
The JANUS Application Development
Environment—Generating More than

the User Interface

Helmut Balzert, Frank Hofmann, Volker Kruschinski,
and Christoph Niemann

Lehrstuhl für Software-Technik, Ruhr-Universität Bochum, Universitätstraße,
150, D-44780 Bochum, Germany

Phone: +49-(0)234-700-{6880, 6791, 5918, 7982}
Fax: +49-(0)234-700-6914

E-mail: {hb, hofmann, krusch, niemann }@swt.ruhr-uni-bochum.de,
janus@swt.ruhr-uni-bochum.de

WWW:http://www.swt.ruhr-uni-bochum.de/forschung/veroeffentlichungen.html

Abstract

The increasing pressures of competition demand greater productivity and quality in
the development of software. These goals are attainable by generating as much as
possible and programming as little as necessary. Beginning with an OOA modeling
of the problem domain component, this article will show how the user interface as
well as the linkage to data keeping can be generated through an integrated ap-
proach. In addition, a client/server configuration is also possible. A OOA model
upon which two generator systems are installed is the basis for generating.

Keywords
User interface generation, OOA model, object oriented database, rapid prototyp-
ing, application framework.

Introduction
The ever increasing demands on the productivity and quality of software develop-
ment necessitates extensive automated support for application development. If one
examines object oriented application development (figure 1), the way from the
problem domain to an object oriented analysis model (OOA model) cannot be
automated. This step shall continue to belong to one of the most ambitious tasks
of software development.

If an OOA model is created, it forms the basis for any additional steps of devel-
opment. The concepts available today describing an OOA model (class, inheri-
tance, association, aggregation, object life cycle, interaction diagrams, subsystems,
see also [Coad91a, Booch94, Rumbaugh91]) allow close to real-world situation
modeling of the problem domain.

184 Computer-Aided Design of User Interfaces

Nov. 93 Benk

GUI Client-
Server

OOA

OOD

OOP

Problem

Domain

Ser vices

H elp Data-
keeping

System

Designed by the
Systemanalyst

Generating the
Application

Frame

Figure 1. The way to an application starting at the problem domain

The following must be done to obtain a usable application from a OOA model:
• Integration into the system software of the target system.
• Design and connection of the user interface to the problem domain compo-

nents.
• Connection to the desired data base management system (DBMS).
• Design and connection of the help system.
• Creation and connection of various services (e.g., multiple user administration,

client administration, etc.).

Analyzing the jobs to be completed, one ascertains that a large part of these tasks
can be automated by generators. The term "automated" is intentionally used in-
stead of "automatic". Automated is intended to express that generating does not
run fully automatically, but rather that the developer retains the possibilities to in-
tervene and make decisions during the generating process.

Therefore, the optimal goal consists of generating nearly all additional necessary
tasks from an OOA model. The semantics of a problem domain component are
principally incapable of being generated, i.e., the technical semantics have to be im-
plemented by the software developer. He uses the desired programming language
(inner column of figure 1).

 The JANUS Application Development Environment-Generating More than the User Interface 185

Even in this area, however, much can be generated. Today’s OOA/OOD tools al-
low the corresponding program frameworks to be generated from the OOA
model, e.g., the tools Together/C++, Paradigm Plus and ObjectiF. To have a prac-
tical benefit of generating system components the developer needs an integrated
system which will combine all fragments.

Furthermore, it is not enough to generate all components from the same starting
point (e.g., an OOA-model) an integration of all generated parts can be done auto-
mated. Therefore we have developed the JANUS Application Development Frame-
work (JADE1). It is a further development of the JANUS-system [Balzert93, Balzert-
94, Balzert95a, Balzert95b]. The JANUS-system was capable of generating and ani-
mating a graphical user interface from an OOA model using the capabilities of an
UIMS.

The advanced system now produces the user interface, the code frame for the ap-
plication domain, the database schema, further services (e.g., a help system, print-
ing facility) and ‘last but not least’ the connection between all these parts. The start-
ing point is still an OOA-Model. JANUS requires the model in a well defined input
language, the JDL (JANUS Definition Languages) which is an extension of ODL
and IDL. To avoid that the user has to code his OOA model using this language
directly, we have built interfaces to some popular OO CASE tools. Currently JDL
can be exported by the case tools Paradigm Plus and Together C++.

The result of the generation process is a ready-to-work-with application offering
basic functionality. The user is able to create and modify objects of classes defined
in OOA by using entry forms. If a corresponding relationship (association or ag-
gregation) exists in the OOA model the user can establish links between objects,
too. Additionally a list view of all objects that have been created for each class is
provided.

Functionality for sorting and deleting objects is also generated. All data entries are
kept persistent in an underlying database. Until now the software developer has not
written a single line of code. The only work that has been done was defining an ex-
act OOA model of the application’s problem domain.

The generated program will however be the fundamental frame of a final system. A
programmer will have to complete the application. He has to implement the opera-
tions defined in the OOA model to provide the application’s core functionality.
Additional features—especially regarding the GUI—can be added to the generated
code. To ease this JANUS generates C++ source code for all parts of the program.
These can be edited and compiled the normal way. This paper describes the con-
cepts of integrating all parts. It gives examples of the transformation process and
its results.

1 This JADE system has nothing in common with JADE [VanderZanden90] but the name. It seems
that we have no luck in choosing the right name for our system.

186 Computer-Aided Design of User Interfaces

1 As to the Situation

The situation today is characterized by increasing attempts to automate separate ar-
eas of the software development process. Class libraries in combination with a
graphical editor are used today in the development of GUIs. GUI class libraries are
hierarchically organized and provide predefined interface objects at higher abstrac-
tion levels. The activation of the underlying window system is undertaken by inter-
nal operations and remains hidden from the developer. The design of the GUI us-
ing this technique leads to two results:

• A code frame will be generated in the desired programming language (usually
C++). The combined interface objects can be created dynamically using this
code. The I/O operations of these objects have to be manually linked to the
OOA model.

• Characteristics of interface objects such as position, size, labeling, and shape
will be placed in resource files. Each resource object contains an identification
through which the connection to the objects implemented in the programming
language is made. A special resource translator transforms the resources into
object code, which will later be linked to the application.

It was shown under the JANUS system [Balzert93, Balzert94, Balzert95a, Balzert-
95b] that a GUI can be generated and subsequently animated from an OOA model
based upon expert knowledge of software ergonomics.

However, the linkage to data keeping in particular is missing in order to attain a us-
able application. When using an object oriented database (OODB), the object
model is defined in an Object Definition Language (ODL). The developer sepa-
rates the declaration (data and interfaces) of an application from the implementa-
tion. A declaration preprocessor for the ODL takes over the following tasks:

• The ODL is transformed into a declaration conforming to a programming lan-
guage which then can be translated by a compiler together with the implementa-
tion of the application.

