
Generating User Interfaces from
Formal Specifications of the Application

Bernhard Bauer

Institut für Informatik, Technische Universität München,
Arcisstraße 21, D-80290 München, Germany

Phone: +49-89-2892-8160 – Fax: +49-89-2892-8180
E-mail: bauer@informatik.tu-muenchen.de

WWW: http://www2.informatik.tu-muenchen.de/persons/bauer/bauer.html

Abstract

The generation of the dialogue description from an algebraic specification of the
application and its restrictions to different user groups are presented. The idea and
motivation for the work is that the development of the application and the UI has
to go hand in hand. Moreover, the UI should be generated since the programming
of UIs is a time consuming and error-prone task. A formal specification of an ap-
plication, characterizing the application in an abstract way, allows the automatic
analyses and the generation of specifications, describing the dynamic behaviour of
the UI. The generated (dynamic) specification can be used as an input for an exist-
ing UI Generator (UIG), called BOSS, which is part of a formal UI development
environment, called FUSE.

Keywords
Algebraic specifications, user interface generation, model-based approach, user in-
terface, formal methods, application of theorem provers, links between application
and UI.

Introduction

Nowadays nearly every software project has to deal with the implementation of
UIs, since the end-users of such systems are often computer novices using only the
program with little or less knowledge about the computer technology. But the pro-
gramming of UIs is not a trivial task, especially implementing the dialogue control,
since the implementation is a time-consuming, error-prone and complex SE proc-
ess and therefore expensive.

Moreover the development of a graphical UI is a very critical point in the software
engineering process, since the complete interaction between the user and the appli-
cation is via the UI and according to [Myers88a] 50-88% of the code of an interac-
tive application is the code for the UI. Furthermore the price for individual soft-

142 Computer-Aided Design of User Interfaces

ware should be low to enter into competition with other software developers. Nec-
essary is the generation of UIs from higher specifications, i.e., “I tell you what, you
work it out“. The software engineer should only describe the “global“ information
of the UI and define style-guides for the dialogues and presentations. These style-
guides have to be defined once and are usable for the generation of a lot of UIs.
These style-guides allow getting consistent UI for a family of products with the
same look and feel.

Considering a whole application with a UI three layers have to be distinguished:

1. The specification of the presentation (layout) the user is interacting with.
2. The specification of the dialogues or tasks (dynamics) describing all possible

dialogues, in a layout-independent way (as presented for document architecture
systems in [Eickel90]).

3. The specification of the application (functional core) offering an appointed
functionality which must be supported by the UI.

Taking this scheme into consideration and looking at the UI development process
it is obvious that the UI cannot be constructed without the knowledge of the ap-
plication, since the application interface, the dynamics of the UI and the user tasks
are not independent of the application, since the state of the application controls
inherent the performable dialogues. Therefore it is necessary to use the application
as a starting point for the UI development.

But which description of the application should be used? An informal specifica-
tion, a formal specification or the implementation of the application? Using an in-
formal specification does not allow the use of machine supported analyzing of the
specification. On the other side, the implementation of the application is too low-
level to be considered. Furthermore the implementation of the UI has to be done
in parallel to the implementation of the functional core to finish the implementa-
tion of both at nearly the same time.

Working with a formal specification technique allows:

• computer supported analysis of the specifications,
• elucidating the problem and
• consideration of correctness aspects of the obtained software.

Thus the starting point for the UI and the application development is the same,
namely a formal specification of the application and the software construction of
both can be done hand in hand. In our framework as a starting point for the gen-
eration of UIs, algebraic specifications of the applications are used because on the
one side this technique allows the abstract specification of the application, de-
scribes the input/output behaviour and allows the use of theorem proving tech-
niques for obtaining correct software and on the other side are well-studied (cf.
e.g., [Ehrig85, Wirsing90]). The output of the generation process are HIT specifica-
tions [Schreiber96] used for the generation of an executable UI with BOSS [Sch-
reiber94a, Schreiber94b] (“BedienOberflächenSpezifikationsSystem“ the german

 Generating User Interfaces from Formal Specifications of the Application 143

translation of “UI specification system“) and state transition systems. The here pre-
sented work is part of the FUSE system (Formal UI Specification Environment)
presented in [Lonczewski96] in this volume. The FUSE system consists of the three
components BOSS [Schreiber94a, Schreiber94b], FLUID (Formal UI Development)
and PLUG–IN [Lonczewski95a, Lonczewski95b] (PLan-based User Guidance for
Intelligent Navigation). Within the FUSE architecture, the FLUID system plays the
role of a theorem prover (cf. [Bauer95]) and an automatic dialogue designer. This
contribution concentrates on the generation of the formal specification of the logi-
cal UI - called in the following often dynamics of the UI - from the formal specifica-
tion of the application (i.e., problem domain model and user model).

1 The Problem

As already mentioned in the introduction the programming of UIs is a time-
intensive and expensive SE task. Therefore it would be desirable to generate UIs
out of a higher specification with the aim “I tell you what, you work it out“. One
aim is the re-use of the specification of the application for the generation of the UI.
Using algebraic specifications (being a well-founded formal specification technique,
cf. e.g., [Wirsing90]) for the generation process allows a unifying starting point for
the UI and application development. The specification of the application is taken
as input of the generation process and the output is a HIT specification or a state
transition system describing the possible dialogues with the UI on a logical view.
This HIT specification in connection with a given runtime system allows the proto-
typical development and evaluation of a UI with BOSS.

