
Implementation Techniques for
Petri Net Based Specifications of

Human-Computer Dialogues

Rémi Bastide and Philippe Palanque
Laboratory for Information Science, Université Toulouse I,
Place Anatole France, F-31042 Toulouse Cedex, France

Phone: +33-61.63.35.88 – Fax: +33-61.63.37.98
E-mail: {bastide,palanque}@cict.fr

WWW: http://lis.univ-tlse1.fr/~bastide -
http://www.cenatls.cena.dgac.fr/~palanque/

Abstract

Modern window-based user interfaces are actually a special kind of reactive system,
and Petri nets may be fruitfully used to design such user-computer dialogues. This
paper describes two techniques allowing to produce an executable system from a
Petri net based specification of dialogue, namely interpretation and compilation.
We first describe the compiled solution, where the Petri net structure is translated
into conventional algorithms and data structures that can be implemented into any
conventional event-driven UIMS. We then detail the object-oriented software ar-
chitecture of an environment based on the interpreted approach, where the net
structure is preserved at run-time, and present an original algorithm for interpreting
high-level Petri nets in an event-driven environment.

Keywords

User interface design, computer tools for nets, high-level Petri nets.

Introduction

State of the art user interfaces are developed nowadays in graphical, window-based
and mouse-driven environments. Once a very tedious and error-prone task, the
development of such user interfaces is now greatly aided by interactive interface
construction tools. Although the software marketplace abounds in such commer-
cial products, the aim of such UIMS is usually somewhat limited : most available
products only deal with the external appearance of the interface (its presentation).

Usually, the software designer is able to choose the interaction components from a
large palette (buttons, menus, checkboxes, etc. which we will from now on call in-
teractors), to partition the user interface into several windows, to define the layout
of the interactors in the windows and to set various cosmetic properties.

286 Computer-Aided Design of User Interfaces

However, currently available tools usually provide no help in the design of the dy-
namic behaviour of the interface. That behaviour consists in specifying the various
reactions of the system to user-triggered events, in stating in some way the se-
quence of user commands that the application is able to accept, and in designing
the visual response performed by the application in answer to user actions. This
kind of specifications is actually made rather difficult by the event-driven nature of
those event-driven dialogues. In current tools, this specification is postponed until
the actual implementation of the system, since the dynamic behaviour is only de-
fined by associating event-handling procedures, written in some algorithmic pro-
gramming language such as C, to the various events that the user is able to trigger.

Our research team has been advocating for the past few years the use of Petri nets
for the design of the dynamics of event-driven interfaces. We have proposed such
an approach at the specification and design level [Palanque94b, Palanque93c], have
investigated the use of Petri net theory to provide formal correctness proofs on the
behaviour of interactive systems [Palanque95], and have also applied Petri net
analysis techniques for providing contextual help systems [Palanque93c].

The executable nature of Petri nets make them a good candidate for an actual de-
velopment language for that kind of system. The present paper describes our cur-
rent work in providing automatic generation of executable systems from our inter-
face specification approach. We first describe the compiled solution, where the
Petri net structure is translated into conventional algorithms and data structures
that can be implemented into any conventional event-driven UIMS. We then detail
the object-oriented software architecture of an environment based on the inter-
preted approach, where the net structure is preserved at run-time, and present an
original algorithm for interpreting high-level Petri nets in an event-driven environ-
ment.

1 Event-Driven Programming

The vast majority of interactive applications are nowadays developed with the aid
of so-called UIMS tools. Despite the great diversity of graphical systems, all of
those tools rely on a common programming paradigm, called event-driven pro-
gramming.

In that kind of user interface, any command may be triggered through the use of
some graphical interactor (icon, button, menu), accessible to the user by direct ma-
nipulation. This type of interaction is characterized both by a great freedom of ac-
tion and an good level of guidance for the user (any forbidden action is presented
as a greyed out or otherwise inactivated interactor).

Such interactive applications may be ranked among reactive systems [Pnueli86] :
They do not act as transformational black boxes providing a result according to a
given input, but maintain an ongoing interaction with their environment (in that
case, the user). W. Reisig [Reisig92] states that most reactive systems should be bet-
ter termed as « interactive systems ». The reverse is also true : modern interactive

 Implementation Techniques for Petri Net Based Specifications of Human-Computer Dialogues 287

software do function like reactive systems, and thus deserve the same methodo-
logical treatment.