• A database with the database schema obtained from the ODL declaration is
created in which the object model of the application is also established as a
meta schema.

The implementation of the technical semantics of the OOA model occurs in the
selected programming language. To handle persistent objects, an Object Manipula-
tion Language (OML) is provided by an external library. This library comes with
the chosen database management system. With this, the programmer can manipu-
late persistent objects with the same concepts (pointer, list,...) known from the
programming language as usual.

The declarations transformed in the programming language and the implementa-
tion are translated by the compiler into object code. The runtime system ODBMS
is added to the object code during linkage so that the finished application can ac-

 The JANUS Application Development Environment-Generating More than the User Interface 187

cess the predefined database. To allow the generation of persistent classes, all per-
sistent classes have to be marked in the OOA model. All other information is al-
ready present to generatively couple an object oriented database.

A corresponding coupling to a relational database is similarly possible by utilizing
the respective class libraries, e.g., DBtools.h++. Appropriate transformation rules
are describe (e.g., in [Blaha94]).

A three-layered-architecture comprising a GUI layer, the actual application layer,
and data keeping layer arises as the software architecture. The application layer not
only contains the implementation of the technical semantics but also contributes
the connection between the GUI layer and data keeping. In particular, the overall
goal is to encapsulate the layers as closely to one another as possible in order to
make an appropriate client-/server distribution feasible.

It has now been shown that a partial generation does not appropriately take the
global aspects of the application environment into consideration. If, for example,
solely the interface is generated without taking the coupling of data into considera-
tion, it will lead to problems in subsequent application development. The commu-
nication between the GUI level, application level, and data keeping level has to be
manually established. This requires detailed knowledge of the code at all levels and
is costly. An integrated overall plan is therefore necessary.

2 An Integrated, Technical, and Comprehensive Plan

As mentioned above a OOA model is the basis for the generation process. In the
moment the JANUS generator system uses only information given by a class dia-
gram representing the application’s object model of the problem domain. The ele-
ments of these class diagram (classes, attributes, operations, relations, etc.) have to
be specified in detail.

To provide this information to the generator system, the OOA meta model in fig-
ure 2 has been developed. The OOA model of a specific application is a single in-
stance of the OOA meta model. The meta model can be instantiated by a special
file using the JDL grammar. JDL input files describe an OOA model CASE tool
independent and implementation language independent.

Not only problem domain and database specific characteristics but also GUI rele-
vant properties are represented by the OOA meta model. It is important to men-
tion that all GUI relevant properties have default values which work very well in
most cases. But the OOA analyst (or a consulted GUI specialist) should have the
possibility to override these values to customize the generated GUI whenever
needful.

The meta model was expanded with characteristics of the object models of the
OMG [OMG91] and ODMG [Loomis93]. As before, the most important common
concepts of the object oriented methods according to Rumbaugh [Rumbaugh91],
Coad/Yourdon [Coad91a] and Booch [Booch94] are found in this model.

188 Computer-Aided Design of User Interfaces

Description
Persisten
ClassGlobal
Primary
ReadOnly
WriteOnly
UIRelevant
Mandatory
Unit

Attribute

Description
Persisten
Abstract
Extent
UIRelevant

Class

Description
ClassGlobal
Polymorph
ReadOnly
UIRelevant

Operation

Description
UIRelevant

Subsystem

Description
Persisten

Relation

Description

Model

Description
Type
Cardinality
UIRelevant

Path

Subclass

Superclass 2

DefaultValue

Type

TypeSpec
LowerBoun
UpperBound
ConstraintExp

NumericType

SelectableElem
SelectMin
SelectMax
Extensibl
ExtentPersisten
ExtentScope

EnumTypEmbeddedType

In
Out
ByReference

Parameter

Returntyp

MinLength
MaxLength
RegularExpr

StringTyp

Figure 2. Meta model as the generator’s base

The information contained in the meta model is utilized by a GUI- and an App-
generator (application generator). The meta model's operations (not included in
figure 2) take over the control and coordination of these generator systems.

The App-generator creates the code frames for the OOA model as well as the
connection to the database and, if requested, additionally the client-server distribu-
tion. In addition to the code frames, the operations for read and write access to all
attributes are also generated. On the one hand, for each attribute, one operation is
created for read and write access to the attribute value. On the other hand, each
class contains one operation which assists in reading and/or writing each attribute
belonging to this class irrespective of its type. If the systems analyst has set restric-

 The JANUS Application Development Environment-Generating More than the User Interface 189

tions (e.g. ranges or dependencies between attributes), they will be checked for the
applicable attribute before write access.

The GUI generator similarly rests upon the meta model. The previously mentioned
JANUS system [Balzert93, Balzert94, Balzert95a, Balzert95b] was expanded and
modified for this. Only the generation of static layout and some aspects of dialog
dynamics have been supported up until now. This information is placed in a re-
source file.

It is additionally necessary to create GUI code, which accesses the resources and
connects the individual interface objects with the objects and attributes of the
OOA model. For each dialogue identified in the OOA model a class is generated
in order to automatically couple the created interface with the OOA model. By
coupling with the App-generator, the operations supplied there become available
for access to the attribute values irrespective of type. Thus, it only then becomes
possible to generate an interface closely coupled to the OOA model with justifiable
expense, and therefore, to obtain a complete, detailed application.

In the next section we will describe a simple example that shows the input and the
output of a generated application and explains some important actions that have to
be taken to get a running application

3 A Simple Example

Figure 3 depicts the OOA model of a simple sample application. The OOA model
had to be entered into a CASE tool manually. Generally a complete OOA model
consists of at least the graphical class diagram and the textual specification of all at-
tributes and services.

Name
Legal form

Company Last name
First name
Date of birth
Sex

Person
{abstract}

Positon
Salary
Employed since

EmployeeStaff

Employer

Figure 3. OOA model of the simple example

In order to support a systems analyst in this task, a form was drafted that makes
the information accessible by the generator system. As an example, one can indi-
cate the following specifications for the some attributes of the class Company:

190 Computer-Aided Design of User Interfaces

Attribute Name:
 Ergonomic Name: Company Name
 Type: String, 30 characters maximum
 Mandatory Attribute
 Part of the Primary Key
 persistent

Attribute Legal_Form:
 Type: Enumeration, not expandable,
 0 to N selections
 Selection Possibilities: inc, ltd, corp, co-op
 no default value
 persistent

If the system analyst has finished his work he can export the OOA model form the
OOA CASE tool in form of a JDL file. Appendix A shows the JDL file corre-
sponding to the OOA model of figure 3. Now the generation can be carried out
with this JDL file. The result is an application whose generated code for the prob-
lem domain component corresponds to the OOD model depicted in figure 4.

