
Transformation Templates: Adding Flexibility
to Model-Driven Engineering of User Interfaces

Nathalie Aquino1, Jean Vanderdonckt1,2, Oscar Pastor1
1Centro de Investigación en Métodos de Producción de Software, Universidad Politécnica de Valencia,

Camino de Vera s/n, 46022 Valencia, Spain
2Université catholique de Louvain, Louvain School of Management (LSM),

Place des Doyens, 1 - B-1348, Louvain-la-Neuve, Belgium

{naquino, opastor}@pros.upv.es, jean.vanderdonckt@uclouvain.be

ABSTRACT
Model-based user interface (UI) development environments are
aimed at generating one or many UIs from one or many models.
Model-driven engineering (MDE) of UIs is assumed to be supe-
rior to those environments since they make the UI design knowl-
edge visible, explicit, and external, for instance as model-to-
model transformations and model-to-code compilation rules.
These transformations and rules are often considered inflexible,
complex to express, and hard to develop by UI designers and
developers who are not necessarily experts in MDE. In order to
overcome these shortcomings, this paper introduces "Transforma-
tion Templates", an approach that is adding flexibility to the MDE
of UIs by externalizing the transformation logic of UI models, and
making it editable, customizable, and reusable. It is also intended
to make it easier for UI designers to specify the transformations.
A Transformation Template specifies a series of parameters that
enable designers to parameterize the model transformation proc-
ess at the concept level that is of a higher level of abstraction than
at the level of physical properties of UI widgets. This paper pre-
sents an editor for Transformation Templates and an example of
Parameter Type. Transformation Templates can be effectively and
efficiently used in any circumstances where the transformation
knowledge needs to be modified by non-experts, such as in do-
main specific languages where flexibility is required.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Computer-aided software engineering (CASE), User interfaces.
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces – Graphical user interfaces (GUI), User Centered Design.
I.3.6 [Methodology and Techniques]: Device Independence,
Language, Standards.

General Terms
Design, Human Factors, Standardization, Languages.

Keywords
Model-driven engineering of user interfaces, user interface model,
user interface model transformation, template, parameter.

1. INTRODUCTION
Approaches of Model-Driven Engineering (MDE) of User Inter-
faces (UIs) aim at providing an environment where UI designers
and developers can design and implement UIs in a professional
and systematic way, more easily than when using traditional UI
development tools, such as toolkits and Integrated Development
Environments made for programming languages, but not for UIs
[7]. Model-Driven Engineering of User Interfaces (MDE-UIs)
implies the definition of UI models of high abstraction from
which UI models of lower abstraction are obtained successively
through model-to-model (M2M) transformations until the source
code of the UI is reached through a model-to-code (M2C) trans-
formation. M2M and M2C transformations are done automatically
or semi-automatically. These approaches introduce well-defined
and automatable processes in which good practices of UI genera-
tion can be embedded.
Although MDE-UIs incorporates some advantages in the UI de-
velopment process, at the same time, it creates a new problem:
how could UI designers intervene in the automatic MDE process
when they need to develop UIs with characteristics that go be-
yond the scope of the model-driven process they are using? [7].
First of all, why would UI designers need to contribute to the
automatic MDE process they use? Basically, they will need to
intervene if the MDE process is not powerful enough to generate
the kind of UIs they need. One identified challenge in MDE of
UIs is the “need for powerful transformation and rendering en-
gines” [21]. Most currently available transformation and rendering
engines do not take advantage of the full power of the languages
in which they generate the UI code and, hence, they are not pow-
erful enough to produce attractive UIs in which it is not necessary
to make changes. Second, why would UI designers need to de-
velop UIs with characteristics that go beyond the scope of an
automatic MDE process, even if they use a powerful MDE proc-
ess? This need can be related with end-user requirements such as
“the desire to keep control over an application, the need to be
compliant with a particular style guide, the need to cope with user
preferences that were not considered in the MDE approach” [21].
Having justified the need of UI designers to intervene in the MDE
of UIs, the next paragraphs analyze how designers intervene in
current approaches for MDE of UIs. On the one hand, there are
approaches for MDE of UIs which have their transformation logic
and design knowledge implicit and fixed in the tools that perform
the transformations (e.g., Teallach [9], TERESA [15], OLIVANOVA
[16]). This results in the generation of predetermined UIs, all of
them looking alike. In these cases, there is a lack of flexibility for
UI designers to customize the generated UIs ([17, 11]), since for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
SAC’10, March 22–26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03…$10.00.