However, interactive applications differ from real-time, industrial reactive systems
by two important points :

• Interactive applications are most often programmed in a non-preemptive way,
where a given event-handler, while activated, retains control over the applica-
tion without being interrupted. This gives rise to cooperative multitasking envi-
ronments, where several dialogues may proceed at once, provided that each
event handler relinquishes control to the event manager, which may then dis-
patch a pending event. Interactive applications are in that respect easier to pro-
gram than « hard » real-time systems, since the programmer does not have to
deal with interrupts, critical sections, semaphores and the like. Each event-
handler may be considered like a critical section in itself.

• Ergonomic rules state that, in such applications, the inner state of the system
must always be perceptible to the user, and that each user action must always
provide a visible feedback. In that respect, event-driven user interfaces bring a
new and difficult task to their designers : they must ensure that the external
presentation always faithfully reflect the internal state, by accurately displaying
information, or by activating/deactivating several interactors. Such a process is
known as rendering.

2 Designing Event-driven Interfaces with Petri Nets

Petri nets very naturally come into play for the design of the Dialogue component
of the Seeheim model. They allow for an easy description of complex, concurrent
control structures, they offer several structuring constructs, and, for the high-level
models, they cleanly integrate the data structure aspects by allowing tokens to hold
structured data.

In our approach, we will consider that (as it is often the case with current devel-
opment methods) the presentation component is handled by specialised tools of
the UIMS category. Moreover, we will consider that the non-interactive application
kernel is designed in an object-oriented approach. If this is not the case (for exam-
ple, if the application kernel is a relational database) the Application interface com-
ponent will provide the necessary object-oriented layer.

We have proposed a Petri-net based, object-oriented formalism called Interactive
Cooperative Objects (ICO) dedicated to the design of interactive systems [Palan-
que93c]. The formal definition of the ICO formalism is rather lengthy, since it
needs to cope with concepts borrowed both from the object oriented approach
(classification, inheritance, polymorphism, dynamic instanciation and use relation-
ship) and from the Petri nets theory. Therefore the presentation in this paper is in-
formal and only limited to the Petri net related aspects, but the interested reader
may refer to [Palanque93a] for more details.

288 Computer-Aided Design of User Interfaces

ICOs use a high-level dialect of Petri nets, where tokens are objects in the sense of
object-oriented languages. In this paper, we will use the C++ notation for the de-
scription of classes, since the current implementation is in C++, and that C++ syn-
tax is used for the annotations of the nets.

The places in the nets are typed, stating the type of tokens they may receive. Any
C++ type (built-in, class type or pointer) may be used, and the C++ type system
may be used to provide polymorphism for the tokens. The arcs hold variables that
allow to state the flow of objects in the net. The variables on the arcs act as formal
parameters for the adjacent transition. The type of those variables is deduced from
the type of the places they are connected to. The transitions feature an action part,
which may create or delete objects or call methods on the objects denoted by the
arc variables. Transitions also feature a precondition, a boolean expression of the
input variables acting as a guard.

Such a Petri net, called the Object Control Structure (ObCS), is associated with
each window in the interactive application.

The ObCS plays the role of the Dialogue component in the Seeheim model. The
Application interface and Application kernel are modelled by the classes of the tokens
flowing in the net. The Presentation component is made of a set of interactors (wid-
gets) that may display and edit data (for example text entry fields or radio buttons),
or trigger events of interest to the application (for example, menu items or but-
tons).

The communication between the Dialogue component and the Application kernel is
thus described both by the flow of tokens in the net and by the calling of tokens
methods in the transitions’ actions.

The communication between the Dialogue component and the Presentation compo-
nent is more complex to describe, since several aspects are to be taken into consid-
eration :

• The Presentation component influences the dialogue through the occurrence of
events. This occurrence is modelled in the ObCS by special places called event
places. The Presentation component is able to deposit tokens in those event
places after the occurrence of an event. A transition in the ObCS net may have
at most one input event place. A transition with an input event place is called an
event transition. The very notion of interface place is made necessary by the
fact that a given incoming event may trigger different actions in the system, ac-
cording to the system’s inner state. This is modelled by two or more event tran-
sitions in the ObCS sharing a common event place. Those transitions are there-
fore in structural conflict, and this indeterminism has to be relieved by the
structure of the ObCS.

• Conversely, the state of the Dialogue component (i.e., the marking of the ObCS
net) influences the Presentation component : according to this state, several
events may be disabled, and their associated interactor greyed out. This is de-

 Implementation Techniques for Petri Net Based Specifications of Human-Computer Dialogues 289

scribed by associating event transitions to one or several interactors in the pres-
entation : when a transition is not fireable, all of its associated interactors are
greyed out or disabled.

