generation of UI code based on a UsiXML
specification (see http://www.usixml.org for a complete list). Some of them are
presented in this appendix.
Teresa is developed at ISTI-CNR and supports the generation of XHTML,
VoiceXML and WML starting from a task model, an abstract or concrete UI
model expressed in TeresaXML or a concrete UI specified in UsiXML.
The tool (see figure E-1) follows a task-based approach for the generation of UI
for multiple devices [Mor03]. The tool gives the possibility to import UI
descriptions at the concrete or abstract UI levels, or to generate a UI starting from
a task model. The abstract and concrete UI entered as inputs are expressed in
TeresaXML, but the tool also accept UsiXML specifications (which are then
translated into TeresaXML). The output of this tool is a FUI for mobile phones,
desktop computers or a vocal UI (in VoiceXML).

Appendix E

318

Figure E-1 The generation of Uis with Teresa

The process of generation is decomposed into four parts:
1) The creation of a unique task model. For each task, the designer specifies the
interaction objects needed to accomplish the task, and the platforms on which the
task is available.
2) A separate task model is then automatically generated for each platform.
3) Based on this task model, an abstract UI is then created for each platform, by
identifying the enabled task sets [Pat02] (tasks that are enabled at the same time)
and the interactors needed to fulfil the tasks.
4) The final UI code is generated. The user has the freedom to modify the
heuristics and models at each step of the process to fine tune the UI.

Another tool, Grafixml (http://www.UsiXML.org/index.php?page=grafixml.
xml), is currently developed at Louvain. With this tool, the designer can draw in
direct manipulation any graphical UI by directly placing CIOs and editing their
properties in a property sheet.
This tool allows users to draw a concrete UI and then automatically generate
UsiXML code from the graphical representation (figure E-2) or to produce an UI
in XHTML, XUL or Java from a UsiXML specification.

A third tool, TransformiXML, applies graph transformations contained in graph
grammars to perform transformations of UsiXML-compliant UIs to produce a
new UI specification. Such transformation can occur between any level (task and

Appendix E

319

domain, abstract user interface, concrete user interface) to support forward
engineering, reverse engineering, middle-out approach, adaptation, and the wide
spreading approach. The tool allows managing a development library (a library
containing a catalog of transformation rules)

Fig. E-2 GrafiXML

The fourth tool is FlashiXML (see figure E-3). FlashiXML is a rendering engine
of UsiXML-compliant UIs in a vectorial mode that is SVG-compatible. Any
UsiXML-compliant UI can be opened and rendered in this interpreter so as to
create the truly working UIs with presentation and dialog. In this environment,
the UI can be resized at any time to address some constraints imposed by the
computing platforms and to support some properties of Graceful Degradation of
UIs, a sub-property of the Plasticity property.
In this way, any UsiXML-compliant UI can be rendered on any computing
platform equipped with a SVG or Flash plug-in. FlashiXML is developed by
Youri Vanden Berghe in his Master thesis in Computer Science at UCL.

Appendix E

320

Fig E-3 FlashiXML

The last tool presented in annex E, IdealXML (figure E-4) [Mont04], allows the
designer to draw the domain model, the abstract UI model, the task model and
the mappings between these three models graphically. The tool is then able to
generate the UsiXML specification of these descriptions.

Fig. E-4 IdealXML Domain Modeller

321

Appendix F
Validation files

This annex contains URLs of the web pages reverse engineered during the
experiments related to validation (chapter 9).

1. http://www.isys.ucl.ac.be/

2. http://www.google.be/

3. http://www.europa.eu.int

4. http://www.microsoft.com/

5. http://www.euronews.net/create_html.php?page=home

6. http://www.rcost.unisannio.it/wcre2006/calls/cftp.htm

7. http://www.univ-valenciennes.fr

8. http://www.isys.ucl.ac.be/bchi/research/reversi/RevXMLUI.php

9. http://www.chi2006.org/

10. http://www.cnn.com

11. http://www.icp.ucl.ac.be/ICP.html

12. http://www.lesoir.be/rubriques/la_une/page_5682.shtml

13. http://www.thalys.com/

14. http://www.brusselsairport.be/

15. http://www.lodging.com/

16. http://www.fhr.fr/#debut

17. http://www.mediamarkt.be/MM_new/index_fr.php

18. http://www.ing.unlpam.edu.ar/laweb05/

19. http://www.infospace.com/

20. http://today.reuters.fr/news/default.aspx

Appendix G

322

Appendix G

Retargeting rules

This appendix contains retargeting rules designed for the targeted reverse
engineering (or retargeting) of HTML UI towards platforms with limited
capabilities, such as PDAs or mobile phones.
The rules are classified by source elements with the possible transformations in
the target model on the right part of tables. Some rules at the model level are
given at the end of this appendix.

Keep the image
Replace by alternative text
Convert in simplified image
Create a link to the image
Convert in .WBMP
Suppress images with a height greater than x and a width greater
than y pixels

Images

Suppress images having a file size smaller than x bytes
(positioning images)

Keep links
Transform into a button

Text Links

Keep only links that are internal to the site

Appendix G

323

Suppress download link (having an extension different of .htm,
.php, .asp, .html, .cfm, jsp …)
Suppress colour attributes for links

Keep/suppress all marquees
Suppress marquees longer than x character

Marquees

Transform into a static label

Keep table
Transform into a list
Transform into a paragraph
Keep only table with a border greater than 0 pixels

Tables

Remove every table

Keep all properties
Transform colours in monochrome
Transformer en system-character sets
Transform size attributes into WAP size attributes
Transformer every size in standard size
Transform text into links giving access to the text when label size
is superior to x pixels
Suppress style attributes such as isBold, isItalic…
Convert header labels in underlined and bold labels

Labels

Suppress margin of labels

Keep/suppress the image-link
Transform into a button (alternative text becomes the label of the
of the button, if it is not present, the targeted page)
Keep only if the links is internal to the website and not a
download link
Transform into a text-link (alternative text becomes the label of
the of the text-link, if it is not present, the targeted page)
Convert image into the .WBMP
Convert in image with less colors
Suppress borders

Image Link

Put a condition of the preceding retargeting operations if if the
image has a height greater than x and a width greater than y pixels

Appendix G

324

Keep/suppress all image-maps
Convert into a list of links
Convert into a list of links but keep the image next to these links.
Tansform image maps containing one link into an image-link
Suppress links external to the website and/or a download link

Image
Maps

Convert in a list of links accessible through another link if there are
more than x links in the image map.

Create Container
Transform into a label composed of – (indent)

Horizontal
Rules

Keep/ Suppress horizontal rules

Keep / suppress multi-line edit boxes
Transform in to single-line edit box

Multi-line
edit box

Add link that give access to the multi line edit box on another
page if size is biger than x rows and y columns.

Keep / suppress radio button
Convert into drop down lisbox (combobox)

RadioButtons

Convert into drop down listbox if the number of radio buttons is
greater than x elements

Keep / Suppress checkboxes
Convert into drop down lisbox (combobox)

CheckBoxes

Convert into drop down listbox if the number of checkbox is
greater than x elements

Keep as label
Convert in a label with the following style properties (choose:
bold, italic, underlined…)

Adresses

Suppress all the addresses

Convert into separate linked windows
Keep/Suppress Frames

Frames

Keep only frames containing links

Appendix G

325

Keep/Suppress these elements Auditory

component Add link giving access to the sound

At the model level
These operations are not related to a specific element, but to a group of elements
or the entire structure of the produced model.
- Remove all colours
- Remove all styles
- Set maximum number of element per window
- Set a maximum level of hierarchy (for example WML accepts only 9 levels of
hierarchy, cHTML 4 levels)
- Split models longer than x elements into two models and add navigation
- Split specifications longer than x elements in different specifications

Appendix H

326

Appendix H
Examples

H-1 Example of a reverse engineering with Vaquita

This small excerpt of UI comes from the CHI 2001 registration form (Fig.H-1).

3 drop down list boxes

Radio button

Table
Extended
edit box Edit box

Figure H-1 An excerpt of the CHI 2001 registration form

The corresponding XIML code produced by Vaquita is shown below. The code
has been edited after the reverse engineering in order to add semantic relations
between elements and name of presentation elements have been modified to be
more explicit. Some comments are also given in the XIML code.

<PRESENTATION_ELEMENT ID=”ChooseWayLabel”>
<NAME>Choose way of paying Label</NAME> <FEATURES>
<ATTRIBUTE_STATEMENT DEFINITION="AIOLabelString">
Please choose one of these ways of paying for your
order. <ATTRIBUTE_STATEMENT>
<RELATION_STATEMENT DEFINITION="Label_describes"
REFERENCE="CreditPayTable">((1))
<ATTRIBUTE_STATEMENT DEFINITION="AIOLabelPosition">Top</ATTRIBUTE_STATEMENT>
</RELATION_STATEMENT> </FEATURES> </PRESENTATION_ELEMENT>

((1)) This first label describes the table allowing the user to give credit card details.
A relation_statement is therefore added in the label specification to record this
semantic link. The relation is set in the attributes of the label (in this manner, the
source is already defined), and the target is given in the attribute reference of the
relation (CrediPayTable). The relation also possesses an attribute, AIOLabelPosition
set to top, as the label is positioned on top the table that it describes.
<PRESENTATION_ELEMENT ID="PHdirectRadioBt">((2))
<NAME>Pay by credit card Radio Button</NAME><FEATURES>
<ATTRIBUTE_STATEMENT DEFINITION="RadioBtDefaultState">checked
</ATTRIBUTE_STATEMENT>
<ATTRIBUTE_STATEMENT DEFINITION="RadioBtNumber">2</ATTRIBUTE_STATEMENT>