1195

that purpose, they must manually tweak the generated UI code.
On the other hand, there also exist approaches for MDE of UIs
which have their transformation logic explicitly expressed, either
with mapping and transformation models or with model transfor-
mation languages (e.g., TransformiXML [12]). In these cases, the
customization can be made prior to the UI generation. However,
UI designers must define the new transformation options that they
need, or edit existing ones. That complex process is more oriented
to model transformation specialists than to UI designers.
In general, end-user requirements related to the UIs make it nec-
essary that UI designers intervene in the MDE of UIs. However,
taking into account the described situation of MDE of UIs, it can
be said that the complete support to end-user requirements related
to UIs is a problem which has not been totally resolved. It can
also be affirmed that UI designers need more flexible approaches
for the automatic generation of UIs from models. In particular,
they need the model of a UI to incorporate flexible mechanisms to
specify concrete aspects of UIs taking into account the context of
use of the UIs: end-user preferences and characteristics, hardware
and software platforms, and environment [5].
In order to face the described problem, in a previous work [2] we
introduced Transformation Profiles as a mechanism to externalize
and customize the UI model transformations and to reuse knowl-
edge between different UI development projects. A Transforma-
tion Profile is composed of a set of Model Mappings (see [2] for
more details) and a Transformation Template. This work reviews
and enhances the specification of Transformation Templates. A
Transformation Template is composed of Parameters that specify
details of the structure, layout and style of UIs. They parameterize
UI model transformations.
Four different abstraction levels with their corresponding models
are usually used to structure the UI development life cycle: Task
and Concepts, Abstract User Interface (AUI), Concrete User In-
terface (CUI) and Final User Interface (FUI) [5]. Following a
forward engineering process, the previous abstraction levels give
rise to three types of transformations in the MDE of UIs: (1) from
the Task and Concepts Model to the AUI Model; (2) from the
AUI Model to the CUI Model; and (3) from the CUI Model to the
FUI code. The Transformation Templates approach can be ap-
plied on these three types of transformations. Furthermore, it can
also handle transformations from UI models on patterns [14, 20].
The rest of the paper is organized as follows: Section 2 presents
the Transformation Template approach. Transformation Tem-
plates and their associated concepts are described with meta-
models. Furthermore, an example of parameter type is presented
and the automation of Transformation Templates is briefly men-
tioned. In Section 3, related works are presented. Finally, Section
4 presents some conclusions.

2. TRANSFORMATION TEMPLATES
A Transformation Template has the aim to specify the structure,
layout and style of a UI according to preferences and require-
ments of end-users, and the different hardware and software com-
puting platforms and environments in which the UI will be used.
A Transformation Template is composed of Parameters with as-
sociated Values which parameterize the UI model transforma-
tions. Note that the term "Transformation Template" has been
used to denote transformation rules in XML transformation lan-
guages. IBM has also used the term to denote template models

with associated UML profiles. However, in this work, the term is
related to parameterized transformation processes. This external-
izes the transformation logic and makes it customizable according
to the characteristics of the project which is being carried out.
Transformation Templates can then be reused in other projects
with similar characteristics. Figure 1 illustrates the use of a Trans-
formation Template when transforming from an AUI model to a
CUI model. A transformation engine takes as input an AUI model
and a Transformation Template. The Transformation Template
provides specifications which determine how to transform the
AUI to the CUI model. The transformation engine follows the
specifications to generate the CUI model.

Figure 1. Transformation from an AUI Model to a CUI Model

using a Transformation Template.
The concepts that characterize the Transformation Templates
approach belong to one of three groups: concepts related to the
Contexts of use of the UIs, to UI Models, and to Transformation
Templates themselves. The groups of Contexts and UI Models
provide concepts which support the specific Transformation Tem-
plate concepts. In order to precisely describe and characterize all
concepts related to Transformation Templates, meta-models have
been elaborated for each one of the groups. The next section de-
fines the meta-models for each group of concepts.

2.1 Context of use
In this work the context concept refers to the context of use of an
interactive system. The purpose of conceptualizing context is that
we want it to be possible to define different Transformation Tem-
plates for different contexts of use. We have adopted a view of the
UsiXML Context Meta-Model in order to characterize the context
of use of interactive applications1. Figure 2 illustrates the ele-
ments and relationships which make up the considered view.
A Context of use is composed of the stereotype of a user who
carries out an interactive task with a specific computing platform
in a given surrounding environment. A User Stereotype represents
a set of end-users who share the same values in some descriptive
parameters or properties: language, experience doing a task, ex-
perience using the system, among others. The Environment de-
scribes any property of interest of the physical environment where
the end-user interacts with the system. Such properties may be
physical (e.g., lighting conditions), psychological (e.g., level of
stress), or organizational (e.g., location and role definition in the
organization chart). The Platform captures relevant attributes for
each combined software-hardware platform and attached devices
that may significantly influence the context of use in which the
end-user carries out an interactive task. A platform may consist of
a series of physical hardware devices, a series of software compo-
nents, the characteristics of the network to which the platform is
connected, the capability to support wireless, and the capability of
browsing web pages.