1.1 The Starting Point

Following [Larson92] the UI design decision framework consists of the following
five classes:

• The structural and functional decision class determine the end users’ concep-
tual model,

• the dialogue decision class determines the dialogue style and
• the presentation and pragmatic decision class determines the refinement of

the end users’ conceptual model and dialogue style.

In the structural and the functional decision class the structure of the end users’
conceptual model is specified including

• the description of conceptual objects (consumed, produced and/or accessed by
the end user),

• the application functions and
• the description of constraints and relationships that hold among conceptual ob-

jects).

144 Computer-Aided Design of User Interfaces

I.e., more or less an abstract data type with a special observable interface is defined
in the structural and functional decision class. Such an abstract data type can easily
be specified by an algebraic specification.

We assume the reader to be familiar with the basic notions of algebraic specifica-
tions such as signature Σ = (S, C, F), Σ-terms TΣ(X), ground terms TΣ, (ground)
substitutions σ, set of partial Σ−algebras Algpartial(Σ) (for more details see [Ehrig85,
Wirsing90]).

Let Σ = (S, C, F) be a signature consisting of a set of sort symbols S, constructor
symbols C and function symbols F and Ax a set of equations of the form t = r with
t, r ∈ TΣ(X), whereby the function symbols in f ∈ F with functionality
f : s1, s2,..., sn → s may be partial (with s1, s2,..., sn, s ∈ S), i.e. there are some re-
strictions on the parameters denoted in the following way:

fct(f) = xf, s1 : s1, xf, s2 : s2,..., xf, sn : sn . Eqf(xf, s1, xf, s2,..., xf, sn) -> s

such that f is only defined if Eqf(xf, s1, xf, s2,..., xf, sn) is valid, whereby Eqf(xf, s1,
xf, s2,..., xf, sn) is an equation with the only identifiers in { xf, s1, xf, s2,..., xf, sn }.

A subset Obs of the sorts S is distinguished being the observable sorts.

A partial algebraic specification is a tuple Sp = <Σ, Obs, Ax>.
The semantics is defined by its signature Σ and the behavioural class

Beh(Sp) = { A ∈ Algpartial(Σ) | A |=beh ax for all axioms ax ∈ Ax }.

The behavioural satisfaction |=beh is defined by
A |=beh t = r iff for all context c[zs] of observable sort holds A |= c[t] = c[r]

whereby a Σ-context c[zs] is a term over the signature Σ with a distinguished identi-
fier zs occurring exactly once in c. The application of a context c[zs] to a term t
(denoted by c[t]) is done by substituting the identifier zs by t if t is of sort s. |= de-
notes the usual satisfaction relation.

The model class of an algebraic specification is defined by:
Mod(Sp) = { A ∈ Algpartial(Σ) | A |= ax for all axioms ax ∈ Ax }.

The sorts and constructor symbols define the conceptual objects, the function
symbols the application functions, the observable sorts characterize those objects
which are observable by the end-user and the parameter restrictions with the axi-
oms describe the constraints and relationships between the conceptual objects.

The notion of algebraic specifications has to be extended by a set of distinguished
function symbols applicable to the conceptual objects (called in the following inter-
face functions) which should be supported by the UI and the sort of the application
state, i.e., the sort of the terms representing the state of the functional core. The
use of interface functions cannot be neglected by identifying the function symbols
with observable result sort as the interface function, since it would be desirable to
use application functions only changing the internal state of the application. Fur-
thermore the initial state of an application may be defined.

 Generating User Interfaces from Formal Specifications of the Application 145

Note, that the meaning of the functions (by defining the semantics of the functions
by axioms and parameter restrictions) is specified, but not their format or sequenc-
ing of invocation is defined.

The three important types of decisions made in the dialogue decision class are

• what are the units of information exchanged between the user and the applica-
tion (defined by the observable sorts and the interface functions),

• how this units of information are structured into messages between the user
and the application (not considered here) and

• what the appropriate sequences of message exchange are (main issue of this
contribution).

The aim of the new approach is to generate the sequence of information ex-
changed between the user and the application, namely to automate part of the dia-
logue decision class.

1.2 Specification of the Application: an Example

We start with the algebraic specification ISDN-Application of the application. A
similar specification can be found in [Bauer95]. The specification of the ISDN
telephone is a syntactical enrichment of the natural numbers (NAT). The sorts de-
scribe the connection with a participant (Connection), the internal state of the tele-
phone (State) and the state of a connection (Cstate).

The internal state is viewed in an abstract way, i.e., at most two connections can be
achieved with the telephone (mkState). mtCon states an empty connection. A (non-
empty) connection consists of a telephone number (represented by a natural num-
ber being the only observable sort) and the status of the line (mkCon). A line can ei-
ther be waiting or telephoning.

The function call describes the telephone call with a single participant, secondCall
starts a telephone call with a second participant and the conference function en-
ables a conference session between the user of the telephone and the two partici-
pants on the other lines. call, secondCall and conference have parameter restrictions de-
noted by a first order formulae after pre.

