
Designing Graphical User Interfaces Integrating Gestures
François Beuvens

Université catholique de Louvain
Place des Doyens, 1

B-1348 Louvain-la-Neuve, Belgium
+3210478179

francois.beuvens@uclouvain.be

Jean Vanderdonckt
Université catholique de Louvain

Place des Doyens, 1
B-1348 Louvain-laNeuve, Belgium

+3210478525
jean.vanderdonckt@uclouvain.be

ABSTRACT
The world of today and its new technologies like smartphones,
tablets, or any flat interaction surface has increasing the need for
graphical user interfaces integrating gestural interaction in which
2D pen-based gestures are properly used. Integrating this interac-
tion modality in streamlined software development represents a
significant challenge for designers or developers: it requires im-
portant knowledge in gestures management, in deciding which
gesture recognition algorithm should be used or refined for which
types of gestures, or which usability knowledge should be used
for supporting the development. These skills usually belong to ex-
perts for gesture interaction and not actors usually involved in us-
er interface design process. In this paper, we present a structured
method for facilitating the integration of gestures in graphical user
interfaces by describing the roles of the gesture specialist and oth-
er stakeholders involved in the development life cycle, and the
process of cooperation leading to the creation of a gesture-based
user interface. The method consists of three pillars: a conceptual
model for describing gestures on top of graphical user interfaces
and its associated language, a step-wise approach for defining ges-
tures depending on the end user’s task, and a software that sup-
ports this approach. This method is exemplified with a running
example in the area of document navigation.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
User interfaces. H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces – Graphical user interfaces. I.3.6 [Comput-
er Graphics]: Methodology and Techniques – Interaction tech-
niques.

Keywords
Method engineering, model-driven architecture, user interface,
pen-based gesture, sketch.

1. INTRODUCTION
Gesture-based user interfaces are getting more popular last years
with the emergence smartphones, tablets, and any other flat inter-
action surface that could accommodate pen-based gestures. These
new platforms usually require gesture-based interaction with – of-
ten but not always – finger or pen as inputs. Despite their recent
increased popularity, such user interfaces are considered for a
long time and several tools have been realized in order to bring
support during their creation.

Pen-based gesture recognition [2,4,14] typically consists in inter-
preting hand-made marks, called strokes [1,7], made with a poin-
ting device (e.g., a mouse, a stylus, a light pen) on a flat con-
strained vertical or horizontal surface (e.g., a table, a wall or a
graphic tablet). Pen-based gestures are applicable to a large area
of tasks (e.g., music editing, drawing, sketching, spreadsheets,
web navigation, equation editing) in many different domains of
activity (e.g., office automation [32], ambient intelligence [10],
multimodal systems [30]) and a growing set of devices, ranging
from smartphones to tabletop interaction. Pen-based gestures can
even be considered across several platforms: starting on a
smartphone and finishing on a tabletop [10]. When the locus of
input is different from the locus of output (e.g., with a graphic tab-
let), gestures are drawn outside the main display, thus posing a
visual discontinuity problem. When locus of input and output
match, a risk of occlusion occurs since the gesture is drawn on top
of the main display. The surface used for pen-based gestures is
however used as a way to constrain the gesture, thus helping its
recognition.

Pen-based gestures have received considerable attention in both
research and development, namely for addressing the scientific
problem of modeling, analyzing, learning, interpreting, and rec-
ognizing gestures in a large spectrum of setups. The large inclu-
sion of pen-based gestures in widely-available interactive applica-
tions has however not reached its full potential due to at least the
following reasons: designers and developers do not know which
recognition algorithm to select from such as large offer, how to
tune the selected algorithm depending on their context of use, and
how to incorporate the selected algorithm into streamlined User
Interface (UI) development in an effective and efficient way. In-
corporating pen-based gestures may also involve using Applica-
tion Programming Interfaces (APIs), libraries, toolkits or algo-
rithm code that could be considered hard to use [31]. Consequent-
ly, in this paper, we do not address the scientific problem for
modeling, analyzing, interpreting, and recognizing gestures. Ra-
ther, we are interested in integrating the results provided by this
body of research [3,9,21,22,23,25] into streamlined UI develop-
ment with device independence, extensibility, and flexibility

2. RELATED WORK
2.1 Motivations for pen-based gestures
Pen-based gestures are appreciated by end users for several rea-
sons: they are straightforward to operate [5], they offer a better
precision than finger touch [8], which make them particularly ad-
equate for fine-grained tasks like drawing, sketching. Most people
found gestures quick to learn and to reproduce once learned, de-
pending on properties [15,32]:

Iconicity («memorable because the shape of the gesture corre-
sponds with this operation» [17]). When humans are communi-
cating, they are using gestures to increase the understanding of the
listener and obviously, the gesture usually means what the speaker

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGDOC’12, October 3–5, 2012, Seattle, Washington, USA.
Copyright 2012 ACM 978-1-4503-1497-8/12/10...$15.00.

313

is saying. Iconicity principle is based on this. It means that ges-
tures that are designed are close to the interpretation of this reali-
ty. For example, Fig. 1(a) depicts the “Delete” action by a pair of
scissors, which denotes the activity of cutting something.

(a) (b)

(c)
(d) (e)

Figure 1. Some pen-based gestures for “delete” (a), “copy” (b),
“u” and “v” letters (c), move forward (d), move back (e).