Appendix H

327

</FEATURES></PRESENTATION_ELEMENT>

((2)) Specification of the first radio button (the other one is not visible on this
excerpt). This element possesses two attributes derived from the HTML code (see
table 5-2), the number of radioButtons with the same name (2 in this case) and the
fact that it is selected by default.
<PRESENTATION_ELEMENT ID=”PayCreditLabel”> ((3))
<NAME>Pay by credit card Label</NAME><FEATURES>
<RELATION_STATEMENT DEFINITION="Label_describes" REFERENCE="PHDirectRadioBt">
<ATTRIBUTE_STATEMENT DEFINITION="AIOLabelPosition">Right</ATTRIBUTE_STATEMENT>
</RELATION_STATEMENT>
<RELATION_STATEMENT DEFINITION="Label_describes" REFERENCE="CreditPayTable">
<ATTRIBUTE_STATEMENT DEFINITION="AIOLabelPosition">Left</ATTRIBUTE_STATEMENT>
</RELATION_STATEMENT>
<ATTRIBUTE_STATEMENT DEFINITION="AIOLabelString">
Pay by credit card through the Internet. </ATTRIBUTE_STATEMENT> </FEATURES>
</PRESENTATION_ELEMENT>

((3))This label is the text that describes the radio button((2)). Therefore, a relation
of the type label describes is defined between the label and the radio button. The
position of the label compared to the radio button is right. Another relation is
added between the label and the table allowing giving credit card details, but with
attribute AIOLabelPosition set to left in this second case.
<PRESENTATION_ELEMENT ID=”CreditPayTable”> ((4))
<NAME>Pay by Credit Card Table</NAME> <FEATURES>
<ATTRIBUTE_STATEMENT DEFINITION="AIOTableRow">4</ATTRIBUTE_STATEMENT>
<ATTRIBUTE_STATEMENT DEFINITION="AIOTableCol">2</ATTRIBUTE_STATEMENT>
<ATTRIBUTE_STATEMENT DEFINITION="AIOTableBorder">2</ATTRIBUTE_STATEMENT>
<ATTRIBUTE_STATEMENT DEFINITION="AIOTablePosition">left</ATTRIBUTE_STATEMENT>
</FEATURES>

((4))This element represents the table on the right part of figure 5-6. It possesses
four attributes: the two first attributes are computed (counting of the number of
columns and rows) and the third is the table border width expressed in pixels. As
the table is defined with the align attribute set to left, this information is kept in
the model (in the AIOTablePosition), but this is the only type of information about
the layout that is reverse engineered in Vaquita.
<PRESENTATION_ELEMENT ID=”CPTable_Row1”> ((5))
<Name> First row of Pay by Credit Card Table </NAME>

((5)) The table structure is kept in the UsiXML specification, as the border of the
table is greater than 0 pixel.
<PRESENTATION_ELEMENT ID=”CPTable_Cell1_1”>
<NAME> First Cell </NAME>
<PRESENTATION_ELEMENT ID=”CreditTypeLabel”>
<NAME>Type of credit card Label</NAME> <FEATURES>
<ATTRIBUTE_STATEMENT DEFINITION="AIOLabelString">
Credit Card Type </ATTRIBUTE_STATEMENT></FEATURES>
</PRESENTATION_ELEMENT>
</PRESENTATION_ELEMENT>
<PRESENTATION_ELEMENT ID=”CPTable_Cell1_2”>
<NAME>Second Cell </NAME>
<PRESENTATION_ELEMENT ID="PayCcTypeDropDownListBox"> ((6))
<NAME>Credit card type Selection List</NAME> <FEATURES>
<ATTRIBUTE_STATEMENT DEFINITION="AIODLBListItem">Visa</ATTRIBUTE_STATEMENT>
<ATTRIBUTE_STATEMENT DEFINITION="AIODLBListItem">
Mastercard </ATTRIBUTE_STATEMENT>

Appendix H

328

<ATTRIBUTE_STATEMENT DEFINITION="AIODLBListItem">American
Express</ATTRIBUTE_STATEMENT>
<ATTRIBUTE_STATEMENT DEFINITION="AIODLBItemSel”>Visa</ATTRIBUTE_STATEMENT>
</FEATURES></PRESENTATION_ELEMENT>

((6)) The select tag is translated by a drowdownlistbox. Its attributes AIODLBListItem
are the various items that can be selected in the drowdownlistbox. The choice that
is selected by default is specified in the AIODLBItemSel attribute.
</PRESENTATION_ELEMENT></PRESENTATION_ELEMENT>
<PRESENTATION_ELEMENT ID=”CPTable_Row2”>
<Name>Second row of Pay by Credit Card Table </NAME>
<PRESENTATION_ELEMENT ID=”CPTable_Cell2_1”>
<NAME> First Cell </NAME>
<PRESENTATION_ELEMENT ID=”NbrCreditLabel”>
<NAME>credit card Number Label</NAME> <FEATURES>
<ATTRIBUTE_STATEMENT DEFINITION="AIOLabelString">
Credit Card Number<ATTRIBUTE_STATEMENT> ((7))
</FEATURES></PRESENTATION_ELEMENT>

((7))This label should be linked to its corresponding edit box (located in next cell),
but as these presentation elements are contained in a table, the relation is not
added because this information is already given by the table structure.
</PRESENTATION_ELEMENT>
<PRESENTATION_ELEMENT ID=”CPTable_Cell2_2”
<NAME>Second Cell </NAME>
<PRESENTATION_ELEMENT ID=”PayCcNumTextBox”> ((8))
<NAME>Credit Card Number textbox</NAME> <FEATURES>
<ATTRIBUTE_STATEMENT DEFINITION="AIOEDXSize">25</ATTRIBUTE_STATEMENT>
</FEATURES> </PRESENTATION_ELEMENT>

((8)) this presentation element represents the input node that asks the user to give
its credit card number. It possesses only one attribute, AIOEDXSize, which
indicates maximum length of the input (expressed in number of characters).
</PRESENTATION_ELEMENT> </PRESENTATION_ELEMENT>
<PRESENTATION_ELEMENT ID=”CPTable_Row3”>
<Name>Third row of Pay by Credit Card Table </NAME>
<PRESENTATION_ELEMENT ID=”CPTable_Cell3_1”>
<NAME> First Cell </NAME>
<PRESENTATION_ELEMENT ID=”ExpirCreditLabel”>
<NAME>Expiration date of the credit card Label</NAME> <FEATURES>
<ATTRIBUTE_STATEMENT DEFINITION="AIOLabelString">
Expiration Date: </ATTRIBUTE_STATEMENT>
</FEATURES></PRESENTATION_ELEMENT>
</PRESENTATION_ELEMENT>
<PRESENTATION_ELEMENT ID=”CPTable_Cell3_2”> ((9))
<NAME>Second Cell </NAME>
<PRESENTATION_ELEMENT ID="CcXMonthDropDownListBox">
<NAME>Expiration of CC - Month Selection List</NAME> <FEATURES>
<ATTRIBUTE_STATEMENT DEFINITION="AIODLBListItem">
Jan.</ATTRIBUTE_STATEMENT>
<ATTRIBUTE_STATEMENT DEFINITION="AIODLBListItem">Feb.</ATTRIBUTE_STATEMENT>
<ATTRIBUTE_STATEMENT DEFINITION="AIODLBListItem">Mar.</ATTRIBUTE_STATEMENT>...
<ATTRIBUTE_STATEMENT DEFINITION="AIODLBItemSel”>Jan.</ATTRIBUTE_STATEMENT>
</FEATURES></PRESENTATION_ELEMENT>

((9)) This cell contains the two drop down list boxes allowing the user to select the
expiration date of the credit card.
<PRESENTATION_ELEMENT ID="CcXYearDropDownListBox">
<NAME> Expiration of CC – Year Selection List</NAME> <FEATURES>
<ATTRIBUTE_STATEMENT DEFINITION="AIODLBListItem">
2000</ATTRIBUTE_STATEMENT>

Appendix H

329

<ATTRIBUTE_STATEMENT DEFINITION="AIODLBListItem">2001</ATTRIBUTE_STATEMENT>
<ATTRIBUTE_STATEMENT DEFINITION="AIODLBListItem">2002</ATTRIBUTE_STATEMENT>
<ATTRIBUTE_STATEMENT DEFINITION="AIODLBItemSel”>2000</ATTRIBUTE_STATEMENT>
</FEATURES></PRESENTATION_ELEMENT> </PRESENTATION_ELEMENT>
</PRESENTATION_ELEMENT>
<PRESENTATION_ELEMENT ID=”CPTable_Row4”>
<Name>Fourth row of Pay by Credit Card Table </NAME>
<PRESENTATION_ELEMENT ID=”CPTable_Cell4_1”>
<NAME> First Cell </NAME>
<PRESENTATION_ELEMENT ID=”NACreditLabel”>
<NAME>Name and address of the owner of the credit card Label</NAME> <FEATURES>
<ATTRIBUTE_STATEMENT DEFINITION="AIOLabelString">
Name and address of cardholder (if different from registrant info)
</ATTRIBUTE_STATEMENT></FEATURES></PRESENTATION_ELEMENT>
</PRESENTATION_ELEMENT>
<PRESENTATION_ELEMENT ID=”CPTable_Cell4_2”
<NAME>Second Cell </NAME>
<PRESENTATION_ELEMENT ID=”PayCCNameEDM”> ((10))
<NAME>Multi-line textbox for the name of the cardholder</NAME> <FEATURES>
<ATTRIBUTE_STATEMENT DEFINITION="AIOEDMCol">25</ATTRIBUTE_STATEMENT>
<ATTRIBUTE_STATEMENT DEFINITION="AIOEdMRow">3</ATTRIBUTE_STATEMENT>
</FEATURES></PRESENTATION_ELEMENT>
</PRESENTATION_ELEMENT></PRESENTATION_ELEMENT></PRESENTATION_ELEMENT>

 ((10))The PayCCNameEDM represents the textarea tag from the HTML code. It is
translated by an extended edit box (see table 5-3) and possesses 2 attributes
defining its vertical and horizontal size (AIOEDMCol and AIOEdMRow expressed in
number of characters).

