Reverse Engineering of Web Pages based on
Derivations and Transformations

Laurent Bouillon, Quentin Limbourg, Jean Vanderdonckt, and Benjamin Michotte
Université catholique de Louvain (UCL), School of Management (IAG),
Information Systems Unit (ISYS), Belgian Lab. of Computer-Human Interaction (BCHI)
Place des Doyens, 1 — B-1348 Louvain-la-Neuve (Belgium)

{bouillon, limbourg, vanderdonckt, michotte}@uclouvain.be

Abstract

The final user interface of an information system
could be reverse engineered according to a Model-
Driven Engineering perspective to multiple levels of
abstraction, either independently of each other or si-
multaneously depending on the designer’s goals: con-
crete user interface (which is independent of the user
interface toolkit), abstract user interface (which is in-
dependent of any interaction modality), and “task and
concepts” (which is independent of any particular im-
plementation). To support the user interface reverse
engineering from the code level to any model level, a
set of derivation rules have been implemented in Re-
versiXML. To support the user interface reverse engi-
neering from any model to any other level, graph
grammars have been implemented in TransformiXML.
A graph grammar consists of graph transformation
rules, called productions, that accept as input a graph
representation of the user interface to be reengineered,
apply the transformation, and obtain a result that can
be further exploited to re-create a new user interface.

1. Introduction

According the Model-Driven Engineering (MDE)
[16], four paths exist for supporting forward and re-
verse engineering of computer-based systems: code to
code (synonym of transcoding), code to model (for re-
verse engineering), model to code (for forward engi-
neering), and model to model (for any step). According
to this terminology, techniques for User Interface (UI)
forward engineering typically support a development
life cycle where the Ul can be obtained from one or
many abstract models (e.g., a task model, a domain
model). Conversely, techniques for Ul reverse engi-
neering attempt to find back these abstract models by
examining the Ul in different ways (e.g., static or dy-
namic analysis). By combining reverse engineering
and forward engineering into one sequence, reengi-
neering [5] can be supported in general or adapting in
particular when a Ul needs to be adapted for another
context of use that was not initially planned for (e.g.,

another computing platform). Although these different
approaches (i.e., forward, reverse, reengineering, and
adapting) can be combined in theory to incrementally
build more sophisticated processes, we observe in
practice that this is hard to achieve. To characterize
this situation and prior to any further investigation, we
define a set of properties of interest for Ul reengineer-
ing:

e Separation of concerns: any reengineering system
should be decomposed into a reengineering logic
containing the knowledge required to perform the
reengineering and a reengineering engine applying
this knowledge with a clear separation between.
The engine should be controlled by reengineering
parameters that should be externally given (Fig. 1).

P ——
Initial User Interface

Reengineering system

Reengineering
parameters

Reengineering

Reengineering engine)
logic

Final User Interface

Fig. 1. Separation of concern in a reengineering system.

e Flexible operationalization of reengineering
logic: any type of knowledge (e.g., rewriting rule
[26], transformation [25], production rule [21])
should be specified explicitly in a way that remains
external to the engine so that the engine remains
autonomous when the logic changes. In this way,
the logic can be expanded, modified when needed.

o Flexible usage of reengineering engine: the en-
gine should rely on the knowledge contained in the
logic to apply it in a way that is controlled by the
reengineering parameters. In this way, the reengi-
neering process can be made observable and trace-
able to the designer’s eyes. If needed, the engine
could be controlled by the designer, by a system
agent or in a mixed-initiative way combining both.

e Multi-level abstraction: the system should pro-
duce a reengineered final Ul from an initial UI so

as to reach multiple levels of abstraction on de-
mand [18]. Typical levels include device independ-
ence (i.e. obtaining a Ul model that is independent
from any interaction device), computing platform
independence (i.c., obtaining a Ul model that is in-
dependent from any computing platform), and...

e Modality independence: the system should also
produce a Ul model that remains independent of
any modality of interaction [17]. At this level, there
should be no reference to the peculiar interaction
techniques and modalities (e.g., character UI,
graphical UI, vocal Ul, and virtual UI)

e Language neutrality: a consequence of the plat-
form independence is that, in principle, the system
should be developed so as to accommodate Ul pro-
gramming in multiple languages whether they are
imperative (e.g., Java, C++), declarative (e.g.,
Prolog or LiSP), or markup (e.g., HTML, XML).

Several tools that have been developed so far to
support Ul forward engineering, reverse engineering,
reengineering, or migration (i.e. porting a Ul from one
source computing platform such as the Web to another
target computing platform such as a PocketPC or a
mobile phone) suffer from one common shortcoming:
the algorithms and the logic they use is often hard-
coded in the system itself, thus leaving little or no
room for supporting the above properties of interest. It
is hard to modify the knowledge contained in the sys-
tem nor it complex if not possible to control the proc-
ess in a flexible way. Equally frequent is the system
tightly coupled to one particular language (e.g., COBOL
or C) or a family of them (e.g., HTML, DTHML).
When the ‘separation of concern’ property is not satis-
fied, it is likely that others properties are not better sat-
isfied or perhaps very partially.

In this paper, we would like to develop a series of
techniques that addresses the above shortcomings by
having a system satisfying the properties of interest by
construction. For this purpose, we show in Section 2
how existing work has attempted to address this prob-
lem by reporting on some significant initiatives. In
Section 3, a reference framework for Ul reengineering
is presented that characterizes how various techniques
may address the properties of interest. Section 4 covers
the ‘code to model’ part of the MDE approach by rely-
ing on derivation rules. Section 5 covers the ‘model to
model’ part of the MDE approach by defining a tech-
nique based on graph grammars and graph transforma-
tion to support progressive transformation of a initial
Ul into a final one by applying a series of transforma-
tions. Each transformation, also called production, is
defined by left hand-side, a right hand-side, and a
negative application condition. Section 6 explains how

two tools that have been developed to support the dif-
ferent parts of the MDE approach applied to Uls: RE-
VERSIXML for derivation rules and TRANSFORMIXML,
a tool that has been developed to support graph trans-
formations applied on different models involved in the
reference framework. Some examples of reverse engi-
neering transformations are given that transforms the
UI specifications one level at time or that skips one or
multiple levels simultaneously. All levels are uni-
formly expressed in USIXML, a XML-compliant UI
Description Language. Section 7 concludes the paper
by summarizing the original aspects of the contribu-
tion.