Learnability. Users sometimes forget gestures because they are
numerous or because they are complex or not iconic. 90% and
more participants held that pen-based gestures with visual mean-
ingful related to commands are easy to be remembered and
learned [5]. Another option suggested in [8] to increase the
rememberability of the users was to represent a gesture as the first
character of the command name. For instance, Fig. 1(b) depicts
the “Copy” action because «C» stands for Copy, which is an al-
ternative provided that shortcuts are available. If users spend their
time for checking which pen-based gesture is convenient for exe-
cuting which command in the manual, they will get bored soon.

Recognizability. Naive designers often create pen-based gestures
that the computer viewed as similar and thus were difficult to rec-
ognize [15]. There is a trade-off between improving the gesture
recognizability for the gesture recognizer and optimizing the
recognizability for the end user. For instance, Fig. 1(c) compares
two alternate designs for writing the “u” and “v” letters. The right
one improves the system recognition rate of the system, but dete-
riorates the end user recognition (since the gesture looks like a
square root), while the left one is the opposite: natural for the end
user, hard for the system to differentiate.

Compatibility and coherence. Gestures [8] are also better learned
and used when they are compatible and coherent. Gestures are
best perceived when they are introduced in a uniformed and stable
way. For instance, the gesture of Fig. 1(d) depicts “moving for-
ward or right” since the gesture indicated the direction, which is
natural to understand for the user, while Fig. 1(e) means the oppo-
site direction.

2.2 Motivations for integration in UI development
In this subsection, some significant related work is reviewed by
referring to some of their shortcomings.

Accessibility. Pen-based gesture recognition algorithms are usual-
ly made accessible as APIs, libraries, toolkits, platforms or proce-
dural code. A recognition algorithm may become available either
in one or many of these heterogeneous forms, thus making their
integration in application development a permanent challenge.
When a same algorithm is found in different sources, the source
choice is even more challenging. Some platforms, like iGesture
[26] and InkKit [21,25] offer several algorithms though, but they
are more intended for recognition benchmarking.

Hard Algorithm Selection. Certain platforms help the designer to
create a gesture set or to benchmark recognition algorithms in a
general way. But, to our knowledge, none of them is able to drive
the designer through the different steps of selecting a recognition
algorithm that is appropriate for a particular gesture set, of fine-
tuning its parameters in order to optimize its performance, and for
integrating this fine-tuning in UI development.

Satin [3] is a toolkit created for making effective pen-based UIs
easier. The two important facets are the integration of pen input
with interpreters and the libraries for manipulating ink strokes.
Built on top of Satin, Denim [6] consists in web site design tool

aimed at the early stages of information, navigation, and interac-
tion design. It may be used by designers to quickly sketch web
pages, create links among them and interact with them at runtime.
Silk [4] is an interactive tool that allows designers quickly proto-
typing a UI by sketching it with a stylus. GART [8] is a UI toolkit
designed to enable the development of gesture-based applications.
It provides an abstraction to machine learning algorithms suitable
for modeling and recognizing different types of gestures. The
toolkit also proposes support for the data collection and the train-
ing process. GT2k [19] provides a publicly available toolkit for
developing gesture-based recognition components to be integrated
in large systems. It provides capabilities for training models and
allows for both real-time and off-line recognition.

Many gesture recognition algorithms exist and few comparative
studies for comparison are published. DataManager [13] is a
toolkit providing automatic evaluation of gesture recognition al-
gorithms. iGesture [14] also helps developers selecting a suitable
algorithm for specific needs, and additionally supports them to
add new gesture recognition functionality to their application.
InkKit [11] may be used to perform recognition benchmarking
too. Quill [7] assists developers in the task of creating well-
designed gesture sets, both in terms of computer recognizability
and likelihood of confusion among gestures by people.

All these tools provide help during a specific step of the process
leading to the creation of a gesture-based user interface. To our
knowledge though, none of them is able to fully support all the
steps of this process. Following section first outlines the different
actors it involves, gives some insights of a system fostering their
collaboration, and finally defines a method describing the differ-
ent steps to be followed by the actors of the user interface creation
with the help the system. The two next sections respectively pre-
sent a model describing the system and give an implementation of
this system.

Pen-based gesture recognition may have several finalities. Among
them, many tools support the field of document manipulation in
different ways. An example is PapierCraft [15], which is pen-
gesture-based command system combining graphical and gestural
modalities for paper-based interfaces. Fifth section shows through
a concrete example how such a system could be easily created
through the defined method, with the help of the system. Last sec-
tion finally concludes and presents future work.

Lack of extensibility and flexibility. It is usually very hard to ex-
tend the current implement with another recognition algorithm or
another variant of an existing algorithm. Some platforms, like
iGesture [26] and InkKit [25], already hold several recognition al-
gorithms with room for extension, but this task is more intended
for highly-experienced developers. In addition, they do not help in
selecting which algorithm or interpretation of an algorithm is most
appropriate for a certain task.

Incorporation in UI development. Most of the time, the incorpora-
tion of pen-based gestures should be achieved in a programmatic
way, by hand, with little or no support [14]. This is probably one
of the most challenging shortcomings. There is no continuity be-
tween the design phase of pen-based gestures and the develop-
ment phase of incorporating the algorithms in the final interactive
application. Wilhelm et al. describe a trajectory-based approach
that is applied to support device independent dynamic hand ges-
ture recognition from pen devices. Feature extraction and recogni-
tion are performed on data recorded from the different devices and
transformed them to a common basis (2D-space).

