
Reverse Engineering of Web Pages based on 
Derivations and Transformations  

 
Laurent Bouillon, Quentin Limbourg, Jean Vanderdonckt, and Benjamin Michotte 

Université catholique de Louvain (UCL), School of Management (IAG), 
Information Systems Unit (ISYS), Belgian Lab. of Computer-Human Interaction (BCHI) 

Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium) 
{bouillon, limbourg, vanderdonckt, michotte}@uclouvain.be 

 
Abstract 

The final user interface of an information system 
could be reverse engineered according to a Model-
Driven Engineering perspective to multiple levels of 
abstraction, either independently of each other or si-
multaneously depending on the designer’s goals: con-
crete user interface (which is independent of the user 
interface toolkit), abstract user interface (which is in-
dependent of any interaction modality), and “task and 
concepts” (which is independent of any particular im-
plementation). To support the user interface reverse 
engineering from the code level to any model level, a 
set of derivation rules have been implemented in Re-
versiXML. To support the user interface reverse engi-
neering from any model to any other level, graph 
grammars have been implemented in TransformiXML. 
A graph grammar consists of graph transformation 
rules, called productions, that accept as input a graph 
representation of the user interface to be reengineered, 
apply the transformation, and obtain a result that can 
be further exploited to re-create a new user interface. 
 
1. Introduction 
 

According the Model-Driven Engineering (MDE) 
[16], four paths exist for supporting forward and re-
verse engineering of computer-based systems: code to 
code (synonym of transcoding), code to model (for re-
verse engineering), model to code (for forward engi-
neering), and model to model (for any step). According 
to this terminology, techniques for User Interface (UI) 
forward engineering typically support a development 
life cycle where the UI can be obtained from one or 
many abstract models (e.g., a task model, a domain 
model). Conversely, techniques for UI reverse engi-
neering attempt to find back these abstract models by 
examining the UI in different ways (e.g., static or dy-
namic analysis). By combining reverse engineering 
and forward engineering into one sequence, reengi-
neering [5] can be supported in general or adapting in 
particular when a UI needs to be adapted for another 
context of use that was not initially planned for (e.g., 

another computing platform). Although these different 
approaches (i.e., forward, reverse, reengineering, and 
adapting) can be combined in theory to incrementally 
build more sophisticated processes, we observe in 
practice that this is hard to achieve. To characterize 
this situation and prior to any further investigation, we 
define a set of properties of interest for UI reengineer-
ing: 

• Separation of concerns: any reengineering system 
should be decomposed into a reengineering logic 
containing the knowledge required to perform the 
reengineering and a reengineering engine applying 
this knowledge with a clear separation between. 
The engine should be controlled by reengineering 
parameters that should be externally given (Fig. 1). 

Initial User Interface

Reengineering engineReengineering
parameters

Reengineering
logic

Final User Interface

Reengineering system

Initial User Interface

Reengineering engineReengineering
parameters

Reengineering
logic

Final User Interface

Reengineering system

 
Fig. 1. Separation of concern in a reengineering system. 

• Flexible operationalization of reengineering 
logic: any type of knowledge (e.g., rewriting rule 
[26], transformation [25], production rule [21]) 
should be specified explicitly in a way that remains 
external to the engine so that the engine remains 
autonomous when the logic changes. In this way, 
the logic can be expanded, modified when needed. 

• Flexible usage of reengineering engine: the en-
gine should rely on the knowledge contained in the 
logic to apply it in a way that is controlled by the 
reengineering parameters. In this way, the reengi-
neering process can be made observable and trace-
able to the designer’s eyes. If needed, the engine 
could be controlled by the designer, by a system 
agent or in a mixed-initiative way combining both. 

• Multi-level abstraction: the system should pro-
duce a reengineered final UI from an initial UI so 



as to reach multiple levels of abstraction on de-
mand [18]. Typical levels include device independ-
ence (i.e. obtaining a UI model that is independent 
from any interaction device), computing platform 
independence (i.e., obtaining a UI model that is in-
dependent from any computing platform), and…  

• Modality independence: the system should also 
produce a UI model that remains independent of 
any modality of interaction [17]. At this level, there 
should be no reference to the peculiar interaction 
techniques and modalities (e.g., character UI, 
graphical UI, vocal UI, and virtual UI) 

• Language neutrality: a consequence of the plat-
form independence is that, in principle, the system 
should be developed so as to accommodate UI pro-
gramming in multiple languages whether they are 
imperative (e.g., Java, C++), declarative (e.g., 
Prolog or LISP), or markup (e.g., HTML, XML). 

Several tools that have been developed so far to 
support UI forward engineering, reverse engineering, 
reengineering, or migration (i.e. porting a UI from one 
source computing platform such as the Web to another 
target computing platform such as a PocketPC or a 
mobile phone) suffer from one common shortcoming: 
the algorithms and the logic they use is often hard-
coded in the system itself, thus leaving little or no 
room for supporting the above properties of interest. It 
is hard to modify the knowledge contained in the sys-
tem nor it complex if not possible to control the proc-
ess in a flexible way. Equally frequent is the system 
tightly coupled to one particular language (e.g., COBOL 
or C) or a family of them (e.g., HTML, DTHML). 
When the ‘separation of concern’ property is not satis-
fied, it is likely that others properties are not better sat-
isfied or perhaps very partially. 