Appendix H

330

H-2 Example of reverse engineering of WML

The first example is the reverse engineering of the yahoo weather service. The UI
of this WML page is shown on figure H-2 in two different browsers.

Figure H-2 Yahoo mobile weather service

Figure H-2 represents a weather report application. The user has eight options, to
choose the first character of the city in which the user is interested. When he has
done his selection, he can choose to validate his choice by pushing on the ok
button-link, or he can still navigate in this WML site. The WML code is shown on
table H-1 (left) so as its corresponding CUI specification (right). Some comments
about the code and the UsiXML specification are given below the table.

WML
<wml><head>
<meta http-equiv="Cache-Control"
content="max-age=0"
forua="true"/>
</head>
<template> ((1))
<do type="prev"
label="BACK"><prev/></do>
</template>
<card id="c1" title="Y!
Weather">((2))
<do type="accept" label="OK">
<go href="/raw?XL=Idv13w&J4X
=g&F1d=$(let)&IM=&JY
MRdvo=&JRdv=&sd=L8vwdMP"
/>((3))
</do>
<p> Pick State in
<select name="let">
<option title="OK" >Enter

UsiXML
<CuiModel xmlns="http://www.UsiXML.org"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
<window id="window_1" borderTitle="Y!
Weather" isVisible="true" isenabled="true"
name="Y! Weather">
<box id="box_1" isVisible="true"
isEnabled="true">((2))
<textComponent id="textComponent_0"
glueHorizontal="left" isVisible="true"
isEnabled="true" hyperLinkTarget="/raw?XL=
Idv13w&J4X=g&F1d=$(let)&IM=&
JYMRdvo=&JRdv=&sd=L8vwdMP "
defaultContent="OK"/>((3))
<textComponent id="textComponent_1"
glueHorizontal="left" isVisible="true"
isEnabled="true" defaultContent="Pick State
in"/>
<comboBox id="combo_1" isVisible="true"
isEnabled="true" isEditable="false"/>((4))

Appendix H

331

City</option>((4))
<option title="OK" >ABC</option>
<option title="OK" >DEF</option>
<option title="OK" >GHI</option>
<option title="OK" >JKL</option>
<option title="OK" >MNO</option>
<option title="OK" >PQRS
</option>
<option title="OK" >TUV</option>
<option title="OK" >WXYZ
</option>
</select>
</p>
</card>
</wml>

<item id="item_1" defautContent="Enter City"
isVisible="true" isEnabled="true" />
<item id="item_2" defautContent="ABC"
isVisible="true" isEnabled="true" />
<item id="item_3" defautContent="DEF"
isVisible="true" isEnabled="true" />
<item id="item_4" defautContent="GHI"
isVisible="true" isEnabled="true" />
<item id="item_5" defautContent="JKL"
isVisible="true" isEnabled="true" />
<item id="item_6" " defautContent="MNO"
isVisible="true" isEnabled="true" />
<item id="item_7" " defautContent="PQRS"
isVisible="true" isEnabled="true" />
<item id="item_8" " defautContent="TUV"
isVisible="true" isEnabled="true" />
<item id="item_9" " defautContent="WXYZ"
isVisible="true" isEnabled="true" />
</comboBox></box></window>
<graphicalTransition id="textLink_0"
type="open">((5))
<source sourceId="textComponent_0"/>
<target targetId="="/raw?XL=
Idv13w&J4X=g&F1d=$(let)&IM=&
JYMRdvo=&JRdv=&sd=L8vwdMP"/>
</graphicalTransition></CuiModel>

Table H-1 Reverse engineering of Yahoo mobile service

((1)) The template node is not recovered in the UsiXML specification, as all the
conditions of the group of rules G1b are satisfied except one: to have an href
attribute in the <do> node. The template node contains a reference to the
previous visited card (<prev>) but the concept of history can not be represented
in UsiXML.
((2)) The <card> node is translated as a new window. The title attribute of the
card is used twice, once for the name attribute of the window and once for the
borderTitle attribute of the window (set of rule G1b)
((3)) The association of the do and go node are conditions of the set of rules
G21. As the go node possess a href attribute, these two nodes are represented by a
textComponent in the UsiXML specification representing a link to another card. A
graphicalTransition is also added in the CUI model (see remark 5)
((4)) The select tag is translated by a comboBox, as the number of choices is
greater than 6, no multiple selections are allowed and none of the options posses
an onpick attribute. The set of rules G8 and G9 are used to derive this component.
((5)) All the graphicalTransitions are specified at the end of the CUI model. It
means that all the links of the page have to be reported in this section. In this
case, only one link is recovered (as the template tag cannot be recovered). The
source object of this graphicalTransition is specified (textComponent_0) so as its
target (an URL external to the deck).

Appendix H

332

The next example is the reverse engineering of the wordaholic’s mobile games
(see two representation on different browsers of the WML UI in figure H-3). The
user has again three choices, but this time the choices results are not sent back to
the server, but give an access to another card. On the left part of figure H-3, the
choices are represented as a listbox while on the other side, they are already
represented as links. The code of the WML card and the CUI model are given in
table H-2.

Figure H-3 WAP’s Wordaholic game

WML
<wml><head> <meta http-
equiv="Cache-Control"
content="max-age=0"
forua="true"/>
</head>
<card title="Wordaholic">
<p align="center">
Wordaholic(tm)
</p>((1))
<p align="left"
mode="nowrap">
<select title="options">
<option
onpick="href1">Play
Now</option>((2))
<option
onpick="href2">High
Scores</option>
<option
onpick="href3">Rules
</option>
</p>
</card>

UsiXML
<CuiModel xmlns="http://www.UsiXML.org"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
<window id="window_1" borderTitle="Wordaholic"
isVisible="true" isEnabled="true"
name="Wordaholic">
<box id="box_1" isVisible="true" isEnabled="true">
<textComponent id="textComponent_1"
glueHorizontal="center" isVisible="true"
isEnabled="true" isBold="true"
defaultContent="Wordaholic(tm)"/> ((1))
<textComponent id="textComponent_2" ((2))
glueHorizontal="left" isVisible="true"
isEnabled="true" defaultHyperLinkTarget="href1"
defaultContent="Play Now"/>
<textComponent id="textComponent_3"
glueHorizontal="left" isVisible="true"
isEnabled="true" defaultHyperLinkTarget="href2"
defaultContent="High Scores"/>
<textComponent id="textComponent_4"
glueHorizontal="left" isVisible="true"
isEnabled="true" defaultHyperLinkTarget="href3"
defaultContent="Rules"/>

Appendix H

333

</wml> </box> </window>
<graphicalTransition id="textLink_1"
type="open"><source sourceId="textComponent_2"/>
<target targetId="href1"/>
</graphicalTransition> ((3))… </CuiModel>

Table H-2 Reverse engineering of Wap’s Wordaholic game

((1)) The “wordaholic (tm)” label is embedded in a node, and is therefore
represented as textComponent with the attribute isbold set to true in the UsiXML
specification (rule set G17).
((2)) As in the previous example, a select node is specified in the WML code.
Here the rule G9d is applied, as the the options depending on this select node
posses an onpick attribute. Therefore they are derived into textComponents with an
hyperLinkTarget attribute set at the same value as in the onpick attribute.
((3)) A set of graphicalTransition are also added at the end of the model, where
each option’s id is specified as the source and the corresponding value of their
onpick attribute as the target of the transition.

Appendix H

334

H-3 Example of reverse engineering of VoiceXML

As no forward engineering UsiXML-based tools for vocal languages exist, this
example section will only be dedicated to the reverse engineering of VoiceXML
examples.
The first example is a simplified version (duplicated tags representing the same
concept have been removed) of the “virtual poll system” adapted by A.
Stanciulescu in its VoiceXML version.

The following code represents a simple vocal form asking several questions
(name, zip code, age, and some questions about courses) to the user. At the end
of the form, the user is asked if he wants to send the form.