All telephone calls are ended with endCalls. emptyConnections, singleConnections and dou-
bleConnections are predicates stating none, one and two connections. The interface
functions, i.e., the set of functions which should be supported by the UI are call,
secondCall, conference and endCalls.
spec ISDN-Application =
 enrich NAT by
 sorts Connection, CState, State
 obs-sorts Nat
 cons
 mkState: Connection, Connection -> State,
 mtCon: -> Connection,
 mkCon: Nat, CState -> Connection,

146 Computer-Aided Design of User Interfaces

 waiting, telephoning: -> CState
 opns
 call: Nat, xcall, State : State. pre emptyConnections(xcall, State) = true -> State,
 secondCall: Nat, xsecondCall, State : State. pre singleConnections(xsecondCall, State) = true -> State,
 conference: xconference, State : State. pre doubleConnections(xconference, State) = true -> State,
 endCalls: State -> State,
 emptyConnections: State -> Bool,
 singleConnections: State -> Bool,
 doubleConnections: State -> Bool
 interface functions call, secondCall, conference, endCalls
 axioms forall nr, nr2: Nat, s: State.
 emptyConnections(mkState(mtCon, mtCon)) = true,
 emptyConnections(mkState(mkCon(nr, cs), c)) = false,
 singleConnections(mkState(mkCon(nr, cs), mtCon)) = true,
 singleConnections(mkState(mtCon, c)) = false,
 singleConnections(mkState(mkCon(nr, cs), mkCon(nr, cs))) = false,
 doubleConnections(mkState(mkCon(nr, cs), mkCon(nr, cs))) = true,
 doubleConnections(mkState(c, mtCon)) = false,
 call(nr, s) = mkState(mkCon(nr, telephoning), mtCon),
 secondCall(nr, call(nr2, s)) = mkState(mkCon(nr2, waiting), mkCon(nr, telephoning)),
 conference(secondCall(nr, call(nr2, s))) =
 mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)),
 endCalls(s) = mkState(mtCon, mtCon)
endspec

Because of lack of space (large figures are obtained) and in order to keep the speci-
fication small, not the whole functionality presented in [Lonczewski96] in this vol-
ume is given, especially with endCalls a conference session is ended and the switch-
ing between two participants is omitted.

These features can easily be added to the specification and the generation would be
analogous. In this paper mainly the generation idea should be described to get a
feeling how the generation is performed.

2 The Generation Idea of the Dialogue Specification

In this section the idea for the generation of the dialogue specifications (HITs and
state transition systems) and their restrictions to different user groups are informal-
ly described.

2.1 Generation of the Dialogue Specifications

The generation process consists of several steps:

As a first step a graph is constructed with nodes marked with function symbols,
identifiers for the arguments and the resulting term for each interface function.
The only non-observable sort is the sort of the state of the functional core, namely
State, marked with and observable arguments are marked with .

 Generating User Interfaces from Formal Specifications of the Application 147

conference(xconference, State)

xsecondCall, Nat

call

endCalls conference

secondCall

xcall, Nat xcall, State xsecondCall, State

call(xcall, Nat, xcall, State) secondCall(xsecondCall, Nat, xsecondCall, State)

xendCalls, State
xconference, State

endCall(xendCalls, State)
Figure 1. First dependency graph

Now all the parameter restrictions for the functions can be solved by a system
solving existential quantified equations by narrowing like RAP [Hußmann89].
Therefore the solutions for the identifiers in the parameter restrictions must be cal-
culated, i.e., the solutions of the existential quantified formulae:

 xcall, State : State. emptyConnections(xcall, State) = true,
 xsecondCall, State : State. singleConnections(xsecondCall, State) = true and
 xconference, State : State. doubleConnections(xconference, State) = true

The solutions - denoted here as substitutions - can be easily calculated as

σ1 = { mkState(mtCon, mtCon) / xcall, State },
σ2 = { mkState(mkCon(nr, telephoning), mtCon) / xsecondCall, State } and
σ3 = { mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)) / xconference, State }

xcall, Nat mkState(mtCon, mtCon) xsecondCall, Nat mkState(mkCon(nr, telephoning), mtCon)

call

call(xcall, Nat, mkState(mtCon, mtCon)) secondCall(xsecondCall, Nat, mkState(mkCon(nr, telephoning), mtCon))

secondCall

conference

mkState(mkCon(nr, waiting), mkCon(nr2, telephoning))

endCalls

xendCalls, State

endCall(xendCalls, State) conference(mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)))

Figure 2. Instantiated dependency graph

148 Computer-Aided Design of User Interfaces

These substitutions can now be applied to the graph, i.e. in the graph the identifiers
xcall, State, xsecondCall, State and xconference, State are substituted by mkState(mtCon, mtCon),
mkState(mkCon(nr, telephoning), mtCon) and mkState(mkCon(nr, waiting),
mkCon(nr2, telephoning)), respectively, resulting in figure 2.

Since the parameter restrictions of call and secondCall influence only the second
argument of sort State and not the first argument of sort Nat there is no restriction
on the telephone numbers. Thus a natural number can be used as an input for the
first argument of call and the first argument of secondCall. The same holds for the
function endCalls which can be applied in every state.

endCalls

mkState(mtCon, mtCon)

conference

mkState(mkCon(xcall, Nat, telephoning), mtCon)

xcall, Nat mkState(mtCon, mtCon)

call

mkState(mkCon(xcall, Nat, waiting), mkCon(xsecondCall, Nat, telephoning))

xsecondCall, Nat

secondCall

mkState(mkCon(xcall, Nat, telephoning), mkCon(xsecondCall, Nat, telephoning))

Figure 3. Putting the instantiated dependency graph together

The result term of the function call is call(xcall, Nat, mkState(mtCon, mtCon)), of the
function secondCall is secondCall(xsecondCall, Nat, mkState(mkCon(nr, telephoning),
mtCon)) and of the function conference is conference(mkState(mkCon(nr, wait-
ing), mkCon(nr2, telephoning))). Moreover it holds

call(nr, mkState(mtCon, mtCon)) = mkState(mkCon(nr, telephoning), mtCon)),
secondCall(nr, mkState(mkCon(nr2, telephoning), mtCon)) =
 mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)),
conference(mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)) =
 mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)))
and endCalls(s) = mkState(mtCon, mtCon) for all States s.