2. Related work

First of all, we have to distinguish UI reverse engi-
neering from data extraction from web pages [3,5].
The former is aimed at capturing the Ul contained in a
web page [4], while the latter is intended to extract
[12], preferably automatically or semi-automatically,
the data contained in a web page. In the first case, the
ultimate goal is to recover a Ul model consisting of
both presentation and dialog ; in the second case, the
ultimate goal is intended to recover a data or a domain
model. Although the UI is a very practical way to look
for data extraction, the problem of UI reverse engi-
neering is probably easier than data reverse engineer-
ing since the HTML is more structured for the Ul than
it is for data. Several efficient techniques exist for data
extraction (e.g. some representative examples include
Lixto [14] and wrappers [9,12]). This paper is focusing
of UI reverse engineering so as to reach the full Ul re-
engineering cycle.

Preliminary work has already been conducted in the
field of UI reengineering, especially to migrate charac-
ter-based Uls (CUIs) to Graphical User Interfaces
(GUIs). Another trend in the reengineering of Ul is the
migration of the Ul to a platform that uses another mo-
dality. Most of the tools allow reverse engineering by
constructing an abstract representation of the system
UI that is further transformed to obtain a new UL

MORPH [21,22,23] identifies basic user interaction
tasks in legacy code by applying static program analy-
sis techniques, including control flow analysis, data
flow analysis, and pattern matching. The resulting
model is then used to transform the detected abstrac-
tions in a graphical environment from a specific widget
toolkit. The original code is then modified to take into
account the new dialogue structure of GUIs. MORPH is
part of a larger environment called MORALE [27] sup-
porting complete reengineering process. Morph actu-
ally supports separation of concern with only one level

of abstraction, the engine being driven by some pa-
rameters that give already some degree of flexibility.
Operationalization is partially achieved: introducing a
new heuristic or rule requires some intervention of
MORPH’s developer.

MORE [13] produces applications that are device in-
dependent. A Platform Independent Application can be
created either by a design tool or by abstracting a con-
crete Ul thanks to the generalization process. Generali-
zation is done by reverse engineering the UI code. This
process starts with the detection of interaction ele-
ments. Secondly, the properties and semantic informa-
tion of these elements can be inferred. A specialized
engine with a device profile then creates another appli-
cation specialized for a particular device. Similarly to
MORPH, operationalization and control are partial.

The reengineering process in TAMEX [15,29,30] al-
lows one to produce HTML Uls composed of data
contained in several other Web pages. The approach
followed by TAMEX is based on the concept of task-
specific mediation: information sources within an ap-
plication domain are encapsulated within wrapper
agents (data extraction) interacting with an intelligent
intermediary agent, the mediator (aggregate data).
XML is used as an intermediate data structure for in-
formation exchange and as a modeling language for
the mediator’s domain ontology and task structure. The
information extraction is done with an XPath-based al-
gorithm for generating extraction rules from HTML.

REWEB’s reengineering process [10] restructures
Web applications in order to avoid their inevitable deg-
radation. It uses a set of transformation rules aiming at
the improvement of maintainability, usability and port-
ability. It also restructures the design thanks to a web
application model and by incorporating frame-based
navigation. AUIDL is a User Interface Description
Language used for reverse engineering a model of the
Ul so as to recreate it in another context of use [19,20].

WEBREVENGE [24] is a tool that analyzes Web site
code in order to automatically reconstruct the underly-
ing logical interaction design. Such a design is repre-
sented through task models that describe how activities
should be performed to reach users’ goals. WEBRE-
VENGE is capable of recovering a task model from web
pages, which is different from VAQUITA [3], which
only recovers the concrete presentation model of a web
page in XIML (www.ximl.org), without supporting the
forward engineering part that should come afterward.

The idea of program transformation [25] has been
extensively researched by various works, including
TXL [6,7,8,28], although not particularly targeted at
Uls. [25] is also another example of successfully ap-
plying program transformation to reengineer an exist-

ing system.

After analyzing these various approaches, we ob-
serve that the properties of interest are only partially
supported in most existing work and there is room to
introduce a flexible mechanism for Ul transformation,
based on graph grammars and transformations.

3. User interface re-engineering concepts
3.1. The Cameleon reference framework

The Cameleon Reference Framework [4] locates Ul
development steps for context-sensitive interactive ap-
plications. A context is defined as a triple of the form
<U, P, E> where U, P, E respectively represent a user,
a platform model, and a physical environment. A sim-
plified version (Fig. 2) structures the development
process for two contexts of use (here, 4 and B) into
four levels of abstraction with respect to code:

1. Task and concepts: describe the various tasks to be
carried out and the domain-oriented concepts as they
are required by these tasks to be performed.

2. Abstract User Interface (AUI): a canonical expres-
sion of the renderings and manipulation of the do-
main concepts and functions in a way that is inde-
pendent of the interaction modality (e.g., graphical,
vocal or tactile). The elements used in the logical Ul
are abstractions of existing widgets.

3.Concrete User Interface (CUI): concretizes a AUI
into Concrete Interaction Objects (CIOs) so as to de-
fine widgets layout and interface navigation. This in-
terface is now composed of existing UI widgets, but
the widgets are independent of any particular toolkit.

4.Final User Interface (FUI): The Ul produced at the
very last step of the reification process is supported
by a multi-target development environment. A FUI
is typically the Ul code to be interpreted or com-
piled.