This paper is believed to be original in that it provides a method
(and a software support) for integrating 2D pen-based gesture in-

314

teraction in software development of Graphical User Interfaces
straightforwardly, with device independence, extensibility, and
flexibility.

3. METHOD
Creating a user interface is a complex task requiring many skills.
In the perfect case, all these skills would belong to a single devel-
oper that would then be able to conduct the whole process of cre-
ating the user interface alone. In practice, it is rarely the case since
it is difficult for a single developer to acquire all the needed
knowledge for each sub-process involved in the user interface
creation.

The usual process of creating a user interface can be divided in
two distinct parts: during the conception phase, the engi-
neer/architect analyzes the user preferences, environment parame-
ters, and miscellaneous requirements, and elaborates the specifica-
tions of the interface with the help of the designer. Based on these
specifications, the programmer actually codes the user interface
during the implementation phase.

We are here interested by the specification of user interfaces in-
cluding gesture or sketch (in the rest of the paper, we will refer to
gesture or sketch as equivalent) manipulation. Taking such a fea-
ture into account would impact the two phases of the user inter-
face creation. A gesture specialist helps the engineer/architect and
the designer during the conception phase. The programmer codes
the gesture mechanism based on the specifications during the im-
plementation phase, or is helped by a second programmer special-
ist in this domain.

We thereby define two phases and four roles characterizing the
creation of gesture-based user interfaces:

1. Conception phase: outputs a UI description.

 The engineer/architect analyzes the different re-
quirements elicited by the user, the environment, or
any other input and identifies the different parts to
be included in the user interface (widgets) as well
as the behavior enabling interaction with the user
and between the widgets. He is taking care of the
ergonomics of the system.

 The designer is in charge of the aesthetics of the
user interface. His role is to choose the right layout
parameters (size, color, font, etc.) for each part of
the user interface, and follow aesthetics rules based
on metrics such as density [18] or balance [9]. He
helps the engineer/architect ensuring good ergo-
nomics.

 The gesture specialist is devoted to the recogni-
tion mechanism specification with its different pa-
rameters.

2. Implementation phase: based on the UI description elaborat-
ed in conception phase, outputs the final code of the UI.

 The programmer(s) are the builders of the user in-
terface. Based on the specifications of the concep-
tion phase, they actually code it. This includes the
recognition mechanism, i.e. the algorithms and the
gesture datasets.

The roles defined in the conception phase are well delimited, but
in practice, they are more interfering and lead to a real coopera-
tion. Additionally, if the conception and implementation phases
remain independent, they will rarely be performed one time each.

After the conception and the implementation, the generated user
interface is tested, often leading to a conception refinement. The
different phases are then repeated until convergence on a satisfy-
ing user interface. Our goal is to provide a system supporting the
conception and implementation phases, enacting the interaction
between the different actors.

At this point, we have considered providing a system that can be
used by engineers/architects, designers, gesture specialists and
programmers to create a gesture-based user interface. But how to
tune such a system? What widgets, behavior, algorithms, elements
of design, etc. should be proposed? We are not specialists and we
do not have competences to make any assumptions on what is im-
portant or not. Furthermore, technologies are constantly evolving,
how to update the system in order to reflect them?

The system should be flexible and extensible to be able to easily
acquire new knowledge from skilled people. These people are en-
gineers/architects, designers and gesture specialists, helped by
programmers. Instead of being users of the system, they become
feeders.

At this level, the role of the programmer(s) is slightly different
since it consists in programming the engines allowing the auto-
matic generation of the user interface specification (i.e. every el-
ement of knowledge determined by engineers/architects, designers
and gesture specialists) in final code, rather than directly pro-
gramming the user interface by transforming the specifications
“manually” (thanks to the direct mapping between the XML spec-
ifications and Java code provided by WindowBuilder, presented
in Section 5). In this view, the role of the programmer(s) as us-
er(s) of the system is not useful anymore and may then be sup-
pressed for this level.

Around these different descriptions, we are now able to formalize
a method enacting the creation of gesture-based user interfaces.
For this purpose, we define three different roles acting at three dif-
ferent levels of interaction:

- The Interface Users (IU): end users of the interface.

- The System Users (SU): first group of engi-
neer(s)/architect(s), designer(s) and gesture specialist(s)
using the system in order to produce the user interface
for the Interface Users.

- The System Feeders (SF): second group of engi-
neer(s)/architect(s), designer(s), gesture specialist(s) and
programmer(s) feeding the system with knowledge al-
lowing SU creating user interfaces.

The roles are not exclusive. People acting as System Feeders may
be System Users (e.g., a gesture specialists that create an algo-
rithm and then tune and include it in the user interface) or Systems
Users may be Interface Users (e.g., engineer(s)/architect (s), de-
signer (s) and gesture specialist(s) wanting to use the interface
they have created with the system), etc.

The method is then defined in seven steps:

1. Interface Users define user interface requirements.
2. Based on the UI requirements, System Users define sys-

tem requirements.
3. If system requirements not met: based on the system re-

quirements, System Feeders feed the system.
4. Based on UI requirements, System Users use the system

to produce the user interface.
5. If UI requirements not met: System Users refine system

requirements, then go back to step 3.