VoiceXML code:
 ((1))<vxml version="2.0" xml:lang="en-US" xmlns="http://www.w3.org/2001/vxml">
 <meta name="GENERATOR" content="Voice Toolkit for WebSphere Studio" />
 ((2))<form id="welcome"> <block> Welcome to the polling system. </block> </form>
 <form id="nameandzipcodeandgender">
 ((3))<record name="rec1" beep="true" maxtime="3s">
 <prompt>Please say your name after the sonor signal</prompt>
 </record>
 <filled><prompt>Your name is: <audio expr="rec1"/></prompt>
 </filled>
 <record name="rec2" beep="true" maxtime="3s">
 <prompt>Please say your zipcode after the sonor signal</prompt>
 </record>
 <filled> <prompt>Your zip code is: <audio expr="rec2"/></prompt>
 </filled>
 </form>
 <form id="age">
 ((4)) <field name="f_age">
 <grammar src="../Virtual%20polling%20system/age.grxml" mode="voice" />
 <prompt>What is your age category?</prompt>
 <filled>Your age category is: <value expr="f_age"/></filled>
 </field>
 <catch event="noinput">
 <prompt>There was no input</prompt> <goto next="#age"/></catch>
<block> Now we can start the questionnaire. Please answer to the following questions.
</block></form>
 <form id="question1">
 <field name="f_q1">
 <grammar src="../Virtual%20polling%20system/answer.grxml" mode="voice" />
 <prompt>Did you enjoy out teaching course?</prompt>
 ((5))<filled>Your answer is: <value expr="f_q1"/></filled>
 </field>

Appendix H

335

 <catch event="noinput">
 <prompt>There was no input</prompt><goto next="#question1"/> </catch>
 </form>
…
 <form id="send_questionnaire">
 <field name="send" type="boolean">
 <prompt> Would you like to send the questionaire?</prompt>
 <filled>
 ((6)) <if cond="" send==true">
 You have choosed to sent the questionnaire.
 <else/> The questionnaire wasn't send.</if>
 </filled>
 <catch event="noinput">
 <prompt>There was no input</prompt>
 ((7))<goto next="#send_questionnaire"/>
 </catch> </field> </form> </vxml>

UsiXML CUI code
…
((1)) <vocalGroup id= “_1” name= “_1”>
((1)) The vxml node is derived into a vocalGroup node by applying the set of rules
G22. The filename attribute added in G22 is deleted after the parsing of the entire
tree (see group of rule G50).
((2)) <vocalForm id= “welcome” name= “welcome”>
<vocalGroup id= “_3” name= “_3”>
<vocalPrompt id= “_4” name= “_4” defaultContent=“Welcome to the polling system.”/>
</vocalGroup></vocalForm>
<vocalForm id= “nameandzipcodeandgender” name= “nameandzipcode”>
((2)) The first form is translated by a vocalForm in the target tree (set of rules
G28). The id of the form is copied in the id and name attributes in the UsiXML
specification.
((3))<vocalPrompt id= “_6” name= “_6” defaultContent=“Please say your name after the
signal”/>
((3))<vocalInput id= “rec1” name= “rec1” elapsedTime=“3s” />
((3)) When the record node has been detected, nothing was added to the UsiXML
specification. The next node is a prompt node that is transformed thanks to the
rule set G35. This rule set checks if the prompt is embedded in a record node (and
not in a field or initial node), and if it is the case, adds a vocalInput node just after
the creation of the vocalPrompt containing the question “Please say your name
after the signal”. The maxtime attribute is mapped in the elapsedTime attribute in
the UsiXML specification. This attribute represents the time the browser will
record the user’s answer.
<vocalPrompt id= “_8” name= “_9” defaultContent= “your name is:”/>
<vocalPrompt id= “_9” name= “_9” defaultContent=“rec1”/>
<vocalPrompt id= “_10” name= “_10” defaultContent=“ Please say your zipcode after the sonor
signal”/>
<vocalInput id= “rec2” name= “rec2” elapsedTime=“3s” />
<vocalPrompt id= “_13” name= “_13” defaultContent= “your zipcode is:”/>

Appendix H

336

<vocalPrompt id= “_14” name= “_14” defaultContent=“rec2”/>
<vocalForm id=“age” name=“age”>
((4))<vocalPrompt id= “_16” name= “_16” defaultContent=“ What is your age category?”/>
((4))<vocalInput id= “f_age” name= “f_age”
grammar=“../Virtual%20polling%20system/age.grxml”/>
((4)) The field node is transformed into a vocalInput (rules set G24). As the field
node possesses a grammar attribute, its value is recorded in the vocalInput’s
grammar attribute. Similarly to the previous commented element, the prompt
contained in the field is processed before the field itself.
<vocalPrompt id= “_18” name= “_18” defaultContent=“Your category is”/>
<vocalPrompt id= “_19” name= “_19” defaultContent=“f_age”/>
<!--optional
<vocalPrompt id= “_20” name= “_20” defaultContent=“There was no input”/>
<vocalNavigation id=“_21” name=“_21” navigationType=“goto” isBridgeable=“false”/> -->
<vocalGroup id=“_22” name=“_22”>
<vocalPrompt id= “_23” name= “_23” defaultContent=“Now we can start the questionnaire.
Please answer to the following questions.”/>
</vocalGroup>
</vocalForm>
<vocalForm id=“question_1” name=“question_1”>
<vocalPrompt id= “_25” name= “_25” defaultContent=“ Did you enjoy out teaching course?”/>
<vocalInput id= “f_q1” name= “f_q1”
grammar=“../Virtual%20polling%20system/answer.grxml” />
<vocalPrompt id= “_27” name= “_27” defaultContent=“Your answer is :”/>
((5))<vocalPrompt id= “_28” name= “_28” defaultContent=“f_q1”/>
</vocalForm>
((5)) The filled element is a conditional element that is not taken into account. It
means that if the preceding field is filled, the content of the filled element is
executed. We can consider this condition as implicit, since the control flow is
blocked when the user is asked to say something. The content of the filled
element is a textnode (rule set G30) and an audio element. The first is translated by
a vocalPrompt with its defaultContent attribute set to “Your answer is:”. The audio
element is transformed into a vocalPrompt too, but as its textnode does not exist,
its expr attribute is used to set the value of the defaultContent attribute: f_q1, which
is a variable name. There is no way to differentiate in UsiXML the defaultContent
attribute representing a textnode or a variable name.
…
<vocalForm id=“send_questionnaire” name=“send_questionnaire”>
<vocalPrompt id= “_35” name= “_35” defaultContent=“Would you like to send the
questionaire?”/>
<vocalInput id= “send” name= “send” grammar=“boolean” />
((6)) <!--optionnal
<vocalPrompt id= “_37” name= “_37” defaultContent=“ You have choosed to sent the
questionnaire.”/>
<vocalPrompt id= “_38” name= “_38” defaultContent=“ The questionnaire wasn't send.”/>
<vocalPrompt id= “_39” name= “_39” defaultContent=“There was no input”/>
((6)) All the nodes here are children of the if tag or the catch tag. As it cannot be
expressed in UsiXML, the children of the if/catch nodes are reverse engineered,

Appendix H

337

but under the form of a comment (between <!-- --> tags). The three textnodes (the
rule applied belongs to the general rules for isolated textnodes) reflecting the
response to the different possibilities are recorded sequentially in the comment.
The designer could reuse them in a future reification but would have to specify
the conditions again.
((7))<vocalNavigation id=“_40” name=“_40” navigationType=“goto” isBridgeable=“false”/>
 -- ></vocalForm> </vocalGroup>
<auditoryTransition type=open id=“_41”>
<source source=“_21”/>
<target target=“age”/>
</auditoryTransition>
((7))<auditoryTransition type=open id=“_42”>
<source source=“_40”/>
<target target=“send_questionnaire”/>
</auditoryTransition>
</cuiModel>
((7)) As for the previous element, this element will be put in comments tags as it
depends on the catch tag. The goto element (rule set G43) is translated by a
vocalNavigation element. The attribute navigationType is set to goto and
isBridgeable attribute is set to false as the current document lose control if the
goto node targets another document. An auditoryTransition is also created at the
bottom of the CUI Model, taking as source the current element’s id (_40) and as
target the id of the element to which the control flow will continue.

The second example comes from [Voic02]. This example shows the case of a
mixed initiative form and represents weather forecasts service. First, an
introductory sentence and an advertisement are played. After that, the user can say
the city and country for which he wants the weather forecast. At that moment, he
can say both in any order. If he doesn’t say anything, the question is asked again.
If the initial question is asked three times without response, the control flow exits
the initial element and the browser asks the questions sequentially (which country
and then which city). At that moment, the user can still answer in any order. A
default case is also defined in the VoiceXML code: if the user answers Paris, the
country is set to France automatically. Finally, the user is asked a confirmation,
and if he confirms his choices, an advertisement is played followed by the forecast
for the chosen city.

VoiceXML code:
 ((1)) …<form id="info_meteo">
 ((1))<grammar src="ville-et-pays.grxml" type="application/srgs+xml"/>
 <block>
 <prompt bargein="false"> Bienvenue sur ce service d'informations météorologiques !
 ((2)) <audio src="http://www.pubs-en-ligne.example.com/wis.wav"/>
 </prompt>
 </block>

Appendix H

338

((3)) <initial name="debut">
 <prompt> Quels sont la ville et le pays dont vous voulez connaître la météo ?
 </prompt>
 <help> Veuiller prononcer le nom de la ville et celui du pays pour lesquels
 vous souhaitez un bulletin météorologique
 </help>
 <noinput count="1"> <reprompt/></noinput>
 <noinput count="2"> <reprompt/>
 <assign name="debut" expr="true"/></noinput>
 </initial>
 ((4))<field name="pays">
 <prompt>Quel pays ?</prompt>
 <help> Veuillez prononcer le nom du pays dont vous voulez connaître la météo.
 </help> </field>
 <field name="ville">
 ((5))<prompt>Veuillez prononcer le nom de la ville située en <value expr="pays"/>
 dont vous voulez connaître la météo.</prompt>
 <help>Veuillez prononcer le nom de la ville dont vous
 voulez connaître la météo.</help>
 <filled>
 <if cond="ville == 'Paris' && pays == undefined">
 <assign name="pays" expr="'France'"/>
 </if> </filled> </field>
 <field name="continuer" modal="true">
 <grammar type="application/srgs+xml" src="/grammars/boolean"/>
 <prompt>Voulez-vous entendre le bulletin météorologique pour
 <value expr="ville"/>, <value expr="pays"/> ?
 </prompt>
 <filled>
 <if cond="continuer">
 ((6)) <prompt bargein="false">
 <audio src="http://www.pubs-en-ligne.example.com/wis2.wav"/>
 </prompt>
 <submit next="/servlet/meteo" namelist="ville pays"/>
 </if>
 <clear namelist="debut ville pays continuer"/>
 </filled> </field></form></vxml>