Name
FirstName
Birthdate

Person

Name

Company

Salary
Begin

Employee

SexT

Value

FunctionT

LegalFormT

EmployeeList

EmployeeStatic

PDObject Persistent Object

Valid

FunctionTStatic

Figure 4. Simplified OOD model of the generated application

Each class of the OOA model inherits PDObject, an abstract base class. The opera-
tions provided by PDObject for typeless access to the attributes are of course rede-
fined in the classes of the OOA model. They serve primarily to connect to the user
interface and are described later.

All classes with persistent attributes or relations have to inherit from the class
d_Object. This is a mixin-class which implements the manipulation components of
the ODMG conforming database. As a general matter, each class has to know the
instances it produced. Therefore, each class is assigned a list which collects refer-
ences to all objects of that class. This list is implemented as a class attribute. Since
the ODMG standard does not support persistent class attributes, an aid must be
constructed. An object of the EmployeeStatic class saves the persistent class attrib-

 The JANUS Application Development Environment-Generating More than the User Interface 191

utes of employees, being the necessary lists in this case. The generated code en-
sures that only one instance of EmployeeStatic exists in the database at any given
time (depicted only for the Employee class in figure 4).

Another aid is necessary for the description of enumeration types. A new class has
to be generated for each enumeration type since the characteristics of the enumera-
tion types (multiple choice, expandability) go beyond the concepts provided by the
programming languages.

If one examines the attribute Function of the class Employee, another problem be-
comes apparent. This enumeration type is to be expandable, and the expansions are
to be persistently cared for in the entire application. Therefore, the lists of the ex-
pansions have to be a persistent class attribute of the data type FunctionT and, thus,
have to be administered in a further help class, FunctionTStatic.

The GUI generator creates the user interface itself as well as its linkage to the
problem domain component. First, an interaction object corresponding to the at-
tribute type in OOA is selected for each attribute to appear on the user interface.
Further, the generator first evaluates the information prepared in an instance of the
meta model. If the selected interaction objects would not fit into the window, the
generator decides to use either less space consuming interaction objects (if such al-
ternatives exist in its knowledge base) or to split the window into sub windows.

The position of the individual interaction objects in the dialogue windows is de-
termined by the class definition in the object model and by the evaluation of inheri-
tance hierarchies [Balzert93].

Associations and aggregations are transformed in lists. Figure 5 depicts two entry
forms generated for the example described above. The class Person is abstract and
therefor does not appear as an own dialog. It is however visible as a group in the
entry form of Employee. Since an aggregation with the employees exists in the fun-
damental specification of the class Company, a list of the employees employed by
the company is found in the Company dialog.

Conversely, the class Employee is the part-of class of this aggregation. Therefore, the
employer does not appear in an employer’s entry form. The transformation of a re-
lationship to the GUI selected here is just one of the many possibilities. Software
ergonomics can both globally prescribe the transformation to be used as well as
subsequently change it in particular cases. Of course, this not only applies to the
depiction of relationship, but also applies to other aspects of user interface genera-
tion (color preferences [Heintzen95], fonts, selection of interaction objects [Bo-
dart94c],...).

The generator system additionally connects the GUI with the code frame repre-
senting the problem domain. When selecting ”Employee create...“ from the appli-
cation’s main menu the entry form for employee is opened. In the same moment a
new problem domain object employee is created and linked to the entry form.

192 Computer-Aided Design of User Interfaces

Now the user is able to enter the new employee’s data. By clicking the OK button
the entered data will be transferred from the GUI to the linked problem domain
object. If all values are valid (as specified in the OOA model) the entry form closes
and the linked object receives the message to store itself in the database.

Figure 5. Generated dialog windows for the sample application

The connection GUI-problem domain works even in the other direction. If the
user wants to modify the former entered data he has first to select the special em-
ployee via a list view. When selected a single employee the employee’s entry form
opens. The entry form is linked with the corresponding problem domain object.
The data are now transferred from this object to the controls of the entry form.
The user is able to access the previously entered data for further processing.

4 Technical Solution: Designing the User Interface

Before generating the source code for the application, the data keeping, the inter-
face and the binding, the user interface has to be designed. The starting point is the
OOA model. Combining the model’s semantics with the selected design strategy
will produce all necessary windows including their controls. The standard trans-
formation of a model is described in [Balzert95a, Balzert95b]. The dialog design
strategy gives information which additional and standard functionality is taken into
consideration, including its appearance.

Additionally the decision is made which possibility is chosen when there are differ-
ent theoretical possibilities. For example, displaying an association as a table or
simply making it a menu entry that calls a connection window when selected. Most

 The JANUS Application Development Environment-Generating More than the User Interface 193

strategies are adjustable, so using a different strategy will lead to several different
user interfaces of the same problem domain.

The basic controls are chosen from the attribute specification of the OOA model.
Normally each attribute is transformed into an control with a belonging label, ex-
ceptions are elements that are marked as non UI relevant. Supported controls are:
edit field, text field, combo boxes, drop-down combo boxes, list box, drop-down
list box, check boxes, radio buttons and tables. The result of the transformation, is
an object network with windows and their elements. They have to be arranged for
generating the source of the user interface.

Figure 6a. Different layout by choosing different settings: window A

Figure 6b. Different layout by choosing different settings: window B

JANUS uses several placement strategies and has access to ergonomic knowledge.
So once again, different static layouts can be produced for a single application, be-
cause the user working with JANUS can change aspects of the layout strategy to
change the layout. Finally the version fitting the user’s needs best can be chosen for
the application.

The main goal of the layout component of JANUS is to get a well balanced layout.
So there is a special focus on alignment of the elements. To get equilibrium mask
the two column placement [Vanderdonckt94d] gives the best results. The different

194 Computer-Aided Design of User Interfaces

between the strategy of GENIUS [Janssen93] is the involving of groups to combine
equal information. The benefit is a more compact layout.

Groups result from inheritance or embedded types (structs) in the OOA model. So
there is the possibility for arranging all elements into two columns or placing the
groups into two column. One column layout is also possible, it will depend on the
number of interaction elements and the setting of the layout component.

All interaction elements will be left justified. There will be an overall alignment of
interaction elements, whether they are in groups or not. The push button for navi-
gation or for the operations can be placed left or at the bottom. It is adjustable if
they are centered, set in a block or if they are set from left/top with equal dis-
tances.

In addition to the placement strategy the over grid, and all distances between inter-
action elements are to be set. All settings are saved in initialization files, so a simple
reuse is possible. It is also possible to define parts of style guide in the settings.
Figures 6a and 6b show a result of choosing different settings. Further examples
are shown in figures 4, 10 and 11.

5 Technical Solution: Connecting the GUI with the Problem
Domain Component

In all of the later mentioned approaches, the automated linkage of the generated
user interface to the core of the application is not taken into consideration. This
problem is solved by the improved JANUS system envisaged here with the help of
the JANUS Application Framework (JAF). This is a highly specialized class library
which serves the preparation of the basic functionality in the considered environ-
ment.