The downward arrows represent reification steps
(forward engineering), from the more abstract to the
operational interface. Reification is the transformation
of a description (or of a set of descriptions) into a de-
scription (or a set of descriptions) whose level of ab-
straction is lower than that of the source one(s). In the
multi-target reference framework, it is the inference
process that covers the inference process from high-
level abstract descriptions to run-time code. Upward
arrows stand for abstraction steps. This process trans-
forms any specifications into specifications at a higher
level of abstraction. Here, abstraction is the elicitation
of descriptions that are more abstract than the descrip-
tions that serve as input to this process.

Task & { Tesk
Concepts Classes

Method triggered: download file
Object: computer file
A

Abstract User | AlOtype
Interface (AUI)
AIO

Modality-independent

Modality-dependent

Control AIO

Software control AIO Physical control AIO
T & A

Platform-
independent
Concrete User CIO type
Interface (CUl) | Platiorm-

Graphical 2D push button Graphical 3D push button Physical push button

Final User
Interface (FUI)

lRa'ﬁtzim ?Amm € Translation

Figure 2. The Cameleon Reference Framework [4].

Finally, horizontal arrows correspond to the transla-
tion of the interface from one type of platform to an-
other, or more generally, from one context to another.
Not all steps should be achieved in a sequential order-
ing. Instead, locating what steps are performed, when,
from which entry point and toward what subsequent
step are important. In Fig. 2, transcoding tools start
with a FUI for a source platform (@) and transforms it
into another FUI for a target platform (®). Similarly,
portability tools start with a CUI for a source platform
(®) and transforms it into another CUI for another
platform (@), that in turn leads to a new FUI for that
platform (®). To overcome shortcomings identified
for these tools, there is a need to raise the level of ab-
straction by working at the AUI level. Ul Reverse En-
gineering abstracts any initial FUI (@) into concepts
and relationships denoting a AUI (@), which can then
be translated into a new AUI (@) by taking into ac-
count constraints and opportunities for the target plat-
form. Ul Forward Engineering then exploits this AUI
(@) to regenerate a new AUI adapted to this platform,
by recomposing the CUI (@) which in turn is reified in
an executable FUI (©).

3.2. The User Interface Description Language

To express a Ul at any level of abstraction, as de-
fined in Fig. 2, a User Interface Description Language
(UIDL) has been defined and developed: UsiXML
(USer Interface eXtensible Markup Language — http://
www.usixml.org), a XML-compliant UIDL that covers
all the aspects of Fig. 2 [17,18]. USIXML model col-
lection (Fig. 7) is structured according to the four basic
levels of abstractions defined in Fig. 2. Each level of
Fig. 2 can be in turn further decomposed into sub-
levels as illustrated in Fig. 3 [17]:

e At the FUI level, the rendering materializes how a
particular Ul coded in one language (markup, pro-
gramming or declarative) is rendered depending on
the UI toolkit, the window manager and the presen-

<1nput type submit value=" Downlotsd name=btnG>

Rendering Downlu ad | ‘ Download Boutn

independent HTML pushbutton Windows F/Motif VRMLO7/X3D S re Function
Clgpe push button XmButton button key key
Code

5= BN L]

Figure 3. User interface expression in USIXML.

tation manager. For example, a push button pro-
grammed in HTML at the code sub-level can be
rendered differently, here on MacOS X and Java
Swing. Therefore, the code sub-level is material-
ized onto the rendering sub-level.

e Since the CUI level is assumed to abstract the FUI
independently of any computing platform, this
level can be further decomposed into two sub-
levels: platform-independent CIO and CIO type.
For example, a HTML push-button belongs to the
type “Graphical 2D push button”. Other members
of this category include a Windows push button
and XmButton, the OSF/Motif counterpart.

o Since the AUI level is assumed to abstract the CUI
independently of any modality of interaction, this
level can be further decomposed into two sub-
levels: modality-independent AIO and AIO type.
For example, a software control (whether in 2D or
in 3D) and a physical control (e.g., a physical but-
ton on a control panel or a function key) both be-
long to the category of control AIO.

o At the T&C level, a task of a certain type (here,
download a file) is specified that naturally leads to
AIO for controlling the downloading.

4. Derivation Rules

According to MDE [16], ‘code to model’ means
that the code level (here, the FUI @) should be ab-
stracted to any upper level (here, to CUI ©, AUI @,
and Task & Concepts @, respectively). If we want to
achieve a certain level of independence with respect to
the platform and the language, it is impossible to adopt
a uniform approach for every type of FUI. This would
require a semantic definition of nearly all program-
ming and markup languages that could be ever used to
develop a Ul and a module capable of interpreting the
code according to these semantics. This is far beyond
the capabilities of what we want to reach. However, it
is possible to express rules that consider the source

language of the FUI so as to abstract it to any upper
level. The abstraction can go until concrete, abstract,
and task & concepts, independently or concurrently.
This means that the reverse engineering can cope with
multiple levels of abstraction simultaneously if needed.

For this purpose, we rely of derivation rules that
derive UsiXML specifications at any level from the
source code. The source code is of course varying
from one platform to another, but the derivation rules
do not fundamentally change. These derivation rules
are represented as functions that can be interpreted
both at design- and run-time, as they can be applied for
every element. Fig. 4 reproduces a derivation rule that
captures some aspect of the Ul layout: Element.id
represents the current element (to which the attribute is
added). Each derivation rule examines language pat-
terns of the source code and creates a corresponding
structure in terms of a UI graph.

ment. Fig. 5 shows a derivation rule for abstracting a
“Submit” HTML pushbutton into a command button at
the CUI level. This rule could be generalized for every
push button in principle, but here the label clearly con-
firms the nature of the push button.