• Lastly, the state of the ObCS net must be displayed by the presentation. This is
done by associating a rendering action to each place of the ObCS. Such actions
may call methods of the tokens held in the place in order to display whatever
information is appropriate.

The example chosen to illustrate the use of the formalism is a fairly common one:
an editor for information about customers stored in a relational database table.
This editor allows adding new customers into the database, deleting customers, se-
lecting customers from those already stored and changing their values. Of course,
our goal is to provide a fully user-driven dialogue, as opposed to a menu-driven
one.

Figure 1. Presentation of the customer edition window

The overall look of the interface is shown in figure 1. Three different areas can be
distinguished in that window:

1. The editing area, in which the attributes of a selected customer may be edited
through the use of standard interface components (radio buttons, simple-line
entry field).

2. A command zone in which database operations (creation, deletion, ...) may be
launched by clicking on command push-buttons.

3. A scrollable list (list box) shows the customers in the table. Items in this list
may be selected by clicking on them with the mouse.

The actions available to the user change through time and depend on the state of
the dialogue. Those dialogue rules are expressed here informally. One of the goals
of the modelling is to make formal and non ambiguous such natural language in-
formal requirements:

290 Computer-Aided Design of User Interfaces

• It is forbidden to select a customer from the table when another one is being
edited.

• It is forbidden to quit the application while the user is editing a customer. In
any other case it must be possible to quit.

• It is forbidden to delete a customer whose value has been modified by the user.
• After a modification of the current customer, only the actions Add, Replace and

Reset are available.
• The user must be able to act on the items of the editing area at any time.

The application kernel is modelled by a single class : class Customer. The declara-
tions for that class (figure 2) feature a constructor, used to generate new instances.
The code for this constructor should query the various interactors in the edit zone
to gather the values for the new Customer’s attributes. This code is not shown here
for it is highly dependent on the graphical system providing the user interface.

class Customer {
public:
 Customer(); // Constructor for the class
 ~Customer(); // Destructor for the class
 void Render() const;// Display attributes in the window
protected: // Data structure of the object
 String ID;
 String Name;
 enum { Card, Check, Cash } Payment;
};

Figure 2. Excerpt from the C++ class Customer

The constructor should also take care of inserting the new instance in some kind of
persistent storage, for example a database table. Conversely the destructor, called
on object deletion, should take care of removing the instance from the persistent
storage. Lastly, the class features a method called Render, whose purpose is to dis-
play the values of the instance’s attributes in the window. The ObCS for the dia-
logue is shown in figure 3. The event places are greyed out, and all of the transi-
tions are event transitions. The interactor associated to each transition is apparent
from the transition’s label (e.g., the push-button Add is associated to the transition
labelled Add) except for a few cases :

• The transition labelled Select is associated with the selection of a new element
in the list box. This action is considered to deposit a pointer to the selected cus-
tomer in the transition’s input event place.

• The three transitions labelled Edit are associated with any of the interactors in
the editing area. Any modification in those interactors will deposit a token in
the input event place of those transitions.

 Implementation Techniques for Petri Net Based Specifications of Human-Computer Dialogues 291

Default
List

Selected

Edited

Select

Edit

Reset EditReplaceAdd
o = new Customer;

Delete Delete

Edit

delete o;

T1

T2

T3

T4
T5

T6

T7

T10

T11

T8
QuitT9

Add
<x>

<o>

<o>

<o>
<o>

<o>

<x>

<o>

<d> <o> <o> <o>

<o>

<x>

<x>

<o>

<o>

<d> <o>
<o>

delete o;

o = new Customer;
delete o;

o = new Customer;

Figure 3. ObCS of the example dialogue

The places List, Selected and Edited are of type <Customer *>, i.e., they may
hold pointers to instances of the class Customer. Place Default holds simple (un-
typed) tokens. Only the place Selected has a rendering action : it only calls the Ren-
der method on the Customer objects that enter that place.

From the initial marking pictured in figure 3, only the two events Edit and Add (or
transitions T1 and T2) may occur.

The occurrence of the Add event creates a new Customer object from the values
held by the interactors of the edition area. The newly created object is set in place
Selected.

From now on, the table holds one customer. As the place Selected is the only one
holding a token, only the Edit and Delete events may occur. The occurrence of
the Delete event puts the net back in its initial state. The inhibitor arc between the
place List and the transition T3 means that this transition may only occur if the
place is empty, i.e. if the customer to be deleted is the last in the list. The occur-
rence of the Edit event transfers the token from place Selected into the place Edited.