The environment is characterized by an ODMG conforming, object oriented data-
base, a GUI development system, and an object oriented programming language
(C++). The research prototypes of PICASSO [Rowe91] and ACE [Johnson93, Zar-
mer92] as well as the commercial products like zApp [Inmark94] contributed to the
draft of the JANUS Application Framework.

The user interface constitutes a limited number of various elementary interface ob-
jects or GUI widgets which differ substantially by their position, appearance, as
well as relationship to one another. The GUI generator has to first select the ap-
propriate interface objects and see to the technically correct placement and appear-
ance from the objects' parameterization.

Conventional GUI development systems require a programmer to couple the final
user interface with the technically specific portion of the application using Callback
mechanisms. The tasks of Callback procedures may be assigned to various catego-
ries [Myers91].

 The JANUS Application Development Environment-Generating More than the User Interface 195

• The interaction object's internal representation often differs from the expected
representation the application object's attribute. The type conversions have to
be expressly carried out by a programmer.

• It must be checked whether the application satisfies the restrictions specified in
the problem domain component before an application further processes data
entered from an end user.

• The links among the interface objects have to be established to let the user
navigate through the application

To solve this problem, JAF provides special operations at higher abstraction levels.
Access operations automatically created by the App-generator are used on the at-
tributes of the OOA objects in these operations. This results in a significant reduc-
tion of the complexity of the user interface specific code.

These facts are reflected in the generated source code. The code fragments for the
implementation of the same interface objects in miscellaneous contexts vary sub-
stantially by a different parameterization in their dynamic creation. The generated
code is significantly shorter than previously since a large portion of the aforemen-
tioned tasks are encapsulated in the classes of the application framework.

In most cases, controls function on a string basis. To keep the costs on the GUI
side low and to ease the adaptation to various GUIs, the linkage of the interaction
objects to an OOA model's attribute of a random type was solved with the param-
eterization.

An interaction object only has to know the name of the appropriate attribute and a
reference to the respective object. The type of the attribute bound to the interac-
tion object does not need to be known although the type, of course, has an impact
on the parameterization of the interaction object. For example Boolean types are
represented by two radio buttons etc.

Therefore, each class of the OOA model has to provide a single operation which
allows read and/or write access to all attributes. Since a strict type concept is to be
at the target language's disposal but the interaction objects do not have the type in-
formation, a data type has to be found upon which random types can be repro-
duced. Therefore, the use of strings and/or lists of strings is ideal for an exchange
format between the GUI and the OOA model. An operation's declaration in C++
for reading a random attribute of a class can be expressed as follows:
bool GetAll(const char *name, String &val) const;

The first parameter serves to select the attribute. The second parameter is a place
holder which receives the value of the attribute converted to a string. Whether an
attribute with the desired name exists or not is shown by the Boolean return value
of the operation. If the attribute does not exist in the class requested, all of the base
classes must naturally be consulted first. The failure of the operation will be re-
ported only if the attribute searched for is not present here.

196 Computer-Aided Design of User Interfaces

GetPDObject
routeEvent

UIView

ActivateGetControlData
ActivateSetControlData

UIContainer

GetControlData
SetControlData

UIControl

UIEdit

UIPushbutton

UIObjectTableUIGroup

UIDialog

UIWorkspace

...

...

...

Attribute

Class

Operation

GUI - layer part of the
meta model
(see fig 2)

GUI
class library

Janus
Application
Framework
(JAF)

Figure 7. Communication between GUI - and application layer

Another (overloaded) version of these operations supports the reading and writing
of an attribute with the help of a list of strings where such a list makes sense. Lists
can be used, for example, for accessing an enumeration type which allows several
simultaneous selections.

Figure 7 demonstrates the effects of these technical solutions on the architecture of
the Janus Application Framework. Conventional GUI class libraries are expanded by
subclasses. The new classes are attached as leafs to the inheritance hierarchy of the
class library. By multiple inheritance from the abstract classes of UIView,
UIContainer, and UIControl, they obtain operations which produce a connection to
the attribute (and/or the operation) of the OOA class and/or of the object.

The cost of expanding a GUI class library with the desired functionality depends
upon its structure. A UIMS with a C based API (Open Interface [Neuron91, Neu-
ron93]) as well as the purely object oriented implemented UI builder (zApp) [In-
mark94] and StarView [Star93] were expanded to meet the additional requirements.
UIView presents an abstract base class for all visible elements of the user interface.
It expands its derived classes to concepts for the connection of the OOA model’s
objects.

 The JANUS Application Development Environment-Generating More than the User Interface 197

All GUI classes that inherit characteristics from UIView have the possibility to
communicate with the OOA model objects by the polymorph (virtual) operation
GetPDObject(). Every UIView class can be directly linked to an object of an OOA
class by subclassing. The newly formed classes are enhanced with the reference to
the OOA object which can be accessed by the redefined operation GetPDObject().
However, only container objects or complex controls are generally directly linked
to an OOA object. Simple controls can access an OOA object through the over-
arching container object.

To make these mechanisms available, the UIControl and UIContainer classes form
specializations of UIView with which the characteristics of atomic interaction ob-
jects and their groupings can be described.

Interaction objects are always positioned in an object of the UIContainer class that
administrates it. Container objects can, however, also contain subordinate contain-
ers. All messages, which a container receives, are automatically forwarded to its
sub-containers. By activating the operation GetControlData(), the UIContainer object
can command its interaction object to register its contents in the corresponding at-
tributes of the OOA object.

Conversely, the UIContainer object with help from GetControlData() sees to the
transfer of the attribute values from the OOA object to the representation of the
respective interaction objects. Groups and windows are the various variants of the
UIContainer class.

Contrary to conventional GUI class libraries, the UIGroup class does not only serve
the visual arrangement of multiple interaction objects. The described mechanisms
create a simplistic means to access the attributes of several OOA objects in one
window. An object of the UIWorkspace class functions as an application's main
window. It administrates its sub-windows and offers the functionality to arrange
these windows or to switch between them. If the application window is closed, the
application will be quit. Apart from that, a Workspace object has to establish a link
to the object oriented database which is used for the application's data keeping.

The end user can access data from the OOA model using dialogue windows. One
or several OOA objects can be displayed or modified by the dialogue window. At
the beginning of a dialogue, an OOA object has to be assigned to the dialogue
window and to each of the groups or complex interaction objects which might be
present inside of this window. The attribute values of the OOA objects are trans-
formed in the internal representation of the interaction objects and presented to
the user.

If the end user has changed the content of the interaction objects and chooses to
save them, a message is sent all interaction objects subordinate to the dialogue
commanding them to remit their contents to the attributes of the corresponding
OOA objects.