1 The complete UsiXML Context Meta-Model can be found in

http://www.usixml.org/index.php?mod=pages&id=5

1196

Figure 2. Elements and relationships of the considered view of

the UsiXMLContext Meta-Model.
The considered view of the UsiXML Context Meta-Model gives
support to the context concept as defined by the Cameleon Refer-
ence Framework (CRF) [5] which is widely accepted in the Hu-
man-Computer Interaction community.

2.2 UI Models
This work presents a Transformation Templates approach which
is used to parameterize transformations among UI models. There-
fore, Transformation Templates should be able to be used with
different existing approaches for UI modeling, such as [1, 12, 15].
Therefore, we need to specify how to relate Transformation Tem-
plates with different UI modeling approaches. In order to do this,
we have defined a meta-model of UIs which represent, in a sim-
plified way, some of the concepts that characterize different meta-
models of UIs. This simplified version provides only the neces-
sary and sufficient concepts in order to explain how Transforma-
tion Templates are defined and how they should be used. At the
same time, they define the requirements that a UI modeling ap-
proach must fulfill in order to be able to be used with Transforma-
tion Templates. The Transformation Templates approach assumes
that UI Meta Models are composed of Meta Elements and Meta
Relationships among Meta Elements (Figure 3).
A UI Meta Model represents, in a general and simplified way,
different existing meta-models of UIs (abstract, concrete or pat-
tern based meta-models).
A Meta Element is an element of a UI Meta Model. It is an ab-
stract element whose specializations are Meta Container and Meta
Individual Component. At an abstract, concrete or final level, as
well as in pattern based approaches, a UI can be characterized as a
hierarchy of containers holding individual components. Individual
components are atomic and cannot be further decomposed, while
containers can contain individual components or other containers.
A Meta Individual Component represents an individual compo-
nent and a Meta Container represents a container.
A Meta Relationship is composed of a set of Meta Elements
which are the source of the relationship and a set of Meta Ele-
ments which are the target. The Meta Relationship is an abstract
element whose specialization is the Meta Decomposition. A Meta
Decomposition represents the logical structure of components of a
UI. In a Meta Decomposition the relationship with source Meta
Elements is specialized to a relationship in which all Meta Ele-
ments must be Meta Containers. The Meta Elements which are
the target of a Meta Decomposition can be Meta Individual Com-
ponents or Meta Containers.

Figure 3. Elements and relationships of the UI meta-model

considered in this work.
All previously mentioned UI concepts are located in the UI Meta
Model level in Figure 3 since they are necessary to represent dif-
ferent existing UI Meta Models.
In the UI Model level, which represents different existing UI
Models (abstract, concrete or pattern based models), the UI Mod-
els are composed of Elements and Decompositions. A UI Model
is associated to its corresponding UI Meta Model (see Figure 3).
An Element represents an element of a UI Model and is associated
to its corresponding Meta Element which can be a Meta Individ-
ual Component or a Meta Container.
A Decomposition has a set of Elements which are containers in
the Decomposition as well as a set of Elements which are con-
tained. The contained Elements are ordered. A Decomposition is
associated to its corresponding Meta Decomposition and this as-
sociation determines which Elements can be containers or be
contained in the Decomposition.

2.3 Transformation Templates
Figure 4 illustrates the elements and relationships which make up
the part of the Transformation Template meta-model which is
used to define Parameter Types, this is to say, the Parameter Type
definition level. It also illustrates the relationships of such ele-
ments with elements of the UI Meta Model level, Context meta-
model, and the Parameter definition level of the Transformation
Template meta-model which will be explained latter.
A Parameter Type specifies the characteristics that will be shared
by a set of Parameters. These parameters establish how a UI will
be structured and stylized. A Parameter Type is an abstract ele-
ment and its specializations are Presentation and Dialog. These
elements are, in turn, further specialized (see Figure 4). The spe-
cializations of Parameter Type allow defining parameters which
affect different aspects of a UI. Font, Colour, Layout and Naviga-
tion are low-level Parameter Types. This means they operate at
attribute level of UI models specifying values for attributes such
as font type or colour. High-Level Presentation and High-Level
Dialog are high-level Parameter Types and they operate at the
concept level of UI models specifying, for instance, the widgets to
be used, the location and alignment of objects.
Defining a Parameter Type subsumes specifying the Meta Ele-
ments that are affected by it. Saying that a Parameter Type affects
a set of Meta Elements means that the corresponding Parameters
will be able to have an effect (e.g., a visual effect in the UIs) on
the Elements related to the Meta Elements in question.