While the place Edited holds a token, several services may occur:

• Modify the values of the attributes in the editing area by the occurrence of the
event Edit.

292 Computer-Aided Design of User Interfaces

• Replace the original by the new values through the event Replace.
• Cancel all changes by the occurrence of the service Reset (the original values of

the Customer token are redisplayed, through the rendering function of place Se-
lected).

• Add the edited customer to the table; the added customer becomes selected,
while the original one becomes unselected.

If this edit / add cycle is performed a number of times, we might reach the state
where the place Edited is empty, the place Selected holds one token - a customer
whose identifier value is “CS_001” -, and the place List contains at least tokens
corresponding to the customers CS_001, CS_002, and CS_003 (figure 1). This pic-
ture shows three inactivated push-buttons, which correspond to the currently for-
bidden user operations on the database. The active or inactive state of the push-
buttons is fully determined by the possible occurrence of the transitions they relate
to in the ObCS. For example, the Add button is not activated, since place Edited
holds no token.

3 The Compiled Solution

The process is divided in two main stages: The first one aims at transforming the
ObCS into several intermediate representations, while the second aims at produc-
ing the code of the application.

The first stage of the automatic code generation process is the transformation of
the ObCS into an augmented transition network. The second stage processes the
state-transition matrix, which is an equivalent description of the ATN. This matrix
is correlated with the activation function, which relates the widgets to the actions
to be performed. From these two components, the generation of the event-
handlers for the widgets is quite simple, and essentially follows the process de-
scribed in [Green86].

3.1 Transformation of the ObCS into an ATN

The techniques to calculate an ATN from a Petri net based description have been
extensively studied [Wood70, Peterson81].

3.1.1 Calculation of the Marking Tree

The marking tree of a Petri net provided with an initial marking explicitly details
the set of reachable states from this initial marking, as well as the sequences of
transitions needed to reach those states. Each node in this tree represents a reach-
able marking of the net, and each arc is labelled with the name of the transition
which causes the corresponding change to the marking. In many cases, the set of
reachable markings is infinite, and the marking tree is thus also infinite. This infi-
nite tree may be reduced to a finite structure called the covering tree of the net.

 Implementation Techniques for Petri Net Based Specifications of Human-Computer Dialogues 293

3.1.2 Calculation of the Marking Graph

The marking graph of a Petri net is a state transition diagram whose behaviour is
strictly equivalent to that of the marked Petri net. The marking graph is easily de-
duced from the marking tree. The nodes of the marking tree which are associated
to an identical marking are collapsed into a single node. Each node of the marking
graph corresponds to a state of the dialogue. The marking graph is usually used to
prove initial marking dependent properties of the net.

3.1.3 Calculation of the ATN

The marking graph automatically produced from the ObCS of an ICO cannot be
represented by a finite state automaton, but it can be by an Augmented Transition
Network (ATN) [Wood70].

In the graphic representation of an ATN, states are depicted by ellipses (initial state
being thick lined) and transitions by arcs. The arc of a transition is labelled by: the
service / the assignments, if any/ the preconditions, if any, as shown in figure 4.

Registers

state 1

state 2

States correspond to the following
markings of places
(default, selected, edited, list):
state 1 : (1, 0, 0, 0)
state 2 : (0, 1, 0, ω)
state 3 : (0, 0, 1, ω)
state 4 : (0, 0, 0, ω)

n : number of tokens in the list place

state 3

state 4

Delete //n=0

Replace

Edit

Add / n++

Add

Select // n>0Delete/n--/ n>0

Reset

Quit

Quit

Edit

Edit

Figure 4. The ATN of the Editor

An ATN is essentially a finite state automaton provided with a set of registers
which may be checked and modified when a changing of state occur. Thus, an
ATN whose set of register is empty is a Finite State Automaton.

This ATN is built from the covering graph of the ObCS. Only the states from
which a transition associated to a service may occur are kept, and there is one regis-
ter for each unbounded place of the ObCS (a place for which the number of token
has no upper limit) being an input place of such a transition.

294 Computer-Aided Design of User Interfaces

Figure 4 shows the ATN of the Editor, and thus the command language at the
user’s disposal.

Although the ATN in figure 4 may appear simpler than the original ObCS, we are
convinced that the ObCS is actually simpler to design than the ATN. In effect, for
a complex dialogue, the most intricate parts to manage in the ATN construction
are the definition and the handling of the registers.