 Generating User Interfaces from Formal Specifications of the Application 149

Now the graphs can be merged together (figure 3) and the non-observable state of
the application can be omitted resulting in the graph reproduced in figure 4.

xcall, Nat mkState(mtCon, mtCon)

call

xsecondCall, Nat

secondCall

conference

endCalls
Figure 4. Composed instantiated dependency graph

The obtained graph can now be translated on the one side into a state transition
system and on the other side into a BOSS specification. In this generation process
special dialogue style guides (specifiable in a formal way by defining transformation
rules for the obtained graphs) can be used, e.g., for a user or system driven dia-
logue style. We assume here a hard-coded transformation into the dialogue specifi-
cations.

A transaction-rule in BOSS (for more details, see [Lonczewski96] in this volume
and [Schreiber96]) is fired by the user, e.g., by selecting a menu-item, or by a push
button., i.e., each interface function is viewed as a non-repeatable transaction rule
and the observable arguments as input slots, i.e., the user has to enter some infor-
mation for it. The corresponding BOSS-specification looks like figure 5.

name:type inputslot

transaction-rule
non-repeatable

xcall, Nat:
Nat

mkState(mtCon, mtCon)
initial state

call

xsecondCall, Nat :
Nat

conference

endCalls

name
secondCall

mkState(mtCon, mtCon)
terminal state

state internal state

Figure 5. HIT specification

150 Computer-Aided Design of User Interfaces

Using non-repeatable transaction rules states, that the whole HIT has to be worked
through starting with the initial state until the termination state is reached. Now a
new instance of the HIT can be made since the termination state is equal to the ini-
tial state.

Depending on the dialogue style different state transition systems are obtained. Let
us first of all construct a state transition system where the arguments are entered
after performing the selection of the interface function.

As a next step a state transition system is considered where all the parameters of
the interface functions have to be known before the interface function is deter-
mined. With the interface functions abstract menu items with the function symbols
in capital letters are assumed, i.e., the abstract menu items are CALL, SECOND-
CALL and CONFERENCE.

Starting with an initial state, say s0, CALL can be selected according to the depend-
ency graph in figure 4. Afterwards the telephone number (a natural number) has to
be entered. After performing a call either a second call can be started (beginning
with SECONDCALL and entering the telephone number afterwards) or the tele-
phone call can be ended (ENDCALLS).

After performing a second call either all telephone calls can be ended (END-
CALLS) or a conference sessions can be started (CONFERENCE) and then all
telephone calls can be ended (ENDCALLS). The obtained state transition system
looks like figure 6.

Nat NatSECOND-
CALL

CON-
FERENCE

ENDCALLS

ENDCALLS
ENDCALLS

s0
CALL

Figure 6. State transition system for dialogue style 1

The other state transition system looks like figure 7.

Nat Nat SECOND-
CALL

CON-
FERENCE

ENDCALLS

ENDCALLS
ENDCALLS

s0
CALL

Figure 7. State transition system for dialogue style 2

Another dialogue style would allow to select the CONFERENCE menu-item and
the system automatically starts the first and afterwards the second call. A state tran-
sition system for such a behaviour of the telephone system can be constructed
analogous.

 Generating User Interfaces from Formal Specifications of the Application 151

2.2 Restricting the Dialogue Specification to Different User Groups

Usual different user groups with a different functionality use a software product.

In the ISDN-example it is possible that a special user group may only use the inter-
face functions call and endCalls but not secondCall and conference.

One solution for this problem is to generate for each user group a different dia-
logue description, but some work has to be done twice.

Therefore a more elegant way is to restrict the generated dialogue description to
the interface functions of the user groups, i.e., all the nodes with interface func-
tions, which are not usable by a special user group, and their argument nodes are
“deleted“:

xcall, Nat mkState(mtCon, mtCon)

call

xsecondCall, Nat

secondCall

conference

endCalls
Figure 8. Restricting the dialogue specification to different user groups

resulting in:

xcall, Nat mkState(mtCon, mtCon)

call

endCalls
Figure 9. Restricted dialogue specification

with the corresponding HIT specification and state transition system.

In this section we have shown informally by an example how a HIT specification
and a state transition system, describing the dynamics of a UI out of an algebraic
specification of the application can be generated.

152 Computer-Aided Design of User Interfaces

3 Generating a Specification of the Performable Dialogues

In the previous section we have seen by an example what the idea of generating the
dialogue specification from an algebraic specification is. The starting point is a
given algebraic specification Sp = <(Σ, C, F), Obs, Ax>.

The sorts are split up into observable and non-observable sorts and the state sort,
i.e. the observable sorts describe those objects visualizable to the end-user and the
non-observable objects not visible by the end-user and the objects of the state sort
describe the internal state of the application also not visible by the user.

The generation process consists of five phases:

1. Construction of the pure dependency graph.
2. Solving the parameter restrictions.
3. Instantiation of the pure dependency graph with the solutions of the parameter

restrictions.
4. Merging of the instantiated dependency graph.
5. Converting the obtained graph into BOSS notation / state transition system.