198 Computer-Aided Design of User Interfaces

UIControl is the baseclass for all of the controls supported by the corresponding
GUI class library. Each control is linked to an attribute of a specified OOA model
class. This link can be removed and changed during runtime. Each control not di-
rectly linked to an OOA object knows its UIContainer object and thereby has access
to the specific OOA object which is supposed to represent it. Complex controls
can also be directly linked to an OOA object by forming sub-classes. The moment
for transferring the attribute values to and from the OOA object can be controlled
by sending messages to the control.

Every control provides two polymorph operations, SetControlData() and GetCon-
trolData() for this, which are redefined in each of the classes derived from UI-
Control.

SetControlData() copies the data from the OOA object to the internal representation
of the control. This occurs in the following steps:

• With help from the operation GetPDObject(), the control receives a reference to
the assigned OOA object over a direct link (C++ pointer or ODBMS intelli-
gent pointer) or its UIContainer object.

• Since each control is assigned to an attribute, the OOA object's GetAll() opera-
tion can be called to get the current attribute value.

• The attribute value is transformed to the internal representation of the control
and presented to the user. This transformation is actually done by the generated
GetAll() operation of the OOA object.

The GetControlData() operation does the transformation in the other direction in a
similar way. Additional actions can be taken in it if the internal value of the control
cannot be filed as an attribute value. The reason for this may be a limit error or a
violation of a restriction which was defined in the OOA model for that particular
attribute. In the current version of the JADE system, the PutAll() operations return
an error code in such cases. The user interface component uses this error code to
display a dialog box which tells the users which attribute has an illegal value and
why the value is wrong.

The table has a special role under the interaction objects. One or more attributes
from a set of OOA objects can be reported with the assistance of the UIObjectTable
class. The OOA objects to be displayed in the table are generally instances of the
same class. At least they have to inherit from the same base class.

Access to the string based GetAll() and SetAll() operations separates the compli-
cated internal design of a table object from its mere interface. Aside from that, this
program allows the modification of the display shape of a table during the applica-
tion's running time.

In this way, for example, the order of the attributes to be displayed, as well as the
selection of the attributes themselves, can be interactively adjusted by the end user.
The effort required to create appropriate dialogues to activate these preferences is

 The JANUS Application Development Environment-Generating More than the User Interface 199

drastically reduced if the meta data are a permanent part of the problem domain
component.

It is also easy to achieve direct editing of the attribute values in the table by ex-
changing data with the OOA object using strings and the above mentioned mecha-
nism.

6 Technical Solution: the Generator Systems

The target language which is to be used also plays a role in the generation process.
As a rule, code for multiple target languages must be created depending on the ap-
plication environment. If the application is to be client-server capable using
CORBA standards [OMG91], the interface of all classes has to be generated in the
declarative language IDL. A similar situation is presented by the use of an ODMG
conforming, object oriented database. The code here has to be created in the lan-
guage ODL.

The App-generator system as well as the GUI generator system builds on assump-
tions about the target language. The following concepts are to be supported:

• the module concept;
• the ability to define additional data types;
• the pointer concept (or a similar concept that allows smart pointers);
• the ability to define ”free functions“ (functions not belonging to any class).

Input Generators Output

Resource C++ Sourcecode

Application

Database

GUI-Link

Core-
Functionality

Database-Link

Access
Data/Information-Flow

GUI-
Knowledge

OOA-
Model

Meta-
Model

GUI

GUI

App

Core

Figure 8. The generator systems

All other information is encapsulated in a general generator core in a meta model
of the utilized programming language. Figure 8 depicts the generator system with
the corresponding inputs and outputs. It is possible to change the target language
within the scope of the displayed limits by changing the meta model. The individ-
ual generators are linked to the respective language by a temporary association. In
this way it is possible to generate parts of the application in different languages
without altering the generators' interfaces.

It is to be shown by means of example how the declaration of a specific class's op-
eration can be described with the assistance of a generator core. The result is the

200 Computer-Aided Design of User Interfaces

generation of an operation for reading any attribute of the class the operation be-
longs to.

This operation contains the name of the attribute to be read in the first parameter.
It is a string constant. The temporary association for the generator core is repre-
sented by L. It is a pointer to a C++ object.
JParameter p1(L->AttribName(), L->String(),
 NULL, Param_In);

The second parameter will be filled with the value of the attribute. This is a refer-
ence to a string functioning as an output parameter.
JParameter p2(L->AttribVal(), L->String(), NULL,
 Param_Out | Param_Ref);

This example shows that the purpose of JParameter is to describe Parameters of an
Operation to be generated. Each Parameter has a mandatory name an type and op-
tionally a default value and some flags that describe special characteristics of the
parameter.

The operation's actual declaration is generated by the following command:
L->Method(decl, L->Bool(), GetName(),
 L->GetAll(), p1, p2,
 Meth_Poly | Meth_Declare | Meth_Const);

By calling this Operation of the Language class, an Operation with the Name given
by L->GetAll(), belonging to a class that is named by GetName(), is declared. The
return type is boolean (L->Bool()), and the parameter list is p1, p2. The generated
operation is to be constant (only read access to the attributes) and polymorph (late
binding). This is specified by the flags Meth_Poly and Meth_Const. The declaration
will be written to the ostream object decl.

If one observes the generation of the resource files for which the aforementioned
generator core cannot be used, one discovers basically comparable situation. The
syntax for defining resources in different window systems or UI builders is differ-
ent for the same interface objects, although the semantics basically remain the
same.

Each generator system is specialized for a particular area of tasks. Therefore, the
mechanisms for code generating describe above have to be individually controlled.
In the case of the App-generator, the controlling mechanism is already given by the
application's meta model. The generator system's task is to read information from
the model and transform it to the generating commands. Dependencies between
individual classes, which can affect the distribution of the created code in different
files, have to be taken into consideration.

The GUI generator system consists of three levels. The lowest level provides the
functionality described above for simplified source generating as well as for creat-
ing resource files. The middle level comprises a meta model of the JANUS Applica-
tion Framework.

 The JANUS Application Development Environment-Generating More than the User Interface 201

A class is implemented in the generator for each corresponding class in the JANUS
Application Framework. This middle level can independently create the resource
files and the accompanying source code in the target language by using the lowest
level. The main problem is the parameterization of the middle level.

A third level serves to solve this problem. It controls the course of events in the
generation and establishes a link to the application's OOA model. Preferences are
made in it that affect the application's screen display.

Dialogue information, layout information, conventions, and the application's self-
portrait flow in here [Balzert94]. In accordance with these defaults and the trans-
formational rules, an object network of the interface object-meta model, which is
defined in the second level, is created. The completed user interface results from
this.

7 A More Complex Example

To evaluate whether JANUS can handle more complex OOA models and to see the
advantages of JANUS, we have tested our system with a model of a seminar organi-
zation (see figure 9). The model describes the problem domain of a company that
organizes seminars. Data of customers, lectures, companies (in the role of custom-
ers), booking and the seminaries themselves can be created, stored or changed.