UsiXML code:
<vocalGroup id= “_1” name= “_1”>
((1))<vocalForm id= “info_meteo” name= “info_meteo” isOrderIndependent=“true”>
<vocalGroup id= “_3” name= “_3”>
((1)) The form element is transformed into a vocalForm (rules G28). The value of
the attribute id is copied into the name and id attributes of the vocalForm. As a
grammar node belongs to the child nodes of the form, an attribute
isOrderIndependent set to true is added to this element (G38).
<vocalPrompt id= “_4” name= “_4” defaultContent=“ Bienvenue sur ce service d'informations
météorologiques !” isInterruptible=“false” />
((2))<vocalPrompt id= “_5” name= “_5” defaultContent=“http://www.pubs-en-
ligne.example.com/wis.wav” isInterruptible=“false”/>

Appendix H

339

((2)) Following the group of rules G34, the audio element is derived into a
vocalPrompt. Its defaultContent contains the value stored in the src attribute (an
URL to a .wav file). As the audio element is a child of a prompt element with its
bargein attribute set to true in the VoiceXML tree, an attribute isInterruptible is
added to the vocalPrompt. Its value is set to false as the user cannot interrupt this
advertisement.
</vocalGroup>
((3))<vocalGroup id= “_24” name= “_24” isOrderIndependent=“true”>
((3)) The initial element initiates the creation of three elements (a vocalGroup(Init),
a vocalPrompt and a vocalInput) as it satifies all the conditions of G27. The first
element created is the VocalGroupInit and it will contain the two other elements in
the target tree. When an initial node is detected, its children are scanned in order
to find a prompt element. This prompt is processed, and a vocalPrompt is created
with the defaultContent attribute set to value of the prompt’s textnode. Then a
vocalInput is created, and as the form it belongs to possesses a grammar, the
vocalInput inherits this grammar and its attribute isOrderIndependent is set to true.
After the entire parsing of the source tree, special rules specific to the target tree
are applied. The set of rules G53 is applied in this case, and transforms a
vocalGroupInit into a “normal” vocalGroup while creating another vocalGroup in
which the rest of the form is put.
<vocalPrompt id= “_7” name= “_7” defaultContent=“Quels sont la ville et le pays dont vous
voulez connaître la météo ?”/>
<vocalInput id= “debut” name= “debut” isOrderIndependent=“true” grammar=“ville-et-
pays.grxml”/>
< !-- <vocalPrompt id= “_9” name= “_9” defaultContent=“Veuillez prononcer le nom de la ville
et celui du pays pour lesquels vous souhaitez un bulletin météorologique”/>
-->
< !-- <vocalPrompt id= “_10” name= “_10” defaultContent=“Quels sont la ville et le pays dont
vous voulez connaître la météo ?”/> -->
< !-- <vocalPrompt id= “_11” name= “_11” defaultContent=“Quels sont la ville et le pays dont
vous voulez connaître la météo ?”/> -->
</vocalGroup>
<vocalGroup id= “_12” name= “_12”>
<vocalPrompt id= “_13” name= “_13” defaultContent=“ Quel pays ?”/>
((4))<vocalInput id= “pays” name= “pays” isOrderIndependent=“true” grammar=“ville-et-
pays.grxml”/>
((4))The element field is transformed into a vocalInput. But as for the previous
remark ((3)), the prompt element is processed first. As the field element does not
have a grammar defined in its child nodes, the grammar for the vocalInput will be
the nearest form’s grammar (G24). The vocalInput also possesses the
isOrderIndependent set to true as it inherits a form grammar.
The vocalInput has been put in an “artificial” vocalGroup, as the form containing
the field has an initial element in its children (see remark ((3)).

Appendix H

340

< !-- <vocalPrompt id= “_15” name= “_15” defaultContent=“ Veuillez prononcer le nom du
pays dont vous voulez connaître la météo.”/> -->
<vocalPrompt id= “_16” name= “_16” defaultContent=“ Veuillez prononcer le nom de la ville
située en dont vous voulez connaître la météo”/>
<vocalInput id= “ville” name= “ville” isOrderIndependent=“true” grammar=“ville-et-
pays.grxml”/>
< !-- <vocalPrompt id= “_18” name= “_18” defaultContent=“ Veuillez prononcer le nom de la
ville dont vous voulez connaître la météo.”/> -->
((5))<vocalPrompt id= “_19” name= “_19” defaultContent=“ Voulez-vous entendre le bulletin
météorologique pour”/>
<vocalInput id= “continuer” name= “continuer” grammar="/grammars/boolean"/>
((5)) This prompt is translated by a vocalPrompt following the rules set G35. The
textnode, composing the defaultContent attribute of the vocalPrompt, contains a
value node that cannot be recovered following the proposed method. Therefore,
the content of the vocalPrompt in the UsiXML specification is not very
meaningfull.
((6))<!-- <vocalPrompt id= “_21” name= “_21”
isInterruptible=“false” defaultContent=“http://www.pubs-en-ligne.example.com/wis2.wav”/>
<vocalNavigation id=“_22” name=“_22” navigationType=“submit” isBridgeable=“false”/> -- >
</vocalGroup> </vocalForm> </vocalGroup>
<!-- <auditoryTransition type=open id=“_23”>
<source source=“_22”/>
<target target=“/servlet/meteo”/>
</auditoryTransition>-->…
 ((6)) All the last nodes of the VoiceXML tree and embedded in an if condition.
Therefore, the sending of the form (the submit node) and the last advertisement
(the audio node) are put into comments in the UsiXML specification.

In this last example, there are several losses due to the reverse engineering method
and output language, as complex control flows can not be represented. In the
resulting UsiXML specification, the user would never reach the inputs “pays” and
“ville” but would stay in the input “début” until he gives a correct answer. Then
he would skip the two next inputs and go to the “continuer” input field.
He would also not be able to send the form and prompts _16 and _19 would be
played incompletely (as they use variables to constitute the sentence). In this case,
the designer should modify the produced model manually (or the reified code) to
correct elements and the structure of the vocal UI.

Appendix H

341

H-4 Example of reverse engineering of .RC files

The UI than has been reverse engineered for this case study is a “find” dialog box
(see fig. H-4). The UI is composed of a comboBox, several checkboxes, two radio
buttons and three buttons.

01:400 DIALOG 30, 73, 275, 84
02:STYLE DS_SETFONT | DS_MODALFRAME | DS_3DLOOK | WS_POPUPWINDOW | WS_DLGFRAME
03:CAPTION "Find"
04:LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
05:FONT 8, "MS Shell Dlg"
06:{
07: LTEXT "Fi&nd what:", -1, 5, 7, 45, 8
08: COMBOBOX 222,50,5,145,50,NOT CBS_SIMPLE|CBS_DROPDOWN| CBS_AUTOHSCROLL
09: AUTOCHECKBOX "Match &whole word only", 232, 5, 22, 120, 10, WS_GROUP
10: AUTOCHECKBOX "Match &case", 233, 5, 34, 130, 10, WS_GROUP
11: AUTOCHECKBOX "Regular &expression", 239, 5, 46, 120, 10, WS_GROUP
12: AUTOCHECKBOX "Wrap aroun&d", 240, 5, 58, 120, 10, WS_GROUP
13: AUTOCHECKBOX "Transform &backslash expressions", 241, 5, 70, 160, 10, WS_GROUP
14: GROUPBOX "Direction", -1, 135, 22, 60, 34, WS_GROUP
15: AUTORADIOBUTTON "&Up", 234, 140, 30, 45, 12, NOT WS_TABSTOP | WS_GROUP
16: AUTORADIOBUTTON "&Down", 235, 140, 42, 45, 12, NOT WS_TABSTOP
17: DEFPUSHBUTTON "&Find Next", 1, 205, 5, 65, 14, WS_GROUP
18: PUSHBUTTON "&Mark All", 245, 205, 23, 65, 14
19: PUSHBUTTON "Cancel", 2, 205, 41, 65, 14
20:}

Figure H-4 Find dialog box resource script

The first excerpt of code reverse engineered is the dialogBox specification,
corresponding to the five first lines of code, which is derived thanks to the rules
described in section 8.3 into:
<dialogBox id=“1” name=“400” defaultContent=“Find” isVisible=“true”
isEnabled=“true” height=“172” width=“423”>
<Box id=“2” name=“2” type=“vertical” isVisible=“true” isEnabled=“true”>

The id is automatically generated and takes the value 1, while the name is
equivalent to the id number of the dialogbox, i.e. 400. The defaultContent value can
be found in the CAPTION element. As nothing is specified in the resource script
to negate the attributes isVisible and isEnabled, they are set to true. Finally, the size
is computed: height is equal to 172 pixels ((84 * 274 / 21 * 8)+35) and width is
equal to 423 pixels ((275*3304/275*8)+10). A vertical box is then appended to the
dialogBox and will contain the rest of the UI specification.

Appendix H

342

The second excerpt analyzed is the derivation of the AUTOCHECKBOX element
on line 10 into a checkBox:
<Box id=“7” name=“7” type=“horizontal” isVisible=“true” isEnabled=“true”>
<checkBox id=“8” name=“239” isVisible=“true” isEnabled=“true”
defaultMnemonic=“c” />
<textComponent id=“9” name=“9” defaultContent=“Match case” isVisible=“true”
isEnabled=“true” textSize=“8” textFont=“Ms Shell Dlg” /> </box>

The name attributes corresponds to the first integer from the line 10, which
represents the identifier of the Windows UI component. The other attributes are
generated automatically, except for the defaultMnemonic attribute: its value is the
character next to the ampersand symbol (c in this case) in the textnode of the
AUTOCHECKBOX. As this textnode is not null, a textComponent is also created and
its defaultContent is set to the AUTOCHECKBOX textnode value without the
ampersand symbol (string parsing functions here are similar to those described in
section 8.3 about radioButtons). TextSize and TexFont attributes are set thanks to
the values defined at the dialog level, in the FONT element (line 5). The detection
of an AUTOCHECKBOX triggers the creation of a horizontal box and the two
elements are appended to this box, to represent the fact that these two elements
should be displayed together.