315

6. Interface Users use the produced user interface.
7. If Interface Users not satisfied: Interface Users refine UI

requirements, then go back to step 4.
When the interface users are satisfied, the method stops iterating.
The whole process is illustrated in Figure 2.

Figure 2. Method.

The main advantage of such a system is its ability to evolve
through the different user interfaces creations. It may be viewed
as a structured repository of gesture-based user interfaces
knowledge. The more user interfaces are produced, the more the
system is fed with knowledge, allowing any system users taking
profit of all the experience acquired during previous work.

Next section presents the choices we made to model the system on
which the method is relying.

4. MODEL
The Cameleon Reference Framework [1] defines the description
of a user interface at different levels of abstraction: Tasks & Con-
cepts, Abstract User Interface (AUI), Concrete User Interface
(CUI) and Final User Interface (FUI). Each level is formalized by
a User Interface Description Language (UIDL) representing the
user interface for the specific level. Different mechanisms of for-
ward and reverse engineering allow translating one level into an-
other one.

The user interface description elaborated during the conception
phase of the method proposed in previous section actually corre-
sponds to the CUI UIDL. CUI is then transformed in FUI in the
implementation phase. This is the modeling approach chosen to
support the method.

The CUI UIDL we decided to adopt is Eclipse XML Window
Toolkit (XWT) [22]. This language allows specifying user inter-
faces with XML representation by relying on Standard Widget
Toolkit (SWT) [16], which is an open-source widget toolkit for
Java. XWT provides a very interesting piece of work, including
the description of an important set of SWT widgets as well as a
tool supporting the XWT and graphical edition of user interface
(see next section). The chosen FUI language is naturally Java
since it is directly supported by XWT.

Although XWT constitutes a very useful basis, it is not sufficient
to achieve the targeted method. SWT proposes many widgets with
design and behavior features. As aforementioned, XWT provides
an XML description of an important part of them, but this descrip-
tion only concerns the widgets themselves with their elements of
design. The behavior part is not fully described by XWT: alt-
hough it is possible to specify listening to events, launching an ac-
tion provided some condition is not possible with XML syntax.
Furthermore, no mechanism is devoted to gesture interaction. We
then chose XWT as our core model, extended to meet our re-
quirements.

Figure 3 depicts the model including the XWT package, with the
behavior extension part (bottom block) and the sketch extension
part (top-left block). The three next subsections respectively detail
XWT, behavior and gesture parts.

4.1 XWT Package
Only a subset of the XWT model is represented since the whole
model is too big and contains useless information at this level.
The attributes are not shown for the same reasons.

The main principle of this model is that most entities are derived
from the concept of Widget, which defines a set of methods and
attributes. Control and Scrollable both add other methods and at-
tributes to Widget to increase the available functionalities. These
three classes are sub-classed by many concrete classes as Button,
Label, etc. Among them, three important widgets will be the start-
ing points for the behavior and gesture extensions:

- Composite: container of widgets.

- Canvas: special container defining a paintable zone.

- Shell: root container representing the user interface.

Additionally, Color entity is represented since it will be useful for
the gesture block.

316

4.2 Behavior Extension
The extension proposed for the behavior is articulated around two
main entities:

- Behavior: main behavior entity enclosing all the needed
information in a set of Rule. It is unique for a user inter-
face and belongs directly to the Shell.

- Rule: represents an Event-Condition-Action rule (ECA
rule). “eventExpression”, “conditionExpression” and
“actionExpression” attributes are the string representa-
tions of the rules elements described in the followings.

An ECA rule in its basic form allows specifying an action to be
launched when an event occur, under a certain condition. In order
to add more expressivity, we considered event expressions, condi-
tion expressions and action expressions instead of events, condi-
tions and actions. The corresponding entities in the model are
EventExpression, ConditionExpression and ActionExpression.

An event expression is a set of events interconnected by connect-
ors. Additionally, subsets of events may be interconnected with
other subsets of events, or simple events. EventExpression is ei-

ther a simple event, or a group of two EventExpression intercon-
nected with an EventExpressionConnector, which allows model-
ing the described event expression. The simple event is modeled
with Event entity, which has a source widget and an event type.
There is no explicit constraint between the source widget and the
type of event, but the programmer must take care of associating
the possible combinations during the implementation phase.

The condition expressions and the action expressions follow, with
different types of connectors, the pattern adopted for the event ex-
pressions. However, conditions and actions are different from
events. A condition is represented by Condition entity, which is a
couple of two operands linked through an operator. These oper-
ands may be either a constant (integer, string, etc.) or a widget at-
tribute (represented by WidgetAttribute entity). An action is mod-
eled with Action entity, which has a target widget on which the
action applies, an action type and a list of arguments to be taken
by the action type. There is no explicit constraint between the tar-
get widget, type of action and the arguments, but the programmer
must take care of associating the possible combinations during the
implementation phase.

Figure 3. Conceptual model for defining graphical user interfaces and the integration of behavior and gestures.