In this paper, we would like to develop a series of 
techniques that addresses the above shortcomings by 
having a system satisfying the properties of interest by 
construction. For this purpose, we show in Section 2 
how existing work has attempted to address this prob-
lem by reporting on some significant initiatives. In 
Section 3, a reference framework for UI reengineering 
is presented that characterizes how various techniques 
may address the properties of interest. Section 4 covers 
the ‘code to model’ part of the MDE approach by rely-
ing on derivation rules. Section 5 covers the ‘model to 
model’ part of the MDE approach by defining a tech-
nique based on graph grammars and graph transforma-
tion to support progressive transformation of a initial 
UI into a final one by applying a series of transforma-
tions. Each transformation, also called production, is 
defined by left hand-side, a right hand-side, and a 
negative application condition. Section 6 explains how 

two tools that have been developed to support the dif-
ferent parts of the MDE approach applied to UIs: RE-
VERSIXML for derivation rules and TRANSFORMIXML, 
a tool that has been developed to support graph trans-
formations applied on different models involved in the 
reference framework. Some examples of reverse engi-
neering transformations are given that transforms the 
UI specifications one level at time or that skips one or 
multiple levels simultaneously. All levels are uni-
formly expressed in USIXML, a XML-compliant UI 
Description Language. Section 7 concludes the paper 
by summarizing the original aspects of the contribu-
tion. 

 
2. Related work 
 

First of all, we have to distinguish UI reverse engi-
neering from data extraction from web pages [3,5]. 
The former is aimed at capturing the UI contained in a 
web page [4], while the latter is intended to extract 
[12], preferably automatically or semi-automatically, 
the data contained in a web page. In the first case, the 
ultimate goal is to recover a UI model consisting of 
both presentation and dialog ; in the second case, the 
ultimate goal is intended to recover a data or a domain 
model. Although the UI is a very practical way to look 
for data extraction, the problem of UI reverse engi-
neering is probably easier than data reverse engineer-
ing since the HTML is more structured for the UI than 
it is for data. Several efficient techniques exist for data 
extraction (e.g. some representative examples include 
Lixto [14] and wrappers [9,12]). This paper is focusing 
of UI reverse engineering so as to reach the full UI re-
engineering cycle. 

Preliminary work has already been conducted in the 
field of UI reengineering, especially to migrate charac-
ter-based UIs (CUIs) to Graphical User Interfaces 
(GUIs). Another trend in the reengineering of UI is the 
migration of the UI to a platform that uses another mo-
dality. Most of the tools allow reverse engineering by 
constructing an abstract representation of the system 
UI that is further transformed to obtain a new UI. 

MORPH [21,22,23] identifies basic user interaction 
tasks in legacy code by applying static program analy-
sis techniques, including control flow analysis, data 
flow analysis, and pattern matching. The resulting 
model is then used to transform the detected abstrac-
tions in a graphical environment from a specific widget 
toolkit. The original code is then modified to take into 
account the new dialogue structure of GUIs. MORPH is 
part of a larger environment called MORALE [27] sup-
porting complete reengineering process. Morph actu-
ally supports separation of concern with only one level 



of abstraction, the engine being driven by some pa-
rameters that give already some degree of flexibility. 
Operationalization is partially achieved: introducing a 
new heuristic or rule requires some intervention of 
MORPH’s developer. 

MORE [13] produces applications that are device in-
dependent. A Platform Independent Application can be 
created either by a design tool or by abstracting a con-
crete UI thanks to the generalization process. Generali-
zation is done by reverse engineering the UI code. This 
process starts with the detection of interaction ele-
ments. Secondly, the properties and semantic informa-
tion of these elements can be inferred. A specialized 
engine with a device profile then creates another appli-
cation specialized for a particular device. Similarly to 
MORPH, operationalization and control are partial. 

 The reengineering process in TAMEX [15,29,30] al-
lows one to produce HTML UIs composed of data 
contained in several other Web pages. The approach 
followed by TAMEX is based on the concept of task-
specific mediation: information sources within an ap-
plication domain are encapsulated within wrapper 
agents (data extraction) interacting with an intelligent 
intermediary agent, the mediator (aggregate data). 
XML is used as an intermediate data structure for in-
formation exchange and as a modeling language for 
the mediator’s domain ontology and task structure. The 
information extraction is done with an XPath-based al-
gorithm for generating extraction rules from HTML. 

REWEB’s reengineering process [10] restructures 
Web applications in order to avoid their inevitable deg-
radation. It uses a set of transformation rules aiming at 
the improvement of maintainability, usability and port-
ability. It also restructures the design thanks to a web 
application model and by incorporating frame-based 
navigation. AUIDL is a User Interface Description 
Language used for reverse engineering a model of the 
UI so as to recreate it in another context of use [19,20]. 

WEBREVENGE [24] is a tool that analyzes Web site 
code in order to automatically reconstruct the underly-
ing logical interaction design. Such a design is repre-
sented through task models that describe how activities 
should be performed to reach users’ goals. WEBRE-
VENGE is capable of recovering a task model from web 
pages, which is different from VAQUITA [3], which 
only recovers the concrete presentation model of a web 
page in XIML (www.ximl.org), without supporting the 
forward engineering part that should come afterward. 

The idea of program transformation [25] has been 
extensively researched by various works, including 
TXL [6,7,8,28], although not particularly targeted at 
UIs. [25] is also another example of successfully ap-
plying program transformation to reengineer an exist-

ing system. 
After analyzing these various approaches, we ob-

serve that the properties of interest are only partially 
supported in most existing work and there is room to 
introduce a flexible mechanism for UI transformation, 
based on graph grammars and transformations. 

 
3. User interface re-engineering concepts 
3.1. The Cameleon reference framework 

The Cameleon Reference Framework [4] locates UI 
development steps for context-sensitive interactive ap-
plications. A context is defined as a triple of the form 
<U, P, E> where U, P, E respectively represent a user, 
a platform model, and a physical environment. A sim-
plified version (Fig. 2) structures the development 
process for two contexts of use (here, A and B) into 
four levels of abstraction with respect to code: 

1. Task and concepts: describe the various tasks to be 
carried out and the domain-oriented concepts as they 
are required by these tasks to be performed. 