These complex tasks may be dispensed of in the construction of the ObCS. More-
over, the Petri net description allows for an easy description of parallel dialogue
and of synchronisation that are needed in multi-threaded application and are espe-
cially difficult to model in a sequential formalism such as ATN.

3.1.4 Construction of the State-Transition Matrix

An ATN may be described by a matrix, a representation which makes it easier to
process by computer programs. This matrix is constructed in the following way:

• Each transition in the ATN is associated with a line in the matrix.
• Each state in the ATN is associated with a column in the matrix.
• Each cell in the matrix is divided into three components.

The first one represents the conditions imposed on the triggering of the transition.
These conditions may come from preconditions in the original ObCS transition, or
may concern the value of one of the ATN registers.

The second component of a cell represents the action to be performed when the
transition occurs. This action is deduced both on the action in the original ObCS
transition and on the modifications to be applied to the value of the ATN registers.

The third component describes the state reached after the occurrence of the transi-
tion.

3.1.5 Construction of a State-Service Matrix

In the state-transition matrix each line concerns one transition. As it is possible for
a service to be related to several transitions it is possible for the matrix to contain
several lines related to the same service. For example, the service Add is associated
to the transitions T2 and T4 (see figure 3). The state-service matrix is constructed
by merging all the lines related to a same service into one single line.

3.2 Code Generation

The steps we have described so far are independent of any given UIMS. Of course
the details of the final step, which is the actual code generation, depend heavily on
the UIMS at hand and on the Application Programming Interface (API) it sup-
ports.

 Implementation Techniques for Petri Net Based Specifications of Human-Computer Dialogues 295

The activation function is used to generate the part of the application code that is
aimed to dispatch the incoming events to the right event handlers.

In some UIMSs (such as the C language interface to the MS-Windows toolkit), this
is done by explicitly generating a complex switch statement, where the first dis-
patching is done according to the identifier of the widget which has received the
event, and the second dispatching is done according to the type of event received.

With higher level APIs, this dispatching is often hidden to the programmer, and
implemented with more powerful language constructs.

This may be done for example by associating a widget identifier to a virtual mem-
ber function in a class representing the window (such as in the Borland C++ Ob-
jectWindows API), or the dispatching process may be at the very basis of the pro-
gramming environment (such as in Microsoft Visual Basic), and thus totally trans-
parent to the programmer.

In any case, the activation function holds sufficient information to automatically
generate the dispatching code.

From the components that have been produced so far, its possible to generate the
code of the application.

3.2.1 Production of the Procedures Associated to the Services

A call-back procedure is automatically generated for each service. All the proce-
dures to be generated have the same framework : a procedure is basically a switch
structure according to the set of possible values for the state variable (correspond-
ing to the columns of the state-service matrix).

Each switch is filled in with the contents of corresponding cell of the state-service
matrix. Each branch of the switch will consist in four parts, the first three of which
are directly extracted from the sub-cells of the corresponding cell in the matrix.

The first one is a pre-condition test, the second part holds the semantic action, and
the third one sets the state reached after the occurrence of the service.

The fourth part of the branch corresponds to the visual feedback of the newly
reached state. This part results in visually showing which user actions are enabled
in the newly reached state. The necessary enabling and disabling actions are calcu-
lated from the state-service matrix and the activation function.

The services for which the cell corresponding to the new state is empty have all
their associated widget disabled.

As an example, the call-back procedure associated to the add service is described in
figure 5 and clearly shows the four parts.

296 Computer-Aided Design of User Interfaces

Call-back procedure ADD;
Switch (CurrentState) { // test of the state variable
 case state1 :
 // no pre-condition to test
 // semantic action
 o.add // add the tuple o to the table
 // state changing
 CurrentSate = State2 // change the current state
 // feedback of the commands available in the new state
 disable(PushButtonAdd)
 disable(PushButtonReset)
 disable(PushButtonReplace)
 enable(PushButtonClose_Box)
 enable(PushButtonDelete)
 enable(PushButtonListBox)
 case state2 :
 // no action
 case state3 :
 o.add // add the tuple o to the table
 CurrentSate = State2 // change the current state
 n++ // increment the number of tuples in the table
 // show the commands available in new state
 disable(PushButtonAdd)
 disable(PushButtonReset)
 disable(PushButtonReplace)
 enable(PushButtonClose_Box)
 enable(PushButtonDelete)
 enable(PushButtonListBox)
}

Figure. 5. Callback procedure automatically generated for the service Add

3.2.2 Set-Up of the Event Handlers

The final step to produce a executable application is to associate an automatically
generated procedure to a couple (widget, user-action). the details of this process
depend completely on the API of development environment, and thus are not de-
tailed here, but the process is usually straightforward. When the dispatching is done
by the system (such as in Visual Basic), a empty procedure has only to be filled in
with a call to the corresponding call-back procedure.