317

Let’s finally notice that both Behavior and Rule entities are sub-
classing Composite entity. With this way of modeling –strongly
suggested by common practices in XWT and partly imposed by
the tool (presented in next section) – the behavior and the rules are
considered as being entirely part of the interface. It is usual in
XWT, since it allows reusing already defined entities with useful
attributes and functionalities. In this case, Behavior and Rule take
profit of the Composite functionalities, but have a visibility set to
false since they do not need graphical representation in the inter-
face. We only chose these two elements to be explicitly part of the
interface because we think specifying the event, condition and ac-
tion expressions as strings is less constraining, more flexible and
more straightforward.

4.3 Gesture Extension
Similarly to behavior extension, gesture extension relies on enti-
ties sub-classing Composite:

- SketchSpace: main sketch entity enclosing all the need-
ed information in a set of SketchContext. It is unique for
a user interface and belongs directly to the Shell.

- SketchContext: defines a sketch context gathering dif-
ferent algorithms and datasets.

- DataSet: collection of gestures, themselves composed of
strokes, themselves composed of dots. Dots gather dif-
ferent information of position, time, and stylus state (if
can be applied).

- Algorithm: represents the engine able to classify a new
gesture, provided the datasets of the sketch context par-
ent.

- SketchArea: paintable area linked to sketch context in
order to provide recognition feature to the gesture being
drawn on it. “sketchContext” attribute is the widget
name of the sketch context it is linked to.
“strokeWidth”, “strokeAlpha” and “strokeStyle”
provide control on the stroke aspect, and
“cleanAfterEachStroke” indicates if the area must be
cleaned each time a stroke is drawn.

As Behavior and Rule, SketchSpace, SketchContext, DataSet, and
Algorithm are not intended to be visible in the FUI, while
SketchArea is a visible component. The other entities are not part
of the core description of the gesture extension and will be ex-
plained in the next subsection.

4.4 Feeding and Using the System
At this point, we have presented the entities of the core model de-
scribing the system aimed at supporting the method. In other
words, without more specification this model is “naked”, it de-
scribes a system ready to acquire any knowledge, but currently
empty of knowledge. Increasing this knowledge is the role of the
System Feeders. At model level, it corresponds in refining and/or
increasing some specific entities in order to describe the features
the system supports. The System Users will then use this model as
a kind of documentation of the system. The way we expect the
System Feeders to extend the model is different for each part.

We think the behavior extension allows an advanced expressivity
for many rules or composition of rules. However, the types of
events, conditions, actions and widgets attributes are missing, as
well as the connector types between expressions. For this part,
EventType, ConditionOperator, ActionType, WidgetAttributeType,
EventExpressionConnectorType,
ConditionExpressionConnectorType, and
ActionExpressionConnectorType are the enumerations to be in-
creased in order to specify the possible events, conditions and ac-
tions, and the way they are connected. We already provide some
possibilities for each enumeration. They are given as examples
and must not be considered as mandatory attributes.

For the gesture extension, the way of adding new knowledge is
different. The sketch contexts must actually contain sub-classes of
DataSet and Algorithm, representing specific datasets composed
of several Gesture, and specific algorithms with their options.
Again, we provide some datasets and algorithms examples that we
elaborated during a previous experiment [1].

The datasets we provide (digits, letters, action gestures and geo-
metrical shapes) are built from gestures collected from 30 partici-
pants through a platform developed for this purpose. Algorithms
we provide (Rubine [12], OneDollar [21], Levenshtein [5] and
Stochastic Levenshtein [10]) and their extensions constitutes a set
of well-known algorithms. They all have a different way of work-
ing and cover together many situations with different needs. They
are not described here since it is beyond the scope of this paper.

In addition to the behavior and the gesture extensions, System
Feeders may add other new functionalities. The XWT widgets
may be extended in order to add any new component with a spe-
cific purpose. This new component may then be linked to the be-
havior extension or even the gesture extension if needed.

Next section shows the tool we developed in order to implement
the system. It is described by the model presented in this section
and supports the method.

318

5. TOOL
WindowBuilder [20] is a powerful and easy to use bi-directional
Java GUI designer built as an Eclipse plug-in. It supports different
toolkits, including SWT and its XML representation XWT. It may
be viewed as a visual CUI editor outputting XWT user interface
specifications. Moreover, it provides a Java rendering engine for
the XWT package described in the previous section. We decided
to choose this tool since it fits our requirements by providing a
CUI editor and a Java rendering engine to produce the FUI from
the CUI. Nevertheless, it must be improved in order to support the
behavior and gesture extensions.

5.1 Using the Tool
Figure 4 shows a screenshot of the extended WindowBuilder en-
vironment (it may also be seen in action at the following address:
http://dai.ly/GJduWS) The top-right part is the visual CUI editor
allowing, through the widget palette, manipulating standard SWT
widgets as well as behavior and gesture widgets, in order to build
the description of a gesture-based user interface. A tree represent-
ing the interface is available along with a properties panel useful
to specify any option or attribute of a widget. The bottom part of

the tool shows the XWT sources of the specification of the inter-
face.

For editing the user interface specifications, System Users have
three choices: through the visual CUI editor, by editing the tree
representation, or directly by updating the XWT description. In
the three cases, the changes are reflected in the other representa-
tions.

To build an interface, System Users place widget elements in the
visual editor, in the tree, or directly write them in the XWT speci-
fication. They define the behavior with one and only one Behavior
widget in the Shell and add a set of Rule to it. Each Rule may be
specified with event, condition and action expressions as String
attributes, as described in the model.