2. Abstract User Interface (AUI): a canonical expres-
sion of the renderings and manipulation of the do-
main concepts and functions in a way that is inde-
pendent of the interaction modality (e.g., graphical, 
vocal or tactile). The elements used in the logical UI 
are abstractions of existing widgets. 

3. Concrete User Interface (CUI): concretizes a AUI 
into Concrete Interaction Objects (CIOs) so as to de-
fine widgets layout and interface navigation. This in-
terface is now composed of existing UI widgets, but 
the widgets are independent of any particular toolkit. 

4. Final User Interface (FUI): The UI produced at the 
very last step of the reification process is supported 
by a multi-target development environment. A FUI 
is typically the UI code to be interpreted or com-
piled. 

The downward arrows represent reification steps 
(forward engineering), from the more abstract to the 
operational interface. Reification is the transformation 
of a description (or of a set of descriptions) into a de-
scription (or a set of descriptions) whose level of ab-
straction is lower than that of the source one(s). In the 
multi-target reference framework, it is the inference 
process that covers the inference process from high-
level abstract descriptions to run-time code. Upward 
arrows stand for abstraction steps. This process trans-
forms any specifications into specifications at a higher 
level of abstraction. Here, abstraction is the elicitation 
of descriptions that are more abstract than the descrip-
tions that serve as input to this process.  



 
Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction  

Final User
Interface (FUI)

Concrete User
Interface (CUI)

Abstract User
Interface (AUI)

Task &
Concepts

Rendering

Code

Platform-
independent
CIO

Modality-independent
AIO type

Task
Classes

Download

<input type=submit value=“Download" name=btnG>

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered: download file
Object: computer file

OSF/Motif
XmButton

Windows
push button

Download Down
Load

VRML97/X3D
button

Software
key

Function
key

Graphical 3D push button Physical push button
Platform-
independent
CIO type

Physical control AIOModality-dependent
AIO

Final User
Interface (FUI)

Concrete User
Interface (CUI)

Abstract User
Interface (AUI)

Task &
Concepts

Rendering

Code

Platform-
independent
CIO

Modality-independent
AIO type

Task
Classes

DownloadDownload

<input type=submit value=“Download" name=btnG>

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered: download file
Object: computer file

OSF/Motif
XmButton

Windows
push button

DownloadDownload Down
Load

Down
Load

VRML97/X3D
button

Software
key

Function
key

Graphical 3D push button Physical push button
Platform-
independent
CIO type

Physical control AIOModality-dependent
AIO

 
Figure 2. The Cameleon Reference Framework [4].   Figure 3. User interface expression in USIXML.

Finally, horizontal arrows correspond to the transla-
tion of the interface from one type of platform to an-
other, or more generally, from one context to another. 
Not all steps should be achieved in a sequential order-
ing. Instead, locating what steps are performed, when, 
from which entry point and toward what subsequent 
step are important. In Fig. 2, transcoding tools start 
with a FUI for a source platform ( ) and transforms it 
into another FUI for a target platform ( ). Similarly, 
portability tools start with a CUI for a source platform 
( ) and transforms it into another CUI for another 
platform ( ), that in turn leads to a new FUI for that 
platform ( ). To overcome shortcomings identified 
for these tools, there is a need to raise the level of ab-
straction by working at the AUI level. UI Reverse En-
gineering abstracts any initial FUI ( ) into concepts 
and relationships denoting a AUI ( ), which can then 
be translated into a new AUI ( ) by taking into ac-
count constraints and opportunities for the target plat-
form. UI Forward Engineering then exploits this AUI 
( ) to regenerate a new AUI adapted to this platform, 
by recomposing the CUI ( ) which in turn is reified in 
an executable FUI ( ). 
 
3.2. The User Interface Description Language 

 
To express a UI at any level of abstraction, as de-

fined in Fig. 2, a User Interface Description Language 
(UIDL) has been defined and developed: UsiXML 
(USer Interface eXtensible Markup Language – http:// 
www.usixml.org), a XML-compliant UIDL that covers 
all the aspects of Fig. 2 [17,18]. USIXML model col-
lection (Fig. 7) is structured according to the four basic 
levels of abstractions defined in Fig. 2. Each level of 
Fig. 2 can be in turn further decomposed into sub-
levels as illustrated in Fig. 3 [17]: 
• At the FUI level, the rendering materializes how a 

particular UI coded in one language (markup, pro-
gramming or declarative) is rendered depending on 
the UI toolkit, the window manager and the presen-

tation manager. For example, a push button pro-
grammed in HTML at the code sub-level can be 
rendered differently, here on MacOS X and Java 
Swing. Therefore, the code sub-level is material-
ized onto the rendering sub-level. 

• Since the CUI level is assumed to abstract the FUI 
independently of any computing platform, this 
level can be further decomposed into two sub-
levels: platform-independent CIO and CIO type. 
For example, a HTML push-button belongs to the 
type “Graphical 2D push button”. Other members 
of this category include a Windows push button 
and XmButton, the OSF/Motif counterpart. 

• Since the AUI level is assumed to abstract the CUI 
independently of any modality of interaction, this 
level can be further decomposed into two sub-
levels: modality-independent AIO and AIO type. 
For example, a software control (whether in 2D or 
in 3D) and a physical control (e.g., a physical but-
ton on a control panel or a function key) both be-
long to the category of control AIO. 

• At the T&C level, a task of a certain type (here, 
download a file) is specified that naturally leads to 
AIO for controlling the downloading. 