The last excerpt of code is the reverse engineering of lines 14 to 17, representing a
groupbox, two radio buttons and one button.
<Box id=“18” name=“18” type=“vertical” isVisible=“true” isEnabled=“true”
height=“90” width=“55” defaultBorderTitle=“Direction”>
<Box id=“19” name=“19” type=“horizontal” isVisible=“true” isEnabled=“true”>
<radtioButton id=“20” name=“234” isVisible=“true” isEnabled=“true”
defaultMnemonic=“u” />
<textComponent id=“21” name=“9” defaultContent=“Up” isVisible=“true”
isEnabled=“true” textSize=“8” textFont=“Ms Shell Dlg” /> </box>
<Box id=“22” name=“22” type=“ horizontal” isVisible=“true” isEnabled=“true”>
<RadioButton id=“23” name=“235” isVisible=“true” isEnabled=“true”
defaultMnemonic=“d” />
<textComponent id=“24” name=“24” defaultContent=“Down” isVisible=“true”
isEnabled=“true” textSize=“8” textFont=“Ms Shell Dlg” /> </box> </box>
<button id=“25” name=“205” isVisible=“true” isEnabled=“true”
defaultMnemonic=“f” defaultContent=“Find Next” />

The groupbox element is translated by a box in the UsiXML specification. As the
CtrId attribute of the groupbox is -1 (it signifies that the element has no particular
identifier in the resource script), its id is generated automatically in UsiXML. The
textnode “direction” is copied in the defaultBorderTitle attribute. Height and width
for this component are computed thanks to the following formulas: height= (h x
274) / (21 x fontsize) and width= (w x 3304)/(275 x fontsize). As the fontsize is
equal to 8, h to 34 and w to 60, the height is equal to 90 pixels and width to 50
pixels in the CUI model. The other attributes for this box are generated
automatically. Note that this box contains the two couple radioButtons
/textComponents in the UsiXML specification, but this information could not be

Appendix H

343

recovered with the current method as the hierarchy and the layout are not reverse
engineered (see section 8.2).
Then the derivation of the AUTORADIOBUTTON results in the creation of a
horizontal box containing a radioButton and a textComponent in UsiXML,
following the rules described in section 8.3. The name of the radioButton is
derived from the first integer of line 15(CtrId) and its defaultMnemonic attribute
corresponds to the character following the ampersand in its textnode. A
textComponent is also added to the CUI model, with the textnode as its
defaultContent. As for the checkbox’s textComponent, the textFont and textSize
attributes are derived from the FONT element (line 5). The second
AUTORADIOBUTTON is derived similarly.
Finally, the DEFPUSHBUTTON is derived into a button in the CUI model. The
CtrId attribute is equal to “205” and represents the name of this component in
UsiXML. Its defaultContent corresponds to the textnode “Find Next” and its
defaultMnemonic is the first character after the ‘&’ symbol (f in this case). Other
attributes of the button element are generated automatically.

Appendix I

344

Appendix I
Evolution of the architecture of the tool

This appendix describes a study of the different step for the evolution of the
architecture of the tool. The architecture designed for the tool is evolutionary and
incremental, so that it can be adapted to new requirements and also insure
backward compatibility with previous versions. The focus of this appendix is to
show how the different actors (users/servers) are involved in the reengineering
process. To do this, each step is illustrated by a diagram representing the transfers
from the files and models graphically across the system and by a sequence
diagram to show precisely by who and where operations are executed. The current
implementation of the tool is the version 1.1, as it represents a good compromise
between resources costs (in terms of implementation) and the capacities of the
tool.
ReversiXML 1.0, in its first version, was only able to process a page at a time and
to send the results back to the user without modification of the original structure
and composition of the UI (see figure I-1).

ReversiXML

LAMP server

HTML page

Forward
Engineering

tool

2

3

1

4

5

Appendix I

345

1 Web page request : the user asks for a web page which is located on the same
server as ReversiXML

2 Reverse Engineering: the reverse engineering is performed on the server, without
modification of the original page

3 Send Reverse Engineered Results: the results are sent back to the user or can
directly be used in step 4 to produce a new UI

4 Forward Engineering: the results of step 2 are used by a forward engineering tool
(e.g. teresaXML or grafiXML) to generate UI code. This transformation is
also performed on the server.

5 Send Reverse Engineered Results: the new UI is sent back to the user.
ReversiXML/Ser

ver
End User

1:Web Page Request

3:Send Reverse Engineered Results
2:Reverse Engineering

4:Forward Engineering
5:Send Forward Engineering Results

Figure I-1 Sequence diagram for ReversiXML 1.0

In a second step (figure I-2) some features were added to ReversiXML 1.1: the
possibility to create configuration files and so make the process of reverse
engineering flexible and adaptable to a specific platform.
Databases(DB) are also added to the reengineering system in order to accelerate
the process. A DB containing all the reverse engineered models is held on the
server for a period of time (as the source page may evolve).

Appendix I

346

ReversiXML

LAMP server

HTML page

Forward
Engineering

tool

3

5

11

9

6

1

2

Configuration DB

Web server

4

Reverse engineerd
UI DB

Temporary
Pages

7

12

10

8

14
13

1 Create configuration file: the designer defines a new configuration file associated
with a specific context

2 Send confirmation of creation: when the file has been successfully added to the
database

3 Web page request : the user makes a request for a web page
4 Send user profile: a basic description of the connected platform is automatically

sent to the server with the request of the web page (step 3)
5 Send Reverse Engineered Web Page [if already analysed page]: the database

containing the web pages that have already been reverse engineered is
checked. If the page is in this database, the differences between current page
and page saved on server is checked, if there is no difference, it is sent back
to the user.

6 Ask Web Page [if never analysed page]: if the UI model of the web page does not
exist in the database, a request is sent to a distant server.

7 Send Web Page: the code of the web page is sent back to the ReversiXML’s
server

8 Save Page on the Server: The page is saved into a temporary repository of web
page for two reasons: firstly, it speeds up the process by avoiding
downloading again the same page, secondly, it eases the reverse engineering
by working on a local file.

9 Choose Configuration File: By using the user profile sent during step 4, a

Appendix I

347

configuration file is selected in the configuration knowledge base.
10 Reverse Engineering : the reverse engineering is performed on the server,

following the options contained in the configuration file
11 Send Reverse Engineered Results: the results are sent back to the user or can

directly be used in step 13 to produce a new UI
12 Save Results in Knowledge Base: the output of ReversiXML is then stored in

database for a future reuse.
13 Forward Engineering: the results of step 10 are used by a forward engineering

tool (e.g. TeresaXML or GrafiXML) to generate UI code. This
transformation is also performed on the server.

14 Send Reverse Engineered Results: the new UI is sent back to the user.

user ReversiXML/Ser
ver

Web ServerDesigner

3:Web Page Request

[Already Analysed
Page]5:Send Reverse
Engineered Web Page

[Never Analysed Page]6: Ask Web Page

8:Save Page on Server

7:Send Web Page

4:Send User Profile

11:Send Reverse Engineering Results

12:Save Result in Knowledge Base

9:Choose Configuration File

1:Create Configuration File

2:Send Confirmation of creation

10:Reverse Engineering

13:Forward Engineering
14:Send Forward Engineering Results

Figure I-2 ReversiXML 1.1

The WhoAmI system (developed by IS3) has been added for the envisioned version
1.2 of ReversiXML (see figure I-3). Thanks to this system, a more accurate
identification of the context of use is possible (user and platform). IS3 developed
this system for commercial purposes, and thanks to a database, store the various
user/platform profiles connecting to their websites. A similar database could also
be added to store this information.

Finally, the possibility is let to the user to reverse engineer web pages that have

Appendix I

348

been suppressed, thanks to www.archive.org. This site store different version
from thousands of sites, and keep them after their suppression.

ReversiXML

LAMP server

HTML page

Forward
Engineering

tool

3

6

14

7

1

2

Configuration DB

Web server

Reverse engineerd
UI DB

Temporary
Pages

8

15

13

11

17
16

HTML page

Archive.org

9
10

Context DB

User

Designer

5

4

12

Designer user ReversiXML/Ser
ver

Web Server archive.org

3:Web Page Request

[Already Analysed Page]
6:Send Reverse

Engineered Web Page

[Never Analysed Page]
7: Ask Web Page

11:Save Page on Server

14:Send Reverse Engineering Results

15:Save Results in
Knowledge Base

12:Choose Configuration
File

1:Create Configuration File

2:Send Confirmation of Creation

13:Reverse Engineering

16:Forward Engineering17:Send Forward Engineering Results

5:Save Context
Identifiaction

4:Identification of the Context (WhoAmI)

[Page found]8: Send Web Page
[Page not found]
9:Ask Web Page

10:Send Web Page

Appendix I

349

1 Create configuration file: the designer defines a new configuration file associated
with a specific context.

2 Send confirmation of creation: when the file has been successfully added to the
database.

3 Web page Request : the user enters a web page URL to reverse or reengineer.
4 Identification of the Context (WhoAmI): the WhoAmI system detects several

attributes from the platform and from the connected user.
5 Save Context Identification: all the information about the connected

platform/user is stored in a knowledge base.
6 Send Reverse Engineered Web Page [if already analysed page]: the database

containing the web pages that have already been reverse engineered is
checked. If the page is in this database, the differences between current page
and page saved on server is checked, if there is no difference, it is sent back
to the user.

7 Ask Web Page [if never analysed page]: if the UI model of the web page does not
exist in the database, a request is sent to a distant server.