The tool adds an interesting feature on the behavior by providing
validation. It is used to throw an exception when the System Users
specify a malformed or invalid event, condition or action expres-
sion. The validation may be turned off via an attribute in the Be-
havior widget in order to let the possibility of describing a differ-
ent syntax than the one expected by the system. In this case, the
running interface provided by WindowBuilder may not work, but

Figure 4. The software environment for integrating gestures.

319

in some cases it may be useful to create a specification based on a
custom syntax. Concerning the gesture part, System Users are ex-
pected to place one and only one SketchSpace widget in the Shell
and add a set of SketchContext to it. These SketchContext gather
one or many Algorithm and DataSet that can be tuned with the
different options described in the model. The SketchArea is the
sketch element with a visible representation in the interface, al-
lowing the user drawing on it and performing recognition on the
gesture drawn. The SketchArea has many options, and must be
linked to a SketchContext through one of them.

The specifications of the user interface are described in the .xwt
file generated when a new XWT application is created. In order to
actually produce the user interface, the System Users have to run
the .java associated file, which will parse the CUI specifications
and render the FUI in Java.

5.2 Feeding the Tool
The left column of the tool provides a view on the sources of the
system implementation. Each entity described in the model has a
class corresponding to its implementation.

System Feeders may add enumeration constants to EventType,
ConditionOperator, ActionType, WidgetAttributeType,
EventExpressionConnectorType,
ConditionExpressionConnectorType, and
ActionExpressionConnectorType classes in order to increase the
behavior possibilities. The four first ones allow increasing respec-
tively the set of events, conditions, actions and widget attributes,
while System Feeders may add new connectors respectively be-
tween the events, the conditions and the actions through the three
last ones.

The schema of the aforementioned validation feature is set in
EventType, ConditionOperator, ActionType and
WidgetAttributeType classes. Indeed, each constant of these enu-
merations can optionally take one or several arguments in its con-
structor, indicating the schema of validation:

- EventType: takes a table of Class objects as source specifi-
cation in order to specify the allowed widget types from
which the event may be issued.

- ConditionOperator: takes a first Class object as left operand
specification and a second Class object as right operand
specification to specify the allowed types than may be com-
pared.

- ActionType: takes a Class object as target specification in
order to specify the allowed widget type on which the action
may be applied, and a table of Class objects as argument
specification in order to specify the allowed types for each
action argument.

- WidgetAttributeType: takes a table of Class objects as speci-
fication in order to specify the allowed widget types from
which the widget attribute may be called.

For the constants of the four enumerations, no schema specifica-
tion means no restriction. Validation exceptions are thrown if the
System Users do not respect these specifications, use a malformed
syntax, or try to use inexistent widgets, events, actions, etc.

Feeding the gesture recognition mechanism is done by providing
new algorithms or datasets. A new algorithm is added by sub-
classing the Algorithm class and providing it all the wanted op-
tions with getters and setters. It is the way WindowBuilder works
to show an attribute in the visual editor. New datasets are added
by sub-classing DataSet class and providing option attributes with
getters and setters. The new algorithms and datasets must then be
added to the widget palette of the tool (simply by adding a new

component to the palette through the contextual menu, and then
selecting the newly created class).

At this point, no recompilation of the tool or any further action is
required from the System Feeders: the System Users are able to
use the new elements of behavior or gesture mechanism in the us-
er interface specification. However, new elements are not imple-
mented for working during the runtime yet. The rendering engines
have still to be updated in consequence by the programmer(s) to
reflect the new types of events, conditions, actions and widget at-
tributes, the new types of connectors or the new algorithms and
datasets. For the behavior part, the programmer(s) must edit the
EventExpression, ConditionExpression, ActionExpression, Event,
Condition, Action and WidgetAttribute classes. Each new feature
(new types of event, condition, action, or new types of connec-
tions between them) must be handled in one specific method of
one of these classes.

For the gesture part, the programmer(s) must modify each new
sub-class of Algorithm and of DataSet. For each algorithm sub-
class, train and recognize methods must be implemented in order
to train the algorithm and return the string class of the gesture to
recognize. For each dataset sub-class, dataset method must be im-
plemented in order to return set of Gesture. For the implementa-
tion we provide, all the logic allowing fulfilling the methods are
contained in algorithm and dataset packages. All the used ges-
tures are provided as text files and located in the records folder.

This section has given a description of the few pieces of code to
update in order to increase the tool possibilities, the rest of the
platform is expected to remain unchanged. It globally shows how
the platform is articulated, but does not constitute an exhaustive
documentation, which is present in the code.

Next section presents an example showing how the method, mod-
el and tool are used to build a pen gesture-based user interface.

6. EXAMPLE
The user interface chosen for the example target document ma-
nipulation, and more specifically document navigation. The goal
is to show how the method, the model and the tool can be used in
order to create a system such as PapierCraft [15], which allows
using gesture as commands for manipulating a paper-based inter-
face.

Additionally, at the beginning we assume that the system is empty
of any knowledge, i.e. without sub-class of DataSet and Algo-
rithm, and with empty enumerations in the behavior part. We will
start from user interface requirements produced by Interface Users
and show how the System Users with the help of the System
Feeders will build the user interface by iterating through the dif-
ferent steps of the method.