 
4. Derivation Rules 
 

According to MDE [16], ‘code to model’ means 
that the code level (here, the FUI ) should be ab-
stracted to any upper level (here, to CUI , AUI , 
and Task & Concepts , respectively). If we want to 
achieve a certain level of independence with respect to 
the platform and the language, it is impossible to adopt 
a uniform approach for every type of FUI. This would 
require a semantic definition of nearly all program-
ming and markup languages that could be ever used to 
develop a UI and a module capable of interpreting the 
code according to these semantics. This is far beyond 
the capabilities of what we want to reach. However, it 
is possible to express rules that consider the source 



language of the FUI so as to abstract it to any upper 
level. The abstraction can go until concrete, abstract, 
and task & concepts, independently or concurrently. 
This means that the reverse engineering can cope with 
multiple levels of abstraction simultaneously if needed. 

For this purpose, we rely of derivation rules that 
derive UsiXML specifications at any level from the 
source code. The source code is of course varying 
from one platform to another, but the derivation rules 
do not fundamentally change. These derivation rules 
are represented as functions that can be interpreted 
both at design- and run-time, as they can be applied for 
every element. Fig. 4 reproduces a derivation rule that 
captures some aspect of the UI layout: Element.id 
represents the current element (to which the attribute is 
added). Each derivation rule examines language pat-
terns of the source code and creates a corresponding 
structure in terms of a UI graph. 

CheckAlignement(x,element) 
∀ x ∈ Ts : x.IsInPath(center) → AddAttribute (ele-
ment.id, “glueHorizontal, “middle”) 
∀ x ∈ Ts : x.IsInPath(div.align=center) → AddAttribute 
(element.id, “glueHorizontal”, “middle”) 
∀ x ∈ Ts : x.IsInPath(div.align=right) → AddAttribute 
(element.id, “glueHorizontal”, “right”) 
∀ x ∈ Ts : x.IsInPath(div.align=left) →AddAttribute 
(element.id, “glueHorizontal”, “left”) 
∀ x ∈ Ts : x.align=left→AddAttribute (element.id, 
“glueHorizontal”, “left”) 
∀ x ∈ Ts : x.align=right→AddAttribute (element.id, 
“glueHorizontal”, “right”) 
∀ x ∈ Ts : x.align=center→AddAttribute (element.id, 
“glueHorizontal”, “middle”) 
∀ x ∈ Ts : x.valign=bottom→AddAttribute (element.id, 
“glueVertical”, “bottom”) 
∀ x ∈ Ts : x.valign=top→AddAttribute (element.id, 
“glueVertical”, “top”) 
∀ x ∈ Ts : x.valign=middle→AddAttribute (element.id, 
“glueVertical”,  “middle”) 
∀ x ∈ Ts : x.IsInPath(div.valign=middle)→AddAttribute 
(element.id, “glueHorizontal”, “middle”) 
∀ x ∈ Ts : x.IsInPath(div.valign=top)→AddAttribute 
(element.id, “glueHorizontal”, “top”) 
∀ x ∈ Ts: x.IsInPath(div.valign=bottom) →AddAttrib-
ute(element.id, “glueHorizontal”,“bottom”) 

Figure 4. Example of a derivation rule. 

The set of derivation rules of Fig. 4 check if the ele-
ment x is in the same path as an alignment modifier 
(div, center, align attributes) in a HTML page, and if it 
is the case, an attribute is added in the UsiXML speci-
fications to reflect the horizontal position of the ele-

ment. Fig. 5 shows a derivation rule for abstracting a 
“Submit” HTML pushbutton into a command button at 
the CUI level. This rule could be generalized for every 
push button in principle, but here the label clearly con-
firms the nature of the push button. 

∀ x ∈ Ts : x = input ٨ (x.type=“button” ٧ 
x.type=“submit” ٧ x.type=“image” ٧ x.type=“reset”) 
→Addnode (“button”, idbutton) where idbutton =∑ 
node ∈ Tt ٨ AddAttribute (idbutton, “id”, idbutton) ٨ 
AddAttribute (idbutton, “name”, idbutton) ٨ AddAttrib-
ute (idbutton, “isVisible”, “true”) 

Figure 5. Derivation rule for a “Submit” button. 

Similar derivation rules exist for addressing the 
following families of problems (here for a Web page): 
detecting the UI structure, mirroring the UI structure in 
the specifications, recognition of UI layout, detection 
of widgets selected for input, output, and operations, 
identification of composition of elements that together 
create a group, identification of visual and auditive 
properties of a UI, identification of intra-page links, 
identification of extra-page links, etc. 

For instance, Fig. 6 exemplifies how a sub-part of 
the Google home page can be reverse engineered at all 
levels thanks to those derivation rules: the “Google 
Search” submit button at the FUI level is abstracted 
into a push button belonging to a window at the CUI 
level. This can be in turn abstracted into an activator 
belonging to a container at the AUI level and into a 
“Launch Search” sub-task of the general “Search 
page” task. The “>>” indicates that a sequence is 
needed: the keywords need to be entered first, then 
“Launch Search” or “Launch Special Search” in any 
order (“|||” LOTOS operator). 

Task & concept  

AUI  

CUI  

FUI  
Figure 6. Reverse engineering of a FUI. 

 
 



 
Figure 7. USIXML Model Collection. 

 
Figure 8. Transformation model as defined in UsiXML. 

5. Graph grammars and transformations 
5.1. Definitions of models 

Thanks to derivation rules introduced in the previ-
ous Section 4, we can obtain UsiXML specifications of 
a FUI at any level of abstraction from the code level. 
In practice, it is possible either to derive all levels si-
multaneously from the FUI or to obtain only the CUI 
level and ask for further abstractions later on. Accord-
ing to MDE, this part is called ‘model to model’ trans-
formation. To support them, Graph Transformation 
(GT) techniques [2,11,16] were chosen to formalize 
UsiXML, the language designed to support multi-path 
UI development, because it is (1) Visual: every ele-
ment within a GT based language has a graphical syn-
tax; (2) Formal: GT is based on a sound mathematical 
formalism (algebraic definition of graphs and category 

theory) and enables verifying formal properties on rep-
resented artifacts; (3) Seamless: it allows representing 
manipulated artifacts and rules within a single formal-
ism. Furthermore, the formalism applies equally to all 
levels of abstraction of UsiXML. 