1197

Figure 4. Elements and relationships of the Parameter Type definition level of the Transformation Template meta-model.

This is descriptive information and can be useful for the person
who will implement the Parameter Type in a M2M or M2C com-
piler. It is also possible to specify a condition in order for Parame-
ters associated to the Parameter Type to affect the corresponding
Elements. The condition must be a Boolean expression which can
involve Meta Elements and Parameter Types.
The definition of a Parameter Type also involves the specification
of the Meta Elements on which the Parameter Type can be ap-
plied. In this case, saying that a Parameter Type applies to a set of
Meta Elements means that the corresponding Parameters will be
able to be applied to the Elements related to the Meta Elements in
question. The Meta Elements on which a Parameter Type can be
applied are those which are affected by it as well as other Meta
Elements which can contain the affected ones, in any contention
level. A Parameter Type PT which affects the Meta Element ME1
could be applied to ME1 and/or to another Meta Element ME2,
provided ME2 can contain ME1 in any contention level. So, if we
consider a Parameter P of type PT, an Element E1 related to ME1,
and an Element E2 related to ME2 which contains E1, when ap-
plying P to E1 its effect will be reflected directly on E1, and when
applying P to E2 its effect will be reflected, also, in E1.
A Parameter Type could be in conflict with other Parameter
Types. The conflict can occur when the Parameter Types affect
the same Meta Element causing the same effect (e.g., two or more
Parameter Types have an effect in the font type to be used in the
Elements which correspond to a same Meta Element). In order to
partially resolve conflicts, each Parameter Type has a priority.
Conflicts are resolved giving preference to the effect of the Pa-
rameter Type with higher priority. In case the priorities of the
conflicting Parameter Types are equal, the conflict must be re-
solved in a random way or according to a criterion determined by

who implements the Transformation Templates approach in a
M2M or M2C compiler.
A Parameter Type has an associated Value Type. The Value Type
concept is similar to the notion of data type or type of object
(class). It is an abstract element and its current available speciali-
zations are Boolean Type, Integer Type, Real Type, String Type,
Length Type, Percentage Type, URI Type, Colour Type and
Enumeration Type. The Enumeration Type has an associated set
of Enumeration Items. The specialization set includes types com-
monly used in UI related specifications (e.g., in [4]) and could be
enlarged in the future. A Parameter Type also has a default value
which must be associated to its Value Type.
When a Parameter Type has a Value Type which is an Enumera-
tion Type the corresponding Enumeration Items constitute its
possible values. Each of these possible values is implementable or
not in different Contexts (see the relationship among Parameter
Type, Enumeration Item and Context in Figure 4). From this set
of implementable possible values it must be decided which ones
will indeed be implemented in the given Context. This is an im-
portant decision since the implementation cost could be high as it
implies modifications in M2M and/or M2C compilers. Each pos-
sible value of a Parameter Type receives estimations of its impor-
tance level (IL) and its development cost (DC). The IL estimation
should be based on the importance of the possible value for the
Context in consideration, as well as in the frequency with which
end-users ask for changes in UIs which can be related to the Pa-
rameter Type being analyzed. The DC should be estimated by
programmers who have experience programming for the Context
in question. Possible values with high IL and low DC will have
the higher priority when deciding which possible values to im-
plement for a given Context.

1198

Figure 5. Elements and relationships of the Parameter definition level of the Transformation Template meta-model.

The second level of priority is characterized by high IL and DC;
the third level, by low IL and DC; and finally, the fourth level, by
low priority and high DC. Furthermore, each possible value of a
Parameter Type can be assigned with usability guidelines which
will help UI designers in choosing one of the possible values ex-
plaining in which conditions they are convenient or not to use.
In a similar way, a Parameter Type is implementable or not in
different Contexts (see the relationship between Parameter Type
and Context in Figure 4). From the set of implementable Parame-
ter Types it must be decided which ones will indeed be imple-
mented in a given Context. In the case of a Parameter Type which
has a Value Type that is not an Enumeration Type, the process for
deciding if it will be implemented in a given Context and which
will be its implementation priority, is exactly the same as the one
previously explained for the case of possible values of Parameter
Types. In the case of a Parameter Type which has a Value Type
which is an Enumeration Type, its data related to the Context is
derived from the data of its possible values in the same Context.
That is to say, it will be implementable in a given Context if one
of its possible values is implementable in that Context. Its IL and
DC estimations will be aggregations of the IL and DC estimations
of its possible values, respectively. And it will be considered im-
plemented in a given Context if one of its possible values is im-
plemented in that Context.