The user interface for the example has been imagined sufficiently
simple to avoid useless information but sufficiently expressive to
highlight all the steps defined in the method (Figure 2).

 Step 1 – IU define UI requirements

The user interface is a viewer for a document containing several
pages. The viewer must have the capability of changing the cur-
rent page to previous or next page by using gestures.

 Step 2 – SU define system requirements

The system must propose a component on which it is possible to
specify a background corresponding to the current page of the
document, and triggering the recognition of left and right action
gestures as the actions for going to previous and next pages. The
system requirements are not met then go to step 3.

320

 Step 3 – SF feed the system

Engineer(s)/architect(s), designer(s) and gesture specialist(s) up-
date the CUI UIDL by creating a ActionGestures dataset and a
Stochastic Levenshtein algorithm with options. They create a new
PageViewer component on top of a sketch area allowing specify-
ing different pages. They additionally update EventType,
ActionType, and WidgetAttributeType by providing them respec-
tively ON_STROKE_FINISHED (for monitoring the end of an ac-
tion gesture on the document viewer); PREVIOUS_PAGE and
NEXT_PAGE (for modifying the current page on document
viewer); RECOGNITION_RESULT (for getting recognition result
on the document viewer). They add also a IS_EQUAL
ConditionOperator. The programmer(s) then fulfill the dataset
method of ActionGestures, the train and recognize methods of
Stochastic Levenshtein, the perform method of Action and the
getWidgetAttribute of WidgetAttribute in order to implement the
rendering engines reflecting the knowledge introduced in the CUI
UIDL.

Figure 5. Example, first version.

 Step 4 – SU use the system to produce the UI

SU put the document viewer component in the UI and specify the
different pages. For the behavior, they add a first rule triggered for
the event expression “$documentViewer.ON_STROKE_ FIN-
ISHED” and, if the condition “$documentViewer. RECOGNI-
TION_RESULT == LEFT”, launching action expression
“$documentViewer.PREVIOUS_PAGE”. This rule express the
the action for going back to the previous page. Similarly, they add
a second rule for handling the possibility for going to next page.
This second rule is triggered by event expression
“$documentViewer.ON_STROKE_FINISHED” and, if the condi-
tion “$documentViewer.RECOGNITION_RESULT == RIGHT”,
launching action expression
“$documentViewer.PREVIOUS_PAGE”. The produced user in-
terface is depicted in Figure 5 (the red line represents a right ac-
tion gesture).

For the SU, the UI requirements are met then go to step 6.

 Step 6 – IU use the UI

IU are not satisfied with produced UI then go to step 7.

 Step 7 – IU refine the UI requirements

For the IU, even if the recognition is good, it is too slow and
should be fastened. They also would like receiving a feedback in-
dicating the current page they are watching.

 Step 4 – SU use the system to produce the UI

With the current system, SU are unable to create the user interface
respecting the new UI requirements.

 Step 5 – SU refine the system requirements

The system needs to propose a faster algorithm. Additionally, a
label is required with the possibility to specify a text, correspond-
ing the page currently visualized.

Figure 6. Example, second version.

 Step 3 – SF feed the system

SF will add a label component to the CUI UIDL and implement
the original Levenshtein algorithm (less good performances but
less time consuming), and a SET_TEXT ActionType on the label
component.

 Step 4 – SU use the system to produce the UI

SU are now able to add a label on top of the document viewer in
order to indicate the current page. The behavior possibilities have
been increased in order to allow linking the page viewer with the
label. The generated UI is depicted in Figure 6.

For the SU, the UI requirements are met then go to step 6.

 Step 6 – IU use the UI

IU are not satisfied with produced UI then go to step 7.

Figure 7. Example, final version.

321

 Step 7 – IU refine the UI requirements

IU finally want the label in blue and bigger because they think it
is more beautiful.

 Step 4 – SU use the system to produce the UI

System already allows addressing this new UI requirement. The
color of the label is then changed and the produced user interface
is proposed to the IU, which are finally satisfied. This user inter-
face specification may be viewed in the tool screenshot (Figure 4),
with the corresponding XWT. The final generated user interface is
depicted in Figure 7.

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed a method enacting the creation of ges-
ture-based user interfaces. This method (Figure 2) defines seven
steps through which, with the help of the system, different catego-
ries of actors will cooperate on the creation of the gesture-based
user interface targeted by end users. The system is described by an
extension of the XWT model (Figure 3) allowing supporting be-
havior and gesture missing features. For implementing the system,
we relied on a extended version of WindowBuilder (Figure 4).
Through a concrete example applied to document manipulation,
previous section showed the process of cooperation between the
different actors leading to the creation of a gesture-based user in-
terface. If the considered user interface is simple, it is sufficient to
highlight the different steps and the way achieving them. The
same principles may be applied for more elaborated interfaces.
Furthermore, although the method has been developed for han-
dling the specific gesture feature, it may be generalized to take
other features into account.