Thanks to the four abstraction levels, it is possible 
to establish mappings between instances and objects 
found at the different levels and to develop transforma-
tions that find abstractions or reifications or combina-
tions. For example, if a GUI needs to be virtualized, a 
series of abstractions is applied until the sub-level 
“Software control AIO” sub-level is reached. Then, a 
series of reification can be applied to come back to the 
FUI level to find out another object satisfying the same 
constraints, but in 3D. If the GUI needs to be trans-
formed for a UI for augmented reality for instance, the 



next sub-level can be reached with an additional ab-
straction and so forth. The combinations of the trans-
formations allow establishing development paths. To 
face multi-path development of UIs in general, 
UsiXML is equipped with a collection of basic UI 
models (i.e., domain model, task model, AUI model, 
CUI model, context model and mapping model) (Fig. 
7) and a so-called transformation model (Fig. 8) that 
supports transformation between the different levels of 
abstraction. Beyond the AUI and CUI models, other 
models are defined: 
• taskModel: is a model describing the interactive 

task as viewed by the end user interacting with the 
system. A task model represents a decomposition 
of tasks into sub-tasks linked with task relation-
ships. Therefore, the decomposition relationship is 
the privileged relationship to express this hierarchy, 
while temporal relationships express the temporal 
constraints between sub-tasks of a same parent 
task. 

• domainModel: is a description of the classes of 
objects manipulated by a user while interacting 
with a system. 

• mappingModel: is a model containing a series of 
related mappings between models or elements of 
models. A mapping model gathers a set of inter-
model relationships that are semantically related. 

• contextModel: is a model describing the three as-
pects of a context of use in which a end user is car-
rying out an interactive task with a specific com-
puting platform in a given surrounding environ-
ment. A context model consists of a user model, a 
platform model, and an environment model. 

• uiModel: is the topmost superclass containing 
common features shared by all component models 
of a UI. A uiModel may consist of a list of compo-
nent model sin any order and any number, such as 
task model, a domain model, an abstract UI model, 
a concrete UI model, mapping model, and context 
model. A UI model needs not include one of each 
model component. Moreover, there may be more 
than one of a particular kind of model component. 

5.2. Definitions of model transformations 
Transformations are specified using transformation 

systems. Transformation systems rely on the theory of 
graph grammars [2,11]. We first explain what a trans-
formation system is and then illustrate how they may 
be used to specify UI model transformation. The pro-
posed formalism to represent model-to-model trans-
formation in UsiXML is graph transformations. 
UsiXML has been designed with an underlying graph 
structure. Consequently any graph transformation rule 

can be applied to a UsiXML specification. Graph 
transformations have been shown convenient and effi-
cient for our present purpose in [25]. A transformation 
system is composed of several transformation rules. 
Technically, a rule is graph rewriting rule equipped 
with negative application conditions and attribute con-
ditions. Fig. 6 illustrates how a transformation system 
applies to a UsiXML specification [17]: let G be a 
UsiXML specification, when 1) a Left Hand Side 
(LHS) matches into G and 2) a Negative Application 
Condition (NAC) does not matches into G (note that 
several NAC may be associated with a rule) 3) the LHS 
is replaced by a Right Hand Side (RHS). G is resul-
tantly transformed into G’, a resultant UsiXML speci-
fication. All elements of G not covered by the match 
are considered as unchanged. All elements contained 
in the LHS and not contained in the RHS are consid-
ered as deleted (i.e., rules have destructive power). To 
add to the expressive power of transformation rules, 
variables may be associated to attributes within a LHS. 
Theses variables are initialized in the LHS, their value 
can be used to assign an attribute in the expression of 
the RHS (e.g., LHS : button.name:=x, RHS : task.name:=x). 
An expression may also be defined to compare a vari-
able declared in the LHS with a constant or with an-
other variable. This mechanism is called attribute con-
dition. 
 

 
Figure 9. Transformation system in UsiXML. 

 
A designer reverse engineers an HTML page with a 

tool (e.g., [3]) in order to obtain a CUI model. Trans-
formation 1 (Fig. 10) is an abstraction that takes a but-
ton at the CUI level and abstracts it away into an ab-
stract interaction object. The LHS selects every button 
and the method they activate and create a correspond-
ing abstract interaction object equipped with a control 
facet mapped onto the method triggered by its corre-
sponding concrete interaction object. Some behavioral 
specification is preserved at the abstract level. Specify-
ing a behavior in UsiXML is also achieved through 
graph transformation. Rule 1 in transformation 1, in its 
LHS, embeds a fragment of transformation system. 



<abstraction id="AB1" name = "AbstractButtonWIthControl" de-
scription = "this translation abstracts buttons into an AIO with an 
activation facet" 

<transformationSystem id = "TR2" name="Transfo2"...> 
<transformationRule id = "rule1" name "abstractsBut"> 
<lhs> 
<button ruleSpecificID="1" mapID="2"> 
<behavior> 
<action> 
<transformationSystem> 
<transformationRule> 
<rhs> 
<method ruleSpecificID="3"  
mapID ="4" name=X /> 
<isTriggeredBy isFired="true"> 
<source sourceId="1"> 
<target targetId="3"> 
</isTriggeredBy>  
</rhs> 
</transformationRule> 
</transformationSystem> 
</action> 
</behaviour> 
</button> 
</lhs> 

 
<rhs> 
<abstractIndividualComponent ruleSpecificId="5"> 
<control activatedMethod=X> 
</abstractIndividualComponent> 
<isAbstractedInto> 
<source sourceId="2"/> 
<target targetId="5"/> 
<isAbstractedInto>     
 
<button ruleSpecificId="1" mapID="2"> 
<behavior> 
<transformationSystem> 
<transformationRule> 
<rhs> 
<method ruleSpecificID="3" mapID ="4"/> 
<isTriggeredBy isFired="true"> 
<source sourceId="1"> 
<target targetId="3"> 
</isTriggeredBy>  
</rhs> 
</transformationRule> 
</transformationSystem> 
</behaviour> 
</button> 
</rhs>   
... 
<nac.../> 
 
</transformationRule> 
</transformationSystem> 

</abstraction> 

Figure 10. Transformation 1: abstraction. 