4 The Interpreted Solution

We have constructed a software environment to support the design of user inter-
faces where the dialogues are described by Petri nets in the approach described

 Implementation Techniques for Petri Net Based Specifications of Human-Computer Dialogues 297

above. This tool is integrated with a commercial UIMS which allows to generate
the presentation part of the application in the Motif environment. The graphical
representation of Petri nets make them a powerful debugging tool in the domain of
user-interface design : the net may be displayed in a window along with the win-
dow which dialogue is being debugged, and the designer may then spot design
flaws more easily by inspecting the marking of the ObCS net. At present, however,
there is no possibility to interactively change and test some parts of the net, since
its execution involves some C++ compilation and linking.

The kernel of the tool is a high-level Petri net interpreter developed in the C++
language. The architecture of this interpreter is original, and makes use of the pow-
erful object-oriented features of C++ to achieve a high level of genericity.

A Petri net interpreter maintains a data structure isomorphous to the structure of
the net it is playing : it has data structures for places, for transitions and for the in-
cidence matrixes Pre and Post. The interpreter does its job by actually moving data
structure representing tokens between data structure representing places.

In our case, the nets to be played differ from one another only by the nature of to-
kens that can be moved around (described by C++ classes), and also by the actions
to be performed when firing a transition or when setting a token into a place (de-
scribed by fragments of C++ code). This characteristic is very important for us,
since we wish to be able to provide a user interface to any application written in
C++.

We have therefore developed a generic C++ Petri net interpreter, made up of sev-
eral interrelated classes : the generic Place, describing the basic data structure of a
place, which allows it to store tokens ; The generic Transition, containing the code
to determine if the transition is fireable and to fire it, etc.

To achieve the interpretation of an actual ObCS, several new C++ classes have to
be generated from the structure of the net and of its component. For example, a
transition with a special action will give rise to a subclass of the generic transition,
with the overloading of one or several methods. The process necessary to generate
a complete interactive application from the ObCS net is illustrated in figure 6.

Actually, no algorithmic code is generated by the translator, since all of that code is
already contained in the generic classes. The code for the derived classes is mainly
devoted to setting up data structures (such as the Pre and Post incidence matrix),
and to insert cleanly the various elements of code given by the designer in the pre-
conditions and actions of the transitions, and in the rendering actions of the places.

Most simple Petri nets interpreters are based on the basic structure given in fig-
ure 7. The most time-consuming step in that algorithm is step 4, and sophisticated
data structure may be used to enhance that step, by avoiding unnecessary recompu-
tations at each cycle. However, such an interpretation algorithm is not convenient
in our approach, since this algorithm is preemptive. It does not fit with the basic
structure of event-driven applications, for there is no place in this structure for

298 Computer-Aided Design of User Interfaces

such a « never ending » control flow, which would prevent user events to be proc-
essed and dispatched.

Graphic editor

Translator

C++ Compilation
and link

ASCII representation
of the ObCS

Concrete interpretor :
C++ derived classes

Generic interpretor :
C++ abstract base classes

Executable
interactive application

Non-interactive
application kernel

...

..................................

..................................

...
...
...

...

..................................

..................................

...
...
...

...

..................................

..................................

...
...
...

...

..................................

..................................

...
...
...

Figure 6. Architecture of the environment

Of course, one could think of implementing this algorithm as a separate process or
thread, and of implementing the communication with the event-handlers as some
kind of interrupt service.

We have chosen another approach, which avoids such complex constructs that
might not be available or portable in every operating system. The solution chosen
fits cleanly into the event-driven approach, and only uses event-driven constructs
to achieve the same result.

set up the net structure
set up the initial marking
repeat
 search for t, a transition enabled by the current marking
 if t can be found then
 fire t, modifying the current marking
 end if
until t cannot be found

Figure 7. Basic algorithm of a Petri net interpreter

The basic idea is to associate with a dedicated event type the code necessary to
process only one cycle of the loop described in figure 7. The program must then
ensure that this event is triggered each time a transition might be fireable in the
ObCS net.

 Implementation Techniques for Petri Net Based Specifications of Human-Computer Dialogues 299

The implementation of a Petri net interpreter in a purely event-driven system thus
requires some primitives from the supporting environment :

• The ability to register new, « application defined » types of events, beyond those
initially supported by the system. We will call this primitive Register
Event.