3.1 Construction of the Pure Dependency Graph

The pure dependency graph G = (N, E) has two kinds of nodes and edges.

For each interface function f with functionality
fct(f) = xf, s1 : s1, xf, s2 : s2, ..., xf, sn : sn . Eqf(xf, s1, xf, s2,..., xf, sn) -> s

we construct the following graph graphf :

xf, s1 xf, s2 xf, sn...

f(xf, s1, xf, s2,..., xf, sn)

f

Figure 10. Graph of an interface function f

Therefore the nodes N = Nterm ∪ Nfunc are splitted up into Nterm the set of terms
and Nfunc the set of function symbols. The edges E = Etermtofunc ∪ Efunctoterm ∪ Efunc-

tofunc are splitted into edges from nterm ∈ Nterm to nodes nfunc ∈ Nfunc in the set Eterm-

tofunc, edges from nfunc ∈ Nfunc to nodes nterm ∈ Nterm in the set Efunctoterm and edges
from nfunc ∈ Nfunc to nfunc ∈ Nfunc in the set Efunctofunc. Efunctofunc are used later.

The pure dependency graph is the set of graphs of each interface function f.

 Generating User Interfaces from Formal Specifications of the Application 153

3.2 Solving the Parameter Restrictions

In this phase it is tried to solve the parameter restrictions of the interface functions,
i.e. the solution of the parameter restriction for an interface function f with func-
tionality

fct(f) = xf, s1 : s1, xf, s2 : s2, ..., xf, sn : sn . Eqf(xf, s1, xf, s2,..., xf, sn) -> s

are the solutions of the existential formulae:
∃ xf, s1 : s1, xf, s2 : s2,..., xf, sn : sn . Eqf(xf, s1, xf, s2,..., xf, sn)

To solve existential quantified formulae theorem provers can be applied, namely
the solutions can be found by narrowing (e.g., by the RAP system [Hußmann89]),
whereby the most general solutions are obtained.

If the parameter restrictions cannot be solved at generation time (because informa-
tion is missing, e.g. with loose specifications is dealt with) the run-time system of
BOSS controls the parameter restrictions (therefore the parameter restrictions have
to be implemented by Boolean functions). Thus for every interface function f with
parameter restriction the following set of solutions is obtained:

σ(f) = { σ | Mod(Sp) |= Eqfσ such that σ∈Subst is most general solution }

with fct(f) = xf, s1 : s1, xf, s2 : s2,..., xf, sn : sn . Eqf(xf, s1, xf, s2,..., xf, sn) -> s and Subst is
the set of all substitutions.

3.3 Instantiation of the Pure Dependency Graph with the Obtained
Solutions

Now for every graph graphf obtained from an interface function f the set of instan-
tiated graphs instgraphf is defined by:

instgraphf = graphf, if no solution exists,
instgraphf = ∪σ ∈σ(f) σ(graphf) otherwise

such that σ(graphf) is defined for graphf of figure 10 by:

σ(xf, s1) σ(xf, s2) σ(xf, sn)...

σ(f(xf, s1, xf, s2,..., xf, sn))

f

Figure 11. Applying a substitution to a graph

3.4 Merging of the Instantiated Dependency Graphs

After calculating the instantiated set of graphs
InstGraphs = ∪f ∈ interface(Sp) instgraphf

154 Computer-Aided Design of User Interfaces

whereby interface(Sp) yields the interface functions of the application. The set of
instantiated graphs InstGraphs is examined whether nodes of sort Nterm can be
connected. An edge between two nodes t1, t2 ∈ Nterm is drawn if Mod(Sp) |=

t1=t2 holds and there exists an edge (t1, f1) ∈ Etermtofunc and an edge (f2, t2) ∈
Efunctoterm for some function symbols f1 and f2 and terms t1 and t2. If an edge from
t2 to another term t of Nterm exists then instgraphf is duplicated. The new obtained
graph is merged together in the following way:

If edges (f1, t1) ∈ E and (t1, f2) ∈ E exist

• and there is no edge (t1, f3) ∈ E (with f3 ≠ f2) then (f1, t1) and (t1, f2) are de-
leted in E and (f1, f2) is added to E.

• and there is an edge (t1, f3) ∈ E (with f3 ≠ f2) then (f1, f2) is added to E.

3.5 Obtaining a BOSS Specification / State Transition System

The obtained graph of the merging phase is converted into a HIT-specification as
follows:

Each node f of an interface function f is converted into a transaction rule
f

 if f is interface functions and an equational rule
 f

 oth-
erwise.

The obtained graph of the merging phase is converted into a state transition system
as follows. Depending on the dialogue style different state transition systems can
be constructed. The transformation presented here is performed by first selecting
the abstract menu item of the corresponding interface function and then entering
the arguments.

Each subgraph f

arg2arg1
argn...

 of an interface function f is converted into

...
arg1 arg2 argnf

such that arg1, arg2,..., argn denote the observable arguments which have to be en-
tered. The non-observable arguments are neglected in the state transition system.

Subgraphs of the form

 f

 g

arg2arg1
argn...

 of interface functions f and g are con-
verted into

 Generating User Interfaces from Formal Specifications of the Application 155

...
arg1 arg2 argngf

such that f denotes the state transition system obtained from the interface
functions f and its arguments.

Cycles in the merged instantiated dependency graph are expressed analogous in the
state transition system.