This may seem confusing at first sight but is very 
powerful at the end i.e., we use a mechanism trans-
forming a UI behavioral specification into another one! 
In the RHS, one also see that a relationship is ab-
stracted into has been created. This relationship en-
sures traceability of rule application and helps in main-
taining coherence among different levels of abstrac-
tion. Fig. 11 shows a graphical representation of an-
other transformation: select all boxes at the CUI level, 
set these boxes to “vertical”. All widgets contained in 
this box are then glued to the left of the box. Note the 
presence of a negative application condition that en-

sures that this rule will not be applied to an already 
formatted box. A general purpose tool for graph trans-
formation called AGG (Attributed Graph Grammars) 
was used to specify this example. No proof the superi-
ority of graphical formalism over textual ones, but at 
least the USIXML designer has the choice between 
both. 

LHSNAC RHS

::=

LHSNAC RHS

::=

 
Figure 11. Graphical representation of a transformation. 

Traceability (and reversibility as a side-effect) of 
model transformation is enabled thanks to a set of so-
called interModelMappings (e.g., isAbstractedInto, Is-
ReifiedInto, isTranslatedInto) allowing to relate model 
elements belonging to different models [17,18]. As so 
it is possible to keep a trace of the application of rules 
i.e., when a new element is created a mapping indi-
cates of what element it is an abstraction, a reification, 
a translation, etc. Another advantage of using these 
mappings is to support multi-directional development 
is that they explicitly connect the various levels of our 
framework and realizes a seamless integration of the 
different models used to describe the system. Knowing 
the mappings of a model increases dramatically the 
understanding of the underlying structure of a UI. It 
enables to answer to questions like: what task a inter-
action object enables?, what domain object attributes 
are updated by what interaction object? what interac-
tion object triggers what method? An environment 
called AGG (Attributed Graph Grammars tool) is used 
for this experiment. AGG consists of a genuine pro-
gramming environment based on graph transforma-
tions. It provides 1) a programming language enabling 
the specification of graph grammars 2) a customizable 
interpreter enabling graph transformations. AGG was 
chosen because it allows the graphical expression of 
directed, typed and attributed graphs (for expressing 
specifications and rules). 

More complex transformation rules could also be 
defined, such as, for instance: for each editable graphi-
cal individual component belonging to the CUI, create 
an abstract individual component equipped with an in-
put facet at the AUI level (Fig. 12), for each abstract 
individual component equipped with a navigation facet 
create a task with action type “start/go” on an item of 
type “element” (Fig. 13). WEBREVENGE [24] contains 
such rules for recovering a task model (at the T&C 
level in the Cameleon framework [4]), but these rules 
are hardcoded in the tool, thus preventing the designer 
from applying any modification, generalization, etc. 



NAC LHS RHS

::=

NAC LHS RHS

::=

 
Figure 12. Transformation rule from CUI to AUI. 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Figure 13. Transformation rule from AUI to Task & Concepts. 

6. Software support for UI reverse engi-
neering 

 
To ensure the different operations required by UI 

re-engineering and reverse engineering as defined 
above, two applications have been developed: REVER-
SIXML applies derivation rules to reverse engineer a 
web page into CUI and AUI expressed in UsiXML. 
Contrarily to Vaquita [3], REVERSIXML contains a 
parsing engine that automatically processes all deriva-
tion rules so as to produce multiple specifications in 
UsiXML, as opposed to XIML (www.ximl.org). XIML 
contains only one level of abstraction and is presenta-
tion oriented. UIML [1] is another comparable lan-
guage for specifying a UI, as opposed to UI markup 
languages such as (X)HTML, XAML 
(www.xaml.org). 

 

 
Figure 14. Main screen of ReversiXML for HTML 

reverse engineering. 



 
Figure 15. Control Panel of Derivation rules. 

In this way, REVERSIXML captures more informa-
tion than Vaquita (e.g., the behavior) and at more lev-
els of abstractions. This application (Fig. 14) is acces-
sible at http://www.isys.ucl.ac.be/bchi/research/reversi/ 
RevXMLUI.php. It is an on-line application developed 
in PHP V5.0 coupled with Tidy (for well-formed web 
pages). A control panel (Fig. 15) gives access to the 
selection of derivation rules to be processed. Such a 
configuration can be saved in a configuration file for 
future usage. The second application developed in 
TRANSFORMIXML: it is a Java-based application that 
performs the following steps: it takes a UsiXML file as 
input and a series of transformations to be applied. The 
current specifications in the UsiXML file are then 
transformed into their graph counterparts so as to per-
form the graph transformations. Once these transfor-
mations have been processed, the resulting graph is 
exported back in UsiXML in order to obtain the 
UsiXML specifications of the resulting UI. Since the 
transformations can be applied between any pair or 
level (except the code level), the tool could be consid-
ered as rather generic. The transformation engine used 
by TRANSFORMIXML is coming from the AGG tool. 