Figure 5 illustrates the elements and relationships which make up
the part of the Transformation Template meta-model which is
used to define Transformation Templates and Parameters, this is
to say, the Parameter definition level. It illustrates the relation-
ships of such elements with elements of the UI Meta Model level,
UI Model level, Context meta-model, and the Parameter Type
definition level of the Transformation Template meta-model.
A Transformation Template gathers a set of Parameters for a
specific Context of use and can be associated, or not, to a UI
Model. Each Parameter of a Transformation Template corre-
sponds to a Parameter Type, has a Value and can have a Selector.
A Value corresponds to a Value Type. The Value concept is simi-
lar to the notion of data or object. It is an abstract element and its
current available specializations are Boolean Value, Integer
Value, Real Value, String Value, Length Value, Percentage
Value, URI Value, Colour Value and Enumeration Value. Each of
these values corresponds to a Value Type. The Value which is
assigned to a Parameter must be related to the Value Type associ-
ated to the Parameter Type which corresponds to the Parameter in
question. When a Parameter is assigned with a Value which is an
Enumeration value, its associated Enumeration Item must be im-
plemented for the Context of the Transformation Template in
which the Parameter is located. If the Value is not an Enumera-
tion Value it will be enough with the Parameter Type related to

1199

the Parameter being implemented for the Context of the Trans-
formation Template.
A Selector has the aim to delimit the set of Elements of a UI
Model over which a Parameter is applied. This, in turn, delimits
the set of Elements which are affected by the Value of the Pa-
rameter. If a Parameter does not have an associated Selector, the
Parameter will be applied to all Elements associated to Meta Ele-
ments over which the Parameter Type corresponding to the Pa-
rameter in question is able to be applied. If the Parameter has an
associated Selector, it will only be applied to the Elements se-
lected by the Selector. Selector is an abstract element and its spe-
cializations are Element Selector and Meta Element Selector.
An Element Selector allows the selection of a specific Element
from a UI Model. The Parameter associated to this Selector will
be applied on the selected Element. It is necessary that the se-
lected Element corresponds to a Meta Element over which the
Parameter Type of the Parameter is able to be applied. In order to
associate Element Selectors to the Parameters of a Transformation
Template, the Transformation Template must be associated to the
UI Model from which Elements will be selected.
A Meta Element Selector is an abstract element and its specializa-
tions are Searched Meta Element and Ancestor Meta Container. A
Searched Meta Element selector allows the selection of Elements
of a specific Meta Element. If the specified Meta Element is a
Meta Container, the number of the searched element can also be
specified. In this case, the Searched Meta Element selector selects
the Element contained at the position specified by the number of

the searched element. The position is given by the order of the
Element in the Decomposition. We have defined special options
for the number of the searched element. The special options allow
the selection of all Elements but the first one, the last Element,
and all Elements but the last one. A Parameter associated to a
Searched Meta Element selector will be applied on all selected
Elements. It is necessary that the selected Elements correspond to
Meta Elements over which the Parameter Type of the Parameter
is able to be applied. Furthermore, a Searched Meta Element se-
lector can have associated an Ancestor Meta Container with a
containment level. In this case, it is also necessary for an Element
to be contained, at the level specified by the containment level, in
other Element related to the Ancestor Meta Container, in order for
the first Element to be selected by the Searched Meta Element
selector. An Ancestor Meta Container can, in turn, have another
Ancestor Meta Container with containment level, and this can be
repeated until the required level.

2.4 How to use the Transformation Templates
Approach
There are two main processes related to the Transformation Tem-
plates approach: the definition of Parameter Types, and the crea-
tion of Transformation Templates. The definition of Parameter
Types begins with the identification of a required UI customiza-
tion by end-users of automatically generated UIs or by UI design-
ers.

Table 1. Grouping Layout Parameter Type.