Vv x € Ty: x = input A (x.type="button” ¥
X.type="submit” Y x.type="“image” V x.type="reset”)
—Addnode (“button”, idbutton) where idbutton =)
node € T A AddAttribute (idbutton, “id”, idbutton) A
AddAttribute (idbutton, “name”, idbutton) A AddAttrib-
ute (idbutton, “isVisible”, “true”)

CheckAlignement(x,element)

V x € T;: x.IsInPath(center) — AddAttribute (ele-
ment.id, “glueHorizontal, “middle”)

V x € Tj: x.IsInPath(div.align=center) - AddAttribute
(element.id, “glueHorizontal”, “middle™)

V x € T: x.IsInPath(div.align=right) - AddAttribute
(element.id, “glueHorizontal”, “right”)

V x € T;: x.IsInPath(div.align=left) ->AddAttribute
(element.id, “glueHorizontal”, “left”)

V x € T;: x.align=left—>AddAttribute (element.id,
“glueHorizontal”, “left”)

V x € Tj: x.align=right—>AddAttribute (element.id,
“glueHorizontal”, “right”)

V x € T;: x.align=center—AddAttribute (element.id,
“glueHorizontal”, “middle”)

V x € Tj: x.valign=bottom—>AddAttribute (element.id,
“glueVertical”, “bottom™)

V x € Tj: x.valign=top—>AddAttribute (element.id,
“glueVertical”, “top”)

V x € Tj: x.valign=middle—AddAttribute (element.id,
“glueVertical”, “middle”)

V x € T;: x.IsInPath(div.valign=middle)—>AddAttribute
(element.id, “glueHorizontal”, “middle”)

V x € T;: x.IsInPath(div.valign=top)—AddAttribute
(element.id, “glueHorizontal”, “top”)

V x € T, xIsInPath(div.valign=bottom) —AddAttrib-
ute(element.id, “glueHorizontal”,“bottom™)

Figure 4. Example of a derivation rule.

The set of derivation rules of Fig. 4 check if the ele-
ment x is in the same path as an alignment modifier
(div, center, align attributes) in a HTML page, and if it
is the case, an attribute is added in the UsiXML speci-
fications to reflect the horizontal position of the ele-

Figure 5. Derivation rule for a “Submit” button.

Similar derivation rules exist for addressing the
following families of problems (here for a Web page):
detecting the UI structure, mirroring the UI structure in
the specifications, recognition of Ul layout, detection
of widgets selected for input, output, and operations,
identification of composition of elements that together
create a group, identification of visual and auditive
properties of a Ul, identification of intra-page links,
identification of extra-page links, etc.

For instance, Fig. 6 exemplifies how a sub-part of
the Google home page can be reverse engineered at all
levels thanks to those derivation rules: the “Google
Search” submit button at the FUI level is abstracted
into a push button belonging to a window at the CUI
level. This can be in turn abstracted into an activator
belonging to a container at the AUI level and into a
“Launch Search” sub-task of the general “Search
page” task. The “>>” indicates that a sequence is
needed: the keywords need to be entered first, then
“Launch Search” or “Launch Special Search” in any
order (“||” LOTOS operator).

Search Page

Launch
Enter Keyword| > Launch Search|||| ;
Task & concep ‘ ‘ 4 | Special Search

Container

Inputer Activator

Activator

AUI

Windo

CUI ‘ %xtBox | | %ton | ‘ Button ‘
| \

FUI [Google Search || I'm Feeling Lucky |

Figure 6. Reverse engineering of a FUI.

I
01]
uiModel 0.n
-
2 sting 0.n__ 0.n| authorNlame
———on @namE.strmg
——%" 1l%creat\nn[]ate:string 0.n —
1.n
version
&modifDate - string
[T T T T .]
taskModel | | auiModel || cuiModel | ‘ mappingModel H contextModel |
1 | 1 | 1

transformationModel | ‘ domainModel
il
11

|
I [1T
Figure 7. USIXML Model Collection.

uiModel
&id - string
name : string
&creationDate - string

sourceModel

transformation 1
m\}_;l%id - string bz

&name - string

transformation
Model

transformationSystem

d_ﬂ___@l%description - string 1

-

targetModel .n

&embedding - string

applicationOrder

transformationRule

translation

&id - string

reification abstraction

& sourceContextld - string
&targetContextld - string

name - string

1 PR
0..n 0..n 0.n Oz

attributeCondition nac lhs ths

& expression - string

!

ruleTerm

Figure 8. Transformation model as defined in UsiXML.

5. Graph grammars and transformations

5.1. Definitions of models

Thanks to derivation rules introduced in the previ-
ous Section 4, we can obtain UsiXML specifications of
a FUI at any level of abstraction from the code level.
In practice, it is possible either to derive all levels si-
multaneously from the FUI or to obtain only the CUI
level and ask for further abstractions later on. Accord-
ing to MDE, this part is called ‘model to model’ trans-
formation. To support them, Graph Transformation
(GT) techniques [2,11,16] were chosen to formalize
UsiXML, the language designed to support multi-path
UI development, because it is (1) Visual: every ele-
ment within a GT based language has a graphical syn-
tax; (2) Formal: GT is based on a sound mathematical
formalism (algebraic definition of graphs and category

theory) and enables verifying formal properties on rep-
resented artifacts; (3) Seamless: it allows representing
manipulated artifacts and rules within a single formal-
ism. Furthermore, the formalism applies equally to all
levels of abstraction of UsiXML.

Thanks to the four abstraction levels, it is possible
to establish mappings between instances and objects
found at the different levels and to develop transforma-
tions that find abstractions or reifications or combina-
tions. For example, if a GUI needs to be virtualized, a
series of abstractions is applied until the sub-level
“Software control AIO” sub-level is reached. Then, a
series of reification can be applied to come back to the
FUI level to find out another object satisfying the same
constraints, but in 3D. If the GUI needs to be trans-
formed for a Ul for augmented reality for instance, the

next sub-level can be reached with an additional ab-

straction and so forth. The combinations of the trans-

formations allow establishing development paths. To
face multi-path development of Uls in general,

UsiXML is equipped with a collection of basic Ul

models (i.e., domain model, task model, AUI model,

CUI model, context model and mapping model) (Fig.