8 Send Web Page: the web page is sent back to the ReversiXML’s server
9 Ask Web Page [if the page was not found]: the file is downloaded from

archive.org if it cannot be found on the Web.
10 Send Web Page: the web page is sent back to the ReversiXML’s server
11 Save Page on the Server: The page is saved into a temporary repository of web

pages for two reasons: firstly, it speeds up the process by avoiding
downloading again the same page, secondly, it eases the reverse engineering
by working on a local file.

12 Choose Configuration File: By using the context identified during step 4, a
configuration file is selected in the configuration knowledge base.

13 Reverse Engineering : the reverse engineering is performed on the server,
following the options contained in the configuration file

14 Send Reverse Engineered Results: the results are sent back to the user or can
directly be used in step 16 to produce a new UI

15 Save Results in Knowledge Base: the output of ReversiXML is then stored in
database for a future reuse.

16 Forward Engineering: the results of step 13 are used by a forward engineering
tool (e.g. teresaXML or GrafiXML) to generate UI code. This
transformation is also performed on the server.

17 Send Reverse Engineered Results: the new UI is sent back to the user.
Figure I-3 ReversiXML 1.2

Appendix J

350

Appendix J
Boxes amount reduction

As the algorithm for the generation of boxes is very exhaustive, i.e. for each
HTML tag modifying the layout a box is created without checking if it makes
sense, the results should be corrected to minimize the number of boxes.Some
rules are already implemented in ReversiXML but this “box correction step” could
be enhanced.
For example the next excerpt of HTML code would be translated into too many
boxes with the current method:

<table><tr><td><table><tr>
<td>content</td></tr><tr><td>something
</td><td></td></tr></table></tr></td></table>

This would be reverse engineered in the following manner (in a simplified
UsiXML - box V and box H stands for vertical and horizontal boxes):

<box V><box H><box H><box V><box H>
<box H><textComponent/></box></box><box H><box H>
<textComponent/>
</box><box H></box></box></box></box></box></box>

There are two embedded tables, but one of these tables is useless as it only
contains the other table. The second table also contains an empty cell which can
be removed; it would be possible to represent exactly the same layout with half
the number of boxes.
Therefore, new rules should be implemented to simplify the structure of the
specification. Here are two examples of new simplification rules:

R1: Backward suppression of boxes containing exactly one child that is a leaf
itself.
Backward means that the rule should be applied from leaf elements towards the
root of the UsiXML specification.

Appendix J

351

For example: <box v 0>
<box h 1>

<box v 2>
<box h 3>

<box h 4>
<element 1>

</box>
</box>

</box>
<box v 5>

<box h 6>
<element 2>

</box>
</box>

</box>…

This specification would be transformed into:
<box v 0><box h 1><element 1><element 2></box>…

Firstly, the horizontal boxes h6 and h4 embedding element 1 and 2 are
suppressed. As box h3 and v5 also satisfy the condition after the first application
of the rule (suppression of h4 and h6), they are also removed. Then box v2
satisfies also the condition, as element 1 is now its only child. As box h1 contains
two elements, the rule cannot be applied anymore.

R2: Backward suppression of child boxes when the parent and child boxes are
consecutive (the child box is the first child of the parent box) and of the same
type.
<box h 1>

<box v 2>
<box v 3>

<element 1>
<box h 4>

 <box h 5>
 <element 2>
 <element 3>
</box>

</box>
</box>

</box>
<box v 6>

<box v 7>
 <element 4>

<box h 8>
<element 5>

 </box>
</box>

</box>
</box>

Could be transformed in:

<box h 1>

<box v 2>
 <element 1>

 <box h 4>
 <element 2>
 <element 3>
 </box>

</box>
<box v 6>
 <element 4>

<element 5>
</box>

</box>

The horizontal boxes h5 and h4 satisfy the condition, so h 5 is removed. Then
boxes v3 and v7 can be removed, as their parents, respectively the boxes v2 and
v6, are of the same type. Finally box h8 can also be removed as it satisfies the
condition of R1 (cf. supra).

Appendix K

352

Appendix K
External validation material

This appendix contains the document containing the instructions given to the
students of the course LINF 2356 for a complete reengineering using Grafixml
and ReversiXML. The results of this study have been used in the external
validation (section 9.2).

LINF 2356 : INTERFACES HOMME-MACHINE (Prof. J. Vanderdonckt)
Assistant : Laurent Bouillon (bouillon@isys.ucl.ac.be)

Travaux pratiques: session n°4

Objectifs
- Effectuer la réingénierie complète d’une interface pour deux plates-formes

différentes
- Se familiariser avec l’outil de rétro-ingénieire ReversiXML et l’outil

d’ingénierie-avant Grafixml.

Échéance : mai 2005 – envoyer le rapport à bouillon@isys.ucl.ac.be sous format
numérique, portant votre nom ainsi que le numéro du TP, ou sous format papier
au bureau A.110. Envoyer également les fichiers produits par les deux outils à la
même adresse.

Instructions
-Les deux outils, ReversiXML et GrafiXML, sont accessibles depuis leurs sites
webs. ReversiXML à partir de http://www.isys.ucl.ac.be/bchi/research/reversi/
RevXMLUI.php, et GrafiXML depuis l’adresse http://www.UsiXML.org/
index.php?view=page&idpage=10, puis en cliquant sur le lien http://www
.isys.ucl.ac.be/bchi/members/bmi/grafixml/grafixml.jnlp.
-Un environnement java est nécessaire pour l’exécution de l’application Grafixml
(http://java.sun.com/j2se/1.4.2/download.html) ainsi que javaWebStart
(téléchargeable à http://java.sun.com/products/javawebstart/)
-La documentation sur UsiXML est disponible à http://www.UsiXML.org/
?download=UsiXML-documentation-draft.pdf (voir l’interface concrète - CUI).

Appendix K

353

Enoncé textuel
Rédigez un rapport sur la réingénierie complète des pages suivantes:

• http://www.ucl.ac.be/repertoi.html
• http://ultra2.sia.ucl.ac.be:8000/GIPE/SilverStream/Pages/pgRecherche

Cours.html
• http://ultra2.sia.ucl.ac.be:8000/GIPE/SilverStream/Pages/pgRecherche

Offre.html

Sur base des spécifications produites par l’outil ReversiXML, utilisez le modèle
concret dans GrafiXML pour pouvoir modifier l’interface de manière à ce qu’elle
soit utilisable sur une plate-forme de type pocket pc (plate-forme A). Choisissez
également une des deux dernières pages et effectuez la réingénierie complète pour
une plate-forme de type gsm (plate-forme B). Pour cet exercice, les modifications
de la spécification originale peuvent être liées à deux types de contraintes: les
capacités d’affichage (taille, couleurs, …) et la disponibilité des intéracteurs sur
une plate-forme donnée. Les caractéristiques à respecter sont reprises en fin de
document.
Il est possible d’alléger cette partie du travail en sélectionnant directement les
options adéquates dans l’outil ReversiXML (envoyez dans ce cas également les
fichiers de configuration).

Le rapport devra contenir les points suivants:

- Extraits de la spécification UsiXML produite par ReversiXML en
décrivant ce qu’elles représentent au niveau de l’interface finale.

- Commentaires sur les modifications apportées à ces spécifications,
notamment au niveau des options sélectionnées dans ReversiXML et
des interacteurs utilisés pour remplacer les interacteurs inexistants sur
une plate-forme donnée.

- Recopies d’écrans des interfaces élaborées avec GrafiXML pour les
deux plates-formes demandées.

- Une analyse critique du processus de réingénierie (une page maximum)

Les plate-formes ciblées sont caractérisées par les paramètres suivants (à noter que
les contraintes liées à la taille ne doivent pas être respectées à la lettre, mais servent
à donner un ordre d’idée de l’espace disponible):

Attribute

Description

Platform A Platform B

ColorCapable Whether the device
display supports
color

Yes No

Appendix K

354

Image Capable Whether the device
supports the
display of images

Yes No

ScreenSize The size of the
device's screen in
units of pixels

240 x 320 96x65

ScreenSizeChar Size of the
device's screen in
units of
characters

24X32 9x6

JavaAppletEnabled

Indicates whether
the browser
supports Java
applets.

Yes

No

JavaScriptEnabled

Indicates whether
the browser
supports
JavaScript.

Yes

No

TablesCapable Indicates whether
the browser is
capable of
displaying HTML
tables

Yes Yes

Category Category of the
device

Pocket PC Mobile Phone

NumberOfColours Number of colours
the display
supports

256 2

Disponibilité des objets d’interaction:
Pour la version PocketPC, tous les interacteurs sont disponibles.
Par contre pour la version gsm, les intéracteurs radio button, checkbox,
imageComponent, colorPicker, datePicker, filePicker, hourPicker, drawingCanvas
et slider sont indisponibles. Remplacez ces objets par d’autres interacteurs afin de
conserver toutes les possibilités de l’interface originale.

Appendix L

355

Appendix L
Glossary

AIO: Abstraction Interaction Object, a component of the AUI model,

i.e. a specification independent of the computing platform and the
modality [Vand93].

AST: Abstract syntax tree. Finite, labeled, directed tree, where the
internal nodes are labeled by operators, and the leaf nodes
represent the operands of the node operators. Thus, the leaves
have nullary operators, i.e., variables or constants. It is used in a
parser as an intermediate between a parse tree and a data structure,
the latter which is often used as a compiler or interpreter's internal
representation of a computer program while it is being optimized
and from which code generation is performed. The range of all
possible such structures is described by the abstract syntax. An
AST differs from a parse tree by omitting nodes and edges for
syntax rules that do not affect the semantics of the program. The
classic example of such an omission is grouping parentheses, since
in an AST the grouping of operands is explicit in the tree structure
[Wiki].