7. Conclusion 
 

A series of about 120 derivation rules belonging to 
different categories of reverse engineering have been 
incorporated in REVERSIXML to support full HTML 
reverse engineering. All tasg and attributes of HTML 
are supported by this set of rules. But it does not cover 
other markup or imperative languages that could be 
used in HTML pages, such JavaScript, Perl, Flash, etc. 
This allows properties of interested to be addressed to 
some extent. In particular, production rules can be 
added and modified at any time, they are accessible. 
Their application can be made observable, traceable, 
and controllable. Multiple levels of abstraction can be 

supported: FUI to CUI is supported by tools like [2] or 
others that directly converts Web pages into a XML-
compliant language. Other productions can span as fol-
lowing: CUI to AUI, AUI to T&C. Not only these 
rules can be fired independently of each other (thus 
reaching one level at a time), but also simultaneously 
(thus reaching multiple levels at the same time). Once 
a Web page has been transformed into USIXML, these 
specifications can then be submitted to TRANSFOR-
MIXML to apply productions on demand. Provided 
that a converter exists to transform an existing piece of 
code into its USIXML counterpart, the same produc-
tions can be applied similarly. 
 
8. Acknowledgements 

We gratefully acknowledge the support of the 
SIMILAR network of excellence, the European re-
search task force creating human-machine interfaces 
similar to human-human communication (http://www. 
similar.cc), Sixth Framework Program (European 
Commission, FP6-IST1-2003-507609) and the Sala-
mandre project, Région Wallonne, Initiatives III (Wal-
loon Region, Convention n°001/4511). For more in-
formation on the specification language and tools, see 
http://www.usixml.org. 

9. References 
[1] M. Abrams, C. Phanouriou, A. Batongbacal and J. Shus-

ter, UIML: An Appliance-Independent XML User Inter-
face Language, Proc. of 8th World Wide Web Confer-
ence WWW’8 (Toronto, 11-14 May 1999), Computer 
Networks, Vol. 31, No. 11-16, pp. 1695-1708. 

[2] A. Agrawal, G. Karsai, and A. Ledeczi, “An End-to-end 
Domain-Driven Software Development Framework”, 
Comp. of the 18th Annual ACM SIGPLAN Conf. on Ob-
ject-Oriented Programming OOPSLA’03 (Anaheim, 26-
30 Oct. 2003), ACM Press, New York, pp. 8-15. 

[3] L. Bouillon and J. Vanderdonckt, “Retargeting Web 
Pages to other Computing Platforms”, Proc. of IEEE 9th  
Working Conf. on Reverse Engineering WCRE'2002 
(Richmond, 29 Oct.-1 Nov. 2002), IEEE Computer So-
ciety Press, Los Alamitos, 2002, pp. 339-348. 

[4] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. 
Bouillon, and J. Vanderdonckt, “A Unifying Reference 
Framework for Multi-Target User Interfaces”, Interact-
ing with Comp., Vol. 15, No. 3, June 2003, pp. 289-308. 

[5] E.J. Chikofsky and J.H. Cross, “Reverse Engineering 
and Design Recovery: A Taxonomy”, IEEE Software, 
Vol. 1, No. 7, January 1990, pp. 13-17. 

[6] J.R. Cordy, “Hints on the Design of User Interface Lan-
guage Features - Lessons from the Design of Turing", in 
Languages for Developing User Interfaces, Jones and 
Bartlett, Boston, 1992, pp. 329-340. 

[7] J.R. Cordy, T.R. Dean, A.J. Malton and K.A. Schneider, 
“Software Engineering by Source Transformation - Ex-
perience with TXL”, Proc. of IEEE 1st Int. Workshop on 
Source Code Analysis and Manipulation SCAM'01 



(Florence, 10 Nov. 2001), IEEE Computer Society 
Press, Los Alamitos, 2001, pp. 168-178. 

[8] J.R. Cordy, “Generalized Selective XML Markup of 
Source Code Using Agile Parsing”, Proc. of IEEE 11th  
Int. Workshop on Program Comprehension IWPC’2003 
(Portland, 10-11 May 2003), IEEE Computer Society 
Press, Los Alamitos, 2003, pp. 144-153. 

[9] V. Crescenzi, G. Mecca, P. Merialdo, and P. Missier, 
“An Automatic Data Grabber for Large Web Sites”, 
Proc. of the 30th Int. Conf. on Very Large Data Bases 
VLDB’2004 (Toronto, August 31-September 3, 2004), 
Morgan Kaufmann, 2004, pp. 1321-1324. 

[10] G.A. Di Lucca, M. Di Penta, G. Antoniol, and G. 
Casazza, “An Approach for Reverse Engineering of 
Web-Based Applications”, Proc. of 8th IEEE Working 
Conference on Reverse Engineering WCRE’2001 (Stutt-
gart, 5-7 October 2001), IEEE Computer Society Press, 
Los Alamitos, 2001, pp. 231-240. 

[11] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg 
(eds.), Handbook of Graph Grammars and Computing 
by Graph Transformation, Application, Languages and 
Tools, Vol. 2, World Scientific, Singapore, 1999. 

[12] D.W. Embley, D.M. Campbell, Y.S. Jiang, Y.-K. Ng, 
R.D. Smith, S.W. Liddle, and D.W. Quass, “A concep-
tual-modeling approach to extracting data from the 
web”, Proc. of the 17th Int. Conf. on Conceptual Model-
ing ER’98 (Singapore, November 16-19, 1998), Lecture 
Notes in Computer Science, Vol. 1507, Springer-Verlag, 
Berlin, 1998, pp. 78-91. 

[13] Y. Gaeremynck, L.D. Bergman, and T. Lau, “MORE for 
Less: Model Recovery from Visual Interfaces for Multi-
Device Application Design”, Proc. of the 8th ACM Int. 
Conf. on Intelligent User Interfaces IUI’2003 (Miami, 
12-15 Jan. 2003), ACM Press, NY, 2003, pp 69-76. 