The restriction of the dialogue description for special user groups is done by delet-
ing the non-usable interface functions from the obtained HIT specification or state
transition system.

Parallelism can also be taken into consideration in the generation process. Things
can be done in parallel without synchronisation if the output of the fourth phase
are non-dependent graphs. Then each of these graphs can be worked through in
parallel.

Converting the graph of the fourth phase into BOSS is the same as described. The
obtained state transition systems have to be put into the construct for expressing
parallelism.

Using the structuring mechanisms well-known from algebraic specifications allows
to use these technique also for larger projects. The experience shows that the gen-
eration of the dialogue description for subspecifications can often be put together
without considering the context in which the subspecifications are used. Otherwise
normalization techniques exists for the structured algebraic specifications and the
normalized specification can be used as the starting point for the generation proc-
ess.

4 Related Work

MIKE [Olsen86] (Menu Interaction Kontroll Environment) und MIKEY [Olsen89]
generate UIs with menus and dialogue boxes based on a description of the func-
tions (argument and result parameters) and the data structures in the application in-
terface.

In HIGGENS [Hudson86] a semantic data model of the application interface is used
as the base for deriving views as abstract descriptions of the UI layout.

The JANUS–System [Balzert93, Balzert94a, Balzert95a] uses OOA (Object–Orien-
ted Analysis) for describing the problem domain model (i.e., application interface)
of an data base–oriented interactive application. Moreover, JANUS allows the speci-
fication of software ergonomic guidelines, which describe the mapping between
OOA–models to the UI description language of a UIMS. JANUS does not provide
means for the explicit specification of the UI dynamics.

In the UIDE system (UI Design Environment) [Foley91, Foley93, Foley94], the UI
development process consists of the description of two models. In the application

156 Computer-Aided Design of User Interfaces

model, the logical UI is described in terms of application objects and tasks. The
UI–model describes the coupling of the application model to a UI layout by linking
application tasks to interface tasks, interaction techniques and –objects. The links
between the models are used by a runtime engine to provide animated help.

HUMANOID [Luo93] divides the UI–development process into the activities appli-
cation design, dialogue sequencing, action side effects, presentation design and
manipulation design. In the first three design dimensions the logical structure of a
UI is described in terms of the structure and the behaviour of so called application
objects. The mapping of the state of the application objects in an logical UI to a UI
layout is described in the design dimensions presentation– and manipulation design
through presentation and manipulation templates. Based on the model described
above, HUMANOID is able to provide textual help.

Recently the research on UIDE and HUMANOID were joint in the MASTERMIND
project.

The GENIUS–System (GENerator for UIs Using Software Ergonomic Rules)
[Janssen93] generates UIs for data–base oriented applications. In GENIUS, the
problem domain model is represented by an ERA diagram. Based on this ERA–
diagram static aspects of the logical UI are described in terms of so called views,
which can be regarded as abstract representations of UI windows. For the repre-
sentation of the dynamics of the logical interface, GENIUS employs a petri–net–like
specification technique (“dialogue–nets”). For each view in the logical UI, the static
UI–layout is generated by applying software–ergonomic guidelines, which are de-
scribed as decision tables (e.g., for the selection of interaction objects).

A similar approach is presented in the TADEUS–System (TAsk based DEvelop-
ment of UI Software) [Elwert95]. TADEUS differs from GENIUS in the use of dif-
ferent specification techniques for the representation of the problem domain
model (TADEUS uses an object oriented approach) and the dynamics of the UI
(dialogue–graphs, an extension of dialogue–nets). In this system the dynamics of
the application is not taken into consideration or the specification of the applica-
tion is not used for dynamics considerations of the application.

ITS (Interactive Transaction System) [Wiecha89] offers a frame based language for
the specification of UIs in its logical structures (“dialogue content”). Moreover, ITS
allows the specification of style rules, which describe the mapping between logical
UIs and UIs in a particular style.

In the ADEPT system [Johnson92b, Wilson96], a process–algebra–like specification
technique called Task Knowledge Structures (TKS) is used for the specification of
the task model of an interactive application. In the design phase of the UI–
development process, the task model is transformed into the specification of the so
called Abstract Interface Model (AIM), which corresponds to the term “logical
UI”. Based on design rules in a user model, the ADEPT–System derives a Concrete
Interface Model (CIM) from the AIM by replacing the AIOs in the AIM by the
appropriate CIOs in the CIM.

 Generating User Interfaces from Formal Specifications of the Application 157

The TRIDENT (Tools foR an Interactive Development ENvironmenT) system [Bo-
dart94a, Bodart94b] consists of a methodology and a support environment for de-
veloping UIs for business–oriented interactive applications. TRIDENT uses ERA–
diagrams for the description of the problem domain model. For the representation
of the task model TRIDENT provides a data–flow–graph–like specification tech-
nique called Activity Chaining Graphs (ACGs). Each ACG is structured into pres-
entation units. From these presentation units, the static UI layout can be generated
by applying rules for the selection of AIO, rules for mapping AIO to CIO and
rules for the placement of CIO.

These systems start more or less with the specification of the dynamics of the UI
which is the output of the FLUID system and can therefore be seen at the same
level as the BOSS system in the FUSE system. But they do not take the dynamic se-
mantics of the application into consideration.

Conclusion

The FLUID system, whose theoretical foundations were presented here, is currently
under development, whereby prototypes of BOSS and PLUG-IN already exist. The
FUSE methodology and tools have been applied successfully to a number of exam-
ples (ISDN phone simulation, UI for a literature research system, UI for a home
banking system, formula editor for LATEX).