7) and a so-called transformation model (Fig. 8) that

supports transformation between the different levels of

abstraction. Beyond the AUI and CUI models, other
models are defined:

o taskModel: is a model describing the interactive
task as viewed by the end user interacting with the
system. A task model represents a decomposition
of tasks into sub-tasks linked with task relation-
ships. Therefore, the decomposition relationship is
the privileged relationship to express this hierarchy,
while temporal relationships express the temporal
constraints between sub-tasks of a same parent
task.

e domainModel: is a description of the classes of
objects manipulated by a user while interacting
with a system.

e mappingModel: is a model containing a series of
related mappings between models or elements of
models. A mapping model gathers a set of inter-
model relationships that are semantically related.

o contextModel: is a model describing the three as-
pects of a context of use in which a end user is car-
rying out an interactive task with a specific com-
puting platform in a given surrounding environ-
ment. A context model consists of a user model, a
platform model, and an environment model.

e uiModel: is the topmost superclass containing
common features shared by all component models
of a UL. A uiModel may consist of a list of compo-
nent model sin any order and any number, such as
task model, a domain model, an abstract Ul model,
a concrete Ul model, mapping model, and context
model. A UI model needs not include one of each
model component. Moreover, there may be more
than one of a particular kind of model component.

5.2. Definitions of model transformations

Transformations are specified using transformation
systems. Transformation systems rely on the theory of
graph grammars [2,11]. We first explain what a trans-
formation system is and then illustrate how they may
be used to specify Ul model transformation. The pro-
posed formalism to represent model-to-model trans-
formation in UsiXML 1is graph transformations.
UsiXML has been designed with an underlying graph
structure. Consequently any graph transformation rule

can be applied to a UsiXML specification. Graph
transformations have been shown convenient and effi-
cient for our present purpose in [25]. A transformation
system is composed of several transformation rules.
Technically, a rule is graph rewriting rule equipped
with negative application conditions and attribute con-
ditions. Fig. 6 illustrates how a transformation system
applies to a UsiXML specification [17]: let G be a
UsiXML specification, when 1) a Left Hand Side
(LHS) matches into G and 2) a Negative Application
Condition (NAC) does not matches into G (note that
several NAC may be associated with a rule) 3) the LHS
is replaced by a Right Hand Side (RHS). G is resul-
tantly transformed into G, a resultant UsiXML speci-
fication. All elements of G not covered by the match
are considered as unchanged. All elements contained
in the LHS and not contained in the RHS are consid-
ered as deleted (i.e., rules have destructive power). To
add to the expressive power of transformation rules,
variables may be associated to attributes within a LHS.
Theses variables are initialized in the LHS, their value
can be used to assign an attribute in the expression of
the RHS (e.g., LHS : button.name:=x, RHS : task.name:=x).
An expression may also be defined to compare a vari-
able declared in the LHS with a constant or with an-
other variable. This mechanism is called attribute con-
dition.

/r
e G is Transtomed lnta c *_
o Host CXML = R cXML P
e,
73]
8 < Mot |pgaches atches
®
E
£
w is Transformed Inta
& NACALHS ——— » RHS
= Transformation Rife 1
Transformalion Rude 2

\‘ Transforrnation Ride N

Figure 9. Transformation system in UsiXML.

A designer reverse engineers an HTML page with a
tool (e.g., [3]) in order to obtain a CUI model. Trans-
formation 1 (Fig. 10) is an abstraction that takes a but-
ton at the CUI level and abstracts it away into an ab-
stract interaction object. The LHS selects every button
and the method they activate and create a correspond-
ing abstract interaction object equipped with a control
facet mapped onto the method triggered by its corre-
sponding concrete interaction object. Some behavioral
specification is preserved at the abstract level. Specify-
ing a behavior in UsiXML is also achieved through
graph transformation. Rule 1 in transformation 1, in its
LHS, embeds a fragment of transformation system.

<abstraction id="AB1" name = "AbstractButtonWIthControl" de-
scription = "this translation abstracts buttons into an AIO with an
activation facet"

<transformationSystem id = "TR2" name="Transfo2"...>

<transformationRule id = "rule1" name "abstractsBut">

<lhs>

<button ruleSpecificlD="1" mapID="2">

<behavior>

<action>

<transformationSystem>

<transformationRule>

<rhs>

<method ruleSpecificlD="3"

maplD ="4" name=X />

<isTriggeredBy isFired="true">

<source sourceld="1">

<target targetld="3">

</isTriggeredBy>

</rhs>

</transformationRule>

</transformationSystem>

</action>

</behaviour>

</button>

</lhs>

<rhs>

<abstractIndividualComponent ruleSpecificld="5">
<control activatedMethod=X>
</abstractIndividualComponent>
<isAbstractedinto>

<source sourceld="2"/>

<target targetld="5"/>

<isAbstractedInto>

<button ruleSpecificld="1" maplD="2">
<behavior>

<transformationSystem>
<transformationRule>

<rhs>

<method ruleSpecificlD="3" mapID ="4"/>
<isTriggeredBy isFired="true">
<source sourceld="1">

<target targetld="3">

</isTriggeredBy>

</rhs>

</transformationRule>
</transformationSystem>
</behaviour>

</button>

</rhs>

<nac.../>
</transformationRule>

</transformationSystem>
</abstraction>

Figure 10. Transformation 1: abstraction.

This may seem confusing at first sight but is very
powerful at the end i.e., we use a mechanism trans-
forming a Ul behavioral specification into another one!
In the RHS, one also see that a relationship is ab-
stracted into has been created. This relationship en-
sures traceability of rule application and helps in main-
taining coherence among different levels of abstrac-
tion. Fig. 11 shows a graphical representation of an-
other transformation: select all boxes at the CUI level,
set these boxes to “vertical”. All widgets contained in
this box are then glued to the left of the box. Note the
presence of a negative application condition that en-

sures that this rule will not be applied to an already
formatted box. A general purpose tool for graph trans-
formation called AGG (Attributed Graph Grammars)
was used to specify this example. No proof the superi-
ority of graphical formalism over textual ones, but at
least the USIXML designer has the choice between
both.