Also information about connections can be handled, e.g., which lecture can lecture
on which kind of seminar. For further information, see figure 9. The model in-
cludes 15 classes, 67 attributes, 17 operations and 8 connections (associations or
aggregations, not counting inherited connections).

The model was made with the OOA tool Paradigm Plus. All necessary specifica-
tions were made with this tool. By using a self written script the Paradigm Plus
generates a JDL file. This file is the input of the JANUS system. The generation
process results in four C++ files consisting of 22566 LOC that can be compiled to
a running application. About 50% of the generated code implement the GUI. The
rest implements the problem domain with the implicit operations and the connec-
tion to the GUI and database. The GUI code implements 826 GUI widgets.

The resulting application—remember: finished without writing a single line of
code—was tested with some demonstration data. The application JANUS has pro-
duced includes all the described basic functionality, including persistence and an
acceptable graphical user interface.

Figure 10 shows how to handle single objects by using the list view. For this exam-
ple we have chosen the lectures class. Figure 11 shows all established connections
(upper list in the front dialog) and how to modify the connections between the
classes lecture and type of seminar.

202 Computer-Aided Design of User Interfaces

Number
Name
Address
Date of birth
Date of first registration
Notes
$General letter

Print address
$Create general letter

Person

Shortname
Name
Address
Customer since
Turnover
Contact
Notes
$General letter

Print address
Print message
Calculate turnover
$Create general letter

Company

Password
Authorization

Teachware
employee

Biography
Fee per day

Lecturer

Position
Turnover

Calculate turnover

Customer

Shortname
Title
Price
Duration
Participants (min)
Participants (max)
Target group
Contents oversight
Schedule
Documents
Prerequisites

Typ of seminar

Number
Date of confirmation
Date of cancelling
Date of invoice
Date of Payment

Cancel
Print invoice
Register Payment
$List unpaid bookings

Booking
Number
Duration
Participants (max)
First day
Last day
Beginning first day
Ending last day
Normal beginning
Normal ending
Locality
Cancelled

Cancel

Seminar

Cancellation charge
Participants (min)
Participants (current)

Create list of participants
Create diploma

Public seminar

Flat rate

Internal seminar

lectures

Customer booking

Company booking

books

books

cooperates

Supported seminars

Cooperation partner

manages

Manager

Seminar to menage

Staff Employer

is able to lecture

Salutation
Title
Surname
Prename

NameT

Street
Postcode
City
PO box
Phone
Fax

AddressT

Name
Phone
Department
Day of birth

ContactT

Figure 9. The OOA model of the seminar organisation

8 Related Research Approaches

MB-IDEs [Foley91, Szekely93, Szekely96] offer the possibility to describe user in-
terfaces at a higher level of abstraction. They demonstrate a beginning basis for an
automated GUI development from the data model of the actual application. The
UIDE environment was expanded from a data model by de Baar et al. [de Baar92]
to tools for generating the static layout.

Even other approaches deal with knowledge-based selection of interaction objects
corresponding to a data model [Johnson92a, Vanderdonckt93] and their layout in
dialogue windows [Kim93]. In an additional step, parts of an application's dynamic
behavior will be included in GUI generating. Gieskens and Foley [Gieskens92] en-
hance the interface objects used by UIDE with pre- and post-conditions to thereby
describe their relationships.

 The JANUS Application Development Environment-Generating More than the User Interface 203

Figure 10. Navigating from list to single objects

Figure 11. Establishing connections between objects

204 Computer-Aided Design of User Interfaces

Janssen et al. [Janssen93] use a graphical editor in GENIUS in addition to an entity-
relationship-data model in order to input special dialogue networks for each appli-
cation. These approaches have the disadvantage of necessitating exceedingly high
costs on the part of the developer particularly for complex applications, and there-
fore neutralizes the advantages of automated generation.

Both JANUS [Balzert93, Balzert94, Balzert95a, Balzert95b] and MECANO [Puerta-
94b, Puerta96] use the relationship between the objects identified in the problem
domain component and a generation of the dynamic behavior of an application.
While a language of its own similar to LISP was drafted for MECANO to describe
the problem domain component, the modeling of the problem domain component
for the JANUS system was based on the object oriented analysis (OOA).

Conclusion: Actual Status of Development

The system for automated application development described has been essentially
completed. Beginning with an OOA model, the application is completely generated
with the standard functionality (new, change, delete, find) including a user interface
and linkage to an ODMG compatible (Poet 4.0 or O2), object oriented data base
management system, and subsequently can be put into used. The expansion of the
App-generator system is in the works in order to also be able to generate cli-
ent/server capable applications. The client/server part will be based on an object
request broker that conforms to the OMG standard.

The generator itself is written in C++ and consists of about 130,000 lines of code.
It runs on systems with an AT&T 3.0 compatible C++ compiler and was success-
fully tested using various compilers and operating systems. The generated applica-
tions need the zApp or StarView class library to run. These libraries are available
for various GUIs so that the generated application runs at least under Windows,
Motif and OS/2. When generating for the Windows environment, an online help
system using the windows help format is also generated. For the Unix platform we
generate the same information as HTML files. These files can be browsed by any
HTML viewer such as Netscape or Mosaic.

A versioning system that allows to preserve the user added code for implementing
the problem specific functions of each application is also part of the Janus system.
This system is very robust against modifications of the OOA model. For example
it is possible to change an operation’s name in the OOA model without losing the
hand made implementation of it.

In the future we will try to connect more CASE tools to our system for entering
the model data. We also plan to support different user interface management sys-
tems and more database systems including relational DBMS.

For more up to date information you might want to visit our web server at
http://www.swt.ruhr-uni-bochum.de.

 The JANUS Application Development Environment-Generating More than the User Interface 205

Appendix A. Exported JDL file from Paradigm Plus.
// JANUS Definition Language
//
// Generated by Paradigm Plus on: Tue Apr 09 17:44:40 1996
//
// Paradigm: RUMBAUGH
// Project: company
// Diagramm: Company Model

MODULE Company_Model
(
 ERGNAME "Company Model"
 DESCRIPTION "A simple example"
)
{
 // interface forward reference(s)
 INTERFACE Company;
 INTERFACE Employee;
 INTERFACE Person;