In the future we plan to increase the level of compatibility of the FUSE develop-
ment environment to other model based methodologies and tools. E.g., for setting
up the problem domain model, we want to support OOA, BON and ERA data
models in addition to the currently supported algebraic specification technique.

In order to gain more practical experience with the FUSE–methodology and the re-
lated tools, we plan to organize a course in UI specification and generation at the
Munich University of Technology.

Acknowledgements

This work has been partially supported by Siemens Corporate Research and De-
velopment, Department of System Ergonomics and Interaction (ZFE ST SN 51).
The author would like to thank Siegfried Schreiber and the anonymous reviewers
for their useful comments and suggestions on draft versions of this paper.

158 Computer-Aided Design of User Interfaces

References

[Balzert93] Balzert, H., Der JANUS-Dialogexperte: Vom Fachkonzept zur Dialogstruk-
tur, in Softwaretechnik Trends, Band 13, Heft 3, Proceedings der GI-Fachtagung
Softwaretechnik, Dortmund (8-10 November 1993), pp. 62-72.

[Balzert94] Balzert, H., Das JANUS-System: Automatisierte, wissensbasierte Generierung
von Mensch-Computer-Schnittstellen, in Informatik-Forschung Entwicklung, Vol. 9,
Springer-Verlag, Heidelberg, 1994, pp. 22-35.

[Balzert95a] Balzert, H., From OOA to GUI - The JANUS-System, in Proceedings of
5th IFIP TC13 Conference on Human-Computer Interaction INTERACT’95,
Lillehammer, 25-29 June 1995, K. Nordbyn, P.H. Helmersen, D.J. Gilmore and
S.A. Arnesen (Eds.), Chapman & Hall, London, 1995, pp. 319-324.
http://www.swt.ruhr-uni-bochum.de/forschung/janus/lillehammer. html

[Bauer95] Bauer, B., Proving the Correctness of Formal User Interface Specifications, in Pro-
ceedings of 2nd Eurographics Workshop on Design, Specification, Verification of
Interactive Systems DSV-IS’95 (Château de Bonas, 7-9 June 1995), R. Bastide and
Ph. Palanque (Eds.), Eurographics Series, Springer-Verlag, Vienna, 1995, pp. 224-
241.

[Bodart94a] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Vanderdonckt, J., To-
wards a Dynamic Strategy for Computer-Aided Visual Placement, in Proceedings of 2nd
Workshop on Advanced Visual Interfaces AVI'94 (Bari, 1-4 June 1994), T. Catarci,
M.F. Costabile, S. Levialdi, G. Santucci (Eds.), ACM Press, New York, 1994, pp.
78-87.

[Bodart94b] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Provot, I., Vander-
donckt, J., A Model-based Approach to Presentation: A Continuum from Task Analysis to
Prototype, in Proceedings of 1st Eurographics Workshop on Design, Specification,
Verification of Interactive Systems DSV-IS’94 (Bocca di Magra, 8-10 June 1994),
Focus on Computer Graphics Series, Springer-Verlag, Berlin, 1995, pp. 77-94.

[Ehrig85] Ehrig, H., Mahr, B., Fundamentals of Algebraic Specifications 1, EATCS Mo-
nographs on Theoretical Computer Science, Vol. 6, Springer, Berlin, 1985.

[Eickel90] Eickel, J., Logical and Layout Structures of Documents, Computer Physics
Communication, Vol. 61, 1990, pp. 201-208.

[Elwert95] Elwert, T., Schlungbaum, E., Modelling and Generation of Graphical User In-
terfaces in the TADEUS Approach, in Proceedings of 2nd Eurographics Workshop on
Design, Specification, Verification of Interactive Systems DSV-IS’95 (Château de
Bonas, 7-9 June 1995), R. Bastide and Ph. Palanque (Eds.), Eurographics Series,
Springer-Verlag, Vienna, 1995, pp. 193-208. http://www. informatik.uni-
rostock.de/~schlung/TADEUS/paper/DSV-IS95.html

 Generating User Interfaces from Formal Specifications of the Application 159

[Foley91] Foley, J.D., Kim, W.C., Kovacevic, S., Murray, K., UIDE - An Intelligent
User Interface Design Environment, in « Intelligent User Interfaces », J.W. Sullivan, S.W.
Tyler (Eds.), Addison Wesley, ACM Press, 1991, pp. 339-384.

[Foley94] Foley, J.D., History, Results and Bibliography of the User Interface Design Envi-
ronment (UIDE), an Early Model-based Systems for User Interface Design and Implementation,
in Proceedings of 1st Eurographics Workshop on Design, Specification, Verifica-
tion of Interactive Systems DSV-IS’94 (Bocca di Magra, 8-10 June 1994), Focus on
Computer Graphics Series, Springer-Verlag, Berlin, 1995, pp. 3-14.

[Hudson86] Hudson, S.E., King, R., A Generator of Direct Manipulation Office Systems,
ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986, pp.
132-163.

[Hußmann89] Hußmann, H., Geser, A., The RAP System as a Tool for Testing Cold
Specifications, in « Algebraic Methods », M. Wirsing, J.A. Bergstra (Eds.), Lecture
Notes in Computer Sciences, Vol. 394, Springer-Verlag, Berlin, 1989, pp. 331-347.