NAC LHS RHS
1:hox 1hox 1:hox

type=vert type=vert

:graphicalGontainment Fgraphical¢ontainment o0 22 I:graphicalGontainment

L L
2:graphicalindividual Component 2:graphicalindividual Component
glusHorz=left o =

Figure 11. Graphical representation of a transformation.

[zarashicamamauaicomponen |

Traceability (and reversibility as a side-effect) of
model transformation is enabled thanks to a set of so-
called interModelMappings (e.g., isAbstractedInto, Is-
ReifiedInto, isTranslatedInto) allowing to relate model
elements belonging to different models [17,18]. As so
it is possible to keep a trace of the application of rules
i.e., when a new element is created a mapping indi-
cates of what element it is an abstraction, a reification,
a translation, etc. Another advantage of using these
mappings is to support multi-directional development
is that they explicitly connect the various levels of our
framework and realizes a seamless integration of the
different models used to describe the system. Knowing
the mappings of a model increases dramatically the
understanding of the underlying structure of a Ul It
enables to answer to questions like: what task a inter-
action object enables?, what domain object attributes
are updated by what interaction object? what interac-
tion object triggers what method? An environment
called AGG (Attributed Graph Grammars tool) is used
for this experiment. AGG consists of a genuine pro-
gramming environment based on graph transforma-
tions. It provides 1) a programming language enabling
the specification of graph grammars 2) a customizable
interpreter enabling graph transformations. AGG was
chosen because it allows the graphical expression of
directed, typed and attributed graphs (for expressing
specifications and rules).

More complex transformation rules could also be
defined, such as, for instance: for each editable graphi-
cal individual component belonging to the CUI, create
an abstract individual component equipped with an in-
put facet at the AUI level (Fig. 12), for each abstract
individual component equipped with a navigation facet
create a task with action type “start/go” on an item of
type “element” (Fig. 13). WEBREVENGE [24] contains
such rules for recovering a task model (at the T&C
level in the Cameleon framework [4]), but these rules
are hardcoded in the tool, thus preventing the designer
from applying any modification, generalization, etc.

NAC

LHS

RHS

abstractContainment

d:graphicallndividual Component

Xsi_type="textComponent’
isEditahle="true"

ZabstractContainer 1:abstractContainer
k F

5isAbstrpctedint
GisAbstractedinto IsAbstiactedint

abstractindividualComponent

isComppsedOf

isAbstraptedinto
J:graphicalContainer

A:graphicallontainment

facet
type="input’ v
4:graphicalindividualComponent
usi_type="tetComponent'
isEditable="trus"

= ZgraphicalCortainer

4:graphical

Y

ontainment

3:graphicallndividualComponent

isAbstractedinto

isEditable="true"

xsi_type="textComponent’

o |facet

" ype="input'

Figure 12. Transformation rule from CUI to AUI.

NAC

TisAbstrpctedinto

1:abstractContainer

g:ahstractC

ntainment

Yfacet

e T—r—T— E:aL]stractlntIivitlualCumpunent|
type="navigation

10:isComposedCf
k J

9facet
type="navigation"

RHS

decomposition

fask

’%Ti“'—> action="start/go"
3 itern="container"

TlisAbstryctedinto

1:abstractContainer

SabstractCpntainment

Y

|5::-|bstractln[Ii\ritILmICDmpnnent|

10isComposedOf

[

isAbstractedinto

o9 facet

type="navigation"

Figure 13. Transformation rule from AUI to Task & Concepts.

6. Software support for UI reverse engi-
neering

To ensure the different operations required by Ul
re-engineering and reverse engineering as defined
above, two applications have been developed: REVER-
SIXML applies derivation rules to reverse engineer a
web page into CUI and AUI expressed in UsiXML.
Contrarily to Vaquita [3], REVERSIXML contains a
parsing engine that automatically processes all deriva-
tion rules so as to produce multiple specifications in
UsiXML, as opposed to XIML (www.ximl.org). XIML
contains only one level of abstraction and is presenta-
tion oriented. UIML [1] is another comparable lan-
guage for specifying a Ul, as opposed to Ul markup
languages such as (X)HTML, XAML
(www.xaml.org).

38 ReversiXL 1.0 - Microsoft Internet Bxplorer

Fehor En Afchoos Fovors Otz 7

Qricstens ~ ©) - [x] [B] @) O retercher pravons @ide @) (- 2 F - 3

acresse | €] bitp:11212.68.223.66rev:mLoho

< ; smlaon Prgecy European Commission

HTMLFie C\Program Files\EasyPHE1-Twwhsedz him
Reverse Enginsering Configacatin
Output File: CAProgram Files\E asyPHP1-Tywwwhtestm Parcour.

Figure 14. Main screen of ReversiXML for HTML

Lounch Reverse Engineering

sgineering Options Cenfigy
Vaquita 20 Menual
Tidy on HTML e

reverse engineering.

| Help | Generalopt| Misc. | Folding | Heuristicst | Heuristics2 | Load Cfg | Save Cfy
| Checkbox | Radio Bt | EditBox |ExtEditBox | PushButton| ListBox | DDListbox | Browse Bt
| Table Row [Logical Field] Sounds _[objectApplef Address [Scrolling text] Hor. Rule | Lists
Table I Table Cell |

Link'AncImrl Form | Image IInmge—lillklI|||:|ge—M:|||| Label

Image Link

Image Border

Target URL

[Image Link Calor

Image Visited Link Color
[Image Active Link Color

[Vertical Spate
[Horizontal Space

Image Internal Narme
Image ID

[Image File

Low Resolution Image File
Image Type

Image Width

Image Altemative Text

Image Height

Figure 15. Control Panel of Derivation rules.