• The ability to trigger the occurrence of a given event under the program’s con-
trol. The event is inserted in the event queue, and later processed by its event-
handler as though it had been triggered by an external action. We will call this
primitive PostEvent.

Those primitives are actually quite common, and are present in one form or an-
other in any UIMS we have had access to.

The basic algorithms for implementing a Petri net interpreter in an event-driven
fashion is divided in three procedures : an initialization part, to be called in the
main procedure of the program, a event-handler procedure whose role is to exe-
cute a single cycle of the interpretation loop, and a framework of code to be asso-
ciated with any user-triggered event.

 set up the net structure
 set up the initial marking of the interaction net
 RegisterEvent(one_more_try)
 associate the event-handler one_step to the event
 one_more_try
 provide the rendering of the initial state
 PostEvent(one_more_try)
 activate the main event loop

Figure 8. Initialization procedure of the event-driven interpreter

The initialization procedure (figure 8) has to set up the various data structures nec-
essary to represent the ObCS net. In the following algorithms, we will distinguish
between what we call the interaction net, (i.e., the complete ObCS including its
event places) and the internal net (The ObCS where all event places and their out-
going arcs are removed).

 search for t, a transition enabled by the marking of the
 interaction net
 if t can be found then
 fire t, modifying the current marking
 provide rendering according to the new marking
 post_event(one_more_try)
 end if

Figure 9. One_step event-handler procedure

300 Computer-Aided Design of User Interfaces

The initialization procedure registers a new event type (called one_more_try). This
event is to be triggered when one loop through the interpretation code has to be
performed.

The interpretation process is started in the initialization procedure by posting the
event one_more_try. The event handler to be called on each occurrence of the
one_more_try event is called one_step. This procedure is given in figure 9.

The procedure tries to find a fireable transition, and, if found, posts a new
one_more_try event to make sure that any other fireable transition will be found
when the event is processed.

parameters : it : Interactor, ev : Event,
 create a new token tok according to ev attributes
 set tok in the event place associated with it
 post_event(one_more_try)

Figure 10. Framework for the event-handler associated to each interactor

The code framework to be associated to each interactor is given in figure 10. When
an event triggered by an interactor occurs, the procedure computes a new token,
and sets its into the event place associated with the interactor. A one_more _try event
is now posted, since this new token may make some other transition fireable in the
ObCS net.

As is apparent from the algorithm presented above (figures 8, 9 and 10), all the
preemptive control structures in the interpreter have been replaced by a purely
event-driven code.

The basic principle is that the one_step event-handler will be called once after the
initialization phase of the program (this call is triggered by the post_event clause in
line 5 of figure 8), and will be called again each time it detects an activated transi-
tion (call triggered by the post_event clause in line 5 of figure 9).

This ensures that any activated transition will fire. In most cases, the net will
quickly reach an « dead » state, where no transitions are activated1. The only thing
that may trigger an evolution is then an external action, via one of the interface’s
interactors.

Only the active interactors (i.e., those associated with a user transition fireable in
the internal net) may be triggered, and thus the triggering of an interactor will de-
posit one token in the ObCS net, which will allow at least its associated transition
to fire (and maybe some other internal transitions, not associated with any interac-
tor).

1 This may not always be the case, e.g., if the dialog features a « background task », modeled by a se-
quence of transitions that remains constantly enabled during the processing.

 Implementation Techniques for Petri Net Based Specifications of Human-Computer Dialogues 301

Conclusion : Compilation vs. Interpretation

We have presented how Petri nets integrate in the process of designing modern in-
teractive software. Petri nets might be used only for the specification phase, allow-
ing to state in a concise manner complete and non ambiguous requirements for the
control structure of interactive systems. With the help of the two implementation
techniques described here, Petri nets can be retained throughout the development
process, until the development phase.

The two techniques presented above (compilation and interpretation) both aim at
executing an ICO specification of Human-Computer dialogue. This end is however
achieved by very different means.

Obviously, the compiled solution will be much more efficient in terms of execution
speed. The interpreted solution is time consuming, since the task that consists in
checking which transitions are enabled in the ObCS net is computationally inten-
sive. This drawback must be weighted, however, by the fact that this computation
occurs in the interval of time between user-generated events, which is large with
regards to machine efficiency. The ObCS nets are object-structured, and remain
usually very simple, addressing the usual complaint about Petri nets being unstruc-
tured. The interpretation process can thus be made efficient enough to provide re-
sponse times compatible with user expectations.