Parameter Type
Possible values enumeration

Name Affects Value Graphical description
group box

tabbed dialog box

wizard

Grouping layout
for input argu-
ments

Two patterns of the OO-
Method Presentation
Model: Service Interac-
tion Unit and Argument
Grouping

accordion

Contexts
SW: C# on .NET - HW: laptop or PC SW: iPhone OS - HW: iPhone

Possible value Importance level (IL) Development cost (DC) Importance level (IL) Development cost (DC)
group box high low high low
tabbed dialog box high low medium medium
wizard medium medium low high
accordion low medium medium medium

Possible value Usability guidelines (for desktop context)
group box Visual distinctiveness is important. The total number of groups will be small.
tabbed dialog box Visual distinctiveness is important. The total number of groups is not greater than 10.
wizard The total number of groups is between 3 and 10. The complexity of the task is significant. The task implies

several critical decisions. The cost of errors is high. The task must be done infrequently. The user lacks the
experience it takes to complete the task efficiently.

accordion Visual distinctiveness is important. The total number of groups is not greater than 10.

1200

Then, a UI designer creates the corresponding Parameter Type
and, maybe with the help of a MDE expert, specifies the affected
Meta Elements from one or many UI Meta Models. The UI de-
signer also has to specify the possible values for the Parameter
Type, as well as the contexts in which those values are significant.
Then, for each context, the UI designer has to estimate the IL of
each possible value based on experience and feedback from end-
users. Also, for each context, an experienced programmer has to
estimate the DC of each possible value, and a usability expert has
to incorporate usability guidelines. The decision of implementing
or not a Parameter Type for a given context and in a given MDE
approach should be based on the corresponding IL and DC esti-
mations. If the decision is positive, a programmer must proceed
with the implementation.
Regarding the creation of Transformation Templates, the first step
consists in defining the context for which the Transformation
Template will be created. Then, a specific UI Model can option-
ally be associated to the Transformation Template, and finally,
Parameters can be added to the Transformation Template. When
adding a Parameter, its value and selector must be specified.

2.5 An Example of Parameter Type
Table 1 presents the Grouping Layout Parameter Type. This Pa-
rameter Type was extracted from a Catalogue of Parameter Types
which was proposed for the OO-Method Presentation Model
(PM). OO-Method [16] is an object-oriented method which allows
the automatic generation of software applications from conceptual
models. The OO-Method PM is structured with a set of UI Pat-
terns which are defined in [14] and allow the specification of an
abstract representation of a UI. OLIVANOVA The Programming
Machine is a commercial tool developed by CARE Technologies
(http://www.care-t.com) which supports OO-Method. Currently,
most of the logic that guides UI model transformations is implicit
in the OLIVANOVA compiler so we thought the application of the
Transformation Templates approach could be convenient.
The Service Interaction Unit and Argument Grouping that appear
in the affects column of Table 1, are elements of the OO-Method
PM (see [14] for more details about them). Four different possible
values have been defined for the Parameter Type, and they have
been associated to two context of use: a desktop platform and a
mobile one. For each context of use and each possible value the
IL and DC have been estimated. Furthermore, for the desktop
context and each possible value, usability guidelines have been
proposed from an extraction from [8].

2.6 Transformation Templates Automation
The automation of the Transformation Templates approach im-
plies two types of tools: Transformation Template editors, and
M2M/M2C compilers which use Transformation Templates in its
compilation process. By now, we have implemented a first proto-
type of a Transformation Template editor. It has been developed
using OO-Method and the OLIVANOVA technology. Figure 6 pre-
sents two screenshots of the editor. The top window allows creat-
ing a new Parameter Type. Other UIs of the editor allow the user
to complete all the steps which are required to complete the speci-
fication of the Parameter Type: association with the affected Meta
Elements and with significant contexts of use, estimation of IL
and DC, and specification of usability guidelines. The bottom
window allows creating a Parameter in a Transformation Tem-
plate. As future work, we want to improve this editor including
visualization facilities when creating Transformation Templates.

Figure 6. Screenshots of the Transformation Templates editor.