In this way, REVERSIXML captures more informa-
tion than Vaquita (e.g., the behavior) and at more lev-
els of abstractions. This application (Fig. 14) is acces-
sible at http://www.isys.ucl.ac.be/bchi/research/reversi/
RevXMLULphp. It is an on-line application developed
in PHP V5.0 coupled with Tidy (for well-formed web
pages). A control panel (Fig. 15) gives access to the
selection of derivation rules to be processed. Such a
configuration can be saved in a configuration file for
future usage. The second application developed in
TRANSFORMIXML.: it is a Java-based application that
performs the following steps: it takes a UsiXML file as
input and a series of transformations to be applied. The
current specifications in the UsiXML file are then
transformed into their graph counterparts so as to per-
form the graph transformations. Once these transfor-
mations have been processed, the resulting graph is
exported back in UsiXML in order to obtain the
UsiXML specifications of the resulting Ul. Since the
transformations can be applied between any pair or
level (except the code level), the tool could be consid-
ered as rather generic. The transformation engine used
by TRANSFORMIXML is coming from the AGG tool.

7. Conclusion

A series of about 120 derivation rules belonging to
different categories of reverse engineering have been
incorporated in REVERSIXML to support full HTML
reverse engineering. All tasg and attributes of HTML
are supported by this set of rules. But it does not cover
other markup or imperative languages that could be
used in HTML pages, such JavaScript, Perl, Flash, etc.
This allows properties of interested to be addressed to
some extent. In particular, production rules can be
added and modified at any time, they are accessible.
Their application can be made observable, traceable,
and controllable. Multiple levels of abstraction can be

supported: FUI to CUI is supported by tools like [2] or
others that directly converts Web pages into a XML-
compliant language. Other productions can span as fol-
lowing: CUI to AUI, AUI to T&C. Not only these
rules can be fired independently of each other (thus
reaching one level at a time), but also simultaneously
(thus reaching multiple levels at the same time). Once
a Web page has been transformed into USIXML, these
specifications can then be submitted to TRANSFOR-
MIXML to apply productions on demand. Provided
that a converter exists to transform an existing piece of
code into its USIXML counterpart, the same produc-
tions can be applied similarly.

8. Acknowledgements

We gratefully acknowledge the support of the
SIMILAR network of excellence, the European re-
search task force creating human-machine interfaces
similar to human-human communication (http:/www.
similar.cc), Sixth Framework Program (European
Commission, FP6-IST1-2003-507609) and the Sala-
mandre project, Région Wallonne, Initiatives III (Wal-
loon Region, Convention n°001/4511). For more in-
formation on the specification language and tools, see
http://www.usixml.org.

9. References

[1] M. Abrams, C. Phanouriou, A. Batongbacal and J. Shus-
ter, UIML: An Appliance-Independent XML User Inter-
face Language, Proc. of 8" World Wide Web Confer-
ence WWW’8 (Toronto, 11-14 May 1999), Computer
Networks, Vol. 31, No. 11-16, pp. 1695-1708.

[2] A. Agrawal, G. Karsai, and A. Ledeczi, “An End-to-end
Domain-Driven Software Development Framework”,
Comp. of the 18" Annual ACM SIGPLAN Conf. on Ob-
Ject-Oriented Programming OOPSLA’03 (Anaheim, 26-
30 Oct. 2003), ACM Press, New York, pp. 8-15.

[3] L. Bouillon and J. Vanderdonckt, “Retargeting Web
Pages to other Computing Platforms”, Proc. of IEEE 9"
Working Conf. on Reverse Engineering WCRE'2002
(Richmond, 29 Oct.-1 Nov. 2002), IEEE Computer So-
ciety Press, Los Alamitos, 2002, pp. 339-348.

[4] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L.
Bouillon, and J. Vanderdonckt, “A Unifying Reference
Framework for Multi-Target User Interfaces”, Interact-
ing with Comp., Vol. 15, No. 3, June 2003, pp. 289-308.

[5] E.J. Chikofsky and J.H. Cross, “Reverse Engineering
and Design Recovery: A Taxonomy”, [EEE Software,
Vol. 1, No. 7, January 1990, pp. 13-17.

[6] J.R. Cordy, “Hints on the Design of User Interface Lan-
guage Features - Lessons from the Design of Turing", in
Languages for Developing User Interfaces, Jones and
Bartlett, Boston, 1992, pp. 329-340.

[7] J.R. Cordy, T.R. Dean, A.J. Malton and K.A. Schneider,
“Software Engineering by Source Transformation - Ex-
perience with TXL”, Proc. of IEEE 1* Int. Workshop on
Source Code Analysis and Manipulation SCAM'01

(Florence, 10 Nov. 2001), IEEE Computer Society
Press, Los Alamitos, 2001, pp. 168-178.

[8] J.R. Cordy, “Generalized Selective XML Markup of
Source Code Using Agile Parsing”, Proc. of IEEE 11"
Int. Workshop on Program Comprehension IWPC’2003
(Portland, 10-11 May 2003), IEEE Computer Society
Press, Los Alamitos, 2003, pp. 144-153.

[9] V. Crescenzi, G. Mecca, P. Merialdo, and P. Missier,
“An Automatic Data Grabber for Large Web Sites”,
Proc. of the 30" Int. Conf. on Very Large Data Bases
VLDB’2004 (Toronto, August 31-September 3, 2004),
Morgan Kaufmann, 2004, pp. 1321-1324.

[10] G.A. Di Lucca, M. Di Penta, G. Antoniol, and G.
Casazza, “An Approach for Reverse Engineering of
Web-Based Applications”, Proc. of 8" IEEE Working
Conference on Reverse Engineering WCRE 2001 (Stutt-
gart, 5-7 October 2001), IEEE Computer Society Press,
Los Alamitos, 2001, pp. 231-240.

[11] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg
(eds.), Handbook of Graph Grammars and Computing
by Graph Transformation, Application, Languages and
Tools, Vol. 2, World Scientific, Singapore, 1999.

[12] D.W. Embley, D.M. Campbell, Y.S. Jiang, Y.-K. Ng,
R.D. Smith, S.W. Liddle, and D.W. Quass, “A concep-
tual-modeling approach to extracting data from the
web”, Proc. of the 17" Int. Conf. on Conceptual Model-
ing ER’98 (Singapore, November 16-19, 1998), Lecture
Notes in Computer Science, Vol. 1507, Springer-Verlag,
Berlin, 1998, pp. 78-91.