[Janssen93] Janssen, C., Weisbecker, A., Ziegler, J. , Generating User Interfaces from
Data Models and Dialogue Net Specifications, in Proceedings of the Conference on
Human Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds »
(Amsterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollna-
gel, T. White (Eds.), ACM Press, New York, 1993, pp. 418-423.

[Johnson92b] Johnson, P., Markopoulos, P., Johnson, H., Task Knowledge Structures:
A specification of user task models and interaction dialogues, in Proceedings of 11th Inter-
disciplinary workshop on informatics and psychology, Vol. 6, 1992.

[Larson92] Larson, J.A., Interactive Software: Tools for Building Interactive User Interfaces,
Yourdon Press, Prentice Hall, Englewood Cliffs, 1992.

[Lonczewski95a] Lonczewski, F., PLUG--IN: Using Tcl/Tk for Plan Based User Guid-
ance, in Proceedings of the Tcl/Tk Workshop (Toronto, 6-8 July 1995), USENIX
Association, 1995, pp. 141-144.

[Lonczewski95b] Lonczewski F., Using a WWW-Browser as an alternative user interface
for interactive applications, in Poster Proceedings of the 3rd World Wide Web Confer-
ence (Darmstadt), R.Holzapfel (Ed.), Fraunhofer Institute for Computer Graphics,
1995, pp. 132-135.

[Lonczewski96] Lonczewski, F., Schreiber, S., The FUSE-System: an Integrated User
Interface Design Environment, in Proceedings of 2nd International Workshop on Com-
puter-Aided Design of User Interfaces CADUI’96, J. Vanderdonckt (Ed.), pp. 37-
56. ftp://hpeick7.informatik.tu-muenchen.de/pub/papers/sis/fuse_cadui96.ps.gz

[Luo93] Luo, P., Szekely, P., Neches, R., Management of Interface Design in HUMA-
NOID, in Proceedings of the Conference on Human Factors in Computing Systems
INTERCHI’93 « Bridges Between Worlds » (Amsterdam, 24-29 April 1993), S.
Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T. White (Eds.), ACM Press,
New York, 1993, pp. 107-114. http://www.isi.edu/isd/CHI93-manager.ps

160 Computer-Aided Design of User Interfaces

[Myers88] Myers, B., Creating User Interfaces by demonstration, Academic Press, Boston,
1988.

[Olsen86] Olsen, D.R., MIKE: The Menu Interaction Kontrol Environment, ACM Trans-
actions on Information Systems, Vol. 5, No. 4, pp. 318-344.

[Olsen89] Olsen, D.R., A programming language basis for user interface management, in
Proceedings of the Conference on Human Factors in Computing Systems CHI’89
« Wings for the mind » (Austin, 30 April-4 May 1989), K. Bice, C. Lewis (Eds.),
ACM Press, New York, 1989, pp. 171-176.

[Schreiber94a] Schreiber, S., The BOSS System: Coupling Visual Programming with Model
Based Interface Design, in Proceedings of 1st Eurographics Workshop on Design,
Specification, Verification of Interactive Systems DSV-IS’94 (Bocca di Magra, 8-10
June 1994), Focus on Computer Graphics Series, Springer-Verlag, Berlin, 1995, pp.
161-179. ftp://hpeick7.informatik. tu-muenchen.de/pub/papers/sis/eg94.ps.Z

[Schreiber94b] Schreiber, S., Specification and Generation of User Interfaces with the
BOSS-System, in Proceedings of the East-West International Conference on Hu-
man-Computer Interaction EWHCI’94 (St. Petersburgh, 1994), B. Blumenthal, J.
Gornostaev, C. Unger (Eds.), Lecture Notes in Computer Sciences, Vol. 876,
Springer-Verlag, Berlin, 1994, pp. 107-120. ftp://hpeick7.informatik.tu-muenchen.
de/pub/papers/sis/ewhci94.ps.Z

[Schreiber96] Schreiber, S., Spezifikationstechniken und Generierungswerkzeuge für
graphische Benutzungsoberflächen, Ph.D. Thesis, Munich University of Technology,
1996.

[Wiecha89] Wiecha, C., Bennett, W., et al., Generating Highly Interactive User Interfaces,
in Proceedings of the Conference on Human Factors in Computing Systems
CHI’89 « Wings for the mind » (Austin, 30 April-4 May 1989), K. Bice, C. Lewis
(Eds.), ACM Press, New York, 1989, pp. 277-282.

[Wilson96] Wilson, S., Johnson, P., Bridging the Generation Gap: From Work Tasks to
User Interface Designs, in this volume, pp. 77-94.

[Wirsing90] Wirsing, M., Algebraic Specifications, in « Handbook of Theoretical Com-
puter Science », J. van Leeuwen (Ed.), North Holland, 1990, pp. 676-788.

	Abstract
	Keywords
	Introduction
	1 The Problem
	1.1 The Starting Point
	1.2 Specification of the Application: an Example

	2 The Generation Idea of the Dialogue Specification
	2.1 Generation of the Dialogue Specifications
	2.2 Restricting the Dialogue Specification to Different User

	3 Generating a Specification of the Performable Dialogues
	3.1 Construction of the Pure Dependency Graph
	3.2 Solving the Parameter Restrictions
	3.3 Instantiation of the Pure Dependency Graph with the Obta
	3.4 Merging of the Instantiated Dependency Graphs
	3.5 Obtaining a Boss Specification / State Transition System

	4 Related Work
	Conclusion
	Acknowledgements
	References