3. RELATED WORK
Some software tools support a transformation-based approach for
generating a UI but the transformations are not made explicit
(e.g., Teallach [9], TERESA [15], OLIVANOVA [16]). With respect
to these works, this approach has the advantage that logic trans-
formation and design knowledge are externalized and, therefore,
are customizable and reusable in UI development projects with
similar characteristics. Other software tools support explicit trans-
formations. TransformiXML [12] interprets mappings written in
UsiXML [12] and converts them into graph transformations. Fur-
thermore, different model transformation languages had been
applied in MDE of UIs (e.g., ATL [10], RDL/TT [19], XSLT [6]).
A survey of some of them is presented in [18]. With respect to
these works, this approach has the advantage that it incorporates a
parameterization process which is more affordable for designers.
There are also other software tools that support a template based
approach (e.g., Genova [3], CSS [4]). With respect to these works,
this approach has the advantage that it does not depend on a par-
ticular UI development method but it can be used with different
approaches for MDE of UIs. Furthermore, it can guide transfor-
mations to different hardware and software platforms as well as to
different end-user characteristics and preferences. Parameters of a
Transformation Template are not limited to modifying widget
properties, but they can also specify the structure and layout of
the UIs. Parameters are not tied to programming or mark-up lan-
guages and new parameters can be added when needed. This ap-
proach is also applicable to model transformations for patterns.
In [13], another type of Transformation Templates, used for per-
forming transformations among XML documents, is automatically
generated. In our case, the purpose is not to automatically gener-
ate our templates because in the UI design context, the design
knowledge, held in the experience of UI designers, needs to be
turned into Transformation Templates in order to maximize the
quality of the results. In fact, creating a Transformation Template
could be a high-cost activity for some contexts of use. However,
the high-cost will be relative if the Transformation Template al-
lows the generation of good-quality UIs and if it is reused among
UI development projects.

1201

4. CONCLUSION
The contribution of this work is related to the definition of the
Transformation Templates approach which intends to add flexibil-
ity in UI model transformations. The Templates allow the specifi-
cation of details of the structure, layout and style of UIs. They are
inputs for M2M or M2C compilers and parameterize the logic
which compilers follow to perform the transformations. In this
way, Transformation Templates externalize the design knowledge
and make it customizable according to the characteristics of a UI
development project. They also allow the proper logic to be re-
used in other projects with similar characteristics. Moreover, this
parameterization process is simple compared to the complex proc-
ess of specifying model transformations with mapping and trans-
formation models or model transformation languages.
The concepts related to the Transformation Template approach
have been clearly characterized. The approach has also been re-
lated to a simplified and generic UI meta-model. The establish-
ment of these relationships allows Transformation Templates to
be used with different approaches of MDE of UIs. In a similar
way, the establishment of relationships with a Context meta-
model allows Transformation Templates to guide transformations
for different end-users, hardware and software platforms, and
environments. Furthermore, in principle, the Transformation
Template notion could be used in any M2M or M2C compilation.
The set of Parameter Types is not fixed. Different approaches of
MDE of UIs could define their own Parameter Types, many of
which could be useful in different approaches for MDE of UIs. In
order to avoid a tedious process for the specification of details of
a UI, the Transformation Templates approach provides different
flexible mechanisms: default values are specified for Parameter
Types and several ways of selecting the elements which will be
affected by a Parameter are provided.
The proposed approach allows relating usability guidelines to
Parameter Types in order to guide the UI designer towards a
Transformation Template which can produce UIs with good us-
ability. The implementation cost can be identified as the most
important shortcoming of this approach since the implementation
of each Parameter Type implies modifications in compiler tools.
However, these modifications can be done in an incremental way.
Even though this cost is relatively high this approach allows de-
signers to apply the Transformation Template to tailor the MDE
process to end-users needs. End-users desire to specify their own
needs and really appreciate seeing them incorporated in the MDE
process, as opposed to a traditional MDE process where all the
transformations are predefined and lead to a predetermined UI.

5. ACKNOWLEDGMENTS
This work has been developed with the support of MEC under the
project SESAMO (TIN2007-62894), by GVA under grant
BFPI/2008/209, and the ITEA2 Call3 UsiXML project under
reference 2008026.

6. REFERENCES
[1] ABRAMS, M., PHANOURIOU, C., BATONGBACAL, A. L., WILLIAMS,

S. M., AND SHUSTER, J. E. UIML: An Appliance-Independent XML
User Interface Language. Computer Networks 31, 11-16 (1999),
1695–1708.

[2] AQUINO, N., VANDERDONCKT, J., VALVERDE, F., AND PASTOR, S.
Using Profiles to Support Model Transformations in the Model-
Driven Development of User Interfaces. In Computer-Aided Design of

User Interfaces VI, Proc. of 7th Int. Conf. on Computer-Aided Design
of User Interfaces, CADUI 2008, (Albacete, Spain, June 11-13, 2008)
(2009), Springer, Berlin, 2009, pp. 35–46.

[3] ARISHOLM, E., BENESTAD, H. C., SKANDSEN, J., AND FREDHALL, H.
Incorporating Rapid User Interface Prototyping in Object-Oriented
Analysis and Design with Genova. In In Proceedings of NWPER'98
Nordic Workshop on Programming Environment Research (Eds,
Mughal (1998), pp. 155–161.