The big advantage of the described system is its ability to acquire
and structure new knowledge. It may be viewed as a customizable
gesture-based user interface factory: it is expected to evolve
through the different creations of gesture-based user interfaces
and be refined by System Feeders accordingly to the evolution of
new technologies and needs. With time and experience, needs for
updating the system will decrease, since it will contain the infor-
mation needed for most user interfaces. This will lead to an im-
provement of the process of creating the gesture-based user inter-
faces. Indeed, the steps for feeding the system will be skipped, let-
ting all the efforts focused on the direct conception of the user in-
terfaces. When this level is reached, only the System Users and
the Interface Users are needed to collaborate for producing the in-
terface.

As a next step, we aim at improving the system in such a way that
the Interface Users alone would be able to create the user inter-
face. The idea is to rely on recommendation principles. An exten-
sion to the system would be developed in order to capture a series
of rules defined by conception actors such as engineers/architects,
designers and gesture specialists. It would add ”intelligence” to
the system, being then able to drive the final users in the creation
of their user interfaces, even without any knowledge in ergonom-
ics, UI architecture, design or gesture mechanism.

Although the current implementation of the system only targets
Java language and more specifically SWT toolkit, it underlies how
the method can be concretized in a general way. Thanks to the
separation of concerns between the conception and the implemen-
tation phases, the whole part of the system devoted to the concep-
tion can be kept whatever the platform targeted. However, in or-
der to implement other languages and hence support other plat-
forms, we aim at adding a translation engine from XWT to
UsiXML [17] language. UsiXML is an XML-based UIDL sup-

porting the different levels of abstraction of Cameleon Reference
Framework. It defines rendering engines from its CUI to many
FUI such as HTML5, Java, etc., and would allow our system out-
putting final user interfaces in different languages. Relying on
UsiXML brings the advantage of reusing many already defined
rendering engines, but these rendering engines are sometimes not
sufficient to translate the XWT syntax increased by System Feed-
ers engineers/architects, designers and gesture specialists. As
UsiXML is extensible, the role of the System Feeders program-
mers would then become improving UsiXML rendering engines
to support new features or languages fitting the increased XWT
syntax. With this future integration, we hope even more increas-
ing the System Users experience by avoiding them additional ef-
forts when specifying a user interface for a new language since
one specification would be automatically transformable in many
languages.

8. REFERENCES
[1] Beuvens, F. and Vanderdonckt, J.: UsiGesture: an Environment for

Integrating Pen-Based Interaction in User Interfaces. In Proc. of
RCIS’12 , 339-350.

[2] Calvary, G. et al.: A Unifying Reference Framework for Multi-
Target User Interfaces. Interacting with Computer 15, 3 (2003), 289-
308.

[3] Hong, J. and Landay, J., Satin: a Toolkit for Informal Ink-based
Applications. In UIST’00. ACM, 63–72.

[4] Landay, J. A.: SILK: Sketching Interfaces Like Krazy. In: CHI’96,
ACM, NY (1996), 389-399.

[5] Levenshtein, V. I.: Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady 10, 8 (1966), 707–
710.

[6] Lin, J., Newman, M., Hong, J., Landay, J.: DENIM: Finding a
Tighter Fit Between Tools and Practice for Web Site Design. In:
CHI’2000, 2 (1), 510-517.

[7] Long, A.C.J. quill: A Gesture Design Tool for Pen-based User
Interfaces. PhD Thesis, Univ. of California at Berkeley, 2001.

[8] Lyons, K., Brashear, H., Westeyn, T., Kim, J.S., Starner, T.: GART:
The Gesture and Activity Recognition Toolkit. In Proc. of HCI’07,
LNCS, 4552, 718–727.

[9] Ngo, D. C. L., Byrne, J. G.: Another Look at a Model for Evaluating
Interface Aesthetics, AMCS 11, 2 (2001), 515-535.

[10] Oncina, J., Sebban, M.: Learning stochastic edit distance:
Application in handwritten character recognition. Pattern recognition
39 (2006), 1575–1587.

[11] Plimmer, B., Freeman, I.: A Toolkit Approach to Sketched Diagram
Recognition. HCI, Lancaster, UK (2007), 205-213.

[12] Rubine, D.: Specifying gestures by example. SIGGRAPH Computer
Graphics (1991).

[13] Schmieder, P., Plimmer, B., and Blagojevic, R. Automatic
Evaluation of Sketch Recognizers. In: SBIM’09 ACM Press (2009),
pp. 85–92.

[14] Signer, B., Kurmann, U., and Norrie, M. C. iGesture: A General
Gesture Recognition Framework. ICDAR’2007, Los Alamitos
(2007), 954-958.

[15] Liao, C., Guimbretière, F., and Hinckley, K.: PapierCraft: a
command system for interactive paper.

[16] SWT: http://eclipse.org/swt/.
[17] UsiXML: http://www.usixml.org.
[18] Vanderdonckt, J.: Visual Design Methods In Interactive

Applications. Mahwah : Lawrence Erlbaum Associates (2003), 187-
203.

[19] Westeyn, T., Brashear, H., Atrash, A., Starner, T.: Georgia Tech
Gesture Toolkit: Supporting Experiments in Gesture Recognition.
Proc. of ICMI’03 (2003), 85-92.

[20] WindowBuilder: http://eclipse.org/windowbuilder/.
[21] Wobbrock, J. O., Wilson, A. D., Li Y.: Gestures without libraries,

toolkits or training: a $1 recognizer for user interface prototypes. In
Proc. of UIST’07, 159– 168.

[22] XWT: http://wiki.eclipse.org/E4/XWT.

322