AUI: Abstract User Inteface. Specification of a UI independent of the
platform and the modality. A canonical expression of the
renderings and manipulation of the domain concepts and functions
in a way that is independent of the concrete interactors available on
the targets. The elements used in the abstract UI are abstractions of
existing widgets.

AWT Abstract Windowing Toolkit. The AWT is the user interface toolkit
provided as part of the Java language class library.

CIO: Concrete interaction object, a component of the CUI model, i.e. a
specification independent of the computing platform [Vand93].

CSS Cascading Style Sheet is a language that allows authors and users to

Appendix L

356

attach style to structure documents. By separating the presentation
from the content CSS simplifies web site authoring and
maintenance.

CTT ConcurTaskTree. CTT is a notation for task model specifications
to overcome limitations of notations previously used to design
interactive applications. Its main purpose is to be an easy-to-use
notation that can support the design of real industrial applications,
which usually means applications with medium-large dimensions
[Ctt99].

CUI: Concrete User Interface. Specification of a UI independent of the
platform. This model concretizes an abstract UI into Concrete
Interaction Objects (CIOs) so as to define widgets layout and
interface navigation. This interface is now composed of existing UI
widgets.

Dialog model: Model containing all the information relative to the behavior of the
UI (i.e. navigation, states…), representing how the user can interact
with the components of the UI and the reactions that the UI
communicates via these objects.

DOM: Document Object Model. Representation of an XML file in an
object-oriented fashion. DOM provides an application
programming interface to access and modify the content, structure
and style of a document [Dom].

DLL: Dynamic Link Library. Computer library that implements the
concept of dynamic linking. Dynamic linking means that the data in
a library is not copied into a new executable or library at compile
time, but remains in a separate file on disk. Only a minimal amount
of work is done at compile time by the linker, it only records what
libraries the executable needs and the index names or numbers.
The majority of the work of linking is done at the time the
application is loaded or during the execution of the process [Wiki].

Forward
engineering:

Syn. reification. Process of generating a more concrete specification
(up to the final code of an information system) based on
specification at higher level of abstraction.

Appendix L

357

Functional
Core:

A software can be decomposed into two major parts, the UI and
the functional core. The functional core contains all the
functionalities, processes… achieved by the software while the UI
allows to access to these functionalities.

GUI Graphical User Interface. GUI is a method of interacting with a
computer through a metaphor of direct manipulation of graphical
images and widgets in addition to text. GUIs display visual
elements such as icons, windows and other gadgets [Wiki].

HTML: Hyper-Text Markup Language. Markup language designed for the
creation of web pages with hypertext and other information to be
displayed in a web browser.

Lateral
engineering:

Translation process between two UI descriptions at the same level
of abstraction.

LOTOS Language Of Temporal Ordering Specification (LOTOS) is a
formal specification language based on temporal ordering used for
protocol specification in ISO OSI standards. It was published as
ISO 8807 in 1990 and describes the order in which events occur.

Mapping: Specification of a mechanism for transforming the elements of a
model conforming to a particular metamodel into elements of
another model that conforms to another (possibly the same)
metamodel.

Markup
language:

A markup language combines text and extra information about the
text. The extra information, for example about the text's structure
or presentation, is expressed using markup, which is intermingled
with the primary text.

MDA: MDA defines an approach to IT system specification that separates
the specification of system functionality from the specification of
the implementation of that functionality on a specific technology
platform, and provides a set of guidelines for structuring
specifications expressed as models. The MDA approach and the
standards that support it allow the same model specifying system
functionality to be realized on multiple platforms through auxiliary
mapping standards, or through point mappings to specific

Appendix L

358

platforms, and allow different applications to be integrated by
explicitly relating their models, enabling integration and
interoperability and supporting system evolution as platform
technologies come and go [OMG02].

Modality: Path of communication between the human and the computer,
such as voice or touch.

Model: Representation of a system expressed in a given formalism or
language, i.e., a set of signs or terms able to encode the modeled
domain semantics.

Model-based
approach
(MBA):

Production method of information system based on the
representation of the system into various abstract models reflecting
its different aspects expressed in a high level formalism. For UI, the
models are generally related to the presentation of the UI, the
dialog of the UI and optionally other models such as the user
model, platform model, domain model, task model, application
model or context model.

Presentation
model:

Model containing all the information relative to the static
appearance of the user interface (i.e. composition, layout, colors,
style…).

QTK QTk is a advanced tool for creation of UI which belongs to the
Mozart Programming System, an advanced platform of
development of distributed and intelligent applications. QtK is a
C++ wrapper for Gtk+ (a multi-platform toolkit for creating GUI)
that is Qt (library of widgets and basic functions) compatible.

Reengineering: Examination and the alteration of a subject system to reconstitute
it in a new form and the subsequent implementation of the new
form. Combination of reverse and forward engineering.

Retargeting: Reverse engineering achieved for a particular context of use, by
applying reverse engineering rules designed for the targetted
context [Boui02b].

Reverse
engineering

Syn. abstraction. Process of analyzing a subject system to identify
the system’s components and their interrelationships and create

Appendix L

359

(RE): representations of the system in another form or at a higher level
of abstraction [Chik90]. More generally, it is the process of
generating a more abstract specification based on specification at a
lower level of abstraction.

SGML The Standard Generalized Markup Language is an ISO standard
meta-language for the description of marked-up electronic text that
defines device/system independent methods for representing texts
in electronic form. SGML is a meta-language, a way of formally
describing a markup language [Lope05]

Sobel
Operator:

The Sobel operator is an operator used in image processing,
particularly within edge detection algorithms. Technically, it is a
discrete differentiation operator, computing an approximation of
the gradient of the image intensity function. At each point in the
image, the result of the Sobel operator is either the corresponding
gradient vector or the norm of this vector [Wiki].

SVG: Scalable Vector Graphics (SVG) is an XML markup language for
describing two-dimensional vector graphics, both static and
animated (either declarative or scripted).

Tidy: HTML code cleaning tool developed by D.Raggett [tidy], allowing
to remove useless tags, to close “open” tags (i.e. without a closing
markup), put attributes values into quotation marks etc. By
choosing a particular set of corrections, it is possible to obtain
HTML code respecting the XML syntax.

Transcoding: Process of translation of a final UI into a final UI for another
context of use without abstraction step, in opposition to reverse
engineering.

UAProf: User Agent Profile. Its specification is concerned with capturing
capability and preference information for wireless devices. This
information can be used by content providers to produce content
in an appropriate format for the specific device [Wiki].

UI: User Interface. The user interface is the aggregate of means by
which users interact with a particular machine, device, computer
program or other complex tool. The user interface provides means

Appendix L

360

of input and output [Wiki].

UIML: User Interface Markup Language. Meta-language that can describe
any user interface in a manner that is device-independent and user
interface metaphor independent. UIML can describe user interfaces
that are popular today -- for traditional desktop, web, mobile,
embedded, and voice applications. UIML can also describe user
interface for custom devices or devices that are invented in the
future [Uiml04].

UML: The Unified Modeling Language is a non-proprietary, object
modeling and specification language used in software engineering.
UML includes a standardized graphical notation that may be used
to create an abstract model of a system: the UML model. While
UML was designed to specify, visualize, construct, and document
software-intensive systems, UML is not restricted to modeling
software. UML has its strengths at higher, more architectural levels
and has been used for modeling hardware (engineering systems)
and is commonly used for business process modeling, systems
engineering modeling, and representing organizational structure.
This language is the merging of the three methods that had the
most influence in the nineties (OMT, Booch and OOSE).

USIXML: User interface description language developed at UCL. This XML-
based language allows specifying context-sensitive UI description
according to the four level of abstraction of the Cameleon
reference framework (see chapter 6).

VoiceXML: Markup language designed for vocal interfaces.

W3C: The World Wide Web Consortium (W3C) is an international
consortium where member organizations, a full-time staff, and the
public, work together to develop standards for the World Wide
Web. W3C's mission is: "To lead the World Wide Web to its full
potential by developing protocols and guidelines that ensure long-
term growth for the Web". W3C also engages in education and
outreach, develops software, and serves as an open forum for
discussion about the Web. The Consortium is headed by Tim
Berners-Lee, the original creator of the World Wide Web and

Appendix L

361

primary author of the URL (Uniform Resource Locator), HTTP
(HyperText Transfer Protocol) and HTML (HyperText Markup
Language) specifications, the principal technologies that form the
basis of the Web [Wiki].

WAP: Wireless Application Protocol. It is an open international standard
for applications that use wireless communication. WAP was
designed to provide services equivalent to a web browser with
some mobile-specific additions.

Widget: Component of a graphical user interface.

WML: Wireless Markup Language. Markup language designed for mobile
phones.

XIML: eXtensible user Interface Markup language developed at Redwhale
software (http://www.redwhale.com)[Ximl]. This XML-based
language allows defining the UI thanks to various models (see
chapter 5), and has the particularity the designer can parameterize
and extend the language (i.e. specify her own definitions of
interaction objects, relations etc…).

XML The eXtensible Markup Language is a subset of SGML that has
been designed for ease of implementation and interoperability with
both SGML and HTML, allowing easy interchange of documents
on the web. With XML, markup languages to define the content
can be designed [Lope05].

XSLT: eXtensibe Stylesheet Language Transformations. Language for
transforming XML documents into other XML documents. XSLT
is designed for use as part of XSL, which is a stylesheet language
for XML. In addition to XSLT, XSL includes an XML vocabulary
for specifying formatting. XSL specifies the styling of an XML
document by using XSLT to describe how the document is
transformed into another XML document that uses the formatting
vocabulary [Xslt99].