 INTERFACE Company
 (
 EXTENT CompanyList
 KEY Name
 ERGNAME "Company"
 DESCRIPTION "represents a company with its name its legal form"
 ABSTRACT false
 UIRELEVANT true
):PERSISTENT
 {
 // Attribute(s)
 ATTRIBUTE STRING<30> Name
 (
 ERGNAME "Company Name"
 DESCRIPTION "Full name of the company"
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY true
 DEFAULTVALUE ""
);
 ATTRIBUTE ENUM Legal_formT {inc,ltd,corp,co_op} Legal_form
 (
 ERGNAME "Legal form"
 DESCRIPTION "legal form(s) of the company"
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY false
 ITEMS "inc","ltd","corp","co-op"
 SELECTMIN 0
 SELECTMAX 4
 EXTENSIBLE false
);
 // Relation(s)
 RELATIONSHIP LIST<Employee> Staff inverse Employee::Employer
 (
 PATHTYPE Part
 ERGNAME "Staff"
 DESCRIPTION ""
 CARDINALITY [0,N]
 UIRELEVANT true
 UIINFORM true
);
 };
 INTERFACE Employee : Person
 (
 EXTENT EmployeeList
 ERGNAME "Employee"
 DESCRIPTION "represents an Employee (person with special properties)"
 ABSTRACT false
 UIRELEVANT true
):PERSISTENT
 {
 // Attribute(s)
 ATTRIBUTE FLOAT Salary
 (
 ERGNAME "Salary"
 DESCRIPTION "The monthly salary of an employee (in Dollars)"
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY false
 DEFAULTVALUE 2000
 LOWERBOUND 0
 UPPERBOUND 100000
);

206 Computer-Aided Design of User Interfaces

 ATTRIBUTE DATE Employed_since
 (
 ERGNAME "Employed since"
 DESCRIPTION "Date of employment in the associated company "
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY false
 DEFAULTVALUE "current"
);
 ATTRIBUTE ENUM PositionT {clerk,manager,developer,consultant} Positon
 (
 ERGNAME "Position"
 DESCRIPTION "The employee's position in the company "
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY false
 ITEMS "clerk","manager","developer","consultant"
 DEFAULTSELECTED "clerc"
 SELECTMIN 1
 SELECTMAX 1
 EXTENSIBLE true
);
 // Relation(s)
 RELATIONSHIP Company Employer inverse Company::Staff
 (
 PATHTYPE Whole
 ERGNAME "Employer"
 DESCRIPTION ""
 CARDINALITY [1,1]
 UIRELEVANT true
 UIINFORM true
);
 };
 INTERFACE Person
 (
 EXTENT PersonList
 KEYS Last_name, Date_of_birth
 ERGNAME "Person"
 DESCRIPTION "abstract class which holds a person's commonly used attributes"
 ABSTRACT true
 UIRELEVANT true
):PERSISTENT
 {
 // Attribute(s)
 ATTRIBUTE STRING<30> Last_name
 (
 ERGNAME "Last name"
 DESCRIPTION "Surname(s) of a person"
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY true
 DEFAULTVALUE ""
);
 ATTRIBUTE STRING<30> First_name
 (
 ERGNAME "First name"
 DESCRIPTION "Christian name(s) of a person"
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY false
 DEFAULTVALUE ""
);
 ATTRIBUTE DATE Date_of_birth
 (
 ERGNAME "Date of birth"
 DESCRIPTION "the person's birthday"
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY false
 DEFAULTVALUE ""
);
 ATTRIBUTE ENUM SexT {male,female} Sex
 (
 ERGNAME "Sex"
 DESCRIPTION "the sex of a person can be a male or female"
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY false
 ITEMS "male","female"
 DEFAULTSELECTED "male"
 SELECTMIN 1
 SELECTMAX 1
 EXTENSIBLE false
);
 };
};

 The JANUS Application Development Environment-Generating More than the User Interface 207

References

[Balzert93] Balzert, H., Der JANUS-Dialogexperte: Vom Fachkonzept zur Dialogstruk-
tur, in Softwaretechnik Trends, Band 13, Heft 3, Proceedings der GI-Fachtagung
Softwaretechnik, Dortmund (8-10 November 1993), pp. 62-72.

[Balzert94] Balzert, H., Das JANUS-System: Automatisierte, wissensbasierte Generierung
von Mensch-Computer-Schnittstellen, in Informatik-Forschung Entwicklung, Vol. 9,
Springer-Verlag, Heidelberg, 1994, pp. 22-35.

[Balzert95a] Balzert, H., From OOA to GUI - The JANUS-System, in Proceedings of
the 5th IFIP TC13 Conference on Human-Computer Interaction INTERACT’95,
Lillehammer, 25-29 June 1995, K. Nordbyn, P.H. Helmersen, D.J. Gilmore and
S.A. Arnesen (Eds.), Chapman & Hall, London, 1995, pp. 319-324.
http://www.swt.ruhr-uni-bochum.de/forschung/janus/lillehammer. html

[Balzert95b] Balzert, H., Hofmann, F., Niemann, C., Vom Programmieren zum Generi-
eren - Auf dem Weg zur automatischen Anwendungsentwicklung, in Proceedings of GI-
Fachtagung Software-technik'95 (Braunschweig, October 1995), 1995, pp. 126-136.
http://www.swt.ruhr-uni-bochum.de/forschung/swt95/artikel.htm

[Blaha94] Blaha, M., Premerlani, W., Shen, H., Converting OO Models into RDBMS
Schema, IEEE Software, May 1994, pp. 28-39.

[Bodart94c] Bodart, F., Vanderdonckt, J., On the Problem of Selecting Interaction Objects,
in Proceedings of British Conference on Human-Computer Interaction HCI’94
« People and Computers IX » (Glasgow, 23-26 August 1994), G. Cockton, S.W.
Draper, G.R.S. Weir (Eds.), Cambridge University Press, Cambridge, 1994, pp.
163-178. http://www.info.fundp.ac.be/cgi-bin/pub-spec-paper? RP-94-018

[Booch94] Booch, G., Object-Oriented Analysis and Design with Applications, The Ben-
jamin/Commings Publishing Company, 1994.

[Coad91a] Coad, P., Yourdon, E., Object-Oriented Analysis, Prentice-Hall, 1991.

[de Baar92] de Baar, D.J.M.J., Foley, J., Mullet, K.E., Coupling Application Design and
User Interface Design, in Proceedings of the Conference on Human Factors in Com-
puting Systems CHI’92 « Striking a balance » (Monterey, 3-7 May 1992), P. Bauers-
feld, J. Bennett, G. Lynch (Eds.), ACM Press, New York, 1992, pp. 259-266.
ftp://ftp.gvu.gatech.edu/pub/gvu/ tech-reports/91-10.ps.Z.

[Foley91] Foley, J.D., Kim, W.C., Kovacevic, S., Murray, K., UIDE - An Intelligent
User Interface Design Environment, in « Intelligent User Interfaces », J.W. Sullivan, S.W.
Tyler (Eds.), Addison Wesley, ACM Press, 1991, pp. 339-384.

[Gieskens92] Gieskens, D.F., Foley J.D., Controlling User Interface Objects through Pre-
and Postconditions , in Proceedings of the Conference on Human Factors in Comput-
ing Systems CHI’92 « Striking a balance » (Monterey, 3-7 May 1992), P. Bauersfeld,
J. Bennett, G. Lynch (Eds.), ACM Press, New York, 1992, pp. 189-194.