[13] Y. Gaeremynck, L.D. Bergman, and T. Lau, “MORE for
Less: Model Recovery from Visual Interfaces for Multi-
Device Application Design”, Proc. of the 8" ACM Int.
Conf. on Intelligent User Interfaces 1UI’2003 (Miami,
12-15 Jan. 2003), ACM Press, NY, 2003, pp 69-76.

[14] G. Gottlob, Ch. Koch, R. Baumgartner, M. Herzog, and
S. Flesca, “The Lixto Data Extraction Project - Back and
Forth between Theory and Practice”, Proc. of the 23"
ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems PODS’2004 (Paris, June 14-
16, 2004), ACM Press, New York, 2004, pp. 1-12

[15] M. El-Ramly, P. Iglinski, E. Stroulia, P. Sorenson, and
B. Matichuk, “Modeling the System-User Dialog Using
Interaction Traces”, Proc. of 8" IEEE Working Conf. on
Reverse Engineering WCRE’2001 (Stuttgart, 5-7 Oct.
2001), IEEE CS. Press, Los Alam., 2001, pp. 208-217.

[16] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A.
Wood, “Transformation: The Missing Link of MDA”,
Proc. of the I Int. Conf. on Graph Transformation
ICGT 02 (Barcelona, 7-12 Oct. 2002), Lecture Notes in
Computer Science, Vol. 2505, Springer-Verlag, Berlin,
2002, pp. 90-105.

[17] Q. Limbourg and J. Vanderdonckt, “UsiXML: A User
Interface Description Language Supporting Multiple
Levels of Independence”, Engineering Advanced Web
Applications, Matera, M., Comai, S. (Eds.), Rinton
Press, Paramus, 2004, pp. 325-338.

[18] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon,
L., and Lopez, V. “UsiXML: a Language Supporting
Multi-Path Development of User Interfaces, Proc. of 9"
IFIP Working Conference on Engineering for Human-

Computer Interaction jointly with 11™ Int. Workshop on
Design, Specification, and Verification of Interactive
Systems EHCI-DSVIS’2004 (Hamburg, July 11-13,
2004). Lecture Notes in Computer Science, Vol. 3425,
Springer-Verlag, Berlin, 2005, pp. 207-228.

[19] E. Merlo, P.-Y. Gagné, and A. Thiboutét, “Inference of
Graphical AUIDL Specifications for the Reverse Engi-
neering of User Interfaces”, Proc. of IEEE Int. Conf. on
Soft-ware Maintenance (19-23 September 1994), IEEE
Computer Society Press, Los Alamitos, 1994, pp. 80-88.

[20] E. Merlo., P.-Y. Gagné, J.-F. Girard, K. Kontogiannis,
L. Hendren, P. Panagaden, and R. De Mori, “Reengi-
neering User Interfaces”, IEEE Software, Vol. 12, No. 1,
January 1995, pp. 64-73.

[21] M.M. Moore, “Representation Issues for Reengineering
Interactive Systems”, ACM Computing Surveys, Vol. 28,
No. 4, December 1996. Article # 199.

[22] M.M. Moore, “Rule-Based Detection for Reengineering
User Interfaces”, Proc. of the 3" IEEE Working Conf.
on Reverse Engineering WCRE’96 (Monterey, 8-10 No-
v. 1996), IEEE CS Press, Los Alam., 1996, pp. 42-49.

[23] M.M. Moore and S. Rugaber, “Using Knowledge Rep-
resentation to Understand Interactive Systems”, Proc. of
the 5™ IEEE Int. Workshop on Program Comprehension
IWPC'97 (Dearborn, 28-30 May 1997), IEEE Computer
Society Press, Los Alamitos, 1997, pp. 60-69.

[24] L. Paganelli and F. Paterno, “Automatic Reconstruction
of the Underlying Interaction Design of Web Applica-
tions, Proc. of the 14" ACM Int. Conf. on Software En-
gineering and Knowledge Engineering SEKE 02 (Ischia,
15-19 July 2002), ACM Press, NY, pp. 439-445.

[25] H. Partsch and R. Steinbruggen, “Program Transforma-
tion Systems”, ACM Computing Surveys, Vol. 15, No. 3,
September 1983, pp. 199-236.

[26] F. Ricca, P. Tonella, and 1.D. Baxter, “Restructuring
Web Applications via Transformation Rules”, Proc. of
IEEE Workshop on Source Code Analysis and Manipu-
lation SCAM’2001 (Florence, 5-9 Nov. 2001), IEEE
Computer Soc. Press, Los Alamitos, 2001, pp. 150-160.

[27] S. Rugaber, “A Tool Suite for Evolving Legacy Soft-
ware”, Proc. of IEEE Int. Conf. on Software Mainte-
nance ICSM'99 (Oxford, 30 August-3 Sep. 1999), IEEE
Comp. Society Press, Los Alamitos, 1999, pp. 33-39.

[28] K.A. Schneider and J.R. Cordy, “Abstract User Inter-
faces: a Model and Notation to Support Plasticity in In-
teractive Systems”, Proc. of Int. Workshop on Design,
Specification, and Verification of Interactive Systems
DSV-1S°2002 (Rostock, 12-14 June 2002), Lecture
Notes in Computer Science, Vol. 2220, Springer-Verlag,
Berlin, 2002, pp. 28-48.

[29]1E. Stroulia, J. Thomson, and Q. Situ, “Constructing
XML-speaking Wrappers for WEB Applications: To-
wards an Interoperating WEB”, Proc. of IEEE 7" Work-
ing Conf. on Reverse Engineering WCRE’2000 (Bris-
bane, 23-25 Nov. 2000), IEEE Computer Society Press,
Los Alamitos, 2000, pp. 59-69.

[30] E. Stroulia, M. El-Ramly, P. Iglinski, and P.G. Soren-
son, “Ul Reverse Engineering in Support of Interface
Migration to the Web”, Journal of Automated Software
Engineering, Vol. 10, No. 3, July 2003, pp. 271-301.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