[4] BOS, B., ÇELIK, T., LIE, H. W., AND HICKSON, I. Cascading Style
Sheets Level 2 Revision 1 (CSS 2.1) Specification. Tech. rep., World
Wide Web Consortium (W3C), July 2007.

[5] CALVARY, G., COUTAZ, J., THEVENIN, D., LIMBOURG, Q., BOUILLON,
L., AND VANDERDONCKT, J. A Unifying Reference Framework for
multi-target user interfaces. Interacting with Computers 15, 3 (2003),
289–308.

[6] CLARK, J. XSL Transformations (XSLT) Version 1.0. W3C recom-
mendation, W3C, Nov. 1999. http://www.w3.org/TR/1999/REC-xslt-
19991116.

[7] DA SILVA, P. P. User Interface Declarative Models and Development
Environments: A Survey. In DSV-IS (2000), pp. 207–226.

[8] GALITZ, W. O. The Essential Guide to User Interface Design: An
Introduction to GUI Design Principles and Techniques. John Wiley &
Sons, Inc., New York, NY, USA, 2002.

[9] GRIFFITHS, T., BARCLAY, P. J., PATON, N. W., MCKIRDY, J., KEN-
NEDY, J. B., GRAY, P. D., COOPER, R., GOBLE, C. A., AND DA SILVA,
P. P. Teallach: a Model-Based User Interface Development Environ-
ment for Object Databases. Inter. with Comp. 14, 1 (2001), 31–68.

[10] JOUAULT, F., AND KURTEV, I. Transforming Models with ATL. In
MoDELS Satellite Events (2005), J.-M. Bruel, Ed., vol. 3844 of Lec-
ture Notes in Computer Science, Springer, pp. 128–138.

[11] LIMBOURG, Q., AND VANDERDONCKT, J. Addressing the Mapping
Problem in User Interface Design with UsiXML. In TAMODIA
(2004), P. Slavk and P. A. Palanque, Eds., ACM, pp. 155–163.

[12] LIMBOURG, Q., VANDERDONCKT, J., MICHOTTE, B., BOUILLON, L.,
AND LÓPEZ-JAQUERO, V. USIXML: A Language Supporting Multi-
path Development of User Interfaces. In EHCI/DS-VIS (2004),
vol. 3425 of Lecture Notes in Comp. Sci., Springer, pp. 200–220.

[13] LLAVADOR, M., AND CANÓS, J. H. A Framework for the Generation of
Transformation Templates. In ECDL (2007), vol. 4675 of Lecture
Notes in Computer Science, Springer, pp. 501–504.

[14] MOLINA, P. J., MELIÁ, S., AND PASTOR, O. Just-UI : A User Interface
Specification Model. In CADUI (2002), C. Kolski and
J. Vanderdonckt, Eds., Kluwer, Dordrecht, 2002, pp. 63–74.

[15] MORI, G., PATERNO, F., AND SANTORO, C. Design and Development
of Multidevice User Interfaces through Multiple Logical Descriptions.
IEEE Trans. Software Eng. 30, 8 (2004), 507–520.

[16] PASTOR, O., AND MOLINA, J. C. Model-Driven Architecture in Prac-
tice: A Software Production Environment Based on Conceptual Mod-
eling. Springer-Verlag, 2007.

[17] PUERTA, A. R., AND EISENSTEIN, J. Towards a General Computational
Framework for Model-Based Interface Development Systems.
Knowl.-Based Syst. 12, 8 (1999), 433–442.

[18] SCHAEFER, R. A Survey on Transformation Tools for Model Based
User Interface Development. In HCI (1) (2007), vol. 4550 of Lecture
Notes in Computer Science, Springer, pp. 1178–1187.

[19] SCHAEFER, R., DANGBERG, A., AND MUELLER, W. RDL/TT - A De-
scription Language for the Profile-Dependent Transcoding of XML
Documents. In In International ITEA Workshop on Virtual Home En-
vironments (2002).

[20] VALVERDE, F., PANACH, J. I., AQUINO, N., AND PASTOR, Ó. New
Trends on Human-Computer Interaction. Research, Development,
New Tools and Methods. Springer, 2009, ch. Dealing with Abstract
Interaction Modelling in an MDE Development Process: a Pattern-
based Approach, pp. 119–128.

[21] VANDERDONCKT, J. Model-Driven Engineering of User Interfaces:
Promises, Successes, and Failures. In Proc. of 5th Annual Romanian
Conf. on Human-Computer Interaction ROCHI’2008, (Iasi, 18-19
September 2008) (2008), Matrix ROM, Bucarest, pp. 1–10.

1202