208 Computer-Aided Design of User Interfaces

[Heintzen95] Heintzen, P., Kruschinski, V., Balzert, H., Ein wissensbasiertes System
zur Unterstützung des Benutzers bei der ergonomischen Farbzusammenstellung für Dialog-
masken, Tagung Software-Ergonomie’95 (Darmstadt, 1995). zApp Application
Framework V2.2, Programmers Guide, Inmark Development Corporation, ,
Mountain View, 1994.

[Janssen93] Janssen, C., Weisbecker, A., Ziegler, J. , Generating User Interfaces from
Data Models and Dialogue Net Specifications, in Proceedings of the Conference on
Human Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds »
(Amsterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollna-
gel, T. White (Eds.), ACM Press, New York, 1993, pp. 418-423.

[Johnson92a] Johnson, J.A., Selectors: Going Beyond User Interface Widgets, in Proceed-
ings of the Conference on Human Factors in Computing Systems CHI’92 « Strik-
ing a balance » (Monterey, 3-7 May 1992), P. Bauersfeld, J. Bennett, G. Lynch
(Eds.), ACM Press, New York, 1992, pp. 273-279.

[Johnson93] Johnson, J.A., Nardi, B.A., Zarmer, C.L., Miller, J.R., ACE Building In-
teractive Graphical Applications, Communications of the ACM, Vol. 36, No. 4, April
1993, pp. 41-55.

[Kim93] Kim, W.C., Foley, J.D., Providing High-level Control and Expert Assistance in
the User Interface Presentation Design, in Proceedings of the Conference on Human
Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds » (Am-
sterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T.
White (Eds.), ACM Press, New York, 1993, pp. 430-437.

[Loomis93] Loomis, M.E., The ODMG Object Model, Journal of Object-Oriented
Programming, Vol.6, No.3, June 1993, pp. 64-69.

[Myers91] Myers, B.A., Graphical Techniques in a Spreedsheet for Specifying User Interfaces,
in Proceedings of the Conference on Human Factors in Computing Systems
CHI’91 « Reaching through technology » (New Orleans, 27 April-2 May 1991), S.P.
Robertson, G.M. Olson, J.S. Olson (Eds.), ACM Press, New York, 1991, pp. 243-
256.

[Neuron91] Open Interface V3.0, Open Interface Toolkit, Neuron Data, Inc., Palo
Alto, 1991.

[Neuron93] Open Interface V3.0, Development Guide, Neuron Data, Inc., Palo Alto,
1993.

[OMG91] The Common Object Request Broker: Architecture and Specification, OMG
Document Number 91.12.1, December 1991.

[Puerta94b] Puerta, A.R., Eriksson, H., Gennari, J.H., Musen, M.A., Beyond Data
Models for Automated User Interface Generation, in Proceedings of British Conference
on Human-Computer Interaction HCI’94 « People and Computers IX » (Glasgow,
23-26 August 1994), G. Cockton, S.W. Draper, G.R.S. Weir (Eds.), Cambridge

 The JANUS Application Development Environment-Generating More than the User Interface 209

University Press, Cambridge, 1994, pp. 353-366. http://www-
ksl.stanford.edu/KSL_Abstracts/KSL-93-62.html

[Puerta96] Puerta, A.R., The MECANO Project: Enabling User-Task Automation During
Interface Development, in Proceedings of AAAI’96 Spring Symposium on Acquisition,
Learning & Demonstration: Automating Tasks for Users (Stanford, March 1996),
AAAI Press, pp. 117-121.

[Rowe91] Rowe, L.A., Konstan, J.A., Smith, B.C., Seitz, S., Liu, C., The PICASSO
Application Framework, in Proceedings of the 4th Annual Symposium on User Inter-
face Software and Technology UIST’91 (Hilton Head, 11-13 November 1991),
ACM Press, New York, 1991, pp. 95-105.

[Rumbaugh91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.,
Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, 1991.

[Star93] Star Division, StarView programmer’s guide, 1993.

[Szekely93] Szekely, P., Luo, P., Neches, R., Beyond Interface Builders: Model-Based In-
terface Tools, in Proceedings of the Conference on Human Factors in Computing
Systems INTERCHI’93 « Bridges Between Worlds » (Amsterdam, 24-29 April
1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T. White (Eds.), ACM
Press, New York, 1993, pp. 383-390. http://www.isi.edu/isd/Interchi-be-yond.ps

[Szekely96] Szekely, P., Retrospective and Challenges for Model-Based Interface Devel-
opment, in this volume, pp. xxi-xliv. http://www.isi.edu/isd/Mastermind/Internal/
Files/DSVIS96/paper.ps.Z

[Vanderdonckt93] Vanderdonckt, J., Bodart, F., Encapsulating Knowledge for Intelligent
Automatic Interaction Objects Selection, in Proceedings of the Conference on Human
Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds » (Am-
sterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T.
White (Eds.), ACM Press, New York, 1993], pp. 424-429. http://www.
info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-93-005

[Vanderdonckt94d] Vanderdonckt, J., Ouedraogo, M., Yguietengar, B., A Compari-
son of Placement Strategies for Effective Visual Design, in Proceedings of British Confer-
ence on Human-Computer Interaction HCI’94 « People and Computers IX »
(Glasgow, 23-26 August 1994), G. Cockton, S.W. Draper, G.R.S. Weir (Eds.),
Cambridge University Press, Cambridge, 1994, pp. 125-143. http://
www.info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-94-019

[vander Zanden90] vander Zanden, B., Myers, B.A., Automatic, Look-and-Feel Inde-
pendent Dialog Creation for Graphical User Interfaces, in Proceedings of the Conference
on Human Factors in Computing Systems CHI’90 « Empowering People » (Seattle,
1-5 April 1990), J. Carrasco, J. Whiteside (Eds.), ACM Press, New York, 1990, pp.
27-34.

[Zarmer92] Zarmer, C.L., Cew, C., Frameworks for Interactive, Extensible, Information-
Intensive Applications, in Proceedings of the 5th Annual Symposium on User Interface

210 Computer-Aided Design of User Interfaces

Software and Technology UIST’92 (Monterey, 15-18 November 1992), ACM
Press, New York, 1992, pp. 33-41.

	Abstract
	Introduction
	1 As to the Situation
	2 An Integrated, Technical, and Comprehensive Plan
	3 A Simple Example
	4 Technical Solution: Designing the User Interface
	5 Technical Solution: Connecting the GUI with the Problem Do
	6 Technical Solution: the Generator Systems
	7 A More Complex Example
	8 Related Research Approaches
	Conclusion: Actual Status of Development
	Appendix A. Exported JDL file from Paradigm Plus.
	References