An advantage of the interpreted solutions is that the net structure is preserved at
run-time, thus allowing for debugging facilities (e.g. animating the net representa-
tion during user activity). Moreover, the fact that the net structure is available at
run-time allows for run-time reasoning about user interaction in terms of the dia-
logue model itself. We have explored ways to provide contextual help from this
representation, for example [Palanque93b]. With the interpreted solution, the ICO
formalism is amenable to a « model-based UIMS » environment, where the inter-
face model is preserved until run-time.

References

[Green86] Green, M., A Survey of Three Dialogue Models, ACM Transactions on
Graphics, Vol 5, No. 3, July 1986, pp. 244-275.

[Palanque93a] Palanque, P., Bastide, R., Sibertin, C., Dourte, L., Design of User-
Driven Interfaces using Petri nets and Objects, in Proceedings of 5th Conference on Ad-
vanced Information Systems Engineering CAISE’93 (Paris, June 1993), F. Bodart,
C. Rolland, C. Cauvet (Eds.), Lecture Notes in Computer Science No. 685,
Springer-Verlag, Berlin, 1993. http://www.cenatls.cena.dgac.fr/~palanque/Ps/
caise93.ps.gz

[Palanque93b] Palanque, P., Bastide, R., Contextual Help for Free with Formal Dialogue
Design, in Proceedings of British Conference on Human-Computer Interaction
HCI’92 « People and Computers VIII », J.L. Alty, D. Diaper, S. Guest (Eds.),

302 Computer-Aided Design of User Interfaces

Cambridge University Press, Cambridge, 1993. http://www.cenatls.cena.dgac.fr/
~palanque/Ps/hciinter 93. ps.gz

[Palanque94a] Palanque, P., Bastide, R., Formal specification of HCI for increasing soft-
ware's ergonomics, in Proceedings of ERGONOMICS'94 (Warwick, 19-22 April
1994). http://www.cenatls.cena.dgac.fr/~palanque/Ps/ergono94.ps.gz

[Palanque94b] Palanque, P., Bastide, R., Petri Net based Design of User-Driven Interfaces
using the Interactive Cooperative Objects Formalism, in Proceedings of 1st Eurographics
Workshop on Design, Specification, Verification of Interactive Systems DSV-IS’94
(Bocca di Magra, 8-10 June 1994), Focus on Computer Graphics Series, Springer-
Verlag, Berlin, 1995, pp. 383-400. http://www.cenatls.cena.dgac.fr/
~palanque/Ps/dsvis94.ps.gz

[Palanque95] Palanque, P., Bastide, R., Verification of an Interactive Software by Analysis
of its Formal Specification, in Proceedings of the 5th IFIP TC13 Conference on Hu-
man-Computer Interaction INTERACT’95, Lillehammer, 25-29 June 1995, K.
Nordbyn, P.H. Helmersen, D.J. Gilmore and S.A. Arnesen (Eds.), Chapman &
Hall, London, 1995, pp. 191-196. http://www.cenatls.cena.dgac.fr/~palanque/
Ps/interico95.ps.gz

[Peterson81] Peterson, J.L., Petri net theory and modeling of systems, Prentice-hall.
Englewood Cliffs, 1981.

[Pnueli86] Pnueli, A., Applications of Temporal Logic to the Specification and Verification of
Reactive Systems: A Survey of Current Trends, Lecture Notes in Computer Science Vol.
224, Springer-Verlag, Berlin, 1986, pp. 510-584.

[Reisig92] Reisig, W., Combining Petri Nets and Other Formal Methods, in Proceedings
of ATPN’92 (Sheffield, June 1992), Lecture Notes in Computer Science Vol. 616,
Springer-Verlag, Berlin, 1992, pp. 24-44.

[Wood70] Wood, W.A., Transition network grammars for natural language analysis,
Communications of the ACM, Vol. 13, No. 10, October 1970, pp. 591-606.

	Abstract
	Keywords
	Introduction
	1 Event-Driven Programming
	2 Designing Event-driven Interfaces with Petri Nets
	3 The Compiled Solution
	3.1 Transformation of the ObCS into an ATN
	3.1.1 Calculation of the Marking Tree
	3.1.2 Calculation of the Marking Graph
	3.1.3 Calculation of the ATN
	3.1.4 Construction of the State-Transition Matrix
	3.1.5 Construction of a State-Service Matrix

	3.2 Code Generation
	3.2.1 Production of the Procedures Associated to the Service
	3.2.2 Set-Up of the Event Handlers

	4 The Interpreted Solution
	Conclusion : Compilation vs. Interpretation
	References