[14] G. Gottlob, Ch. Koch, R. Baumgartner, M. Herzog, and 
S. Flesca, “The Lixto Data Extraction Project - Back and 
Forth between Theory and Practice”, Proc. of the 23rd 
ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems PODS’2004 (Paris, June 14-
16, 2004), ACM Press, New York, 2004, pp. 1-12 

[15] M. El-Ramly, P. Iglinski, E. Stroulia, P. Sorenson, and 
B. Matichuk, “Modeling the System-User Dialog Using 
Interaction Traces”, Proc. of 8th IEEE Working Conf. on 
Reverse Engineering WCRE’2001 (Stuttgart, 5-7 Oct. 
2001), IEEE CS. Press, Los Alam., 2001, pp. 208-217. 

[16] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. 
Wood, “Transformation: The Missing Link of MDA”, 
Proc. of the 1st Int. Conf. on Graph Transformation 
ICGT’02 (Barcelona, 7-12 Oct. 2002), Lecture Notes in 
Computer Science, Vol. 2505, Springer-Verlag, Berlin, 
2002, pp. 90-105. 

[17] Q. Limbourg and J. Vanderdonckt, “UsiXML: A User 
Interface Description Language Supporting Multiple 
Levels of Independence”, Engineering Advanced Web 
Applications, Matera, M., Comai, S. (Eds.), Rinton 
Press, Paramus, 2004, pp. 325-338. 

[18] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, 
L., and Lopez, V. “UsiXML: a Language Supporting 
Multi-Path Development of User Interfaces, Proc. of  9th 
IFIP Working Conference on Engineering for Human-

Computer Interaction jointly with 11th Int. Workshop on 
Design, Specification, and Verification of Interactive 
Systems EHCI-DSVIS’2004 (Hamburg, July 11-13, 
2004). Lecture Notes in Computer Science, Vol. 3425, 
Springer-Verlag, Berlin, 2005, pp. 207-228. 

[19] E. Merlo, P.-Y. Gagné, and A. Thiboutôt, “Inference of 
Graphical AUIDL Specifications for the Reverse Engi-
neering of User Interfaces”, Proc. of IEEE Int. Conf. on 
Soft-ware Maintenance (19-23 September 1994), IEEE 
Computer Society Press, Los Alamitos, 1994, pp. 80-88. 

[20] E. Merlo., P.-Y. Gagné, J.-F. Girard, K. Kontogiannis, 
L. Hendren, P. Panagaden, and R. De Mori, “Reengi-
neering User Interfaces”, IEEE Software, Vol. 12, No. 1, 
January 1995, pp. 64-73. 

[21] M.M. Moore, “Representation Issues for Reengineering 
Interactive Systems”, ACM Computing Surveys, Vol. 28, 
No. 4, December 1996. Article # 199. 

[22] M.M. Moore, “Rule-Based Detection for Reengineering 
User Interfaces”, Proc. of the 3rd IEEE Working Conf. 
on Reverse Engineering WCRE’96 (Monterey, 8-10 No-
v. 1996), IEEE CS Press, Los Alam., 1996, pp. 42-49. 

[23] M.M. Moore and S. Rugaber, “Using Knowledge Rep-
resentation to Understand Interactive Systems”, Proc. of 
the 5th IEEE Int. Workshop on Program Comprehension 
IWPC'97 (Dearborn, 28-30 May 1997), IEEE Computer 
Society Press, Los Alamitos, 1997, pp. 60-69. 

[24] L. Paganelli and F. Paternò, “Automatic Reconstruction 
of the Underlying Interaction Design of Web Applica-
tions, Proc. of the 14th ACM Int. Conf. on Software En-
gineering and Knowledge Engineering SEKE’02 (Ischia, 
15-19 July 2002), ACM Press, NY, pp. 439-445. 

[25] H. Partsch and R. Steinbruggen, “Program Transforma-
tion Systems”, ACM Computing Surveys, Vol. 15, No. 3, 
September 1983, pp. 199-236. 

[26] F. Ricca, P. Tonella, and I.D. Baxter, “Restructuring 
Web Applications via Transformation Rules”, Proc. of 
IEEE Workshop on Source Code Analysis and Manipu-
lation SCAM’2001 (Florence, 5-9 Nov. 2001), IEEE 
Computer Soc. Press, Los Alamitos, 2001, pp. 150-160. 

[27] S. Rugaber, “A Tool Suite for Evolving Legacy Soft-
ware”, Proc. of IEEE Int. Conf. on Software Mainte-
nance ICSM'99 (Oxford, 30 August-3 Sep. 1999), IEEE 
Comp. Society Press, Los Alamitos, 1999, pp. 33-39. 

[28] K.A. Schneider and J.R. Cordy, “Abstract User Inter-
faces: a Model and Notation to Support Plasticity in In-
teractive Systems”, Proc. of Int. Workshop on Design, 
Specification, and Verification of Interactive Systems 
DSV-IS’2002 (Rostock, 12-14 June 2002), Lecture 
Notes in Computer Science, Vol. 2220, Springer-Verlag, 
Berlin, 2002, pp. 28-48. 

[29] E. Stroulia, J. Thomson, and Q. Situ, “Constructing 
XML-speaking Wrappers for WEB Applications: To-
wards an Interoperating WEB”, Proc. of IEEE 7th Work-
ing Conf. on Reverse Engineering WCRE’2000 (Bris-
bane, 23-25 Nov. 2000), IEEE Computer Society Press, 
Los Alamitos, 2000, pp. 59-69. 

[30] E. Stroulia, M. El-Ramly, P. Iglinski, and P.G. Soren-
son, “UI Reverse Engineering in Support of Interface 
Migration to the Web”, Journal of  Automated Software 
Engineering, Vol. 10, No. 3, July 2003, pp. 271-301. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


